
ContentsContents

 Welcome
 .NET Guide

 Get Started with .NET
 Tour of .NET
 .NET Architectural Components
 .NET Standard

 What's new in the .NET Standard
 Target Frameworks
 .NET Glossary
 Architecture Guidance

 Architect Modern web applications with ASP.NET Core and Microsoft Azure
 Modernize Existing .NET Applications with Azure cloud and Windows Containers
 Containerized Docker Application Lifecycle with the Microsoft Platform and Tools
 .NET Microservices: Architecture for Containerized .NET Applications
 Serverless apps: Architecture, patterns, and Azure implementation

 Choosing between .NET Core and .NET Framework for server apps
 What is "managed code"?

 Automatic Memory Management
 Common Language Runtime (CLR)
 Language Independence

 Language Independence and Language-Independent Components
 Framework Libraries

 Class Library Overview
 Base Types

 .NET Class libraries
 Analyzers

 API Analyzer
 Portability Analyzer
 Framework Analyzer

 Handling and throwing exceptions
 .NET Assembly File Format
 Garbage Collection
 Generic types
 Delegates and lambdas
 LINQ
 Common Type System & Common Language Specification
 Parallel Processing, Concurrency, and Async

 Asynchronous programming
 Asynchronous programming in depth
 Asynchronous Programming Patterns

 Parallel Programming
 Threading

 Native interoperability
 Collections and Data Structures
 Numerics in .NET
 Dates, times, and time zones
 Events
 Managed Execution Process
 Metadata and Self-Describing Components
 Building Console Applications
 Application Essentials
 File and Stream I/O
 Globalization and Localization
 Attributes
 Framework Design Guidelines
 XML Documents and Data
 Security
 Serialization
 Developing for Multiple Platforms

 .NET Core Guide
 Get started

 Get started with C# and Visual Studio Code
 Build a C# Hello World app with .NET Core in Visual Studio 2017
 Build a Visual Basic Hello World app with .NET Core in Visual Studio 2017
 Build a class library with C# and .NET Core in Visual Studio 2017
 Build a class library with Visual Basic and .NET Core in Visual Studio 2017

 Windows Prerequisites
 macOS Prerequisites
 Linux Prerequisites
 What's new in .NET Core

 What's new in .NET Core 2.1
 What's new in .NET Core 2.0

 Tutorials
 Building a complete .NET Core solution on Windows, using Visual Studio 2017
 Getting started with .NET Core on macOS
 Getting started with .NET Core on macOS using Visual Studio for Mac
 Building a complete .NET Core solution on macOS using Visual Studio for Mac
 Getting started with .NET Core using the CLI tools

 Organizing and testing projects with the .NET Core command line
 Developing Libraries with Cross Platform Tools
 Developing ASP.NET Core applications
 How to Manage Package Dependency Versions for .NET Core 1.0
 Hosting .NET Core from native code
 Create a custom template for dotnet new

 Packages, Metapackages and Frameworks
 Changes in CLI overview

 Dependency management
 Additions to the csproj format

 Migration
 .NET Core 2.0 to 2.1
 Migration to csproj format
 Mapping between project.json and csproj
 Migrating from DNX

 Application Deployment
 Deploy apps with CLI tools
 Deploy apps with Visual Studio
 Creating a NuGet Package with Cross Platform Tools
 Self-contained deployment runtime roll forward
 Runtime package store

 Docker
 Introduction to .NET and Docker
 Learn Docker Basics with .NET Core
 Building Docker Images for .NET Core Applications
 Visual Studio Tools for Docker

 Unit Testing
 C# unit testing with xUnit
 C# unit testing with NUnit
 C# unit testing with MSTest
 F# unit testing with xUnit
 F# unit testing with NUnit
 F# unit testing with MSTest
 VB unit testing with xUnit
 VB unit testing with NUnit
 VB unit testing with MSTest
 Running selective unit tests
 Unit Testing Published Output
 Live unit testing .NET Core projects with Visual Studio

 Versioning
 .NET Core version selection

 Runtime IDentifier catalog
 .NET Core SDK Overview
 .NET Core CLI Tools

 Telemetry
 Global Tools
 Extensibility Model

https://docs.microsoft.com/aspnet/core/publishing/visual-studio-tools-for-docker
https://docs.microsoft.com/visualstudio/test/live-unit-testing-start

 Continuous Integration
 Custom templates
 dotnet
 dotnet build
 dotnet build-server
 dotnet clean
 dotnet help
 dotnet install-script
 dotnet migrate
 dotnet msbuild
 dotnet new
 dotnet nuget

 dotnet nuget delete
 dotnet nuget locals
 dotnet nuget push

 dotnet pack
 dotnet publish
 dotnet restore
 dotnet run
 dotnet sln
 dotnet store
 dotnet test
 dotnet tool

 dotnet tool install
 dotnet tool list
 dotnet tool uninstall
 dotnet tool update

 dotnet vstest
 Project modification commands

 References
 dotnet add reference
 dotnet list reference

 dotnet remove reference
 Packages

 dotnet add package
 dotnet remove package

 global.json
 .NET Core Additional Tools

 WCF Web Service Reference Provider
 dotnet-svcutil
 XML Serializer Generator

 Porting from .NET Framework
 Organizing projects for .NET Core
 Analyzing third-party dependencies
 Porting libraries
 Using the Windows Compatibility Pack

 Build .NET Core from source
 .NET Core distribution packaging

 VS 2015/project.json docs
 .NET Framework Guide

 What's New
 Get Started
 Installation guide
 Migration Guide
 .NET Framework on Docker Guide

 Running Console Apps in Containers
 Development Guide

 Application Domains and Assemblies
 Resources in Desktop Apps
 Accessibility
 Data and Modeling
 Client Applications

 Common Client Technologies
 Windows Presentation Foundation

 Windows Forms
 Service-Oriented Applications with WCF
 Windows Workflow Foundation
 Windows Service Applications
 64-bit Applications
 Web Applications with ASP.NET
 Network Programming in the .NET Framework
 Configuring Apps
 Compiling Apps with .NET Native
 Windows Identity Foundation
 Debugging, Tracing, and Profiling
 Deployment
 Performance
 Dynamic Programming
 Managed Extensibility Framework (MEF)
 Add-ins and Extensibility
 Interoperating with Unmanaged Code
 Unmanaged API Reference
 XAML Services

 Tools
 Additional Class Libraries and APIs

 C# Guide
 Get Started
 Quickstarts
 Tutorials
 Tour of C#
 What's new in C#

 C# 7.3
 C# 7.2
 C# 7.1
 C# 7.0
 C# 6

 C# Version History
 Relationships between language and framework

 C# Concepts
 C# Type system
 Namespaces
 Basic Types
 Classes
 Structs
 Tuples
 Deconstructing tuples and other types
 Interfaces
 Methods
 Lambda Expressions
 Properties
 Indexers
 Discards
 Generics
 Iterators
 Delegates & events

 Introduction to Delegates
 System.Delegate and the delegate keyword
 Strongly Typed Delegates
 Common Patterns for Delegates
 Introduction to Events
 Standard .NET event patterns
 The Updated .NET Event Pattern
 Distinguishing Delegates and Events

 Language Integrated Query (LINQ)
 Asynchronous programming
 Pattern Matching
 Reference semantics with value types
 Expression Trees

 Expression Trees Explained
 Framework Types Supporting Expression Trees
 Executing Expressions
 Interpreting Expressions
 Building Expressions
 Translating Expressions
 Summary

 Native interoperability
 Documenting your code
 Versioning

 How To C# Topics
 Parse strings using `String.Split`
 Concatenate strings
 Convert a string to a DateTime
 Search strings
 Modify string contents
 Compare strings

 The .NET Compiler Platform SDK (Roslyn APIs)
 C# Programming Guide
 Language Reference
 Walkthroughs

 F# Guide
 Tour of F#
 Get Started

 Install F#
 Get Started with Visual Studio
 Get Started with Visual Studio for Mac
 Get Started with Visual Studio Code and Ionide
 Get Started with with the .NET Core CLI

 F# style guide
 F# code formatting guidelines
 F# coding conventions

 F# component design guidelines
 Tutorials

 F# Interactive
 Type Providers

 Create a Type Provider
 Type provider Security
 Troubleshooting Type Providers

 Introduction to Functional Programming
 Functions as First-Class Values
 Asynchronous and Concurrent Programming

 Asynchronous Programming
 Using F# on Azure

 Get started with Azure Blob storage using F#
 Get started with Azure File storage using F#
 Get started with Azure Queue storage using F#
 Get started with Azure Table storage using F#
 Package Management for F# Azure Dependencies

 F# Language Reference
 Keyword Reference
 Symbol and Operator Reference

 Arithmetic Operators
 Boolean Operators
 Bitwise Operators
 Nullable Operators

 Functions
 let Bindings
 do Bindings
 Lambda Expressions: the fun keyword
 Recursive Functions: the rec keyword
 Entry Point
 External Functions
 Inline Functions

 Values
 Null Values

 Literals
 F# Types
 Type Inference
 Basic Types
 Unit Type
 Strings
 Tuples
 F# Collection Types
 Lists
 Options
 Results
 Sequences
 Arrays
 Generics

 Automatic Generalization
 Constraints
 Statically Resolved Type Parameters

 Records
 Discriminated Unions
 Enumerations
 Reference Cells
 Type Abbreviations
 Classes
 Structures
 Inheritance
 Interfaces
 Abstract Classes
 Members

 let Bindings in Classes
 do Bindings in Classes

 Properties
 Indexed Properties
 Methods
 Constructors
 Events
 Explicit Fields: The `val` Keyword

 Type Extensions
 Parameters and Arguments
 Operator Overloading
 Flexible Types
 Delegates
 Object Expressions
 Copy and Update Record Expressions
 Casting and Conversions
 Access Control
 Conditional Expressions: if...then...else
 Match Expressions
 Pattern Matching
 Active Patterns
 Loops: for...to Expression
 Loops: for...in Expression
 Loops: while...do Expression
 Assertions
 Exception Handling

 Exception Types
 The try...with Expression
 The try...finally Expression
 The raise Function
 The failwith Function
 The invalidArg Function

 Attributes
 Resource Management: the use Keyword

 Namespaces
 Modules
 Import Declarations: The open Keyword
 Signature Files
 Units of Measure
 XML Documentation
 Lazy Computations
 Computation Expressions
 Asynchronous Workflows
 Query Expressions
 Code Quotations
 Fixed keyword
 Compiler Directives
 Compiler Options
 F# Interactive Options
 Source Line, File, and Path Identifiers
 Caller Information
 Verbose Syntax
 Code Formatting Guidelines

 Visual Basic Guide
 Get Started

 What's New for Visual Basic
 Visual Basic Breaking Changes in Visual Studio
 Additional Resources for Visual Basic Programmers

 Developing Applications
 Programming in Visual Basic

 Accessing Computer Resources
 Logging Information from the Application
 Accessing User Data
 Accessing Application Forms
 Accessing Application Web Services

 How to: Call a Web Service Asynchronously

 Accessing Application Settings
 Processing Drives, Directories, and Files

 Development with My
 Performing Tasks with My.Application, My.Computer, and My.User
 Default Object Instances Provided by My.Forms and My.WebServices
 Rapid Application Development with My.Resources and My.Settings
 Overview of the Visual Basic Application Model
 How My Depends on Project Type

 Accessing Data
 Creating and Using Components
 Printing and Reporting

 PrintForm Component
 How to: Print a Scrollable Form
 How to: Print Client and Non-Client Areas of a Form
 How to: Print the Client Area of a Form
 How to: Print a Form by Using the PrintForm Component
 Deploying Applications That Reference the PrintForm Component
 Adding Printable Reports to Visual Studio Applications

 Windows Forms Application Basics
 Power Packs Controls
 DataRepeater Control

 Introduction to the DataRepeater Control
 Virtual Mode in the DataRepeater Control
 How to: Display Bound Data in a DataRepeater Control
 How to: Display Unbound Controls in a DataRepeater Control
 How to: Change the Layout of a DataRepeater Control
 How to: Change the Appearance of a DataRepeater Control
 How to: Display Item Headers in a DataRepeater Control
 How to: Disable Adding and Deleting DataRepeater Items
 How to: Search Data in a DataRepeater Control
 How to: Create a Master-Detail Form by Using Two DataRepeater Controls
 Walkthrough: Displaying Data in a DataRepeater Control

 Troubleshooting the DataRepeater Control
 Line and Shape Controls

 Introduction to the Line and Shape Controls
 How to: Draw Lines with the LineShape Control
 How to: Draw Shapes with the OvalShape and RectangleShape Controls
 How to: Enable Tabbing Between Shapes
 Deploying Applications That Reference Power Packs Controls

 Customizing Projects and Extending My with Visual Basic
 Extending the My Namespace
 Packaging and Deploying Custom My Extensions
 Extending the Visual Basic Application Model
 Customizing Which Objects are Available in My

 Programming Concepts
 Assemblies and the Global Assembly Cache
 Asynchronous Programming with Async and Await
 Attributes
 Expression Trees
 Iterators
 Language-Integrated Query (LINQ)
 Object-Oriented Programming
 Reflection
 Serialization
 Threading

 Program Structure and Code Conventions
 Structure of a Program
 Main Procedure
 References and the Imports Statement
 Namespaces
 Naming Conventions
 Coding Conventions
 Conditional Compilation
 How to: Break and Combine Statements in Code

 How to: Collapse and Hide Sections of Code
 How to: Label Statements
 Special Characters in Code
 Comments in Code
 Keywords as Element Names in Code
 Me, My, MyBase, and MyClass
 Limitations

 Language Features
 Arrays
 Collection Initializers
 Constants and Enumerations
 Control Flow
 Data Types
 Declared Elements
 Delegates
 Early and Late Binding
 Error Types
 Events
 Interfaces

 Walkthrough: Creating and Implementing Interfaces
 LINQ
 Objects and Classes
 Operators and Expressions
 Procedures
 Statements
 Strings
 Variables
 XML

 COM Interop
 Introduction to COM Interop
 How to: Reference COM Objects
 How to: Work with ActiveX Controls

 Walkthrough: Calling Windows APIs
 How to: Call Windows APIs
 How to: Call a Windows Function that Takes Unsigned Types
 Walkthrough: Creating COM Objects
 Troubleshooting Interoperability
 COM Interoperability in .NET Framework Applications
 Walkthrough: Implementing Inheritance with COM Objects

 Language Reference
 Configure language version
 Typographic and Code Conventions
 Visual Basic Runtime Library Members
 Keywords

 Arrays Summary
 Collection Object Summary
 Control Flow Summary
 Conversion Summary
 Data Types Summary
 Dates and Times Summary
 Declarations and Constants Summary
 Directories and Files Summary
 Errors Summary
 Financial Summary
 Information and Interaction Summary
 Input and Output Summary
 Math Summary

 Derived Math Functions
 My Reference
 Operators Summary
 Registry Summary
 String Manipulation Summary

 Attributes
 Constants and Enumerations

 Data Type Summary
 Boolean Data Type
 Byte Data Type
 Char Data Type
 Date Data Type
 Decimal Data Type
 Double Data Type
 Integer Data Type
 Long Data Type
 Object Data Type
 SByte Data Type
 Short Data Type
 Single Data Type
 String Data Type
 UInteger Data Type
 ULong Data Type
 User-Defined Data Type
 UShort Data Type

 Directives
 #Const Directive
 #ExternalSource Directive
 #If...Then...#Else Directives
 #Region Directive

 Functions
 Conversion Functions
 Math Functions
 String Functions
 Type Conversion Functions

 Return Values for the CStr Function
 CType Function

 Modifiers
 Ansi

 Assembly
 Async
 Auto
 ByRef
 ByVal
 Default
 Friend
 In (Generic Modifier)
 Iterator
 Key
 Module <keyword>
 MustInherit
 MustOverride
 Narrowing
 NotInheritable
 NotOverridable
 Optional
 Out (Generic Modifier)
 Overloads
 Overridable
 Overrides
 ParamArray
 Partial
 Private
 Protected
 Public
 ReadOnly
 Shadows
 Shared
 Static
 Unicode
 Widening

 WithEvents
 WriteOnly

 Modules
 Nothing
 Objects

 My.Application Object
 My.Application.Info Object
 My.Application.Log Object

 My.Computer Object
 My.Computer.Audio Object
 My.Computer.Clipboard Object
 My.Computer.Clock Object
 My.Computer.FileSystem Object

 My.Computer.FileSystem.SpecialDirectories Object
 My.Computer.Info Object
 My.Computer.Keyboard Object
 My.Computer.Mouse Object
 My.Computer.Network Object
 My.Computer.Ports Object
 My.Computer.Registry Object

 My.Forms Object
 My.Log Object
 My.Request Object
 My.Response Object
 My.Resources Object
 My.Settings Object
 My.User Object
 My.WebServices Object
 TextFieldParser Object

 Operators
 Operator Precedence
 Operators Listed by Functionality

 & Operator
 &= Operator
 * Operator
 *= Operator
 + Operator
 += Operator
 = Operator
 - Operator
 -= Operator
 << Operator
 <<= Operator
 >> Operator
 >>= Operator
 / Operator
 /= Operator
 \ Operator
 \= Operator
 ^ Operator
 ^= Operator
 AddressOf Operator
 And Operator
 AndAlso Operator
 Await Operator
 Function Expression
 GetType Operator
 GetXmlNamespace Operator
 If Operator
 Is Operator
 IsFalse Operator
 IsNot Operator
 IsTrue Operator
 Like Operator

 Mod Operator
 Not Operator
 Or Operator
 OrElse Operator
 Sub Expression
 TypeOf Operator
 Xor Operator

 Data Types of Operator Results
 DirectCast Operator
 TryCast Operator
 New Operator
 Arithmetic Operators
 Assignment Operators
 Bit Shift Operators
 Comparison Operators
 Concatenation Operators
 Logical-Bitwise Operators
 Miscellaneous Operators

 Properties
 Queries

 Aggregate Clause
 Distinct Clause
 Equals Clause
 From Clause
 Group By Clause
 Group Join Clause
 Join Clause
 Let Clause
 Order By Clause
 Select Clause
 Skip Clause
 Skip While Clause

 Take Clause
 Take While Clause
 Where Clause

 Statements
 A-E Statements

 AddHandler Statement
 Call Statement
 Class Statement
 Const Statement
 Continue Statement
 Declare Statement
 Delegate Statement
 Dim Statement
 Do...Loop Statement
 Else Statement
 End Statement
 End <keyword> Statement
 Enum Statement
 Erase Statement
 Error Statement
 Event Statement
 Exit Statement

 F-P Statements
 For Each...Next Statement
 For...Next Statement
 Function Statement
 Get Statement
 GoTo Statement
 If...Then...Else Statement
 Implements Statement
 Imports Statement (.NET Namespace and Type)
 Imports Statement (XML Namespace)

 Inherits Statement
 Interface Statement
 Mid Statement
 Module Statement
 Namespace Statement
 On Error Statement
 Operator Statement
 Option <keyword> Statement
 Option Compare Statement
 Option Explicit Statement
 Option Infer Statement
 Option Strict Statement
 Property Statement

 Q-Z Statements
 RaiseEvent Statement
 ReDim Statement
 REM Statement
 RemoveHandler Statement
 Resume Statement
 Return Statement
 Select...Case Statement
 Set Statement
 Stop Statement
 Structure Statement
 Sub Statement
 SyncLock Statement
 Then Statement
 Throw Statement
 Try...Catch...Finally Statement
 Using Statement
 While...End While Statement
 With...End With Statement

 Yield Statement
 Clauses

 Alias Clause
 As Clause
 Handles Clause
 Implements Clause
 In Clause
 Into Clause
 Of Clause

 Declaration Contexts and Default Access Levels
 Attribute List
 Parameter List
 Type List

 XML Comment Tags
 <c>
 <code>
 <example>
 <exception>
 <include>
 <list>
 <para>
 <param>
 <paramref>
 <permission>
 <remarks>
 <returns>
 <see>
 <seealso>
 <summary>
 <typeparam>
 <value>

 XML Axis Properties

 XML Attribute Axis Property
 XML Child Axis Property
 XML Descendant Axis Property
 Extension Indexer Property
 XML Value Property

 XML Literals
 XML Element Literal
 XML Document Literal
 XML CDATA Literal
 XML Comment Literal
 XML Processing Instruction Literal

 Error Messages
 '#ElseIf' must be preceded by a matching '#If' or '#ElseIf'
 '#Region' and '#End Region' statements are not valid within method bodies-

multiline lambdas
 '<attribute>' cannot be applied because the format of the GUID '<number>' is not

correct
 '<classname>' is not CLS-compliant because the interface '<interfacename>' it

implements is not CLS-compliant
 '<elementname>' is obsolete (Visual Basic Warning)
 '<eventname>' is an event, and cannot be called directly
 '<expression>' cannot be used as a type constraint
 '<functionname>' is not declared (Smart Device-Visual Basic Compiler Error)
 '<interfacename>.<membername>' is already implemented by the base class

'<baseclassname>'. Re-implementation of <type> assumed
 '<keyword>' is valid only within an instance method
 '<membername>' cannot expose type '<typename>' outside the project through

<containertype> '<containertypename>'
 '<membername>' is ambiguous across the inherited interfaces '<interfacename1>'

and '<interfacename2>'
 <message> This error could also be due to mixing a file reference with a project

reference to assembly '<assemblyname>'
 '<methodname>' has multiple definitions with identical signatures
 '<name>' is ambiguous in the namespace '<namespacename>'

 '<name1>' is ambiguous, imported from the namespaces or types '<name2>'
 <proceduresignature1> is not CLS-compliant because it overloads

<proceduresignature2> which differs from it only by array of array parameter types
or by the rank of the array parameter types
 <type1>'<typename>' must implement '<membername>' for interface

'<interfacename>'
 <type1>'<typename>' must implement '<methodname>' for interface

'<interfacename>'
 '<typename>' cannot inherit from <type> '<basetypename>' because it expands

the access of the base <type> outside the assembly
 '<typename>' is a delegate type
 '<typename>' is a type and cannot be used as an expression
 A double quote is not a valid comment token for delimited fields where

EscapeQuote is set to True
 A property or method call cannot include a reference to a private object, either as

an argument or as a return value
 A reference was created to embedded interop assembly '<assembly1>' because of

an indirect reference to that assembly from assembly '<assembly2>'
 A startup form has not been specified
 Access of shared member through an instance; qualifying expression will not be

evaluated
 'AddressOf' operand must be the name of a method (without parentheses)
 An unexpected error has occurred because an operating system resource required

for single instance startup cannot be acquired
 Anonymous type member name can be inferred only from a simple or qualified

name with no arguments
 Argument not optional
 Array bounds cannot appear in type specifiers
 Array declared as for loop control variable cannot be declared with an initial size
 Array subscript expression missing
 Arrays declared as structure members cannot be declared with an initial size
 'As Any' is not supported in 'Declare' statements
 Attribute '<attributename>' cannot be applied multiple times
 Automation error
 Bad checksum value, non hex digits or odd number of hex digits

 Bad DLL calling convention
 Bad file mode
 Bad file name or number
 Bad record length
 Because this call is not awaited, the current method continues to run before the call

is completed
 Cannot convert anonymous type to expression tree because it contains a field that

is used in the initialization of another field
 Cannot create ActiveX Component
 Cannot refer to '<name>' because it is a member of the value-typed field

'<name>' of class '<classname>' which has 'System.MarshalByRefObject' as a base
class
 Cannot refer to an instance member of a class from within a shared method or

shared member initializer without an explicit instance of the class
 Can't create necessary temporary file
 Can't open '<filename>' for writing
 Class '<classname>' cannot be found
 Class does not support Automation or does not support expected interface
 'Class' statement must end with a matching 'End Class'
 Clipboard format is not valid
 Constant expression not representable in type '<typename>'
 Constants must be of an intrinsic or enumerated type, not a class, structure, type

parameter, or array type
 Constructor '<name>' cannot call itself
 Copying the value of 'ByRef' parameter '<parametername>' back to the matching

argument narrows from type '<typename1>' to type '<typename2>'
 'Custom' modifier is not valid on events declared without explicit delegate types
 Data type(s) of the type parameter(s) cannot be inferred from these arguments
 Declaration expected
 Default property '<propertyname1>' conflicts with default property

'<propertyname2>' in '<classname>' and so should be declared 'Shadows'
 Default property access is ambiguous between the inherited interface members

'<defaultpropertyname>' of interface '<interfacename1>' and
'<defaultpropertyname>' of interface '<interfacename2>'
 Delegate class '<classname>' has no Invoke method, so an expression of this type

cannot be the target of a method call
 Derived classes cannot raise base class events
 Device I/O error
 'Dir' function must first be called with a 'PathName' argument
 End of statement expected
 Error creating assembly manifest: <error message>
 Error creating Win32 resources: <error message>
 Error in loading DLL
 Error saving temporary Win32 resource file '<filename>': <error message>
 Errors occurred while compiling the XML schemas in the project
 Evaluation of expression or statement timed out
 Event '<eventname1>' cannot implement event '<eventname2>' on interface

'<interface>' because their delegate types '<delegate1>' and '<delegate2>' do not
match
 Events cannot be declared with a delegate type that has a return type
 Events of shared WithEvents variables cannot be handled by non-shared methods
 Expression does not produce a value
 Expression has the type '<typename>' which is a restricted type and cannot be

used to access members inherited from 'Object' or 'ValueType'
 Expression is a value and therefore cannot be the target of an assignment
 Expression of type <type> is not queryable
 Expression recursively calls the containing property '<propertyname>'
 Expression too complex
 'Extension' attribute can be applied only to 'Module', 'Sub', or 'Function'

declarations
 File already open
 File is too large to read into a byte array
 File name or class name not found during Automation operation
 File not found (Visual Basic Run-Time Error)
 First operand in a binary 'If' expression must be nullable or a reference type
 First statement of this 'Sub New' must be a call to 'MyBase.New' or 'MyClass.New'

(No Accessible Constructor Without Parameters)
 First statement of this 'Sub New' must be an explicit call to 'MyBase.New' or

'MyClass.New' because the '<constructorname>' in the base class

'<baseclassname>' of '<derivedclassname>' is marked obsolete: '<errormessage>'
 'For Each' on type '<typename>' is ambiguous because the type implements

multiple instantiations of 'System.Collections.Generic.IEnumerable(Of T)'
 Friend assembly reference <reference> is invalid
 Function '<procedurename>' doesn't return a value on all code paths
 Function evaluation is disabled because a previous function evaluation timed out
 Generic parameters used as optional parameter types must be class constrained
 'Get' accessor of property '<propertyname>' is not accessible
 Handles clause requires a WithEvents variable defined in the containing type or

one of its base types
 Identifier expected
 Identifier is too long
 Initializer expected
 Input past end of file
 Internal error happened at <location>
 Implicit conversion from '<typename1>' to '<typename2>' in copying the value of

'ByRef' parameter '<parametername>' back to the matching argument.
 'Is' requires operands that have reference types, but this operand has the value

type '<typename>'
 'IsNot' operand of type 'typename' can only be compared to 'Nothing', because

'typename' is a nullable type
 Labels that are numbers must be followed by colons
 Lambda expression will not be removed from this event handler
 Lambda expressions are not valid in the first expression of a 'Select Case' statement
 Late bound resolution; runtime errors could occur
 Latebound overload resolution cannot be applied to '<procedurename>' because

the accessing instance is an interface type
 Leading '.' or '!' can only appear inside a 'With' statement
 Line is too long
 'Line' statements are no longer supported (Visual Basic Compiler Error)
 Method does not have a signature compatible with the delegate
 Methods of 'System.Nullable(Of T)' cannot be used as operands of the 'AddressOf'

operator
 'Module' statements can occur only at file or namespace level

 Name <membername> is not CLS-compliant
 Name '<name>' is not declared
 Name <namespacename> in the root namespace <fullnamespacename> is not

CLS-compliant
 Namespace or type specified in the Imports '<qualifiedelementname>' doesn't

contain any public member or cannot be found
 Namespace or type specified in the project-level Imports

'<qualifiedelementname>' doesn't contain any public member or cannot be found
 Need property array index
 Nested function does not have a signature that is compatible with delegate

'<delegatename>'
 No accessible 'Main' method with an appropriate signature was found in '<name>'
 Non-CLS-compliant <membername> is not allowed in a CLS-compliant interface
 Nullable type inference is not supported in this context
 Number of indices exceeds the number of dimensions of the indexed array
 Object or class does not support the set of events
 Object required
 Object variable or With block variable not set
 Operator declaration must be one of: +,-,*,-,-,^, &, Like, Mod, And, Or, Xor, Not,

<<, >>, =, <>, <, <=, >, >=, CType, IsTrue, IsFalse
 'Optional' expected
 Optional parameters must specify a default value
 Ordinal is not valid
 Out of memory (Visual Basic Compiler Error)
 Out of stack space
 Out of string space
 Overflow (Visual Basic Error)
 Overflow (Visual Basic Run-Time Error)
 Path not found
 Path-File access error
 Permission denied
 Procedure call or argument is not valid
 Property '<propertyname>' doesn't return a value on all code paths
 Property array index is not valid

 Property let procedure not defined and property get procedure did not return an
object
 Property not found
 Property or method not found
 Range variable <variable> hides a variable in an enclosing block, a previously

defined range variable, or an implicitly declared variable in a query expression
 Range variable name can be inferred only from a simple or qualified name with no

arguments
 Reference required to assembly '<assemblyidentity>' containing type

'<typename>', but a suitable reference could not be found due to ambiguity
between projects '<projectname1>' and '<projectname2>'
 Reference required to assembly '<assemblyname>' containing the base class

'<classname>'
 Resume without error
 Return type of function '<procedurename>' is not CLS-compliant
 'Set' accessor of property '<propertyname>' is not accessible
 Some subkeys cannot be deleted
 Statement cannot end a block outside of a line 'If' statement
 Statement is not valid in a namespace
 Statement is not valid inside a method-multiline lambda
 String constants must end with a double quote
 Structure '<structurename>' must contain at least one instance member variable or

at least one instance event declaration not marked 'Custom'
 'Sub Main' was not found in '<name>'
 Sub or Function not defined
 Subscript out of range
 TextFieldParser is unable to complete the read operation because maximum buffer

size has been exceeded
 The type for variable '<variablename>' will not be inferred because it is bound to a

field in an enclosing scope
 This array is fixed or temporarily locked
 This key is already associated with an element of this collection
 Too many files
 Type '<typename>' has no constructors
 Type <typename> is not CLS-compliant

 Type '<typename>' is not defined
 Type arguments could not be inferred from the delegate
 Type mismatch
 Type of '<variablename>' cannot be inferred because the loop bounds and the

step variable do not widen to the same type
 Type of member '<membername>' is not CLS-compliant
 Type of optional value for optional parameter <parametername> is not CLS-

compliant
 Type of parameter '<parametername>' is not CLS-compliant
 Type parameters cannot be used as qualifiers
 Unable to create strong-named assembly from key file '<filename>': <error>
 Unable to embed resource file '<filename>': <error message>
 Unable to emit assembly: <error message>
 Unable to find required file '<filename>'
 Unable to get serial port names because of an internal system error
 Unable to link to resource file '<filename>': <error message>
 Unable to load information for class '<classname>'
 Unable to write output to memory
 Unable to write temporary file because temporary path is not available
 Unable to write to output file '<filename>': <error>
 Underlying type <typename> of Enum is not CLS-compliant
 Using the iteration variable in a lambda expression may have unexpected results
 Value of type '<typename1>' cannot be converted to '<typename2>'
 Value of type '<typename1>' cannot be converted to '<typename2>' (Multiple file

references)
 Value of type 'type1' cannot be converted to 'type2'
 Variable '<variablename>' hides a variable in an enclosing block
 Variable '<variablename>' is used before it has been assigned a value
 Variable uses an Automation type not supported in Visual Basic
 XML axis properties do not support late binding
 XML comment exception must have a 'cref' attribute
 XML entity references are not supported
 XML literals and XML properties are not supported in embedded code within

ASP.NET
 XML namespace URI '<uri>' can be bound only to 'xmlns'

 Reference
 Command-Line Compiler

 Building from the Command Line
 How to: Invoke the Command-Line Compiler
 Sample Compilation Command Lines

 Compiler Options Listed Alphabetically
 @ (Specify Response File)
 -addmodule
 -baseaddress
 -bugreport
 -codepage
 -debug
 -define
 -delaysign
 -deterministic
 -doc
 -errorreport
 -filealign
 -help, /?
 -highentropyva
 -imports
 -keycontainer
 -keyfile
 -langversion
 -libpath
 -link
 -linkresource
 -main
 -moduleassemblyname
 -netcf

 -noconfig
 -nologo
 -nostdlib
 -nowarn
 -nowin32manifest
 -optimize
 -optioncompare
 -optionexplicit
 -optioninfer
 -optionstrict
 -out
 -platform
 -quiet
 -recurse
 -reference
 -refonly
 -refout
 -removeintchecks
 -resource
 -rootnamespace
 -sdkpath
 -target
 -subsystemversion
 -utf8output
 -vbruntime
 -verbose
 -warnaserror
 -win32icon
 -win32manifest
 -win32resource

 Compiler Options Listed by Category
 .NET Framework Reference Information

 Language Specification
 Sample Applications
 Walkthroughs

 ML.NET Guide
 Tutorials

 Sentiment analysis (binary classification)
 Taxi fare predictor (regression)
 Iris clustering

 Resources
 Machine learning glossary
 Machine learning basics
 Machine learning tasks

 Samples and Tutorials

Welcome to .NET
5/1/2018 • 2 minutes to read • Edit Online

News

Documentation

Open source

See Get started with .NET Core to learn how to create .NET Core apps.

Build many types of apps with .NET, such as cloud, IoT, and games using free cross-platform tools. Your apps can run on Android, iOS, Linux, macOS,
and Windows. Deploy apps to servers or desktops and publish to app stores for deployment on mobile devices. .NET is accessible to students and
hobbyists, and all are welcome to participate in a lively international developer community and make direct contributions to many of the .NET
technologies.

Microsoft Build 2018
Announcing the .NET Framework 4.7.2
Announcing .NET Core 2.1 Preview 2
ASP.NET Core 2.1.0-preview2 now available
Announcing Entity Framework Core 2.1 Preview 2
Visual Studio 2017 version 15.6, Visual Studio for Mac version 7.4 Released
Welcome to C# 7.2 and Span
.NET Core 2.0 Released!
Announcing .NET Standard 2.0
New for Visual Basic: .NET Standard Class Libraries and the dotnet CLI!
Introducing .NET Standard
Visual Studio for Mac: now generally available
Announcing Visual Studio 2017 General Availability
What's new for .NET Core and Visual Studio 2017 (video)
Announcing F# 4.1 and the Visual F# Tools for Visual Studio 2017

This documentation covers the breadth of .NET across platforms and languages. You can get started with .NET and its languages in any of the following
sections:

.NET Guide

.NET Core Guide

.NET Framework Guide
C# Guide
F# Guide
Visual Basic Guide

Additionally, you can browse the .NET API reference.

This documentation is completely open source. You can contribute in any way you like, from creating issues to writing documentation. Additionally,
much of .NET itself is also open source:

.NET Core Home

.NET Libraries

.NET Core Runtime
Roslyn (C# and Visual Basic) Compiler Platform and IDE Tools
F# Compiler and IDE Tools

You can join other people who are already active in the .NET community to find out what's new or ask for help.

https://github.com/dotnet/docs/blob/master/docs/welcome.md
https://channel9.msdn.com/Events/Build/2018
https://blogs.msdn.microsoft.com/dotnet/2018/04/30/announcing-the-net-framework-4-7-2/
https://blogs.msdn.microsoft.com/dotnet/2018/04/11/announcing-net-core-2-1-preview-2/
https://blogs.msdn.microsoft.com/webdev/2018/04/12/asp-net-core-2-1-0-preview2-now-available/
https://blogs.msdn.microsoft.com/dotnet/2018/04/11/announcing-entity-framework-core-2-1-preview-2/
https://blogs.msdn.microsoft.com/visualstudio/2018/03/06/visual-studio-2017-version-15-6-visual-studio-for-mac-version-7-4-released/
https://blogs.msdn.microsoft.com/dotnet/2017/11/15/welcome-to-c-7-2-and-span/
https://channel9.msdn.com/Blogs/dotnet/NET-Core-20-Released
https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-standard-2-0/
https://blogs.msdn.microsoft.com/vbteam/2017/08/14/new-for-visual-basic-net-standard-class-libraries-and-the-dotnet-cli/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/visualstudio/2017/05/10/visual-studio-for-mac-now-generally-available/
https://blogs.msdn.microsoft.com/visualstudio/2017/03/07/announcing-visual-studio-2017-general-availability-and-more/
https://channel9.msdn.com/events/Visual-Studio/Visual-Studio-2017-Launch/T108
https://blogs.msdn.microsoft.com/dotnet/2017/03/07/announcing-f-4-1-and-the-visual-f-tools-for-visual-studio-2017-2/
https://docs.microsoft.com/dotnet/api
https://github.com/dotnet/docs
https://github.com/dotnet/core
https://github.com/dotnet/corefx
https://github.com/dotnet/coreclr
https://github.com/dotnet/roslyn
https://github.com/microsoft/visualfsharp
https://www.microsoft.com/net/community

.NET Guide
6/29/2018 • 2 minutes to read • Edit Online

New to .NET

New to .NET Core

New to .NET Standard

Porting .NET Framework Code to .NET Core

Porting a NuGet package from .NET Framework to .NET Standard or .NET Core

Interested in Major .NET Concepts

API Reference

The .NET Guide provides a large amount of information about .NET. Depending on your familiarity with .NET, you may wish to explore different
sections of this guide and other sections of the .NET documentation.

If you want a high-level overview about .NET, check out What is .NET?.

If you're new to .NET, check out the Get Started article.

If you prefer to have a guided tour through major features of .NET, check out the Tour of .NET.

You can also read about .NET Architectural Components to get an overview of the various "pieces" of .NET and how they fit together.

If you're new to .NET Core, check out Get Started with .NET Core.

If you're new to .NET Standard, check out .NET Standard.

If you're looking to port an application, service, or some component of a system to .NET Core, check out Porting to .NET Core from .NET Framework.

If you're looking to port a NuGet package to .NET Standard, check out Porting to .NET Core from .NET Framework. Tooling for .NET Standard and .NET
Core are shared, so the content will be relevant for porting to .NET Standard as well as .NET Core.

If you're interested in some of the major concepts of .NET, check out:

.NET Architectural Components

.NET Standard
Native Interoperability
Garbage Collection
Base Types in .NET
Collections
Dates, times, and time zones
Asynchronous Programming

Additionally, check out each language guide to learn about the three major .NET languages:

C# Guide
F# Guide
Visual Basic Guide

Check out the .NET API Reference to see the breadth of APIs available.

https://github.com/dotnet/docs/blob/master/docs/standard/index.md
https://www.microsoft.com/net/learn/what-is-dotnet
https://docs.microsoft.com/en-us/dotnet/standard/garbagecollection/index
https://docs.microsoft.com/en-us/dotnet/api/index

Get Started
5/2/2018 • 2 minutes to read • Edit Online

Get started using .NET languages

Get started using .NET Core

Get started using Docker on .NET Framework

There are a number of ways to get started with .NET. Because .NET is a massive platform, there are multiple articles in this documentation which show
how you can get started with .NET, each from a different perspective.

The C# Getting Started articles and C# Tutorials provide a number of ways to get started in a C#-centric way.

The F# Getting Started tutorials provide three primary ways you can use F#: with Visual Studio, Visual Studio Code, or command-line tools.

The Visual Basic Getting Started articles provide guides for using Visual Basic in Visual Studio.

Getting Started with .NET Core provides an overview of articles which show how to get started with .NET Core on different operating systems
and using different tools.

The .NET Core Tutorials detail a number of ways you can get started with .NET Core using your operating system and tooling of choice.

Docker on .NET Framework shows how you can use .NET Framework on Windows Docker containers.

https://github.com/dotnet/docs/blob/master/docs/standard/get-started.md
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/getting-started/index

Tour of .NET
6/22/2018 • 9 minutes to read • Edit Online

How to run the code samples

Programming languages

Automatic memory management

var title = ".NET Primer";
var list = new List<string>();

int[] numbers = new int[42];
int number = numbers[42]; // Will throw an exception (indexes are 0-based)

Working with unmanaged resources

.NET is a general purpose development platform. It has several key features, such as support for multiple programming languages, asynchronous and
concurrent programming models, and native interoperability, which enable a wide range of scenarios across multiple platforms.

This article offers a guided tour through some of the key features of the .NET. See the .NET Architectural Components topic to learn about the
architectural pieces of .NET and what they're used for.

To learn how to set up a development environment to run the code samples, see the Getting Started topic. Copy and paste code samples from this page
into your environment to execute them.

.NET supports multiple programming languages. The .NET implementations implement the Common Language Infrastructure (CLI), which among
other things specifies a language-independent runtime and language interoperability. This means that you choose any .NET language to build apps and
services on .NET.

Microsoft actively develops and supports three .NET languages: C#, F#, and Visual Basic (VB).

C# is simple, powerful, type-safe, and object-oriented, while retaining the expressiveness and elegance of C-style languages. Anyone familiar with
C and similar languages finds few problems in adapting to C#. Check out the C# Guide to learn more about C#.

F# is a cross-platform, functional-first programming language that also supports traditional object-oriented and imperative programming. Check
out the F# Guide to learn more about F#.

Visual Basic is an easy language to learn that you use to build a variety of apps that run on .NET. Among the .NET languages, the syntax of VB is
the closest to ordinary human language, often making it easier for people new to software development.

.NET uses garbage collection (GC) to provide automatic memory management for programs. The GC operates on a lazy approach to memory
management, preferring app throughput to the immediate collection of memory. To learn more about the .NET GC, check out Fundamentals of garbage
collection (GC).

The following two lines both allocate memory:

There's no analogous keyword to de-allocate memory, as de-allocation happens automatically when the garbage collector reclaims the memory
through its scheduled run.

The garbage collector is one of the services that help ensure memory safety. A program is memory safe if it accesses only allocated memory. For
instance, the runtime ensures that an app doesn't access unallocated memory beyond the bounds of an array.

In the following example, the runtime throws an InvalidIndexException exception to enforce memory safety:

Some objects reference unmanaged resources. Unmanaged resources are resources that aren't automatically maintained by the .NET runtime. For
example, a file handle is an unmanaged resource. A FileStream object is a managed object, but it references a file handle, which is unmanaged. When
you're done using the FileStream, you need to release the file handle.

In .NET, objects that reference unmanaged resources implement the IDisposable interface. When you're done using the object, you call the object's
Dispose() method, which is responsible for releasing any unmanaged resources. .NET languages provide a convenient using syntax for such objects, as
shown in the following example:

https://github.com/dotnet/docs/blob/master/docs/standard/tour.md
https://visualstudio.microsoft.com/license-terms/ecma-c-common-language-infrastructure-standards/
https://docs.microsoft.com/en-us/dotnet/standard/garbagecollection/index
https://docs.microsoft.com/en-us/dotnet/standard/garbagecollection/fundamentals
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.idisposable.dispose#System_IDisposable_Dispose

using System.IO;

using (FileStream stream = GetFileStream(context))
{
 // Operations on the stream
}

Type safety

Dog dog = AnimalShelter.AdoptDog(); // Returns a Dog type.
Pet pet = (Pet)dog; // Dog derives from Pet.
pet.ActCute();
Car car = (Car)dog; // Will throw - no relationship between Car and Dog.
object temp = (object)dog; // Legal - a Dog is an object.

private Dog _nextDogToBeAdopted = AnimalShelter.AdoptDog()

var dog = AnimalShelter.AdoptDog();
var pet = (Pet)dog;
pet.ActCute();
Car car = (Car)dog; // will throw - no relationship between Car and Dog
object temp = (object)dog; // legal - a Dog is an object
car = (Car)temp; // will throw - the runtime isn't fooled
car.Accelerate() // the dog won't like this, nor will the program get this far

Delegates and lambdas

Generics

Once the using block completes, the .NET runtime automatically calls the stream object's Dispose() method, which releases the file handle. The
runtime also does this if an exception causes control to leave the block.

For more details, see the following topics:

For C#, see the using Statement (C# Reference) topic.
For F#, see Resource Management: The use Keyword.
For VB, see the Using Statement (Visual Basic) topic.

An object is an instance of a specific type. The only operations allowed for a given object are those of its type. A Dog type may have Jump and WagTail

methods but not a SumTotal method. A program only calls the methods belonging to a given type. All other calls result in either a compile-time error or
a run-time exception (in case of using dynamic features or object).

.NET languages are object-oriented with hierarchies of base and derived classes. The .NET runtime only allows object casts and calls that align with the
object hierarchy. Remember that every type defined in any .NET language derives from the base Object type.

Type safety is also used to help enforce encapsulation by guaranteeing the fidelity of the accessor keywords. Accessor keywords are artifacts which
control access to members of a given type by other code. These are usually used for various kinds of data within a type that are used to manage its
behavior.

C#, VB, and F# support local type inference. Type inference means that the compiler deduces the type of the expression on the left-hand side from the
expression on the right-hand side. This doesn't mean that the type safety is broken or avoided. The resulting type does have a strong type with
everything that implies. From the previous example, dog and cat are rewritten to introduce type inference, and the remainder of the example is
unchanged:

F# has even further type inference capabilities than the method-local type inference found in C# and VB. To learn more, see Type Inference.

A delegate is represented by a method signature. Any method with that signature can be assigned to the delegate and is executed when the delegate is
invoked.

Delegates are like C++ function pointers except that they're type safe. They're a kind of disconnected method within the CLR type system. Regular
methods are attached to a class and are only directly callable through static or instance calling conventions.

In .NET, delegates are commonly used in event handlers, in defining asynchronous operations, and in lambda expressions, which are a cornerstone of
LINQ. Learn more in the Delegates and lambdas topic.

Generics allow the programmer to introduce a type parameter when designing their classes that allows the client code (the users of the type) to specify
the exact type to use in place of the type parameter.

Generics were added to help programmers implement generic data structures. Before their arrival in order for a type such as the List type to be
generic, it would have to work with elements that were of type object . This had various performance and semantic problems, along with possible
subtle runtime errors. The most notorious of the latter is when a data structure contains, for instance, both integers and strings, and an
InvalidCastException is thrown on working with the list's members.

https://docs.microsoft.com/dotnet/api/system.idisposable.dispose#System_IDisposable_Dispose
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/dotnet/api/system.object

using System;
using System.Collections.Generic;

namespace GenericsSampleShort
{
 public static void Main(string[] args)
 {
 // List<string> is the client way of specifying the actual type for the type parameter T
 List<string> listOfStrings = new List<string> { "First", "Second", "Third" };

 // listOfStrings can accept only strings, both on read and write.
 listOfStrings.Add("Fourth");

 // Below will throw a compile-time error, since the type parameter
 // specifies this list as containing only strings.
 listOfStrings.Add(1);
 }
}

Async programming

Language Integrated Query (LINQ)

Native interoperability

Unsafe code

The following sample shows a basic program running using an instance of List<T> types:

For more information, see the Generic types (Generics) overview topic.

Async programming is a first-class concept within .NET with async support in the runtime, framework libraries, and .NET language constructs.
Internally, they're based on objects (such as Task), which take advantage of the operating system to perform I/O-bound jobs as efficiently as possible.

To learn more about async programming in .NET, start with the Async overview topic.

L INQ is a powerful set of features for C# and VB that allow you to write simple, declarative code for operating on data. The data can be in many forms
(such as in-memory objects, a SQL database, or an XML document), but the L INQ code you write typically doesn't differ by data source.

To learn more and see some samples, see the LINQ (Language Integrated Query) topic.

Every operating system includes an application programming interface (API) that provides system services. .NET provides several ways to call those
APIs.

The main way to do native interoperability is via "platform invoke" or P/Invoke for short, which is supported across Linux and Windows platforms. A
Windows-only way of doing native interoperability is known as "COM interop," which is used to work with COM components in managed code. It's
built on top of the P/Invoke infrastructure, but it works in subtly different ways.

Most of Mono's (and thus Xamarin's) interoperability support for Java and Objective-C are built similarly, that is, they use the same principles.

Read more about it native interoperability in the Native interoperability topic.

Depending on language support, the CLR lets you access native memory and do pointer arithmetic via unsafe code. These operations are needed for
certain algorithms and system interoperability. Although powerful, use of unsafe code is discouraged unless it's necessary to interop with system APIs
or implement the most efficient algorithm. Unsafe code may not execute the same way in different environments and also loses the benefits of a
garbage collector and type safety. It's recommended to confine and centralize unsafe code as much as possible and test that code thoroughly.

The following example is a modified version of the ToString() method from the StringBuilder class. It illustrates how using unsafe code can
efficiently implement an algorithm by moving around chunks of memory directly:

https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/cpp/atl/introduction-to-com

public override String ToString()
{
 if (Length == 0)
 return String.Empty;

 string ret = string.FastAllocateString(Length);
 StringBuilder chunk = this;
 unsafe
 {
 fixed (char* destinationPtr = ret)
 {
 do
 {
 if (chunk.m_ChunkLength > 0)
 {
 // Copy these into local variables so that they are stable even in the presence of ----s (hackers might do this)
 char[] sourceArray = chunk.m_ChunkChars;
 int chunkOffset = chunk.m_ChunkOffset;
 int chunkLength = chunk.m_ChunkLength;

 // Check that we will not overrun our boundaries.
 if ((uint)(chunkLength + chunkOffset) <= ret.Length && (uint)chunkLength <= (uint)sourceArray.Length)
 {
 fixed (char* sourcePtr = sourceArray)
 string.wstrcpy(destinationPtr + chunkOffset, sourcePtr, chunkLength);
 }
 else
 {
 throw new ArgumentOutOfRangeException("chunkLength", Environment.GetResourceString("ArgumentOutOfRange_Index"));
 }
 }
 chunk = chunk.m_ChunkPrevious;
 } while (chunk != null);
 }
 }
 return ret;
}

Next steps
If you're interested in a tour of C# features, check out Tour of C#.

If you're interested in a tour of F# features, see Tour of F#.

If you want to get started with writing code of your own, visit Getting Started.

To learn about important components of .NET, check out .NET Architectural Components.

.NET architectural components
5/2/2018 • 4 minutes to read • Edit Online

.NET Standard

.NET implementations

.NET Core.NET Core

.NET Framework.NET Framework

MonoMono

Universal Windows Platform (UWP)Universal Windows Platform (UWP)

.NET runtimes

A .NET app is developed for and runs in one or more implementations of .NET. Implementations of .NET include the .NET Framework, .NET Core, and
Mono. There is an API specification common to all implementations of .NET that's called the .NET Standard. This article gives a brief introduction to
each of these concepts.

The .NET Standard is a set of APIs that are implemented by the Base Class Library of a .NET implementation. More formally, it's a specification of .NET
APIs that make up a uniform set of contracts that you compile your code against. These contracts are implemented in each .NET implementation. This
enables portability across different .NET implementations, effectively allowing your code to run everywhere.

The .NET Standard is also a target framework. If your code targets a version of the .NET Standard, it can run on any .NET implementation which
supports that version of the .NET Standard.

To learn more about the .NET Standard and how to target it, see the .NET Standard topic.

Each implementation of .NET includes the following components:

One or more runtimes. Examples: CLR for .NET Framework, CoreCLR and CoreRT for .NET Core.
A class library that implements the .NET Standard and may implement additional APIs. Examples: .NET Framework Base Class Library, .NET Core
Base Class Library.
Optionally, one or more application frameworks. Examples: ASP.NET, Windows Forms, and Windows Presentation Foundation (WPF) are included
in the .NET Framework.
Optionally, development tools. Some development tools are shared among multiple implementations.

There are four primary .NET implementations that Microsoft actively develops and maintains: .NET Core, .NET Framework, Mono, and UWP.

.NET Core is a cross-platform implementation of .NET and designed to handle server and cloud workloads at scale. It runs on Windows, macOS and
Linux. It implements the .NET Standard, so code that targets the .NET Standard can run on .NET Core. ASP.NET Core runs on .NET Core.

To learn more about .NET Core, see the .NET Core Guide and Choosing between .NET Core and .NET Framework for server apps.

The.NET Framework is the original .NET implementation that has existed since 2002. It's the same .NET Framework that existing .NET developers have
always used. Versions 4.5 and later implement the .NET Standard, so code that targets the .NET Standard can run on those versions of the .NET
Framework. It contains additional Windows-specific APIs, such as APIs for Windows desktop development with Windows Forms and WPF. The .NET
Framework is optimized for building Windows desktop applications.

To learn more about the .NET Framework, see the .NET Framework Guide.

Mono is a .NET implementation that is mainly used when a small runtime is required. It is the runtime that powers Xamarin applications on Android,
Mac, iOS, tvOS and watchOS and is focused primarily on a small footprint. Mono also powers games built using the Unity engine.

It supports all of the currently published .NET Standard versions.

Historically, Mono implemented the larger API of the .NET Framework and emulated some of the most popular capabilities on Unix. It is sometimes
used to run .NET applications that rely on those capabilities on Unix.

Mono is typically used with a just-in-time compiler, but it also features a full static compiler (ahead-of-time compilation) that is used on platforms like
iOS.

To learn more about Mono, see the Mono documentation.

UWP is an implementation of .NET that is used for building modern, touch-enabled Windows applications and software for the Internet of Things (IoT).
It's designed to unify the different types of devices that you may want to target, including PCs, tablets, phablets, phones, and even the Xbox. UWP
provides many services, such as a centralized app store, an execution environment (AppContainer), and a set of Windows APIs to use instead of Win32
(WinRT). Apps can be written in C++, C#, VB.NET, and JavaScript. When using C# and VB.NET, the .NET APIs are provided by .NET Core.

To learn more about UWP, see Intro to the Universal Windows Platform.

A runtime is the execution environment for a managed program. The OS is part of the runtime environment but is not part of the .NET runtime. Here

https://github.com/dotnet/docs/blob/master/docs/standard/components.md
https://www.asp.net/
https://docs.microsoft.com/en-us/dotnet/framework/winforms/windows-forms-overview
https://www.mono-project.com/docs/
https://docs.microsoft.com/windows/uwp/get-started/universal-application-platform-guide

.NET tooling and common infrastructure

See also

are some examples of .NET runtimes:

Common Language Runtime (CLR) for the .NET Framework
Core Common Language Runtime (CoreCLR) for .NET Core
.NET Native for Universal Windows Platform
The Mono runtime for Xamarin.iOS, Xamarin.Android, Xamarin.Mac, and the Mono desktop framework

You have access to an extensive set of tools and infrastructure components that work with every implementation of .NET. These include, but are not
limited to the following:

The .NET languages and their compilers
The .NET project system (based on .csproj, .vbproj, and .fsproj files)
MSBuild, the build engine used to build projects
NuGet, Microsoft's package manager for .NET
Open-source build orchestration tools, such as CAKE and FAKE

Choosing between .NET Core and .NET Framework for server apps
.NET Standard
.NET Core Guide
.NET Framework Guide
C# Guide
F# Guide
VB.NET Guide

https://docs.microsoft.com/visualstudio/msbuild/msbuild
https://docs.microsoft.com/nuget/
https://cakebuild.net/
https://fake.build/

.NET Standard
7/20/2018 • 8 minutes to read • Edit Online

.NET implementation support

.NET
STANDARD 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

.NET
Framework

4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4

Xamarin.iOS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14

Xamarin.Mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8

Xamarin.Andro
id

7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0

Universal
Windows
Platform

10.0 10.0 10.0 10.0 10.0 10.0.16299 10.0.16299 10.0.16299

Windows 8.0 8.0 8.1

Windows
Phone

8.1 8.1 8.1

Windows
Phone
Silverlight

8.0

The .NET Standard is a formal specification of .NET APIs that are intended to be available on all .NET implementations. The motivation behind the .NET
Standard is establishing greater uniformity in the .NET ecosystem. ECMA 335 continues to establish uniformity for .NET implementation behavior, but
there's no similar spec for the .NET Base Class Libraries (BCL) for .NET library implementations.

The .NET Standard enables the following key scenarios:

Defines uniform set of BCL APIs for all .NET implementations to implement, independent of workload.
Enables developers to produce portable libraries that are usable across .NET implementations, using this same set of APIs.
Reduces or even eliminates conditional compilation of shared source due to .NET APIs, only for OS APIs.

The various .NET implementations target specific versions of .NET Standard. Each .NET implementation version advertises the highest .NET Standard
version it supports, a statement that means it also supports previous versions. For example, the .NET Framework 4.6 implements .NET Standard 1.3,
which means that it exposes all APIs defined in .NET Standard versions 1.0 through 1.3. Similarly, the .NET Framework 4.6.1 implements .NET Standard
1.4, while .NET Core 1.0 implements .NET Standard 1.6.

The following table lists the minimum platform versions that support each .NET Standard version.

1

1 The versions listed for .NET Framework apply to .NET Core SDK 2.0 and later versions of the tooling. Older versions used a different mapping for .NET Standard 1.5 and higher.

The columns represent .NET Standard versions. Each header cell is a link to a document that shows which APIs got added in that version of .NET
Standard.
The rows represent the different .NET implementations.
The version number in each cell indicates the minimum version of the implementation you'll need in order to target that .NET Standard version.
For an interactive table, see .NET Standard versions.

To find the highest version of .NET Standard that you can target, do the following steps:

1. Find the row that indicates the .NET implementation you want to run on.
2. Find the column in that row that indicates your version starting from right to left.
3. The column header indicates the .NET Standard version that your target supports (and any lower .NET Standard versions will also support it).
4. Repeat this process for each platform you want to target. If you have more than one target platform, you should pick the smaller version among

them. For example, if you want to run on .NET Framework 4.5 and .NET Core 1.0, the highest .NET Standard version you can use is .NET Standard
1.1.

https://github.com/dotnet/docs/blob/master/docs/standard/net-standard.md
https://github.com/dotnet/standard
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.0.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.1.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.2.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.3.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.4.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.5.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.6.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md
http://immo.landwerth.net/netstandard-versions/#

Which .NET Standard version to targetWhich .NET Standard version to target

.NET Standard versioning rules.NET Standard versioning rules

Specification

Official artifactsOfficial artifacts

Package representationPackage representation

VersioningVersioning

When choosing a .NET Standard version, you should consider this trade-off:

The higher the version, the more APIs are available to you.
The lower the version, the more platforms implement it.

In general, we recommend you to target the lowest version of .NET Standard possible. So, after you find the highest .NET Standard version you can
target, follow these steps:

1. Target the next lower version of .NET Standard and build your project.
2. If your project builds successfully, repeat step 1. Otherwise, retarget to the next higher version and that's the version you should use.

There are two primary versioning rules:

Additive: .NET Standard versions are logically concentric circles: higher versions incorporate all APIs from previous versions. There are no breaking
changes between versions.
Immutable: Once shipped, .NET Standard versions are frozen. New APIs first become available in specific .NET implementations, such as .NET Core.
If the .NET Standard review board believes the new APIs should be available for all .NET implementations, they're added in a new .NET Standard
version.

The .NET Standard specification is a standardized set of APIs. The specification is maintained by .NET implementors, specifically Microsoft (includes
.NET Framework, .NET Core, and Mono) and Unity. A public feedback process is used as part of establishing new .NET Standard versions through
GitHub.

The official specification is a set of .cs files that define the APIs that are part of the standard. The ref directory in the dotnet/standard repository defines
the .NET Standard APIs.

The NETStandard.Library metapackage (source) describes the set of libraries that define (in part) one or more .NET Standard versions.

A given component, like System.Runtime , describes:

Part of .NET Standard (just its scope).
Multiple versions of .NET Standard, for that scope.

Derivative artifacts are provided to enable more convenient reading and to enable certain developer scenarios (for example, using a compiler).

API list in markdown
Reference assemblies, distributed as NuGet packages and referenced by the NETStandard.Library metapackage.

The primary distribution vehicle for the .NET Standard reference assemblies is NuGet packages. Implementations are delivered in a variety of ways,
appropriate for each .NET implementation.

NuGet packages target one or more frameworks. The .NET Standard packages target the ".NET Standard" framework. You can target the .NET Standard
framework using the netstandard compact TFM (for example, netstandard1.4). Libraries that are intended to run on multiple runtimes should target
this framework. For the broadest set of APIs, target netstandard2.0 since the number of available APIs more than doubled between .NET Standard 1.6
and 2.0.

The NETStandard.Library metapackage references the complete set of NuGet packages that define .NET Standard. The most common way to target
netstandard is by referencing this metapackage. It describes and provides access to the ~40 .NET libraries and associated APIs that define .NET

Standard. You can reference additional packages that target netstandard to get access to additional APIs.

The specification is not singular, but an incrementally growing and linearly versioned set of APIs. The first version of the standard establishes a baseline
set of APIs. Subsequent versions add APIs and inherit APIs defined by previous versions. There is no established provision for removing APIs from the
standard.

.NET Standard is not specific to any one .NET implementation, nor does it match the versioning scheme of any of those runtimes.

APIs added to any of the implementations (such as, .NET Framework, .NET Core and Mono) can be considered as candidates to add to the specification,
particularly if they are thought to be fundamental in nature. New versions of .NET Standard are created based on .NET implementation releases,
enabling you to target new APIs from a .NET Standard PCL. The versioning mechanics are described in more detail in .NET Core Versioning.

.NET Standard versioning is important for usage. Given a .NET Standard version, you can use libraries that target that same or lower version. The
following approach describes the workflow for using .NET Standard PCLs, specific to .NET Standard targeting.

Select a .NET Standard version to use for your PCL.
Use libraries that depend on the same .NET Standard version or lower.
If you find a library that depends on a higher .NET Standard version, you either need to adopt that same version or decide not to use that library.

https://github.com/dotnet/standard
https://github.com/dotnet/standard/tree/master/netstandard/ref
https://github.com/dotnet/standard
https://www.nuget.org/packages/NETStandard.Library
https://github.com/dotnet/standard/blob/master/netstandard/pkg/NETStandard.Library.dependencies.props
https://github.com/dotnet/standard/tree/master/docs/versions
https://www.nuget.org/packages/NETStandard.Library/
https://www.nuget.org/packages/NETStandard.Library/
https://github.com/dotnet/standard/blob/master/docs/versions.md

Targeting .NET Standard

.NET Framework compatibility mode

.NET Standard libraries and Visual Studio

Comparison to Portable Class Libraries

PCL compatibilityPCL compatibility

PCL PROFILE .NET STANDARD PCL PLATFORMS

Profile7 1.1 .NET Framework 4.5, Windows 8

Profile31 1.0 Windows 8.1, Windows Phone Silverlight 8.1

Profile32 1.2 Windows 8.1, Windows Phone 8.1

Profile44 1.2 .NET Framework 4.5.1, Windows 8.1

Profile49 1.0 .NET Framework 4.5, Windows Phone Silverlight 8

Profile78 1.0 .NET Framework 4.5, Windows 8, Windows Phone
Silverlight 8

Profile84 1.0 Windows Phone 8.1, Windows Phone Silverlight 8.1

Profile111 1.1 .NET Framework 4.5, Windows 8, Windows Phone 8.1

You can build .NET Standard Libraries using a combination of the netstandard framework and the NETStandard.Library metapackage. You can see
examples of targeting the .NET Standard with .NET Core tools.

Starting with .NET Standard 2.0, the .NET Framework compatibility mode was introduced. This compatibility mode allows .NET Standard projects to
reference .NET Framework libraries as if they were compiled for .NET Standard. Referencing .NET Framework libraries doesn't work for all projects,
such as libraries that use Windows Presentation Foundation (WPF) APIs.

For more information, see .NET Framework compatibility mode.

In order to build .NET Standard libraries in Visual Studio, make sure you have Visual Studio 2017 version 15.3 or later installed on Windows, or Visual
Studio for Mac version 7.1 or later installed on macOS.

If you only need to consume .NET Standard 2.0 libraries in your projects, you can also do that in Visual Studio 2015. However, you need NuGet client
3.6 or higher installed. You can download the NuGet client for Visual Studio 2015 from the NuGet downloads page.

.NET Standard is the replacement for Portable Class Libraries (PCL). The .NET Standard improves on the experience of creating portable libraries by
curating a standard BCL and establishing greater uniformity across .NET implementations as a result. A library that targets .NET Standard is a PCL or a
".NET Standard-based PCL". Existing PCLs are "profile-based PCLs".

.NET Standard and PCL profiles were created for similar purposes but also differ in key ways.

Similarities:

Define APIs that can be used for binary code sharing.

Differences:

.NET Standard is a curated set of APIs, while PCL profiles are defined by intersections of existing platforms.

.NET Standard linearly versions, while PCL profiles do not.
PCL profiles represents Microsoft platforms while the .NET Standard is platform-agnostic.

.NET Standard is compatible with a subset of PCL profiles. .NET Standard 1.0, 1.1 and 1.2 each overlap with a set of PCL profiles. This overlap was
created for two reasons:

Enable .NET Standard-based PCLs to reference profile-based PCLs.
Enable profile-based PCLs to be packaged as .NET Standard-based PCLs.

Profile-based PCL compatibility is provided by the Microsoft.NETCore.Portable.Compatibility NuGet package. This dependency is required when
referencing NuGet packages that contain profile-based PCLs.

Profile-based PCLs packaged as netstandard are easier to consume than typically packaged profile-based PCLs. netstandard packaging is compatible
with existing users.

You can see the set of PCL profiles that are compatible with the .NET Standard:

https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://visualstudio.microsoft.com/vs/visual-studio-mac/
https://www.nuget.org/downloads
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/cross-platform-development-with-the-portable-class-library
https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility

Profile151 1.2 .NET Framework 4.5.1, Windows 8.1, Windows Phone
8.1

Profile157 1.0 Windows 8.1, Windows Phone 8.1, Windows Phone
Silverlight 8.1

Profile259 1.0 .NET Framework 4.5, Windows 8, Windows Phone 8.1,
Windows Phone Silverlight 8

PCL PROFILE .NET STANDARD PCL PLATFORMS

See also
.NET Standard Versions

https://github.com/dotnet/standard/blob/master/docs/versions.md

What's new in the .NET Standard
5/2/2018 • 3 minutes to read • Edit Online

Supported .NET implementations

What's new in the .NET Standard 2.0

A vastly expanded set of APIsA vastly expanded set of APIs

Support for .NET Framework librariesSupport for .NET Framework libraries

Support for Visual BasicSupport for Visual Basic

Tooling support for .NET Standard librariesTooling support for .NET Standard libraries

The .NET Standard is a formal specification that defines a versioned set of APIs that must be available on .NET implementations that comply with that
version of the standard. The .NET Standard is targeted at library developers. A library that targets a .NET Standard version can be used on any .NET
Framework, .NET Core, or Xamarin implementation that supports that version of the standard.

The most recent version of the .NET Standard is 2.0. It is included with the .NET Core 2.0 SDK, as well as with Visual Studio 2017 Version 15.3 with the
.NET Core workload installed.

The .NET Standard 2.0 is supported by the following .NET implementations:

.NET Core 2.0 or later

.NET Framework 4.6.1 or later
Mono 5.4 or later
Xamarin.iOS 10.14 or later
Xamarin.Mac 3.8 or later
Xamarin.Android 8.0 or later
Universal Windows Platform 10.0.16299 or later

The .NET Standard 2.0 includes the following new features:

Through version 1.6, the .NET Standard included a comparatively small subset of APIs. Among those excluded were many APIs that were commonly
used in the .NET Framework or Xamarin. This complicates development, since it requires that developers find suitable replacements for familiar APIs
when they develop applications and libraries that target multiple .NET implementations. The .NET Standard 2.0 addresses this limitation by adding over
20,000 more APIs than were available in .NET Standard 1.6, the previous version of the standard. For a list of the APIs that have been added to the .NET
Standard 2.0, see .NET Standard 2.0 vs 1.6.

Some of the additions to the System namespace in .NET Standard 2.0 include:

Support for the AppDomain class.
Better support for working with arrays from additional members in the Array class.
Better support for working with attributes from additional members in the Attribute class.
Better calendar support and additional formatting options for DateTime values.
Additional Decimal rounding functionality.
Additional functionality in the Environment class.
Enhanced control over the garbage collector through the GC class.
Enhanced support for string comparison, enumeration, and normalization in the String class.
Support for daylight saving adjustments and transition times in the TimeZoneInfo.AdjustmentRule and TimeZoneInfo.TransitionTime classes.
Significantly enhanced functionality in the Type class.
Better support for deserialization of exception objects by adding an exception constructor with SerializationInfo and StreamingContext parameters.

The overwhelming majority of libraries target the .NET Framework rather than .NET Standard. However, most of the calls in those libraries are to APIs
that are included in the .NET Standard 2.0. Starting with the .NET Standard 2.0, you can access .NET Framework libraries from a .NET Standard library
by using a compatibility shim. This compatibility layer is transparent to developers; you don't have to do anything to take advantage of .NET Framework
libraries.

The single requirement is that the APIs called by the .NET Framework class library must be included in the .NET Standard 2.0.

You can now develop .NET Standard libraries in Visual Basic. For Visual Basic developers using Visual Studio 2017 Version 15.3 or later with the .NET
Core workload installed, Visual Studio now includes a .NET Standard Class Library template. For Visual Basic developers who use other development
tools and environments, you can use the dotnet new command to create a .NET Standard Library project. For more information, see the Tooling support
for .NET Standard libraries.

With the release of .NET Core 2.0 and .NET Standard 2.0, both Visual Studio 2017 and the .NET Core Command Line Interface (CLI) include tooling
support for creating .NET Standard libraries.

If you install Visual Studio with the .NET Core cross-platform development workload, you can create a .NET Standard 2.0 library project by using a

https://github.com/dotnet/docs/blob/master/docs/standard/whats-new/whats-new-in-dotnet-standard.md
https://raw.githubusercontent.com/dotnet/standard/master/docs/versions/netstandard2.0_diff.md
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.appdomain
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.environment
https://docs.microsoft.com/dotnet/api/system.gc
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.timezoneinfo.adjustmentrule
https://docs.microsoft.com/dotnet/api/system.timezoneinfo.transitiontime
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.serializationinfo
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.streamingcontext
https://github.com/dotnet/standard/blob/master/docs/netstandard-20/README.md#assembly-unification

dotnet new classlib

See also

project template, as the following figure shows:

C#
Visual Basic

If you're using the .NET Core CLI, the following dotnet new command creates a class library project that targets the .NET Standard 2.0:

.NET Standard
Introducing .NET Standard

https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/

Target frameworks
6/2/2018 • 4 minutes to read • Edit Online

Latest target framework versions

TARGET FRAMEWORK
LATEST
STABLE VERSION TARGET FRAMEWORK MONIKER (TFM)

IMPLEMENTED
.NET STANDARD VERSION

.NET Standard 2.0 netstandard2.0 N/A

.NET Core 2.1 netcoreapp2.1 2.0

.NET Framework 4.7.2 net472 2.0

Supported target framework versions

TARGET FRAMEWORK TFM

.NET Standard netstandard1.0
netstandard1.1
netstandard1.2
netstandard1.3
netstandard1.4
netstandard1.5
netstandard1.6
netstandard2.0

.NET Core netcoreapp1.0
netcoreapp1.1
netcoreapp2.0
netcoreapp2.1

.NET Framework net11
net20
net35
net40
net403
net45
net451
net452
net46
net461
net462
net47
net471
net472

When you target a framework in an app or library, you're specifying the set of APIs that you'd like to make available to the app or library. You specify
the target framework in your project file using Target Framework Monikers (TFMs).

An app or library can target a version of .NET Standard. .NET Standard versions represent standardized sets of APIs across all .NET implementations.
For example, a library can target .NET Standard 1.6 and gain access to APIs that function across .NET Core and .NET Framework using the same
codebase.

An app or library can also target a specific .NET implementation to gain access to implementation-specific APIs. For example, an app that targets
Xamarin.iOS (for example, Xamarin.iOS10) gets access to Xamarin-provided iOS API wrappers for iOS 10, or an app that targets the Universal
Windows Platform (UWP, uap10.0) has access to APIs that compile for devices that run Windows 10.

For some target frameworks (for example, the .NET Framework), the APIs are defined by the assemblies that the framework installs on a system and
may include application framework APIs (for example, ASP.NET).

For package-based target frameworks (for example, .NET Standard and .NET Core), the APIs are defined by the packages included in the app or library.
A metapackage is a NuGet package that has no content of its own but is a list of dependencies (other packages). A NuGet package-based target
framework implicitly specifies a metapackage that references all the packages that together make up the framework.

The following table defines the most common target frameworks, how they're referenced, and which version of the .NET Standard they implement.
These target framework versions are the latest stable versions. Pre-release versions aren't shown. A Target Framework Moniker (TFM) is a standardized
token format for specifying the target framework of a .NET app or library.

A target framework is typically referenced by a TFM. The following table shows the target frameworks supported by the .NET Core SDK and the NuGet
client. Equivalents are shown within brackets. For example, win81 is an equivalent TFM to netcore451 .

https://github.com/dotnet/docs/blob/master/docs/standard/frameworks.md

Windows Store netcore [netcore45]
netcore45 [win] [win8]
netcore451 [win81]

.NET Micro Framework netmf

Silverlight sl4
sl5

Windows Phone wp [wp7]
wp7
wp75
wp8
wp81
wpa81

Universal Windows Platform uap [uap10.0]
uap10.0 [win10] [netcore50]

TARGET FRAMEWORK TFM

How to specify target frameworks

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

</Project>

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFrameworks>netstandard1.4;net40;net45</TargetFrameworks>
 </PropertyGroup>

 <!-- Conditionally obtain references for the .NET Framework 4.0 target -->
 <ItemGroup Condition=" '$(TargetFramework)' == 'net40' ">
 <Reference Include="System.Net" />
 </ItemGroup>

 <!-- Conditionally obtain references for the .NET Framework 4.5 target -->
 <ItemGroup Condition=" '$(TargetFramework)' == 'net45' ">
 <Reference Include="System.Net.Http" />
 <Reference Include="System.Threading.Tasks" />
 </ItemGroup>

</Project>

public class MyClass
{
 static void Main()
 {
#if NET40
 Console.WriteLine("Target framework: .NET Framework 4.0");
#elif NET45
 Console.WriteLine("Target framework: .NET Framework 4.5");
#else
 Console.WriteLine("Target framework: .NET Standard 1.4");
#endif
 }
}

Target frameworks are specified in your project file. When a single target framework is specified, use the TargetFramework element. The following
console app project file demonstrates how to target .NET Core 2.0:

When you specify multiple target frameworks, you may conditionally reference assemblies for each target framework. In your code, you can
conditionally compile against those assemblies by using preprocessor symbols with if-then-else logic.

The following library project file targets APIs of .NET Standard (netstandard1.4) and APIs of the .NET Framework (net40 and net45). Use the plural
TargetFrameworks element with multiple target frameworks. Note how the Condition attributes include implementation-specific packages when the
library is compiled for the two .NET Framework TFMs:

Within your library or app, you write conditional code to compile for each target framework:

TARGET FRAMEWORKS SYMBOLS

.NET Framework NET20 , NET35 , NET40 , NET45 , NET451 , NET452 , NET46 , NET461 , NET462 ,
NET47 , NET471 , NET472

.NET Standard NETSTANDARD1_0 , NETSTANDARD1_1 , NETSTANDARD1_2 , NETSTANDARD1_3 ,
NETSTANDARD1_4 , NETSTANDARD1_5 , NETSTANDARD1_6 , NETSTANDARD2_0

.NET Core NETCOREAPP1_0 , NETCOREAPP1_1 , NETCOREAPP2_0 , NETCOREAPP2_1

Deprecated target frameworks

DEPRECATED TFM REPLACEMENT

aspnet50
aspnetcore50
dnxcore50
dnx
dnx45
dnx451
dnx452

netcoreapp

dotnet
dotnet50
dotnet51
dotnet52
dotnet53
dotnet54
dotnet55
dotnet56

netstandard

netcore50 uap10.0

win netcore45

win8 netcore45

win81 netcore451

win10 uap10.0

winrt netcore45

See also

The build system is aware of preprocessor symbols representing the target frameworks shown in the Supported target framework versions table. When
using a symbol that represents a .NET Standard or .NET Core TFM, replace the dot with an underscore and change lowercase letters to uppercase (for
example, the symbol for netstandard1.4 is NETSTANDARD1_4).

The complete list of preprocessor symbols for .NET Core target frameworks is:

The following target frameworks are deprecated. Packages targeting these target frameworks should migrate to the indicated replacements.

Packages, Metapackages and Frameworks
Developing Libraries with Cross Platform Tools
.NET Standard
.NET Core Versioning
dotnet/standard GitHub repository
NuGet Tools GitHub Repository
Framework Profiles in .NET

https://github.com/dotnet/standard
https://github.com/joelverhagen/NuGetTools
https://blog.stephencleary.com/2012/05/framework-profiles-in-net.html

.NET Glossary
5/2/2018 • 10 minutes to read • Edit Online

AOT

ASP.NET

ASP.NET Core

assembly

CLR

CoreCLR

CoreFX

CoreRT

The primary goal of this glossary is to clarify meanings of selected terms and acronyms that appear frequently in the .NET documentation without
definitions.

Ahead-of-time compiler.

Similar to JIT, this compiler also translates IL to machine code. In contrast to JIT compilation, AOT compilation happens before the application is
executed and is usually performed on a different machine. Because AOT tool chains don't compile at runtime, they don't have to minimize time spent
compiling. That means they can spend more time optimizing. Since the context of AOT is the entire application, the AOT compiler also performs cross-
module linking and whole-program analysis, which means that all references are followed and a single executable is produced.

The original ASP.NET implementation that ships with the .NET Framework.

Sometimes ASP.NET is an umbrella term that refers to both ASP.NET implementations including ASP.NET Core. The meaning that the term carries in
any given instance is determined by context. Refer to ASP.NET 4.x when you want to make it clear that you’re not using ASP.NET to mean both
implementations.

See ASP.NET documentation.

A cross-platform, high-performance, open source implementation of ASP.NET built on .NET Core.

See ASP.NET Core documentation.

A .dll/.exe file that can contain a collection of APIs that can be called by apps or other assemblies.

An assembly may include types such as interfaces, classes, structures, enumerations, and delegates. Assemblies in a project's bin folder are sometimes
referred to as binaries. See also library.

Common Language Runtime.

The exact meaning depends on the context, but this usually refers to the runtime of the .NET Framework. The CLR handles memory allocation and
management. The CLR is also a virtual machine that not only executes apps but also generates and compiles code on-the-fly using a JIT compiler. The
current Microsoft CLR implementation is Windows only.

.NET Core Common Language Runtime.

This CLR is built from the same code base as the CLR. Originally, CoreCLR was the runtime of Silverlight and was designed to run on multiple
platforms, specifically Windows and OS X. CoreCLR is now part of .NET Core and represents a simplified version of the CLR. It's still a cross platform
runtime, now including support for many Linux distributions. CoreCLR is also a virtual machine with JIT and code execution capabilities.

.NET Core Base Class Library (BCL)

A set of libraries that comprise the System.* (and to a limited extent Microsoft.*) namespaces. The BCL is a general purpose, lower-level framework that
higher-level application frameworks, such as ASP.NET Core, build on. The source code of the .NET Core BCL is contained in the CoreFX repository.
However, the majority of the .NET Core APIs are also available in the .NET Framework, so you can think of CoreFX as a fork of the .NET Framework
BCL.

.NET Core runtime.

In contrast to the CLR/CoreCLR, CoreRT is not a virtual machine, which means it doesn't include the facilities to generate and run code on-the-fly
because it doesn't include a JIT. It does, however, include the GC and the ability for runtime type identification (RTTI) and reflection. However, its type
system is designed so that metadata for reflection isn't required. This enables having an AOT tool chain that can link away superfluous metadata and

https://github.com/dotnet/docs/blob/master/docs/standard/glossary.md
https://docs.microsoft.com/aspnet/#pivot=aspnet
https://docs.microsoft.com/aspnet/#pivot=core
https://github.com/dotnet/corefx

ecosystem

framework

GC

IL

JIT

implementation of .NET

library

metapackage

(more importantly) identify code that the app doesn't use. CoreRT is in development.

See Intro to .NET Native and CoreRT

All of the runtime software, development tools, and community resources that are used to build and run applications for a given technology.

The term ".NET ecosystem" differs from similar terms such as ".NET stack" in its inclusion of third-party apps and libraries. Here's an example in a
sentence:

"The motivation behind the .NET Standard is to establish greater uniformity in the .NET ecosystem."

In general, a comprehensive collection of APIs that facilitates development and deployment of applications that are based on a particular technology. In
this general sense, ASP.NET Core and Windows Forms are examples of application frameworks. See also library.

The word "framework" has a more specific technical meaning in the following terms:

.NET Framework
target framework
TFM (target framework moniker)

In the existing documentation, "framework" sometimes refers to an implementation of .NET. For example, an article may call .NET Core a framework.
We plan to eliminate this confusing usage from the documentation.

Garbage collector.

The garbage collector is an implementation of automatic memory management. The GC frees memory occupied by objects that are no longer in use.

See Garbage Collection.

Intermediate language.

Higher-level .NET languages, such as C#, compile down to a hardware-agnostic instruction set, which is called Intermediate Language (IL). IL is
sometimes referred to as MSIL (Microsoft IL) or CIL (Common IL).

Just-in-time compiler.

Similar to AOT, this compiler translates IL to machine code that the processor understands. Unlike AOT, JIT compilation happens on demand and is
performed on the same machine that the code needs to run on. Since JIT compilation occurs during execution of the application, compile time is part of
the run time. Thus, J IT compilers have to balance time spent optimizing code against the savings that the resulting code can produce. But a JIT knows
the actual hardware and can free developers from having to ship different implementations.

An implementation of .NET includes the following:

One or more runtimes. Examples: CLR, CoreCLR, CoreRT.
A class library that implements a version of the .NET Standard and may include additional APIs. Examples: .NET Framework Base Class Library,
.NET Core Base Class Library.
Optionally, one or more application frameworks. Examples: ASP.NET, Windows Forms, and WPF are included in the .NET Framework.
Optionally, development tools. Some development tools are shared among multiple implementations.

Examples of .NET implementations:

.NET Framework

.NET Core
Universal Windows Platform (UWP)

A collection of APIs that can be called by apps or other libraries. A .NET library is composed of one or more assemblies.

The words library and framework are often used synonymously.

https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/index

Mono

.NET

.NET Core

.NET Core CLI

.NET Core SDK

.NET Framework

.NET Native

.NET Standard

NGEN

A NuGet package that has no library of its own but is only a list of dependencies. The included packages can optionally establish the API for a target
framework.

See Packages, Metapackages and Frameworks

Mono is a .NET implementation that is mainly used when a small runtime is required. It is the runtime that powers Xamarin applications on Android,
Mac, iOS, tvOS and watchOS and is focused primarily on apps that require a small footprint.

It supports all of the currently published .NET Standard versions.

Historically, Mono implemented the larger API of the .NET Framework and emulated some of the most popular capabilities on Unix. It is sometimes
used to run .NET applications that rely on those capabilities on Unix.

Mono is typically used with a just-in-time compiler, but it also features a full static compiler (ahead-of-time compilation) that is used on platforms like
iOS.

To learn more about Mono, see the Mono documentation.

The umbrella term for .NET Standard and all .NET implementations and workloads. Always capitalized, never ".Net".

See the .NET Guide

A cross-platform, high-performance, open source implementation of .NET. Includes the Core Common Language Runtime (CoreCLR), the Core AOT
Runtime (CoreRT, in development), the Core Base Class Library, and the Core SDK.

See .NET Core.

A cross-platform toolchain for developing .NET Core applications.

See .NET Core command-line interface (CLI) tools.

A set of libraries and tools that allow developers to create .NET Core applications and libraries. Includes the .NET Core CLI for building apps, .NET Core
libraries and runtime for building and running apps, and the dotnet executable (dotnet.exe) that runs CLI commands and runs applications.

See .NET Core SDK Overview.

An implementation of .NET that runs only on Windows. Includes the Common Language Runtime (CLR), the Base Class Library, and application
framework libraries such as ASP.NET, Windows Forms, and WPF.

See .NET Framework Guide.

A compiler tool chain that produces native code ahead-of-time (AOT), as opposed to just-in-time (JIT).

Compilation happens on the developer's machine similar to the way a C++ compiler and linker works. It removes unused code and spends more time
optimizing it. It extracts code from libraries and merges them into the executable. The result is a single module that represents the entire app.

UWP was the first application framework supported by .NET Native. Now, we support building native console apps for Windows, macOS, and Linux.

See Intro to .NET Native and CoreRT

A formal specification of .NET APIs that are available in each .NET implementation.

The .NET Standard specification is sometimes called a library in the documentation. Because a library includes API implementations, not only
specifications (interfaces), it's misleading to call .NET Standard a "library." We plan to eliminate that usage from the documentation, except in reference
to the name of the .NET Standard metapackage (NETStandard.Library).

See .NET Standard.

https://www.mono-project.com/docs/
https://github.com/dotnet/corert/blob/master/Documentation/intro-to-corert.md

package

platform

runtime

stack

target framework

TFM

Native (image) generation.

You can think of this technology as a persistent JIT compiler. It usually compiles code on the machine where the code is executed, but compilation
typically occurs at install time.

A NuGet package — or just a package — is a .zip file with one or more assemblies of the same name along with additional metadata such as the author
name.

The .zip file has a .nupkg extension and may contain assets, such as .dll files and .xml files, for use with multiple target frameworks and versions. When
installed in an app or library, the appropriate assets are selected based on the target framework specified by the app or library. The assets that define the
interface are in the ref folder, and the assets that define the implementation are in the lib folder.

An operating system and the hardware it runs on, such as Windows, macOS, Linux, iOS, and Android.

Here are examples of usage in sentences:

".NET Core is a cross-platform implementation of .NET."
"PCL profiles represent Microsoft platforms, while the .NET Standard is agnostic to platform."

The .NET documentation frequently uses ".NET platform" to mean either an implementation of .NET or the .NET stack including all implementations.
Both of these usages tend to get confused with the primary (OS/hardware) meaning, so we plan to eliminate these usages from the documentation.

The execution environment for a managed program.

The OS is part of the runtime environment but is not part of the .NET runtime. Here are some examples of .NET runtimes:

Common Language Runtime (CLR)
Core Common Language Runtime (CoreCLR)
.NET Native (for UWP)
Mono runtime

The .NET documentation sometimes uses "runtime" to mean an implementation of .NET. For example, in the following sentences "runtime" should be
replaced with "implementation":

"The various .NET runtimes implement specific versions of .NET Standard."
"Libraries that are intended to run on multiple runtimes should target this framework." (referring to .NET Standard)
"The various .NET runtimes implement specific versions of .NET Standard. … Each .NET runtime version advertises the highest .NET Standard
version it supports …"

We plan to eliminate this inconsistent usage.

A set of programming technologies that are used together to build and run applications.

"The .NET stack" refers to the .NET Standard and all .NET implementations. The phrase "a .NET stack" may refer to one implementation of .NET.

The collection of APIs that a .NET app or library relies on.

An app or library can target a version of .NET Standard (for example, .NET Standard 2.0), which is specification for a standardized set of APIs across all
.NET implementations. An app or library can also target a version of a specific .NET implementation, in which case it gets access to implementation-
specific APIs. For example, an app that targets Xamarin.iOS gets access to Xamarin-provided iOS API wrappers.

For some target frameworks (for example, the .NET Framework) the available APIs are defined by the assemblies that a .NET implementation installs on
a system, which may include application framework APIs (for example, ASP.NET, WinForms). For package-based target frameworks (such as .NET
Standard and .NET Core), the framework APIs are defined by the packages installed in the app or library. In that case, the target framework implicitly
specifies a metapackage that references all the packages that together make up the framework.

See Target Frameworks.

Target framework moniker.

A standardized token format for specifying the target framework of a .NET app or library. Target frameworks are typically referenced by a short name,
such as net462 . Long-form TFMs (such as .NETFramework,Version=4.6.2) exist but are not generally used to specify a target framework.

 UWP

See also

See Target Frameworks.

Universal Windows Platform.

An implementation of .NET that is used for building modern, touch-enabled Windows applications and software for the Internet of Things (IoT). It's
designed to unify the different types of devices that you may want to target, including PCs, tablets, phablets, phones, and even the Xbox. UWP provides
many services, such as a centralized app store, an execution environment (AppContainer), and a set of Windows APIs to use instead of Win32 (WinRT).
Apps can be written in C++, C#, VB.NET, and JavaScript. When using C# and VB.NET, the .NET APIs are provided by .NET Core.

.NET Guide

.NET Framework Guide

.NET Core
ASP.NET Overview
ASP.NET Core Overview

https://docs.microsoft.com/aspnet/index#pivot=aspnet
https://docs.microsoft.com/aspnet/index#pivot=core

.NET Architecture Guidance
7/3/2018 • 2 minutes to read • Edit Online

Containerized Docker Application Lifecycle with the Microsoft Platform and Tools

Modernize Existing .NET Applications with Azure cloud and Windows Containers

Architect modern web applications with ASP.NET Core and Azure

Architecting Container and Microservice Based Applications

Serverless apps: Architecture, patterns, and Azure implementation

This guide is an introduction to the recommended end to end lifecycle processes you'll use to develop, validate, and deploy containerized Docker
applications using Visual Studio and Microsoft Azure.

This guide is an introduction to the strategies you'll need to migrate existing web applications to the Azure cloud and Windows containers. You'll learn
about code strategies, data migration, orchestrators, and CI/CD processes.

This guide is an introduction to the recommended architecture, design, and deployment processes you'll use to build ASP.NET and ASP.NET Core
applications and host those applications in Azure.

This guide is an introduction to developing microservices-based applications and managing them using containers. It discusses architectural design and
implementation approaches using .NET Core and Docker containers.

This is a guide for building serverless applications with examples using Azure. It discusses various architecture and design approaches, the benefits and
challenges that come with serverless, and provides scenarios and use cases for serverless apps.

https://github.com/dotnet/docs/blob/master/docs/standard/guidance-architecture.md

Architect Modern Web Applications with ASP.NET Core and Azure
7/10/2018 • 3 minutes to read • Edit Online

PUBLISHED BY

Microsoft Developer Division, .NET, and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

https://github.com/dotnet/docs/blob/master/docs/standard/modern-web-apps-azure-architecture/index.md

Introduction

Purpose

.NET Microservices. Architecture for Containerized .NET Applications.NET Microservices. Architecture for Containerized .NET Applications

Who should use this guide

Redmond, Washington 98052-6399

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission
of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book, including URL
and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

Author :

Steve Smith (@ardalis), Software Architecture Advisor, Ardalis.com

Editors:

Maira Wenzel

.NET Core and ASP.NET Core offer several advantages over traditional .NET development. You should use .NET Core for your server applications if
some or all of the following are important to your application's success:

Cross-platform support.

Use of microservices.

Use of Docker containers.

High performance and scalability requirements.

Side-by-side versioning of .NET versions by application on the same server.

Traditional .NET applications can and do support these requirements, but ASP.NET Core and .NET Core have been optimized to offer improved support
for the above scenarios.

More and more organizations are choosing to host their web applications in the cloud using services like Microsoft Azure. You should consider hosting
your application in the cloud if the following are important to your application or organization:

Reduced investment in data center costs (hardware, software, space, utilities, etc.)

Flexible pricing (pay based on usage, not for idle capacity).

Extreme reliability.

Improved app mobility; easily change where and how your app is deployed.

Flexible capacity; scale up or down based on actual needs.

Building web applications with ASP.NET Core, hosted in Azure, offers many competitive advantages over traditional alternatives. ASP.NET Core is
optimized for modern web application development practices and cloud hosting scenarios. In this guide, you'll learn how to architect your ASP.NET
Core applications to best take advantage of these capabilities.

This guide provides end-to-end guidance on building monolithic web applications using ASP.NET Core and Azure.

This guide is complementary to the ".NET Microservices. Architecture for Containerized .NET Applications" which focuses more on Docker,
Microservices, and Deployment of Containers to host enterprise applications.

e-book
https://aka.ms/MicroservicesEbook
Sample Application
https://aka.ms/microservicesarchitecture

The audience for this guide is mainly developers, development leads, and architects who are interested in building modern web applications using

https://www.microsoft.com
https://ardalis.com
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/index
https://aka.ms/MicroservicesEbook
https://aka.ms/microservicesarchitecture

How you can use this guide

References

Microsoft technologies and services in the cloud.

A secondary audience is technical decision makers who are already familiar ASP.NET or Azure and are looking for information on whether it makes
sense to upgrade to ASP.NET Core for new or existing projects.

This guide has been condensed into a relatively small document that focuses on building web applications with modern .NET technologies and
Windows Azure. As such, it can be read in its entirety to provide a foundation of understanding such applications and their technical considerations. The
guide, along with its sample application, can also serve as a starting point or reference. Use the associated sample application as a template for your
own applications, or to see how you might organize your application's component parts. Refer back to the guide's principles and coverage of
architecture and technology options and decision considerations when you're weighing these choices for your own application.

Feel free to forward this guide to your team to help ensure a common understanding of these considerations and opportunities. Having everybody
working from a common set of terminology and underlying principles helps ensure consistent application of architectural patterns and practices.

Choosing between .NET Core and .NET Framework for server apps
https://docs.microsoft.com/dotnet/standard/choosing-core-framework-server

N E X T

https://docs.microsoft.com/dotnet/standard/choosing-core-framework-server
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/modern-web-applications-characteristics

Modernize existing .NET applications with Azure cloud and Windows
Containers (2nd edition)
6/22/2018 • 15 minutes to read • Edit Online

PUBLISHED BY
Microsoft Press and Microsoft DevDiv
Divisions of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

https://github.com/dotnet/docs/blob/master/docs/standard/modernize-with-azure-and-containers/index.md

Introduction

About this guide

Path to the cloud for existing .NET applications

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced in any form or by any means without the written permission of the
publisher.

This book is available for free in the form of an electronic book (e-book) available through multiple channels at Microsoft such as
http://dot.net/architecture.

If you have questions related to this book, email at dotnet-architecture-ebooks-feedback@service.microsoft.com

This book is provided "as-is" and expresses the author's views and opinions. The views, opinions, and information expressed in this book, including URL
and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the "Trademarks" webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Author :

Cesar de la Torre, Sr. PM, .NET Product Team, Microsoft Corp.

Participants and reviewers:

Scott Hunter, Partner Director PM, .NET team, Microsoft
Paul Yuknewicz, Principal PM Manager, Visual Studio Tools team, Microsoft
Lisa Guthrie, Sr. PM, Visual Studio Tools team, Microsoft
Ankit Asthana, Principal PM Manager, .NET team, Microsoft
Unai Zorrilla, Developer Lead, Plain Concepts
Javier Valero, Chief Operating Officer at Grupo Solutio

When you decide to modernize your web applications or services and move them to the cloud, you don't necessarily have to fully rearchitect your apps.
Rearchitecting an application by using an advanced approach like microservices isn't always an option because of cost and time restraints. Depending
on the type of application, rearchitecting an app also might not be necessary. To optimize the cost-effectiveness of your organization's cloud migration
strategy, it's important to consider the needs of your business and requirements of your apps. You'll need to determine:

Which apps require a transformation or rearchitecting.

Which apps need to be only partially modernized.

Which apps you can "lift and shift" directly to the cloud.

This guide focuses primarily on initial modernization of existing Microsoft .NET Framework web or service-oriented applications, meaning the action of
moving a workload to a newer or more modern environment without significantly altering the application's code and basic architecture.

This guide also highlights the benefits of moving your apps to the cloud and partially modernizing apps by using a specific set of new technologies and
approaches, like Windows Containers and related compute-platforms in Azure supporting Windows Containers.

Organizations typically choose to move to the cloud for the agility and speed they can get for their applications. You can set up thousands of servers
(VMs) in the cloud in minutes, compared to the weeks it typically takes to set up on-premises servers.

There isn't a single, one-size-fits-all strategy for migrating applications to the cloud. The right migration strategy for you will depend on your
organization's needs and priorities, and the kind of applications you are migrating. Not all applications warrant the investment of moving to a platform
as a service (PaaS) model or developing a cloud-native application model. In many cases, you can take a phased or incremental approach to invest in
moving your assets to the cloud, based on your business needs.

For modern applications with the best long-term agility and value for the organization, you might benefit from investing in cloud-native application
architectures. However, for applications that are existing or legacy assets, the key is to spend minimal time and money (no rearchitecting or code
changes) while moving them to the cloud, to realize significant benefits.

Figure 1-1 shows the possible paths you can take when you move existing .NET applications to the cloud in incremental phases.

http://dot.net/architecture
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback for .NET Container & Microservices Architecture book
http://www.microsoft.com
https://azure.microsoft.com/overview/what-is-paas/
https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications

CLOUD INFRASTRUCTURE-READY
LIFT AND SHIFT

CLOUD-OPTIMIZED
MODERNIZE

CLOUD-NATIVE
MODERNIZE, REARCHITECT AND REWRITE

Application's compute target

Applications deployed to VMs in Azure Monolithic or N-Tier apps deployed to Azure App
Service, Azure Container Instance (ACI), VMs with
containers, Azure Service Fabric, or AKS (Azure
Kubernetes Service)

Containerized microservices on Azure Kubernetes
Service (AKS), Service Fabric and/or serverless
microservices based on Azure Functions.

Data target

SQL or any relational database on a VM Azure SQL Database Managed Instance or another
managed database in the cloud.

Fined-grain databases per microservice, based on
Azure SQL Database, Azure Cosmos DB, or another
managed database in the cloud

Advantages

Figure 1-1. Modernization paths for existing .NET applications and services

Each migration approach has different benefits and reasons for using it. You can choose a single approach when you migrate apps to the cloud, or
choose certain components from multiple approaches. Individual applications aren't limited to a single approach or maturity state. For instance, a
common hybrid approach would have certain on-premises components plus other components in the cloud.

The definition and short explanation for each application maturity level are the following:

Level 1: Cloud Infrastructure-Ready applications: In this migration approach, you simply migrate or rehost your current on-premises applications to
an infrastructure as a service (IaaS) platform. Your apps have almost the same composition as before, but now you deploy them to VMs in the cloud.
This simple type of migration is typically known in the industry as "Lift & Shift."

Level 2: Cloud Optimized applications: At this level and still without rearchitecting or altering significant code, you can gain additional benefits from
running your app in the cloud with modern technologies like containers and additional cloud-managed services. You improve the agility of your
applications to ship faster by refining your enterprise development operations (DevOps) processes. You achieve this by using technologies like
Windows Containers, which is based on Docker Engine. Containers remove the friction that’s caused by application dependencies when you deploy in
multiple stages. In this maturity model, you can deploy containers on IaaS or PaaS while using additional cloud-managed services related to databases,
cache as a service, monitoring, and continuous integration/continuous deployment (CI/CD) pipelines.

The third level of maturity is the ultimate goal in the cloud, but it's optional for many apps and not the main focus of this guide:

Level 3: Cloud-Native applications: This migration approach typically is driven by business need and targets modernizing your mission-critical
applications. At this level, you use PaaS services to move your apps to PaaS computing platforms. You implement cloud-native applications and
microservices architecture to evolve applications with long-term agility, and to scale to new limits. This type of modernization usually requires
architecting specifically for the cloud. New code often must be written, especially when you move to cloud-native application and microservice-based
models. This approach can help you gain benefits that are difficult to achieve in your monolithic and on-premises application environment.

Table 1-1 describes the main benefits of and reasons for choosing each migration or modernization approach.

https://azure.microsoft.com/overview/what-is-iaas/
https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications

No rearchitecting, no new code
Least effort for quick migration
Least-common denominator supported in Azure
Basic availability guarantees
After moving to the cloud, it's easier to modernize

even more

No rearchitecting
Minimal code/config changes
Improved deployment and DevOps agility to

release because of containers
Increased density and lower deployment costs
Portability of apps and dependencies
Flexibility of host targets: PaaS approaches or IaaS

Architect for the cloud, you get the best benefits
from the cloud but new code is needed

Microservices cloud-native approaches
Modern mission-critical applications, cloud-resilient

hyper-scalable
Fully managed services
Optimized for scale
Optimized for autonomous agility by subsystem
Built on deployment and DevOps

Challenges

Smaller cloud value, other than shift in operating
expense or closing datacenters

Little is managed: No OS or middleware patching;
might use infrastructure solutions, like Terraform,
Spinnaker, or Puppet

Containerizing is an additional step in the learning
curve for developers and IT Operations

DevOps and CI/CD pipelines is usually ‘a must’ for
this approach. If not currently present in the culture
of the organization, it might be an additional
challenge

Requires rearchitecture for cloud native apps and
microservice architectures and usually requires
significant code refactoring or rewriting when
modernizing (increased time and budget)

DevOps and CI/CD pipelines is usually ‘a must’ for
this approach. If not currently present in the culture
of the organization, it might be an additional
challenge

CLOUD INFRASTRUCTURE-READY
LIFT AND SHIFT

CLOUD-OPTIMIZED
MODERNIZE

CLOUD-NATIVE
MODERNIZE, REARCHITECT AND REWRITE

Key technologies and architectures by maturity levelKey technologies and architectures by maturity level

Table 1-1. Benefits and challenges of modernization paths for existing .NET applications and services

.NET Framework applications initially started with the .NET Framework version 1.0, which was released in late 2001. Then, companies moved towards
newer versions (such as 2.0, 3.5 and .NET 4.x). Most of those applications ran on Windows Server and Internet Information Server (IIS), and used a
relational database, like SQL Server, Oracle, MySQL, or any other RDBMS.

Most existing .NET applications might nowadays be based on .NET Framework 4.x, or even on .NET Framework 3.5, and use web frameworks like
ASP.NET MVC, ASP.NET Web Forms, ASP.NET Web API, Windows Communication Foundation (WCF), ASP.NET SignalR, and ASP.NET Web Pages.
These established .NET Framework technologies depend on Windows. That dependency is important to consider if you are simply migrating legacy
apps and you want to make minimal changes to your application infrastructure.

Figure 1-2 shows the primary technologies and architecture styles used at each of the three cloud maturity levels:

Figure 1-2. Primary technologies for each maturity level for modernizing existing .NET web applications

Figure 1-2 highlights the most common scenarios, but many hybrid and mixed variations are possible when it comes to architecture. For example, the
maturity models apply not only to monolithic architectures in existing web apps, but also to service orientation, N-Tier, and other architecture style
variations. The higher focus or percentage on one or another architecture type and related technologies determines the overall maturity level of your
applications.

Each maturity level in the modernization process is associated with the following key technologies and approaches:

Cloud Infrastructure-Ready (rehost or basic lift & shift): As a first step, many organizations want only to quickly execute a cloud-migration

Lift and shift scenario

strategy. In this case, applications are rehosted. Most rehosting can be automated by using Azure Migrate, a service that provides the guidance,
insights, and mechanisms needed to assist you in migrating to Azure based on cloud tools like Azure Site Recovery and Azure Database
Migration Service. You can also set up rehosting manually, so that you can learn infrastructure details about your assets when you move legacy
apps to the cloud. For example, you can move your applications to VMs in Azure with little modification-probably with only minor configuration
changes. The networking in this case is similar to an on-premises environment, especially if you create virtual networks in Azure.

Cloud-Optimized (Managed Services and Windows Containers): This model is about making a few important deployment optimizations to
gain some significant benefits from the cloud, without changing the core architecture of the application. The fundamental step here is to add
Windows Containers support to your existing .NET Framework applications. This important step (containerization) doesn't require touching the
code, so the overall lift and shift effort is light. You can use tools like Image2Docker or Visual Studio, with its tools for Docker. Visual Studio
automatically chooses smart defaults for ASP.NET applications and Windows Containers images. These tools offer both a rapid inner loop, and a
fast path to get the containers to Azure. Your agility is improved when you deploy to multiple environments. Then, moving to production, you can
deploy your Windows Containers to Azure Web App for Containers, [Azure Container Instances (ACI), and Azure VMs with Windows Server
2016 and containers if you prefer an IaaS approach. For slightly more complex multi-container applications, into orchestrators like Azure Service
Fabric or Azure Kubernetes Service (AKS/ACS). During this initial modernization, you can also add assets from the cloud, such as monitoring
with tools like Azure Application Insights; CI/CD pipelines for your app lifecycles with Visual Studio Team Services; and many more data
resource services that are available in Azure. For instance, you can modify a monolithic web app that was originally developed by using
traditional ASP.NET Web Forms or ASP.NET MVC, but now you deploy it by using Windows Containers. When you use Windows Containers,
you should also migrate your data to a database in Azure SQL Database Managed Instance, all without changing the core architecture of your
application.

Cloud-Native: As introduced, you should think about architecting cloud-native applications when you are targeting large and complex
applications with multiple independent development teams working on different microservices that can be developed and deployed
autonomously. Also, due to granularized and independent scalability per microservice. These architectural approaches face very important
challenges and complexities but can be greatly simplified by using cloud PaaS and orchestrators like Azure Kubernetes Service (AKS/ACS)
(managed Kubernetes), [Azure Service Fabric, and Azure Functions for a serverless approach. All these approaches (like microservices and
Serverless) typically require you to architect for the cloud and write new code—code that is adapted to specific PaaS platforms, or code that
aligns with specific architectures, like microservices.

Figure 1-3 shows the internal technologies that you can use for each maturity level:

Figure 1-3. Internal technologies for each modernization maturity level

For lift and shift migrations, keep in mind that you can use many different variations of lift and shift in your application scenarios. If you only rehost
your application, you might have a scenario like the one shown in Figure 1-4, where you use VMs in the cloud only for your application and for your
database server.

https://aka.ms/azuremigrate
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/campaigns/database-migration/
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://github.com/docker/communitytools-image2docker-win
https://www.docker.com/
https://azure.microsoft.com/en-us/services/app-service/containers/
https://azure.microsoft.com/services/service-fabric/
https://azure.microsoft.com/en-us/services/container-service/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://visualstudio.microsoft.com/team-services/
https://www.asp.net/web-forms
https://www.asp.net/mvc
https://docs.microsoft.com/azure/sql-database/
https://www.gartner.com/doc/3181919/architect-design-cloudnative-applications
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/services/functions/

Modernization scenarios

Figure 1-4. Example of a pure IaaS scenario in the cloud

For modernization scenarios, you might have a pure Cloud-Optimized application that uses elements only from that maturity level. Or, you might have
an intermediate-state application with some elements from Cloud Infrastructure-Ready and other elements from Cloud-Optimized (a "pick and choose"
or mixed model), like in Figure 1-5.

Figure 1-5. Example "pick and choose" scenario, with database on IaaS, DevOps, and containerization assets

Next, as the ideal scenario for many existing .NET Framework applications to migrate, you could migrate to a Cloud-Optimized application, to get
significant benefits from little work. This approach also sets you up for Cloud-Native as a possible future evolution. Figure 1-6 shows an example.

Figure 1-6. Example Cloud-Optimized apps scenario, with Windows Containers and managed services

What this guide does not cover

Additional resourcesAdditional resources

Who should use this guide

How to use this guide

Going even further, you could extend your existing Cloud-Optimized application by adding a few microservices for specific scenarios. This would move
you partially to the level of Cloud-Native model, which is not the main focus of the present guidance.

This guide covers a specific subset of the example scenarios, as shown in Figure 1-7. This guide focuses only on lift and shift scenarios, and ultimately,
on the Cloud-Optimized model. In the Cloud-Optimized model, a .NET Framework application is modernized by using Windows Containers, plus
additional components like monitoring and CI/CD pipelines. Each component is fundamental to deploying applications to the cloud, faster, and with
agility.

Figure 1-7. Cloud-Native is not covered in this guide

The focus of this guide is specific. It shows you the path you can take to achieve a lift and shift of your existing .NET applications, without rearchitecting,
and with no code changes. Ultimately, it shows you how to make your application Cloud-Optimized.

This guide doesn't show you how to create Cloud-Native applications, such as how to evolve to a microservices architecture. To rearchitect your
applications or to create brand-new applications that are based on microservices, see the e-book .NET Microservices: Architecture for containerized
.NET applications.

Containerized Docker application lifecycle with Microsoft platform and tools (downloadable e-book):
https://aka.ms/dockerlifecycleebook

.NET Microservices: Architecture for containerized .NET applications (downloadable e-book): https://aka.ms/microservicesebook

Architecting modern web applications with ASP.NET Core and Azure (downloadable e-book): https://aka.ms/webappebook

This guide was written for developers and solution architects who want to modernize existing ASP.NET web applications or WCF services that are
based on the .NET Framework, for improved agility in shipping and releasing applications.

You also might find this guide useful if you are a technical decision maker, such as an enterprise architect or a development lead/director who just wants
an overview of the benefits that you can get by using Windows Containers, and by deploying to the cloud when using Microsoft Azure.

This guide addresses the "why"-why you might want to modernize your existing applications, and the specific benefits you get from using Windows
Containers when you move your apps to the cloud. The content in the first few chapters of the guide is designed for architects and technical decision
makers who want an overview, but who don't need to focus on implementation and technical, step-by-step details.

The last chapter of this guide introduces multiple walkthroughs that focus on specific deployment scenarios. This guide offers shorter versions of the
walkthroughs, to summarize the scenarios and highlight their benefits. The full walkthroughs drill down into setup and implementation details, and are
published as a set of wiki posts in the same public GitHub repo where related sample apps reside (discussed in the next section). The last chapter and
the step-by-step wiki walkthroughs on GitHub will be of more interest to developers and architects who want to focus on implementation details.

https://aka.ms/microservicesebook
https://aka.ms/dockerlifecycleebook
https://aka.ms/microservicesebook
https://aka.ms/webappebook
https://github.com/dotnet-architecture/eShopModernizing/wiki
https://github.com/dotnet-architecture/eShopModernizing

Sample apps for modernizing legacy apps: eShopModernizing

Send your feedback

The eShopModernizing repo on GitHub offers two sample applications that simulate legacy monolithic web applications. One web app is developed by
using ASP.NET MVC; the second web app is developed by using ASP.NET Web Forms and the third app is an N-Tier app with a WinForms client
desktop app consuming a WCF service backend. All these apps are based on the traditional .NET Framework. These sample apps don't use .NET Core
or ASP.NET Core as they are supposed to be existing/legacy .NET Framework applications to be modernized.

These sample apps have a second version, with modernized code, and which are fairly straightforward. The most important difference between the app
versions is that the second versions use Windows Containers as the deployment choice. There also are a few additions to the second versions, like
Azure Storage Blobs for managing images, Azure Active Directory for managing security, and Azure Application Insights for monitoring and auditing
the applications.

This guide was written to help you understand your options for improving and modernizing existing .NET web applications. The guide and related
sample applications are evolving. Your feedback is welcome! If you have comments about how this guide might be more helpful, please send them to
dotnet-architecture-ebooks-feedback@service.microsoft.com.

N E X T

https://github.com/dotnet-architecture/eShopModernizing
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com?subject=Feedback for .NET Container & Microservices Architecture book
https://docs.microsoft.com/en-us/dotnet/standard/modernize-with-azure-and-containers/lift-and-shift-existing-apps-azure-iaas

Introduction to containers and Docker
6/29/2018 • 2 minutes to read • Edit Online

Containerization is an approach to software development in which an application or service, its dependencies, and its configuration (abstracted as
deployment manifest files) are packaged together as a container image. You then can test the containerized application as a unit and deploy it as a
container image instance to the host operating system.

Just as the shipping industry uses standardized containers to move goods by ship, train, or truck, regardless of the cargo within them, software
containers act as a standard unit of software that can contain different code and dependencies. Placing software into containers makes it possible for
developers and IT professionals to deploy those containers across environments with little or no modification.

Containers also isolate applications from one another on a shared operating system (OS). Containerized applications run on top of a container host,
which in turn runs on the OS (Linux or Windows). Thus, containers have a significantly smaller footprint than virtual machine (VM) images.

Each container can run an entire web application or a service, as shown in Figure 1-1.

Figure 1-1: Multiple containers running on a container host

In this example, Docker Host is a container host, and App 1, App 2, Svc 1, and Svc 2 are containerized applications or services.

Another benefit you can derive from containerization is scalability. You can scale-out quickly by creating new containers for short-term tasks. From an
application point of view, instantiating an image (creating a container) is similar to instantiating a process like a service or web app. For reliability,
however, when you run multiple instances of the same image across multiple host servers, you typically want each container (image instance) to run in a
different host server or VM in different fault domains.

In short, containers offer the benefits of isolation, portability, agility, scalability, and control across the entire application life cycle workflow. The most
important benefit is the isolation provided between Dev and Ops.

N E X T

https://github.com/dotnet/docs/blob/master/docs/standard/containerized-lifecycle-architecture/index.md
https://docs.microsoft.com/en-us/dotnet/standard/containerized-lifecycle-architecture/what-is-docker

6/29/2018 • 5 minutes to read • Edit Online

.NET Microservices. Architecture for Containerized .NET Applications
DOWNLOAD available at: https://aka.ms/microservicesebook

PUBLISHED BY

Microsoft Developer Division, .NET and Visual Studio product teams

https://github.com/dotnet/docs/blob/master/docs/standard/microservices-architecture/index.md
https://aka.ms/microservicesebook

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission
of the publisher.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information expressed in this book, including URL
and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.

All other marks and logos are property of their respective owners.

Co-Authors:

Cesar de la Torre, Sr. PM, .NET product team, Microsoft Corp.

Bill Wagner, Sr. Content Developer, C+E, Microsoft Corp.

Mike Rousos, Principal Software Engineer, DevDiv CAT team, Microsoft

Editors:

Mike Pope

Steve Hoag

Participants and reviewers:

Jeffrey Richter, Partner Software Eng, Azure team, Microsoft

Jimmy Bogard, Chief Architect at Headspring

Udi Dahan, Founder & CEO, Particular Software

Jimmy Nilsson, Co-founder and CEO of Factor10

Glenn Condron, Sr. Program Manager, ASP.NET team

Mark Fussell, Principal PM Lead, Azure Service Fabric team, Microsoft

Diego Vega, PM Lead, Entity Framework team, Microsoft

Barry Dorrans, Sr. Security Program Manager

Rowan Miller, Sr. Program Manager, Microsoft

Ankit Asthana, Principal PM Manager, .NET team, Microsoft

Scott Hunter, Partner Director PM, .NET team, Microsoft

Dylan Reisenberger, Architect and Dev Lead at Polly

Steve Smith, Software Craftsman & Trainer at ASPSmith Ltd.

Ian Cooper, Coding Architect at Brighter

Unai Zorrilla, Architect and Dev Lead at Plain Concepts

Eduard Tomas, Dev Lead at Plain Concepts

Ramon Tomas, Developer at Plain Concepts

David Sanz, Developer at Plain Concepts

Javier Valero, Chief Operating Officer at Grupo Solutio

Pierre Millet, Sr. Consultant, Microsoft

Michael Friis, Product Manager, Docker Inc

Charles Lowell, Software Engineer, VS CAT team, Microsoft

http://www.microsoft.com

Introduction

About this guide

What this guide does not cover

Additional resourcesAdditional resources

Who should use this guide

How to use this guideHow to use this guide

Related microservice and container-based reference application: eShopOnContainers

Send us your feedback!

Enterprises are increasingly realizing cost savings, solving deployment problems, and improving DevOps and production operations by using
containers. Microsoft has been releasing container innovations for Windows and Linux by creating products like Azure Container Service and Azure
Service Fabric, and by partnering with industry leaders like Docker, Mesosphere, and Kubernetes. These products deliver container solutions that help
companies build and deploy applications at cloud speed and scale, whatever their choice of platform or tools.

Docker is becoming the de facto standard in the container industry, supported by the most significant vendors in the Windows and Linux ecosystems.
(Microsoft is one of the main cloud vendors supporting Docker.) In the future, Docker will probably be ubiquitous in any datacenter in the cloud or on-
premises.

In addition, the microservices architecture is emerging as an important approach for distributed mission-critical applications. In a microservice-based
architecture, the application is built on a collection of services that can be developed, tested, deployed, and versioned independently.

This guide is an introduction to developing microservices-based applications and managing them using containers. It discusses architectural design and
implementation approaches using .NET Core and Docker containers. To make it easier to get started with containers and microservices, the guide
focuses on a reference containerized and microservice-based application that you can explore. The sample application is available at the
eShopOnContainers GitHub repo.

This guide provides foundational development and architectural guidance primarily at a development environment level with a focus on two
technologies: Docker and .NET Core. Our intention is that you read this guide when thinking about your application design without focusing on the
infrastructure (cloud or on-premises) of your production environment. You will make decisions about your infrastructure later, when you create your
production-ready applications. Therefore, this guide is intended to be infrastructure agnostic and more development-environment-centric.

After you have studied this guide, your next step would be to learn about production-ready microservices on Microsoft Azure.

This guide does not focus on the application lifecycle, DevOps, CI/CD pipelines, or team work. The complementary guide Containerized Docker
Application Lifecycle with Microsoft Platform and Tools focuses on that subject. The current guide also does not provide implementation details on
Azure infrastructure, such as information on specific orchestrators.

Containerized Docker Application Lifecycle with Microsoft Platform and Tools (downloadable e-book) https://aka.ms/dockerlifecycleebook

We wrote this guide for developers and solution architects who are new to Docker-based application development and to microservices-based
architecture. This guide is for you if you want to learn how to architect, design, and implement proof-of-concept applications with Microsoft
development technologies (with special focus on .NET Core) and with Docker containers.

You will also find this guide useful if you are a technical decision maker, such as an enterprise architect, who wants an architecture and technology
overview before you decide on what approach to select for new and modern distributed applications.

The first part of this guide introduces Docker containers, discusses how to choose between .NET Core and the .NET Framework as a development
framework, and provides an overview of microservices. This content is for architects and technical decision makers who want an overview but who do
not need to focus on code implementation details.

The second part of the guide starts with the Development process for Docker based applications section. It focuses on development and microservice
patterns for implementing applications using .NET Core and Docker. This section will be of most interest to developers and architects who want to focus
on code and on patterns and implementation details.

The eShopOnContainers application is a reference app for .NET Core and microservices that is designed to be deployed using Docker containers. The
application consists of multiple subsystems, including several e-store UI front ends (a Web app and a native mobile app). It also includes the back-end
microservices and containers for all required server-side operations.

This microservice and container-based application source code is open source and available at the eShopOnContainers GitHub repo.

We wrote this guide to help you understand the architecture of containerized applications and microservices in .NET. The guide and related reference
application will be evolving, so we welcome your feedback! If you have comments about how this guide can be improved, please send them to:

dotnet-architecture-ebooks-feedback@service.microsoft.com

N E X T

https://martinfowler.com/articles/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://aka.ms/dockerlifecycleebook
https://aka.ms/dockerlifecycleebook
http://aka.ms/MicroservicesArchitecture
mailto:dotnet-architecture-ebooks-feedback@service.microsoft.com
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/index

7/3/2018 • 6 minutes to read • Edit Online

Serverless apps: Architecture, patterns, and Azure implementation
DOWNLOAD available at: https://aka.ms/serverless-ebook

PUBLISHED BY

https://github.com/dotnet/docs/blob/master/docs/standard/serverless-architecture/index.md
https://aka.ms/serverless-ebook

Introduction

About this guide

Evolution of cloud platforms

Microsoft Developer Division, .NET, and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission
of the publisher.

This book is provided "as-is" and expresses the author's views and opinions. The views, opinions and information expressed in this book, including URL
and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the "Trademarks" webpage are trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

All other marks and logos are property of their respective owners.

Author :

Jeremy Likness, Sr. Cloud Developer Advocate, APEX, Microsoft Corp.

Contributor :

Cecil Phillip, Cloud Developer Advocate II, APEX, Microsoft Corp.

Editors:

Bill Wagner, Senior Content Developer, APEX, Microsoft Corp.

Maira Wenzel, Senior Content Developer, APEX, Microsoft Corp.

Participants and reviewers:

Steve Smith, Owner, Ardalis Services.

Serverless is the evolution of cloud platforms in the direction of pure cloud native code. Serverless brings developers closer to business logic while
insulating them from infrastructure concerns. It's a pattern that doesn't imply "no server" but rather, "less server." Serverless code is event-driven. Code
may be triggered by anything from a traditional HTTP web request to a timer or the result of uploading a file. The infrastructure behind serverless
allows for instant scale to meet elastic demands and offers micro-billing to truly "pay for what you use." Serverless requires a new way of thinking and
approach to building applications and isn't the right solution for every problem. As a developer, you must decide:

What are the pros and cons of serverless?
Why should you consider serverless for your own applications?
How can you build, test, deploy, and maintain your serverless code?
Where does it make sense to migrate code to serverless in existing applications, and what is the best way to accomplish this transformation?

This guide focuses on cloud native development of applications that use serverless. The book highlights the benefits and exposes the potential
drawbacks of developing serverless apps and provides a survey of serverless architectures. Many examples of how serverless can be used are
illustrated along with various serverless design patterns.

This guide explains the components of the Azure serverless platform and focuses specifically on implementation of serverless using Azure Functions.
You'll learn about triggers and bindings as well as how to implement serverless apps that rely on state using durable functions. Finally, business
examples and case studies will help provide context and a frame of reference to determine whether serverless is the right approach for your projects.

Serverless is the culmination of several iterations of cloud platforms. The evolution began with physical metal in the data center and progressed
through Infrastructure as a Service (IaaS) and Platform as a Service (PaaS).

https://www.microsoft.com
https://twitter.com/jeremylikness
https://twitter.com/cecilphillip
https://twitter.com/billwagner
https://twitter.com/mairacw
https://twitter.com/ardalis
https://docs.microsoft.com/azure/azure-functions/functions-overview

What this guide doesn't cover

Additional resourcesAdditional resources

Before the cloud, a discernible boundary existed between development and operations. Deploying an application meant answering myriad questions
like:

What hardware should be installed?
How is physical access to the machine secured?
Does the data center require an Uninterruptible Power Supply (UPS)?
Where are storage backups sent?
Should there be redundant power?

The list goes on and the overhead was enormous. In many situations, IT departments were forced to deal with incredible waste. The waste was due to
over-allocation of servers as backup machines for disaster recovery and standby servers to enable scale-out. Fortunately, the introduction of
virtualization technology (like Hyper-V) with Virtual Machines (VMs) gave rise to Infrastructure as a Service (IaaS). Virtualized infrastructure allowed
operations to set up a standard set of servers as the backbone, leading to a flexible environment capable of provisioning unique servers "on demand."
More important, virtualization set the stage for using the cloud to provide virtual machines "as a service." Companies could easily get out of the
business of worrying about redundant power or physical machines. Instead, they focused on the virtual environment.

IaaS still requires heavy overhead because operations is still responsible for various tasks. These tasks include:

Patching and backing up servers.
Installing packages.
Keeping the operating system up-to-date.
Monitoring the application.

The next evolution reduced the overhead by providing Platform as a Service (PaaS). With PaaS, the cloud provider handles operating systems, security
patches, and even the required packages to support a specific platform. Instead of building a VM then configuring the .NET Framework and standing up
Internet Information Services (IIS) servers, developers simply choose a "platform target" such as "web application" or "API endpoint" and deploy code
directly. The infrastructure questions are reduced to:

What size services are needed?
How do the services scale out (add more servers or nodes)?
How do the services scale up (increase the capacity of hosting servers or nodes)?

Serverless further abstracts servers by focusing on event-driven code. Instead of a platform, developers can focus on a microservice that does one
thing. The two key questions for building the serverless code are:

What triggers the code?
What does the code do?

With serverless, infrastructure is abstracted. In some cases, the developer no longer worries about the host at all. Whether or not an instance of IIS,
Kestrel, Apache, or some other web server is running to manage web requests, the developer focuses on an HTTP trigger. The trigger provides the
standard, cross-platform payload for the request. The payload not only simplifies the development process, but facilitates testing and in some cases,
makes the code easily portable across platforms.

Another feature of serverless is micro-billing. It's common for web applications to host Web API endpoints. In traditional bare metal, IaaS and even
PaaS implementations, the resources to host the APIs are paid for continuously. That means you pay to host the endpoints even when they aren't being
accessed. Often you'll find one API is called more than others, so the entire system is scaled based on supporting the popular endpoints. Serverless
enables you to scale each endpoint independently and pay for usage, so no costs are incurred when the APIs aren't being called. Migration may in many
circumstances dramatically reduce the ongoing cost to support the endpoints.

This guide specifically emphasizes architecture approaches and design patterns and isn't a deep dive into the implementation details of Azure Functions,
Logic Apps, or other serverless platforms. This guide doesn't cover, for example, advanced workflows with Logic Apps or features of Azure Functions
such as configuring Cross-Origin Resource Sharing (CORS), applying custom domains, or uploading SSL certificates. These details are available
through the online Azure Functions documentation.

https://docs.microsoft.com/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/azure/logic-apps/logic-apps-what-are-logic-apps
https://docs.microsoft.com/azure/azure-functions/functions-reference

Who should use the guide

How to use the guide

Send your feedback

Azure Architecture center
Best practices for cloud applications

This guide was written for developers and solution architects who want to build enterprise applications with .NET that may use serverless components
either on premises or in the cloud. It's useful to developers, architects, and technical decision makers interested in:

Understanding the pros and cons of serverless development
Learning how to approach serverless architecture
Example implementations of serverless apps

The first part of this guide examines why serverless is a viable option by comparing several different architecture approaches. It examines both the
technology and development lifecycle, because all aspects of software development are impacted by architecture decisions. The guide then examines
use cases and design patterns and includes reference implementations using Azure Functions. Each section contains additional resources to learn more
about a particular area. The guide concludes with resources for walkthroughs and hands-on exploration of serverless implementation.

The guide and related samples are constantly evolving, so your feedback is welcomed! If you have comments about how this guide can be improved,
use the feedback section at the bottom of any page built on GitHub issues.

N E X T

https://docs.microsoft.com/azure/architecture/
https://docs.microsoft.com/azure/architecture/best-practices/api-design
https://github.com/dotnet/docs/issues
https://docs.microsoft.com/en-us/dotnet/standard/serverless-architecture/architecture-approaches

Choosing between .NET Core and .NET Framework for server apps
6/21/2018 • 6 minutes to read • Edit Online

When to choose .NET Core

Cross-platform needsCross-platform needs

Microservices architectureMicroservices architecture

ContainersContainers

A need for high-performance and scalable systemsA need for high-performance and scalable systems

A need for side by side of .NET versions per application levelA need for side by side of .NET versions per application level

When to choose .NET Framework

There are two supported implementations for building server-side applications with .NET: .NET Framework and .NET Core. Both share many of the
same components and you can share code across the two. However, there are fundamental differences between the two and your choice depends on
what you want to accomplish. This article provides guidance on when to use each.

Use .NET Core for your server application when:

You have cross-platform needs.
You are targeting microservices.
You are using Docker containers.
You need high-performance and scalable systems.
You need side-by-side .NET versions per application.

Use .NET Framework for your server application when:

Your app currently uses .NET Framework (recommendation is to extend instead of migrating).
Your app uses third-party .NET libraries or NuGet packages not available for .NET Core.
Your app uses .NET technologies that aren't available for .NET Core.
Your app uses a platform that doesn’t support .NET Core.

The following sections give a more detailed explanation of the previously stated reasons for picking .NET Core.

If your application (web/service) needs to run on multiple platforms (Windows, Linux, and macOS), use .NET Core.

.NET Core supports the previously mentioned operating systems as your development workstation. Visual Studio provides an Integrated Development
Environment (IDE) for Windows and macOS. You can also use Visual Studio Code, which runs on macOS, Linux, and Windows. Visual Studio Code
supports .NET Core, including IntelliSense and debugging. Most third-party editors, such as Sublime, Emacs, and VI, work with .NET Core. These third-
party editors get editor IntelliSense using Omnisharp. You can also avoid any code editor and directly use the .NET Core CLI tools, available for all
supported platforms.

A microservices architecture allows a mix of technologies across a service boundary. This technology mix enables a gradual embrace of .NET Core for
new microservices that work with other microservices or services. For example, you can mix microservices or services developed with .NET Framework,
Java, Ruby, or other monolithic technologies.

There are many infrastructure platforms available. Azure Service Fabric is designed for large and complex microservice systems. Azure App Service is a
good choice for stateless microservices. Microservices alternatives based on Docker fit any kind of microservices approach, as explained in the
Containers section. All these platforms support .NET Core and make them ideal for hosting your microservices.

For more information about microservices architecture, see .NET Microservices. Architecture for Containerized .NET Applications.

Containers are commonly used in conjunction with a microservices architecture. Containers can also be used to containerize web apps or services that
follow any architectural pattern. .NET Framework can be used on Windows containers, but the modularity and lightweight nature of .NET Core makes it
a better choice for containers. When creating and deploying a container, the size of its image is much smaller with .NET Core than with .NET
Framework. Because it's cross-platform, you can deploy server apps to Linux Docker containers, for example.

Docker containers can be hosted in your own Linux or Windows infrastructure, or in a cloud service such as Azure Container Service. Azure Container
Service can manage, orchestrate, and scale container-based applications in the cloud.

When your system needs the best possible performance and scalability, .NET Core and ASP.NET Core are your best options. High-performance server
runtime for Windows Server and Linux makes .NET a top performing web framework on TechEmpower benchmarks.

Performance and scalability are especially relevant for microservices architectures, where hundreds of microservices may be running. With ASP.NET
Core, systems run with a much lower number of servers/Virtual Machines (VM). The reduced servers/VMs save costs in infrastructure and hosting.

To install applications with dependencies on different versions of .NET, we recommend .NET Core. .NET Core offers side-by-side installation of different
versions of the .NET Core runtime on the same machine. This side-by-side installation allows multiple services on the same server, each of them on its
own version of .NET Core. It also lowers risks and saves money in application upgrades and IT operations.

https://github.com/dotnet/docs/blob/master/docs/standard/choosing-core-framework-server.md
https://www.omnisharp.net/
https://azure.microsoft.com/services/service-fabric/
https://azure.microsoft.com/services/app-service/
https://azure.microsoft.com/services/container-service/
https://www.techempower.com/benchmarks/#hw=ph&test=plaintext

Current .NET Framework applicationsCurrent .NET Framework applications

A need to use third-party .NET libraries or NuGet packages not available for .NET CoreA need to use third-party .NET libraries or NuGet packages not available for .NET Core

A need to use .NET technologies not available for .NET CoreA need to use .NET technologies not available for .NET Core

A need to use a platform that doesn’t support .NET CoreA need to use a platform that doesn’t support .NET Core

See also

.NET Core offers significant benefits for new applications and application patterns. However, the .NET Framework continues to be the natural choice for
many existing scenarios and as such the .NET Framework isn't replaced by .NET Core for all server applications.

In most cases, you don’t need to migrate your existing applications to .NET Core. Instead, a recommended approach is to use .NET Core as you extend
an existing application, such as writing a new web service in ASP.NET Core.

Libraries are quickly embracing .NET Standard. .NET Standard enables sharing code across all .NET implementations including .NET Core. With .NET
Standard 2.0, this is even easier :

The API surface became much larger.
Introduced a .NET Framework compatibility mode. This compatibility mode allows .NET Standard/.NET Core projects to reference .NET Framework
libraries. To learn more about the compatibility mode, see Announcing .NET Standard 2.0.

So only in cases where the libraries or NuGet packages use technologies that aren't available in .NET Standard/.NET Core, you need to use the .NET
Framework.

Some .NET Framework technologies aren't available in .NET Core. Some of them might be available in later .NET Core releases. Others don’t apply to
the new application patterns targeted by .NET Core and may never be available. The following list shows the most common technologies not found in
.NET Core:

ASP.NET Web Forms applications: ASP.NET Web Forms are only available in the .NET Framework. ASP.NET Core cannot be used for ASP.NET
Web Forms. There are no plans to bring ASP.NET Web Forms to .NET Core.

ASP.NET Web Pages applications: ASP.NET Web Pages aren't included in ASP.NET Core. ASP.NET Core Razor Pages have many similarities with
Web Pages.

WCF services implementation. Even when there’s a WCF-Client library to consume WCF services from .NET Core, WCF server implementation
is currently only available in the .NET Framework. This scenario is not part of the current plan for .NET Core but it’s being considered for the
future.

Workflow-related services: Windows Workflow Foundation (WF), Workflow Services (WCF + WF in a single service) and WCF Data Services
(formerly known as "ADO.NET Data Services") are only available in the .NET Framework. There are no plans to bring WF/WCF+WF/WCF Data
Services to .NET Core.

Language support: Visual Basic and F# are currently supported in .NET Core, but not for all project types. For a list of supported project
templates, see Template options for dotnet new.

In addition to the official roadmap, there are other frameworks to be ported to .NET Core. For a full list, see the CoreFX issues marked as port-to-core.
This list doesn’t represent a commitment from Microsoft to bring those components to .NET Core. They're simply capturing the desire from the
community to do so. If you care about any of the components marked as port-to-core , participate in the discussions on GitHub. And if you think
something is missing, file a new issue in the CoreFX repository.

Some Microsoft or third-party platforms don’t support .NET Core. For example, some Azure services such as Service Fabric Stateful Reliable Services
and Service Fabric Reliable Actors require .NET Framework. Some other services provide an SDK not yet available for consumption on .NET Core. This
is a transitional circumstance, as all of Azure services use .NET Core. In the meantime, you can always use the equivalent REST API instead of the client
SDK.

Choose between ASP.NET and ASP.NET Core
.NET Core Guide
Porting from .NET Framework to .NET Core
.NET Framework on Docker Guide
.NET Components Overview
.NET Microservices. Architecture for Containerized .NET Applications

https://blogs.msdn.microsoft.com/dotnet/2017/08/14/announcing-net-standard-2-0/
https://docs.microsoft.com/aspnet/core/mvc/razor-pages/
https://github.com/dotnet/wcf
https://github.com/dotnet/corefx/issues?q=is%3Aopen+is%3Aissue+label%3Aport-to-core
https://github.com/dotnet/corefx/issues/new
https://docs.microsoft.com/aspnet/core/choose-aspnet-framework

What is "managed code"?
5/2/2018 • 2 minutes to read • Edit Online

Intermediate Language & execution

Unmanaged code interoperability

More resources

When working with .NET Framework, you will often encounter the term "managed code". This document will explain what this term means and
additional information around it.

To put it very simply, managed code is just that: code whose execution is managed by a runtime. In this case, the runtime in question is called the
Common Language Runtime or CLR, regardless of the implementation (Mono or .NET Framework or .NET Core). CLR is in charge of taking the
managed code, compiling it into machine code and then executing it. On top of that, runtime provides several important services such as automatic
memory management, security boundaries, type safety etc.

Contrast this to the way you would run a C/C++ program, also called "unmanaged code". In the unmanaged world, the programmer is in charge of
pretty much everything. The actual program is, essentially, a binary that the operating system (OS) loads into memory and starts. Everything else, from
memory management to security considerations are a burden of the programmer.

Managed code is written in one of the high-level languages that can be run on top of .NET, such as C#, Visual Basic, F# and others. When you compile
code written in those languages with their respective compiler, you don’t get machine code. You get Intermediate Language code which the runtime
then compiles and executes. C++ is the one exception to this rule, as it can also produce native, unmanaged binaries that run on Windows.

What is "Intermediate Language" (or IL for short)? It is a product of compilation of code written in high-level .NET languages. Once you compile your
code written in one of these languages, you will get a binary that is made out of IL. It is important to note that the IL is independent from any specific
language that runs on top of the runtime; there is even a separate specification for it that you can read if you’re so inclined.

Once you produce IL from your high-level code, you will most likely want to run it. This is where the CLR takes over and starts the process of Just-In-
Time compiling, or JIT-ing your code from IL to machine code that can actually be run on a CPU. In this way, the CLR knows exactly what your code is
doing and can effectively manage it.

Intermediate Language is sometimes also called Common Intermediate Language (CIL) or Microsoft Intermediate Language (MSIL).

Of course, the CLR allows passing the boundaries between managed and unmanaged world, and there is a lot of code that does that, even in the Base
Class Libraries. This is called interoperability or just interop for short. These provisions would allow you to, for example, wrap up an unmanaged
library and call into it. However, it is important to note that once you do this, when the code passes the boundaries of the runtime, the actual
management of the execution is again in the hand of unmanaged code, and thus falls under the same restrictions.

Similar to this, C# is one language that allows you to use unmanaged constructs such as pointers directly in code by utilizing what is known as unsafe
context which designates a piece of code for which the execution is not managed by the CLR.

.NET Framework Conceptual Overview
Unsafe Code and Pointers
Interoperability (C# Programming guide)

https://github.com/dotnet/docs/blob/master/docs/standard/managed-code.md
https://www.mono-project.com/
https://msdn.microsoft.com/library/zw4w595w.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/index
https://msdn.microsoft.com/library/ms173184.aspx

Automatic Memory Management
5/2/2018 • 7 minutes to read • Edit Online

Allocating Memory

Releasing Memory

Generations and Performance

Automatic memory management is one of the services that the Common Language Runtime provides during Managed Execution. The Common
Language Runtime's garbage collector manages the allocation and release of memory for an application. For developers, this means that you do not
have to write code to perform memory management tasks when you develop managed applications. Automatic memory management can eliminate
common problems, such as forgetting to free an object and causing a memory leak, or attempting to access memory for an object that has already been
freed. This section describes how the garbage collector allocates and releases memory.

When you initialize a new process, the runtime reserves a contiguous region of address space for the process. This reserved address space is called the
managed heap. The managed heap maintains a pointer to the address where the next object in the heap will be allocated. Initially, this pointer is set to
the managed heap's base address. All reference types are allocated on the managed heap. When an application creates the first reference type, memory
is allocated for the type at the base address of the managed heap. When the application creates the next object, the garbage collector allocates memory
for it in the address space immediately following the first object. As long as address space is available, the garbage collector continues to allocate space
for new objects in this manner.

Allocating memory from the managed heap is faster than unmanaged memory allocation. Because the runtime allocates memory for an object by
adding a value to a pointer, it is almost as fast as allocating memory from the stack. In addition, because new objects that are allocated consecutively are
stored contiguously in the managed heap, an application can access the objects very quickly.

The garbage collector's optimizing engine determines the best time to perform a collection based on the allocations being made. When the garbage
collector performs a collection, it releases the memory for objects that are no longer being used by the application. It determines which objects are no
longer being used by examining the application's roots. Every application has a set of roots. Each root either refers to an object on the managed heap or
is set to null. An application's roots include static fields, local variables and parameters on a thread's stack, and CPU registers. The garbage collector has
access to the list of active roots that the just-in-time (JIT) compiler and the runtime maintain. Using this list, it examines an application's roots, and in the
process creates a graph that contains all the objects that are reachable from the roots.

Objects that are not in the graph are unreachable from the application's roots. The garbage collector considers unreachable objects garbage and will
release the memory allocated for them. During a collection, the garbage collector examines the managed heap, looking for the blocks of address space
occupied by unreachable objects. As it discovers each unreachable object, it uses a memory-copying function to compact the reachable objects in
memory, freeing up the blocks of address spaces allocated to unreachable objects. Once the memory for the reachable objects has been compacted, the
garbage collector makes the necessary pointer corrections so that the application's roots point to the objects in their new locations. It also positions the
managed heap's pointer after the last reachable object. Note that memory is compacted only if a collection discovers a significant number of
unreachable objects. If all the objects in the managed heap survive a collection, then there is no need for memory compaction.

To improve performance, the runtime allocates memory for large objects in a separate heap. The garbage collector automatically releases the memory
for large objects. However, to avoid moving large objects in memory, this memory is not compacted.

To optimize the performance of the garbage collector, the managed heap is divided into three generations: 0, 1, and 2. The runtime's garbage collection
algorithm is based on several generalizations that the computer software industry has discovered to be true by experimenting with garbage collection
schemes. First, it is faster to compact the memory for a portion of the managed heap than for the entire managed heap. Secondly, newer objects will
have shorter lifetimes and older objects will have longer lifetimes. Lastly, newer objects tend to be related to each other and accessed by the application
around the same time.

The runtime's garbage collector stores new objects in generation 0. Objects created early in the application's lifetime that survive collections are
promoted and stored in generations 1 and 2. The process of object promotion is described later in this topic. Because it is faster to compact a portion of
the managed heap than the entire heap, this scheme allows the garbage collector to release the memory in a specific generation rather than release the
memory for the entire managed heap each time it performs a collection.

In reality, the garbage collector performs a collection when generation 0 is full. If an application attempts to create a new object when generation 0 is
full, the garbage collector discovers that there is no address space remaining in generation 0 to allocate for the object. The garbage collector performs a
collection in an attempt to free address space in generation 0 for the object. The garbage collector starts by examining the objects in generation 0 rather
than all objects in the managed heap. This is the most efficient approach, because new objects tend to have short lifetimes, and it is expected that many
of the objects in generation 0 will no longer be in use by the application when a collection is performed. In addition, a collection of generation 0 alone
often reclaims enough memory to allow the application to continue creating new objects.

After the garbage collector performs a collection of generation 0, it compacts the memory for the reachable objects as explained in Releasing Memory
earlier in this topic. The garbage collector then promotes these objects and considers this portion of the managed heap generation 1. Because objects
that survive collections tend to have longer lifetimes, it makes sense to promote them to a higher generation. As a result, the garbage collector does not
have to reexamine the objects in generations 1 and 2 each time it performs a collection of generation 0.

After the garbage collector performs its first collection of generation 0 and promotes the reachable objects to generation 1, it considers the remainder of

https://github.com/dotnet/docs/blob/master/docs/standard/automatic-memory-management.md
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system

Releasing Memory for Unmanaged Resources

See Also

the managed heap generation 0. It continues to allocate memory for new objects in generation 0 until generation 0 is full and it is necessary to perform
another collection. At this point, the garbage collector's optimizing engine determines whether it is necessary to examine the objects in older
generations. For example, if a collection of generation 0 does not reclaim enough memory for the application to successfully complete its attempt to
create a new object, the garbage collector can perform a collection of generation 1, then generation 2. If this does not reclaim enough memory, the
garbage collector can perform a collection of generations 2, 1, and 0. After each collection, the garbage collector compacts the reachable objects in
generation 0 and promotes them to generation 1. Objects in generation 1 that survive collections are promoted to generation 2. Because the garbage
collector supports only three generations, objects in generation 2 that survive a collection remain in generation 2 until they are determined to be
unreachable in a future collection.

For the majority of the objects that your application creates, you can rely on the garbage collector to automatically perform the necessary memory
management tasks. However, unmanaged resources require explicit cleanup. The most common type of unmanaged resource is an object that wraps an
operating system resource, such as a file handle, window handle, or network connection. Although the garbage collector is able to track the lifetime of a
managed object that encapsulates an unmanaged resource, it does not have specific knowledge about how to clean up the resource. When you create
an object that encapsulates an unmanaged resource, it is recommended that you provide the necessary code to clean up the unmanaged resource in a
public Dispose method. By providing a Dispose method, you enable users of your object to explicitly free its memory when they are finished with the
object. When you use an object that encapsulates an unmanaged resource, you should be aware of Dispose and call it as necessary. For more
information about cleaning up unmanaged resources and an example of a design pattern for implementing Dispose, see Garbage Collection.

GC
Garbage Collection
Managed Execution Process

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/index
https://docs.microsoft.com/dotnet/api/system.gc
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/index

Common Language Runtime (CLR) overview
6/22/2018 • 4 minutes to read • Edit Online

NOTENOTE

CLR versions

The .NET Framework provides a run-time environment called the common language runtime, which runs the code and provides services that make the
development process easier.

Compilers and tools expose the common language runtime's functionality and enable you to write code that benefits from this managed execution
environment. Code that you develop with a language compiler that targets the runtime is called managed code; it benefits from features such as cross-
language integration, cross-language exception handling, enhanced security, versioning and deployment support, a simplified model for component
interaction, and debugging and profiling services.

Compilers and tools are able to produce output that the common language runtime can consume because the type system, the format of metadata, and the runtime
environment (the virtual execution system) are all defined by a public standard, the ECMA Common Language Infrastructure specification. For more information, see
ECMA C# and Common Language Infrastructure Specifications.

To enable the runtime to provide services to managed code, language compilers must emit metadata that describes the types, members, and references
in your code. Metadata is stored with the code; every loadable common language runtime portable executable (PE) file contains metadata. The runtime
uses metadata to locate and load classes, lay out instances in memory, resolve method invocations, generate native code, enforce security, and set run-
time context boundaries.

The runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. Objects whose
lifetimes are managed in this way are called managed data. Garbage collection eliminates memory leaks as well as some other common programming
errors. If your code is managed, you can use managed data, unmanaged data, or both managed and unmanaged data in your .NET Framework
application. Because language compilers supply their own types, such as primitive types, you might not always know (or need to know) whether your
data is being managed.

The common language runtime makes it easy to design components and applications whose objects interact across languages. Objects written in
different languages can communicate with each other, and their behaviors can be tightly integrated. For example, you can define a class and then use a
different language to derive a class from your original class or call a method on the original class. You can also pass an instance of a class to a method of
a class written in a different language. This cross-language integration is possible because language compilers and tools that target the runtime use a
common type system defined by the runtime, and they follow the runtime's rules for defining new types, as well as for creating, using, persisting, and
binding to types.

As part of their metadata, all managed components carry information about the components and resources they were built against. The runtime uses
this information to ensure that your component or application has the specified versions of everything it needs, which makes your code less likely to
break because of some unmet dependency. Registration information and state data are no longer stored in the registry where they can be difficult to
establish and maintain. Instead, information about the types you define (and their dependencies) is stored with the code as metadata, making the tasks
of component replication and removal much less complicated.

Language compilers and tools expose the runtime's functionality in ways that are intended to be useful and intuitive to developers. This means that
some features of the runtime might be more noticeable in one environment than in another. How you experience the runtime depends on which
language compilers or tools you use. For example, if you are a Visual Basic developer, you might notice that with the common language runtime, the
Visual Basic language has more object-oriented features than before. The runtime provides the following benefits:

Performance improvements.

The ability to easily use components developed in other languages.

Extensible types provided by a class library.

Language features such as inheritance, interfaces, and overloading for object-oriented programming.

Support for explicit free threading that allows creation of multithreaded, scalable applications.

Support for structured exception handling.

Support for custom attributes.

Garbage collection.

Use of delegates instead of function pointers for increased type safety and security. For more information about delegates, see Common Type
System.

The version number of the .NET Framework doesn't necessarily correspond to the version number of the CLR it includes. The following table shows
how the two version numbers correlate.

https://github.com/dotnet/docs/blob/master/docs/standard/clr.md
https://visualstudio.microsoft.com/license-terms/ecma-c-common-language-infrastructure-standards/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system

.NET FRAMEWORK VERSION INCLUDES CLR VERSION

1.0 1.0

1.1 1.1

2.0 2.0

3.0 2.0

3.5 2.0

4 4

4.5 (including 4.5.1 and 4.5.2) 4

4.6 (including 4.6.1 and 4.6.2) 4

4.7 (including 4.7.1 and 4.7.2) 4

Related topics
TITLE DESCRIPTION

Managed Execution Process Describes the steps required to take advantage of the common language runtime.

Automatic Memory Management Describes how the garbage collector allocates and releases memory.

Overview of the .NET Framework Describes key .NET Framework concepts such as the common type system, cross-
language interoperability, managed execution, application domains, and assemblies.

Common Type System Describes how types are declared, used, and managed in the runtime in support of
cross-language integration.

See also
Versions and Dependencies

https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies

Language independence and language-independent components
5/2/2018 • 68 minutes to read • Edit Online

NOTENOTE

CLS compliance rules

NOTENOTE

.NET is language independent. This means that, as a developer, you can develop in one of the many languages that target .NET implementations, such
as C#, F#, and Visual Basic. You can access the types and members of class libraries developed for .NET implementations without having to know the
language in which they were originally written and without having to follow any of the original language's conventions. If you are a component
developer, your component can be accessed by any .NET app regardless of its language.

This first part of this article discusses creating language-independent components - that is, components that can be consumed by apps that are written in any
language. You can also create a single component or app from source code written in multiple languages; see Cross-Language Interoperability in the second part of
this article.

To fully interact with other objects written in any language, objects must expose to callers only those features that are common to all languages. This
common set of features is defined by the Common Language Specification (CLS), which is a set of rules that apply to generated assemblies. The
Common Language Specification is defined in Partition I, Clauses 7 through 11 of the ECMA-335 Standard: Common Language Infrastructure.

If your component conforms to the Common Language Specification, it is guaranteed to be CLS-compliant and can be accessed from code in
assemblies written in any programming language that supports the CLS. You can determine whether your component conforms to the Common
Language Specification at compile time by applying the CLSCompliantAttribute attribute to your source code. For more information, see The
CLSCompliantAttribute attribute.

In this article:

CLS compliance rules

Types and type member signatures

Naming conventions

Type conversion

Arrays

Interfaces

Enumerations

Type members in general

Member accessibility

Generic types and members

Constructors

Properties

Events

Overloads

Exceptions

Attributes

CLSCompliantAttribute attribute

Cross-Language Interoperability

This section discusses the rules for creating a CLS-compliant component. For a complete list of rules, see Partition I, Clause 11 of the ECMA-335
Standard: Common Language Infrastructure.

The Common Language Specification discusses each rule for CLS compliance as it applies to consumers (developers who are programmatically accessing a component
that is CLS-compliant), frameworks (developers who are using a language compiler to create CLS-compliant libraries), and extenders (developers who are creating a
tool such as a language compiler or a code parser that creates CLS-compliant components). This article focuses on the rules as they apply to frameworks. Note,
though, that some of the rules that apply to extenders may also apply to assemblies that are created using Reflection.Emit.

https://github.com/dotnet/docs/blob/master/docs/standard/language-independence.md
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.reflection.emit

IMPORTANTIMPORTANT

using System;

[assembly: CLSCompliant(true)]

public class Person
{
 private UInt16 personAge = 0;

 public UInt16 Age
 { get { return personAge; } }
}
// The attempt to compile the example displays the following compiler warning:
// Public1.cs(10,18): warning CS3003: Type of 'Person.Age' is not CLS-compliant

<Assembly: CLSCompliant(True)>

Public Class Person
 Private personAge As UInt16

 Public ReadOnly Property Age As UInt16
 Get
 Return personAge
 End Get
 End Property
End Class
' The attempt to compile the example displays the following compiler warning:
' Public1.vb(9) : warning BC40027: Return type of function 'Age' is not CLS-compliant.
'
' Public ReadOnly Property Age As UInt16
' ~~~

using System;

[assembly: CLSCompliant(true)]

public class Person
{
 private Int16 personAge = 0;

 public Int16 Age
 { get { return personAge; } }
}

<Assembly: CLSCompliant(True)>

Public Class Person
 Private personAge As UInt16

 Public ReadOnly Property Age As Int16
 Get
 Return CType(personAge, Int16)
 End Get
 End Property
End Class

To design a component that is language independent, you only need to apply the rules for CLS compliance to your component's public interface. Your
private implementation does not have to conform to the specification.

The rules for CLS compliance apply only to a component's public interface, not to its private implementation.

For example, unsigned integers other than Byte are not CLS-compliant. Because the Person class in the following example exposes an Age property of
type UInt16, the following code displays a compiler warning.

You can make the Person class CLS-compliant by changing the type of Age property from UInt16 to Int16, which is a CLS-compliant, 16-bit signed
integer. You do not have to change the type of the private personAge field.

A library's public interface consists of the following:

Definitions of public classes.

Definitions of the public members of public classes, and definitions of members accessible to derived classes (that is, protected members).

Parameters and return types of public methods of public classes, and parameters and return types of methods accessible to derived classes.

The rules for CLS compliance are listed in the following table. The text of the rules is taken verbatim from the ECMA-335 Standard: Common Language
Infrastructure, which is Copyright 2012 by Ecma International. More detailed information about these rules is found in the following sections.

https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int16
https://www.ecma-international.org/publications/standards/Ecma-335.htm

CATEGORY SEE RULE RULE NUMBER

Accessibility Member accessibility Accessibility shall not be changed when
overriding inherited methods, except
when overriding a method inherited
from a different assembly with
accessibility family-or-assembly . In
this case, the override shall have
accessibility family .

10

Accessibility Member accessibility The visibility and accessibility of types
and members shall be such that types
in the signature of any member shall
be visible and accessible whenever the
member itself is visible and accessible.
For example, a public method that is
visible outside its assembly shall not
have an argument whose type is visible
only within the assembly. The visibility
and accessibility of types composing an
instantiated generic type used in the
signature of any member shall be
visible and accessible whenever the
member itself is visible and accessible.
For example, an instantiated generic
type present in the signature of a
member that is visible outside its
assembly shall not have a generic
argument whose type is visible only
within the assembly.

12

Arrays Arrays Arrays shall have elements with a CLS-
compliant type, and all dimensions of
the array shall have lower bounds of
zero. Only the fact that an item is an
array and the element type of the array
shall be required to distinguish
between overloads. When overloading
is based on two or more array types
the element types shall be named
types.

16

Attributes Attributes Attributes shall be of type
System.Attribute, or a type inheriting
from it.

41

Attributes Attributes The CLS only allows a subset of the
encodings of custom attributes. The
only types that shall appear in these
encodings are (see Partition IV):
System.Type, System.String,
System.Char, System.Boolean,
System.Byte, System.Int16,
System.Int32, System.Int64,
System.Single, System.Double, and any
enumeration type based on a CLS-
compliant base integer type.

34

Attributes Attributes The CLS does not allow publicly visible
required modifiers (modreq , see
Partition II), but does allow optional
modifiers (modopt , see Partition II) it
does not understand.

35

Constructors Constructors An object constructor shall call some
instance constructor of its base class
before any access occurs to inherited
instance data. (This does not apply to
value types, which need not have
constructors.)

21

Constructors Constructors An object constructor shall not be
called except as part of the creation of
an object, and an object shall not be
initialized twice.

22

https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double

Enumerations Enumerations The underlying type of an enum shall
be a built-in CLS integer type, the
name of the field shall be "value__", and
that field shall be marked
RTSpecialName .

7

Enumerations Enumerations There are two distinct kinds of enums,
indicated by the presence or absence
of the System.FlagsAttribute (see
Partition IV Library) custom attribute.
One represents named integer values;
the other represents named bit flags
that can be combined to generate an
unnamed value. The value of an enum

is not limited to the specified values.

8

Enumerations Enumerations Literal static fields of an enum shall
have the type of the enum itself.

9

Events Events The methods that implement an event
shall be marked SpecialName in the
metadata.

29

Events Events The accessibility of an event and of its
accessors shall be identical.

30

Events Events The add and remove methods for
an event shall both either be present
or absent.

31

Events Events The add and remove methods for
an event shall each take one parameter
whose type defines the type of the
event and that shall be derived from
System.Delegate.

32

Events Events Events shall adhere to a specific
naming pattern. The SpecialName
attribute referred to in CLS rule 29
shall be ignored in appropriate name
comparisons and shall adhere to
identifier rules.

33

Exceptions Exceptions Objects that are thrown shall be of
type System.Exception or a type
inheriting from it. Nonetheless, CLS-
compliant methods are not required to
block the propagation of other types of
exceptions.

40

General CLS compliance rules CLS rules apply only to those parts of a
type that are accessible or visible
outsideof the defining assembly.

1

General CLS compliance rules Members of non-CLS compliant types
shall not be marked CLS-compliant.

2

Generics Generic types and members Nested types shall have at least as
many generic parameters as the
enclosing type. Generic parameters in a
nested type correspond by position to
the generic parameters in its enclosing
type.

42

Generics Generic types and members The name of a generic type shall
encode the number of type parameters
declared on the non-nested type, or
newly introduced to the type if nested,
according to the rules defined above.

43

Generics Generic types and members A generic type shall redeclare sufficient
constraints to guarantee that any
constraints on the base type, or
interfaces would be satisfied by the
generic type constraints.

44

CATEGORY SEE RULE RULE NUMBER

https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/dotnet/api/system.exception

Generics Generic types and members Types used as constraints on generic
parameters shall themselves be CLS-
compliant.

45

Generics Generic types and members The visibility and accessibility of
members (including nested types) in an
instantiated generic type shall be
considered to be scoped to the specific
instantiation rather than the generic
type declaration as a whole. Assuming
this, the visibility and accessibility rules
of CLS rule 12 still apply.

46

Generics Generic types and members For each abstract or virtual generic
method, there shall be a default
concrete (nonabstract) implementation

47

Interfaces Interfaces CLS-compliant interfaces shall not
require the definition of non-CLS
compliantmethods in order to
implement them.

18

Interfaces Interfaces CLS-compliant interfaces shall not
define static methods, nor shall they
define fields.

19

Members Type members in general Global static fields and methods are
not CLS-compliant.

36

Members -- The value of a literal static is specified
through the use of field initialization
metadata. A CLS-compliant literal must
have a value specified in field
initialization metadata that is of exactly
the same type as the literal (or of the
underlying type, if that literal is an
enum).

13

Members Type members in general The vararg constraint is not part of the
CLS, and the only calling convention
supported by the CLS is the standard
managed calling convention.

15

Naming conventions Naming conventions Assemblies shall follow Annex 7 of
Technical Report 15 of the Unicode
Standard3.0 governing the set of
characters permitted to start and be
included in identifiers, available online
at Unicode Normalization Forms.
Identifiers shall be in the canonical
format defined by Unicode
Normalization Form C. For CLS
purposes, two identifiersare the same if
their lowercase mappings (as specified
by the Unicode locale-insensitive, one-
to-one lowercase mappings) are the
same. That is, for two identifiers to be
considered different under the CLS
they shall differ in more than simply
their case. However, in order to
override an inherited definition the CLI
requires the precise encoding of the
original declaration be used.

4

Overloading Naming conventions All names introduced in a CLS-
compliant scope shall be distinct
independent of kind, except where the
names are identical and resolved via
overloading. That is, while the CTS
allows a single type to use the same
name for a method and a field, the CLS
does not.

5

CATEGORY SEE RULE RULE NUMBER

http://www.unicode.org/unicode/reports/tr15/tr15-18.html

Overloading Naming conventions Fields and nested types shall be distinct
by identifier comparison alone,
eventhough the CTS allows distinct
signatures to be distinguished.
Methods, properties, and events that
have the same name (by identifier
comparison) shall differ by more than
just the return type,except as specified
in CLS Rule 39

6

Overloading Overloads Only properties and methods can be
overloaded.

37

Overloading Overloads Properties and methods can be
overloaded based only on the number
and types of their parameters, except
the conversion operators named
op_Implicit and op_Explicit ,

which can also be overloaded based on
their return type.

38

Overloading -- If two or more CLS-compliant methods
declared in a type have the same
nameand, for a specific set of type
instantiations, they have the same
parameter and return types, then all
these methods shall be semantically
equivalent at those type instantiations.

48

Properties Properties The methods that implement the
getter and setter methods of a
property shall be marked
SpecialName in the metadata.

24

Properties Properties A property’s accessors shall all be
static, all be virtual, or all be instance.

26

Properties Properties The type of a property shall be the
return type of the getter and the type
of the last argument of the setter. The
types of the parameters of the
property shall be the types of the
parameters to the getter and the types
of all but the final parameter of the
setter. All of these types shall be CLS-
compliant, and shall not be managed
pointers (that is, shall not be passed by
reference).

27

Properties Properties Properties shall adhere to a specific
naming pattern. The SpecialName

attribute referred to in CLS rule 24
shall be ignored in appropriate name
comparisons and shall adhere to
identifier rules. A property shall have a
getter method, a setter method, or
both.

28

Type conversion Type conversion If either op_Implicit or op_Explicit is
provided, an alternate means of
providing the coercion shall be
provided.

39

Types Types and type member signatures Boxed value types are not CLS-
compliant.

3

Types Types and type member signatures All types appearing in a signature shall
be CLS-compliant. All types composing
an instantiated generic type shall be
CLS-compliant.

11

Types Types and type member signatures Typed references are not CLS-
compliant.

14

Types Types and type member signatures Unmanaged pointer types are not CLS-
compliant.

17

CATEGORY SEE RULE RULE NUMBER

Types Types and type member signatures CLS-compliant classes, value types, and
interfaces shall not require the
implementation of non-CLS-compliant
members

20

Types Types and type member signatures System.Object is CLS-compliant. Any
other CLS-compliant class shall inherit
from a CLS-compliant class.

23

CATEGORY SEE RULE RULE NUMBER

Types and type member signaturesTypes and type member signatures

using System;

[assembly: CLSCompliant(true)]

[CLSCompliant(false)]
public class Counter
{
 UInt32 ctr;

 public Counter()
 {
 ctr = 0;
 }

 protected Counter(UInt32 ctr)
 {
 this.ctr = ctr;
 }

 public override string ToString()
 {
 return String.Format("{0}). ", ctr);
 }

 public UInt32 Value
 {
 get { return ctr; }
 }

 public void Increment()
 {
 ctr += (uint) 1;
 }
}

public class NonZeroCounter : Counter
{
 public NonZeroCounter(int startIndex) : this((uint) startIndex)
 {
 }

 private NonZeroCounter(UInt32 startIndex) : base(startIndex)
 {
 }
}
// Compilation produces a compiler warning like the following:
// Type3.cs(37,14): warning CS3009: 'NonZeroCounter': base type 'Counter' is not
// CLS-compliant
// Type3.cs(7,14): (Location of symbol related to previous warning)

The System.Object type is CLS-compliant and is the base type of all object types in the .NET Framework type system. Inheritance in the .NET
Framework is either implicit (for example, the String class implicitly inherits from the Object class) or explicit (for example, the
CultureNotFoundException class explicitly inherits from the ArgumentException class, which explicitly inherits from the Exception class. For a derived
type to be CLS compliant, its base type must also be CLS-compliant.

The following example shows a derived type whose base type is not CLS-compliant. It defines a base Counter class that uses an unsigned 32-bit
integer as a counter. Because the class provides counter functionality by wrapping an unsigned integer, the class is marked as non-CLS-compliant. As a
result, a derived class, NonZeroCounter , is also not CLS-compliant.

https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.globalization.culturenotfoundexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.exception

<Assembly: CLSCompliant(True)>

<CLSCompliant(False)> _
Public Class Counter
 Dim ctr As UInt32

 Public Sub New
 ctr = 0
 End Sub

 Protected Sub New(ctr As UInt32)
 ctr = ctr
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("{0}). ", ctr)
 End Function

 Public ReadOnly Property Value As UInt32
 Get
 Return ctr
 End Get
 End Property

 Public Sub Increment()
 ctr += CType(1, UInt32)
 End Sub
End Class

Public Class NonZeroCounter : Inherits Counter
 Public Sub New(startIndex As Integer)
 MyClass.New(CType(startIndex, UInt32))
 End Sub

 Private Sub New(startIndex As UInt32)
 MyBase.New(CType(startIndex, UInt32))
 End Sub
End Class
' Compilation produces a compiler warning like the following:
' Type3.vb(34) : warning BC40026: 'NonZeroCounter' is not CLS-compliant
' because it derives from 'Counter', which is not CLS-compliant.
'
' Public Class NonZeroCounter : Inherits Counter
' ~~~~~~~~~~~~~~

CLS-COMPLIANT TYPE DESCRIPTION

Byte 8-bit unsigned integer

Int16 16-bit signed integer

Int32 32-bit signed integer

Int64 64-bit signed integer

Single Single-precision floating-point value

Double Double-precision floating-point value

Boolean true or false value type

Char UTF-16 encoded code unit

Decimal Non-floating-point decimal number

IntPtr Pointer or handle of a platform-defined size

String Collection of zero, one, or more Char objects

All types that appear in member signatures, including a method's return type or a property type, must be CLS-compliant. In addition, for generic types:

All types that compose an instantiated generic type must be CLS-compliant.

All types used as constraints on generic parameters must be CLS-compliant.

The .NET common type system includes a number of built-in types that are supported directly by the common language runtime and are specially
encoded in an assembly's metadata. Of these intrinsic types, the types listed in the following table are CLS-compliant.

The intrinsic types listed in the following table are not CLS-Compliant.

https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.string

NON-COMPLIANT TYPE DESCRIPTION CLS-COMPLIANT ALTERNATIVE

SByte 8-bit signed integer data type Int16

UInt16 16-bit unsigned integer Int32

UInt32 32-bit unsigned integer Int64

UInt64 64-bit unsigned integer Int64 (may overflow), BigInteger, or Double

UIntPtr Unsigned pointer or handle IntPtr

using System;

[assembly:CLSCompliant(true)]

public unsafe class TestClass
{
 private int* val;

 public TestClass(int number)
 {
 val = (int*) number;
 }

 public int* Value {
 get { return val; }
 }
}
// The compiler generates the following output when compiling this example:
// warning CS3003: Type of 'TestClass.Value' is not CLS-compliant

using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
 private uint invId = 0;
 private uint itemId = 0;
 private Nullable<uint> qty;

 public InvoiceItem(uint sku, Nullable<uint> quantity)
 {
 itemId = sku;
 qty = quantity;
 }

 public Nullable<uint> Quantity
 {
 get { return qty; }
 set { qty = value; }
 }

 public uint InvoiceId
 {
 get { return invId; }
 set { invId = value; }
 }
}
// The attempt to compile the example displays the following output:
// Type1.cs(13,23): warning CS3001: Argument type 'uint' is not CLS-compliant
// Type1.cs(13,33): warning CS3001: Argument type 'uint?' is not CLS-compliant
// Type1.cs(19,26): warning CS3003: Type of 'InvoiceItem.Quantity' is not CLS-compliant
// Type1.cs(25,16): warning CS3003: Type of 'InvoiceItem.InvoiceId' is not CLS-compliant

The .NET Framework Class Library or any other class library may include other types that aren't CLS-compliant; for example:

Boxed value types. The following C# example creates a class that has a public property of type int * named Value . Because an int * is a boxed
value type, the compiler flags it as non-CLS-compliant.

Typed references, which are special constructs that contain a reference to an object and a reference to a type.

If a type is not CLS-compliant, you should apply the CLSCompliantAttribute attribute with an isCompliant parameter with a value of false to it. For
more information, see the CLSCompliantAttribute attribute section.

The following example illustrates the problem of CLS compliance in a method signature and in generic type instantiation. It defines an InvoiceItem

class with a property of type UInt32, a property of type Nullable(Of UInt32), and a constructor with parameters of type UInt32 and
Nullable(Of UInt32) . You get four compiler warnings when you try to compile this example.

https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.numerics.biginteger
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.uintptr
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.nullable-1

<Assembly: CLSCompliant(True)>

Public Class InvoiceItem

 Private invId As UInteger = 0
 Private itemId As UInteger = 0
 Private qty AS Nullable(Of UInteger)

 Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
 itemId = sku
 qty = quantity
 End Sub

 Public Property Quantity As Nullable(Of UInteger)
 Get
 Return qty
 End Get
 Set
 qty = value
 End Set
 End Property

 Public Property InvoiceId As UInteger
 Get
 Return invId
 End Get
 Set
 invId = value
 End Set
 End Property
End Class
' The attempt to compile the example displays output similar to the following:
' Type1.vb(13) : warning BC40028: Type of parameter 'sku' is not CLS-compliant.
'
' Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
' ~~~
' Type1.vb(13) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'
' Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
' ~~~~~~~~
' Type1.vb(18) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'
' Public Property Quantity As Nullable(Of UInteger)
' ~~~~~~~~
' Type1.vb(27) : warning BC40027: Return type of function 'InvoiceId' is not CLS-compliant.
'
' Public Property InvoiceId As UInteger

using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
 private uint invId = 0;
 private uint itemId = 0;
 private Nullable<int> qty;

 public InvoiceItem(int sku, Nullable<int> quantity)
 {
 if (sku <= 0)
 throw new ArgumentOutOfRangeException("The item number is zero or negative.");
 itemId = (uint) sku;

 qty = quantity;
 }

 public Nullable<int> Quantity
 {
 get { return qty; }
 set { qty = value; }
 }

 public int InvoiceId
 {
 get { return (int) invId; }
 set {
 if (value <= 0)
 throw new ArgumentOutOfRangeException("The invoice number is zero or negative.");
 invId = (uint) value; }
 }
}

To eliminate the compiler warnings, replace the non-CLS-compliant types in the InvoiceItem public interface with compliant types:

Assembly: CLSCompliant(True)>

Public Class InvoiceItem

 Private invId As UInteger = 0
 Private itemId As UInteger = 0
 Private qty AS Nullable(Of Integer)

 Public Sub New(sku As Integer, quantity As Nullable(Of Integer))
 If sku <= 0 Then
 Throw New ArgumentOutOfRangeException("The item number is zero or negative.")
 End If
 itemId = CUInt(sku)
 qty = quantity
 End Sub

 Public Property Quantity As Nullable(Of Integer)
 Get
 Return qty
 End Get
 Set
 qty = value
 End Set
 End Property

 Public Property InvoiceId As Integer
 Get
 Return CInt(invId)
 End Get
 Set
 invId = CUInt(value)
 End Set
 End Property
End Class

using System;

[assembly: CLSCompliant(true)]

public class ArrayHelper
{
 unsafe public static Array CreateInstance(Type type, int* ptr, int items)
 {
 Array arr = Array.CreateInstance(type, items);
 int* addr = ptr;
 for (int ctr = 0; ctr < items; ctr++) {
 int value = *addr;
 arr.SetValue(value, ctr);
 addr++;
 }
 return arr;
 }
}
// The attempt to compile this example displays the following output:
// UnmanagedPtr1.cs(8,57): warning CS3001: Argument type 'int*' is not CLS-compliant

using System;

[assembly: CLSCompliant(true)]

public class ArrayHelper
{
 unsafe public static Array CreateInstance(Type type, int* ptr, int items)
 {
 Array arr = Array.CreateInstance(type, items);
 int* addr = ptr;
 for (int ctr = 0; ctr < items; ctr++) {
 int value = *addr;
 arr.SetValue(value, ctr);
 addr++;
 }
 return arr;
 }
}
// The attempt to compile this example displays the following output:
// UnmanagedPtr1.cs(8,57): warning CS3001: Argument type 'int*' is not CLS-compliant

Naming conventionsNaming conventions

In addition to the specific types listed, some categories of types are not CLS compliant. These include unmanaged pointer types and function pointer
types. The following example generates a compiler warning because it uses a pointer to an integer to create an array of integers.

For CLS-compliant abstract classes (that is, classes marked as abstract in C#), all members of the class must also be CLS-compliant.

using System;

[assembly: CLSCompliant(true)]

public class Person : person
{

}

public class person
{

}
// Compilation produces a compiler warning like the following:
// Naming1.cs(11,14): warning CS3005: Identifier 'person' differing
// only in case is not CLS-compliant
// Naming1.cs(6,14): (Location of symbol related to previous warning)

public class Size
{
 private double a1;
 private double a2;

 public double Å
 {
 get { return a1; }
 set { a1 = value; }
 }

 public double Å
 {
 get { return a2; }
 set { a2 = value; }
 }
}
// Compilation produces a compiler warning like the following:
// Naming2a.cs(16,18): warning CS3005: Identifier 'Size.Å' differing only in case is not
// CLS-compliant
// Naming2a.cs(10,18): (Location of symbol related to previous warning)
// Naming2a.cs(18,8): warning CS3005: Identifier 'Size.Å.get' differing only in case is not
// CLS-compliant
// Naming2a.cs(12,8): (Location of symbol related to previous warning)
// Naming2a.cs(19,8): warning CS3005: Identifier 'Size.Å.set' differing only in case is not
// CLS-compliant
// Naming2a.cs(13,8): (Location of symbol related to previous warning)

Because some programming languages are case-insensitive, identifiers (such as the names of namespaces, types, and members) must differ by more
than case. Two identifiers are considered equivalent if their lowercase mappings are the same. The following C# example defines two public classes,
Person and person . Because they differ only by case, the C# compiler flags them as not CLS-compliant.

Programming language identifiers, such as the names of namespaces, types, and members, must conform to the Unicode Standard 3.0, Technical
Report 15, Annex 7. This means that:

The first character of an identifier can be any Unicode uppercase letter, lowercase letter, title case letter, modifier letter, other letter, or letter
number. For information on Unicode character categories, see the System.Globalization.UnicodeCategory enumeration.

Subsequent characters can be from any of the categories as the first character, and can also include non-spacing marks, spacing combining
marks, decimal numbers, connector punctuations, and formatting codes.

Before you compare identifiers, you should filter out formatting codes and convert the identifiers to Unicode Normalization Form C, because a single
character can be represented by multiple UTF-16-encoded code units. Character sequences that produce the same code units in Unicode Normalization
Form C are not CLS-compliant. The following example defines a property named Å , which consists of the character ANGSTROM SIGN (U+212B),
and a second property named Å which consists of the character L ATIN CAPITAL LETTER A WITH RING ABOVE (U+00C5). The C# compiler flags the
source code as non-CLS-compliant.

https://www.unicode.org/reports/tr15/tr15-18.html
https://docs.microsoft.com/dotnet/api/system.globalization.unicodecategory

<Assembly: CLSCompliant(True)>
Public Class Size
 Private a1 As Double
 Private a2 As Double

 Public Property Å As Double
 Get
 Return a1
 End Get
 Set
 a1 = value
 End Set
 End Property

 Public Property Å As Double
 Get
 Return a2
 End Get
 Set
 a2 = value
 End Set
 End Property
End Class
' Compilation produces a compiler warning like the following:
' Naming1.vb(9) : error BC30269: 'Public Property Å As Double' has multiple definitions
' with identical signatures.
'
' Public Property Å As Double
' ~

using System;

[assembly: CLSCompliant(true)]

public class Converter
{
 public double Conversion(int number)
 {
 return (double) number;
 }

 public float Conversion(int number)
 {
 return (float) number;
 }

 public double Conversion(long number)
 {
 return (double) number;
 }

 public bool Conversion
 {
 get { return true; }
 }
}
// Compilation produces a compiler error like the following:
// Naming3.cs(13,17): error CS0111: Type 'Converter' already defines a member called
// 'Conversion' with the same parameter types
// Naming3.cs(8,18): (Location of symbol related to previous error)
// Naming3.cs(23,16): error CS0102: The type 'Converter' already contains a definition for
// 'Conversion'
// Naming3.cs(8,18): (Location of symbol related to previous error)

Member names within a particular scope (such as the namespaces within an assembly, the types within a namespace, or the members within a type)
must be unique except for names that are resolved through overloading. This requirement is more stringent than that of the common type system,
which allows multiple members within a scope to have identical names as long as they are different kinds of members (for example, one is a method
and one is a field). In particular, for type members:

Fields and nested types are distinguished by name alone.

Methods, properties, and events that have the same name must differ by more than just return type.

The following example illustrates the requirement that member names must be unique within their scope. It defines a class named Converter that
includes four members named Conversion . Three are methods, and one is a property. The method that includes an Int64 parameter is uniquely
named, but the two methods with an Int32 parameter are not, because return value is not considered a part of a member's signature. The Conversion

property also violates this requirement, because properties cannot have the same name as overloaded methods.

<Assembly: CLSCompliant(True)>

Public Class Converter
 Public Function Conversion(number As Integer) As Double
 Return CDbl(number)
 End Function

 Public Function Conversion(number As Integer) As Single
 Return CSng(number)
 End Function

 Public Function Conversion(number As Long) As Double
 Return CDbl(number)
 End Function

 Public ReadOnly Property Conversion As Boolean
 Get
 Return True
 End Get
 End Property
End Class
' Compilation produces a compiler error like the following:
' Naming3.vb(8) : error BC30301: 'Public Function Conversion(number As Integer) As Double'
' and 'Public Function Conversion(number As Integer) As Single' cannot
' overload each other because they differ only by return types.
'
' Public Function Conversion(number As Integer) As Double
' ~~~~~~~~~~
' Naming3.vb(20) : error BC30260: 'Conversion' is already declared as 'Public Function
' Conversion(number As Integer) As Single' in this class.
'
' Public ReadOnly Property Conversion As Boolean
' ~~~~~~~~~~

Public Class [case]
 Private _id As Guid
 Private name As String

 Public Sub New(name As String)
 _id = Guid.NewGuid()
 Me.name = name
 End Sub

 Public ReadOnly Property ClientName As String
 Get
 Return name
 End Get
 End Property
End Class

using System;

public class Example
{
 public static void Main()
 {
 @case c = new @case("John");
 Console.WriteLine(c.ClientName);
 }
}

Type conversionType conversion

Individual languages include unique keywords, so languages that target the common language runtime must also provide some mechanism for
referencing identifiers (such as type names) that coincide with keywords. For example, case is a keyword in both C# and Visual Basic. However, the
following Visual Basic example is able to disambiguate a class named case from the case keyword by using opening and closing braces. Otherwise,
the example would produce the error message, "Keyword is not valid as an identifier," and fail to compile.

The following C# example is able to instantiate the case class by using the @ symbol to disambiguate the identifier from the language keyword.
Without it, the C# compiler would display two error messages, "Type expected" and "Invalid expression term 'case'."

The Common Language Specification defines two conversion operators:

op_Implicit , which is used for widening conversions that do not result in loss of data or precision. For example, the Decimal structure includes
an overloaded op_Implicit operator to convert values of integral types and Char values to Decimal values.

op_Explicit , which is used for narrowing conversions that can result in loss of magnitude (a value is converted to a value that has a smaller
range) or precision. For example, the Decimal structure includes an overloaded op_Explicit operator to convert Double and Single values to
Decimal and to convert Decimal values to integral values, Double , Single , and Char .

However, not all languages support operator overloading or the definition of custom operators. If you choose to implement these conversion operators,

https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single

using System;

public struct UDouble
{
 private double number;

 public UDouble(double value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 number = value;
 }

 public UDouble(float value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 number = value;
 }

 public static readonly UDouble MinValue = (UDouble) 0.0;
 public static readonly UDouble MaxValue = (UDouble) Double.MaxValue;

 public static explicit operator Double(UDouble value)
 {
 return value.number;
 }

 public static implicit operator Single(UDouble value)
 {
 if (value.number > (double) Single.MaxValue)
 throw new InvalidCastException("A UDouble value is out of range of the Single type.");

 return (float) value.number;
 }

 public static explicit operator UDouble(double value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 return new UDouble(value);
 }

 public static implicit operator UDouble(float value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 return new UDouble(value);
 }

 public static Double ToDouble(UDouble value)
 {
 return (Double) value;
 }

 public static float ToSingle(UDouble value)
 {
 return (float) value;
 }

 public static UDouble FromDouble(double value)
 {
 return new UDouble(value);
 }

 public static UDouble FromSingle(float value)
 {
 return new UDouble(value);
 }
}

you should also provide an alternate way to perform the conversion. We recommend that you provide From Xxx and To Xxx methods.

The following example defines CLS-compliant implicit and explicit conversions. It creates a UDouble class that represents an signed double-precision,
floating-point number. It provides for implicit conversions from UDouble to Double and for explicit conversions from UDouble to Single , Double to
UDouble , and Single to UDouble . It also defines a ToDouble method as an alternative to the implicit conversion operator and the ToSingle ,
FromDouble , and FromSingle methods as alternatives to the explicit conversion operators.

Public Structure UDouble
 Private number As Double

 Public Sub New(value As Double)
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 number = value
 End Sub

 Public Sub New(value As Single)
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 number = value
 End Sub

 Public Shared ReadOnly MinValue As UDouble = CType(0.0, UDouble)
 Public Shared ReadOnly MaxValue As UDouble = Double.MaxValue

 Public Shared Widening Operator CType(value As UDouble) As Double
 Return value.number
 End Operator

 Public Shared Narrowing Operator CType(value As UDouble) As Single
 If value.number > CDbl(Single.MaxValue) Then
 Throw New InvalidCastException("A UDouble value is out of range of the Single type.")
 End If
 Return CSng(value.number)
 End Operator

 Public Shared Narrowing Operator CType(value As Double) As UDouble
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 Return New UDouble(value)
 End Operator

 Public Shared Narrowing Operator CType(value As Single) As UDouble
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 Return New UDouble(value)
 End Operator

 Public Shared Function ToDouble(value As UDouble) As Double
 Return CType(value, Double)
 End Function

 Public Shared Function ToSingle(value As UDouble) As Single
 Return CType(value, Single)
 End Function

 Public Shared Function FromDouble(value As Double) As UDouble
 Return New UDouble(value)
 End Function

 Public Shared Function FromSingle(value As Single) As UDouble
 Return New UDouble(value)
 End Function
End Structure

ArraysArrays
CLS-compliant arrays conform to the following rules:

All dimensions of an array must have a lower bound of zero. The following example creates a non-CLS-compliant array with a lower bound of
one. Note that, despite the presence of the CLSCompliantAttribute attribute, the compiler does not detect that the array returned by the
Numbers.GetTenPrimes method is not CLS-compliant.

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static Array GetTenPrimes()
 {
 Array arr = Array.CreateInstance(typeof(Int32), new int[] {10}, new int[] {1});
 arr.SetValue(1, 1);
 arr.SetValue(2, 2);
 arr.SetValue(3, 3);
 arr.SetValue(5, 4);
 arr.SetValue(7, 5);
 arr.SetValue(11, 6);
 arr.SetValue(13, 7);
 arr.SetValue(17, 8);
 arr.SetValue(19, 9);
 arr.SetValue(23, 10);

 return arr;
 }
}

<Assembly: CLSCompliant(True)>

Public Class Numbers
 Public Shared Function GetTenPrimes() As Array
 Dim arr As Array = Array.CreateInstance(GetType(Int32), {10}, {1})
 arr.SetValue(1, 1)
 arr.SetValue(2, 2)
 arr.SetValue(3, 3)
 arr.SetValue(5, 4)
 arr.SetValue(7, 5)
 arr.SetValue(11, 6)
 arr.SetValue(13, 7)
 arr.SetValue(17, 8)
 arr.SetValue(19, 9)
 arr.SetValue(23, 10)
 Return arr
 End Function
End Class

using System;

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static UInt32[] GetTenPrimes()
 {
 uint[] arr = { 1u, 2u, 3u, 5u, 7u, 11u, 13u, 17u, 19u };
 return arr;
 }

 public static Object[] GetFivePrimes()
 {
 Object[] arr = { 1, 2, 3, 5u, 7u };
 return arr;
 }
}
// Compilation produces a compiler warning like the following:
// Array2.cs(8,27): warning CS3002: Return type of 'Numbers.GetTenPrimes()' is not
// CLS-compliant

<Assembly: CLSCompliant(True)>

Public Class Numbers
 Public Shared Function GetTenPrimes() As UInt32()
 Return { 1ui, 2ui, 3ui, 5ui, 7ui, 11ui, 13ui, 17ui, 19ui }
 End Function
 Public Shared Function GetFivePrimes() As Object()
 Dim arr() As Object = { 1, 2, 3, 5ui, 7ui }
 Return arr
 End Function
End Class
' Compilation produces a compiler warning like the following:
' warning BC40027: Return type of function 'GetTenPrimes' is not CLS-compliant.

All array elements must consist of CLS-compliant types. The following example defines two methods that return non-CLS-compliant arrays. The
first returns an array of UInt32 values. The second returns an Object array that includes Int32 and UInt32 values. Although the compiler
identifies the first array as non-compliant because of its UInt32 type, it fails to recognize that the second array includes non-CLS-compliant
elements.

https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.int32

 InterfacesInterfaces

using System;
using System.Numerics;

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static byte[] GetSquares(byte[] numbers)
 {
 byte[] numbersOut = new byte[numbers.Length];
 for (int ctr = 0; ctr < numbers.Length; ctr++) {
 int square = ((int) numbers[ctr]) * ((int) numbers[ctr]);
 if (square <= Byte.MaxValue)
 numbersOut[ctr] = (byte) square;
 // If there's an overflow, assign MaxValue to the corresponding
 // element.
 else
 numbersOut[ctr] = Byte.MaxValue;

 }
 return numbersOut;
 }

 public static BigInteger[] GetSquares(BigInteger[] numbers)
{
 BigInteger[] numbersOut = new BigInteger[numbers.Length];
 for (int ctr = 0; ctr < numbers.Length; ctr++)
 numbersOut[ctr] = numbers[ctr] * numbers[ctr];

 return numbersOut;
 }
}

Imports System.Numerics

<Assembly: CLSCompliant(True)>

Public Module Numbers
 Public Function GetSquares(numbers As Byte()) As Byte()
 Dim numbersOut(numbers.Length - 1) As Byte
 For ctr As Integer = 0 To numbers.Length - 1
 Dim square As Integer = (CInt(numbers(ctr)) * CInt(numbers(ctr)))
 If square <= Byte.MaxValue Then
 numbersOut(ctr) = CByte(square)
 ' If there's an overflow, assign MaxValue to the corresponding
 ' element.
 Else
 numbersOut(ctr) = Byte.MaxValue
 End If
 Next
 Return numbersOut
 End Function

 Public Function GetSquares(numbers As BigInteger()) As BigInteger()
 Dim numbersOut(numbers.Length - 1) As BigInteger
 For ctr As Integer = 0 To numbers.Length - 1
 numbersOut(ctr) = numbers(ctr) * numbers(ctr)
 Next
 Return numbersOut
 End Function
End Module

Overload resolution for methods that have array parameters is based on the fact that they are arrays and on their element type. For this reason,
the following definition of an overloaded GetSquares method is CLS-compliant.

CLS-compliant interfaces can define properties, events, and virtual methods (methods with no implementation). A CLS-compliant interface cannot have
any of the following:

Static methods or static fields. The C# compiler generatse compiler errors if you define a static member in an interface.

Fields. The C# acompiler generates compiler errors if you define a field in an interface.

Methods that are not CLS-compliant. For example, the following interface definition includes a method, INumber.GetUnsigned , that is marked as
non-CLS-compliant. This example generates a compiler warning.

using System;

[assembly:CLSCompliant(true)]

public interface INumber
{
 int Length();
 [CLSCompliant(false)] ulong GetUnsigned();
}
// Attempting to compile the example displays output like the following:
// Interface2.cs(8,32): warning CS3010: 'INumber.GetUnsigned()': CLS-compliant interfaces
// must have only CLS-compliant members

<Assembly: CLSCompliant(True)>

Public Interface INumber
 Function Length As Integer
 <CLSCompliant(False)> Function GetUnsigned As ULong
 End Interface
 ' Attempting to compile the example displays output like the following:
 ' Interface2.vb(9) : warning BC40033: Non CLS-compliant 'function' is not allowed in a
 ' CLS-compliant interface.
 '
 ' <CLSCompliant(False)> Function GetUnsigned As ULong
 ' ~~~~~~~~~~~

Because of this rule, CLS-compliant types are not required to implement non-CLS-compliant members. If a CLS-compliant framework does
expose a class that implements a non-CLS compliant interface, it should also provide concrete implementations of all non-CLS-compliant
members.

CLS-compliant language compilers must also allow a class to provide separate implementations of members that have the same name and signature in
multiple interfaces. C# supports explicit interface implementations to provide different implementations of identically named methods. The following
example illustrates this scenario by defining a Temperature class that implements the ICelsius and IFahrenheit interfaces as explicit interface
implementations.

using System;

[assembly: CLSCompliant(true)]

public interface IFahrenheit
{
 decimal GetTemperature();
}

public interface ICelsius
{
 decimal GetTemperature();
}

public class Temperature : ICelsius, IFahrenheit
{
 private decimal _value;

 public Temperature(decimal value)
 {
 // We assume that this is the Celsius value.
 _value = value;
 }

 decimal IFahrenheit.GetTemperature()
 {
 return _value * 9 / 5 + 32;
 }

 decimal ICelsius.GetTemperature()
 {
 return _value;
 }
}
public class Example
{
 public static void Main()
 {
 Temperature temp = new Temperature(100.0m);
 ICelsius cTemp = temp;
 IFahrenheit fTemp = temp;
 Console.WriteLine("Temperature in Celsius: {0} degrees",
 cTemp.GetTemperature());
 Console.WriteLine("Temperature in Fahrenheit: {0} degrees",
 fTemp.GetTemperature());
 }
}
// The example displays the following output:
// Temperature in Celsius: 100.0 degrees
// Temperature in Fahrenheit: 212.0 degrees

Assembly: CLSCompliant(True)>

Public Interface IFahrenheit
 Function GetTemperature() As Decimal
End Interface

Public Interface ICelsius
 Function GetTemperature() As Decimal
End Interface

Public Class Temperature : Implements ICelsius, IFahrenheit
 Private _value As Decimal

 Public Sub New(value As Decimal)
 ' We assume that this is the Celsius value.
 _value = value
 End Sub

 Public Function GetFahrenheit() As Decimal _
 Implements IFahrenheit.GetTemperature
 Return _value * 9 / 5 + 32
 End Function

 Public Function GetCelsius() As Decimal _
 Implements ICelsius.GetTemperature
 Return _value
 End Function
End Class

Module Example
 Public Sub Main()
 Dim temp As New Temperature(100.0d)
 Console.WriteLine("Temperature in Celsius: {0} degrees",
 temp.GetCelsius())
 Console.WriteLine("Temperature in Fahrenheit: {0} degrees",
 temp.GetFahrenheit())
 End Sub
End Module
' The example displays the following output:
' Temperature in Celsius: 100.0 degrees
' Temperature in Fahrenheit: 212.0 degrees

EnumerationsEnumerations
CLS-compliant enumerations must follow these rules:

using System;

[assembly: CLSCompliant(true)]

public enum Size : uint {
 Unspecified = 0,
 XSmall = 1,
 Small = 2,
 Medium = 3,
 Large = 4,
 XLarge = 5
};

public class Clothing
{
 public string Name;
 public string Type;
 public string Size;
}
// The attempt to compile the example displays a compiler warning like the following:
// Enum3.cs(6,13): warning CS3009: 'Size': base type 'uint' is not CLS-compliant

The underlying type of the enumeration must be an intrinsic CLS-compliant integer (Byte, Int16, Int32, or Int64). For example, the following code
tries to define an enumeration whose underlying type is UInt32 and generates a compiler warning.

https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint32

Type members in generalType members in general

Member accessibilityMember accessibility

<Assembly: CLSCompliant(True)>

Public Enum Size As UInt32
 Unspecified = 0
 XSmall = 1
 Small = 2
 Medium = 3
 Large = 4
 XLarge = 5
End Enum

Public Class Clothing
 Public Name As String
 Public Type As String
 Public Size As Size
End Class
' The attempt to compile the example displays a compiler warning like the following:
' Enum3.vb(6) : warning BC40032: Underlying type 'UInt32' of Enum is not CLS-compliant.
'
' Public Enum Size As UInt32
' ~~~~

An enumeration type must have a single instance field named Value__ that is marked with the FieldAttributes.RTSpecialName attribute. This
enables you to reference the field value implicitly.

An enumeration includes literal static fields whose types match the type of the enumeration itself. For example, if you define a State

enumeration with values of State.On and State.Off , State.On and State.Off are both literal static fields whose type is State .

There are two kinds of enumerations:

An enumeration that represents a set of mutually exclusive, named integer values. This type of enumeration is indicated by the absence of
the System.FlagsAttribute custom attribute.

An enumeration that represents a set of bit flags that can combine to generate an unnamed value. This type of enumeration is indicated by
the presence of the System.FlagsAttribute custom attribute.

For more information, see the documentation for the Enum structure.

The value of an enumeration is not limited to the range of its specified values. In other words, the range of values in an enumeration is the range of
its underlying value. You can use the Enum.IsDefined method to determine whether a specified value is a member of an enumeration.

The Common Language Specification requires all fields and methods to be accessed as members of a particular class. Therefore, global static fields and
methods (that is, static fields or methods that are defined apart from a type) are not CLS-compliant. If you try to include a global field or method in your
source code, the C# compiler generates a compiler error.

The Common Language Specification supports only the standard managed calling convention. It doesn't support unmanaged calling conventions and
methods with variable argument lists marked with the varargs keyword. For variable argument lists that are compatible with the standard managed
calling convention, use the ParamArrayAttribute attribute or the individual language's implementation, such as the params keyword in C# and the
ParamArray keyword in Visual Basic.

Overriding an inherited member cannot change the accessibility of that member. For example, a public method in a base class cannot be overridden by
a private method in a derived class. There is one exception: a protected internal (in C#) or Protected Friend (in Visual Basic) member in one assembly
that is overridden by a type in a different assembly. In that case, the accessibility of the override is Protected .

The following example illustrates the error that is generated when the CLSCompliantAttribute attribute is set to true , and Person , which is a class
derived from Animal , tries to change the accessibility of the Species property from public to private. The example compiles successfully if its
accessibility is changed to public.

https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.paramarrayattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

using System;

[assembly: CLSCompliant(true)]

public class Animal
{
 private string _species;

 public Animal(string species)
 {
 _species = species;
 }

 public virtual string Species
 {
 get { return _species; }
 }

 public override string ToString()
 {
 return _species;
 }
}

public class Human : Animal
{
 private string _name;

 public Human(string name) : base("Homo Sapiens")
 {
 _name = name;
 }

 public string Name
 {
 get { return _name; }
 }

 private override string Species
 {
 get { return base.Species; }
 }

 public override string ToString()
 {
 return _name;
 }
}

public class Example
{
 public static void Main()
 {
 Human p = new Human("John");
 Console.WriteLine(p.Species);
 Console.WriteLine(p.ToString());
 }
}
// The example displays the following output:
// error CS0621: 'Human.Species': virtual or abstract members cannot be private

<Assembly: CLSCompliant(True)>

Public Class Animal
 Private _species As String

 Public Sub New(species As String)
 _species = species
 End Sub

 Public Overridable ReadOnly Property Species As String
 Get
 Return _species
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return _species
 End Function
End Class

Public Class Human : Inherits Animal
 Private _name As String

 Public Sub New(name As String)
 MyBase.New("Homo Sapiens")
 _name = name
 End Sub

 Public ReadOnly Property Name As String
 Get
 Return _name
 End Get
 End Property

 Private Overrides ReadOnly Property Species As String
 Get
 Return MyBase.Species
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return _name
 End Function
End Class

Public Module Example
 Public Sub Main()
 Dim p As New Human("John")
 Console.WriteLine(p.Species)
 Console.WriteLine(p.ToString())
 End Sub
End Module
' The example displays the following output:
' 'Private Overrides ReadOnly Property Species As String' cannot override
' 'Public Overridable ReadOnly Property Species As String' because
' they have different access levels.
'
' Private Overrides ReadOnly Property Species As String

Types in the signature of a member must be accessible whenever that member is accessible. For example, this means that a public member cannot
include a parameter whose type is private, protected, or internal. The following example illustrates the compiler error that results when a StringWrapper

class constructor exposes an internal StringOperationType enumeration value that determines how a string value should be wrapped.

using System;
using System.Text;

public class StringWrapper
{
 string internalString;
 StringBuilder internalSB = null;
 bool useSB = false;

 public StringWrapper(StringOperationType type)
 {
 if (type == StringOperationType.Normal) {
 useSB = false;
 }
 else {
 useSB = true;
 internalSB = new StringBuilder();
 }
 }

 // The remaining source code...
}

internal enum StringOperationType { Normal, Dynamic }
// The attempt to compile the example displays the following output:
// error CS0051: Inconsistent accessibility: parameter type
// 'StringOperationType' is less accessible than method
// 'StringWrapper.StringWrapper(StringOperationType)'

Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class StringWrapper

 Dim internalString As String
 Dim internalSB As StringBuilder = Nothing
 Dim useSB As Boolean = False

 Public Sub New(type As StringOperationType)
 If type = StringOperationType.Normal Then
 useSB = False
 Else
 internalSB = New StringBuilder()
 useSB = True
 End If
 End Sub

 ' The remaining source code...
End Class

Friend Enum StringOperationType As Integer
 Normal = 0
 Dynamic = 1
End Enum
' The attempt to compile the example displays the following output:
' error BC30909: 'type' cannot expose type 'StringOperationType'
' outside the project through class 'StringWrapper'.
'
' Public Sub New(type As StringOperationType)
' ~~~~~~~~~~~~~~~~~~~

Generic types and membersGeneric types and members
Nested types always have at least as many generic parameters as their enclosing type. These correspond by position to the generic parameters in the
enclosing type. The generic type can also include new generic parameters.

The relationship between the generic type parameters of a containing type and its nested types may be hidden by the syntax of individual languages. In
the following example, a generic type Outer<T> contains two nested classes, Inner1A and Inner1B<U> . The calls to the ToString method, which each
class inherits from Object.ToString , show that each nested class includes the type parameters of its containing class.

using System;

[assembly:CLSCompliant(true)]

public class Outer<T>
{
 T value;

 public Outer(T value)
 {
 this.value = value;
 }

 public class Inner1A : Outer<T>
 {
 public Inner1A(T value) : base(value)
 { }
 }

 public class Inner1B<U> : Outer<T>
 {
 U value2;

 public Inner1B(T value1, U value2) : base(value1)
 {
 this.value2 = value2;
 }
 }
}

public class Example
{
 public static void Main()
 {
 var inst1 = new Outer<String>("This");
 Console.WriteLine(inst1);

 var inst2 = new Outer<String>.Inner1A("Another");
 Console.WriteLine(inst2);

 var inst3 = new Outer<String>.Inner1B<int>("That", 2);
 Console.WriteLine(inst3);
 }
}
// The example displays the following output:
// Outer`1[System.String]
// Outer`1+Inner1A[System.String]
// Outer`1+Inner1B`1[System.String,System.Int32]

<Assembly:CLSCompliant(True)>

Public Class Outer(Of T)
 Dim value As T

 Public Sub New(value As T)
 Me.value = value
 End Sub

 Public Class Inner1A : Inherits Outer(Of T)
 Public Sub New(value As T)
 MyBase.New(value)
 End Sub
 End Class

 Public Class Inner1B(Of U) : Inherits Outer(Of T)
 Dim value2 As U

 Public Sub New(value1 As T, value2 As U)
 MyBase.New(value1)
 Me.value2 = value2
 End Sub
 End Class
End Class

Public Module Example
 Public Sub Main()
 Dim inst1 As New Outer(Of String)("This")
 Console.WriteLine(inst1)

 Dim inst2 As New Outer(Of String).Inner1A("Another")
 Console.WriteLine(inst2)

 Dim inst3 As New Outer(Of String).Inner1B(Of Integer)("That", 2)
 Console.WriteLine(inst3)
 End Sub
End Module
' The example displays the following output:
' Outer`1[System.String]
' Outer`1+Inner1A[System.String]
' Outer`1+Inner1B`1[System.String,System.Int32]

using System;

[assembly:CLSCompliant(true)]

[CLSCompliant(false)] public class BaseClass
{}

public class BaseCollection<T> where T : BaseClass
{}
// Attempting to compile the example displays the following output:
// warning CS3024: Constraint type 'BaseClass' is not CLS-compliant

Assembly: CLSCompliant(True)>

<CLSCompliant(False)> Public Class BaseClass
End Class

Public Class BaseCollection(Of T As BaseClass)
End Class
' Attempting to compile the example displays the following output:
' warning BC40040: Generic parameter constraint type 'BaseClass' is not
' CLS-compliant.
'
' Public Class BaseCollection(Of T As BaseClass)
' ~~~~~~~~~

Generic type names are encoded in the form name'n, where name is the type name, ` is a character literal, and n is the number of parameters declared
on the type, or, for nested generic types, the number of newly introduced type parameters. This encoding of generic type names is primarily of interest
to developers who use reflection to access CLS-complaint generic types in a library.

If constraints are applied to a generic type, any types used as constraints must also be CLS-compliant. The following example defines a class named
BaseClass that is not CLS-compliant and a generic class named BaseCollection whose type parameter must derive from BaseClass . But because
BaseClass is not CLS-compliant, the compiler emits a warning.

If a generic type is derived from a generic base type, it must redeclare any constraints so that it can guarantee that constraints on the base type are also
satisfied. The following example defines a Number<T> that can represent any numeric type. It also defines a FloatingPoint<T> class that represents a
floating point value. However, the source code fails to compile, because it does not apply the constraint on Number<T> (that T must be a value type) to

using System;

[assembly:CLSCompliant(true)]

public class Number<T> where T : struct
{
 // use Double as the underlying type, since its range is a superset of
 // the ranges of all numeric types except BigInteger.
 protected double number;

 public Number(T value)
 {
 try {
 this.number = Convert.ToDouble(value);
 }
 catch (OverflowException e) {
 throw new ArgumentException("value is too large.", e);
 }
 catch (InvalidCastException e) {
 throw new ArgumentException("The value parameter is not numeric.", e);
 }
 }

 public T Add(T value)
 {
 return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
 }

 public T Subtract(T value)
 {
 return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
 }
}

public class FloatingPoint<T> : Number<T>
{
 public FloatingPoint(T number) : base(number)
 {
 if (typeof(float) == number.GetType() ||
 typeof(double) == number.GetType() ||
 typeof(decimal) == number.GetType())
 this.number = Convert.ToDouble(number);
 else
 throw new ArgumentException("The number parameter is not a floating-point number.");
 }
}
// The attempt to comple the example displays the following output:
// error CS0453: The type 'T' must be a non-nullable value type in
// order to use it as parameter 'T' in the generic type or method 'Number<T>'

FloatingPoint<T> .

<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
 ' Use Double as the underlying type, since its range is a superset of
 ' the ranges of all numeric types except BigInteger.
 Protected number As Double

 Public Sub New(value As T)
 Try
 Me.number = Convert.ToDouble(value)
 Catch e As OverflowException
 Throw New ArgumentException("value is too large.", e)
 Catch e As InvalidCastException
 Throw New ArgumentException("The value parameter is not numeric.", e)
 End Try
 End Sub

 Public Function Add(value As T) As T
 Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
 End Function

 Public Function Subtract(value As T) As T
 Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
 End Function
End Class

Public Class FloatingPoint(Of T) : Inherits Number(Of T)
 Public Sub New(number As T)
 MyBase.New(number)
 If TypeOf number Is Single Or
 TypeOf number Is Double Or
 TypeOf number Is Decimal Then
 Me.number = Convert.ToDouble(number)
 Else
 throw new ArgumentException("The number parameter is not a floating-point number.")
 End If
 End Sub
End Class
' The attempt to comple the example displays the following output:
' error BC32105: Type argument 'T' does not satisfy the 'Structure'
' constraint for type parameter 'T'.
'
' Public Class FloatingPoint(Of T) : Inherits Number(Of T)
' ~

The example compiles successfully if the constraint is added to the FloatingPoint<T> class.

using System;

[assembly:CLSCompliant(true)]

public class Number<T> where T : struct
{
 // use Double as the underlying type, since its range is a superset of
 // the ranges of all numeric types except BigInteger.
 protected double number;

 public Number(T value)
 {
 try {
 this.number = Convert.ToDouble(value);
 }
 catch (OverflowException e) {
 throw new ArgumentException("value is too large.", e);
 }
 catch (InvalidCastException e) {
 throw new ArgumentException("The value parameter is not numeric.", e);
 }
 }

 public T Add(T value)
 {
 return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
 }

 public T Subtract(T value)
 {
 return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
 }
}

public class FloatingPoint<T> : Number<T> where T : struct
{
 public FloatingPoint(T number) : base(number)
 {
 if (typeof(float) == number.GetType() ||
 typeof(double) == number.GetType() ||
 typeof(decimal) == number.GetType())
 this.number = Convert.ToDouble(number);
 else
 throw new ArgumentException("The number parameter is not a floating-point number.");
 }
}

<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
 ' Use Double as the underlying type, since its range is a superset of
 ' the ranges of all numeric types except BigInteger.
 Protected number As Double

 Public Sub New(value As T)
 Try
 Me.number = Convert.ToDouble(value)
 Catch e As OverflowException
 Throw New ArgumentException("value is too large.", e)
 Catch e As InvalidCastException
 Throw New ArgumentException("The value parameter is not numeric.", e)
 End Try
 End Sub

 Public Function Add(value As T) As T
 Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
 End Function

 Public Function Subtract(value As T) As T
 Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
 End Function
End Class

Public Class FloatingPoint(Of T As Structure) : Inherits Number(Of T)
 Public Sub New(number As T)
 MyBase.New(number)
 If TypeOf number Is Single Or
 TypeOf number Is Double Or
 TypeOf number Is Decimal Then
 Me.number = Convert.ToDouble(number)
 Else
 throw new ArgumentException("The number parameter is not a floating-point number.")
 End If
 End Sub
End Class

using System;

[assembly:CLSCompliant(true)]

public class C1<T>
{
 protected class N { }

 protected void M1(C1<int>.N n) { } // Not CLS-compliant - C1<int>.N not
 // accessible from within C1<T> in all
 // languages
 protected void M2(C1<T>.N n) { } // CLS-compliant – C1<T>.N accessible
 // inside C1<T>
}

public class C2 : C1<long>
{
 protected void M3(C1<int>.N n) { } // Not CLS-compliant – C1<int>.N is not
 // accessible in C2 (extends C1<long>)

 protected void M4(C1<long>.N n) { } // CLS-compliant, C1<long>.N is
 // accessible in C2 (extends C1<long>)
}
// Attempting to compile the example displays output like the following:
// Generics4.cs(9,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant
// Generics4.cs(18,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant

<Assembly:CLSCompliant(True)>

Public Class C1(Of T)
 Protected Class N
 End Class

 Protected Sub M1(n As C1(Of Integer).N) ' Not CLS-compliant - C1<int>.N not
 ' accessible from within C1(Of T) in all
 End Sub ' languages

 Protected Sub M2(n As C1(Of T).N) ' CLS-compliant – C1(Of T).N accessible
 End Sub ' inside C1(Of T)
End Class

Public Class C2 : Inherits C1(Of Long)
 Protected Sub M3(n As C1(Of Integer).N) ' Not CLS-compliant – C1(Of Integer).N is not
 End Sub ' accessible in C2 (extends C1(Of Long))

 Protected Sub M4(n As C1(Of Long).N)
 End Sub
End Class
' Attempting to compile the example displays output like the following:
' error BC30508: 'n' cannot expose type 'C1(Of Integer).N' in namespace
' '<Default>' through class 'C1'.
'
' Protected Sub M1(n As C1(Of Integer).N) ' Not CLS-compliant - C1<int>.N not
' ~~~~~~~~~~~~~~~~
' error BC30389: 'C1(Of T).N' is not accessible in this context because
' it is 'Protected'.
'
' Protected Sub M3(n As C1(Of Integer).N) ' Not CLS-compliant - C1(Of Integer).N is not
'
' ~~~~~~~~~~~~~~~~
'
' error BC30389: 'C1(Of T).N' is not accessible in this context because it is 'Protected'.
'
' Protected Sub M4(n As C1(Of Long).N)
' ~~~~~~~~~~~~~

ConstructorsConstructors

The Common Language Specification imposes a conservative per-instantiation model for nested types and protected members. Open generic types
cannot expose fields or members with signatures that contain a specific instantiation of a nested, protected generic type. Non-generic types that extend
a specific instantiation of a generic base class or interface cannot expose fields or members with signatures that contain a different instantiation of a
nested, protected generic type.

The following example defines a generic type, C1<T> , and a protected class, C1<T>.N . C1<T> has two methods, M1 and M2 . However, M1 is not CLS-
compliant because it tries to return a C1<int>.N object from C1<T> . A second class, C2 , is derived from C1<long> . It has two methods, M3 and M4 .
M3 is not CLS-compliant because it tries to return a C1<int>.N object from a subclass of C1<long> . Note that language compilers can be even more

restrictive. In this example, Visual Basic displays an error when it tries to compile M4 .

Constructors in CLS-compliant classes and structures must follow these rules:

A constructor of a derived class must call the instance constructor of its base class before it accesses inherited instance data. This requirement is
due to the fact that base class constructors are not inherited by their derived classes. This rule does not apply to structures, which do not support

using System;

[assembly: CLSCompliant(true)]

public class Person
{
private string fName, lName, _id;

public Person(string firstName, string lastName, string id)
{
 if (String.IsNullOrEmpty(firstName + lastName))
 throw new ArgumentNullException("Either a first name or a last name must be provided.");

 fName = firstName;
 lName = lastName;
 _id = id;
}

public string FirstName
{
 get { return fName; }
}

public string LastName
{
 get { return lName; }
}

public string Id
{
 get { return _id; }
}

public override string ToString()
{
 return String.Format("{0}{1}{2}", fName,
 String.IsNullOrEmpty(fName) ? "" : " ",
 lName);
}
}

public class Doctor : Person
{
public Doctor(string firstName, string lastName, string id)
{
}

public override string ToString()
{
 return "Dr. " + base.ToString();
}
}
// Attempting to compile the example displays output like the following:
// ctor1.cs(45,11): error CS1729: 'Person' does not contain a constructor that takes 0
// arguments
// ctor1.cs(10,11): (Location of symbol related to previous error)

direct inheritance.

Typically, compilers enforce this rule independently of CLS compliance, as the following example shows. It creates a Doctor class that is derived
from a Person class, but the Doctor class fails to call the Person class constructor to initialize inherited instance fields.

PropertiesProperties

EventsEvents

<Assembly: CLSCompliant(True)>

Public Class Person
 Private fName, lName, _id As String

 Public Sub New(firstName As String, lastName As String, id As String)
 If String.IsNullOrEmpty(firstName + lastName) Then
 Throw New ArgumentNullException("Either a first name or a last name must be provided.")
 End If

 fName = firstName
 lName = lastName
 _id = id
 End Sub

 Public ReadOnly Property FirstName As String
 Get
 Return fName
 End Get
 End Property

 Public ReadOnly Property LastName As String
 Get
 Return lName
 End Get
 End Property

 Public ReadOnly Property Id As String
 Get
 Return _id
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return String.Format("{0}{1}{2}", fName,
 If(String.IsNullOrEmpty(fName), "", " "),
 lName)
 End Function
End Class

Public Class Doctor : Inherits Person
 Public Sub New(firstName As String, lastName As String, id As String)
 End Sub

 Public Overrides Function ToString() As String
 Return "Dr. " + MyBase.ToString()
 End Function
End Class
' Attempting to compile the example displays output like the following:
' Ctor1.vb(46) : error BC30148: First statement of this 'Sub New' must be a call
' to 'MyBase.New' or 'MyClass.New' because base class 'Person' of 'Doctor' does
' not have an accessible 'Sub New' that can be called with no arguments.
'
' Public Sub New()
' ~~~

An object constructor cannot be called except to create an object. In addition, an object cannot be initialized twice. For example, this means that
Object.MemberwiseClone must not call constructors.

Properties in CLS-compliant types must follow these rules:

A property must have a setter, a getter, or both. In an assembly, these are implemented as special methods, which means that they will appear as
separate methods (the getter is named get _propertyname and the setter is set*_*propertyname*) marked as SpecialName` in the assembly's
metadata. The C# compiler enforces this rule automatically without the need to apply the CLSCompliantAttribute attribute.

A property's type is the return type of the property getter and the last argument of the setter. These types must be CLS compliant, and
arguments cannot be assigned to the property by reference (that is, they cannot be managed pointers).

If a property has both a getter and a setter, they must both be virtual, both static, or both instance. The C# compiler automatically enforces this
rule through property definition syntax.

An event is defined by its name and its type. The event type is a delegate that is used to indicate the event. For example, the DbConnection.StateChange

event is of type StateChangeEventHandler . In addition to the event itself, three methods with names based on the event name provide the event's
implementation and are marked as SpecialName in the assembly's metadata:

A method for adding an event handler, named add _EventName. For example, the event subscription method for the DbConnection.StateChange

event is named add_StateChange .

A method for removing an event handler, named remove _EventName. For example, the removal method for the DbConnection.StateChange event
is named remove_StateChange .

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

NOTENOTE

using System;
using System.Collections;
using System.Collections.Generic;

[assembly: CLSCompliant(true)]

public class TemperatureChangedEventArgs : EventArgs
{
 private Decimal originalTemp;
 private Decimal newTemp;
 private DateTimeOffset when;

 public TemperatureChangedEventArgs(Decimal original, Decimal @new, DateTimeOffset time)
 {
 originalTemp = original;
 newTemp = @new;
 when = time;
 }

 public Decimal OldTemperature
 {
 get { return originalTemp; }
 }

 public Decimal CurrentTemperature
 {
 get { return newTemp; }
 }

 public DateTimeOffset Time
 {
 get { return when; }
 }
}

public delegate void TemperatureChanged(Object sender, TemperatureChangedEventArgs e);

public class Temperature
{
 private struct TemperatureInfo
 {
 public Decimal Temperature;
 public DateTimeOffset Recorded;
 }

 public event TemperatureChanged TemperatureChanged;

 private Decimal previous;
 private Decimal current;
 private Decimal tolerance;
 private List<TemperatureInfo> tis = new List<TemperatureInfo>();

 public Temperature(Decimal temperature, Decimal tolerance)
 {
 current = temperature;
 TemperatureInfo ti = new TemperatureInfo();
 ti.Temperature = temperature;
 tis.Add(ti);
 ti.Recorded = DateTimeOffset.UtcNow;
 this.tolerance = tolerance;
 }

 public Decimal CurrentTemperature
 {
 get { return current; }
 set {
 TemperatureInfo ti = new TemperatureInfo();
 ti.Temperature = value;
 ti.Recorded = DateTimeOffset.UtcNow;
 previous = current;
 current = value;

A method for indicating that the event has occurred, named raise _EventName.

Most of the Common Language Specification's rules regarding events are implemented by language compilers and are transparent to component developers.

The methods for adding, removing, and raising the event must have the same accessibility. They must also all be static, instance, or virtual. The methods
for adding and removing an event have one parameter whose type is the event delegate type. The add and remove methods must both be present or
both be absent.

The following example defines a CLS-compliant class named Temperature that raises a TemperatureChanged event if the change in temperature between
two readings equals or exceeds a threshold value. The Temperature class explicitly defines a raise_TemperatureChanged method so that it can selectively
execute event handlers.

 if (Math.Abs(current - previous) >= tolerance)
 raise_TemperatureChanged(new TemperatureChangedEventArgs(previous, current, ti.Recorded));
 }
 }

 public void raise_TemperatureChanged(TemperatureChangedEventArgs eventArgs)
 {
 if (TemperatureChanged == null)
 return;

 foreach (TemperatureChanged d in TemperatureChanged.GetInvocationList()) {
 if (d.Method.Name.Contains("Duplicate"))
 Console.WriteLine("Duplicate event handler; event handler not executed.");
 else
 d.Invoke(this, eventArgs);
 }
 }
}

public class Example
{
 public Temperature temp;

 public static void Main()
 {
 Example ex = new Example();
 }

 public Example()
 {
 temp = new Temperature(65, 3);
 temp.TemperatureChanged += this.TemperatureNotification;
 RecordTemperatures();
 Example ex = new Example(temp);
 ex.RecordTemperatures();
 }

 public Example(Temperature t)
 {
 temp = t;
 RecordTemperatures();
 }

 public void RecordTemperatures()
 {
 temp.TemperatureChanged += this.DuplicateTemperatureNotification;
 temp.CurrentTemperature = 66;
 temp.CurrentTemperature = 63;
 }

 internal void TemperatureNotification(Object sender, TemperatureChangedEventArgs e)
 {
 Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);
 }

 public void DuplicateTemperatureNotification(Object sender, TemperatureChangedEventArgs e)
 {
 Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);
 }
}

Imports System.Collections
Imports System.Collections.Generic

<Assembly: CLSCompliant(True)>

Public Class TemperatureChangedEventArgs : Inherits EventArgs
 Private originalTemp As Decimal
 Private newTemp As Decimal
 Private [when] As DateTimeOffset

 Public Sub New(original As Decimal, [new] As Decimal, [time] As DateTimeOffset)
 originalTemp = original
 newTemp = [new]
 [when] = [time]
 End Sub

 Public ReadOnly Property OldTemperature As Decimal
 Get
 Return originalTemp
 End Get
 End Property

 Public ReadOnly Property CurrentTemperature As Decimal
 Get
 Return newTemp
 End Get
 End Property

 Public ReadOnly Property [Time] As DateTimeOffset
 Get
 Return [when]
 End Get
 End Property
End Class

Public Delegate Sub TemperatureChanged(sender As Object, e As TemperatureChangedEventArgs)

Public Class Temperature
 Private Structure TemperatureInfo
 Dim Temperature As Decimal
 Dim Recorded As DateTimeOffset
 End Structure

 Public Event TemperatureChanged As TemperatureChanged

 Private previous As Decimal
 Private current As Decimal
 Private tolerance As Decimal
 Private tis As New List(Of TemperatureInfo)

 Public Sub New(temperature As Decimal, tolerance As Decimal)
 current = temperature
 Dim ti As New TemperatureInfo()
 ti.Temperature = temperature
 ti.Recorded = DateTimeOffset.UtcNow
 tis.Add(ti)
 Me.tolerance = tolerance
 End Sub

 Public Property CurrentTemperature As Decimal
 Get
 Return current
 End Get
 Set
 Dim ti As New TemperatureInfo
 ti.Temperature = value
 ti.Recorded = DateTimeOffset.UtcNow
 previous = current
 current = value
 If Math.Abs(current - previous) >= tolerance Then
 raise_TemperatureChanged(New TemperatureChangedEventArgs(previous, current, ti.Recorded))
 End If
 End Set
 End Property

 Public Sub raise_TemperatureChanged(eventArgs As TemperatureChangedEventArgs)
 If TemperatureChangedEvent Is Nothing Then Exit Sub

 Dim ListenerList() As System.Delegate = TemperatureChangedEvent.GetInvocationList()
 For Each d As TemperatureChanged In TemperatureChangedEvent.GetInvocationList()
 If d.Method.Name.Contains("Duplicate") Then
 Console.WriteLine("Duplicate event handler; event handler not executed.")
 Else
 d.Invoke(Me, eventArgs)
 End If
 Next
 End Sub
End Class

Public Class Example
 Public WithEvents temp As Temperature

 Public Shared Sub Main()
 Dim ex As New Example()
 End Sub

 Public Sub New()
 temp = New Temperature(65, 3)
 RecordTemperatures()
 Dim ex As New Example(temp)
 ex.RecordTemperatures()
 End Sub

 Public Sub New(t As Temperature)
 temp = t
 RecordTemperatures()
 End Sub

 Public Sub RecordTemperatures()
 temp.CurrentTemperature = 66
 temp.CurrentTemperature = 63

 End Sub

 Friend Shared Sub TemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
 Handles temp.TemperatureChanged
 Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)
 End Sub

 End Sub

 Friend Shared Sub DuplicateTemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
 Handles temp.TemperatureChanged
 Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)
 End Sub
End Class

OverloadsOverloads

NOTENOTE

ExceptionsExceptions

using System;

[assembly: CLSCompliant(true)]

public class ErrorClass
{
 string msg;

 public ErrorClass(string errorMessage)
 {
 msg = errorMessage;
 }

 public string Message
 {
 get { return msg; }
 }
}

public static class StringUtilities
{
 public static string[] SplitString(this string value, int index)
 {
 if (index < 0 | index > value.Length) {
 ErrorClass badIndex = new ErrorClass("The index is not within the string.");
 throw badIndex;
 }
 string[] retVal = { value.Substring(0, index - 1),
 value.Substring(index) };
 return retVal;
 }
}
// Compilation produces a compiler error like the following:
// Exceptions1.cs(26,16): error CS0155: The type caught or thrown must be derived from
// System.Exception

The Common Language Specification imposes the following requirements on overloaded members:

Members can be overloaded based on the number of parameters and the type of any parameter. Calling convention, return type, custom
modifiers applied to the method or its parameter, and whether parameters are passed by value or by reference are not considered when
differentiating between overloads. For an example, see the code for the requirement that names must be unique within a scope in the Naming
conventions section.

Only properties and methods can be overloaded. Fields and events cannot be overloaded.

Generic methods can be overloaded based on the number of their generic parameters.

The op_Explicit and op_Implicit operators are exceptions to the rule that return value is not considered part of a method signature for overload resolution.
These two operators can be overloaded based on both their parameters and their return value.

Exception objects must derive from System.Exception or from another type derived from System.Exception . The following example illustrates the
compiler error that results when a custom class named ErrorClass is used for exception handling.

https://docs.microsoft.com/dotnet/api/system.exception

Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass
 Dim msg As String

 Public Sub New(errorMessage As String)
 msg = errorMessage
 End Sub

 Public ReadOnly Property Message As String
 Get
 Return msg
 End Get
 End Property
End Class

Public Module StringUtilities
 <Extension()> Public Function SplitString(value As String, index As Integer) As String()
 If index < 0 Or index > value.Length Then
 Dim BadIndex As New ErrorClass("The index is not within the string.")
 Throw BadIndex
 End If
 Dim retVal() As String = { value.Substring(0, index - 1),
 value.Substring(index) }
 Return retVal
 End Function
End Module
' Compilation produces a compiler error like the following:
' Exceptions1.vb(27) : error BC30665: 'Throw' operand must derive from 'System.Exception'.
'
' Throw BadIndex
' ~~~~~~~~~~~~~~

using System;

[assembly: CLSCompliant(true)]

public class ErrorClass : Exception
{
 string msg;

 public ErrorClass(string errorMessage)
 {
 msg = errorMessage;
 }

 public override string Message
 {
 get { return msg; }
 }
}

public static class StringUtilities
{
 public static string[] SplitString(this string value, int index)
 {
 if (index < 0 | index > value.Length) {
 ErrorClass badIndex = new ErrorClass("The index is not within the string.");
 throw badIndex;
 }
 string[] retVal = { value.Substring(0, index - 1),
 value.Substring(index) };
 return retVal;
 }
}

To correct this error, the ErrorClass class must inherit from System.Exception . In addition, the Message property must be overridden. The following
example corrects these errors to define an ErrorClass class that is CLS-compliant.

Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass : Inherits Exception
 Dim msg As String

 Public Sub New(errorMessage As String)
 msg = errorMessage
 End Sub

 Public Overrides ReadOnly Property Message As String
 Get
 Return msg
 End Get
 End Property
End Class

Public Module StringUtilities
 <Extension()> Public Function SplitString(value As String, index As Integer) As String()
 If index < 0 Or index > value.Length Then
 Dim BadIndex As New ErrorClass("The index is not within the string.")
 Throw BadIndex
 End If
 Dim retVal() As String = { value.Substring(0, index - 1),
 value.Substring(index) }
 Return retVal
 End Function
End Module

AttributesAttributes

using System;

[assembly: CLSCompliant(true)]

[AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct)]
public class NumericAttribute
{
 private bool _isNumeric;

 public NumericAttribute(bool isNumeric)
 {
 _isNumeric = isNumeric;
 }

 public bool IsNumeric
 {
 get { return _isNumeric; }
 }
}

[Numeric(true)] public struct UDouble
{
 double Value;
}
// Compilation produces a compiler error like the following:
// Attribute1.cs(22,2): error CS0616: 'NumericAttribute' is not an attribute class
// Attribute1.cs(7,14): (Location of symbol related to previous error)

In.NET Framework assemblies, custom attributes provide an extensible mechanism for storing custom attributes and retrieving metadata about
programming objects, such as assemblies, types, members, and method parameters. Custom attributes must derive from System.Attribute or from a
type derived from System.Attribute .

The following example violates this rule. It defines a NumericAttribute class that does not derive from System.Attribute . Note that a compiler error
results only when the non-CLS-compliant attribute is applied, not when the class is defined.

https://docs.microsoft.com/dotnet/api/system.attribute

<Assembly: CLSCompliant(True)>

<AttributeUsageAttribute(AttributeTargets.Class Or AttributeTargets.Struct)> _
Public Class NumericAttribute
 Private _isNumeric As Boolean

 Public Sub New(isNumeric As Boolean)
 _isNumeric = isNumeric
 End Sub

 Public ReadOnly Property IsNumeric As Boolean
 Get
 Return _isNumeric
 End Get
 End Property
End Class

<Numeric(True)> Public Structure UDouble
 Dim Value As Double
End Structure
' Compilation produces a compiler error like the following:
' error BC31504: 'NumericAttribute' cannot be used as an attribute because it
' does not inherit from 'System.Attribute'.
'
' <Numeric(True)> Public Structure UDouble
' ~~~~~~~~~~~~~

using System;

[assembly:CLSCompliantAttribute(true)]

public enum DescriptorType { type, member };

public class Descriptor
{
 public DescriptorType Type;
 public String Description;
}

[AttributeUsage(AttributeTargets.All)]
public class DescriptionAttribute : Attribute
{
 private Descriptor desc;

 public DescriptionAttribute(Descriptor d)
 {
 desc = d;
 }

 public Descriptor Descriptor
 { get { return desc; } }
}
// Attempting to compile the example displays output like the following:
// warning CS3015: 'DescriptionAttribute' has no accessible
// constructors which use only CLS-compliant types

The constructor or the properties of a CLS-compliant attribute can expose only the following types:

Boolean

Byte

Char

Double

Int16

Int32

Int64

Single

String

Type

Any enumeration type whose underlying type is Byte , Int16 , Int32 , or Int64 .

The following example defines a DescriptionAttribute class that derives from Attribute. The class constructor has a parameter of type Descriptor , so
the class is not CLS-compliant. Note that the C# compiler emits a warning but compiles successfully.

https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.attribute

<Assembly:CLSCompliantAttribute(True)>

Public Enum DescriptorType As Integer
 Type = 0
 Member = 1
End Enum

Public Class Descriptor
 Public Type As DescriptorType
 Public Description As String
End Class

<AttributeUsage(AttributeTargets.All)> _
Public Class DescriptionAttribute : Inherits Attribute
 Private desc As Descriptor

 Public Sub New(d As Descriptor)
 desc = d
 End Sub

 Public ReadOnly Property Descriptor As Descriptor
 Get
 Return desc
 End Get
 End Property
End Class

The CLSCompliantAttribute attribute

WARNINGWARNING

The CLSCompliantAttribute attribute is used to indicate whether a program element complies with the Common Language Specification. The
CLSCompliantAttribute.CLSCompliantAttribute(Boolean) constructor includes a single required parameter, isCompliant, that indicates whether the

program element is CLS-compliant.

At compile time, the compiler detects non-compliant elements that are presumed to be CLS-compliant and emits a warning. The compiler does not emit
warnings for types or members that are explicitly declared to be non-compliant.

Component developers can use the CLSCompliantAttribute attribute in two ways:

To define the parts of the public interface exposed by a component that are CLS-compliant and the parts that are not CLS-compliant. When the
attribute is used to mark particular program elements as CLS-compliant, its use guarantees that those elements are accessible from all languages
and tools that target the .NET Framework.

To ensure that the component library's public interface exposes only program elements that are CLS-compliant. If elements are not CLS-
compliant, compilers will generally issue a warning.

In some cases, language compilers enforce CLS-compliant rules regardless of whether the CLSCompliantAttribute attribute is used. For example, defining a
*static member in an interface violates a CLS rule. However, if you define a *static member in an interface, the C# compiler displays an error message and fails to

compile the app.

The CLSCompliantAttribute attribute is marked with an AttributeUsageAttribute attribute that has a value of AttributeTargets.All . This value allows
you to apply the CLSCompliantAttribute attribute to any program element, including assemblies, modules, types (classes, structures, enumerations,
interfaces, and delegates), type members (constructors, methods, properties, fields, and events), parameters, generic parameters, and return values.
However, in practice, you should apply the attribute only to assemblies, types, and type members. Otherwise, compilers ignore the attribute and
continue to generate compiler warnings whenever they encounter a non-compliant parameter, generic parameter, or return value in your library's public
interface.

The value of the CLSCompliantAttribute attribute is inherited by contained program elements. For example, if an assembly is marked as CLS-compliant,
its types are also CLS-compliant. If a type is marked as CLS-compliant, its nested types and members are also CLS-compliant.

You can explicitly override the inherited compliance by applying the CLSCompliantAttribute attribute to a contained program element. For example, you
can use the CLSCompliantAttribute attribute with an isCompliant value of false to define a non-compliant type in a compliant assembly, and you can
use the attribute with an isComplian value of true to define a compliant type in a non-compliant assembly. You can also define non-compliant
members in a compliant type. However, a non-compliant type cannot have compliant members, so you cannot use the attribute with an isCompliant
value of true to override inheritance from a non-compliant type.

When you are developing components, you should always use the CLSCompliantAttribute attribute to indicate whether your assembly, its types, and its
members are CLS-compliant.

To create CLS-compliant components:

1. Use the CLSCompliantAttribute to mark you assembly as CLS-compliant.

2. Mark any publicly exposed types in the assembly that are not CLS-compliant as non-compliant.

3. Mark any publicly exposed members in CLS-compliant types as non-compliant.

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.attributeusageattribute

using System;
using System.Text;

[assembly:CLSCompliant(true)]

public class CharacterUtilities
{
 [CLSCompliant(false)] public static ushort ToUTF16(String s)
 {
 s = s.Normalize(NormalizationForm.FormC);
 return Convert.ToUInt16(s[0]);
 }

 [CLSCompliant(false)] public static ushort ToUTF16(Char ch)
 {
 return Convert.ToUInt16(ch);
 }

 // CLS-compliant alternative for ToUTF16(String).
 public static int ToUTF16CodeUnit(String s)
 {
 s = s.Normalize(NormalizationForm.FormC);
 return (int) Convert.ToUInt16(s[0]);
 }

 // CLS-compliant alternative for ToUTF16(Char).
 public static int ToUTF16CodeUnit(Char ch)
 {
 return Convert.ToInt32(ch);
 }

 public bool HasMultipleRepresentations(String s)
 {
 String s1 = s.Normalize(NormalizationForm.FormC);
 return s.Equals(s1);
 }

 public int GetUnicodeCodePoint(Char ch)
 {
 if (Char.IsSurrogate(ch))
 throw new ArgumentException("ch cannot be a high or low surrogate.");

 return Char.ConvertToUtf32(ch.ToString(), 0);
 }

 public int GetUnicodeCodePoint(Char[] chars)
 {
 if (chars.Length > 2)
 throw new ArgumentException("The array has too many characters.");

 if (chars.Length == 2) {
 if (! Char.IsSurrogatePair(chars[0], chars[1]))
 throw new ArgumentException("The array must contain a low and a high surrogate.");
 else
 return Char.ConvertToUtf32(chars[0], chars[1]);
 }
 else {
 return Char.ConvertToUtf32(chars.ToString(), 0);
 }
 }
}

4. Provide a CLS-compliant alternative for non-CLS-compliant members.

If you've successfully marked all your non-compliant types and members, your compiler should not emit any non-compliance warnings. However, you
should indicate which members are not CLS-compliant and list their CLS-compliant alternatives in your product documentation.

The following example uses the CLSCompliantAttribute attribute to define a CLS-compliant assembly and a type, CharacterUtilities , that has two non-
CLS-compliant members. Because both members are tagged with the CLSCompliant(false) attribute, the compiler produces no warnings. The class also
provides a CLS-compliant alternative for both methods. Ordinarily, we would just add two overloads to the ToUTF16 method to provide CLS-compliant
alternatives. However, because methods cannot be overloaded based on return value, the names of the CLS-compliant methods are different from the
names of the non-compliant methods.

Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class CharacterUtilities
 <CLSCompliant(False)> Public Shared Function ToUTF16(s As String) As UShort
 s = s.Normalize(NormalizationForm.FormC)
 Return Convert.ToUInt16(s(0))
 End Function

 <CLSCompliant(False)> Public Shared Function ToUTF16(ch As Char) As UShort
 Return Convert.ToUInt16(ch)
 End Function

 ' CLS-compliant alternative for ToUTF16(String).
 Public Shared Function ToUTF16CodeUnit(s As String) As Integer
 s = s.Normalize(NormalizationForm.FormC)
 Return CInt(Convert.ToInt16(s(0)))
 End Function

 ' CLS-compliant alternative for ToUTF16(Char).
 Public Shared Function ToUTF16CodeUnit(ch As Char) As Integer
 Return Convert.ToInt32(ch)
 End Function

 Public Function HasMultipleRepresentations(s As String) As Boolean
 Dim s1 As String = s.Normalize(NormalizationForm.FormC)
 Return s.Equals(s1)
 End Function

 Public Function GetUnicodeCodePoint(ch As Char) As Integer
 If Char.IsSurrogate(ch) Then
 Throw New ArgumentException("ch cannot be a high or low surrogate.")
 End If
 Return Char.ConvertToUtf32(ch.ToString(), 0)
 End Function

 Public Function GetUnicodeCodePoint(chars() As Char) As Integer
 If chars.Length > 2 Then
 Throw New ArgumentException("The array has too many characters.")
 End If
 If chars.Length = 2 Then
 If Not Char.IsSurrogatePair(chars(0), chars(1)) Then
 Throw New ArgumentException("The array must contain a low and a high surrogate.")
 Else
 Return Char.ConvertToUtf32(chars(0), chars(1))
 End If
 Else
 Return Char.ConvertToUtf32(chars.ToString(), 0)
 End If
 End Function
End Class

Cross-Language Interoperability

If you are developing an app rather than a library (that is, if you aren't exposing types or members that can be consumed by other app developers), the
CLS compliance of the program elements that your app consumes are of interest only if your language does not support them. In that case, your
language compiler will generate an error when you try to use a non-CLS-compliant element.

Language independence has a number of possible meanings. One meaning involves seamlessly consuming types written in one language from an app
written in another language. A second meaning, which is the focus of this article, involves combining code written in multiple languages into a single
.NET Framework assembly.

The following example illustrates cross-language interoperability by creating a class library named Utilities.dll that includes two classes, NumericLib and
StringLib . The NumericLib class is written in C#, and the StringLib class is written in Visual Basic. Here's the source code for StringUtil.vb , which

includes a single member, ToTitleCase , in its StringLib class.

Imports System.Collections.Generic
Imports System.Runtime.CompilerServices

Public Module StringLib
 Private exclusions As List(Of String)

 Sub New()
 Dim words() As String = { "a", "an", "and", "of", "the" }
 exclusions = New List(Of String)
 exclusions.AddRange(words)
 End Sub

 <Extension()> _
 Public Function ToTitleCase(title As String) As String
 Dim words() As String = title.Split()
 Dim result As String = String.Empty

 For ctr As Integer = 0 To words.Length - 1
 Dim word As String = words(ctr)
 If ctr = 0 OrElse Not exclusions.Contains(word.ToLower()) Then
 result += word.Substring(0, 1).ToUpper() + _
 word.Substring(1).ToLower()
 Else
 result += word.ToLower()
 End If
 If ctr <= words.Length - 1 Then
 result += " "
 End If
 Next
 Return result
 End Function
End Module

using System;

public static class NumericLib
{
 public static bool IsEven(this IConvertible number)
 {
 if (number is Byte ||
 number is SByte ||
 number is Int16 ||
 number is UInt16 ||
 number is Int32 ||
 number is UInt32 ||
 number is Int64)
 return ((long) number) % 2 == 0;
 else if (number is UInt64)
 return ((ulong) number) %2 == 0;
 else
 throw new NotSupportedException("IsEven called for a non-integer value.");
 }

 public static bool NearZero(double number)
 {
 return number < .00001;
 }
}

vbc /t:module StringUtil.vb

csc /t:module NumberUtil.cs

link numberutil.netmodule stringutil.netmodule /out:UtilityLib.dll /dll

Here's the source code for NumberUtil.cs, which defines a NumericLib class that has two members, IsEven and NearZero .

To package the two classes in a single assembly, you must compile them into modules. To compile the Visual Basic source code file into a module, use
this command:

To compile the C# source code file into a module, use this command:

You then use the Link tool (Link.exe) to compile the two modules into an assembly:

The following example then calls the NumericLib.NearZero and StringLib.ToTitleCase methods. Note that both the Visual Basic code and the C# code
are able to access the methods in both classes.

using System;

public class Example
{
 public static void Main()
 {
 Double dbl = 0.0 - Double.Epsilon;
 Console.WriteLine(NumericLib.NearZero(dbl));

 string s = "war and peace";
 Console.WriteLine(s.ToTitleCase());
 }
}
// The example displays the following output:
// True
// War and Peace

Module Example
 Public Sub Main()
 Dim dbl As Double = 0.0 - Double.Epsilon
 Console.WriteLine(NumericLib.NearZero(dbl))

 Dim s As String = "war and peace"
 Console.WriteLine(s.ToTitleCase())
 End Sub
End Module
' The example displays the following output:
' True
' War and Peace

vbc example.vb /r:UtilityLib.dll

csc example.cs /r:UtilityLib.dll

To compile the Visual Basic code, use this command:

To compile with C#, change the name of the compiler from vbc to csc, and change the file extension from .vb to .cs:

Language Independence and Language-Independent Components
5/2/2018 • 68 minutes to read • Edit Online

NOTENOTE

CLS compliance rules

NOTENOTE

The .NET Framework is language independent. This means that, as a developer, you can develop in one of the many languages that target the .NET
Framework, such as C#, C++/CLI, Eiffel, F#, IronPython, IronRuby, PowerBuilder, Visual Basic, Visual COBOL, and Windows PowerShell. You can
access the types and members of class libraries developed for the .NET Framework without having to know the language in which they were originally
written and without having to follow any of the original language's conventions. If you are a component developer, your component can be accessed by
any .NET Framework app regardless of its language.

This first part of this article discusses creating language-independent components—that is, components that can be consumed by apps that are written in any
language. You can also create a single component or app from source code written in multiple languages; see Cross-Language Interoperability in the second part of
this article.

To fully interact with other objects written in any language, objects must expose to callers only those features that are common to all languages. This
common set of features is defined by the Common Language Specification (CLS), which is a set of rules that apply to generated assemblies. The
Common Language Specification is defined in Partition I, Clauses 7 through 11 of the ECMA-335 Standard: Common Language Infrastructure.

If your component conforms to the Common Language Specification, it is guaranteed to be CLS-compliant and can be accessed from code in
assemblies written in any programming language that supports the CLS. You can determine whether your component conforms to the Common
Language Specification at compile time by applying the CLSCompliantAttribute attribute to your source code. For more information, see The
CLSCompliantAttribute attribute.

In this article:

CLS compliance rules

Types and type member signatures

Naming conventions

Type conversion

Arrays

Interfaces

Enumerations

Type members in general

Member accessibility

Generic types and members

Constructors

Properties

Events

Overloads

Exceptions

Attributes

The CLSCompliantAttribute attribute

Cross-Language Interoperability

This section discusses the rules for creating a CLS-compliant component. For a complete list of rules, see Partition I, Clause 11 of the ECMA-335
Standard: Common Language Infrastructure.

The Common Language Specification discusses each rule for CLS compliance as it applies to consumers (developers who are programmatically accessing a component
that is CLS-compliant), frameworks (developers who are using a language compiler to create CLS-compliant libraries), and extenders (developers who are creating a
tool such as a language compiler or a code parser that creates CLS-compliant components). This article focuses on the rules as they apply to frameworks. Note,
though, that some of the rules that apply to extenders may also apply to assemblies that are created using Reflection.Emit.

https://github.com/dotnet/docs/blob/master/docs/standard/language-independence-and-language-independent-components.md
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://www.ecma-international.org/publications/standards/Ecma-335.htm

IMPORTANTIMPORTANT

using System;

[assembly: CLSCompliant(true)]

public class Person
{
 private UInt16 personAge = 0;

 public UInt16 Age
 { get { return personAge; } }
}
// The attempt to compile the example displays the following compiler warning:
// Public1.cs(10,18): warning CS3003: Type of 'Person.Age' is not CLS-compliant

<Assembly: CLSCompliant(True)>

Public Class Person
 Private personAge As UInt16

 Public ReadOnly Property Age As UInt16
 Get
 Return personAge
 End Get
 End Property
End Class
' The attempt to compile the example displays the following compiler warning:
' Public1.vb(9) : warning BC40027: Return type of function 'Age' is not CLS-compliant.
'
' Public ReadOnly Property Age As UInt16
' ~~~

using System;

[assembly: CLSCompliant(true)]

public class Person
{
 private Int16 personAge = 0;

 public Int16 Age
 { get { return personAge; } }
}

<Assembly: CLSCompliant(True)>

Public Class Person
 Private personAge As UInt16

 Public ReadOnly Property Age As Int16
 Get
 Return CType(personAge, Int16)
 End Get
 End Property
End Class

To design a component that is language independent, you only need to apply the rules for CLS compliance to your component's public interface. Your
private implementation does not have to conform to the specification.

The rules for CLS compliance apply only to a component's public interface, not to its private implementation.

For example, unsigned integers other than Byte are not CLS-compliant. Because the Person class in the following example exposes an Age property of
type UInt16, the following code displays a compiler warning.

You can make the Person class CLS-compliant by changing the type of Age property from UInt16 to Int16, which is a CLS-compliant, 16-bit signed
integer. You do not have to change the type of the private personAge field.

A library's public interface consists of the following:

Definitions of public classes.

Definitions of the public members of public classes, and definitions of members accessible to derived classes (that is, protected members).

Parameters and return types of public methods of public classes, and parameters and return types of methods accessible to derived classes.

The rules for CLS compliance are listed in the following table. The text of the rules is taken verbatim from the ECMA-335 Standard: Common Language
Infrastructure, which is Copyright 2012 by Ecma International. More detailed information about these rules is found in the following sections.

https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int16
https://www.ecma-international.org/publications/standards/Ecma-335.htm

CATEGORY SEE RULE RULE NUMBER

Accessibility Member accessibility Accessibility shall not be changed when
overriding inherited methods, except
when overriding a method inherited
from a different assembly with
accessibility family-or-assembly . In
this case, the override shall have
accessibility family .

10

Accessibility Member accessibility The visibility and accessibility of types
and members shall be such that types
in the signature of any member shall
be visible and accessible whenever the
member itself is visible and accessible.
For example, a public method that is
visible outside its assembly shall not
have an argument whose type is visible
only within the assembly. The visibility
and accessibility of types composing an
instantiated generic type used in the
signature of any member shall be
visible and accessible whenever the
member itself is visible and accessible.
For example, an instantiated generic
type present in the signature of a
member that is visible outside its
assembly shall not have a generic
argument whose type is visible only
within the assembly.

12

Arrays Arrays Arrays shall have elements with a CLS-
compliant type, and all dimensions of
the array shall have lower bounds of
zero. Only the fact that an item is an
array and the element type of the array
shall be required to distinguish
between overloads. When overloading
is based on two or more array types
the element types shall be named
types.

16

Attributes Attributes Attributes shall be of type
System.Attribute, or a type inheriting
from it.

41

Attributes Attributes The CLS only allows a subset of the
encodings of custom attributes. The
only types that shall appear in these
encodings are (see Partition IV):
System.Type, System.String,
System.Char, System.Boolean,
System.Byte, System.Int16,
System.Int32, System.Int64,
System.Single, System.Double, and any
enumeration type based on a CLS-
compliant base integer type.

34

Attributes Attributes The CLS does not allow publicly visible
required modifiers (modreq , see
Partition II), but does allow optional
modifiers (modopt , see Partition II) it
does not understand.

35

Constructors Constructors An object constructor shall call some
instance constructor of its base class
before any access occurs to inherited
instance data. (This does not apply to
value types, which need not have
constructors.)

21

Constructors Constructors An object constructor shall not be
called except as part of the creation of
an object, and an object shall not be
initialized twice.

22

https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double

Enumerations Enumerations The underlying type of an enum shall
be a built-in CLS integer type, the
name of the field shall be "value__", and
that field shall be marked
RTSpecialName .

7

Enumerations Enumerations There are two distinct kinds of enums,
indicated by the presence or absence
of the System.FlagsAttribute (see
Partition IV Library) custom attribute.
One represents named integer values;
the other represents named bit flags
that can be combined to generate an
unnamed value. The value of an enum

is not limited to the specified values.

8

Enumerations Enumerations Literal static fields of an enum shall
have the type of the enum itself.

9

Events Events The methods that implement an event
shall be marked SpecialName in
themetadata.

29

Events Events The accessibility of an event and of its
accessors shall be identical.

30

Events Events The add and remove methods for
an event shall both either be present
or absent.

31

Events Events The add and remove methods for
an event shall each take one parameter
whose type defines the type of the
event and that shall be derived from
System.Delegate.

32

Events Events Events shall adhere to a specific
naming pattern. The SpecialName

attribute referred to in CLS rule 29
shall be ignored in appropriate name
comparisons and shall adhere to
identifier rules.

33

Exceptions Exceptions Objects that are thrown shall be of
type System.Exception or a type
inheriting from it. Nonetheless, CLS-
compliant methods are not required to
block the propagation of other types of
exceptions.

40

General CLS compliance: the Rules CLS rules apply only to those parts of a
type that are accessible or visible
outsideof the defining assembly.

1

General CLS compliance: the Rules Members of non-CLS compliant types
shall not be marked CLS-compliant.

2

Generics Generic types and members Nested types shall have at least as
many generic parameters as the
enclosing type. Generic parameters in a
nested type correspond by position to
the generic parameters in its enclosing
type.

42

Generics Generic types and members The name of a generic type shall
encode the number of type parameters
declared on the non-nested type, or
newly introduced to the type if nested,
according to the rules defined above.

43

Generics Generic types and members A generic type shall redeclare sufficient
constraints to guarantee that any
constraints on the base type, or
interfaces would be satisfied by the
generic type constraints.

4444

CATEGORY SEE RULE RULE NUMBER

https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/dotnet/api/system.exception

Generics Generic types and members Types used as constraints on generic
parameters shall themselves be CLS-
compliant.

45

Generics Generic types and members The visibility and accessibility of
members (including nested types) in an
instantiated generic type shall be
considered to be scoped to the specific
instantiation rather than the generic
type declaration as a whole. Assuming
this, the visibility and accessibility rules
of CLS rule 12 still apply.

46

Generics Generic types and members For each abstract or virtual generic
method, there shall be a default
concrete (nonabstract) implementation.

47

Interfaces Interfaces CLS-compliant interfaces shall not
require the definition of non-CLS
compliantmethods in order to
implement them.

18

Interfaces Interfaces CLS-compliant interfaces shall not
define static methods, nor shall they
define fields.

19

Members Type members in general Global static fields and methods are
not CLS-compliant.

36

Members -- The value of a literal static is specified
through the use of field initialization
metadata. A CLS-compliant literal must
have a value specified in field
initialization metadata that is of exactly
the same type as the literal (or of the
underlying type, if that literal is an
enum).

13

Members Type members in general The vararg constraint is not part of the
CLS, and the only calling convention
supported by the CLS is the standard
managed calling convention.

15

Naming conventions Naming conventions Assemblies shall follow Annex 7 of
Technical Report 15 of the Unicode
Standard3.0 governing the set of
characters permitted to start and be
included in identifiers, available onlineat
http://www.unicode.org/unicode/report
s/tr15/tr15-18.html. Identifiers shall be
in thecanonical format defined by
Unicode Normalization Form C. For
CLS purposes, two identifiersare the
same if their lowercase mappings (as
specified by the Unicode locale-
insensitive, one-toonelowercase
mappings) are the same. That is, for
two identifiers to be considered
differentunder the CLS they shall differ
in more than simply their case.
However, in order to override
aninherited definition the CLI requires
the precise encoding of the original
declaration be used.

4

Overloading Naming conventions All names introduced in a CLS-
compliant scope shall be distinct
independent ofkind, except where the
names are identical and resolved via
overloading. That is, while the
CTSallows a single type to use the
same name for a method and a field,
the CLS does not.

5

CATEGORY SEE RULE RULE NUMBER

http://www.unicode.org/unicode/reports/tr15/tr15-18.html

Overloading Naming conventions Fields and nested types shall be distinct
by identifier comparison alone,
eventhough the CTS allows distinct
signatures to be distinguished.
Methods, properties, and eventsthat
have the same name (by identifier
comparison) shall differ by more than
just the return type,except as specified
in CLS Rule 39.

6

Overloading Overloads Only properties and methods can be
overloaded.

37

Overloading Overloads Properties and methods can be
overloaded based only on the number
and types of their parameters, except
the conversion operators named
op_Implicit and op_Explicit ,

which can also be overloaded based on
their return type.

38

Overloading -- If two or more CLS-compliant methods
declared in a type have the same
nameand, for a specific set of type
instantiations, they have the same
parameter and return types, thenall
these methods shall be semantically
equivalent at those type instantiations.

48

Types Type and type member signatures System.Object is CLS-compliant. Any
other CLS-compliant class shall inherit
from a CLS-compliant class.

23

Properties Properties The methods that implement the
getter and setter methods of a
property shallbe marked
SpecialName in the metadata.

24

Properties Properties A property’s accessors shall all be
static, all be virtual, or all be instance.

26

Properties Properties The type of a property shall be the
return type of the getter and the type
of the last argument of the setter. The
types of the parameters of the
property shall be the types of the
parameters to the getter and the types
of all but the final parameter of the
setter. All of these types shall be CLS-
compliant, and shall not be managed
pointers (i.e., shall not be passed by
reference).

27

Properties Properties Properties shall adhere to a specific
naming pattern. The SpecialName

attribute referred to in CLS rule 24
shall be ignored in appropriate name
comparisons and shall adhere to
identifier rules. A property shall have a
getter method, a setter method, or
both.

28

Type conversion Type conversion If either op_Implicit or
op_Explicit is provided, an alternate

means of providing the coercion shall
be provided.

39

Types Type and type member signatures Boxed value types are not CLS-
compliant.

3

Types Type and type member signatures All types appearing in a signature shall
be CLS-compliant. All types composing
an instantiated generic type shall be
CLS-compliant.

11

CATEGORY SEE RULE RULE NUMBER

https://docs.microsoft.com/dotnet/api/system.object

Types Type and type member signatures Typed references are not CLS-
compliant.

14

Types Type and type member signatures Unmanaged pointer types are not CLS-
compliant.

17

Types Type and type member signatures CLS-compliant classes, value types, and
interfaces shall not require the
implementation of non-CLS-compliant
members.

20

CATEGORY SEE RULE RULE NUMBER

Types and type member signaturesTypes and type member signatures

using System;

[assembly: CLSCompliant(true)]

[CLSCompliant(false)]
public class Counter
{
 UInt32 ctr;

 public Counter()
 {
 ctr = 0;
 }

 protected Counter(UInt32 ctr)
 {
 this.ctr = ctr;
 }

 public override string ToString()
 {
 return String.Format("{0}). ", ctr);
 }

 public UInt32 Value
 {
 get { return ctr; }
 }

 public void Increment()
 {
 ctr += (uint) 1;
 }
}

public class NonZeroCounter : Counter
{
 public NonZeroCounter(int startIndex) : this((uint) startIndex)
 {
 }

 private NonZeroCounter(UInt32 startIndex) : base(startIndex)
 {
 }
}
// Compilation produces a compiler warning like the following:
// Type3.cs(37,14): warning CS3009: 'NonZeroCounter': base type 'Counter' is not
// CLS-compliant
// Type3.cs(7,14): (Location of symbol related to previous warning)

The System.Object type is CLS-compliant and is the base type of all object types in the .NET Framework type system. Inheritance in the .NET
Framework is either implicit (for example, the String class implicitly inherits from the Object class) or explicit (for example, the
CultureNotFoundException class explicitly inherits from the ArgumentException class, which explicitly inherits from the SystemException class, which
explicitly inherits from the Exception class). For a derived type to be CLS compliant, its base type must also be CLS-compliant.

The following example shows a derived type whose base type is not CLS-compliant. It defines a base Counter class that uses an unsigned 32-bit
integer as a counter. Because the class provides counter functionality by wrapping an unsigned integer, the class is marked as non-CLS-compliant. As a
result, a derived class, NonZeroCounter , is also not CLS-compliant.

https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.globalization.culturenotfoundexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.systemexception
https://docs.microsoft.com/dotnet/api/system.exception

<Assembly: CLSCompliant(True)>

<CLSCompliant(False)> _
Public Class Counter
 Dim ctr As UInt32

 Public Sub New
 ctr = 0
 End Sub

 Protected Sub New(ctr As UInt32)
 ctr = ctr
 End Sub

 Public Overrides Function ToString() As String
 Return String.Format("{0}). ", ctr)
 End Function

 Public ReadOnly Property Value As UInt32
 Get
 Return ctr
 End Get
 End Property

 Public Sub Increment()
 ctr += CType(1, UInt32)
 End Sub
End Class

Public Class NonZeroCounter : Inherits Counter
 Public Sub New(startIndex As Integer)
 MyClass.New(CType(startIndex, UInt32))
 End Sub

 Private Sub New(startIndex As UInt32)
 MyBase.New(CType(startIndex, UInt32))
 End Sub
End Class
' Compilation produces a compiler warning like the following:
' Type3.vb(34) : warning BC40026: 'NonZeroCounter' is not CLS-compliant
' because it derives from 'Counter', which is not CLS-compliant.
'
' Public Class NonZeroCounter : Inherits Counter
' ~~~~~~~~~~~~~~

CLS-COMPLIANT TYPE DESCRIPTION

Byte 8-bit unsigned integer

Int16 16-bit signed integer

Int32 32-bit signed integer

Int64 64-bit signed integer

Single Single-precision floating-point value

Double Double-precision floating-point value

Boolean true or false value type

Char UTF-16 encoded code unit

Decimal Non-floating-point decimal number

IntPtr Pointer or handle of a platform-defined size

String Collection of zero, one, or more Char objects

All types that appear in member signatures, including a method's return type or a property type, must be CLS-compliant. In addition, for generic types:

All types that compose an instantiated generic type must be CLS-compliant.

All types used as constraints on generic parameters must be CLS-compliant.

The .NET Framework common type system includes a number of built-in types that are supported directly by the common language runtime and are
specially encoded in an assembly's metadata. Of these intrinsic types, the types listed in the following table are CLS-compliant.

The intrinsic types listed in the following table are not CLS-Compliant.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.char

NON-COMPLIANT TYPE DESCRIPTION CLS-COMPLIANT ALTERNATIVE

SByte 8-bit signed integer data type Int16

TypedReference Pointer to an object and its runtime type None

UInt16 16-bit unsigned integer Int32

UInt32 32-bit unsigned integer Int64

UInt64 64-bit unsigned integer Int64 (may overflow), BigInteger, or Double

UIntPtr Unsigned pointer or handle IntPtr

The .NET Framework Class Library or any other class library may include other types that aren't CLS-compliant; for example:

using System;

[assembly:CLSCompliant(true)]

public unsafe class TestClass
{
 private int* val;

 public TestClass(int number)
 {
 val = (int*) number;
 }

 public int* Value {
 get { return val; }
 }
}
// The compiler generates the following output when compiling this example:
// warning CS3003: Type of 'TestClass.Value' is not CLS-compliant

Boxed value types. The following C# example creates a class that has a public property of type int* named Value . Because an int* is a boxed
value type, the compiler flags it as non-CLS-compliant.

Typed references, which are special constructs that contain a reference to an object and a reference to a type. Typed references are represented in
the .NET Framework by the TypedReference class.

If a type is not CLS-compliant, you should apply the CLSCompliantAttribute attribute with an isCompliant value of false to it. For more information,
see The CLSCompliantAttribute attribute section.

The following example illustrates the problem of CLS compliance in a method signature and in generic type instantiation. It defines an InvoiceItem

class with a property of type UInt32, a property of type Nullable(Of UInt32) , and a constructor with parameters of type UInt32 and
Nullable(Of UInt32) . You get four compiler warnings when you try to compile this example.

https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.typedreference
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.numerics.biginteger
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.uintptr
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.typedreference
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint32

using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
 private uint invId = 0;
 private uint itemId = 0;
 private Nullable<uint> qty;

 public InvoiceItem(uint sku, Nullable<uint> quantity)
 {
 itemId = sku;
 qty = quantity;
 }

 public Nullable<uint> Quantity
 {
 get { return qty; }
 set { qty = value; }
 }

 public uint InvoiceId
 {
 get { return invId; }
 set { invId = value; }
 }
}
// The attempt to compile the example displays the following output:
// Type1.cs(13,23): warning CS3001: Argument type 'uint' is not CLS-compliant
// Type1.cs(13,33): warning CS3001: Argument type 'uint?' is not CLS-compliant
// Type1.cs(19,26): warning CS3003: Type of 'InvoiceItem.Quantity' is not CLS-compliant
// Type1.cs(25,16): warning CS3003: Type of 'InvoiceItem.InvoiceId' is not CLS-compliant

<Assembly: CLSCompliant(True)>

Public Class InvoiceItem

 Private invId As UInteger = 0
 Private itemId As UInteger = 0
 Private qty AS Nullable(Of UInteger)

 Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
 itemId = sku
 qty = quantity
 End Sub

 Public Property Quantity As Nullable(Of UInteger)
 Get
 Return qty
 End Get
 Set
 qty = value
 End Set
 End Property

 Public Property InvoiceId As UInteger
 Get
 Return invId
 End Get
 Set
 invId = value
 End Set
 End Property
End Class
' The attempt to compile the example displays output similar to the following:
' Type1.vb(13) : warning BC40028: Type of parameter 'sku' is not CLS-compliant.
'
' Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
' ~~~
' Type1.vb(13) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'
' Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
' ~~~~~~~~
' Type1.vb(18) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'
' Public Property Quantity As Nullable(Of UInteger)
' ~~~~~~~~
' Type1.vb(27) : warning BC40027: Return type of function 'InvoiceId' is not CLS-compliant.
'
' Public Property InvoiceId As UInteger
' ~~~~~~~~~

To eliminate the compiler warnings, replace the non-CLS-compliant types in the InvoiceItem public interface with compliant types:

using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
 private uint invId = 0;
 private uint itemId = 0;
 private Nullable<int> qty;

 public InvoiceItem(int sku, Nullable<int> quantity)
 {
 if (sku <= 0)
 throw new ArgumentOutOfRangeException("The item number is zero or negative.");
 itemId = (uint) sku;

 qty = quantity;
 }

 public Nullable<int> Quantity
 {
 get { return qty; }
 set { qty = value; }
 }

 public int InvoiceId
 {
 get { return (int) invId; }
 set {
 if (value <= 0)
 throw new ArgumentOutOfRangeException("The invoice number is zero or negative.");
 invId = (uint) value; }
 }
}

<Assembly: CLSCompliant(True)>

Public Class InvoiceItem

 Private invId As UInteger = 0
 Private itemId As UInteger = 0
 Private qty AS Nullable(Of Integer)

 Public Sub New(sku As Integer, quantity As Nullable(Of Integer))
 If sku <= 0 Then
 Throw New ArgumentOutOfRangeException("The item number is zero or negative.")
 End If
 itemId = CUInt(sku)
 qty = quantity
 End Sub

 Public Property Quantity As Nullable(Of Integer)
 Get
 Return qty
 End Get
 Set
 qty = value
 End Set
 End Property

 Public Property InvoiceId As Integer
 Get
 Return CInt(invId)
 End Get
 Set
 invId = CUInt(value)
 End Set
 End Property
End Class

In addition to the specific types listed, some categories of types are not CLS compliant. These include unmanaged pointer types and function pointer
types. The following example generates a compiler warning because it uses a pointer to an integer to create an array of integers.

using System;

[assembly: CLSCompliant(true)]

public class ArrayHelper
{
 unsafe public static Array CreateInstance(Type type, int* ptr, int items)
 {
 Array arr = Array.CreateInstance(type, items);
 int* addr = ptr;
 for (int ctr = 0; ctr < items; ctr++) {
 int value = *addr;
 arr.SetValue(value, ctr);
 addr++;
 }
 return arr;
 }
}
// The attempt to compile this example displays the following output:
// UnmanagedPtr1.cs(8,57): warning CS3001: Argument type 'int*' is not CLS-compliant

Naming conventionsNaming conventions

using System;

[assembly: CLSCompliant(true)]

public class Person : person
{

}

public class person
{

}
// Compilation produces a compiler warning like the following:
// Naming1.cs(11,14): warning CS3005: Identifier 'person' differing
// only in case is not CLS-compliant
// Naming1.cs(6,14): (Location of symbol related to previous warning)

For CLS-compliant abstract classes (that is, classes marked as abstract in C# or as MustInherit in Visual Basic), all members of the class must also be
CLS-compliant.

Because some programming languages are case-insensitive, identifiers (such as the names of namespaces, types, and members) must differ by more
than case. Two identifiers are considered equivalent if their lowercase mappings are the same. The following C# example defines two public classes,
Person and person . Because they differ only by case, the C# compiler flags them as not CLS-compliant.

Programming language identifiers, such as the names of namespaces, types, and members, must conform to the Unicode Standard 3.0, Technical
Report 15, Annex 7. This means that:

The first character of an identifier can be any Unicode uppercase letter, lowercase letter, title case letter, modifier letter, other letter, or letter
number. For information on Unicode character categories, see the System.Globalization.UnicodeCategory enumeration.

Subsequent characters can be from any of the categories as the first character, and can also include non-spacing marks, spacing combining
marks, decimal numbers, connector punctuations, and formatting codes.

Before you compare identifiers, you should filter out formatting codes and convert the identifiers to Unicode Normalization Form C, because a single
character can be represented by multiple UTF-16-encoded code units. Character sequences that produce the same code units in Unicode Normalization
Form C are not CLS-compliant. The following example defines a property named Å , which consists of the character ANGSTROM SIGN (U+212B),
and a second property named Å , which consists of the character L ATIN CAPITAL LETTER A WITH RING ABOVE (U+00C5). Both the C# and Visual
Basic compilers flag the source code as non-CLS-compliant.

https://www.unicode.org/reports/tr15/tr15-18.html
https://docs.microsoft.com/dotnet/api/system.globalization.unicodecategory

public class Size
{
 private double a1;
 private double a2;

 public double Å
 {
 get { return a1; }
 set { a1 = value; }
 }

 public double Å
 {
 get { return a2; }
 set { a2 = value; }
 }
}
// Compilation produces a compiler warning like the following:
// Naming2a.cs(16,18): warning CS3005: Identifier 'Size.Å' differing only in case is not
// CLS-compliant
// Naming2a.cs(10,18): (Location of symbol related to previous warning)
// Naming2a.cs(18,8): warning CS3005: Identifier 'Size.Å.get' differing only in case is not
// CLS-compliant
// Naming2a.cs(12,8): (Location of symbol related to previous warning)
// Naming2a.cs(19,8): warning CS3005: Identifier 'Size.Å.set' differing only in case is not
// CLS-compliant
// Naming2a.cs(13,8): (Location of symbol related to previous warning)

<Assembly: CLSCompliant(True)>
Public Class Size
 Private a1 As Double
 Private a2 As Double

 Public Property Å As Double
 Get
 Return a1
 End Get
 Set
 a1 = value
 End Set
 End Property

 Public Property Å As Double
 Get
 Return a2
 End Get
 Set
 a2 = value
 End Set
 End Property
End Class
' Compilation produces a compiler warning like the following:
' Naming1.vb(9) : error BC30269: 'Public Property Å As Double' has multiple definitions
' with identical signatures.
'
' Public Property Å As Double
' ~

Member names within a particular scope (such as the namespaces within an assembly, the types within a namespace, or the members within a type)
must be unique except for names that are resolved through overloading. This requirement is more stringent than that of the common type system,
which allows multiple members within a scope to have identical names as long as they are different kinds of members (for example, one is a method
and one is a field). In particular, for type members:

Fields and nested types are distinguished by name alone.

Methods, properties, and events that have the same name must differ by more than just return type.

The following example illustrates the requirement that member names must be unique within their scope. It defines a class named Converter that
includes four members named Conversion . Three are methods, and one is a property. The method that includes an Int64 parameter is uniquely named,
but the two methods with an Int32 parameter are not, because return value is not considered a part of a member's signature. The Conversion property
also violates this requirement, because properties cannot have the same name as overloaded methods.

https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.int32

using System;

[assembly: CLSCompliant(true)]

public class Converter
{
 public double Conversion(int number)
 {
 return (double) number;
 }

 public float Conversion(int number)
 {
 return (float) number;
 }

 public double Conversion(long number)
 {
 return (double) number;
 }

 public bool Conversion
 {
 get { return true; }
 }
}
// Compilation produces a compiler error like the following:
// Naming3.cs(13,17): error CS0111: Type 'Converter' already defines a member called
// 'Conversion' with the same parameter types
// Naming3.cs(8,18): (Location of symbol related to previous error)
// Naming3.cs(23,16): error CS0102: The type 'Converter' already contains a definition for
// 'Conversion'
// Naming3.cs(8,18): (Location of symbol related to previous error)

<Assembly: CLSCompliant(True)>

Public Class Converter
 Public Function Conversion(number As Integer) As Double
 Return CDbl(number)
 End Function

 Public Function Conversion(number As Integer) As Single
 Return CSng(number)
 End Function

 Public Function Conversion(number As Long) As Double
 Return CDbl(number)
 End Function

 Public ReadOnly Property Conversion As Boolean
 Get
 Return True
 End Get
 End Property
End Class
' Compilation produces a compiler error like the following:
' Naming3.vb(8) : error BC30301: 'Public Function Conversion(number As Integer) As Double'
' and 'Public Function Conversion(number As Integer) As Single' cannot
' overload each other because they differ only by return types.
'
' Public Function Conversion(number As Integer) As Double
' ~~~~~~~~~~
' Naming3.vb(20) : error BC30260: 'Conversion' is already declared as 'Public Function
' Conversion(number As Integer) As Single' in this class.
'
' Public ReadOnly Property Conversion As Boolean
' ~~~~~~~~~~

Individual languages include unique keywords, so languages that target the common language runtime must also provide some mechanism for
referencing identifiers (such as type names) that coincide with keywords. For example, case is a keyword in both C# and Visual Basic. However, the
following Visual Basic example is able to disambiguate a class named case from the case keyword by using opening and closing braces. Otherwise,
the example would produce the error message, "Keyword is not valid as an identifier," and fail to compile.

Public Class [case]
 Private _id As Guid
 Private name As String

 Public Sub New(name As String)
 _id = Guid.NewGuid()
 Me.name = name
 End Sub

 Public ReadOnly Property ClientName As String
 Get
 Return name
 End Get
 End Property
End Class

using System;

public class Example
{
 public static void Main()
 {
 @case c = new @case("John");
 Console.WriteLine(c.ClientName);
 }
}

Type conversionType conversion

The following C# example is able to instantiate the case class by using the @ symbol to disambiguate the identifier from the language keyword.
Without it, the C# compiler would display two error messages, "Type expected" and "Invalid expression term 'case'."

The Common Language Specification defines two conversion operators:

op_Implicit , which is used for widening conversions that do not result in loss of data or precision. For example, the Decimal structure includes
an overloaded op_Implicit operator to convert values of integral types and Char values to Decimal values.

op_Explicit , which is used for narrowing conversions that can result in loss of magnitude (a value is converted to a value that has a smaller
range) or precision. For example, the Decimal structure includes an overloaded op_Explicit operator to convert Double and Single values to
Decimal and to convert Decimal values to integral values, Double, Single, and Char.

However, not all languages support operator overloading or the definition of custom operators. If you choose to implement these conversion operators,
you should also provide an alternate way to perform the conversion. We recommend that you provide From Xxx and To Xxx methods.

The following example defines CLS-compliant implicit and explicit conversions. It creates a UDouble class that represents an signed double-precision,
floating-point number. It provides for implicit conversions from UDouble to Double and for explicit conversions from UDouble to Single, Double to
UDouble , and Single to UDouble . It also defines a ToDouble method as an alternative to the implicit conversion operator and the ToSingle , FromDouble ,

and FromSingle methods as alternatives to the explicit conversion operators.

https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single

using System;

public struct UDouble
{
 private double number;

 public UDouble(double value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 number = value;
 }

 public UDouble(float value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 number = value;
 }

 public static readonly UDouble MinValue = (UDouble) 0.0;
 public static readonly UDouble MaxValue = (UDouble) Double.MaxValue;

 public static explicit operator Double(UDouble value)
 {
 return value.number;
 }

 public static implicit operator Single(UDouble value)
 {
 if (value.number > (double) Single.MaxValue)
 throw new InvalidCastException("A UDouble value is out of range of the Single type.");

 return (float) value.number;
 }

 public static explicit operator UDouble(double value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 return new UDouble(value);
 }

 public static implicit operator UDouble(float value)
 {
 if (value < 0)
 throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

 return new UDouble(value);
 }

 public static Double ToDouble(UDouble value)
 {
 return (Double) value;
 }

 public static float ToSingle(UDouble value)
 {
 return (float) value;
 }

 public static UDouble FromDouble(double value)
 {
 return new UDouble(value);
 }

 public static UDouble FromSingle(float value)
 {
 return new UDouble(value);
 }
}

Public Structure UDouble
 Private number As Double

 Public Sub New(value As Double)
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 number = value
 End Sub

 Public Sub New(value As Single)
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 number = value
 End Sub

 Public Shared ReadOnly MinValue As UDouble = CType(0.0, UDouble)
 Public Shared ReadOnly MaxValue As UDouble = Double.MaxValue

 Public Shared Widening Operator CType(value As UDouble) As Double
 Return value.number
 End Operator

 Public Shared Narrowing Operator CType(value As UDouble) As Single
 If value.number > CDbl(Single.MaxValue) Then
 Throw New InvalidCastException("A UDouble value is out of range of the Single type.")
 End If
 Return CSng(value.number)
 End Operator

 Public Shared Narrowing Operator CType(value As Double) As UDouble
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 Return New UDouble(value)
 End Operator

 Public Shared Narrowing Operator CType(value As Single) As UDouble
 If value < 0 Then
 Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
 End If
 Return New UDouble(value)
 End Operator

 Public Shared Function ToDouble(value As UDouble) As Double
 Return CType(value, Double)
 End Function

 Public Shared Function ToSingle(value As UDouble) As Single
 Return CType(value, Single)
 End Function

 Public Shared Function FromDouble(value As Double) As UDouble
 Return New UDouble(value)
 End Function

 Public Shared Function FromSingle(value As Single) As UDouble
 Return New UDouble(value)
 End Function
End Structure

ArraysArrays

CLS-compliant arrays conform to the following rules:

All dimensions of an array must have a lower bound of zero. The following example creates a non-CLS-compliant array with a lower bound of
one. Note that, despite the presence of the CLSCompliantAttribute attribute, the compiler does not detect that the array returned by the
Numbers.GetTenPrimes method is not CLS-compliant.

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static Array GetTenPrimes()
 {
 Array arr = Array.CreateInstance(typeof(Int32), new int[] {10}, new int[] {1});
 arr.SetValue(1, 1);
 arr.SetValue(2, 2);
 arr.SetValue(3, 3);
 arr.SetValue(5, 4);
 arr.SetValue(7, 5);
 arr.SetValue(11, 6);
 arr.SetValue(13, 7);
 arr.SetValue(17, 8);
 arr.SetValue(19, 9);
 arr.SetValue(23, 10);

 return arr;
 }
}

<Assembly: CLSCompliant(True)>

Public Class Numbers
 Public Shared Function GetTenPrimes() As Array
 Dim arr As Array = Array.CreateInstance(GetType(Int32), {10}, {1})
 arr.SetValue(1, 1)
 arr.SetValue(2, 2)
 arr.SetValue(3, 3)
 arr.SetValue(5, 4)
 arr.SetValue(7, 5)
 arr.SetValue(11, 6)
 arr.SetValue(13, 7)
 arr.SetValue(17, 8)
 arr.SetValue(19, 9)
 arr.SetValue(23, 10)

 Return arr
 End Function
End Class

using System;

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static UInt32[] GetTenPrimes()
 {
 uint[] arr = { 1u, 2u, 3u, 5u, 7u, 11u, 13u, 17u, 19u };
 return arr;
 }

 public static Object[] GetFivePrimes()
 {
 Object[] arr = { 1, 2, 3, 5u, 7u };
 return arr;
 }
}
// Compilation produces a compiler warning like the following:
// Array2.cs(8,27): warning CS3002: Return type of 'Numbers.GetTenPrimes()' is not
// CLS-compliant

All array elements must consist of CLS-compliant types. The following example defines two methods that return non-CLS-compliant arrays. The
first returns an array of UInt32 values. The second returns an Object array that includes Int32 and UInt32 values. Although the compiler
identifies the first array as non-compliant because of its UInt32 type, it fails to recognize that the second array includes non-CLS-compliant
elements.

https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint32

<Assembly: CLSCompliant(True)>

Public Class Numbers
 Public Shared Function GetTenPrimes() As UInt32()
 Return { 1ui, 2ui, 3ui, 5ui, 7ui, 11ui, 13ui, 17ui, 19ui }
 End Function

 Public Shared Function GetFivePrimes() As Object()
 Dim arr() As Object = { 1, 2, 3, 5ui, 7ui }
 Return arr
 End Function
End Class
' Compilation produces a compiler warning like the following:
' warning BC40027: Return type of function 'GetTenPrimes' is not CLS-compliant.
'
' Public Shared Function GetTenPrimes() As UInt32()
' ~~~~~~~~~~~~

using System;
using System.Numerics;

[assembly: CLSCompliant(true)]

public class Numbers
{
 public static byte[] GetSquares(byte[] numbers)
 {
 byte[] numbersOut = new byte[numbers.Length];
 for (int ctr = 0; ctr < numbers.Length; ctr++) {
 int square = ((int) numbers[ctr]) * ((int) numbers[ctr]);
 if (square <= Byte.MaxValue)
 numbersOut[ctr] = (byte) square;
 // If there's an overflow, assign MaxValue to the corresponding
 // element.
 else
 numbersOut[ctr] = Byte.MaxValue;

 }
 return numbersOut;
 }

 public static BigInteger[] GetSquares(BigInteger[] numbers)
 {
 BigInteger[] numbersOut = new BigInteger[numbers.Length];
 for (int ctr = 0; ctr < numbers.Length; ctr++)
 numbersOut[ctr] = numbers[ctr] * numbers[ctr];

 return numbersOut;
 }
}

Imports System.Numerics

<Assembly: CLSCompliant(True)>

Public Module Numbers
 Public Function GetSquares(numbers As Byte()) As Byte()
 Dim numbersOut(numbers.Length - 1) As Byte
 For ctr As Integer = 0 To numbers.Length - 1
 Dim square As Integer = (CInt(numbers(ctr)) * CInt(numbers(ctr)))
 If square <= Byte.MaxValue Then
 numbersOut(ctr) = CByte(square)
 ' If there's an overflow, assign MaxValue to the corresponding
 ' element.
 Else
 numbersOut(ctr) = Byte.MaxValue
 End If
 Next
 Return numbersOut
 End Function

 Public Function GetSquares(numbers As BigInteger()) As BigInteger()
 Dim numbersOut(numbers.Length - 1) As BigInteger
 For ctr As Integer = 0 To numbers.Length - 1
 numbersOut(ctr) = numbers(ctr) * numbers(ctr)
 Next
 Return numbersOut
 End Function
End Module

Overload resolution for methods that have array parameters is based on the fact that they are arrays and on their element type. For this reason,
the following definition of an overloaded GetSquares method is CLS-compliant.

InterfacesInterfaces
CLS-compliant interfaces can define properties, events, and virtual methods (methods with no implementation). A CLS-compliant interface cannot have
any of the following:

using System;

[assembly:CLSCompliant(true)]

public interface INumber
{
 int Length();
 [CLSCompliant(false)] ulong GetUnsigned();
}
// Attempting to compile the example displays output like the following:
// Interface2.cs(8,32): warning CS3010: 'INumber.GetUnsigned()': CLS-compliant interfaces
// must have only CLS-compliant members

<Assembly: CLSCompliant(True)>

Public Interface INumber
 Function Length As Integer

 <CLSCompliant(False)> Function GetUnsigned As ULong
End Interface
' Attempting to compile the example displays output like the following:
' Interface2.vb(9) : warning BC40033: Non CLS-compliant 'function' is not allowed in a
' CLS-compliant interface.
'
' <CLSCompliant(False)> Function GetUnsigned As ULong
' ~~~~~~~~~~~

Static methods or static fields. Both the C# and Visual Basic compilers generate compiler errors if you define a static member in an interface.

Fields. Both the C# and Visual Basic compilers generate compiler errors if you define a field in an interface.

Methods that are not CLS-compliant. For example, the following interface definition includes a method, INumber.GetUnsigned , that is marked as
non-CLS-compliant. This example generates a compiler warning.

Because of this rule, CLS-compliant types are not required to implement non-CLS-compliant members. If a CLS-compliant framework does
expose a class that implements a non-CLS compliant interface, it should also provide concrete implementations of all non-CLS-compliant
members.

CLS-compliant language compilers must also allow a class to provide separate implementations of members that have the same name and signature in
multiple interfaces. Both C# and Visual Basic support explicit interface implementations to provide different implementations of identically named
methods. Visual Basic also supports the Implements keyword, which enables you to explicitly designate which interface and member a particular
member implements. The following example illustrates this scenario by defining a Temperature class that implements the ICelsius and IFahrenheit

interfaces as explicit interface implementations.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation

using System;

[assembly: CLSCompliant(true)]

public interface IFahrenheit
{
 decimal GetTemperature();
}

public interface ICelsius
{
 decimal GetTemperature();
}

public class Temperature : ICelsius, IFahrenheit
{
 private decimal _value;

 public Temperature(decimal value)
 {
 // We assume that this is the Celsius value.
 _value = value;
 }

 decimal IFahrenheit.GetTemperature()
 {
 return _value * 9 / 5 + 32;
 }

 decimal ICelsius.GetTemperature()
 {
 return _value;
 }
}
public class Example
{
 public static void Main()
 {
 Temperature temp = new Temperature(100.0m);
 ICelsius cTemp = temp;
 IFahrenheit fTemp = temp;
 Console.WriteLine("Temperature in Celsius: {0} degrees",
 cTemp.GetTemperature());
 Console.WriteLine("Temperature in Fahrenheit: {0} degrees",
 fTemp.GetTemperature());
 }
}
// The example displays the following output:
// Temperature in Celsius: 100.0 degrees
// Temperature in Fahrenheit: 212.0 degrees

<Assembly: CLSCompliant(True)>

Public Interface IFahrenheit
 Function GetTemperature() As Decimal
End Interface

Public Interface ICelsius
 Function GetTemperature() As Decimal
End Interface

Public Class Temperature : Implements ICelsius, IFahrenheit
 Private _value As Decimal

 Public Sub New(value As Decimal)
 ' We assume that this is the Celsius value.
 _value = value
 End Sub

 Public Function GetFahrenheit() As Decimal _
 Implements IFahrenheit.GetTemperature
 Return _value * 9 / 5 + 32
 End Function

 Public Function GetCelsius() As Decimal _
 Implements ICelsius.GetTemperature
 Return _value
 End Function
End Class

Module Example
 Public Sub Main()
 Dim temp As New Temperature(100.0d)
 Console.WriteLine("Temperature in Celsius: {0} degrees",
 temp.GetCelsius())
 Console.WriteLine("Temperature in Fahrenheit: {0} degrees",
 temp.GetFahrenheit())
 End Sub
End Module
' The example displays the following output:
' Temperature in Celsius: 100.0 degrees
' Temperature in Fahrenheit: 212.0 degrees

EnumerationsEnumerations

CLS-compliant enumerations must follow these rules:

using System;

[assembly: CLSCompliant(true)]

public enum Size : uint {
 Unspecified = 0,
 XSmall = 1,
 Small = 2,
 Medium = 3,
 Large = 4,
 XLarge = 5
};

public class Clothing
{
 public string Name;
 public string Type;
 public string Size;
}
// The attempt to compile the example displays a compiler warning like the following:
// Enum3.cs(6,13): warning CS3009: 'Size': base type 'uint' is not CLS-compliant

The underlying type of the enumeration must be an intrinsic CLS-compliant integer (Byte, Int16, Int32, or Int64). For example, the following code
tries to define an enumeration whose underlying type is UInt32 and generates a compiler warning.

https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint32

Type members in generalType members in general

Member accessibilityMember accessibility

<Assembly: CLSCompliant(True)>

Public Enum Size As UInt32
 Unspecified = 0
 XSmall = 1
 Small = 2
 Medium = 3
 Large = 4
 XLarge = 5
End Enum

Public Class Clothing
 Public Name As String
 Public Type As String
 Public Size As Size
End Class
' The attempt to compile the example displays a compiler warning like the following:
' Enum3.vb(6) : warning BC40032: Underlying type 'UInt32' of Enum is not CLS-compliant.
'
' Public Enum Size As UInt32
' ~~~~

An enumeration type must have a single instance field named Value__ that is marked with the FieldAttributes.RTSpecialName attribute. This
enables you to reference the field value implicitly.

An enumeration includes literal static fields whose types match the type of the enumeration itself. For example, if you define a State

enumeration with values of State.On and State.Off , State.On and State.Off are both literal static fields whose type is State .

There are two kinds of enumerations:

An enumeration that represents a set of mutually exclusive, named integer values. This type of enumeration is indicated by the absence of
the System.FlagsAttribute custom attribute.

An enumeration that represents a set of bit flags that can combine to generate an unnamed value. This type of enumeration is indicated by
the presence of the System.FlagsAttribute custom attribute.

For more information, see the documentation for the Enum structure.

The value of an enumeration is not limited to the range of its specified values. In other words, the range of values in an enumeration is the range
of its underlying value. You can use the Enum.IsDefined method to determine whether a specified value is a member of an enumeration.

The Common Language Specification requires all fields and methods to be accessed as members of a particular class. Therefore, global static fields and
methods (that is, static fields or methods that are defined apart from a type) are not CLS-compliant. If you try to include a global field or method in your
source code, both the C# and Visual Basic compilers generate a compiler error.

The Common Language Specification supports only the standard managed calling convention. It doesn't support unmanaged calling conventions and
methods with variable argument lists marked with the varargs keyword. For variable argument lists that are compatible with the standard managed
calling convention, use the ParamArrayAttribute attribute or the individual language's implementation, such as the params keyword in C# and the
ParamArray keyword in Visual Basic.

Overriding an inherited member cannot change the accessibility of that member. For example, a public method in a base class cannot be overridden by
a private method in a derived class. There is one exception: a protected internal (in C#) or Protected Friend (in Visual Basic) member in one assembly
that is overridden by a type in a different assembly. In that case, the accessibility of the override is Protected .

The following example illustrates the error that is generated when the CLSCompliantAttribute attribute is set to true , and Person , which is a class
derived from Animal , tries to change the accessibility of the Species property from public to private. The example compiles successfully if its
accessibility is changed to public.

https://docs.microsoft.com/dotnet/api/system.reflection.fieldattributes#System_Reflection_FieldAttributes_RTSpecialName
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.enum.isdefined
https://docs.microsoft.com/dotnet/api/system.paramarrayattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

using System;

[assembly: CLSCompliant(true)]

public class Animal
{
 private string _species;

 public Animal(string species)
 {
 _species = species;
 }

 public virtual string Species
 {
 get { return _species; }
 }

 public override string ToString()
 {
 return _species;
 }
}

public class Human : Animal
{
 private string _name;

 public Human(string name) : base("Homo Sapiens")
 {
 _name = name;
 }

 public string Name
 {
 get { return _name; }
 }

 private override string Species
 {
 get { return base.Species; }
 }

 public override string ToString()
 {
 return _name;
 }
}

public class Example
{
 public static void Main()
 {
 Human p = new Human("John");
 Console.WriteLine(p.Species);
 Console.WriteLine(p.ToString());
 }
}
// The example displays the following output:
// error CS0621: 'Human.Species': virtual or abstract members cannot be private

<Assembly: CLSCompliant(True)>

Public Class Animal
 Private _species As String

 Public Sub New(species As String)
 _species = species
 End Sub

 Public Overridable ReadOnly Property Species As String
 Get
 Return _species
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return _species
 End Function
End Class

Public Class Human : Inherits Animal
 Private _name As String

 Public Sub New(name As String)
 MyBase.New("Homo Sapiens")
 _name = name
 End Sub

 Public ReadOnly Property Name As String
 Get
 Return _name
 End Get
 End Property

 Private Overrides ReadOnly Property Species As String
 Get
 Return MyBase.Species
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return _name
 End Function
End Class

Public Module Example
 Public Sub Main()
 Dim p As New Human("John")
 Console.WriteLine(p.Species)
 Console.WriteLine(p.ToString())
 End Sub
End Module
' The example displays the following output:
' 'Private Overrides ReadOnly Property Species As String' cannot override
' 'Public Overridable ReadOnly Property Species As String' because
' they have different access levels.
'
' Private Overrides ReadOnly Property Species As String

Types in the signature of a member must be accessible whenever that member is accessible. For example, this means that a public member cannot
include a parameter whose type is private, protected, or internal. The following example illustrates the compiler error that results when a StringWrapper

class constructor exposes an internal StringOperationType enumeration value that determines how a string value should be wrapped.

using System;
using System.Text;

public class StringWrapper
{
 string internalString;
 StringBuilder internalSB = null;
 bool useSB = false;

 public StringWrapper(StringOperationType type)
 {
 if (type == StringOperationType.Normal) {
 useSB = false;
 }
 else {
 useSB = true;
 internalSB = new StringBuilder();
 }
 }

 // The remaining source code...
}

internal enum StringOperationType { Normal, Dynamic }
// The attempt to compile the example displays the following output:
// error CS0051: Inconsistent accessibility: parameter type
// 'StringOperationType' is less accessible than method
// 'StringWrapper.StringWrapper(StringOperationType)'

Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class StringWrapper

 Dim internalString As String
 Dim internalSB As StringBuilder = Nothing
 Dim useSB As Boolean = False

 Public Sub New(type As StringOperationType)
 If type = StringOperationType.Normal Then
 useSB = False
 Else
 internalSB = New StringBuilder()
 useSB = True
 End If
 End Sub

 ' The remaining source code...
End Class

Friend Enum StringOperationType As Integer
 Normal = 0
 Dynamic = 1
End Enum
' The attempt to compile the example displays the following output:
' error BC30909: 'type' cannot expose type 'StringOperationType'
' outside the project through class 'StringWrapper'.
'
' Public Sub New(type As StringOperationType)
' ~~~~~~~~~~~~~~~~~~~

Generic types and membersGeneric types and members

Nested types always have at least as many generic parameters as their enclosing type. These correspond by position to the generic parameters in the
enclosing type. The generic type can also include new generic parameters.

The relationship between the generic type parameters of a containing type and its nested types may be hidden by the syntax of individual languages. In
the following example, a generic type Outer<T> contains two nested classes, Inner1A and Inner1B<U> . The calls to the ToString method, which each
class inherits from Object.ToString, show that each nested class includes the type parameters of its containing class.

https://docs.microsoft.com/dotnet/api/system.object.tostring

using System;

[assembly:CLSCompliant(true)]

public class Outer<T>
{
 T value;

 public Outer(T value)
 {
 this.value = value;
 }

 public class Inner1A : Outer<T>
 {
 public Inner1A(T value) : base(value)
 { }
 }

 public class Inner1B<U> : Outer<T>
 {
 U value2;

 public Inner1B(T value1, U value2) : base(value1)
 {
 this.value2 = value2;
 }
 }
}

public class Example
{
 public static void Main()
 {
 var inst1 = new Outer<String>("This");
 Console.WriteLine(inst1);

 var inst2 = new Outer<String>.Inner1A("Another");
 Console.WriteLine(inst2);

 var inst3 = new Outer<String>.Inner1B<int>("That", 2);
 Console.WriteLine(inst3);
 }
}
// The example displays the following output:
// Outer`1[System.String]
// Outer`1+Inner1A[System.String]
// Outer`1+Inner1B`1[System.String,System.Int32]

<Assembly:CLSCompliant(True)>

Public Class Outer(Of T)
 Dim value As T

 Public Sub New(value As T)
 Me.value = value
 End Sub

 Public Class Inner1A : Inherits Outer(Of T)
 Public Sub New(value As T)
 MyBase.New(value)
 End Sub
 End Class

 Public Class Inner1B(Of U) : Inherits Outer(Of T)
 Dim value2 As U

 Public Sub New(value1 As T, value2 As U)
 MyBase.New(value1)
 Me.value2 = value2
 End Sub
 End Class
End Class

Public Module Example
 Public Sub Main()
 Dim inst1 As New Outer(Of String)("This")
 Console.WriteLine(inst1)

 Dim inst2 As New Outer(Of String).Inner1A("Another")
 Console.WriteLine(inst2)

 Dim inst3 As New Outer(Of String).Inner1B(Of Integer)("That", 2)
 Console.WriteLine(inst3)
 End Sub
End Module
' The example displays the following output:
' Outer`1[System.String]
' Outer`1+Inner1A[System.String]
' Outer`1+Inner1B`1[System.String,System.Int32]

using System;

[assembly:CLSCompliant(true)]

[CLSCompliant(false)] public class BaseClass
{}

public class BaseCollection<T> where T : BaseClass
{}
// Attempting to compile the example displays the following output:
// warning CS3024: Constraint type 'BaseClass' is not CLS-compliant

<Assembly: CLSCompliant(True)>

<CLSCompliant(False)> Public Class BaseClass
End Class

Public Class BaseCollection(Of T As BaseClass)
End Class
' Attempting to compile the example displays the following output:
' warning BC40040: Generic parameter constraint type 'BaseClass' is not
' CLS-compliant.
'
' Public Class BaseCollection(Of T As BaseClass)
' ~~~~~~~~~

Generic type names are encoded in the form name`n, where name is the type name, ` is a character literal, and n is the number of parameters declared
on the type, or, for nested generic types, the number of newly introduced type parameters. This encoding of generic type names is primarily of interest
to developers who use reflection to access CLS-complaint generic types in a library.

If constraints are applied to a generic type, any types used as constraints must also be CLS-compliant. The following example defines a class named
BaseClass that is not CLS-compliant and a generic class named BaseCollection whose type parameter must derive from BaseClass . But because
BaseClass is not CLS-compliant, the compiler emits a warning.

If a generic type is derived from a generic base type, it must redeclare any constraints so that it can guarantee that constraints on the base type are also
satisfied. The following example defines a Number<T> that can represent any numeric type. It also defines a FloatingPoint<T> class that represents a
floating point value. However, the source code fails to compile, because it does not apply the constraint on Number<T> (that T must be a value type) to

using System;

[assembly:CLSCompliant(true)]

public class Number<T> where T : struct
{
 // use Double as the underlying type, since its range is a superset of
 // the ranges of all numeric types except BigInteger.
 protected double number;

 public Number(T value)
 {
 try {
 this.number = Convert.ToDouble(value);
 }
 catch (OverflowException e) {
 throw new ArgumentException("value is too large.", e);
 }
 catch (InvalidCastException e) {
 throw new ArgumentException("The value parameter is not numeric.", e);
 }
 }

 public T Add(T value)
 {
 return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
 }

 public T Subtract(T value)
 {
 return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
 }
}

public class FloatingPoint<T> : Number<T>
{
 public FloatingPoint(T number) : base(number)
 {
 if (typeof(float) == number.GetType() ||
 typeof(double) == number.GetType() ||
 typeof(decimal) == number.GetType())
 this.number = Convert.ToDouble(number);
 else
 throw new ArgumentException("The number parameter is not a floating-point number.");
 }
}
// The attempt to comple the example displays the following output:
// error CS0453: The type 'T' must be a non-nullable value type in
// order to use it as parameter 'T' in the generic type or method 'Number<T>'

FloatingPoint<T> .

<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
 ' Use Double as the underlying type, since its range is a superset of
 ' the ranges of all numeric types except BigInteger.
 Protected number As Double

 Public Sub New(value As T)
 Try
 Me.number = Convert.ToDouble(value)
 Catch e As OverflowException
 Throw New ArgumentException("value is too large.", e)
 Catch e As InvalidCastException
 Throw New ArgumentException("The value parameter is not numeric.", e)
 End Try
 End Sub

 Public Function Add(value As T) As T
 Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
 End Function

 Public Function Subtract(value As T) As T
 Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
 End Function
End Class

Public Class FloatingPoint(Of T) : Inherits Number(Of T)
 Public Sub New(number As T)
 MyBase.New(number)
 If TypeOf number Is Single Or
 TypeOf number Is Double Or
 TypeOf number Is Decimal Then
 Me.number = Convert.ToDouble(number)
 Else
 throw new ArgumentException("The number parameter is not a floating-point number.")
 End If
 End Sub
End Class
' The attempt to comple the example displays the following output:
' error BC32105: Type argument 'T' does not satisfy the 'Structure'
' constraint for type parameter 'T'.
'
' Public Class FloatingPoint(Of T) : Inherits Number(Of T)
' ~

The example compiles successfully if the constraint is added to the FloatingPoint<T> class.

using System;

[assembly:CLSCompliant(true)]

public class Number<T> where T : struct
{
 // use Double as the underlying type, since its range is a superset of
 // the ranges of all numeric types except BigInteger.
 protected double number;

 public Number(T value)
 {
 try {
 this.number = Convert.ToDouble(value);
 }
 catch (OverflowException e) {
 throw new ArgumentException("value is too large.", e);
 }
 catch (InvalidCastException e) {
 throw new ArgumentException("The value parameter is not numeric.", e);
 }
 }

 public T Add(T value)
 {
 return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
 }

 public T Subtract(T value)
 {
 return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
 }
}

public class FloatingPoint<T> : Number<T> where T : struct
{
 public FloatingPoint(T number) : base(number)
 {
 if (typeof(float) == number.GetType() ||
 typeof(double) == number.GetType() ||
 typeof(decimal) == number.GetType())
 this.number = Convert.ToDouble(number);
 else
 throw new ArgumentException("The number parameter is not a floating-point number.");
 }
}

<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
 ' Use Double as the underlying type, since its range is a superset of
 ' the ranges of all numeric types except BigInteger.
 Protected number As Double

 Public Sub New(value As T)
 Try
 Me.number = Convert.ToDouble(value)
 Catch e As OverflowException
 Throw New ArgumentException("value is too large.", e)
 Catch e As InvalidCastException
 Throw New ArgumentException("The value parameter is not numeric.", e)
 End Try
 End Sub

 Public Function Add(value As T) As T
 Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
 End Function

 Public Function Subtract(value As T) As T
 Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
 End Function
End Class

Public Class FloatingPoint(Of T As Structure) : Inherits Number(Of T)
 Public Sub New(number As T)
 MyBase.New(number)
 If TypeOf number Is Single Or
 TypeOf number Is Double Or
 TypeOf number Is Decimal Then
 Me.number = Convert.ToDouble(number)
 Else
 throw new ArgumentException("The number parameter is not a floating-point number.")
 End If
 End Sub
End Class

using System;

[assembly:CLSCompliant(true)]

public class C1<T>
{
 protected class N { }

 protected void M1(C1<int>.N n) { } // Not CLS-compliant - C1<int>.N not
 // accessible from within C1<T> in all
 // languages
 protected void M2(C1<T>.N n) { } // CLS-compliant – C1<T>.N accessible
 // inside C1<T>
}

public class C2 : C1<long>
{
 protected void M3(C1<int>.N n) { } // Not CLS-compliant – C1<int>.N is not
 // accessible in C2 (extends C1<long>)

 protected void M4(C1<long>.N n) { } // CLS-compliant, C1<long>.N is
 // accessible in C2 (extends C1<long>)
}
// Attempting to compile the example displays output like the following:
// Generics4.cs(9,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant
// Generics4.cs(18,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant

<Assembly:CLSCompliant(True)>

Public Class C1(Of T)
 Protected Class N
 End Class

 Protected Sub M1(n As C1(Of Integer).N) ' Not CLS-compliant - C1<int>.N not
 ' accessible from within C1(Of T) in all
 End Sub ' languages

 Protected Sub M2(n As C1(Of T).N) ' CLS-compliant – C1(Of T).N accessible
 End Sub ' inside C1(Of T)
End Class

Public Class C2 : Inherits C1(Of Long)
 Protected Sub M3(n As C1(Of Integer).N) ' Not CLS-compliant – C1(Of Integer).N is not
 End Sub ' accessible in C2 (extends C1(Of Long))

 Protected Sub M4(n As C1(Of Long).N)
 End Sub
End Class
' Attempting to compile the example displays output like the following:
' error BC30508: 'n' cannot expose type 'C1(Of Integer).N' in namespace
' '<Default>' through class 'C1'.
'
' Protected Sub M1(n As C1(Of Integer).N) ' Not CLS-compliant - C1<int>.N not
' ~~~~~~~~~~~~~~~~
' error BC30389: 'C1(Of T).N' is not accessible in this context because
' it is 'Protected'.
'
' Protected Sub M3(n As C1(Of Integer).N) ' Not CLS-compliant - C1(Of Integer).N is not
'
' ~~~~~~~~~~~~~~~~
'
' error BC30389: 'C1(Of T).N' is not accessible in this context because it is 'Protected'.
'
' Protected Sub M4(n As C1(Of Long).N)
' ~~~~~~~~~~~~~

ConstructorsConstructors

The Common Language Specification imposes a conservative per-instantiation model for nested types and protected members. Open generic types
cannot expose fields or members with signatures that contain a specific instantiation of a nested, protected generic type. Non-generic types that extend
a specific instantiation of a generic base class or interface cannot expose fields or members with signatures that contain a different instantiation of a
nested, protected generic type.

The following example defines a generic type, C1<T> (or C1(Of T) in Visual Basic), and a protected class, C1<T>.N (or C1(Of T).N in Visual Basic).
C1<T> has two methods, M1 and M2 . However, M1 is not CLS-compliant because it tries to return a C1<int>.N (or C1(Of Integer).N) object from

C1<T> (or C1(Of T)). A second class, C2 , is derived from C1<long> (or C1(Of Long)). It has two methods, M3 and M4 . M3 is not CLS-compliant
because it tries to return a C1<int>.N (or C1(Of Integer).N) object from a subclass of C1<long> . Note that language compilers can be even more
restrictive. In this example, Visual Basic displays an error when it tries to compile M4 .

Constructors in CLS-compliant classes and structures must follow these rules:

A constructor of a derived class must call the instance constructor of its base class before it accesses inherited instance data. This requirement is

using System;

[assembly: CLSCompliant(true)]

public class Person
{
 private string fName, lName, _id;

 public Person(string firstName, string lastName, string id)
 {
 if (String.IsNullOrEmpty(firstName + lastName))
 throw new ArgumentNullException("Either a first name or a last name must be provided.");

 fName = firstName;
 lName = lastName;
 _id = id;
 }

 public string FirstName
 {
 get { return fName; }
 }

 public string LastName
 {
 get { return lName; }
 }

 public string Id
 {
 get { return _id; }
 }

 public override string ToString()
 {
 return String.Format("{0}{1}{2}", fName,
 String.IsNullOrEmpty(fName) ? "" : " ",
 lName);
 }
}

public class Doctor : Person
{
 public Doctor(string firstName, string lastName, string id)
 {
 }

 public override string ToString()
 {
 return "Dr. " + base.ToString();
 }
}
// Attempting to compile the example displays output like the following:
// ctor1.cs(45,11): error CS1729: 'Person' does not contain a constructor that takes 0
// arguments
// ctor1.cs(10,11): (Location of symbol related to previous error)

due to the fact that base class constructors are not inherited by their derived classes. This rule does not apply to structures, which do not support
direct inheritance.

Typically, compilers enforce this rule independently of CLS compliance, as the following example shows. It creates a Doctor class that is derived
from a Person class, but the Doctor class fails to call the Person class constructor to initialize inherited instance fields.

PropertiesProperties

EventsEvents

<Assembly: CLSCompliant(True)>

Public Class Person
 Private fName, lName, _id As String

 Public Sub New(firstName As String, lastName As String, id As String)
 If String.IsNullOrEmpty(firstName + lastName) Then
 Throw New ArgumentNullException("Either a first name or a last name must be provided.")
 End If

 fName = firstName
 lName = lastName
 _id = id
 End Sub

 Public ReadOnly Property FirstName As String
 Get
 Return fName
 End Get
 End Property

 Public ReadOnly Property LastName As String
 Get
 Return lName
 End Get
 End Property

 Public ReadOnly Property Id As String
 Get
 Return _id
 End Get
 End Property

 Public Overrides Function ToString() As String
 Return String.Format("{0}{1}{2}", fName,
 If(String.IsNullOrEmpty(fName), "", " "),
 lName)
 End Function
End Class

Public Class Doctor : Inherits Person
 Public Sub New(firstName As String, lastName As String, id As String)
 End Sub

 Public Overrides Function ToString() As String
 Return "Dr. " + MyBase.ToString()
 End Function
End Class
' Attempting to compile the example displays output like the following:
' Ctor1.vb(46) : error BC30148: First statement of this 'Sub New' must be a call
' to 'MyBase.New' or 'MyClass.New' because base class 'Person' of 'Doctor' does
' not have an accessible 'Sub New' that can be called with no arguments.
'
' Public Sub New()
' ~~~

An object constructor cannot be called except to create an object. In addition, an object cannot be initialized twice. For example, this means that
Object.MemberwiseClone and deserialization methods such as BinaryFormatter.Deserialize must not call constructors.

Properties in CLS-compliant types must follow these rules:

A property must have a setter, a getter, or both. In an assembly, these are implemented as special methods, which means that they will appear as
separate methods (the getter is named get_ propertyname and the setter is set_ propertyname) marked as SpecialName in the assembly's
metadata. The C# and Visual Basic compilers enforce this rule automatically without the need to apply the CLSCompliantAttribute attribute.

A property's type is the return type of the property getter and the last argument of the setter. These types must be CLS compliant, and
arguments cannot be assigned to the property by reference (that is, they cannot be managed pointers).

If a property has both a getter and a setter, they must both be virtual, both static, or both instance. The C# and Visual Basic compilers
automatically enforce this rule through their property definition syntax.

An event is defined by its name and its type. The event type is a delegate that is used to indicate the event. For example, the
AppDomain.AssemblyResolve event is of type ResolveEventHandler. In addition to the event itself, three methods with names based on the event name
provide the event's implementation and are marked as SpecialName in the assembly's metadata:

A method for adding an event handler, named add_ EventName. For example, the event subscription method for the
AppDomain.AssemblyResolve event is named add_AssemblyResolve .

A method for removing an event handler, named remove_ EventName. For example, the removal method for the AppDomain.AssemblyResolve
event is named remove_AssemblyResolve .

https://docs.microsoft.com/dotnet/api/system.object.memberwiseclone
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.formatters.binary.binaryformatter.deserialize
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyresolve
https://docs.microsoft.com/dotnet/api/system.resolveeventhandler
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyresolve
https://docs.microsoft.com/dotnet/api/system.appdomain.assemblyresolve

NOTENOTE

using System;
using System.Collections;
using System.Collections.Generic;

[assembly: CLSCompliant(true)]

public class TemperatureChangedEventArgs : EventArgs
{
 private Decimal originalTemp;
 private Decimal newTemp;
 private DateTimeOffset when;

 public TemperatureChangedEventArgs(Decimal original, Decimal @new, DateTimeOffset time)
 {
 originalTemp = original;
 newTemp = @new;
 when = time;
 }

 public Decimal OldTemperature
 {
 get { return originalTemp; }
 }

 public Decimal CurrentTemperature
 {
 get { return newTemp; }
 }

 public DateTimeOffset Time
 {
 get { return when; }
 }
}

public delegate void TemperatureChanged(Object sender, TemperatureChangedEventArgs e);

public class Temperature
{
 private struct TemperatureInfo
 {
 public Decimal Temperature;
 public DateTimeOffset Recorded;
 }

 public event TemperatureChanged TemperatureChanged;

 private Decimal previous;
 private Decimal current;
 private Decimal tolerance;
 private List<TemperatureInfo> tis = new List<TemperatureInfo>();

 public Temperature(Decimal temperature, Decimal tolerance)
 {
 current = temperature;
 TemperatureInfo ti = new TemperatureInfo();
 ti.Temperature = temperature;
 tis.Add(ti);
 ti.Recorded = DateTimeOffset.UtcNow;
 this.tolerance = tolerance;
 }

 public Decimal CurrentTemperature
 {
 get { return current; }
 set {
 TemperatureInfo ti = new TemperatureInfo();
 ti.Temperature = value;
 ti.Recorded = DateTimeOffset.UtcNow;
 previous = current;
 current = value;

A method for indicating that the event has occurred, named raise_ EventName.

Most of the Common Language Specification's rules regarding events are implemented by language compilers and are transparent to component developers.

The methods for adding, removing, and raising the event must have the same accessibility. They must also all be static, instance, or virtual. The methods
for adding and removing an event have one parameter whose type is the event delegate type. The add and remove methods must both be present or
both be absent.

The following example defines a CLS-compliant class named Temperature that raises a TemperatureChanged event if the change in temperature between
two readings equals or exceeds a threshold value. The Temperature class explicitly defines a raise_TemperatureChanged method so that it can selectively
execute event handlers.

 if (Math.Abs(current - previous) >= tolerance)
 raise_TemperatureChanged(new TemperatureChangedEventArgs(previous, current, ti.Recorded));
 }
 }

 public void raise_TemperatureChanged(TemperatureChangedEventArgs eventArgs)
 {
 if (TemperatureChanged == null)
 return;

 foreach (TemperatureChanged d in TemperatureChanged.GetInvocationList()) {
 if (d.Method.Name.Contains("Duplicate"))
 Console.WriteLine("Duplicate event handler; event handler not executed.");
 else
 d.Invoke(this, eventArgs);
 }
 }
}

public class Example
{
 public Temperature temp;

 public static void Main()
 {
 Example ex = new Example();
 }

 public Example()
 {
 temp = new Temperature(65, 3);
 temp.TemperatureChanged += this.TemperatureNotification;
 RecordTemperatures();
 Example ex = new Example(temp);
 ex.RecordTemperatures();
 }

 public Example(Temperature t)
 {
 temp = t;
 RecordTemperatures();
 }

 public void RecordTemperatures()
 {
 temp.TemperatureChanged += this.DuplicateTemperatureNotification;
 temp.CurrentTemperature = 66;
 temp.CurrentTemperature = 63;
 }

 internal void TemperatureNotification(Object sender, TemperatureChangedEventArgs e)
 {
 Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);
 }

 public void DuplicateTemperatureNotification(Object sender, TemperatureChangedEventArgs e)
 {
 Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);
 }
}

Imports System.Collections
Imports System.Collections.Generic

<Assembly: CLSCompliant(True)>

Public Class TemperatureChangedEventArgs : Inherits EventArgs
 Private originalTemp As Decimal
 Private newTemp As Decimal
 Private [when] As DateTimeOffset

 Public Sub New(original As Decimal, [new] As Decimal, [time] As DateTimeOffset)
 originalTemp = original
 newTemp = [new]
 [when] = [time]
 End Sub

 Public ReadOnly Property OldTemperature As Decimal
 Get
 Return originalTemp
 End Get
 End Property

 Public ReadOnly Property CurrentTemperature As Decimal
 Get
 Return newTemp
 End Get
 End Property

 Public ReadOnly Property [Time] As DateTimeOffset
 Get
 Return [when]
 End Get
 End Property
End Class

Public Delegate Sub TemperatureChanged(sender As Object, e As TemperatureChangedEventArgs)

Public Class Temperature
 Private Structure TemperatureInfo
 Dim Temperature As Decimal
 Dim Recorded As DateTimeOffset
 End Structure

 Public Event TemperatureChanged As TemperatureChanged

 Private previous As Decimal
 Private current As Decimal
 Private tolerance As Decimal
 Private tis As New List(Of TemperatureInfo)

 Public Sub New(temperature As Decimal, tolerance As Decimal)
 current = temperature
 Dim ti As New TemperatureInfo()
 ti.Temperature = temperature
 ti.Recorded = DateTimeOffset.UtcNow
 tis.Add(ti)
 Me.tolerance = tolerance
 End Sub

 Public Property CurrentTemperature As Decimal
 Get
 Return current
 End Get
 Set
 Dim ti As New TemperatureInfo
 ti.Temperature = value
 ti.Recorded = DateTimeOffset.UtcNow
 previous = current
 current = value
 If Math.Abs(current - previous) >= tolerance Then
 raise_TemperatureChanged(New TemperatureChangedEventArgs(previous, current, ti.Recorded))
 End If
 End Set
 End Property

 Public Sub raise_TemperatureChanged(eventArgs As TemperatureChangedEventArgs)
 If TemperatureChangedEvent Is Nothing Then Exit Sub

 Dim ListenerList() As System.Delegate = TemperatureChangedEvent.GetInvocationList()
 For Each d As TemperatureChanged In TemperatureChangedEvent.GetInvocationList()
 If d.Method.Name.Contains("Duplicate") Then
 Console.WriteLine("Duplicate event handler; event handler not executed.")
 Else
 d.Invoke(Me, eventArgs)
 End If
 Next
 End Sub
End Class

Public Class Example
 Public WithEvents temp As Temperature

 Public Shared Sub Main()
 Dim ex As New Example()
 End Sub

 Public Sub New()
 temp = New Temperature(65, 3)
 RecordTemperatures()
 Dim ex As New Example(temp)
 ex.RecordTemperatures()
 End Sub

 Public Sub New(t As Temperature)
 temp = t
 RecordTemperatures()
 End Sub

 Public Sub RecordTemperatures()
 temp.CurrentTemperature = 66
 temp.CurrentTemperature = 63

 End Sub

 Friend Shared Sub TemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
 Handles temp.TemperatureChanged
 Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)
 End Sub

 End Sub

 Friend Shared Sub DuplicateTemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
 Handles temp.TemperatureChanged
 Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)
 End Sub
End Class

OverloadsOverloads

NOTENOTE

ExceptionsExceptions

using System;

[assembly: CLSCompliant(true)]

public class ErrorClass
{
 string msg;

 public ErrorClass(string errorMessage)
 {
 msg = errorMessage;
 }

 public string Message
 {
 get { return msg; }
 }
}

public static class StringUtilities
{
 public static string[] SplitString(this string value, int index)
 {
 if (index < 0 | index > value.Length) {
 ErrorClass badIndex = new ErrorClass("The index is not within the string.");
 throw badIndex;
 }
 string[] retVal = { value.Substring(0, index - 1),
 value.Substring(index) };
 return retVal;
 }
}
// Compilation produces a compiler error like the following:
// Exceptions1.cs(26,16): error CS0155: The type caught or thrown must be derived from
// System.Exception

The Common Language Specification imposes the following requirements on overloaded members:

Members can be overloaded based on the number of parameters and the type of any parameter. Calling convention, return type, custom
modifiers applied to the method or its parameter, and whether parameters are passed by value or by reference are not considered when
differentiating between overloads. For an example, see the code for the requirement that names must be unique within a scope in the Naming
conventions section.

Only properties and methods can be overloaded. Fields and events cannot be overloaded.

Generic methods can be overloaded based on the number of their generic parameters.

The op_Explicit and op_Implicit operators are exceptions to the rule that return value is not considered part of a method signature for overload resolution.
These two operators can be overloaded based on both their parameters and their return value.

Exception objects must derive from System.Exception or from another type derived from System.Exception. The following example illustrates the
compiler error that results when a custom class named ErrorClass is used for exception handling.

https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.exception

Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass
 Dim msg As String

 Public Sub New(errorMessage As String)
 msg = errorMessage
 End Sub

 Public ReadOnly Property Message As String
 Get
 Return msg
 End Get
 End Property
End Class

Public Module StringUtilities
 <Extension()> Public Function SplitString(value As String, index As Integer) As String()
 If index < 0 Or index > value.Length Then
 Dim BadIndex As New ErrorClass("The index is not within the string.")
 Throw BadIndex
 End If
 Dim retVal() As String = { value.Substring(0, index - 1),
 value.Substring(index) }
 Return retVal
 End Function
End Module
' Compilation produces a compiler error like the following:
' Exceptions1.vb(27) : error BC30665: 'Throw' operand must derive from 'System.Exception'.
'
' Throw BadIndex
' ~~~~~~~~~~~~~~

using System;

[assembly: CLSCompliant(true)]

public class ErrorClass : Exception
{
 string msg;

 public ErrorClass(string errorMessage)
 {
 msg = errorMessage;
 }

 public override string Message
 {
 get { return msg; }
 }
}

public static class StringUtilities
{
 public static string[] SplitString(this string value, int index)
 {
 if (index < 0 | index > value.Length) {
 ErrorClass badIndex = new ErrorClass("The index is not within the string.");
 throw badIndex;
 }
 string[] retVal = { value.Substring(0, index - 1),
 value.Substring(index) };
 return retVal;
 }
}

To correct this error, the ErrorClass class must inherit from System.Exception. In addition, the Message property must be overridden. The following
example corrects these errors to define an ErrorClass class that is CLS-compliant.

https://docs.microsoft.com/dotnet/api/system.exception

Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass : Inherits Exception
 Dim msg As String

 Public Sub New(errorMessage As String)
 msg = errorMessage
 End Sub

 Public Overrides ReadOnly Property Message As String
 Get
 Return msg
 End Get
 End Property
End Class

Public Module StringUtilities
 <Extension()> Public Function SplitString(value As String, index As Integer) As String()
 If index < 0 Or index > value.Length Then
 Dim BadIndex As New ErrorClass("The index is not within the string.")
 Throw BadIndex
 End If
 Dim retVal() As String = { value.Substring(0, index - 1),
 value.Substring(index) }
 Return retVal
 End Function
End Module

AttributesAttributes

using System;

[assembly: CLSCompliant(true)]

[AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct)]
public class NumericAttribute
{
 private bool _isNumeric;

 public NumericAttribute(bool isNumeric)
 {
 _isNumeric = isNumeric;
 }

 public bool IsNumeric
 {
 get { return _isNumeric; }
 }
}

[Numeric(true)] public struct UDouble
{
 double Value;
}
// Compilation produces a compiler error like the following:
// Attribute1.cs(22,2): error CS0616: 'NumericAttribute' is not an attribute class
// Attribute1.cs(7,14): (Location of symbol related to previous error)

In.NET Framework assemblies, custom attributes provide an extensible mechanism for storing custom attributes and retrieving metadata about
programming objects, such as assemblies, types, members, and method parameters. Custom attributes must derive from System.Attribute or from a
type derived from System.Attribute.

The following example violates this rule. It defines a NumericAttribute class that does not derive from System.Attribute. Note that a compiler error
results only when the non-CLS-compliant attribute is applied, not when the class is defined.

https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/dotnet/api/system.attribute

<Assembly: CLSCompliant(True)>

<AttributeUsageAttribute(AttributeTargets.Class Or AttributeTargets.Struct)> _
Public Class NumericAttribute
 Private _isNumeric As Boolean

 Public Sub New(isNumeric As Boolean)
 _isNumeric = isNumeric
 End Sub

 Public ReadOnly Property IsNumeric As Boolean
 Get
 Return _isNumeric
 End Get
 End Property
End Class

<Numeric(True)> Public Structure UDouble
 Dim Value As Double
End Structure
' Compilation produces a compiler error like the following:
' error BC31504: 'NumericAttribute' cannot be used as an attribute because it
' does not inherit from 'System.Attribute'.
'
' <Numeric(True)> Public Structure UDouble
' ~~~~~~~~~~~~~

using System;

[assembly:CLSCompliantAttribute(true)]

public enum DescriptorType { type, member };

public class Descriptor
{
 public DescriptorType Type;
 public String Description;
}

[AttributeUsage(AttributeTargets.All)]
public class DescriptionAttribute : Attribute
{
 private Descriptor desc;

 public DescriptionAttribute(Descriptor d)
 {
 desc = d;
 }

 public Descriptor Descriptor
 { get { return desc; } }
}
// Attempting to compile the example displays output like the following:
// warning CS3015: 'DescriptionAttribute' has no accessible
// constructors which use only CLS-compliant types

The constructor or the properties of a CLS-compliant attribute can expose only the following types:

Boolean

Byte

Char

Double

Int16

Int32

Int64

Single

String

Type

Any enumeration type whose underlying type is Byte, Int16, Int32, or Int64.

The following example defines a DescriptionAttribute class that derives from Attribute. The class constructor has a parameter of type Descriptor , so
the class is not CLS-compliant. Note that the C# compiler emits a warning but compiles successfully, whereas the Visual Basic compiler emits neither a
warning nor an error.

https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.attribute

<Assembly:CLSCompliantAttribute(True)>

Public Enum DescriptorType As Integer
 Type = 0
 Member = 1
End Enum

Public Class Descriptor
 Public Type As DescriptorType
 Public Description As String
End Class

<AttributeUsage(AttributeTargets.All)> _
Public Class DescriptionAttribute : Inherits Attribute
 Private desc As Descriptor

 Public Sub New(d As Descriptor)
 desc = d
 End Sub

 Public ReadOnly Property Descriptor As Descriptor
 Get
 Return desc
 End Get
 End Property
End Class

The CLSCompliantAttribute attribute

WARNINGWARNING

The CLSCompliantAttribute attribute is used to indicate whether a program element complies with the Common Language Specification. The
CLSCompliantAttribute.CLSCompliantAttribute(Boolean) constructor includes a single required parameter, isCompliant , that indicates whether the
program element is CLS-compliant.

At compile time, the compiler detects non-compliant elements that are presumed to be CLS-compliant and emits a warning. The compiler does not emit
warnings for types or members that are explicitly declared to be non-compliant.

Component developers can use the CLSCompliantAttribute attribute in two ways:

To define the parts of the public interface exposed by a component that are CLS-compliant and the parts that are not CLS-compliant. When the
attribute is used to mark particular program elements as CLS-compliant, its use guarantees that those elements are accessible from all languages
and tools that target the .NET Framework.

To ensure that the component library's public interface exposes only program elements that are CLS-compliant. If elements are not CLS-
compliant, compilers will generally issue a warning.

In some cases, language compilers enforce CLS-compliant rules regardless of whether the CLSCompliantAttribute attribute is used. For example, defining a static
member in an interface violates a CLS rule. In this regard, if you define a static (in C#) or Shared (in Visual Basic) member in an interface, both the C# and Visual
Basic compilers display an error message and fail to compile the app.

The CLSCompliantAttribute attribute is marked with an AttributeUsageAttribute attribute that has a value of AttributeTargets.All. This value allows you
to apply the CLSCompliantAttribute attribute to any program element, including assemblies, modules, types (classes, structures, enumerations,
interfaces, and delegates), type members (constructors, methods, properties, fields, and events), parameters, generic parameters, and return values.
However, in practice, you should apply the attribute only to assemblies, types, and type members. Otherwise, compilers ignore the attribute and
continue to generate compiler warnings whenever they encounter a non-compliant parameter, generic parameter, or return value in your library's public
interface.

The value of the CLSCompliantAttribute attribute is inherited by contained program elements. For example, if an assembly is marked as CLS-compliant,
its types are also CLS-compliant. If a type is marked as CLS-compliant, its nested types and members are also CLS-compliant.

You can explicitly override the inherited compliance by applying the CLSCompliantAttribute attribute to a contained program element. For example, you
can use the CLSCompliantAttribute attribute with an isCompliant value of false to define a non-compliant type in a compliant assembly, and you can
use the attribute with an isCompliant value of true to define a compliant type in a non-compliant assembly. You can also define non-compliant
members in a compliant type. However, a non-compliant type cannot have compliant members, so you cannot use the attribute with an isCompliant

value of true to override inheritance from a non-compliant type.

When you are developing components, you should always use the CLSCompliantAttribute attribute to indicate whether your assembly, its types, and its
members are CLS-compliant.

To create CLS-compliant components:

1. Use the CLSCompliantAttribute to mark you assembly as CLS-compliant.

2. Mark any publicly exposed types in the assembly that are not CLS-compliant as non-compliant.

3. Mark any publicly exposed members in CLS-compliant types as non-compliant.

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute.-ctor#System_CLSCompliantAttribute__ctor_System_Boolean_
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.attributeusageattribute
https://docs.microsoft.com/dotnet/api/system.attributetargets#System_AttributeTargets_All
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

using System;
using System.Text;

[assembly:CLSCompliant(true)]

public class CharacterUtilities
{
 [CLSCompliant(false)] public static ushort ToUTF16(String s)
 {
 s = s.Normalize(NormalizationForm.FormC);
 return Convert.ToUInt16(s[0]);
 }

 [CLSCompliant(false)] public static ushort ToUTF16(Char ch)
 {
 return Convert.ToUInt16(ch);
 }

 // CLS-compliant alternative for ToUTF16(String).
 public static int ToUTF16CodeUnit(String s)
 {
 s = s.Normalize(NormalizationForm.FormC);
 return (int) Convert.ToUInt16(s[0]);
 }

 // CLS-compliant alternative for ToUTF16(Char).
 public static int ToUTF16CodeUnit(Char ch)
 {
 return Convert.ToInt32(ch);
 }

 public bool HasMultipleRepresentations(String s)
 {
 String s1 = s.Normalize(NormalizationForm.FormC);
 return s.Equals(s1);
 }

 public int GetUnicodeCodePoint(Char ch)
 {
 if (Char.IsSurrogate(ch))
 throw new ArgumentException("ch cannot be a high or low surrogate.");

 return Char.ConvertToUtf32(ch.ToString(), 0);
 }

 public int GetUnicodeCodePoint(Char[] chars)
 {
 if (chars.Length > 2)
 throw new ArgumentException("The array has too many characters.");

 if (chars.Length == 2) {
 if (! Char.IsSurrogatePair(chars[0], chars[1]))
 throw new ArgumentException("The array must contain a low and a high surrogate.");
 else
 return Char.ConvertToUtf32(chars[0], chars[1]);
 }
 else {
 return Char.ConvertToUtf32(chars.ToString(), 0);
 }
 }
}

4. Provide a CLS-compliant alternative for non-CLS-compliant members.

If you've successfully marked all your non-compliant types and members, your compiler should not emit any non-compliance warnings. However, you
should indicate which members are not CLS-compliant and list their CLS-compliant alternatives in your product documentation.

The following example uses the CLSCompliantAttribute attribute to define a CLS-compliant assembly and a type, CharacterUtilities , that has two
non-CLS-compliant members. Because both members are tagged with the CLSCompliant(false) attribute, the compiler produces no warnings. The class
also provides a CLS-compliant alternative for both methods. Ordinarily, we would just add two overloads to the ToUTF16 method to provide CLS-
compliant alternatives. However, because methods cannot be overloaded based on return value, the names of the CLS-compliant methods are different
from the names of the non-compliant methods.

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class CharacterUtilities
 <CLSCompliant(False)> Public Shared Function ToUTF16(s As String) As UShort
 s = s.Normalize(NormalizationForm.FormC)
 Return Convert.ToUInt16(s(0))
 End Function

 <CLSCompliant(False)> Public Shared Function ToUTF16(ch As Char) As UShort
 Return Convert.ToUInt16(ch)
 End Function

 ' CLS-compliant alternative for ToUTF16(String).
 Public Shared Function ToUTF16CodeUnit(s As String) As Integer
 s = s.Normalize(NormalizationForm.FormC)
 Return CInt(Convert.ToInt16(s(0)))
 End Function

 ' CLS-compliant alternative for ToUTF16(Char).
 Public Shared Function ToUTF16CodeUnit(ch As Char) As Integer
 Return Convert.ToInt32(ch)
 End Function

 Public Function HasMultipleRepresentations(s As String) As Boolean
 Dim s1 As String = s.Normalize(NormalizationForm.FormC)
 Return s.Equals(s1)
 End Function

 Public Function GetUnicodeCodePoint(ch As Char) As Integer
 If Char.IsSurrogate(ch) Then
 Throw New ArgumentException("ch cannot be a high or low surrogate.")
 End If
 Return Char.ConvertToUtf32(ch.ToString(), 0)
 End Function

 Public Function GetUnicodeCodePoint(chars() As Char) As Integer
 If chars.Length > 2 Then
 Throw New ArgumentException("The array has too many characters.")
 End If
 If chars.Length = 2 Then
 If Not Char.IsSurrogatePair(chars(0), chars(1)) Then
 Throw New ArgumentException("The array must contain a low and a high surrogate.")
 Else
 Return Char.ConvertToUtf32(chars(0), chars(1))
 End If
 Else
 Return Char.ConvertToUtf32(chars.ToString(), 0)
 End If
 End Function
End Class

Cross-Language Interoperability

If you are developing an app rather than a library (that is, if you aren't exposing types or members that can be consumed by other app developers), the
CLS compliance of the program elements that your app consumes are of interest only if your language does not support them. In that case, your
language compiler will generate an error when you try to use a non-CLS-compliant element.

Language independence has a number of possible meanings. One meaning, which is discussed in the article Language Independence and Language-
Independent Components, involves seamlessly consuming types written in one language from an app written in another language. A second meaning,
which is the focus of this article, involves combining code written in multiple languages into a single .NET Framework assembly.

The following example illustrates cross-language interoperability by creating a class library named Utilities.dll that includes two classes, NumericLib and
StringLib . The NumericLib class is written in C#, and the StringLib class is written in Visual Basic. Here's the source code for StringUtil.vb, which

includes a single member, ToTitleCase , in its StringLib class.

Imports System.Collections.Generic
Imports System.Runtime.CompilerServices

Public Module StringLib
 Private exclusions As List(Of String)

 Sub New()
 Dim words() As String = { "a", "an", "and", "of", "the" }
 exclusions = New List(Of String)
 exclusions.AddRange(words)
 End Sub

 <Extension()> _
 Public Function ToTitleCase(title As String) As String
 Dim words() As String = title.Split()
 Dim result As String = String.Empty

 For ctr As Integer = 0 To words.Length - 1
 Dim word As String = words(ctr)
 If ctr = 0 OrElse Not exclusions.Contains(word.ToLower()) Then
 result += word.Substring(0, 1).ToUpper() + _
 word.Substring(1).ToLower()
 Else
 result += word.ToLower()
 End If
 If ctr <= words.Length - 1 Then
 result += " "
 End If
 Next
 Return result
 End Function
End Module

using System;

public static class NumericLib
{
 public static bool IsEven(this IConvertible number)
 {
 if (number is Byte ||
 number is SByte ||
 number is Int16 ||
 number is UInt16 ||
 number is Int32 ||
 number is UInt32 ||
 number is Int64)
 return Convert.ToInt64(number) % 2 == 0;
 else if (number is UInt64)
 return ((ulong) number) % 2 == 0;
 else
 throw new NotSupportedException("IsEven called for a non-integer value.");
 }

 public static bool NearZero(double number)
 {
 return Math.Abs(number) < .00001;
 }
}

vbc /t:module StringUtil.vb

csc /t:module NumberUtil.cs

link numberutil.netmodule stringutil.netmodule /out:UtilityLib.dll /dll

Here's the source code for NumberUtil.cs, which defines a NumericLib class that has two members, IsEven and NearZero .

To package the two classes in a single assembly, you must compile them into modules. To compile the Visual Basic source code file into a module, use
this command:

For more information about the command-line syntax of the Visual Basic compiler, see Building from the Command Line.

To compile the C# source code file into a module, use this command:

For more information about the command-line syntax of the C# compiler, see Command-line Building With csc.exe.

You then use the Link tool (Link.exe) to compile the two modules into an assembly:

The following example then calls the NumericLib.NearZero and StringLib.ToTitleCase methods. Note that both the Visual Basic code and the C# code

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/command-line-building-with-csc-exe
https://msdn.microsoft.com/library/c1d51b8a-bd23-416d-81e4-900e02b2c129

using System;

public class Example
{
 public static void Main()
 {
 Double dbl = 0.0 - Double.Epsilon;
 Console.WriteLine(NumericLib.NearZero(dbl));

 string s = "war and peace";
 Console.WriteLine(s.ToTitleCase());
 }
}
// The example displays the following output:
// True
// War and Peace

Module Example
 Public Sub Main()
 Dim dbl As Double = 0.0 - Double.Epsilon
 Console.WriteLine(NumericLib.NearZero(dbl))

 Dim s As String = "war and peace"
 Console.WriteLine(s.ToTitleCase())
 End Sub
End Module
' The example displays the following output:
' True
' War and Peace

vbc example.vb /r:UtilityLib.dll

csc example.cs /r:UtilityLib.dll

See Also

are able to access the methods in both classes.

To compile the Visual Basic code, use this command:

To compile with C#, change the name of the compiler from vbc to csc, and change the file extension from .vb to .cs:

CLSCompliantAttribute

https://docs.microsoft.com/dotnet/api/system.clscompliantattribute

Framework Libraries
5/2/2018 • 2 minutes to read • Edit Online

Base Class Libraries

Primitive Types

Data Structures

Utility APIs

App-Model APIs

.NET has an expansive standard set of class libraries, referred to as either the base class libraries (core set) or framework class libraries (complete set).
These libraries provide implementations for many general and app-specific types, algorithms and utility functionality. Both commercial and community
libraries build on top of the framework class libraries, providing easy to use off-the-shelf libraries for a wide set of computing tasks.

A subset of these libraries are provided with each .NET implementation. Base Class Library (BCL) APIs are expected with any .NET implementation,
both because developers will want them and because popular libraries will need them to run. App-specific libraries above the BCL, such as ASP.NET, will
not be available on all .NET implementations.

The BCL provides the most foundational types and utility functionality and are the base of all other .NET class libraries. They aim to provide very
general implementations without any bias to any workload. Performance is always an important consideration, since apps might prefer a particular
policy, such as low-latency to high-throughput or low-memory to low-CPU usage. These libraries are intended to be high-performance generally, and
take a middle-ground approach according to these various performance concerns. For most apps, this approach has been quite successful.

.NET includes a set of primitive types, which are used (to varying degrees) in all programs. These types contain data, such as numbers, strings, bytes and
arbitrary objects. The C# language includes keywords for these types. A sample set of these types is listed below, with the matching C# keywords.

System.Object (object) - The ultimate base class in the CLR type system. It is the root of the type hierarchy.
System.Int16 (short) - A 16-bit signed integer type. The unsigned UInt16 also exists.
System.Int32 (int) - A 32-bit signed integer type. The unsigned UInt32 also exists.
System.Single (float) - A 32-bit floating-point type.
System.Decimal (decimal) - A 128-bit decimal type.
System.Byte (byte) - An unsigned 8-bit integer that represents a byte of memory.
System.Boolean (bool) - A boolean type that represents true or false .
System.Char (char) - A 16-bit numeric type that represents a Unicode character.
System.String (string) - Represents a series of characters. Different than a char[] , but enables indexing into each individual char in the string .

.NET includes a set of data structures that are the workhorses of almost any .NET apps. These are mostly collections, but also include other types.

Array - Represents an array of strongly types objects that can be accessed by index. Has a fixed size, per its construction.
List<T> - Represents a strongly typed list of objects that can be accessed by index. Is automatically resized as needed.
Dictionary<TKey,TValue> - Represents a collection of values that are indexed by a key. Values can be accessed via key. Is automatically resized as
needed.
Uri - Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.
DateTime - Represents an instant in time, typically expressed as a date and time of day.

.NET includes a set of utility APIs that provide functionality for many important tasks.

HttpClient - An API for sending HTTP requests and receiving HTTP responses from a resource identified by a URI.
XDocument - An API for loading, and querying XML documents with L INQ.
StreamReader - An API for reading files (StringWriter) Can be used to write files.

There are many app-models that can be used with .NET, provided by several companies.

ASP.NET - Provides a web framework for building Web sites and services. Supported on Windows, Linux and macOS (depends on ASP.NET
version).

https://github.com/dotnet/docs/blob/master/docs/standard/framework-libraries.md
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/short
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/uint
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/float
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/decimal
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/byte
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/char
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.io.stringwriter
http://asp.net

.NET class library overview
6/19/2018 • 4 minutes to read • Edit Online

Naming conventions

System namespace

CATEGORY CLASS NAME DESCRIPTION
VISUAL BASIC DATA
TYPE C# DATA TYPE C++/CLI DATA TYPE F# DATA TYPE

Integer Byte An 8-bit unsigned
integer.

Byte byte unsigned char byte

SByte An 8-bit signed
integer.

Not CLS-compliant.

SByte sbyte char
-or-
signed char

sbyte

Int16 A 16-bit signed
integer.

Short short short int16

.NET implementations include classes, interfaces, delegates, and value types that expedite and optimize the development process and provide access to
system functionality. To facilitate interoperability between languages, most .NET types are CLS-compliant and can therefore be used from any
programming language whose compiler conforms to the common language specification (CLS).

.NET types are the foundation on which .NET applications, components, and controls are built. .NET implementations include types that perform the
following functions:

Represent base data types and exceptions.

Encapsulate data structures.

Perform I/O.

Access information about loaded types.

Invoke .NET Framework security checks.

Provide data access, rich client-side GUI, and server-controlled, client-side GUI.

.NET provides a rich set of interfaces, as well as abstract and concrete (non-abstract) classes. You can use the concrete classes as is or, in many cases,
derive your own classes from them. To use the functionality of an interface, you can either create a class that implements the interface or derive a class
from one of the .NET classes that implements the interface.

.NET types use a dot syntax naming scheme that connotes a hierarchy. This technique groups related types into namespaces so they can be searched
and referenced more easily. The first part of the full name — up to the rightmost dot — is the namespace name. The last part of the name is the type
name. For example, System.Collections.Generic.List<T> represents the List<T> type, which belongs to the System.Collections.Generic namespace.
The types in System.Collections.Generic can be used to work with generic collections.

This naming scheme makes it easy for library developers extending the .NET Framework to create hierarchical groups of types and name them in a
consistent, informative manner. It also allows types to be unambiguously identified by their full name (that is, by their namespace and type name), which
prevents type name collisions. Library developers are expected to use the following convention when creating names for their namespaces:

CompanyName.TechnologyName

For example, the namespace Microsoft.Word conforms to this guideline.

The use of naming patterns to group related types into namespaces is a very useful way to build and document class libraries. However, this naming
scheme has no effect on visibility, member access, inheritance, security, or binding. A namespace can be partitioned across multiple assemblies and a
single assembly can contain types from multiple namespaces. The assembly provides the formal structure for versioning, deployment, security, loading,
and visibility in the common language runtime.

For more information on namespaces and type names, see Common Type System.

The System namespace is the root namespace for fundamental types in .NET. This namespace includes classes that represent the base data types used
by all applications: Object (the root of the inheritance hierarchy), Byte, Char, Array, Int32, String, and so on. Many of these types correspond to the
primitive data types that your programming language uses. When you write code using .NET Framework types, you can use your language's
corresponding keyword when a .NET Framework base data type is expected.

The following table lists the base types that .NET supplies, briefly describes each type, and indicates the corresponding type in Visual Basic, C#, C++,
and F#.

https://github.com/dotnet/docs/blob/master/docs/standard/class-library-overview.md
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.int16

Int32 A 32-bit signed
integer.

Integer int int

-or-

long

int

Int64 A 64-bit signed
integer.

Long long __int64 int64

UInt16 A 16-bit unsigned
integer.

Not CLS-compliant.

UShort ushort unsigned short uint16

UInt32 A 32-bit unsigned
integer.

Not CLS-compliant.

UInteger uint unsigned int
-or-
unsigned long

uint32

UInt64 A 64-bit unsigned
integer.

Not CLS-compliant.

ULong ulong unsigned __int64 uint64

Floating point Single A single-precision
(32-bit) floating-
point number.

Single float float float32
or
single

Double A double-precision
(64-bit) floating-
point number.

Double double double float
or
double

Logical Boolean A Boolean value
(true or false).

Boolean bool bool bool

Other Char A Unicode (16-bit)
character.

Char char wchar_t char

Decimal A decimal (128-bit)
value.

Decimal decimal Decimal decimal

IntPtr A signed integer
whose size depends
on the underlying
platform (a 32-bit
value on a 32-bit
platform and a 64-
bit value on a 64-bit
platform).

IntPtr

No built-in type.

IntPtr

No built-in type.

IntPtr

No built-in type.

unativeint

UIntPtr An unsigned integer
whose size depends
on the underlying
platform (a 32- bit
value on a 32-bit
platform and a 64-
bit value on a 64-bit
platform).

Not CLS-compliant.

UIntPtr

No built-in type.

UIntPtr

No built-in type.

UIntPtr

No built-in type.

unativeint

Object The root of the
object hierarchy.

Object object Object^ obj

String An immutable,
fixed-length string
of Unicode
characters.

String string String^ string

CATEGORY CLASS NAME DESCRIPTION
VISUAL BASIC DATA
TYPE C# DATA TYPE C++/CLI DATA TYPE F# DATA TYPE

In addition to the base data types, the System namespace contains over 100 classes, ranging from classes that handle exceptions to classes that deal
with core runtime concepts, such as application domains and the garbage collector. The System namespace also contains many second-level
namespaces.

For more information about namespaces, use the .NET API Browser to browse the .NET Class Library. The API reference documentation provides

https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.uintptr
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api

See Also

documentation on each namespace, its types, and each of their members.

Common Type System
.NET API Browser
Overview

https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/dotnet/api
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview

Working with Base Types in .NET
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section describes .NET base type operations, including formatting, conversion, and common operations.

Type Conversion in the .NET Framework
Describes how to convert from one type to another.

Formatting Types
Describes how to format strings using the string format specifiers.

Manipulating Strings
Describes how to manipulate and format strings.

Parsing Strings
Describes how to convert strings into .NET Framework types.

Common Type System
Describes types used by the .NET Framework.

Dates, Times, and Time Zones
Describes how to work with time zones and time zone conversions in time zone-aware applications.

https://github.com/dotnet/docs/blob/master/docs/standard/base-types/index.md
https://docs.microsoft.com/en-us/dotnet/standard/base-types/type-conversion
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/manipulating-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/parsing-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system

.NET class libraries
6/19/2018 • 3 minutes to read • Edit Online

Platform-specific class libraries

Portable class libraries

.NET Standard class libraries

Mono class libraries

Class libraries are the shared library concept for .NET. They enable you to componentize useful functionality into modules that can be used by multiple
applications. They can also be used as a means of loading functionality that is not needed or not known at application startup. Class libraries are
described using the .NET Assembly file format.

There are three types of class libraries that you can use:

Platform-specific class libraries have access to all the APIs in a given platform (for example, .NET Framework, Xamarin iOS), but can only be used
by apps and libraries that target that platform.
Portable class libraries have access to a subset of APIs, and can be used by apps and libraries that target multiple platforms.
.NET Standard class libraries are a merger of the platform-specific and portable library concept into a single model that provides the best of both.

Platform-specific libraries are bound to a single .NET implementation (for example, .NET Framework on Windows) and can therefore take significant
dependencies on a known execution environment. Such an environment will expose a known set of APIs (.NET and OS APIs) and will maintain and
expose expected state (for example, Windows registry).

Developers who create platform specific libraries can fully exploit the underlying platform. The libraries will only ever run on that given platform,
making platform checks or other forms of conditional code unnecessary (modulo single sourcing code for multiple platforms).

Platform-specific libraries have been the primary class library type for the .NET Framework. Even as other .NET implementations emerged, platform-
specific libraries remained the dominant library type.

Portable libraries are supported on multiple .NET implementations. They can still take dependencies on a known execution environment, however, the
environment is a synthetic one that is generated by the intersection of a set of concrete .NET implementations. This means that exposed APIs and
platform assumptions are a subset of what would be available to a platform-specific library.

You choose a platform configuration when you create a portable library. These are the set of platforms that you need to support (for example, .NET
Framework 4.5+, Windows Phone 8.0+). The more platforms you opt to support, the fewer APIs and fewer platform assumptions you can make, the
lowest common denominator. This characteristic can be confusing at first, since people often think "more is better", but find that more supported
platforms results in fewer available APIs.

Many library developers have switched from producing multiple platform-specific libraries from one source (using conditional compilation directives)
to portable libraries. There are several approaches for accessing platform-specific functionality within portable libraries, with bait-and-switch being the
most widely accepted technique at this point.

.NET Standard libraries are a replacement of the platform-specific and portable libraries concepts. They are platform-specific in the sense that they
expose all functionality from the underlying platform (no synthetic platforms or platform intersections). They are portable in the sense that they work on
all supporting platforms.

The .NET Standard exposes a set of library contracts. .NET implementations must support each contract fully or not at all. Each implementation,
therefore, supports a set of .NET Standard contracts. The corollary is that each .NET Standard class library is supported on the platforms that support
its contract dependencies.

The .NET Standard does not expose the entire functionality of the .NET Framework (nor is that a goal), however, they do expose many more APIs than
Portable Class Libraries. More APIs will be added over time.

The following platforms support .NET Standard libraries:

.NET Core

.NET Framework
Mono
Xamarin.iOS, Xamarin.Mac, Xamarin.Android
Universal Windows Platform (UWP)
Windows
Windows Phone
Windows Phone Silverlight

For more information, see the .NET Standard topic.

https://github.com/dotnet/docs/blob/master/docs/standard/class-libraries.md
https://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries
https://blog.stephencleary.com/2012/11/portable-class-library-enlightenment.html
https://log.paulbetts.org/the-bait-and-switch-pcl-trick/

Class libraries are supported on Mono, including the three types of libraries described above. Mono has often been seen (correctly) as a cross-platform
implementation of the Microsoft .NET Framework. In part, this was because platform-specific .NET Framework libraries could run on the Mono runtime
without modification or recompilation. This characteristic was in place before the creation of portable class libraries, so was an obvious choice to enable
binary portability between the .NET Framework and Mono (although it only worked in one direction).

The Roslyn based Analyzers
5/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

More information on specific analyzers

Roslyn-based analyzers use the .NET Compiler SDK (Roslyn APIs) to analyze your project's source code to find issues and suggest corrections. Different
analyzers look for different classes of issues, ranging from practices that are likely to cause bugs to security concerns to API compatibility.

Roslyn-based analyzers work both interactively and during builds. The analyzer provides different guidance when in Visual Studio or in command-line
builds.

While you edit code in Visual Studio, the analyzers run as you make changes, catching possible issues as soon as you create code that trigger concerns.
Any issues are highlighted with squiggles under any issue. Visual Studio displays a light bulb, and when you click on it the analyzer will suggest possible
fixes for that issue. When you build the project, either in Visual Studio or from the command line, all the source code is analyzed and the analyzer
provides a full list of potential issues. The following figure shows one example.

Roslyn-based analyzers report potential issues as errors, warnings, or information based on the severity of the issue.

You install Roslyn-based analyzers as NuGet packages in your project. The configured analyzers and any settings for each analyzer are restored and run
on any developer's machine for that project.

The user experience for Roslyn-based analyzers is different than that of the Code Analysis libraries like the older versions of FxCop and the security analysis tools. You
don't need to explicitly run the Roslyn-based analyzers. There's no need to use the "Run Code Analysis" menu items on the "Analyze" menu in Visual Studio. Roslyn-
based analyzers run asychronously as you work.

The following analyzers are covered in this section:

API Analyzer: This analyzer examines your code for potential compatibility risks or uses of deprecated APIs.
Framework Analyzer: This analyzer examines your code to ensure it follows the guidelines for .NET Framework applications. These rules include several
security-based recommendations.

https://github.com/dotnet/docs/blob/master/docs/standard/analyzers/index.md

.NET API analyzer
6/1/2018 • 4 minutes to read • Edit Online

NOTENOTE

Prerequisites

Discovering deprecated APIs
What are deprecated APIs?What are deprecated APIs?

Using the API AnalyzerUsing the API Analyzer

Suppressing warnings locallySuppressing warnings locally

The .NET API Analyzer is a Roslyn analyzer that discovers potential compatibility risks for C# APIs on different platforms and detects calls to deprecated
APIs. It can be useful for all C# developers at any stage of development.

API Analyzer comes as a NuGet package Microsoft.DotNet.Analyzers.Compatibility. After you reference it in a project, it automatically monitors the
code and indicates problematic API usage. You can also get suggestions on possible fixes by clicking on the light bulb. The drop-down menu includes an
option to suppress the warnings.

The .NET API analyzer is still a pre-release version.

Visual Studio 2017 or Visual Studio for Mac (all versions).

The .NET family is a set of large products that are constantly upgraded to better serve customer needs. It's natural to deprecate some APIs and replace
them with new ones. An API is considered deprecated when a better alternative exists. One way to inform that an API is deprecated and shouldn't be
used is to mark it with the ObsoleteAttribute attribute. The disadvantage of this approach is that there is only one diagnostic ID for all obsolete APIs (for
C#, CS0612). This means that:

It's impossible to have dedicated documents for each case.
It's impossible to suppress certain category of warnings. You can suppress either all or none of them.
To inform users of a new deprecation, a referenced assembly or targeting package has to be updated.

The API Analyzer uses API-specific error codes that begin with DE (which stands for Deprecation Error), which allows control over the display of
individual warnings. The deprecated APIs identified by the analyzer are defined in the dotnet/platform-compat repo.

When a deprecated API, such as WebClient, is used in a code, API Analyzer highlights it with a green squiggly line. When you hover over the API call, a
light bulb is displayed with information about the API deprecation, as in the following example:

The Error List window contains warnings with a unique ID per deprecated API, as shown in the following example (DE004):

By clicking on the ID, you go to a webpage with detailed information about why the API was deprecated and suggestions regarding alternative APIs
that can be used.

Any warnings can be suppressed by right-clicking on the highlighted member and selecting Suppress <diagnostic ID>. There are two ways to
suppress warnings:

locally (in source)
globally (in a suppression file) - recommended

To suppress warnings locally, right-click on the member you want to suppress warnings for and then select Quick Actions and Refactorings >
Suppress diagnostic ID<diagnostic ID> > in Source. The #pragma warning preprocessor directive is added to your source code in the scope
defined:

https://github.com/dotnet/docs/blob/master/docs/standard/analyzers/api-analyzer.md
https://www.nuget.org/packages/Microsoft.DotNet.Analyzers.Compatibility/
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/en-us/dotnet/csharp/misc/cs0612
https://github.com/dotnet/platform-compat
https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/preprocessor-pragma-warning

 Suppressing warnings globallySuppressing warnings globally

Discovering cross-platform issues

<PropertyGroup>
 <PlatformCompatIgnore>Linux;macOS</PlatformCompatIgnore>
</PropertyGroup>

To suppress warnings globally, right-click on the member you want to suppress warnings for and then select Quick Actions and Refactorings >
Suppress diagnostic ID<diagnostic ID> > in Suppression File.

A GlobalSuppressions.cs file is added to your project after the first suppression. New global suppressions are appended to this file.

Global suppression is the recommended way to ensure consistency of API usage across projects.

Similar to deprecated APIs, the analyzer identifies all APIs that are not cross-platform. For example, Console.WindowWidth works on Windows but not
on Linux and macOS. The diagnostic ID is shown in the Error List window. You can suppress that warning by right-clicking and selecting Quick
Actions and Refactorings. Unlike deprecation cases where you have two options (either keep using the deprecated member and suppress warnings or
not use it at all), here if you're developing your code only for certain platforms, you can suppress all warnings for all other platforms you don't plan to
run your code on. To do so, you just need to edit your project file and add the PlatformCompatIgnore property that lists all platforms to be ignored. The
accepted values are: Linux , macOS , and Windows .

If your code targets multiple platforms and you want to take advantage of an API not supported on some of them, you can guard that part of the code
with an if statement:

https://docs.microsoft.com/dotnet/api/system.console.windowwidth#System_Console_WindowWidth

if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
{
 var w = Console.WindowWidth;
 // More code
}

Supported diagnostics

CI machine

Configuration

See also

You can also conditionally compile per target framework/operating system, but you currently need to do that manually.

Currently, the analyzer handles the following cases:

Usage of a .NET Standard API that throws PlatformNotSupportedException (PC001).
Usage of a .NET Standard API that isn't available on the .NET Framework 4.6.1 (PC002).
Usage of a native API that doesn’t exist in UWP (PC003).
Usage of an API that is marked as deprecated (DEXXXX).

All these diagnostics are available not only in the IDE, but also on the command line as part of building your project, which includes the CI server.

The user decides how the diagnostics should be treated: as warnings, errors, suggestions, or to be turned off. For example, as an architect, you can
decide that compatibility issues should be treated as errors, calls to some deprecated APIs generate warnings, while others only generate suggestions.
You can configure this separately by diagnostic ID and by project. To do so in Solution Explorer, navigate to the Dependencies node under your
project. Expand the nodes Dependencies > Analyzers > Microsoft.DotNet.Analyzers.Compatibility. Right click on the diagnostic ID, select Set
Rule Set Severity and pick the desired option.

Introducing API Analyzer blog post.
API Analyzer demo video on YouTube.

https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://blogs.msdn.microsoft.com/dotnet/2017/10/31/introducing-api-analyzer/
https://youtu.be/eeBEahYXGd0

The .NET Portability Analyzer
5/2/2018 • 2 minutes to read • Edit Online

New targets

How to use Portability Analyzer

Want to make your libraries multi-platform? Want to see how much work is required to make your application compatible with other .NET
implementations and profiles, including .NET Core, .NET Standard, UWP, and Xamarin for iOS, Android, and Mac? The .NET Portability Analyzer is a
tool that provides you with a detailed report on how flexible your program is across .NET implementations by analyzing assemblies. The Portability
Analyzer is offered as a Visual Studio Extension and as a console app.

.NET Core: Has a modular design, employs side-by-side, and targets cross-platform scenarios. Side-by-side allows you to adopt new .NET Core
versions without breaking other apps.
ASP.NET Core: is a modern web-framework built on .NET Core thus giving developers the same benefits.
Universal Windows Platform: Improve performance of your Windows Store apps that run on x64 and ARM machines by using .NET Native’s static
compilation.
.NET Core + Platform Extensions: Includes the .NET Core APIs in addition to other APIs in the .NET ecosystem such as WCF, ASP.NET Core, FSharp,
and Azure.
.NET Standard + Platform Extensions: Includes the .NET Standard APIs in addition to other .NET ecosystem such as WCF, ASP.NET Core, FSharp,
and Azure.

To begin using the .NET Portability Analyzer, you first need to download and install the extension from the Visual Studio Marketplace. It works on Visual
Studio 2015 and Visual Studio 2017. You can configure it in Visual Studio via Analyze > Portability Analyzer Settings and select your Target
Platforms.

To analyze your entire project, right-click on your project in Solution Explorer and select Analyze Assembly Portability. Otherwise, go to the
Analyze menu and select Analyze Assembly Portability. From there, select your project’s executable or DLL.

https://github.com/dotnet/docs/blob/master/docs/standard/analyzers/portability-analyzer.md
https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer
https://docs.microsoft.com/aspnet/core
https://blogs.msdn.microsoft.com/dotnet/2014/04/24/net-native-performance
https://marketplace.visualstudio.com/items?itemName=ConnieYau.NETPortabilityAnalyzer

After running the analysis, you will see your .NET Portability Report. Only types that are unsupported by a target platform appear in the list and you can
review recommendations in the Messages tab in the Error List. You can also jump to problem areas directly from the Messages tab.

Don’t want to use Visual Studio? You can also use the Portability Analyzer from the command prompt. Just download the API Portability Analyzer.

Type the following command to analyze the current directory: \...\ApiPort.exe analyze -f .

To analyze a specific list of .dll files, type the following command: \...\ApiPort.exe analyze -f first.dll -f second.dll -f third.dll

Your .NET Portability Report is saved as an Excel file (.xlsx) in your current directory. The Details tab in the Excel Workbook contains more information.

For more information on the .NET Portability Analyzer, visit the GitHub documentation and A Brief Look at the .NET Portability Analyzer Channel 9
video.

http://www.microsoft.com/download/details.aspx?id=42678
https://github.com/Microsoft/dotnet-apiport#documentation
https://channel9.msdn.com/Blogs/Seth-Juarez/A-Brief-Look-at-the-NET-Portability-Analyzer

The .NET Framework Analyzer
5/2/2018 • 4 minutes to read • Edit Online

Installing and configuring the .NET Framework Analyzer

Using the .NET Framework Analyzer

You can use the .NET Framework Analyzer to find potential issues in your .NET Framework-based application code. This analyzer finds potential issues
and suggests fixes to them.

The analyzer runs interactively in Visual Studio as you write your code or as part of a CI build. You should add the analyzer to your project as early as
possible in your development. The sooner you find any potential issues in your code, the easier they are to fix. However, you can add it at any time in the
development cycle. It finds any issues with the existing code and warns about new issues as you keep developing.

The .NET Security Analyzers must be installed as a NuGet package on every project where you want them to run. Only one developer needs to add
them to the project. The analyzer package is a project dependency and will run on every developer's machine once it has the updated solution.

The .NET Framework Analyzer is delivered in the Microsoft.NetFramework.Analyzers NuGet package. This package provides only the analyzers specific
to the .NET Framework, which includes security analyzers. In most cases, you'll want the Microsoft.CodeAnalysis.FxCopAnalyzers NuGet package. The
FxCopAnalyzers aggregate package contains all the framework analyzers included in the Framework.Analyzers package as well as the following
analyzers:

Microsoft.CodeQuality.Analyzers: Provides general guidance and guidance for .NET Standard APIs
Microsoft.NetCore.Analyzers: Provides analyzers specific to .NET Core APIs.
Text.Analyzers: Provides guidance for text included as code, including comments.

To install it, right-click on the project, and select "Manage Dependencies". From the NuGet explorer, search for "NetFramework Analyzer", or if you
prefer, "Fx Cop Analyzer". Install the latest stable version in all projects in your solution.

Once the NuGet package is installed, build your solution. The analyzer will report any issues it locates in your codebase. The issues are reported as
warnings in the Visual Studio Error List window, as shown in the following image:

As you write code, you see squiggles underneath any potential issue in your code. Hover over any issue and you see details about the issue, and
suggestions for any possible fix, as shown in the following image:

https://github.com/dotnet/docs/blob/master/docs/standard/analyzers/framework-analyzer.md
https://www.nuget.org/packages/Microsoft.NetFramework.Analyzers/
https://www.nuget.org/packages/Microsoft.CodeAnalysis.FxCopAnalyzers
https://www.nuget.org/packages/Microsoft.CodeQuality.Analyzers
https://www.nuget.org/packages/Microsoft.NetCore.Analyzers
https://www.nuget.org/packages/Text.Analyzers

CA1058: Types should not extend certain base typesCA1058: Types should not extend certain base types

CA2153: Do not catch corrupted state exceptionsCA2153: Do not catch corrupted state exceptions

CA2229: Implement serialization constructorsCA2229: Implement serialization constructors

public class MyItemType
{
 // The special constructor is used to deserialize values.
 public MyItemType(SerializationInfo info, StreamingContext context)
 {
 // implementation removed.
 }
}

CA2235: Mark all non-serializable fieldsCA2235: Mark all non-serializable fields

CA2237: Mark ISerializable types with serializableCA2237: Mark ISerializable types with serializable

CA3075: Insecure DTD processing in XMLCA3075: Insecure DTD processing in XML

The analyzers examine the code in your solution and provide you with a list of warnings for any of these issues:

There are a small number of types in the .NET Framework that you should not derived from directly.

Category: Design

Severity: Warning

Additional information: CA:1058: Types should not extend certain base types

Catching corrupted state exceptions could mask errors (such as access violations), resulting in an inconsistent state of execution or making it easier for
attackers to compromise a system. Instead, catch and handle a more specific set of exception type(s) or re-throw the exception

Category: Security

Severity: Warning

Additional information: ## CA2153: Do not catch corrupted state exceptions

The analyzer generates this warning when you create a type that implements the ISerializable interface but does not define the required serialization
constructor. To fix a violation of this rule, implement the serialization constructor. For a sealed class, make the constructor private; otherwise, make it
protected. The serialization constructor has the following signature:

Category: Usage

Severity: Warning

Additional information: CA2229: Implement serialization constructors

An instance field of a type that is not serializable is declared in a type that is serializable. You must explicitly mark that field with the
NonSerializedAttribute to fix this warning.

Category: Usage

Severity: Warning

Additional information: CA2235: Mark all non-serializable fields

To be recognized by the common language runtime as serializable, types must be marked by using the SerializableAttribute attribute even when the
type uses a custom serialization routine by implementing the ISerializable interface.

Category: Usage

Severity: Warning

Additional information: CA2237: Mark ISerializable types with serializable

If you use insecure DtdProcessing instances or reference external entity sources, the parser may accept untrusted input and disclose sensitive
information to attackers.

Category: Security

https://docs.microsoft.com/visualstudio/code-quality/ca1058-types-should-not-extend-certain-base-types
https://docs.microsoft.com/visualstudio/code-quality/ca2153-avoid-handling-corrupted-state-exceptions
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.iserializable
https://docs.microsoft.com/visualstudio/code-quality/ca2229-implement-serialization-constructors
https://docs.microsoft.com/dotnet/api/system.nonserializedattribute
https://docs.microsoft.com/visualstudio/code-quality/ca2235-mark-all-non-serializable-fields
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.iserializable
https://docs.microsoft.com/visualstudio/code-quality/ca2237-mark-iserializable-types-with-serializableattribute
https://docs.microsoft.com/dotnet/api/system.xml.xmlreadersettings.dtdprocessing

CA5350: Do not use weak cryptographic algorithmsCA5350: Do not use weak cryptographic algorithms

CA5351: Do not use broken cryptographic algorithmsCA5351: Do not use broken cryptographic algorithms

Severity: Warning

Additional information: A3075: Insecure DTD processing in XML

Cryptographic algorithms degrade over time as attacks become more advanced. Depending on the type and application of this cryptographic algorithm,
further degradation of its cryptographic strength may allow attackers to read enciphered messages, tamper with enciphered messages, forge digital
signatures, tamper with hashed content, or otherwise compromise any cryptosystem based on this algorithm. For encryption, use an AES algorithm
(AES-256, AES-192 and AES-128 are acceptable) with a key length greater than or equal to 128 bits. For hashing, use a hashing function in the SHA-2
family, such as SHA-2 512, SHA-2 384, or SHA-2 256.

Category: Security

Severity: Warning

Additional information: CA5350: Do not use weak cryptographic algorithms

An attack making it computationally feasible to break this algorithm exists. This allows attackers to break the cryptographic guarantees it is designed to
provide. Depending on the type and application of this cryptographic algorithm, this may allow attackers to read enciphered messages, tamper with
enciphered messages, forge digital signatures, tamper with hashed content, or otherwise compromise any cryptosystem based on this algorithm. For
encryption, use an AES algorithm (AES-256, AES-192 and AES-128 are acceptable) with a key length greater than or equal to 128 bits. For hashing, use
a hashing function in the SHA-2 family, such as SHA512, SHA384, or SHA256. For digital signatures, use RSA with a key length greater than or equal
to 2048-bits, or ECDSA with a key length greater than or equal to 256 bits.

Category: Security

Severity: Warning

Additional Information: CA5351: Do not use broken cryptographic algorithms

https://docs.microsoft.com/visualstudio/code-quality/ca2237-mark-iserializable-types-with-serializableattribute
https://docs.microsoft.com/visualstudio/code-quality/ca5350-do-not-use-weak-cryptographic-algorithms
https://docs.microsoft.com/visualstudio/code-quality/ca5351-do-not-use-broken-cryptographic-algorithms

Handling and throwing exceptions in .NET
6/21/2018 • 2 minutes to read • Edit Online

Exceptions

Exceptions vs. traditional error-handling methods

Common exceptions

EXCEPTION TYPE DESCRIPTION EXAMPLE

Exception Base class for all exceptions. None (use a derived class of this exception).

IndexOutOfRangeException Thrown by the runtime only when an array is indexed
improperly.

Indexing an array outside its valid range:
arr[arr.Length+1]

NullReferenceException Thrown by the runtime only when a null object is
referenced.

object o = null;
o.ToString();

InvalidOperationException Thrown by methods when in an invalid state. Calling Enumerator.MoveNext() after removing an
item from the underlying collection.

ArgumentException Base class for all argument exceptions. None (use a derived class of this exception).

ArgumentNullException Thrown by methods that do not allow an argument
to be null.

String s = null;
"Calculate".IndexOf(s);

ArgumentOutOfRangeException Thrown by methods that verify that arguments are in
a given range.

String s = "string";
s.Substring(s.Length+1);

See also

Applications must be able to handle errors that occur during execution in a consistent manner. .NET provides a model for notifying applications of
errors in a uniform way: .NET operations indicate failure by throwing exceptions.

An exception is any error condition or unexpected behavior that is encountered by an executing program. Exceptions can be thrown because of a fault in
your code or in code that you call (such as a shared library), unavailable operating system resources, unexpected conditions that the runtime encounters
(such as code that can't be verified), and so on. Your application can recover from some of these conditions, but not from others. Although you can
recover from most application exceptions, you can't recover from most runtime exceptions.

In .NET, an exception is an object that inherits from the System.Exception class. An exception is thrown from an area of code where a problem has
occurred. The exception is passed up the stack until the application handles it or the program terminates.

Traditionally, a language's error-handling model relied on either the language's unique way of detecting errors and locating handlers for them, or on the
error-handling mechanism provided by the operating system. The way .NET implements exception handling provides the following advantages:

Exception throwing and handling works the same for .NET programming languages.

Doesn't require any particular language syntax for handling exceptions, but allows each language to define its own syntax.

Exceptions can be thrown across process and even machine boundaries.

Exception-handling code can be added to an application to increase program reliability.

Exceptions offer advantages over other methods of error notification, such as return codes. Failures don't go unnoticed because if an exception is thrown
and you don't handle it, the runtime terminates your application. Invalid values don't continue to propagate through the system as a result of code that
fails to check for a failure return code.

The following table lists some common exceptions with examples of what can cause them.

Exception Class and Properties
How to: Use the Try-Catch Block to Catch Exceptions
How to: Use Specific Exceptions in a Catch Block
How to: Explicitly Throw Exceptions
How to: Create User-Defined Exceptions
Using User-Filtered Exception Handlers
How to: Use Finally Blocks
Handling COM Interop Exceptions

https://github.com/dotnet/docs/blob/master/docs/standard/exceptions/index.md
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.indexoutofrangeexception
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/dotnet/api/system.invalidoperationexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.argumentnullexception
https://docs.microsoft.com/dotnet/api/system.argumentoutofrangeexception
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/exception-class-and-properties
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-use-the-try-catch-block-to-catch-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-use-specific-exceptions-in-a-catch-block
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-explicitly-throw-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-create-user-defined-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/using-user-filtered-exception-handlers
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/how-to-use-finally-blocks
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/handling-com-interop-exceptions

Best Practices for Exceptions
What Every Dev needs to Know About Exceptions in the Runtime.

https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/exceptions.md

.NET Assembly File Format
5/2/2018 • 2 minutes to read • Edit Online

Format

Processing the Assemblies

.NET defines a binary file format - "assembly" - that is used to fully-describe and contain .NET programs. Assemblies are used for the programs
themselves as well as any dependent libraries. A .NET program can be executed as one or more assemblies, with no other required artifacts, beyond the
appropriate .NET implementation. Native dependencies, including operating system APIs, are a separate concern and are not contained within the .NET
assembly format, although are sometimes described with this format (for example, WinRT).

Each CLI component carries the metadata for declarations, implementations, and references specific to that component. Therefore, the component-
specific metadata is referred to as component metadata, and the resulting component is said to be self-describing – from ECMA 335 I.9.1,
Components and assemblies.

The format is fully specified and standardized as ECMA 335. All .NET compilers and runtimes use this format. The presence of a documented and
infrequently updated binary format has been a major benefit (arguably a requirement) for interoperatibility. The format was last updated in a
substantive way in 2005 (.NET 2.0) to accommodate generics and processor architecture.

The format is CPU- and OS-agnostic. It has been used as part of .NET implementations that target many chips and CPUs. While the format itself has
Windows heritage, it is implementable on any operating system. It’s arguably most significant choice for OS interoperability is that most values are
stored in little-endian format. It doesn’t have a specific affinity to machine pointer size (for example, 32-bit, 64-bit).

The .NET assembly format is also very descriptive about the structure of a given program or library. It describes the internal components of an
assembly, specifically: assembly references and types defined and their internal structure. Tools or APIs can read and process this information for display
or to make programmatic decisions.

The .NET binary format is based on the Windows PE file format. In fact, .NET class libraries are conformant Windows PEs, and appear on first glance to
be Windows dynamic link libraries (DLLs) or application executables (EXEs). This is a very useful characteristic on Windows, where they can
masquerade as native executable binaries and get some of the same treatment (for example, OS load, PE tools).

Assembly Headers from ECMA 335 II.25.1, Structure of the runtime file format.

It is possible to write tools or APIs to process assemblies. Assembly information enables making programmatic decisions at runtime, re-writing
assemblies, providing API IntelliSense in an editor and generating documentation. System.Reflection and Mono.Cecil are good examples of tools that
are frequently used for this purpose.

https://github.com/dotnet/docs/blob/master/docs/standard/assembly-format.md
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://en.wikipedia.org/wiki/Portable_Executable
https://docs.microsoft.com/dotnet/api/system.reflection
https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/

Memory Management and Garbage Collection in .NET
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section of the documentation provides information about managing memory in .NET.

Cleaning Up Unmanaged Resources
Describes how to properly manage and clean up unmanaged resources..

Garbage Collection
Provides information about the .NET garbage collector.

Development Guide

https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/memory-management-and-gc.md
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/unmanaged
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/index
https://docs.microsoft.com/en-us/dotnet/framework/development-guide

Generic Types (Generics) Overview
5/2/2018 • 3 minutes to read • Edit Online

 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Diagnostics;

 namespace GenericsExample {
 class Program {
 static void Main(string[] args) {
 //generic list
 List<int> ListGeneric = new List<int> { 5, 9, 1, 4 };
 //non-generic list
 ArrayList ListNonGeneric = new ArrayList { 5, 9, 1, 4 };
 // timer for generic list sort
 Stopwatch s = Stopwatch.StartNew();
 ListGeneric.Sort();
 s.Stop();
 Console.WriteLine($"Generic Sort: {ListGeneric} \n Time taken: {s.Elapsed.TotalMilliseconds}ms");

 //timer for non-generic list sort
 Stopwatch s2 = Stopwatch.StartNew();
 ListNonGeneric.Sort();
 s2.Stop();
 Console.WriteLine($"Non-Generic Sort: {ListNonGeneric} \n Time taken: {s2.Elapsed.TotalMilliseconds}ms");
 Console.ReadLine();
 }
 }
 }

Generic Sort: System.Collections.Generic.List\`1[System.Int32] Time taken: 0.0789ms
Non-Generic Sort: System.Collections.ArrayList Time taken: 2.4324ms

Further reading and resources

We use generics all the time in C#, whether implicitly or explicitly. When you use L INQ in C#, did you ever notice that you are working with
IEnumerable? Or if you ever saw an online sample of a "generic repository" for talking to databases using Entity Framework, did you see that most
methods return IQueryable? You may have wondered what the T is in these examples and why is it in there?

First introduced to the .NET Framework 2.0, generics involved changes to both the C# language and the Common Language Runtime (CLR). Generics
are essentially a "code template" that allows developers to define type-safe data structures without committing to an actual data type. For example,
List<T> is a Generic Collection that can be declared and used with any type: List<int> , List<string> , List<Person> , etc.

So, what’s the point? Why are generics useful? In order to understand this, we need to take a look at a specific class before and after adding generics.
Let’s look at the ArrayList . In C# 1.0, the ArrayList elements were of type object . This meant that any element that was added was silently
converted into an object ; same thing happens on reading the elements from the list (this process is known as boxing and unboxing respectively).
Boxing and unboxing have an impact of performance. More than that, however, there is no way to tell at compile time what is the actual type of the data
in the list. This makes for some fragile code. Generics solve this problem by providing additional information the type of data each instance of list will
contain. Put simply, you can only add integers to List<int> and only add Persons to List<Person> , etc.

Generics are also available at runtime, or reified. This means the runtime knows what type of data structure you are using and can store it in memory
more efficiently.

Here is a small program that illustrates the efficiency of knowing the data structure type at runtime:

This program yields the following output:

The first thing you notice here is that sorting the generic list is significantly faster than for the non-generic list. You might also notice that the type for
the generic list is distinct ([System.Int32]) whereas the type for the non-generic list is generalized. Because the runtime knows the generic List<int> is
of type int, it can store the list elements in an underlying integer array in memory while the non-generic ArrayList has to cast each list element as an
object as stored in an object array in memory. As shown through this example, the extra castings take up time and slow down the list sort.

The last useful thing about the runtime knowing the type of your generic is a better debugging experience. When you are debugging a generic in C#,
you know what type each element is in your data structure. Without generics, you would have no idea what type each element was.

An Introduction to C# Generics
C# Programming Guide - Generics

https://github.com/dotnet/docs/blob/master/docs/standard/generics.md
https://msdn.microsoft.com/library/hbzz1a9a.aspx
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://msdn.microsoft.com/library/ms379564.aspx

Delegates and lambdas
5/2/2018 • 4 minutes to read • Edit Online

public class Program
{

 public delegate string Reverse(string s);

 static string ReverseString(string s)
 {
 return new string(s.Reverse().ToArray());
 }

 static void Main(string[] args)
 {
 Reverse rev = ReverseString;

 Console.WriteLine(rev("a string"));
 }
}

public class Program
{

 static string ReverseString(string s)
 {
 return new string(s.Reverse().ToArray());
 }

 static void Main(string[] args)
 {
 Func<string, string> rev = ReverseString;

 Console.WriteLine(rev("a string"));
 }
}

Delegates define a type, which specify a particular method signature. A method (static or instance) that satisfies this signature can be assigned to a
variable of that type, then called directly (with the appropriate arguments) or passed as an argument itself to another method and then called. The
following example demonstrates delegate use.

On line 4 we create a delegate type of a certain signature, in this case a method that takes a string parameter and then returns a string parameter.
On line 6, we define the implementation of the delegate by providing a method that has the exact same signature.
On line 13, the method is assigned to a type that conforms to the Reverse delegate.
Finally, on line 15 we invoke the delegate passing a string to be reversed.

In order to streamline the development process, .NET includes a set of delegate types that programmers can reuse and not have to create new types.
These are Func<> , Action<> and Predicate<> , and they can be used in various places throughout the .NET APIs without the need to define new
delegate types. Of course, there are some differences between the three as you will see in their signatures which mostly have to do with the way they
were meant to be used:

Action<> is used when there is a need to perform an action using the arguments of the delegate.
Func<> is used usually when you have a transformation on hand, that is, you need to transform the arguments of the delegate into a different result.

Projections are a prime example of this.
Predicate<> is used when you need to determine if the argument satisfies the condition of the delegate. It can also be written as a Func<T, bool> .

We can now take our example above and rewrite it using the Func<> delegate instead of a custom type. The program will continue running exactly the
same.

For this simple example, having a method defined outside of the Main() method seems a bit superfluous. It is because of this that .NET Framework 2.0
introduced the concept of anonymous delegates. With their support you are able to create "inline" delegates without having to specify any additional
type or method. You simply inline the definition of the delegate where you need it.

For an example, we are going to switch it up and use our anonymous delegate to filter out a list of only even numbers and then print them to the
console.

https://github.com/dotnet/docs/blob/master/docs/standard/delegates-lambdas.md

public class Program
{

 public static void Main(string[] args)
 {
 List<int> list = new List<int>();

 for (int i = 1; i <= 100; i++)
 {
 list.Add(i);
 }

 List<int> result = list.FindAll(
 delegate(int no)
 {
 return (no%2 == 0);
 }
);

 foreach (var item in result)
 {
 Console.WriteLine(item);
 }
 }
}

public class Program
{

 public static void Main(string[] args)
 {
 List<int> list = new List<int>();

 for (int i = 1; i <= 100; i++)
 {
 list.Add(i);
 }

 List<int> result = list.FindAll(i => i % 2 == 0);

 foreach (var item in result)
 {
 Console.WriteLine(item);
 }
 }
}

public MainWindow()
{
 InitializeComponent();

 Loaded += (o, e) =>
 {
 this.Title = "Loaded";
 };
}

Further reading and resources

Notice the highlighted lines. As you can see, the body of the delegate is just a set of expressions, as any other delegate. But instead of it being a separate
definition, we’ve introduced it ad hoc in our call to the FindAll() method of the List<T> type.

However, even with this approach, there is still much code that we can throw away. This is where lambda expressions come into play.

Lambda expressions, or just "lambdas" for short, were introduced first in C# 3.0, as one of the core building blocks of Language Integrated Query
(LINQ). They are just a more convenient syntax for using delegates. They declare a signature and a method body, but don’t have an formal identity of
their own, unless they are assigned to a delegate. Unlike delegates, they can be directly assigned as the left-hand side of event registration or in various
Linq clauses and methods.

Since a lambda expression is just another way of specifying a delegate, we should be able to rewrite the above sample to use a lambda expression
instead of an anonymous delegate.

If you take a look at the highlighted lines, you can see how a lambda expression looks like. Again, it is just a very convenient syntax for using delegates,
so what happens under the covers is similar to what happens with the anonymous delegate.

Again, lambdas are just delegates, which means that they can be used as an event handler without any problems, as the following code snippet
illustrates.

Delegates
Anonymous Functions

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-functions

Lambda expressions

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions

LINQ (Language Integrated Query)
6/9/2018 • 5 minutes to read • Edit Online

What is it?

var linqExperts = from p in programmers
 where p.IsNewToLINQ
 select new LINQExpert(p);

var linqExperts = programmers.Where(p => p.IsNewToLINQ)
 .Select(p => new LINQExpert(p));

LINQ is Expressive

var petLookup = new Dictionary<int, Pet>();

foreach (var pet in pets)
{
 petLookup.Add(pet.RFID, pet);
}

var petLookup = pets.ToDictionary(pet => pet.RFID);

LINQ Providers Simplify Data Access

public static IEnumerable<XElement> FindAllElementsWithAttribute(XElement documentRoot, string elementName,
 string attributeName, string value)
{
 return from el in documentRoot.Elements(elementName)
 where (string)el.Element(attributeName) == value
 select el;
}

Why Use the Query Syntax?

LINQ provides language-level querying capabilities and a higher-order function API to C# and VB as a way to write expressive, declarative code.

Language-level query syntax:

Same example using the IEnumerable<T> API:

Imagine you have a list of pets, but want to convert it into a dictionary where you can access a pet directly by its RFID value.

Traditional imperative code:

The intention behind the code is not to create a new Dictionary<int, Pet> and add to it via a loop, it is to convert an existing list into a dictionary! L INQ
preserves the intention whereas the imperative code does not.

Equivalent L INQ expression:

The code using LINQ is valuable because it evens the playing field between intent and code when reasoning as a programmer. Another bonus is code
brevity. Imagine reducing large portions of a codebase by 1/3 as done above. Pretty sweet deal, right?

For a significant chunk of software out in the wild, everything revolves around dealing with data from some source (Databases, JSON, XML, etc). Often
this involves learning a new API for each data source, which can be annoying. L INQ simplifies this by abstracting common elements of data access into
a query syntax which looks the same no matter which data source you pick.

Consider the following: finding all XML elements with a specific attribute value.

Writing code to manually traverse the XML document to perform this task would be far more challenging.

Interacting with XML isn’t the only thing you can do with L INQ Providers. Linq to SQL is a fairly bare-bones Object-Relational Mapper (ORM) for an
MSSQL Server Database. The JSON.NET library provides efficient JSON Document traversal via L INQ. Furthermore, if there isn’t a library which does
what you need, you can also write your own LINQ Provider!

This is a question which often comes up. After all, this,

https://github.com/dotnet/docs/blob/master/docs/standard/using-linq.md
https://en.wikipedia.org/wiki/Higher-order_function
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/index
https://www.newtonsoft.com/json/help/html/LINQtoJSON.htm
https://msdn.microsoft.com/library/Bb546158.aspx

var filteredItems = myItems.Where(item => item.Foo);

var filteredItems = from item in myItems
 where item.Foo
 select item;

Essential Samples

// Filtering a list
var germanShepards = dogs.Where(dog => dog.Breed == DogBreed.GermanShepard);

// Using the query syntax
var queryGermanShepards = from dog in dogs
 where dog.Breed == DogBreed.GermanShepard
 select dog;

// Mapping a list from type A to type B
var cats = dogs.Select(dog => dog.TurnIntoACat());

// Using the query syntax
var queryCats = from dog in dogs
 select dog.TurnIntoACat();

// Summing the lengths of a set of strings
int seed = 0;
int sumOfStrings = strings.Aggregate(seed, (s1, s2) => s1.Length + s2.Length);

// Transforms the list of kennels into a list of all their dogs.
var allDogsFromKennels = kennels.SelectMany(kennel => kennel.Dogs);

is a lot more concise than this:

Isn’t the API syntax just a more concise way to do the query syntax?

No. The query syntax allows for the use the let clause, which allows you to introduce and bind a variable within the scope of the expression, using it in
subsequent pieces of the expression. Reproducing the same code with only the API syntax can be done, but will most likely lead to code which is hard to
read.

So this begs the question, should you just use the query syntax?

The answer to this question is yes if...

Your existing codebase already uses the query syntax
You need to scope variables within your queries due to complexity
You prefer the query syntax and it won’t distract from your codebase

The answer to this question is no if...

Your existing codebase already uses the API syntax
You have no need to scope variables within your queries
You prefer the API syntax and it won’t distract from your codebase

For a truly comprehensive list of L INQ samples, visit 101 LINQ Samples.

The following is a quick demonstration of some of the essential pieces of L INQ. This is in no way comprehensive, as L INQ provides significantly more
functionality than what is showcased here.

The bread and butter - Where , Select , and Aggregate :

Flattening a list of lists:

Union between two sets (with custom comparator):

https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

public class DogHairLengthComparer : IEqualityComparer<Dog>
{
 public bool Equals(Dog a, Dog b)
 {
 if (a == null && b == null)
 {
 return true;
 }
 else if ((a == null && b != null) ||
 (a != null && b == null))
 {
 return false;
 }
 else
 {
 return a.HairLengthType == b.HairLengthType;
 }
 }

 public int GetHashCode(Dog d)
 {
 // default hashcode is enough here, as these are simple objects.
 return b.GetHashCode();
 }
}

...

// Gets all the short-haired dogs between two different kennels
var allShortHairedDogs = kennel1.Dogs.Union(kennel2.Dogs, new DogHairLengthComparer());

// Gets the volunteers who spend share time with two humane societies.
var volunteers = humaneSociety1.Volunteers.Intersect(humaneSociety2.Volunteers,
 new VolunteerTimeComparer());

// Get driving directions, ordering by if it's toll-free before estimated driving time.
var results = DirectionsProcessor.GetDirections(start, end)
 .OrderBy(direction => direction.HasNoTolls)
 .ThenBy(direction => direction.EstimatedTime);

public static bool PublicInstancePropertiesEqual<T>(this T self, T to, params string[] ignore) where T : class
{
 if (self != null && to != null)
 {
 var type = typeof(T);
 var ignoreList = new List<string>(ignore);

 // Selects the properties which have unequal values into a sequence of those properties.
 var unequalProperties = from pi in type.GetProperties(BindingFlags.Public | BindingFlags.Instance)
 where !ignoreList.Contains(pi.Name)
 let selfValue = type.GetProperty(pi.Name).GetValue(self, null)
 let toValue = type.GetProperty(pi.Name).GetValue(to, null)
 where selfValue != toValue && (selfValue == null || !selfValue.Equals(toValue))
 select new { Prop = pi.Name, selfValue, toValue };
 return !unequalProperties.Any();
 }

 return self == to;
}

PLINQ

Intersection between two sets:

Ordering:

Finally, a more advanced sample: determining if the values of the properties of two instances of the same type are equal (Borrowed and modified
from this StackOverflow post):

PLINQ, or Parallel L INQ, is a parallel execution engine for L INQ expressions. In other words, a regular L INQ expressions can be trivially parallelized
across any number of threads. This is accomplished via a call to AsParallel() preceding the expression.

Consider the following:

http://stackoverflow.com/a/844855

public static string GetAllFacebookUserLikesMessage(IEnumerable<FacebookUser> facebookUsers)
{
 var seed = default(UInt64);

 Func<UInt64, UInt64, UInt64> threadAccumulator = (t1, t2) => t1 + t2;
 Func<UInt64, UInt64, UInt64> threadResultAccumulator = (t1, t2) => t1 + t2;
 Func<Uint64, string> resultSelector = total => $"Facebook has {total} likes!";

 return facebookUsers.AsParallel()
 .Aggregate(seed, threadAccumulator, threadResultAccumulator, resultSelector);
}

Further Resources:

This code will partition facebookUsers across system threads as necessary, sum up the total likes on each thread in parallel, sum the results computed
by each thread, and project that result into a nice string.

In diagram form:

Parallelizable CPU-bound jobs which can be easily expressed via L INQ (in other words, are pure functions and have no side effects) are a great
candidate for PLINQ. For jobs which do have a side effect, consider using the Task Parallel Library.

101 LINQ Samples
Linqpad, a playground environment and Database querying engine for C#/F#/VB
EduLinq, an e-book for learning how LINQ-to-objects is implemented

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://www.linqpad.net/
https://codeblog.jonskeet.uk/2011/02/23/reimplementing-linq-to-objects-part-45-conclusion-and-list-of-posts/

Common Type System & Common Language Specification
5/2/2018 • 2 minutes to read • Edit Online

Common Type System

Common Language Specification

More resources

Again, two terms that are freely used in the .NET world, they actually are crucial to understand how a .NET implementation enables multi-language
development and to understand how it works.

To start from the beginning, remember that a .NET implementation is language agnostic. This doesn’t just mean that a programmer can write her code
in any language that can be compiled to IL. It also means that she needs to be able to interact with code written in other languages that are able to be
used on a .NET implementation.

In order to do this transparently, there has to be a common way to describe all supported types. This is what the Common Type System (CTS) is in
charge of doing. It was made to do several things:

Establish a framework for cross-language execution.
Provide an object-oriented model to support implementing various languages on a .NET implementation.
Define a set of rules that all languages must follow when it comes to working with types.
Provide a library that contains the basic primitive types that are used in application development (such as, Boolean , Byte , Char etc.)

CTS defines two main kinds of types that should be supported: reference and value types. Their names point to their definitions.

Reference types’ objects are represented by a reference to the object’s actual value; a reference here is similar to a pointer in C/C++. It simply refers to a
memory location where the objects’ values are. This has a profound impact on how these types are used. If you assign a reference type to a variable and
then pass that variable into a method, for instance, any changes to the object will be reflected on the main object; there is no copying.

Value types are the opposite, where the objects are represented by their values. If you assign a value type to a variable, you are essentially copying a
value of the object.

CTS defines several categories of types, each with their specific semantics and usage:

Classes
Structures
Enums
Interfaces
Delegates

CTS also defines all other properties of the types, such as access modifiers, what are valid type members, how inheritance and overloading works and
so on. Unfortunately, going deep into any of those is beyond the scope of an introductory article such as this, but you can consult More resources
section at the end for links to more in-depth content that covers these topics.

To enable full interoperability scenarios, all objects that are created in code must rely on some commonality in the languages that are consuming them
(are their callers). Since there are numerous different languages, .NET has specified those commonalities in something called the Common Language
Specification (CLS). CLS defines a set of features that are needed by many common applications. It also provides a sort of recipe for any language
that is implemented on top of .NET on what it needs to support.

CLS is a subset of the CTS. This means that all of the rules in the CTS also apply to the CLS, unless the CLS rules are more strict. If a component is built
using only the rules in the CLS, that is, it exposes only the CLS features in its API, it is said to be CLS-compliant. For instance, the
<framework-librares> are CLS-compliant precisely because they need to work across all of the languages that are supported on .NET.

You can consult the documents in the More Resources section below to get an overview of all the features in the CLS.

Common Type System
Common Language Specification

https://github.com/dotnet/docs/blob/master/docs/standard/common-type-system.md
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system

Parallel Processing, Concurrency, and Async Programming in .NET
5/2/2018 • 2 minutes to read • Edit Online

In This Section

.NET provides several ways for you to write asynchronous code to make your application more responsive to a user and write parallel code that uses
multiple threads of execution to maximize the performance of your user's computer.

Asynchronous Programming
Describes mechanisms for asynchronous programming provided by .NET.

Parallel Programming
Describes a task-based programming model that simplifies parallel development, enabling you to write efficient, fine-grained, and scalable parallel code
in a natural idiom without having to work directly with threads or the thread pool.

Threading
Describes the basic concurrency and synchronization mechanisms provided by .NET.

https://github.com/dotnet/docs/blob/master/docs/standard/parallel-processing-and-concurrency.md

Async Overview
6/28/2018 • 2 minutes to read • Edit Online

Why Write Async Code?

What's next?

Not so long ago, apps got faster simply by buying a newer PC or server and then that trend stopped. In fact, it reversed. Mobile phones appeared with
1ghz single core ARM chips and server workloads transitioned to VMs. Users still want responsive UI and business owners want servers that scale with
their business. The transition to mobile and cloud and an internet-connected population of >3B users has resulted in a new set of software patterns.

Client applications are expected to be always-on, always-connected and constantly responsive to user interaction (for example, touch) with high app
store ratings!
Services are expected to handle spikes in traffic by gracefully scaling up and down.

Async programming is a key technique that makes it straightforward to handle blocking I/O and concurrent operations on multiple cores. .NET
provides the capability for apps and services to be responsive and elastic with easy-to-use, language-level asynchronous programming models in C#,
VB, and F#.

Modern apps make extensive use of file and networking I/O. I/O APIs traditionally block by default, resulting in poor user experiences and hardware
utilization unless you want to learn and use challenging patterns. Task-based async APIs and the language-level asynchronous programming model
invert this model, making async execution the default with few new concepts to learn.

Async code has the following characteristics:

Handles more server requests by yielding threads to handle more requests while waiting for I/O requests to return.
Enables UIs to be more responsive by yielding threads to UI interaction while waiting for I/O requests and by transitioning long-running work to
other CPU cores.
Many of the newer .NET APIs are asynchronous.
It's easy to write async code in .NET!

For more information, see the Async in depth topic.

The Asynchronous Programming Patterns topic provides an overview of the three asynchronous programming patterns supported in .NET:

Asynchronous Programming Model (APM) (legacy)

Event-based Asynchronous Pattern (EAP) (legacy)

Task-based Asynchronous Pattern (TAP) (recommended for new development)

For more information about recommended task-based programming model, see the Task-based asynchronous programming topic.

https://github.com/dotnet/docs/blob/master/docs/standard/async.md
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/event-based-asynchronous-pattern-eap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming

Async in depth
7/17/2018 • 9 minutes to read • Edit Online

Task and Task<T>

Deeper Dive into Tasks for an I/O-Bound Operation

public Task<string> GetHtmlAsync()
{
 // Execution is synchronous here
 var client = new HttpClient();

 return client.GetStringAsync("http://www.dotnetfoundation.org");
}

public async Task<string> GetFirstCharactersCountAsync(string url, int count)
{
 // Execution is synchronous here
 var client = new HttpClient();

 // Execution of GetFirstCharactersCountAsync() is yielded to the caller here
 // GetStringAsync returns a Task<string>, which is *awaited*
 var page = await client.GetStringAsync("http://www.dotnetfoundation.org");

 // Execution resumes when the client.GetStringAsync task completes,
 // becoming synchronous again.

 if (count > page.Length)
 {
 return page;
 }
 else
 {
 return page.Substring(0, count);
 }
}

Writing I/O- and CPU-bound asynchronous code is straightforward using the .NET Task-based async model. The model is exposed by the Task and
Task<T> types and the async and await keywords in C# and Visual Basic. (Language-specific resources are found in the See also section.) This article

explains how to use .NET async and provides insight into the async framework used under the covers.

Tasks are constructs used to implement what is known as the Promise Model of Concurrency. In short, they offer you a "promise" that work will be
completed at a later point, letting you coordinate with the promise with a clean API.

Task represents a single operation which does not return a value.
Task<T> represents a single operation which returns a value of type T .

It’s important to reason about tasks as abstractions of work happening asynchronously, and not an abstraction over threading. By default, tasks execute
on the current thread and delegate work to the Operating System, as appropriate. Optionally, tasks can be explicitly requested to run on a separate
thread via the Task.Run API.

Tasks expose an API protocol for monitoring, waiting upon and accessing the result value (in the case of Task<T>) of a task. Language integration, with
the await keyword, provides a higher-level abstraction for using tasks.

Using await allows your application or service to perform useful work while a task is running by yielding control to its caller until the task is done. Your
code does not need to rely on callbacks or events to continue execution after the task has been completed. The language and task API integration does
that for you. If you’re using Task<T> , the await keyword will additionally "unwrap" the value returned when the Task is complete. The details of how
this works are explained further below.

You can learn more about tasks and the different ways to interact with them in the Task-based Asynchronous Pattern (TAP) topic.

The following section describes a 10,000 foot view of what happens with a typical async I/O call. Let's start with a couple examples.

The first example calls an async method and returns an active task, likely yet to complete.

The second example adds the use of the async and await keywords to operate on the task.

The call to GetStringAsync() calls through lower-level .NET libraries (perhaps calling other async methods) until it reaches a P/Invoke interop call into a
native networking library. The native library may subsequently call into a System API call (such as write() to a socket on Linux). A task object will be
created at the native/managed boundary, possibly using TaskCompletionSource. The task object will be passed up through the layers, possibly operated
on or directly returned, eventually returned to the initial caller.

In the second example above, a Task<T> object will be returned from GetStringAsync . The use of the await keyword causes the method to return a

https://github.com/dotnet/docs/blob/master/docs/standard/async-in-depth.md
https://en.wikipedia.org/wiki/Futures_and_promises
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/dotnet/api/system.threading.tasks.taskcompletionsource-1.setresult#System_Threading_Tasks_TaskCompletionSource_1_SetResult__0_

What does this mean for a server scenario?What does this mean for a server scenario?

What does this mean for client scenario?What does this mean for client scenario?

Deeper Dive into Task and Task<T> for a CPU-Bound Operation

newly created task object. Control returns to the caller from this location in the GetFirstCharactersCountAsync method. The methods and properties of
the Task<T> object enable callers to monitor the progress of the task, which will complete when the remaining code in GetFirstCharactersCountAsync
has executed.

After the System API call, the request is now in kernel space, making its way to the networking subsystem of the OS (such as /net in the Linux Kernel).
Here the OS will handle the networking request asynchronously. Details may be different depending on the OS used (the device driver call may be
scheduled as a signal sent back to the runtime, or a device driver call may be made and then a signal sent back), but eventually the runtime will be
informed that the networking request is in progress. At this time, the work for the device driver will either be scheduled, in-progress, or already finished
(the request is already out "over the wire") - but because this is all happening asynchronously, the device driver is able to immediately handle something
else!

For example, in Windows an OS thread makes a call to the network device driver and asks it to perform the networking operation via an Interrupt
Request Packet (IRP) which represents the operation. The device driver receives the IRP, makes the call to the network, marks the IRP as "pending", and
returns back to the OS. Because the OS thread now knows that the IRP is "pending", it doesn't have any more work to do for this job and "returns" back
so that it can be used to perform other work.

When the request is fulfilled and data comes back through the device driver, it notifies the CPU of new data received via an interrupt. How this interrupt
gets handled will vary depending on the OS, but eventually the data will be passed through the OS until it reaches a system interop call (for example, in
Linux an interrupt handler will schedule the bottom half of the IRQ to pass the data up through the OS asynchronously). Note that this also happens
asynchronously! The result is queued up until the next available thread is able execute the async method and "unwrap" the result of the completed task.

Throughout this entire process, a key takeaway is that no thread is dedicated to running the task. Although work is executed in some context (that
is, the OS does have to pass data to a device driver and respond to an interrupt), there is no thread dedicated to waiting for data from the request to
come back. This allows the system to handle a much larger volume of work rather than waiting for some I/O call to finish.

Although the above may seem like a lot of work to be done, when measured in terms of wall clock time, it’s miniscule compared to the time it takes to
do the actual I/O work. Although not at all precise, a potential timeline for such a call would look like this:

0-1——–2-3

Time spent from points 0 to 1 is everything up until an async method yields control to its caller.
Time spent from points 1 to 2 is the time spent on I/O, with no CPU cost.
Finally, time spent from points 2 to 3 is passing control back (and potentially a value) to the async method, at which point it is executing again.

This model works well with a typical server scenario workload. Because there are no threads dedicated to blocking on unfinished tasks, the server
threadpool can service a much higher volume of web requests.

Consider two servers: one that runs async code, and one that does not. For the purpose of this example, each server only has 5 threads available to
service requests. Note that these numbers are imaginarily small and serve only in a demonstrative context.

Assume both servers receive 6 concurrent requests. Each request performs an I/O operation. The server without async code has to queue up the 6th
request until one of the 5 threads have finished the I/O-bound work and written a response. At the point that the 20th request comes in, the server
might start to slow down, because the queue is getting too long.

The server with async code running on it still queues up the 6th request, but because it uses async and await , each of its threads are freed up when
the I/O-bound work starts, rather than when it finishes. By the time the 20th request comes in, the queue for incoming requests will be far smaller (if it
has anything in it at all), and the server won't slow down.

Although this is a contrived example, it works in a very similar fashion in the real world. In fact, you can expect a server to be able to handle an order of
magnitude more requests using async and await than if it were dedicating a thread for each request it receives.

The biggest gain for using async and await for a client app is an increase in responsiveness. Although you can make an app responsive by spawning
threads manually, the act of spawning a thread is an expensive operation relative to just using async and await . Especially for something like a mobile
game, impacting the UI thread as little as possible where I/O is concerned is crucial.

More importantly, because I/O-bound work spends virtually no time on the CPU, dedicating an entire CPU thread to perform barely any useful work
would be a poor use of resources.

Additionally, dispatching work to the UI thread (such as updating a UI) is very simple with async methods, and does not require extra work (such as
calling a thread-safe delegate).

CPU-bound async code is a bit different than I/O-bound async code. Because the work is done on the CPU, there's no way to get around dedicating a
thread to the computation. The use of async and await provides you with a clean way to interact with a background thread and keep the caller of the
async method responsive. Note that this does not provide any protection for shared data. If you are using shared data, you will still need to apply an
appropriate synchronization strategy.

Here's a 10,000 foot view of a CPU-bound async call:

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1

public async Task<int> CalculateResult(InputData data)
{
 // This queues up the work on the threadpool.
 var expensiveResultTask = Task.Run(() => DoExpensiveCalculation(data));

 // Note that at this point, you can do some other work concurrently,
 // as CalculateResult() is still executing!

 // Execution of CalculateResult is yielded here!
 var result = await expensiveResultTask;

 return result;
}

Why does async help here?Why does async help here?

See also

CalculateResult() executes on the thread it was called on. When it calls Task.Run , it queues the expensive CPU-bound operation,
DoExpensiveCalculation() , on the thread pool and receives a Task<int> handle. DoExpensiveCalculation() is eventually run concurrently on the next

available thread, likely on another CPU core. It's possible to do concurrent work while DoExpensiveCalculation() is busy on another thread, because the
thread which called CalculateResult() is still executing.

Once await is encountered, the execution of CalculateResult() is yielded to its caller, allowing other work to be done with the current thread while
DoExpensiveCalculation() is churning out a result. Once it has finished, the result is queued up to run on the main thread. Eventually, the main thread

will return to executing CalculateResult() , at which point it will have the result of DoExpensiveCalculation() .

async and await are the best practice managing CPU-bound work when you need responsiveness. There are multiple patterns for using async with
CPU-bound work. It's important to note that there is a small cost to using async and it's not recommended for tight loops. It's up to you to determine
how you write your code around this new capability.

Asynchronous programming in C#
Asynchronous programming with async and await (C#)
Async Programming in F#
Asynchronous Programming with Async and Await (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index

Asynchronous Programming Patterns
6/28/2018 • 2 minutes to read • Edit Online

Comparing Patterns

public class MyClass
{
 public int Read(byte [] buffer, int offset, int count);
}

public class MyClass
{
 public IAsyncResult BeginRead(
 byte [] buffer, int offset, int count,
 AsyncCallback callback, object state);
 public int EndRead(IAsyncResult asyncResult);
}

public class MyClass
{
 public void ReadAsync(byte [] buffer, int offset, int count);
 public event ReadCompletedEventHandler ReadCompleted;
}

public class MyClass
{
 public Task<int> ReadAsync(byte [] buffer, int offset, int count);
}

Related topics
TITLE DESCRIPTION

Asynchronous Programming Model (APM) Describes the legacy model that uses the IAsyncResult interface to provide
asynchronous behavior. This model is no longer recommended for new
development.

Event-based Asynchronous Pattern (EAP) Describes the event-based legacy model for providing asynchronous behavior. This
model is no longer recommended for new development.

The .NET Framework provides three patterns for performing asynchronous operations:

Asynchronous Programming Model (APM) pattern (also called the IAsyncResult pattern), where asynchronous operations require Begin

and End methods (for example, BeginWrite and EndWrite for asynchronous write operations). This pattern is no longer recommended for new
development. For more information, see Asynchronous Programming Model (APM).

Event-based Asynchronous Pattern (EAP), which requires a method that has the Async suffix, and also requires one or more events, event
handler delegate types, and EventArg -derived types. EAP was introduced in the .NET Framework 2.0. It is no longer recommended for new
development. For more information, see Event-based Asynchronous Pattern (EAP).

Task-based Asynchronous Pattern (TAP), which uses a single method to represent the initiation and completion of an asynchronous
operation. TAP was introduced in the .NET Framework 4 and is the recommended approach to asynchronous programming in the .NET
Framework. The async and await keywords in C# and the Async and Await operators in Visual Basic Language add language support for TAP.
For more information, see Task-based Asynchronous Pattern (TAP).

For a quick comparison of how the three patterns model asynchronous operations, consider a Read method that reads a specified amount of data into
a provided buffer starting at a specified offset:

The APM counterpart of this method would expose the BeginRead and EndRead methods:

The EAP counterpart would expose the following set of types and members:

The TAP counterpart would expose the following single ReadAsync method:

For a comprehensive discussion of TAP, APM, and EAP, see the links provided in the next section.

https://github.com/dotnet/docs/blob/master/docs/standard/asynchronous-programming-patterns/index.md
https://docs.microsoft.com/dotnet/api/system.iasyncresult
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/event-based-asynchronous-pattern-eap
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/asynchronous-programming-model-apm
https://docs.microsoft.com/dotnet/api/system.iasyncresult
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/event-based-asynchronous-pattern-eap

Task-based Asynchronous Pattern (TAP) Describes the new asynchronous pattern based on the System.Threading.Tasks
namespace. This model is the recommended approach to asynchronous
programming in the .NET Framework 4 and later versions.

TITLE DESCRIPTION

See also
Asynchronous programming in C#
Async Programming in F#
Asynchronous Programming with Async and Await (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/dotnet/api/system.threading.tasks

Parallel Programming in .NET
5/2/2018 • 2 minutes to read • Edit Online

Related Topics
TECHNOLOGY DESCRIPTION

Task Parallel Library (TPL) Provides documentation for the System.Threading.Tasks.Parallel class, which
includes parallel versions of For and ForEach loops, and also for the
System.Threading.Tasks.Task class, which represents the preferred way to express
asynchronous operations.

Parallel LINQ (PLINQ) A parallel implementation of LINQ to Objects that significantly improves
performance in many scenarios.

Data Structures for Parallel Programming Provides links to documentation for thread-safe collection classes, lightweight
synchronization types, and types for lazy initialization.

Parallel Diagnostic Tools Provides links to documentation for Visual Studio debugger windows for tasks and
parallel stacks, and the Concurrency Visualizer, which consists of a set of views in
the Visual Studio Application Lifecycle Management Profiler that you can use to
debug and to tune the performance of parallel code.

Custom Partitioners for PLINQ and TPL Describes how partitioners work and how to configure the default partitioners or
create a new partitioner.

Task Schedulers Describes how schedulers work and how the default schedulers may be configured.

Lambda Expressions in PLINQ and TPL Provides a brief overview of lambda expressions in C# and Visual Basic, and shows
how they are used in PLINQ and the Task Parallel Library.

For Further Reading Provides links to additional information and sample resources for parallel
programming in .NET.

See also

Many personal computers and workstations have several CPU cores that enable multiple threads to be executed simultaneously. Computers in the near
future are expected to have significantly more cores. To take advantage of the hardware of today and tomorrow, you can parallelize your code to
distribute work across multiple processors. In the past, parallelization required low-level manipulation of threads and locks. Visual Studio 2010 and the
.NET Framework 4 enhance support for parallel programming by providing a new runtime, new class library types, and new diagnostic tools. These
features simplify parallel development so that you can write efficient, fine-grained, and scalable parallel code in a natural idiom without having to work
directly with threads or the thread pool. The following illustration provides a high-level overview of the parallel programming architecture in the .NET
Framework 4.

Async Overview
Managed Threading

https://github.com/dotnet/docs/blob/master/docs/standard/parallel-programming/index.md
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/dotnet/api/system.threading.tasks.parallel
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/data-structures-for-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-diagnostic-tools
https://docs.microsoft.com/visualstudio/profiling/concurrency-visualizer
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/custom-partitioners-for-plinq-and-tpl
http://msdn.microsoft.com/library/638f8ea5-21db-47a2-a934-86e1e961bf65
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/lambda-expressions-in-plinq-and-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/async
https://docs.microsoft.com/en-us/dotnet/standard/threading/index

Managed Threading
5/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

Reference

Related Sections

Whether you are developing for computers with one processor or several, you want your application to provide the most responsive interaction with
the user, even if the application is currently doing other work. Using multiple threads of execution is one of the most powerful ways to keep your
application responsive to the user and at the same time make use of the processor in between or even during user events. While this section introduces
the basic concepts of threading, it focuses on managed threading concepts and using managed threading.

Starting with the .NET Framework 4, multithreaded programming is greatly simplified with the System.Threading.Tasks.Parallel and System.Threading.Tasks.Task classes,
Parallel LINQ (PLINQ), new concurrent collection classes in the System.Collections.Concurrent namespace, and a new programming model that is based on the concept
of tasks rather than threads. For more information, see Parallel Programming.

Managed Threading Basics
Provides an overview of managed threading and discusses when to use multiple threads.

Using Threads and Threading
Explains how to create, start, pause, resume, and abort threads.

Managed Threading Best Practices
Discusses levels of synchronization, how to avoid deadlocks and race conditions, single-processor and multiprocessor computers, and other threading
issues.

Threading Objects and Features
Describes the managed classes you can use to synchronize the activities of threads and the data of objects accessed on different threads, and provides
an overview of thread pool threads.

System.Threading
Contains classes for using and synchronizing managed threads.

System.Collections.Concurrent
Contains collection classes that are safe for use with multiple threads.

System.Threading.Tasks
Contains classes for creating and scheduling concurrent processing tasks.

Application Domains
Provides an overview of application domains and their use by the Common Language Infrastructure.

Asynchronous File I/O
Describes the performance advantages and basic operation of asynchronous I/O.

Task-based Asynchronous Pattern (TAP)
Provides an overview of the recommended pattern for asynchronous programming in .NET.

Calling Synchronous Methods Asynchronously
Explains how to call methods on thread pool threads using built-in features of delegates.

Parallel Programming
Describes the parallel programming libraries, which simplify the use of multiple threads in applications.

Parallel L INQ (PLINQ)
Describes a system for running queries in parallel, to take advantage of multiple processors.

https://github.com/dotnet/docs/blob/master/docs/standard/threading/index.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.parallel
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/index
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-basics
https://docs.microsoft.com/en-us/dotnet/standard/threading/using-threads-and-threading
https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices
https://docs.microsoft.com/en-us/dotnet/standard/threading/threading-objects-and-features
https://docs.microsoft.com/dotnet/api/system.threading
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/dotnet/api/system.threading.tasks
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/en-us/dotnet/standard/io/asynchronous-file-i-o
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/calling-synchronous-methods-asynchronously
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/index
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq

Native Interoperability
5/2/2018 • 10 minutes to read • Edit Online

NOTENOTE

Platform Invoke (P/Invoke)

using System.Runtime.InteropServices;

public class Program {

 // Import user32.dll (containing the function we need) and define
 // the method corresponding to the native function.
 [DllImport("user32.dll")]
 public static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

 public static void Main(string[] args) {
 // Invoke the function as a regular managed method.
 MessageBox(IntPtr.Zero, "Command-line message box", "Attention!", 0);
 }
}

In this document, we will dive a little bit deeper into all three ways of doing "native interoperability" that are available using .NET.

There are a few of reasons why you would want to call into native code:

Operating Systems come with a large volume of APIs that are not present in the managed class libraries. A prime example for this would be access
to hardware or operating system management functions.
Communicating with other components that have or can produce C-style ABIs (native ABIs). This covers, for example, Java code that is exposed via
Java Native Interface (JNI) or any other managed language that could produce a native component.
On Windows, most of the software that gets installed, such as Microsoft Office suite, registers COM components that represent their programs and
allow developers to automate them or use them. This also requires native interoperability.

Of course, the list above does not cover all of the potential situations and scenarios in which the developer would want/like/need to interface with native
components. .NET class library, for instance, uses the native interoperability support to implement a fair number of its APIs, like console support and
manipulation, file system access and others. However, it is important to note that there is an option, should one need it.

Most of the examples in this document will be presented for all three supported platforms for .NET Core (Windows, Linux and macOS). However, for some short and
illustrative examples, just one sample is shown that uses Windows filenames and extensions (that is, "dll" for libraries). This does not mean that those features are not
available on Linux or macOS, it was done merely for convenience sake.

P/Invoke is a technology that allows you to access structs, callbacks and functions in unmanaged libraries from your managed code. Most of the
P/Invoke API is contained in two namespaces: System and System.Runtime.InteropServices . Using these two namespaces will allow you access to the
attributes that describe how you want to communicate with the native component.

Let’s start from the most common example, and that is calling unmanaged functions in your managed code. Let’s show a message box from a
command-line application:

The example above is pretty simple, but it does show off what is needed to invoke unmanaged functions from managed code. Let’s step through the
example:

Line #1 shows the using statement for the System.Runtime.InteropServices which is the namespace that holds all of the items we need.
Line #5 introduces the DllImport attribute. This attribute is crucial, as it tells the runtime that it should load the unmanaged DLL. This is the DLL
into which we wish to invoke.
Line #6 is the crux of the P/Invoke work. It defines a managed method that has the exact same signature as the unmanaged one. The declaration
has a new keyword that you can notice, extern , which tells the runtime this is an external method, and that when you invoke it, the runtime should
find it in the DLL specified in DllImport attribute.

The rest of the example is just invoking the method as you would any other managed method.

The sample is similar for macOS. One thing that needs to change is, of course, the name of the library in the DllImport attribute, as macOS has a
different scheme of naming dynamic libraries. The sample below uses the getpid(2) function to get the process ID of the application and print it out to
the console.

https://github.com/dotnet/docs/blob/master/docs/standard/native-interop.md
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Import the libSystem shared library and define the method corresponding to the native function.
 [DllImport("libSystem.dylib")]
 private static extern int getpid();

 public static void Main(string[] args){
 // Invoke the function and get the process ID.
 int pid = getpid();
 Console.WriteLine(pid);
 }
 }
}

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Import the libc shared library and define the method corresponding to the native function.
 [DllImport("libc.so.6")]
 private static extern int getpid();

 public static void Main(string[] args){
 // Invoke the function and get the process ID.
 int pid = getpid();
 Console.WriteLine(pid);
 }
 }
}

Invoking managed code from unmanaged codeInvoking managed code from unmanaged code

using System;
using System.Runtime.InteropServices;

namespace ConsoleApplication1 {

 class Program {

 // Define a delegate that corresponds to the unmanaged function.
 delegate bool EnumWC(IntPtr hwnd, IntPtr lParam);

 // Import user32.dll (containing the function we need) and define
 // the method corresponding to the native function.
 [DllImport("user32.dll")]
 static extern int EnumWindows(EnumWC lpEnumFunc, IntPtr lParam);

 // Define the implementation of the delegate; here, we simply output the window handle.
 static bool OutputWindow(IntPtr hwnd, IntPtr lParam) {
 Console.WriteLine(hwnd.ToInt64());
 return true;
 }

 static void Main(string[] args) {
 // Invoke the method; note the delegate as a first parameter.
 EnumWindows(OutputWindow, IntPtr.Zero);
 }
 }
}

It is also similar on Linux. The function name is the same, since getpid(2) is a standard POSIX system call.

Of course, the runtime allows communication to flow both ways which enables you to call into managed artifacts from native functions, using function
pointers. The closest thing to a function pointer in managed code is a delegate, so this is what is used to allow callbacks from native code into managed
code.

The way to use this feature is similar to managed to native process described above. For a given callback, you define a delegate that matches the
signature, and pass that into the external method. The runtime will take care of everything else.

Before we walk through our example, it is good to go over the signatures of the unmanaged functions we need to work with. The function we want to
call to enumerate all of the windows has the following signature: BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

The first parameter is a callback. The said callback has the following signature: BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);

With this in mind, let’s walk through the example:

Line #8 in the example defines a delegate that matches the signature of the callback from unmanaged code. Notice how the LPARAM and HWND

https://en.wikipedia.org/wiki/POSIX

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Define a delegate that has the same signature as the native function.
 delegate int DirClbk(string fName, StatClass stat, int typeFlag);

 // Import the libc and define the method to represent the native function.
 [DllImport("libc.so.6")]
 static extern int ftw(string dirpath, DirClbk cl, int descriptors);

 // Implement the above DirClbk delegate;
 // this one just prints out the filename that is passed to it.
 static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
 Console.WriteLine(fName);
 return 0;
 }

 public static void Main(string[] args){
 // Call the native function.
 // Note the second parameter which represents the delegate (callback).
 ftw(".", DisplayEntry, 10);
 }
 }

 // The native callback takes a pointer to a struct. The below class
 // represents that struct in managed code. You can find more information
 // about this in the section on marshalling below.
 [StructLayout(LayoutKind.Sequential)]
 public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
 }
}

types are represented using IntPtr in the managed code.
Lines #10 and #11 introduce the EnumWindows function from the user32.dll library.
Lines #13 - 16 implement the delegate. For this simple example, we just want to output the handle to the console.
Finally, in line #19 we invoke the external method and pass in the delegate.

The Linux and macOS examples are shown below. For them, we use the ftw function that can be found in libc , the C library. This function is used to
traverse directory hierarchies and it takes a pointer to a function as one of its parameters. The said function has the following signature:
int (*fn) (const char *fpath, const struct stat *sb, int typeflag) .

macOS example uses the same function, and the only difference is the argument to the DllImport attribute, as macOS keeps libc in a different place.

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Define a delegate that has the same signature as the native function.
 delegate int DirClbk(string fName, StatClass stat, int typeFlag);

 // Import the libc and define the method to represent the native function.
 [DllImport("libSystem.dylib")]
 static extern int ftw(string dirpath, DirClbk cl, int descriptors);

 // Implement the above DirClbk delegate;
 // this one just prints out the filename that is passed to it.
 static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
 Console.WriteLine(fName);
 return 0;
 }

 public static void Main(string[] args){
 // Call the native function.
 // Note the second parameter which represents the delegate (callback).
 ftw(".", DisplayEntry, 10);
 }
 }

 // The native callback takes a pointer to a struct. The below class
 // represents that struct in managed code. You can find more information
 // about this in the section on marshalling below.
 [StructLayout(LayoutKind.Sequential)]
 public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
 }
}

Type marshalling

[DllImport("somenativelibrary.dll")]
static extern int MethodA([MarshalAs(UnmanagedType.LPStr)] string parameter);

Marshalling classes and structsMarshalling classes and structs

Both of the above examples depend on parameters, and in both cases, the parameters are given as managed types. Runtime does the "right thing" and
processes these into its equivalents on the other side. Since this process is really important to writing quality native interop code, let’s take a look at
what happens when the runtime marshals the types.

Marshalling is the process of transforming types when they need to cross the managed boundary into native and vice versa.

The reason marshalling is needed is because the types in the managed and unmanaged code are different. In managed code, for instance, you have a
String , while in the unmanaged world strings can be Unicode ("wide"), non-Unicode, null-terminated, ASCII, etc. By default, the P/Invoke subsystem

will try to do the Right Thing based on the default behavior which you can see on MSDN. However, for those situations where you need extra control,
you can employ the MarshalAs attribute to specify what is the expected type on the unmanaged side. For instance, if we want the string to be sent as a
null-terminated ANSI string, we could do it like this:

Another aspect of type marshalling is how to pass in a struct to an unmanaged method. For instance, some of the unmanaged methods require a struct
as a parameter. In these cases, we need to create a corresponding struct or a class in managed part of the world to use it as a parameter. However, just
defining the class is not enough, we also need to instruct the marshaler how to map fields in the class to the unmanaged struct. This is where the
StructLayout attribute comes into play.

https://docs.microsoft.com/en-us/dotnet/framework/interop/default-marshaling-behavior

[DllImport("kernel32.dll")]
static extern void GetSystemTime(SystemTime systemTime);

[StructLayout(LayoutKind.Sequential)]
class SystemTime {
 public ushort Year;
 public ushort Month;
 public ushort DayOfWeek;
 public ushort Day;
 public ushort Hour;
 public ushort Minute;
 public ushort Second;
 public ushort Milsecond;
}

public static void Main(string[] args) {
 SystemTime st = new SystemTime();
 GetSystemTime(st);
 Console.WriteLine(st.Year);
}

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME*;

[StructLayout(LayoutKind.Sequential)]
public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
}

More resources

The example above shows off a simple example of calling into GetSystemTime() function. The interesting bit is on line 4. The attribute specifies that the
fields of the class should be mapped sequentially to the struct on the other (unmanaged) side. This means that the naming of the fields is not important,
only their order is important, as it needs to correspond to the unmanaged struct, shown below:

We already saw the Linux and macOS example for this in the previous example. It is shown again below.

The StatClass class represents a structure that is returned by the stat system call on UNIX systems. It represents information about a given file. The
class above is the stat struct representation in managed code. Again, the fields in the class have to be in the same order as the native struct (you can find
these by perusing man pages on your favorite UNIX implementation) and they have to be of the same underlying type.

PInvoke.net wiki an excellent Wiki with information on common Win32 APIs and how to call them.
P/Invoke on MSDN
Mono documentation on P/Invoke

https://www.pinvoke.net/
https://msdn.microsoft.com/library/zbz07712.aspx
https://www.mono-project.com/docs/advanced/pinvoke/

Collections and Data Structures
5/2/2018 • 4 minutes to read • Edit Online

Common collection features

Choosing a collection

Similar data can often be handled more efficiently when stored and manipulated as a collection. You can use the System.Array class or the classes in the
System.Collections, System.Collections.Generic, System.Collections.Concurrent, System.Collections.Immutable namespaces to add, remove, and modify
either individual elements or a range of elements in a collection.

There are two main types of collections; generic collections and non-generic collections. Generic collections were added in the .NET Framework 2.0 and
provide collections that are type-safe at compile time. Because of this, generic collections typically offer better performance. Generic collections accept a
type parameter when they are constructed and do not require that you cast to and from the Object type when you add or remove items from the
collection. In addition, most generic collections are supported in Windows Store apps. Non-generic collections store items as Object, require casting,
and most are not supported for Windows Store app development. However, you may see non-generic collections in older code.

Starting with the .NET Framework 4, the collections in the System.Collections.Concurrent namespace provide efficient thread-safe operations for
accessing collection items from multiple threads. The immutable collection classes in the System.Collections.Immutable namespace (NuGet package)
are inherently thread-safe because operations are performed on a copy of the original collection and the original collection cannot be modified.

All collections provide methods for adding, removing or finding items in the collection. In addition, all collections that directly or indirectly implement
the ICollection interface or the ICollection<T> interface share these features:

The ability to enumerate the collection

.NET Framework collections either implement System.Collections.IEnumerable or System.Collections.Generic.IEnumerable<T> to enable the
collection to be iterated through. An enumerator can be thought of as a movable pointer to any element in the collection. The foreach, in
statement and the For Each...Next Statement use the enumerator exposed by the GetEnumerator method and hide the complexity of
manipulating the enumerator. In addition, any collection that implements System.Collections.Generic.IEnumerable<T> is considered a queryable
type and can be queried with L INQ. L INQ queries provide a common pattern for accessing data. They are typically more concise and readable
than standard foreach loops, and provide filtering, ordering and grouping capabilities. L INQ queries can also improve performance. For more
information, see L INQ to Objects, Parallel L INQ (PLINQ) and Introduction to L INQ Queries (C#).

The ability to copy the collection contents to an array

All collections can be copied to an array using the CopyTo method; however, the order of the elements in the new array is based on the sequence
in which the enumerator returns them. The resulting array is always one-dimensional with a lower bound of zero.

In addition, many collection classes contain the following features:

Capacity and Count properties

The capacity of a collection is the number of elements it can contain. The count of a collection is the number of elements it actually contains.
Some collections hide the capacity or the count or both.

Most collections automatically expand in capacity when the current capacity is reached. The memory is reallocated, and the elements are copied
from the old collection to the new one. This reduces the code required to use the collection; however, the performance of the collection might be
negatively affected. For example, for List<T>, If Count is less than Capacity, adding an item is an O(1) operation. If the capacity needs to be
increased to accommodate the new element, adding an item becomes an O(n) operation, where n is Count. The best way to avoid poor
performance caused by multiple reallocations is to set the initial capacity to be the estimated size of the collection.

A BitArray is a special case; its capacity is the same as its length, which is the same as its count.

A consistent lower bound

The lower bound of a collection is the index of its first element. All indexed collections in the System.Collections namespaces have a lower bound
of zero, meaning they are 0-indexed. Array has a lower bound of zero by default, but a different lower bound can be defined when creating an
instance of the Array class using Array.CreateInstance.

Synchronization for access from multiple threads (System.Collections classes only).

Non-generic collection types in the System.Collections namespace provide some thread safety with synchronization; typically exposed through
the SyncRoot and IsSynchronized members. These collections are not thread-safe by default. If you require scalable and efficient multi-threaded
access to a collection, use one of the classes in the System.Collections.Concurrent namespace or consider using an immutable collection. For
more information, see Thread-Safe Collections.

In general, you should use generic collections. The following table describes some common collection scenarios and the collection classes you can use
for those scenarios. If you are new to generic collections, this table will help you choose the generic collection that works the best for your task.

https://github.com/dotnet/docs/blob/master/docs/standard/collections/index.md
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://www.nuget.org/packages/System.Collections.Immutable
https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.generic.icollection-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://msdn.microsoft.com/library/73cafe73-37cf-46e7-bfa7-97c7eea7ced9
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/parallel-linq-plinq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/introduction-to-linq-queries
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.count
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.capacity
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.count
https://docs.microsoft.com/dotnet/api/system.collections.bitarray
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.array.createinstance
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/dotnet/api/system.collections.icollection.syncroot
https://docs.microsoft.com/dotnet/api/system.collections.icollection.issynchronized
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index

I WANT TO… GENERIC COLLECTION OPTIONS NON-GENERIC COLLECTION OPTIONS
THREAD-SAFE OR IMMUTABLE
COLLECTION OPTIONS

Store items as key/value pairs for quick
look-up by key

Dictionary<TKey,TValue> Hashtable

(A collection of key/value pairs that are
organize based on the hash code of
the key.)

ConcurrentDictionary<TKey,TValue>

ReadOnlyDictionary<TKey,TValue>

ImmutableDictionary<TKey,TValue>

Access items by index List<T> Array

ArrayList

ImmutableList<T>

ImmutableArray

Use items first-in-first-out (FIFO) Queue<T> Queue ConcurrentQueue<T>

ImmutableQueue<T>

Use data Last-In-First-Out (LIFO) Stack<T> Stack ConcurrentStack<T>

ImmutableStack<T>

Access items sequentially LinkedList<T> No recommendation No recommendation

Receive notifications when items are
removed or added to the collection.
(implements INotifyPropertyChanged
and INotifyCollectionChanged)

ObservableCollection<T> No recommendation No recommendation

A sorted collection SortedList<TKey,TValue> SortedList ImmutableSortedDictionary<TKey,TVal
ue>

ImmutableSortedSet<T>

A set for mathematical functions HashSet<T>

SortedSet<T>

No recommendation ImmutableHashSet<T>

ImmutableSortedSet<T>

Related Topics
TITLE DESCRIPTION

Selecting a Collection Class Describes the different collections and helps you select one for your scenario.

Commonly Used Collection Types Describes commonly used generic and nongeneric collection types such as
System.Array, System.Collections.Generic.List<T>, and
System.Collections.Generic.Dictionary<TKey,TValue>.

When to Use Generic Collections Discusses the use of generic collection types.

Comparisons and Sorts Within Collections Discusses the use of equality comparisons and sorting comparisons in collections.

Sorted Collection Types Describes sorted collections performance and characteristics

Hashtable and Dictionary Collection Types Describes the features of generic and non-generic hash-based dictionary types.

Thread-Safe Collections Describes collection types such as
System.Collections.Concurrent.BlockingCollection<T> and
System.Collections.Concurrent.ConcurrentBag<T> that support safe and efficient
concurrent access from multiple threads.

System.Collections.Immutable Introduces the immutable collections and provides links to the collection types.

Reference

System.Array
System.Collections
System.Collections.Concurrent
System.Collections.Generic
System.Collections.Specialized
System.Linq
System.Collections.Immutable

https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.hashtable
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentdictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.objectmodel.readonlydictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutabledictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections.arraylist
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablelist-1
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablearray
https://docs.microsoft.com/dotnet/api/system.collections.generic.queue-1
https://docs.microsoft.com/dotnet/api/system.collections.queue
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentqueue-1
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablequeue-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.stack-1
https://docs.microsoft.com/dotnet/api/system.collections.stack
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentstack-1
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablestack-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.linkedlist-1
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/dotnet/api/system.collections.specialized.inotifycollectionchanged
https://docs.microsoft.com/dotnet/api/system.collections.objectmodel.observablecollection-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.sortedlist-2
https://docs.microsoft.com/dotnet/api/system.collections.sortedlist
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablesorteddictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablesortedset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.sortedset-1
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablehashset-1
https://docs.microsoft.com/dotnet/api/system.collections.immutable.immutablesortedset-1
https://docs.microsoft.com/en-us/dotnet/standard/collections/selecting-a-collection-class
https://docs.microsoft.com/en-us/dotnet/standard/collections/commonly-used-collection-types
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/en-us/dotnet/standard/collections/when-to-use-generic-collections
https://docs.microsoft.com/en-us/dotnet/standard/collections/comparisons-and-sorts-within-collections
https://docs.microsoft.com/en-us/dotnet/standard/collections/sorted-collection-types
https://docs.microsoft.com/en-us/dotnet/standard/collections/hashtable-and-dictionary-collection-types
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.blockingcollection-1
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentbag-1
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/dotnet/api/system.collections.specialized
https://docs.microsoft.com/dotnet/api/system.linq
https://docs.microsoft.com/dotnet/api/system.collections.immutable

Numerics in the .NET Framework
5/2/2018 • 3 minutes to read • Edit Online

Integral types

TYPE SIGNED/UNSIGNED SIZE (BYTES) MINIMUM VALUE MAXIMUM VALUE

System.Byte Unsigned 1 0 255

System.Int16 Signed 2 -32,768 32,767

System.Int32 Signed 4 -2,147,483,648 2,147,483,647

System.Int64 Signed 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

System.SByte Signed 1 -128 127

System.UInt16 Unsigned 2 0 65,535

System.UInt32 Unsigned 4 0 4,294,967,295

System.UInt64 Unsigned 8 0 18,446,744,073,709,551,615

Floating-point types

TYPE SIZE (IN BYTES) MINIMUM MAXIMUM

System.Double 8 -1.79769313486232e308 1.79769313486232e308

System.Single 4 -3.402823e38 3.402823e38

System.Decimal 16 -
79,228,162,514,264,337,593,543,950,
335

79,228,162,514,264,337,593,543,950,
335

BigInteger

The .NET Framework supports the standard numeric integral and floating-point primitives, as well as BigInteger, an integral type with no theoretical
upper or lower bound, Complex, a type that represents complex numbers, and a set of S IMD-enabled vector types in the System.Numerics namespace.

In addition, System.Numerics.Vectors, the SIMD-enabled library of vectory types, was released as a NuGet package.

The .NET Framework supports both signed and unsigned integers ranging from one byte to eight bytes in length. The following table lists the integral
types and their size, indicates whether they are signed or unsigned, and documents their range. All integers are value types.

Each integral type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each integer also
includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a number to that integer, and to
convert an integer to its string representation. Some additional mathematical operations beyond those handled by the standard operators, such as
rounding and identifying the smaller or larger value of two integers, are available from the Math class. You can also work with the individual bits in an
integer value by using the BitConverter class.

Note that the unsigned integral types are not CLS-compliant. For more information, see Language Independence and Language-Independent
Components.

The .NET Framework includes three primitive floating point types, which are listed in the following table.

Each floating-point type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each also
includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a floating-point number, and to
convert a floating-point number to its string representation. Some additional mathematical, algebraic, and trigonometric operations are available from
the Math class. You can also work with the individual bits in Double and Single values by using the BitConverter class. The System.Decimal structure
has its own methods, Decimal.GetBits and Decimal.Decimal(Int32[]), for working with a decimal value's individual bits, as well as its own set of methods
for performing some additional mathematical operations.

The Double and Single types are intended to be used for values that by their nature are imprecise (such as the distance between two stars in the solar
system) and for applications in which a high degree of precision and small rounding error is not required. You should use the System.Decimal type for
cases in which greater precision is required and rounding error is undesirable,

System.Numerics.BigInteger is an immutable type that represents an arbitrarily large integer whose value in theory has no upper or lower bounds. The

https://github.com/dotnet/docs/blob/master/docs/standard/numerics.md
https://docs.microsoft.com/dotnet/api/system.numerics.biginteger
https://docs.microsoft.com/dotnet/api/system.numerics.complex
https://docs.microsoft.com/dotnet/api/system.numerics
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.bitconverter
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.bitconverter
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.decimal.getbits
https://docs.microsoft.com/dotnet/api/system.decimal.-ctor#System_Decimal__ctor_System_Int32___
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.numerics.biginteger

Complex

SIMD-enabled vector types

See Also

methods of the BigInteger type closely parallel those of the other integral types.

The Complex type represents a complex number, that is, a number with a real number part and an imaginary number part. It supports a standard set of
arithmetic, comparison, equality, explicit conversion, and implicit conversion operators, as well as mathematical, algebraic, and trigonometric methods.

The System.Numerics namespace includes a set of S IMD-enabled vector types for the .NET Framework. S IMD (Single Instruction Multiple Data
operations) allows some operations to be parallelized at the hardware level, which results in huge performance improvements in mathematical,
scientific, and graphics apps that perform computations over vectors.

The SIMD-enabled vector types in the .NET Framework include the following: . In addition, System.Numerics.Vectors includes a Plane type and a
Quaternion type.

Vector2, Vector3, and Vector4 types, which are 2-, 3-, and 4-dimensional vectors of type Single.

Two matrix types, Matrix3x2, which represents a 3x2 matrix; and Matrix4x4, which represents a 4x4 matrix.

The Plane and Quaternion types.

The SimD-enabled vector types are implemented in IL, which allows them to be used on non-SimD-enabled hardware and JIT compilers. To take
advantage of S IMD instructions, your 64-bit apps must be compiled by the new 64-bit JIT Compiler for managed code, which is included with the .NET
Framework 4.6; it adds SIMD support when targeting x64 processors.

S IMD can also be downloaded as a NuGet package. The NuGET package also includes a generic Vector<T> structure that allows you to create a vector
of any primitive numeric type. (The primitive numeric types include all numeric types in the System namespace except for Decimal.) In addition, the
Vector<T> structure provides a library of convenience methods that you can call when working with vectors.

Application Essentials

https://docs.microsoft.com/dotnet/api/system.numerics.biginteger
https://docs.microsoft.com/dotnet/api/system.numerics.complex
https://docs.microsoft.com/dotnet/api/system.numerics
https://docs.microsoft.com/dotnet/api/system.numerics.vector2
https://docs.microsoft.com/dotnet/api/system.numerics.vector3
https://docs.microsoft.com/dotnet/api/system.numerics.vector4
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.numerics.matrix3x2
https://docs.microsoft.com/dotnet/api/system.numerics.matrix4x4
https://docs.microsoft.com/dotnet/api/system.numerics.plane
https://docs.microsoft.com/dotnet/api/system.numerics.quaternion
https://www.nuget.org/packages/System.Numerics.Vectors
https://docs.microsoft.com/dotnet/api/system.numerics.vector-1
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.numerics.vector-1

Dates, times, and time zones
5/2/2018 • 2 minutes to read • Edit Online

In this section

Reference

In addition to the basic DateTime structure, .NET provides the following classes that support working with time zones:

TimeZone

Use this class to work with the system's local time zone and the Coordinated Universal Time (UTC) zone.The functionality of the TimeZone class
is largely superseded by the TimeZoneInfo class.

TimeZoneInfo

Use this class to work with any time zone that is predefined on a system, to create new time zones, and to easily convert dates and times from
one time zone to another. For new development, use the TimeZoneInfo class instead of the TimeZone class.

DateTimeOffset

Use this structure to work with dates and times whose offset (or difference) from UTC is known. The DateTimeOffset structure combines a date
and time value with that time's offset from UTC. Because of its relationship to UTC, an individual date and time value unambiguously identifies a
single point in time. This makes a DateTimeOffset value more portable from one computer to another than a DateTime value.

This section of the documentation provides the information that you need to work with time zones and to create time zone-aware applications that can
convert dates and times from one time zone to another.

Time zone overview Discusses the terminology, concepts, and issues involved in creating time zone-aware applications.

Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo Discusses when to use the DateTime, DateTimeOffset, and TimeZoneInfo
types when working with date and time data.

Finding the time zones defined on a local system Describes how to enumerate the time zones found on a local system.

How to: Enumerate time zones present on a computer Provides examples that enumerate the time zones defined in a computer's registry and that let
users select a predefined time zone from a list.

How to: Access the predefined UTC and local time zone objects Describes how to access Coordinated Universal Time and the local time zone.

How to: Instantiate a TimeZoneInfo object Describes how to instantiate a TimeZoneInfo object from the local system registry.

Instantiating a DateTimeOffset object Discusses the ways in which a DateTimeOffset object can be instantiated, and the ways in which a DateTime value
can be converted to a DateTimeOffset value.

How to: Create time zones without adjustment rules Describes how to create a custom time zone that does not support the transition to and from
daylight saving time.

How to: Create time zones with adjustment rules Describes how to create a custom time zone that supports one or more transitions to and from
daylight saving time.

Saving and restoring time zones Describes TimeZoneInfo support for serialization and deserialization of time zone data and illustrates some of the
scenarios in which these features can be used.

How to: Save time zones to an embedded resource Describes how to create a custom time zone and save its information in a resource file.

How to: Restore time zones from an embedded resource Describes how to instantiate custom time zones that have been saved to an embedded
resource file.

Performing arithmetic operations with dates and times Discusses the issues involved in adding, subtracting, and comparing DateTime and
DateTimeOffset values.

How to: Use time zones in date and time arithmetic Discusses how to perform date and time arithmetic that reflects a time zone's adjustment rules.

Converting between DateTime and DateTimeOffset Describes how to convert between DateTime and DateTimeOffset values.

Converting times between time zones Describes how to convert times from one time zone to another.

How to: Resolve ambiguous times Describes how to resolve an ambiguous time by mapping it to the time zone's standard time.

How to: Let users resolve ambiguous times Describes how to let a user determine the mapping between an ambiguous local time and Coordinated
Universal Time.

System.TimeZoneInfo

https://github.com/dotnet/docs/blob/master/docs/standard/datetime/index.md
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/standard/datetime/time-zone-overview
https://docs.microsoft.com/en-us/dotnet/standard/datetime/choosing-between-datetime
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/en-us/dotnet/standard/datetime/finding-the-time-zones-on-local-system
https://docs.microsoft.com/en-us/dotnet/standard/datetime/enumerate-time-zones
https://docs.microsoft.com/en-us/dotnet/standard/datetime/access-utc-and-local
https://docs.microsoft.com/en-us/dotnet/standard/datetime/instantiate-time-zone-info
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/en-us/dotnet/standard/datetime/instantiating-a-datetimeoffset-object
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/standard/datetime/create-time-zones-without-adjustment-rules
https://docs.microsoft.com/en-us/dotnet/standard/datetime/create-time-zones-with-adjustment-rules
https://docs.microsoft.com/en-us/dotnet/standard/datetime/saving-and-restoring-time-zones
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/en-us/dotnet/standard/datetime/save-time-zones-to-an-embedded-resource
https://docs.microsoft.com/en-us/dotnet/standard/datetime/restore-time-zones-from-an-embedded-resource
https://docs.microsoft.com/en-us/dotnet/standard/datetime/performing-arithmetic-operations
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/standard/datetime/use-time-zones-in-arithmetic
https://docs.microsoft.com/en-us/dotnet/standard/datetime/converting-between-datetime-and-offset
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/en-us/dotnet/standard/datetime/converting-between-time-zones
https://docs.microsoft.com/en-us/dotnet/standard/datetime/resolve-ambiguous-times
https://docs.microsoft.com/en-us/dotnet/standard/datetime/let-users-resolve-ambiguous-times
https://docs.microsoft.com/dotnet/api/system.timezoneinfo

Handling and Raising Events
5/2/2018 • 7 minutes to read • Edit Online

Events

class Counter
{
 public event EventHandler ThresholdReached;

 protected virtual void OnThresholdReached(EventArgs e)
 {
 EventHandler handler = ThresholdReached;
 if (handler != null)
 {
 handler(this, e);
 }
 }

 // provide remaining implementation for the class
}

Public Class Counter
 Public Event ThresholdReached As EventHandler

 Protected Overridable Sub OnThresholdReached(e As EventArgs)
 RaiseEvent ThresholdReached(Me, e)
 End Sub

 ' provide remaining implementation for the class
End Class

Delegates

Events in the .NET Framework are based on the delegate model. The delegate model follows the observer design pattern, which enables a subscriber to
register with, and receive notifications from, a provider. An event sender pushes a notification that an event has happened, and an event receiver
receives that notification and defines a response to it. This article describes the major components of the delegate model, how to consume events in
applications, and how to implement events in your code.

For information about handling events in Windows 8.x Store apps, see Events and routed events overview.

An event is a message sent by an object to signal the occurrence of an action. The action could be caused by user interaction, such as a button click, or it
could be raised by some other program logic, such as changing a property’s value. The object that raises the event is called the event sender. The event
sender doesn't know which object or method will receive (handle) the events it raises. The event is typically a member of the event sender ; for example,
the Click event is a member of the Button class, and the PropertyChanged event is a member of the class that implements the INotifyPropertyChanged
interface.

To define an event, you use the event (in C#) or Event (in Visual Basic) keyword in the signature of your event class, and specify the type of delegate
for the event. Delegates are described in the next section.

Typically, to raise an event, you add a method that is marked as protected and virtual (in C#) or Protected and Overridable (in Visual Basic). Name
this method On EventName; for example, OnDataReceived . The method should take one parameter that specifies an event data object. You provide this
method to enable derived classes to override the logic for raising the event. A derived class should always call the On EventName method of the base
class to ensure that registered delegates receive the event.

The following example shows how to declare an event named ThresholdReached . The event is associated with the EventHandler delegate and raised in a
method named OnThresholdReached .

A delegate is a type that holds a reference to a method. A delegate is declared with a signature that shows the return type and parameters for the
methods it references, and can hold references only to methods that match its signature. A delegate is thus equivalent to a type-safe function pointer or
a callback. A delegate declaration is sufficient to define a delegate class.

Delegates have many uses in the .NET Framework. In the context of events, a delegate is an intermediary (or pointer-like mechanism) between the
event source and the code that handles the event. You associate a delegate with an event by including the delegate type in the event declaration, as
shown in the example in the previous section. For more information about delegates, see the Delegate class.

The .NET Framework provides the EventHandler and EventHandler<TEventArgs> delegates to support most event scenarios. Use the EventHandler
delegate for all events that do not include event data. Use the EventHandler<TEventArgs> delegate for events that include data about the event. These
delegates have no return type value and take two parameters (an object for the source of the event and an object for event data).

Delegates are multicast, which means that they can hold references to more than one event-handling method. For details, see the Delegate reference
page. Delegates provide flexibility and fine-grained control in event handling. A delegate acts as an event dispatcher for the class that raises the event by

https://github.com/dotnet/docs/blob/master/docs/standard/events/index.md
https://docs.microsoft.com/previous-versions/windows/apps/hh758286(v=win.10)
https://docs.microsoft.com/dotnet/api/system.web.ui.webcontrols.button.click
https://docs.microsoft.com/dotnet/api/system.web.ui.webcontrols.button
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged.propertychanged
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventhandler-1
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventhandler-1
https://docs.microsoft.com/dotnet/api/system.delegate

public delegate void ThresholdReachedEventHandler(object sender, ThresholdReachedEventArgs e);

Public Delegate Sub ThresholdReachedEventHandler(sender As Object, e As ThresholdReachedEventArgs)

Event Data

public class ThresholdReachedEventArgs : EventArgs
{
 public int Threshold { get; set; }
 public DateTime TimeReached { get; set; }
}

Public Class ThresholdReachedEventArgs
 Inherits EventArgs

 Public Property Threshold As Integer
 Public Property TimeReached As DateTime
End Class

Event Handlers

class Program
{
 static void Main(string[] args)
 {
 Counter c = new Counter();
 c.ThresholdReached += c_ThresholdReached;

 // provide remaining implementation for the class
 }

 static void c_ThresholdReached(object sender, EventArgs e)
 {
 Console.WriteLine("The threshold was reached.");
 }
}

maintaining a list of registered event handlers for the event.

For scenarios where the EventHandler and EventHandler<TEventArgs> delegates do not work, you can define a delegate. Scenarios that require you to
define a delegate are very rare, such as when you must work with code that does not recognize generics. You mark a delegate with the delegate in (C#)
and Delegate (in Visual Basic) keyword in the declaration. The following example shows how to declare a delegate named
ThresholdReachedEventHandler .

Data that is associated with an event can be provided through an event data class. The .NET Framework provides many event data classes that you can
use in your applications. For example, the SerialDataReceivedEventArgs class is the event data class for the SerialPort.DataReceived event. The .NET
Framework follows a naming pattern of ending all event data classes with EventArgs . You determine which event data class is associated with an event
by looking at the delegate for the event. For example, the SerialDataReceivedEventHandler delegate includes the SerialDataReceivedEventArgs class as
one of its parameters.

The EventArgs class is the base type for all event data classes. EventArgs is also the class you use when an event does not have any data associated with
it. When you create an event that is only meant to notify other classes that something happened and does not need to pass any data, include the
EventArgs class as the second parameter in the delegate. You can pass the EventArgs.Empty value when no data is provided. The EventHandler delegate
includes the EventArgs class as a parameter.

When you want to create a customized event data class, create a class that derives from EventArgs, and then provide any members needed to pass data
that is related to the event. Typically, you should use the same naming pattern as the .NET Framework and end your event data class name with
EventArgs .

The following example shows an event data class named ThresholdReachedEventArgs . It contains properties that are specific to the event being raised.

To respond to an event, you define an event handler method in the event receiver. This method must match the signature of the delegate for the event
you are handling. In the event handler, you perform the actions that are required when the event is raised, such as collecting user input after the user
clicks a button. To receive notifications when the event occurs, your event handler method must subscribe to the event.

The following example shows an event handler method named c_ThresholdReached that matches the signature for the EventHandler delegate. The
method subscribes to the ThresholdReached event.

https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventhandler-1
https://docs.microsoft.com/dotnet/api/system.io.ports.serialdatareceivedeventargs
https://docs.microsoft.com/dotnet/api/system.io.ports.serialport.datareceived
https://docs.microsoft.com/dotnet/api/system.io.ports.serialdatareceivedeventhandler
https://docs.microsoft.com/dotnet/api/system.io.ports.serialdatareceivedeventargs
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.eventargs.empty
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.eventhandler

Module Module1

 Sub Main()
 Dim c As Counter = New Counter()
 AddHandler c.ThresholdReached, AddressOf c_ThresholdReached

 ' provide remaining implementation for the class
 End Sub

 Sub c_ThresholdReached(sender As Object, e As EventArgs)
 Console.WriteLine("The threshold was reached.")
 End Sub
End Module

Static and Dynamic Event Handlers

Raising Multiple Events

Related Topics
TITLE DESCRIPTION

How to: Raise and Consume Events Contains examples of raising and consuming events.

How to: Handle Multiple Events Using Event Properties Shows how to use event properties to handle multiple events.

Observer Design Pattern Describes the design pattern that enables a subscriber to register with, and receive
notifications from, a provider.

How to: Consume Events in a Web Forms Application Shows how to handle an event that is raised by a Web Forms control.

See Also

The .NET Framework allows subscribers to register for event notifications either statically or dynamically. Static event handlers are in effect for the
entire life of the class whose events they handle. Dynamic event handlers are explicitly activated and deactivated during program execution, usually in
response to some conditional program logic. For example, they can be used if event notifications are needed only under certain conditions or if an
application provides multiple event handlers and run-time conditions define the appropriate one to use. The example in the previous section shows how
to dynamically add an event handler. For more information, see Events and Events.

If your class raises multiple events, the compiler generates one field per event delegate instance. If the number of events is large, the storage cost of one
field per delegate may not be acceptable. For those situations, the .NET Framework provides event properties that you can use with another data
structure of your choice to store event delegates.

Event properties consist of event declarations accompanied by event accessors. Event accessors are methods that you define to add or remove event
delegate instances from the storage data structure. Note that event properties are slower than event fields, because each event delegate must be
retrieved before it can be invoked. The trade-off is between memory and speed. If your class defines many events that are infrequently raised, you will
want to implement event properties. For more information, see How to: Handle Multiple Events Using Event Properties.

EventHandler
EventHandler<TEventArgs>
EventArgs
Delegate
Events and routed events overview (UWP apps)
Events (Visual Basic)
Events (C# Programming Guide)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-handle-multiple-events-using-event-properties
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-raise-and-consume-events
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-handle-multiple-events-using-event-properties
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/how-to-consume-events-in-a-web-forms-application
https://docs.microsoft.com/dotnet/api/system.eventhandler
https://docs.microsoft.com/dotnet/api/system.eventhandler-1
https://docs.microsoft.com/dotnet/api/system.eventargs
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/windows/uwp/xaml-platform/events-and-routed-events-overview
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index

Managed Execution Process
5/2/2018 • 7 minutes to read • Edit Online

Choosing a Compiler

Compiling to MSIL

Compiling MSIL to Native Code

Compilation by the JIT CompilerCompilation by the JIT Compiler

 The managed execution process includes the following steps, which are discussed in detail later in this topic:

1. Choosing a compiler.

To obtain the benefits provided by the common language runtime, you must use one or more language compilers that target the runtime.

2. Compiling your code to MSIL.

Compiling translates your source code into Microsoft intermediate language (MSIL) and generates the required metadata.

3. Compiling MSIL to native code.

At execution time, a just-in-time (JIT) compiler translates the MSIL into native code. During this compilation, code must pass a verification
process that examines the MSIL and metadata to find out whether the code can be determined to be type safe.

4. Running code.

The common language runtime provides the infrastructure that enables execution to take place and services that can be used during execution.

To obtain the benefits provided by the common language runtime (CLR), you must use one or more language compilers that target the runtime, such as
Visual Basic, C#, Visual C++, F#, or one of many third-party compilers such as an Eiffel, Perl, or COBOL compiler.

Because it is a multilanguage execution environment, the runtime supports a wide variety of data types and language features. The language compiler
you use determines which runtime features are available, and you design your code using those features. Your compiler, not the runtime, establishes the
syntax your code must use. If your component must be completely usable by components written in other languages, your component's exported types
must expose only language features that are included in the Language Independence and Language-Independent Components (CLS). You can use the
CLSCompliantAttribute attribute to ensure that your code is CLS-compliant. For more information, see Language Independence and Language-
Independent Components.

Back to top

When compiling to managed code, the compiler translates your source code into Microsoft intermediate language (MSIL), which is a CPU-independent
set of instructions that can be efficiently converted to native code. MSIL includes instructions for loading, storing, initializing, and calling methods on
objects, as well as instructions for arithmetic and logical operations, control flow, direct memory access, exception handling, and other operations.
Before code can be run, MSIL must be converted to CPU-specific code, usually by a just-in-time (JIT) compiler. Because the common language runtime
supplies one or more JIT compilers for each computer architecture it supports, the same set of MSIL can be JIT-compiled and run on any supported
architecture.

When a compiler produces MSIL, it also produces metadata. Metadata describes the types in your code, including the definition of each type, the
signatures of each type's members, the members that your code references, and other data that the runtime uses at execution time. The MSIL and
metadata are contained in a portable executable (PE) file that is based on and that extends the published Microsoft PE and common object file format
(COFF) used historically for executable content. This file format, which accommodates MSIL or native code as well as metadata, enables the operating
system to recognize common language runtime images. The presence of metadata in the file together with MSIL enables your code to describe itself,
which means that there is no need for type libraries or Interface Definition Language (IDL). The runtime locates and extracts the metadata from the file
as needed during execution.

Back to top

Before you can run Microsoft intermediate language (MSIL), it must be compiled against the common language runtime to native code for the target
machine architecture. The .NET Framework provides two ways to perform this conversion:

A .NET Framework just-in-time (JIT) compiler.

The .NET Framework Ngen.exe (Native Image Generator).

J IT compilation converts MSIL to native code on demand at application run time, when the contents of an assembly are loaded and executed. Because
the common language runtime supplies a JIT compiler for each supported CPU architecture, developers can build a set of MSIL assemblies that can be
JIT-compiled and run on different computers with different machine architectures. However, if your managed code calls platform-specific native APIs or
a platform-specific class library, it will run only on that operating system.

JIT compilation takes into account the possibility that some code might never be called during execution. Instead of using time and memory to convert
all the MSIL in a PE file to native code, it converts the MSIL as needed during execution and stores the resulting native code in memory so that it is

https://github.com/dotnet/docs/blob/master/docs/standard/managed-execution-process.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator

Install-Time Code Generation Using NGen.exeInstall-Time Code Generation Using NGen.exe

Code VerificationCode Verification

Running Code

See Also

accessible for subsequent calls in the context of that process. The loader creates and attaches a stub to each method in a type when the type is loaded
and initialized. When a method is called for the first time, the stub passes control to the JIT compiler, which converts the MSIL for that method into
native code and modifies the stub to point directly to the generated native code. Therefore, subsequent calls to the JIT-compiled method go directly to
the native code.

Because the JIT compiler converts an assembly's MSIL to native code when individual methods defined in that assembly are called, it affects
performance adversely at run time. In most cases, that diminished performance is acceptable. More importantly, the code generated by the JIT compiler
is bound to the process that triggered the compilation. It cannot be shared across multiple processes. To allow the generated code to be shared across
multiple invocations of an application or across multiple processes that share a set of assemblies, the common language runtime supports an ahead-of-
time compilation mode. This ahead-of-time compilation mode uses the Ngen.exe (Native Image Generator) to convert MSIL assemblies to native code
much like the JIT compiler does. However, the operation of Ngen.exe differs from that of the JIT compiler in three ways:

It performs the conversion from MSIL to native code before running the application instead of while the application is running.

It compiles an entire assembly at a time, instead of one method at a time.

It persists the generated code in the Native Image Cache as a file on disk.

As part of its compilation to native code, the MSIL code must pass a verification process unless an administrator has established a security policy that
allows the code to bypass verification. Verification examines MSIL and metadata to find out whether the code is type safe, which means that it accesses
only the memory locations it is authorized to access. Type safety helps isolate objects from each other and helps protect them from inadvertent or
malicious corruption. It also provides assurance that security restrictions on code can be reliably enforced.

The runtime relies on the fact that the following statements are true for code that is verifiably type safe:

A reference to a type is strictly compatible with the type being referenced.

Only appropriately defined operations are invoked on an object.

Identities are what they claim to be.

During the verification process, MSIL code is examined in an attempt to confirm that the code can access memory locations and call methods only
through properly defined types. For example, code cannot allow an object's fields to be accessed in a manner that allows memory locations to be
overrun. Additionally, verification inspects code to determine whether the MSIL has been correctly generated, because incorrect MSIL can lead to a
violation of the type safety rules. The verification process passes a well-defined set of type-safe code, and it passes only code that is type safe. However,
some type-safe code might not pass verification because of some limitations of the verification process, and some languages, by design, do not produce
verifiably type-safe code. If type-safe code is required by the security policy but the code does not pass verification, an exception is thrown when the
code is run.

Back to top

The common language runtime provides the infrastructure that enables managed execution to take place and services that can be used during
execution. Before a method can be run, it must be compiled to processor-specific code. Each method for which MSIL has been generated is JIT-
compiled when it is called for the first time, and then run. The next time the method is run, the existing JIT-compiled native code is run. The process of
JIT-compiling and then running the code is repeated until execution is complete.

During execution, managed code receives services such as garbage collection, security, interoperability with unmanaged code, cross-language
debugging support, and enhanced deployment and versioning support.

In Microsoft Windows XP and Windows Vista, the operating system loader checks for managed modules by examining a bit in the COFF header. The bit
being set denotes a managed module. If the loader detects managed modules, it loads mscoree.dll, and _CorValidateImage and _CorImageUnloading

notify the loader when the managed module images are loaded and unloaded. _CorValidateImage performs the following actions:

1. Ensures that the code is valid managed code.

2. Changes the entry point in the image to an entry point in the runtime.

On 64-bit Windows, _CorValidateImage modifies the image that is in memory by transforming it from PE32 to PE32+ format.

Back to top

Overview
Language Independence and Language-Independent Components
Metadata and Self-Describing Components
Ilasm.exe (IL Assembler)
Security
Interoperating with Unmanaged Code
Deployment
Assemblies in the Common Language Runtime

https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/deployment/net-framework-applications
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime

Application Domains

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains

Metadata and Self-Describing Components
5/2/2018 • 8 minutes to read • Edit Online

Benefits of Metadata

Metadata and the PE File Structure

Metadata Tables and HeapsMetadata Tables and Heaps

In the past, a software component (.exe or .dll) that was written in one language could not easily use a software component that was written in another
language. COM provided a step towards solving this problem. The .NET Framework makes component interoperation even easier by allowing
compilers to emit additional declarative information into all modules and assemblies. This information, called metadata, helps components to interact
seamlessly.

Metadata is binary information describing your program that is stored either in a common language runtime portable executable (PE) file or in
memory. When you compile your code into a PE file, metadata is inserted into one portion of the file, and your code is converted to Microsoft
intermediate language (MSIL) and inserted into another portion of the file. Every type and member that is defined and referenced in a module or
assembly is described within metadata. When code is executed, the runtime loads metadata into memory and references it to discover information
about your code's classes, members, inheritance, and so on.

Metadata describes every type and member defined in your code in a language-neutral manner. Metadata stores the following information:

Description of the assembly.

Identity (name, version, culture, public key).

The types that are exported.

Other assemblies that this assembly depends on.

Security permissions needed to run.

Description of types.

Name, visibility, base class, and interfaces implemented.

Members (methods, fields, properties, events, nested types).

Attributes.

Additional descriptive elements that modify types and members.

Metadata is the key to a simpler programming model, and eliminates the need for Interface Definition Language (IDL) files, header files, or any external
method of component reference. Metadata enables .NET Framework languages to describe themselves automatically in a language-neutral manner,
unseen by both the developer and the user. Additionally, metadata is extensible through the use of attributes. Metadata provides the following major
benefits:

Self-describing files.

Common language runtime modules and assemblies are self-describing. A module's metadata contains everything needed to interact with
another module. Metadata automatically provides the functionality of IDL in COM, so you can use one file for both definition and
implementation. Runtime modules and assemblies do not even require registration with the operating system. As a result, the descriptions used
by the runtime always reflect the actual code in your compiled file, which increases application reliability.

Language interoperability and easier component-based design.

Metadata provides all the information required about compiled code for you to inherit a class from a PE file written in a different language. You
can create an instance of any class written in any managed language (any language that targets the common language runtime) without
worrying about explicit marshaling or using custom interoperability code.

Attributes.

The .NET Framework lets you declare specific kinds of metadata, called attributes, in your compiled file. Attributes can be found throughout the
.NET Framework and are used to control in more detail how your program behaves at run time. Additionally, you can emit your own custom
metadata into .NET Framework files through user-defined custom attributes. For more information, see Attributes.

Metadata is stored in one section of a .NET Framework portable executable (PE) file, while Microsoft intermediate language (MSIL) is stored in another
section of the PE file. The metadata portion of the file contains a series of table and heap data structures. The MSIL portion contains MSIL and
metadata tokens that reference the metadata portion of the PE file. You might encounter metadata tokens when you use tools such as the MSIL
Disassembler (Ildasm.exe) to view your code's MSIL, for example.

Each metadata table holds information about the elements of your program. For example, one metadata table describes the classes in your code,
another table describes the fields, and so on. If you have ten classes in your code, the class table will have tens rows, one for each class. Metadata tables
reference other tables and heaps. For example, the metadata table for classes references the table for methods.

https://github.com/dotnet/docs/blob/master/docs/standard/metadata-and-self-describing-components.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler

Metadata TokensMetadata Tokens

0x06000004

Metadata within a PE FileMetadata within a PE File

PE SECTION CONTENTS OF PE SECTION

PE header The index of the PE file's main sections and the address of the entry point.

The runtime uses this information to identify the file as a PE file and to determine
where execution starts when loading the program into memory.

MSIL instructions The Microsoft intermediate language instructions (MSIL) that make up your code.
Many MSIL instructions are accompanied by metadata tokens.

Metadata Metadata tables and heaps. The runtime uses this section to record information
about every type and member in your code. This section also includes custom
attributes and security information.

Run-Time Use of Metadata

Public Class MyApp
 Public Shared Sub Main()
 Dim ValueOne As Integer = 10
 Dim ValueTwo As Integer = 20
 Console.WriteLine("The Value is: {0}", Add(ValueOne, ValueTwo))
 End Sub

 Public Shared Function Add(One As Integer, Two As Integer) As Integer
 Return (One + Two)
 End Function
End Class

using System;
public class MyApp
{
 public static int Main()
 {
 int ValueOne = 10;
 int ValueTwo = 20;
 Console.WriteLine("The Value is: {0}", Add(ValueOne, ValueTwo));
 return 0;
 }
 public static int Add(int One, int Two)
 {
 return (One + Two);
 }
}

Metadata also stores information in four heap structures: string, blob, user string, and GUID. All the strings used to name types and members are stored
in the string heap. For example, a method table does not directly store the name of a particular method, but points to the method's name stored in the
string heap.

Each row of each metadata table is uniquely identified in the MSIL portion of the PE file by a metadata token. Metadata tokens are conceptually similar
to pointers, persisted in MSIL, that reference a particular metadata table.

A metadata token is a four-byte number. The top byte denotes the metadata table to which a particular token refers (method, type, and so on). The
remaining three bytes specify the row in the metadata table that corresponds to the programming element being described. If you define a method in
C# and compile it into a PE file, the following metadata token might exist in the MSIL portion of the PE file:

The top byte (0x06) indicates that this is a MethodDef token. The lower three bytes (000004) tells the common language runtime to look in the fourth
row of the MethodDef table for the information that describes this method definition.

When a program is compiled for the common language runtime, it is converted to a PE file that consists of three parts. The following table describes the
contents of each part.

To better understand metadata and its role in the common language runtime, it might be helpful to construct a simple program and illustrate how
metadata affects its run-time life. The following code example shows two methods inside a class called MyApp . The Main method is the program entry
point, while the Add method simply returns the sum of two integer arguments.

When the code runs, the runtime loads the module into memory and consults the metadata for this class. Once loaded, the runtime performs extensive
analysis of the method's Microsoft intermediate language (MSIL) stream to convert it to fast native machine instructions. The runtime uses a just-in-
time (JIT) compiler to convert the MSIL instructions to native machine code one method at a time as needed.

The following example shows part of the MSIL produced from the previous code's Main function. You can view the MSIL and metadata from any .NET

.entrypoint

.maxstack 3

.locals ([0] int32 ValueOne,
 [1] int32 ValueTwo,
 [2] int32 V_2,
 [3] int32 V_3)
IL_0000: ldc.i4.s 10
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldstr "The Value is: {0}"
IL_000b: ldloc.0
IL_000c: ldloc.1
IL_000d: call int32 ConsoleApplication.MyApp::Add(int32,int32) /* 06000003 */

ROW
RELATIVE VIRTUAL
ADDRESS (RVA) IMPLFLAGS FLAGS

NAME

(POINTS TO STRING
HEAP.)

SIGNATURE (POINTS TO
BLOB HEAP.)

1 0x00002050 IL

Managed

Public

ReuseSlot

SpecialName

RTSpecialName

.ctor

.ctor (constructor)

2 0x00002058 IL

Managed

Public

Static

ReuseSlot

Main String

3 0x0000208c IL

Managed

Public

Static

ReuseSlot

Add int, int, int

Related Topics
TITLE DESCRIPTION

Attributes Describes how to apply attributes, write custom attributes, and retrieve information
that is stored in attributes.

Framework application using the MSIL Disassembler (Ildasm.exe).

The JIT compiler reads the MSIL for the whole method, analyzes it thoroughly, and generates efficient native instructions for the method. At IL_000d , a
metadata token for the Add method (/* 06000003 */) is encountered and the runtime uses the token to consult the third row of the MethodDef
table.

The following table shows part of the MethodDef table referenced by the metadata token that describes the Add method. While other metadata tables
exist in this assembly and have their own unique values, only this table is discussed.

Each column of the table contains important information about your code. The RVA column allows the runtime to calculate the starting memory
address of the MSIL that defines this method. The ImplFlags and Flags columns contain bitmasks that describe the method (for example, whether the
method is public or private). The Name column indexes the name of the method from the string heap. The Signature column indexes the definition of
the method's signature in the blob heap.

The runtime calculates the desired offset address from the RVA column in the third row and returns this address to the JIT compiler, which then
proceeds to the new address. The JIT compiler continues to process MSIL at the new address until it encounters another metadata token and the
process is repeated.

Using metadata, the runtime has access to all the information it needs to load your code and process it into native machine instructions. In this manner,
metadata enables self-describing files and, together with the common type system, cross-language inheritance.

https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler

Building Console Applications in the .NET Framework
5/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

See Also

Applications in the .NET Framework can use the System.Console class to read characters from and write characters to the console. Data from the
console is read from the standard input stream, data to the console is written to the standard output stream, and error data to the console is written to
the standard error output stream. These streams are automatically associated with the console when the application starts and are presented as the In,
Out, and Error properties, respectively.

The value of the Console.In property is a System.IO.TextReader object, whereas the values of the Console.Out and Console.Error properties are
System.IO.TextWriter objects. You can associate these properties with streams that do not represent the console, making it possible for you to point the
stream to a different location for input or output. For example, you can redirect the output to a file by setting the Console.Out property to a
System.IO.StreamWriter, which encapsulates a System.IO.FileStream by means of the Console.SetOut method. The Console.In and Console.Out
properties do not need to refer to the same stream.

For more information about building console applications, including examples in C#, Visual Basic, and C++, see the documentation for the Console class.

If the console does not exist, as in a Windows-based application, output written to the standard output stream will not be visible, because there is no
console to write the information to. Writing information to an inaccessible console does not cause an exception to be raised.

Alternately, to enable the console for reading and writing within a Windows-based application that is developed using Visual Studio, open the project's
Properties dialog box, click the Application tab, and set the Application type to Console Application.

Console applications lack a message pump that starts by default. Therefore, console calls to Microsoft Win32 timers might fail.

The System.Console class has methods that can read individual characters or entire lines from the console. Other methods convert data and format
strings, and then write the formatted strings to the console. For more information on formatting strings, see Formatting Types.

System.Console
Formatting Types

https://github.com/dotnet/docs/blob/master/docs/standard/building-console-apps.md
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/dotnet/api/system.console.in
https://docs.microsoft.com/dotnet/api/system.console.out
https://docs.microsoft.com/dotnet/api/system.console.error
https://docs.microsoft.com/dotnet/api/system.console.in
https://docs.microsoft.com/dotnet/api/system.io.textreader
https://docs.microsoft.com/dotnet/api/system.console.out
https://docs.microsoft.com/dotnet/api/system.console.error
https://docs.microsoft.com/dotnet/api/system.io.textwriter
https://docs.microsoft.com/dotnet/api/system.console.out
https://docs.microsoft.com/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.console.setout
https://docs.microsoft.com/dotnet/api/system.console.in
https://docs.microsoft.com/dotnet/api/system.console.out
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types

.NET Framework Application Essentials
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section of the .NET Framework documentation provides information about basic application development tasks in the .NET Framework.

Base Types
Discusses formatting and parsing base data types and using regular expressions to process text.

Collections and Data Structures
Discusses the various collection types available in the .NET Framework, including stacks, queues, lists, arrays, and structs.

Generics
Describes the Generics feature, including the generic collections, delegates, and interfaces provided by the .NET Framework. Provides links to feature
documentation for C#, Visual Basic and Visual C++, and to supporting technologies such as Reflection.

Numerics
Describes the numeric types in the .NET Framework.

Events
Provides an overview of the event model in the .NET Framework.

Exceptions
Describes error handling provided by the .NET Framework and the fundamentals of handling exceptions.

File and Stream I/O
Explains how you can perform synchronous and asynchronous file and data stream access and how to use to isolated storage.

Dates, Times, and Time Zones
Describes how to work with time zones and time zone conversions in time zone-aware applications.

Application Domains and Assemblies
Describes how to create and work with assemblies and application domains.

Serialization
Discusses the process of converting the state of an object into a form that can be persisted or transported.

Resources in Desktop Apps
Describes the .NET Framework support for creating and storing resources. This section also describes support for localized resources and the satellite
assembly resource model for packaging and deploying those localized resources.

Globalization and Localization
Provides information to help you design and develop world-ready applications.

Accessibility
Provides information about Microsoft UI Automation, which is an accessibility framework that addresses the needs of assistive technology products and
automated test frameworks by providing programmatic access to information about the user interface (UI).

Attributes
Describes how you can use attributes to customize metadata.

64-bit Applications
Discusses issues relevant to developing applications that will run on a Windows 64-bit operating system.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application, and information about dynamic programming, interoperability, extensibility, memory management, and threading.

Security
Provides information about the classes and services in the common language runtime and the .NET Framework that facilitate secure application
development.

https://github.com/dotnet/docs/blob/master/docs/standard/application-essentials.md
https://docs.microsoft.com/en-us/dotnet/standard/generics/index

File and Stream I/O
6/29/2018 • 7 minutes to read • Edit Online

Files and Directories

Streams

Readers and Writers

File and stream I/O (input/output) refers to the transfer of data either to or from a storage medium. In the .NET Framework, the System.IO namespaces
contain types that enable reading and writing, both synchronously and asynchronously, on data streams and files. These namespaces also contain types
that perform compression and decompression on files, and types that enable communication through pipes and serial ports.

A file is an ordered and named collection of bytes that has persistent storage. When you work with files, you work with directory paths, disk storage,
and file and directory names. In contrast, a stream is a sequence of bytes that you can use to read from and write to a backing store, which can be one of
several storage mediums (for example, disks or memory). Just as there are several backing stores other than disks, there are several kinds of streams
other than file streams, such as network, memory, and pipe streams.

You can use the types in the System.IO namespace to interact with files and directories. For example, you can get and set properties for files and
directories, and retrieve collections of files and directories based on search criteria.

For path naming conventions and the ways to express a file path for Windows systems, including with the DOS device syntax supported in .NET Core
1.1 and later and the .NET Framework 4.6.2 and later, see File path formats on Windows systems.

Here are some commonly used file and directory classes:

File - provides static methods for creating, copying, deleting, moving, and opening files, and helps create a FileStream object.

FileInfo - provides instance methods for creating, copying, deleting, moving, and opening files, and helps create a FileStream object.

Directory - provides static methods for creating, moving, and enumerating through directories and subdirectories.

DirectoryInfo - provides instance methods for creating, moving, and enumerating through directories and subdirectories.

Path - provides methods and properties for processing directory strings in a cross-platform manner.

In addition to using these classes, Visual Basic users can use the methods and properties provided by the Microsoft.VisualBasic.FileIO.FileSystem class
for file I/O.

See How to: Copy Directories, How to: Create a Directory Listing, and How to: Enumerate Directories and Files.

The abstract base class Stream supports reading and writing bytes. All classes that represent streams inherit from the Stream class. The Stream class
and its derived classes provide a common view of data sources and repositories, and isolate the programmer from the specific details of the operating
system and underlying devices.

Streams involve three fundamental operations:

Reading - transferring data from a stream into a data structure, such as an array of bytes.

Writing - transferring data to a stream from a data source.

Seeking - querying and modifying the current position within a stream.

Depending on the underlying data source or repository, a stream might support only some of these capabilities. For example, the PipeStream class does
not support seeking. The CanRead, CanWrite, and CanSeek properties of a stream specify the operations that the stream supports.

Here are some commonly used stream classes:

FileStream – for reading and writing to a file.

IsolatedStorageFileStream – for reading and writing to a file in isolated storage.

MemoryStream – for reading and writing to memory as the backing store.

BufferedStream – for improving performance of read and write operations.

NetworkStream – for reading and writing over network sockets.

PipeStream – for reading and writing over anonymous and named pipes.

CryptoStream – for linking data streams to cryptographic transformations.

For an example of working with streams asynchronously, see Asynchronous File I/O.

The System.IO namespace also provides types for reading encoded characters from streams and writing them to streams. Typically, streams are

https://github.com/dotnet/docs/blob/master/docs/standard/io/index.md
https://docs.microsoft.com/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/standard/io/file-path-formats
https://docs.microsoft.com/dotnet/api/system.io.file
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.fileinfo
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.directory
https://docs.microsoft.com/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/dotnet/api/system.io.path
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-copy-directories
https://msdn.microsoft.com/library/4d2772b1-b991-4532-a8a6-6ef733277e69
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-enumerate-directories-and-files
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/system.io.pipes.pipestream
https://docs.microsoft.com/dotnet/api/system.io.stream.canread
https://docs.microsoft.com/dotnet/api/system.io.stream.canwrite
https://docs.microsoft.com/dotnet/api/system.io.stream.canseek
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.isolatedstorage.isolatedstoragefilestream
https://docs.microsoft.com/dotnet/api/system.io.memorystream
https://docs.microsoft.com/dotnet/api/system.io.bufferedstream
https://docs.microsoft.com/dotnet/api/system.net.sockets.networkstream
https://docs.microsoft.com/dotnet/api/system.io.pipes.pipestream
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptostream
https://docs.microsoft.com/en-us/dotnet/standard/io/asynchronous-file-i-o
https://docs.microsoft.com/dotnet/api/system.io

Asynchronous I/O Operations

Compression

Isolated Storage

I/O Operations in Windows Store apps

designed for byte input and output. The reader and writer types handle the conversion of the encoded characters to and from bytes so the stream can
complete the operation. Each reader and writer class is associated with a stream, which can be retrieved through the class's BaseStream property.

Here are some commonly used reader and writer classes:

BinaryReader and BinaryWriter – for reading and writing primitive data types as binary values.

StreamReader and StreamWriter – for reading and writing characters by using an encoding value to convert the characters to and from bytes.

StringReader and StringWriter – for reading and writing characters to and from strings.

TextReader and TextWriter – serve as the abstract base classes for other readers and writers that read and write characters and strings, but not
binary data.

See How to: Read Text from a File, How to: Write Text to a File, How to: Read Characters from a String, and How to: Write Characters to a String.

Reading or writing a large amount of data can be resource-intensive. You should perform these tasks asynchronously if your application needs to
remain responsive to the user. With synchronous I/O operations, the UI thread is blocked until the resource-intensive operation has completed. Use
asynchronous I/O operations when developing Windows 8.x Store apps to prevent creating the impression that your app has stopped working.

The asynchronous members contain Async in their names, such as the CopyToAsync, FlushAsync, ReadAsync, and WriteAsync methods. You use these
methods with the async and await keywords.

For more information, see Asynchronous File I/O.

Compression refers to the process of reducing the size of a file for storage. Decompression is the process of extracting the contents of a compressed file
so they are in a usable format. The System.IO.Compression namespace contains types for compressing and decompressing files and streams.

The following classes are frequently used when compressing and decompressing files and streams:

ZipArchive – for creating and retrieving entries in the zip archive.

ZipArchiveEntry – for representing a compressed file.

ZipFile – for creating, extracting, and opening a compressed package.

ZipFileExtensions – for creating and extracting entries in a compressed package.

DeflateStream – for compressing and decompressing streams using the Deflate algorithm.

GZipStream – for compressing and decompressing streams in gzip data format.

See How to: Compress and Extract Files.

Isolated storage is a data storage mechanism that provides isolation and safety by defining standardized ways of associating code with saved data. The
storage provides a virtual file system that is isolated by user, assembly, and (optionally) domain. Isolated storage is particularly useful when your
application does not have permission to access user files. You can save settings or files for your application in a manner that is controlled by the
computer's security policy.

Isolated storage is not available for Windows 8.x Store apps; instead, use application data classes in the Windows.Storage namespace. For more
information, see Application data in the Windows Dev Center.

The following classes are frequently used when implementing isolated storage:

IsolatedStorage – provides the base class for isolated storage implementations.

IsolatedStorageFile – provides an isolated storage area that contains files and directories.

IsolatedStorageFileStream - exposes a file within isolated storage.

See Isolated Storage.

The .NET for Windows 8.x Store apps contains many of the types for reading from and writing to streams; however, this set does not include all the .NET
Framework I/O types.

Some important differences to note when using I/O operations in Windows 8.x Store apps:

Types specifically related to file operations, such as File, FileInfo, Directory and DirectoryInfo, are not included in the .NET for Windows 8.x Store
apps. Instead, use the types in the Windows.Storage namespace of the Windows Runtime, such as StorageFile and StorageFolder.

Isolated storage is not available; instead, use application data.

https://docs.microsoft.com/dotnet/api/system.io.binaryreader
https://docs.microsoft.com/dotnet/api/system.io.binarywriter
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/dotnet/api/system.io.stringreader
https://docs.microsoft.com/dotnet/api/system.io.stringwriter
https://docs.microsoft.com/dotnet/api/system.io.textreader
https://docs.microsoft.com/dotnet/api/system.io.textwriter
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-read-text-from-a-file
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-write-text-to-a-file
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-read-characters-from-a-string
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-write-characters-to-a-string
https://docs.microsoft.com/dotnet/api/system.io.stream.copytoasync
https://docs.microsoft.com/dotnet/api/system.io.stream.flushasync
https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/en-us/dotnet/standard/io/asynchronous-file-i-o
https://docs.microsoft.com/dotnet/api/system.io.compression
https://docs.microsoft.com/dotnet/api/system.io.compression.ziparchive
https://docs.microsoft.com/dotnet/api/system.io.compression.ziparchiveentry
https://docs.microsoft.com/dotnet/api/system.io.compression.zipfile
https://docs.microsoft.com/dotnet/api/system.io.compression.zipfileextensions
https://docs.microsoft.com/dotnet/api/system.io.compression.deflatestream
https://docs.microsoft.com/dotnet/api/system.io.compression.gzipstream
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-compress-and-extract-files
https://docs.microsoft.com/uwp/api/Windows.Storage
https://docs.microsoft.com/previous-versions/windows/apps/hh464917(v=win.10)
https://docs.microsoft.com/dotnet/api/system.io.isolatedstorage.isolatedstorage
https://docs.microsoft.com/dotnet/api/system.io.isolatedstorage.isolatedstoragefile
https://docs.microsoft.com/dotnet/api/system.io.isolatedstorage.isolatedstoragefilestream
https://docs.microsoft.com/en-us/dotnet/standard/io/isolated-storage
https://docs.microsoft.com/dotnet/api/system.io.file
https://docs.microsoft.com/dotnet/api/system.io.fileinfo
https://docs.microsoft.com/dotnet/api/system.io.directory
https://docs.microsoft.com/dotnet/api/system.io.directoryinfo
http://msdn.microsoft.com/library/windows/apps/windows.storage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.aspx
https://docs.microsoft.com/previous-versions/windows/apps/hh464917(v=win.10)

I/O and Security

Related Topics

Use asynchronous methods, such as ReadAsync and WriteAsync, to prevent blocking the UI thread.

The path-based compression types ZipFile and ZipFileExtensions are not available. Instead, use the types in the Windows.Storage.Compression
namespace.

You can convert between .NET Framework streams and Windows Runtime streams, if necessary. For more information, see How to: Convert Between
.NET Framework Streams and Windows Runtime Streams or System.IO.WindowsRuntimeStreamExtensions.

For more information about I/O operations in a Windows 8.x Store app, see Quickstart: Reading and writing files.

When you use the classes in the System.IO namespace, you must follow operating system security requirements such as access control lists (ACLs) to
control access to files and directories. This requirement is in addition to any FileIOPermission requirements. You can manage ACLs programmatically.
For more information, see How to: Add or Remove Access Control List Entries.

Default security policies prevent Internet or intranet applications from accessing files on the user ’s computer. Therefore, do not use the I/O classes that
require a path to a physical file when writing code that will be downloaded over the Internet or intranet. Instead, use isolated storage for traditional .NET
Framework applications, or use application data for Windows 8.x Store apps.

A security check is performed only when the stream is constructed. Therefore, do not open a stream and then pass it to less-trusted code or application
domains.

Common I/O Tasks

Provides a list of I/O tasks associated with files, directories, and streams, and links to relevant content and examples for each task.

Asynchronous File I/O

Describes the performance advantages and basic operation of asynchronous I/O.

Isolated Storage

Describes a data storage mechanism that provides isolation and safety by defining standardized ways of associating code with saved data.

Pipes

Describes anonymous and named pipe operations in the .NET Framework.

Memory-Mapped Files

Describes memory-mapped files, which contain the contents of files on disk in virtual memory. You can use memory-mapped files to edit very large
files and to create shared memory for interprocess communication.

https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/dotnet/api/system.io.compression.zipfile
https://docs.microsoft.com/dotnet/api/system.io.compression.zipfileextensions
http://msdn.microsoft.com/library/windows/apps/windows.storage.compression.aspx
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-convert-between-dotnet-streams-and-winrt-streams
https://msdn.microsoft.com/library/system.io.windowsruntimestreamextensions.aspx
https://docs.microsoft.com/previous-versions/windows/apps/hh758325(v=win.10)
https://docs.microsoft.com/dotnet/api/system.io
https://docs.microsoft.com/dotnet/api/system.security.permissions.fileiopermission
https://docs.microsoft.com/en-us/dotnet/standard/io/how-to-add-or-remove-access-control-list-entries
https://docs.microsoft.com/en-us/dotnet/standard/io/isolated-storage
https://docs.microsoft.com/previous-versions/windows/apps/hh464917(v=win.10)
https://docs.microsoft.com/en-us/dotnet/standard/io/common-i-o-tasks
https://docs.microsoft.com/en-us/dotnet/standard/io/asynchronous-file-i-o
https://docs.microsoft.com/en-us/dotnet/standard/io/isolated-storage
https://docs.microsoft.com/en-us/dotnet/standard/io/pipe-operations
https://docs.microsoft.com/en-us/dotnet/standard/io/memory-mapped-files

Globalizing and localizing .NET applications
6/9/2018 • 2 minutes to read • Edit Online

In this section

Reference

Developing a world-ready application, including an application that can be localized into one or more languages, involves three steps: globalization,
localizability review, and localization.

Globalization
This step involves designing and coding an application that is culture-neutral and language-neutral, and that supports localized user interfaces and
regional data for all users. It involves making design and programming decisions that are not based on culture-specific assumptions. While a globalized
application is not localized, it nevertheless is designed and written so that it can be subsequently localized into one or more languages with relative ease.

Localizability review
This step involves reviewing an application's code and design to ensure that it can be localized easily and to identify potential roadblocks for localization,
and verifying that the application's executable code is separated from its resources. If the globalization stage was effective, the localizability review will
confirm the design and coding choices made during globalization. The localizability stage may also identify any remaining issues so that an application's
source code doesn't have to be modified during the localization stage.

Localization
This step involves customizing an application for specific cultures or regions. If the globalization and localizability steps have been performed correctly,
localization consists primarily of translating the user interface.

Following these three steps provides two advantages:

It frees you from having to retrofit an application that is designed to support a single culture, such as U.S. English, to support additional cultures.

It results in localized applications that are more stable and have fewer bugs.

.NET provides extensive support for the development of world-ready and localized applications. In particular, many type members in the .NET class
library aid globalization by returning values that reflect the conventions of either the current user's culture or a specified culture. Also, .NET supports
satellite assemblies, which facilitate the process of localizing an application.

For additional information, see the Globalization documentation.

Globalization
Discusses the first stage of creating a world-ready application, which involves designing and coding an application that is culture-neutral and language-
neutral.

Localizability review
Discusses the second stage of creating a localized application, which involves identifying potential roadblocks to localization.

Localization
Discusses the final stage of creating a localized application, which involves customizing an application's user interface for specific regions or cultures.

Culture-insensitive string operations
Describes how to use .NET methods and classes that are culture-sensitive by default to obtain culture-insensitive results.

Best practices for developing world-ready applications
Describes the best practices to follow for globalization, localization, and developing world-ready ASP.NET applications.

System.Globalization namespace
Contains classes that define culture-related information, including the language, the country/region, the calendars in use, the format patterns for dates,
currency, and numbers, and the sort order for strings.

System.Resources namespace
Provides classes for creating, manipulating, and using resources.

System.Text namespace
Contains classes representing ASCII, ANSI, Unicode, and other character encodings.

Resgen.exe (Resource File Generator)
Describes how to use Resgen.exe to convert .txt files and XML-based resource format (.resx) files to common language runtime binary .resources files.

Winres.exe (Windows Forms Resource Editor)
Describes how to use Winres.exe to localize Windows Forms forms.

https://github.com/dotnet/docs/blob/master/docs/standard/globalization-localization/index.md
http://msdn.microsoft.com/goglobal/bb978433.aspx
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/globalization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localizability-review
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localization
https://docs.microsoft.com/globalization/
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/globalization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localizability-review
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/localization
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/culture-insensitive-string-operations
https://docs.microsoft.com/en-us/dotnet/standard/globalization-localization/best-practices-for-developing-world-ready-apps
https://docs.microsoft.com/dotnet/api/system.globalization
https://docs.microsoft.com/dotnet/api/system.resources
https://docs.microsoft.com/dotnet/api/system.text
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/winres-exe-windows-forms-resource-editor

Extending Metadata Using Attributes
5/2/2018 • 2 minutes to read • Edit Online

Related Topics
TITLE DESCRIPTION

Applying Attributes Describes how to apply an attribute to an element of your code.

Writing Custom Attributes Describes how to design custom attribute classes.

Retrieving Information Stored in Attributes Describes how to retrieve custom attributes for code that is loaded into the
execution context.

Metadata and Self-Describing Components Provides an overview of metadata and describes how it is implemented in a .NET
Framework portable executable (PE) file.

How to: Load Assemblies into the Reflection-Only Context Explains how to retrieve custom attribute information in the reflection-only context.

Reference

The common language runtime allows you to add keyword-like descriptive declarations, called attributes, to annotate programming elements such as
types, fields, methods, and properties. When you compile your code for the runtime, it is converted into Microsoft intermediate language (MSIL) and
placed inside a portable executable (PE) file along with metadata generated by the compiler. Attributes allow you to place extra descriptive information
into metadata that can be extracted using runtime reflection services. The compiler creates attributes when you declare instances of special classes that
derive from System.Attribute.

The .NET Framework uses attributes for a variety of reasons and to address a number of issues. Attributes describe how to serialize data, specify
characteristics that are used to enforce security, and limit optimizations by the just-in-time (JIT) compiler so the code remains easy to debug. Attributes
can also record the name of a file or the author of code, or control the visibility of controls and members during forms development.

System.Attribute

https://github.com/dotnet/docs/blob/master/docs/standard/attributes/index.md
https://docs.microsoft.com/dotnet/api/system.attribute
https://docs.microsoft.com/en-us/dotnet/standard/attributes/applying-attributes
https://docs.microsoft.com/en-us/dotnet/standard/attributes/writing-custom-attributes
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/how-to-load-assemblies-into-the-reflection-only-context
https://docs.microsoft.com/dotnet/api/system.attribute

Framework Design Guidelines
5/2/2018 • 2 minutes to read • Edit Online

In This Section

See Also

This section provides guidelines for designing libraries that extend and interact with the .NET Framework. The goal is to help library designers ensure
API consistency and ease of use by providing a unified programming model that is independent of the programming language used for development.
We recommend that you follow these design guidelines when developing classes and components that extend the .NET Framework. Inconsistent
library design adversely affects developer productivity and discourages adoption.

The guidelines are organized as simple recommendations prefixed with the terms Do , Consider , Avoid , and Do not . These guidelines are intended to
help class library designers understand the trade-offs between different solutions. There might be situations where good library design requires that
you violate these design guidelines. Such cases should be rare, and it is important that you have a clear and compelling reason for your decision.

These guidelines are excerpted from the book Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries, 2nd
Edition, by Krzysztof Cwalina and Brad Abrams.

Naming Guidelines
Provides guidelines for naming assemblies, namespaces, types, and members in class libraries.

Type Design Guidelines
Provides guidelines for using static and abstract classes, interfaces, enumerations, structures, and other types.

Member Design Guidelines
Provides guidelines for designing and using properties, methods, constructors, fields, events, operators, and parameters.

Designing for Extensibility
Discusses extensibility mechanisms such as subclassing, using events, virtual members, and callbacks, and explains how to choose the mechanisms that
best meet your framework's requirements.

Design Guidelines for Exceptions
Describes design guidelines for designing, throwing, and catching exceptions.

Usage Guidelines
Describes guidelines for using common types such as arrays, attributes, and collections, supporting serialization, and overloading equality operators.

Common Design Patterns
Provides guidelines for choosing and implementing dependency properties and the dispose pattern.

Portions © 2005, 2009 Microsoft Corporation. All rights reserved.

Reprinted by permission of Pearson Education, Inc. from Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable .NET Libraries,
2nd Edition by Krzysztof Cwalina and Brad Abrams, published Oct 22, 2008 by Addison-Wesley Professional as part of the Microsoft Windows
Development Series.

Overview
Roadmap for the .NET Framework
Development Guide

https://github.com/dotnet/docs/blob/master/docs/standard/design-guidelines/index.md
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/type
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/member
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/designing-for-extensibility
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/usage-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/common-design-patterns
https://www.informit.com/store/framework-design-guidelines-conventions-idioms-and-9780321545619
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://msdn.microsoft.com/library/0b46b7c6-9163-4f99-8e58-0d1ee7da8c67

XML Documents and Data
5/2/2018 • 2 minutes to read • Edit Online

In This Section

The .NET Framework provides a comprehensive and integrated set of classes that enable you to build XML-aware apps easily. The classes in the
following namespaces support parsing and writing XML, editing XML data in memory, data validation, and XSLT transformation.

System.Xml

System.Xml.XPath

System.Xml.Xsl

System.Xml.Schema

System.Xml.Linq

For a full list, see the System.Xml Namespaces webpage.

The classes in these namespaces support World Wide Web Consortium (W3C) recommendations. For example:

The System.Xml.XmlDocument class implements the W3C Document Object Model (DOM) Level 1 Core and DOM Level 2 Core
recommendations.

The System.Xml.XmlReader and System.Xml.XmlWriter classes support the W3C XML 1.0 and the Namespaces in XML recommendations.

Schemas in the System.Xml.Schema.XmlSchemaSet class support the W3C XML Schema Part 1: Structures and XML Schema Part 2: Datatypes
recommendations.

Classes in the System.Xml.Xsl namespace support XSLT transformations that conform to the W3C XSLT 1.0 recommendation.

The XML classes in the .NET Framework provide these benefits:

Productivity. L INQ to XML makes it easier to program with XML and provides a query experience that is similar to SQL.

Extensibility. The XML classes in the .NET Framework are extensible through the use of abstract base classes and virtual methods. For example,
you can create a derived class of the XmlUrlResolver class that stores the cache stream to the local disk.

Pluggable architecture. The .NET Framework provides an architecture in which components can utilize one another, and data can be streamed
between components. For example, a data store, such as an XPathDocument or XmlDocument object, can be transformed with the
XslCompiledTransform class, and the output can then be streamed either into another store or returned as a stream from a web service.

Performance. For better app performance, some of the XML classes in the .NET Framework support a streaming-based model with the
following characteristics:

Minimal caching for forward-only, pull-model parsing (XmlReader).

Forward-only validation (XmlReader).

Cursor style navigation that minimizes node creation to a single virtual node while providing random access to the document
(XPathNavigator).

For better performance whenever XSLT processing is required, you can use the XPathDocument class, which is an optimized, read-only store for
XPath queries designed to work efficiently with the XslCompiledTransform class.

Integration with ADO.NET. The XML classes and ADO.NET are tightly integrated to bring together relational data and XML. The DataSet class
is an in-memory cache of data retrieved from a database. The DataSet class has the ability to read and write XML by using the XmlReader and
XmlWriter classes, to persist its internal relational schema structure as XML schemas (XSD), and to infer the schema structure of an XML
document.

XML Processing Options
Discusses options for processing XML data.

Processing XML Data In-Memory
Discusses the three models for processing XML data in-memory. L INQ to XML, the XmlDocument class (based on the W3C Document Object Model),
and the XPathDocument class (based on the XPath data model).

XSLT Transformations
Describes how to use the XSLT processor.

XML Schema Object Model (SOM)
Describes the classes used for building and manipulating XML Schemas (XSD) by providing an XmlSchema class to load and edit a schema.

XML Integration with Relational Data and ADO.NET

https://github.com/dotnet/docs/blob/master/docs/standard/data/xml/index.md
https://docs.microsoft.com/dotnet/api/system.xml
https://docs.microsoft.com/dotnet/api/system.xml.xpath
https://docs.microsoft.com/dotnet/api/system.xml.xsl
https://docs.microsoft.com/dotnet/api/system.xml.schema
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://msdn.microsoft.com/library/gg145036.aspx
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/DOM-Level-2-Core/
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/dotnet/api/system.xml.xmlwriter
https://www.w3.org/TR/2006/REC-xml-20060816/
https://www.w3.org/TR/REC-xml-names/
https://docs.microsoft.com/dotnet/api/system.xml.schema.xmlschemaset
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://docs.microsoft.com/dotnet/api/system.xml.xsl
http://www.w3.org/TR/xslt
https://msdn.microsoft.com/library/f0fe21e9-ee43-4a55-b91a-0800e5782c13
https://docs.microsoft.com/dotnet/api/system.xml.xmlurlresolver
https://docs.microsoft.com/dotnet/api/system.xml.xpath.xpathdocument
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument
https://docs.microsoft.com/dotnet/api/system.xml.xsl.xslcompiledtransform
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/dotnet/api/system.xml.xpath.xpathnavigator
https://docs.microsoft.com/dotnet/api/system.xml.xpath.xpathdocument
https://docs.microsoft.com/dotnet/api/system.xml.xsl.xslcompiledtransform
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/index
https://docs.microsoft.com/dotnet/api/system.data.dataset
https://docs.microsoft.com/dotnet/api/system.data.dataset
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/dotnet/api/system.xml.xmlwriter
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/xml-processing-options
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/processing-xml-data-in-memory
https://msdn.microsoft.com/library/f0fe21e9-ee43-4a55-b91a-0800e5782c13
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument
https://docs.microsoft.com/dotnet/api/system.xml.xpath.xpathdocument
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/xslt-transformations
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/xml-schema-object-model-som
https://docs.microsoft.com/dotnet/api/system.xml.schema.xmlschema
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/xml-integration-with-relational-data-and-adonet

Related Sections

Describes how the .NET Framework enables real-time, synchronous access to both the relational and hierarchical representations of data through the
DataSet object and the XmlDataDocument object.

Managing Namespaces in an XML Document
Describes how the XmlNamespaceManager class is used to store and maintain namespace information.

Type Support in the System.Xml Classes
Describes how XML data types map to CLR types, how to convert XML data types, and other type support features in the System.Xml classes.

ADO.NET
Provides information on how to access data using ADO.NET.

Security
Provides an overview of the .NET Framework security system.

https://docs.microsoft.com/dotnet/api/system.data.dataset
https://docs.microsoft.com/dotnet/api/system.xml.xmldatadocument
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/managing-namespaces-in-an-xml-document
https://docs.microsoft.com/dotnet/api/system.xml.xmlnamespacemanager
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/type-support-in-the-system-xml-classes
https://docs.microsoft.com/dotnet/api/system.xml
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/index

Security in .NET
6/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The common language runtime and the .NET provide many useful classes and services that enable developers to easily write secure code and enable
system administrators to customize the permissions granted to code so that it can access protected resources. In addition, the runtime and the .NET
provide useful classes and services that facilitate the use of cryptography and role-based security.

Key Security Concepts
Provides an overview of common language runtime security features. This section is of interest to developers and system administrators.

Role-Based Security
Describes how to interact with role-based security in your code. This section is of interest to developers.

Cryptography Model
Provides an overview of cryptographic services provided by .NET. This section is of interest to developers.

Secure Coding Guidelines
Describes some of the best practices for creating reliable .NET applications. This section is of interest to developers.

Secure Coding Guidelines for Unmanaged Code
Describes some of the best practices and security concerns when calling unmanaged code.

Windows Identity Foundation
Describes how you can implement claims-based identity in your applications.

Security Changes Describes important changes to the .NET Framework security system.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application, and information about dynamic programming, interoperability, extensibility, memory management, and threading.

https://github.com/dotnet/docs/blob/master/docs/standard/security/index.md
https://docs.microsoft.com/en-us/dotnet/standard/security/key-security-concepts
https://docs.microsoft.com/en-us/dotnet/standard/security/role-based-security
https://docs.microsoft.com/en-us/dotnet/standard/security/cryptography-model
https://docs.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines
https://docs.microsoft.com/en-us/dotnet/framework/security/secure-coding-guidelines-for-unmanaged-code
https://docs.microsoft.com/en-us/dotnet/framework/security/index
https://docs.microsoft.com/en-us/dotnet/framework/security/security-changes
https://docs.microsoft.com/en-us/dotnet/framework/development-guide

Serialization in .NET
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Reference

Serialization is the process of converting the state of an object into a form that can be persisted or transported. The complement of serialization is
deserialization, which converts a stream into an object. Together, these processes allow data to be easily stored and transferred.

.NET features two serialization technologies:

Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application.
For example, you can share an object between different applications by serializing it to the Clipboard. You can serialize an object to a stream, to a
disk, to memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain
to another.

XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or
consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data
across the Web. SOAP is likewise an open standard, which makes it an attractive choice.

Serialization How-to Topics
Lists links to How-to topics contained in this section.

Binary Serialization
Describes the binary serialization mechanism that is included with the common language runtime.

XML and SOAP Serialization
Describes the XML and SOAP serialization mechanism that is included with the common language runtime.

Serialization Tools
These tools help develop serialization code.

Serialization Samples
The samples demonstrate how to do serialization.

System.Runtime.Serialization Contains classes that can be used for serializing and deserializing objects.

System.Xml.Serialization
Contains classes that can be used to serialize objects into XML format documents or streams.

https://github.com/dotnet/docs/blob/master/docs/standard/serialization/index.md
https://docs.microsoft.com/en-us/dotnet/standard/serialization/serialization-how-to-topics
https://docs.microsoft.com/en-us/dotnet/standard/serialization/binary-serialization
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-and-soap-serialization
https://docs.microsoft.com/en-us/dotnet/standard/serialization/serialization-tools
https://docs.microsoft.com/en-us/dotnet/standard/serialization/serialization-samples
https://docs.microsoft.com/dotnet/api/system.runtime.serialization
https://docs.microsoft.com/dotnet/api/system.xml.serialization

Developing for Multiple Platforms with the .NET Framework
7/20/2018 • 3 minutes to read • Edit Online

Options for cross-platform development

IMPORTANTIMPORTANT

IF YOU WANT TO... USE...

Share source code between Windows Phone 8.1 and Windows 8.1 apps Shared projects (Universal Apps template in Visual Studio 2013, Update 2).

- Currently no Visual Basic support.
- You can separate platform-specific code by using # if statements.

For details, see:

- Build apps that target Windows and Windows Phone by using Visual Studio
(MSDN article)
- Using Visual Studio to build Universal XAML Apps (blog post)
- Using Visual Studio to Build XAML Converged Apps (video)

Share binaries between apps that target different platforms Portable Class Library projects for code that is platform-agnostic.

- This approach is typically used for code that implements business logic.
- You can use Visual Basic or C#.
- API support varies by platform.
- Portable Class Library projects that target Windows 8.1 and Windows Phone 8.1
support Windows Runtime APIs and XAML. These features aren't available in older
versions of the Portable Class Library.
- If needed, you can abstract out platform-specific code by using interfaces or
abstract classes.

For details, see:

- Portable Class Library
- How to Make Portable Class Libraries Work for You (blog post)
- Using Portable Class Library with MVVM
- App Resources for Libraries That Target Multiple Platforms
- .NET Portability Analyzer (Visual Studio extension)

Share source code between apps for platforms other than Windows 8.1 and
Windows Phone 8.1

Add as link feature.

- This approach is suitable for app logic that's common to both apps but not
portable, for some reason. You can use this feature for C# or Visual Basic code.
For example, Windows Phone 8 and Windows 8 share Windows Runtime APIs, but
Portable Class Libraries do not support Windows Runtime for those platforms. You
can use Add as link to share common Windows Runtime code between a
Windows Phone 8 app and a Windows Store app that targets Windows 8.

For details, see:

- Share code with Add as Link (MSDN article)
- How to: Add Existing Items to a Project (MSDN article)

You can develop apps for both Microsoft and non-Microsoft platforms by using the .NET Framework and Visual Studio.

Because Portable Class Library projects target only a very specific subset of .NET implementations, we strongly discourage their use in new application development.
The recommended replacement is a .NET Standard library, which targets all .NET implementations that support a specific version of the .NET Standard. For more
information, see .NET Standard.

To develop for multiple platforms, you can share source code or binaries, and you can make calls between .NET Framework code and Windows
Runtime APIs.

https://github.com/dotnet/docs/blob/master/docs/standard/cross-platform/index.md
https://msdn.microsoft.com/library/windows/apps/dn609832.aspx
https://blogs.msdn.microsoft.com/visualstudio/2014/04/14/using-visual-studio-to-build-universal-xaml-apps/
https://channel9.msdn.com/Events/Build/2014/3-591
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/cross-platform-development-with-the-portable-class-library
https://blogs.msdn.microsoft.com/dsplaisted/2012/08/27/how-to-make-portable-class-libraries-work-for-you/
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/using-portable-class-library-with-model-view-view-model
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/app-resources-for-libraries-that-target-multiple-platforms
http://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b
http://msdn.microsoft.com/library/windowsphone/develop/jj714082(v=vs.105).aspx
http://msdn.microsoft.com/library/vstudio/9f4t9t92(v=vs.100).aspx

Write Windows Store apps using the .NET Framework or call Windows Runtime
APIs from .NET Framework code

Windows Runtime APIs from your .NET Framework C# or Visual Basic code, and
use the .NET Framework to create Windows Store apps. You should be aware of API
differences between the two platforms. However, there are classes to help you work
with those differences.

For details, see:

- .NET Framework Support for Windows Store Apps and Windows Runtime
- Passing a URI to the Windows Runtime
- System.IO.WindowsRuntimeStreamExtensions (MSDN API reference page)
- System.WindowsRuntimeSystemExtensions (MSDN API reference page)

Build .NET Framework apps for non-Microsoft platforms Portable Class Library reference assemblies in the .NET Framework, and a
Visual Studio extension or third-party tool such as Xamarin.

For details, see:

- Portable Class Library now available on all platforms. (blog post)
- Xamarin documentation

Use JavaScript and HTML for cross-platform development Universal App templates in Visual Studio 2013, Update 2 to develop against
Windows Runtime APIs for Windows 8.1 and Windows Phone 8.1. Currently, you
can’t use JavaScript and HTML with .NET Framework APIs to develop cross-
platform apps.

For details, see:

- JavaScript Project Templates
- Porting a Windows Runtime app using JavaScript to Windows Phone

IF YOU WANT TO... USE...

https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/support-for-windows-store-apps-and-windows-runtime
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/passing-a-uri-to-the-windows-runtime
https://msdn.microsoft.com/library/system.io.windowsruntimestreamextensions(v=vs.110).aspx
https://msdn.microsoft.com/library/system.windowsruntimesystemextensions(v=vs.110).aspx
http://blogs.msdn.com/b/dotnet/archive/2013/10/14/portable-class-library-pcl-now-available-on-all-platforms.aspx
https://docs.microsoft.com/xamarin
http://msdn.microsoft.com/library/windows/apps/hh758331.aspx
http://msdn.microsoft.com/library/windows/apps/dn636144.aspx

.NET Core Guide
5/10/2018 • 8 minutes to read • Edit Online

Composition

LanguagesLanguages

.NET APIs and Compatibility.NET APIs and Compatibility

Relationship to .NET StandardRelationship to .NET Standard

WorkloadsWorkloads

Open SourceOpen Source

Acquisition

Check out the "Getting Started" tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up
and running.

.NET Core is a general purpose development platform maintained by Microsoft and the .NET community on GitHub. It is cross-platform, supporting
Windows, macOS and Linux, and can be used in device, cloud, and embedded/IoT scenarios.

The following characteristics best define .NET Core:

Flexible deployment: Can be included in your app or installed side-by-side user- or machine-wide.
Cross-platform: Runs on Windows, macOS and Linux; can be ported to other operating systems. The supported Operating Systems (OS), CPUs
and application scenarios will grow over time, provided by Microsoft, other companies, and individuals.
Command-line tools: All product scenarios can be exercised at the command-line.
Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the .NET Standard.
Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses. Documentation is licensed under CC-BY. .NET Core is a
.NET Foundation project.
Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support

.NET Core is composed of the following parts:

A .NET runtime, which provides a type system, assembly loading, a garbage collector, native interop and other basic services.
A set of framework libraries, which provide primitive data types, app composition types and fundamental utilities.
A set of SDK tools and language compilers (Roslyn and F#) that enable the base developer experience, available in the .NET Core SDK.
The 'dotnet' app host, which is used to launch .NET Core apps. It selects the runtime and hosts the runtime, provides an assembly loading policy and
launches the app. The same host is also used to launch SDK tools in much the same way.

The C#, Visual Basic, and F# languages can be used to write applications and libraries for .NET Core. The compilers run on .NET Core, enabling you to
develop for .NET Core anywhere it runs. In general, you will not use the compilers directly, but indirectly using the SDK tools.

The C#, Visual Basic, and F# compilers and the .NET Core tools are or can be integrated into several text editors and IDEs, including Visual Studio,
Visual Studio Code, Sublime Text and Vim, making .NET Core development an option in your favorite coding environment and OS. This integration is
provided, in part, by the good folks of the OmniSharp project and Ionide.

.NET Core can be thought of as a cross-platform version of the .NET Framework, at the layer of the .NET Framework Base Class Libraries (BCL). It
implements the .NET Standard specification. .NET Core provides a subset of the APIs that are available in the .NET Framework or Mono/Xamarin. In
some cases, types are not fully implemented (some members are not available or have been moved).

Look at the .NET Core roadmap to learn more about the .NET Core API roadmap.

The .NET Standard is an API spec that describes the consistent set of .NET APIs that developers can expect in each .NET implementation. .NET
implementations need to implement this spec in order to be considered .NET Standard-compliant and to support libraries that target .NET Standard.

.NET Core implements .NET Standard, and therefore supports .NET Standard libraries.

By itself, .NET Core includes a single application model -- console apps -- which is useful for tools, local services and text-based games. Additional
application models have been built on top of .NET Core to extend its functionality, such as:

ASP.NET Core
Windows 10 Universal Windows Platform (UWP)
Xamarin.Forms when targeting UWP

.NET Core is open source (MIT license) and was contributed to the .NET Foundation by Microsoft in 2014. It is now one of the most active .NET
Foundation projects. It can be freely adopted by individuals and companies, including for personal, academic or commercial purposes. Multiple
companies use .NET Core as part of apps, tools, new platforms and hosting services. Some of these companies make significant contributions to .NET
Core on GitHub and provide guidance on the product direction as part of the .NET Foundation Technical Steering Group.

.NET Core is distributed in two main ways, as packages on NuGet.org and as standalone distributions.

https://github.com/dotnet/docs/blob/master/docs/core/index.md
https://github.com/dotnet/core
https://github.com/dotnet/core/blob/master/roadmap.md
https://creativecommons.org/licenses/by/4.0/
https://dotnetfoundation.org/
https://www.microsoft.com/net/core/support/
https://github.com/dotnet/coreclr
https://github.com/dotnet/corefx
https://github.com/dotnet/cli
https://github.com/dotnet/roslyn
https://github.com/microsoft/visualfsharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
http://www.omnisharp.net/
http://ionide.io
https://github.com/dotnet/core/blob/master/roadmap.md
https://docs.microsoft.com/aspnet/core/
https://developer.microsoft.com/windows
https://www.xamarin.com/forms
https://github.com/dotnet/core
https://dotnetfoundation.org
https://dotnetfoundation.org/blog/tsg-welcome

DistributionsDistributions

PackagesPackages

Architecture

EnvironmentsEnvironments

Designed for AdaptabilityDesigned for Adaptability

You can download .NET Core at the .NET Core Getting Started page.

The Microsoft .NET Core distribution includes the CoreCLR runtime, associated libraries, a console application host and the dotnet app launcher. It
is described by the Microsoft.NETCore.App metapackage.
The Microsoft .NET Core SDK distribution includes .NET Core and a set of tools for restoring NuGet packages and compiling and building apps.

Typically, you will first install the .NET Core SDK to get started with .NET Core development. You may choose to install additional .NET Core (perhaps
pre-release) builds.

.NET Core Packages contain the .NET Core runtime and libraries (reference assemblies and implementations). For example, System.Net.Http.

.NET Core Metapackages describe various layers and app-models by referencing the appropriate set of versioned library packages.

.NET Core is a cross-platform .NET implementation. The primary architectural concerns unique to .NET Core are related to providing platform-specific
implementations for supported platforms.

.NET Core is supported by Microsoft on Windows, macOS and Linux. On Linux, Microsoft primarily supports .NET Core running on Red Hat Enterprise
Linux (RHEL) and Debian distribution families.

.NET Core currently supports X64 CPUs. On Windows, X86 is also supported. ARM64 and ARM32 are in progress.

The .NET Core Roadmap provides more detailed information on workload and OS and CPU environment support and plans.

Other companies or groups may support .NET Core for other app types and environment.

.NET Core has been built as a very similar but unique product relative to other .NET products. It has been designed to enable broad adaptability to new
platforms, for new workloads and with new compiler toolchains. It has several OS and CPU ports in progress and may be ported to many more. An
example is the LLILC project, which is an early prototype of native compilation for .NET Core via the LLVM compiler.

The product is broken into several pieces, enabling the various parts to be adapted to new platforms on different schedules. The runtime and platform-
specific foundational libraries must be ported as a unit. Platform-agnostic libraries should work as-is on all platforms, by construction. There is a project
bias to reducing platform-specific implementations to increase developer efficiency, preferring platform-neutral C# code whenever an algorithm or API
can be implemented in-full or in-part that way.

People commonly ask how .NET Core is implemented in order to support multiple operating systems. They typically ask if there are separate
implementations or if conditional compilation is used. It's both, with a strong bias towards conditional compilation.

You can see in the chart below that the vast majority of CoreFX is platform-neutral code that is shared across all platforms. Platform-neutral code can
be implemented as a single portable assembly that is used on all platforms.

Windows and Unix implementations are similar in size. Windows has a larger implementation since CoreFX implements some Windows-only features,
such as Microsoft.Win32.Registry but does not yet implement any Unix-only concepts. You will also see that the majority of the Linux and macOS
implementations are shared across a Unix implementation, while the Linux- and macOS-specific implementations are roughly similar in size.

There are a mix of platform-specific and platform-neutral libraries in .NET Core. You can see the pattern in a few examples:

CoreCLR is platform-specific. It's built in C/C++, so is platform-specific by construction.

https://www.microsoft.com/net/core
https://www.nuget.org/packages/Microsoft.NETCore.App
https://www.nuget.org/packages/System.Net.Http/
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/llilc
http://llvm.org/
https://en.wikipedia.org/wiki/Conditional_compilation
https://github.com/dotnet/corefx
https://github.com/dotnet/corefx/tree/master/src/Microsoft.Win32.Registry
https://github.com/dotnet/coreclr

Comparisons to other .NET implementations

Comparison with .NET FrameworkComparison with .NET Framework

Comparison with MonoComparison with Mono

System.IO and System.Security.Cryptography.Algorithms are platform-specific, given that the storage and cryptography APIs differ significantly on
each OS.
System.Collections and System.Linq are platform-neutral, given that they create and operate over data structures.

It is perhaps easiest to understand the size and shape of .NET Core by comparing it to existing .NET implementations.

.NET was first announced by Microsoft in 2000 and then evolved from there. The .NET Framework has been the primary .NET implementation
produced by Microsoft during that 15+ year span.

The major differences between .NET Core and the .NET Framework:

App-models -- .NET Core does not support all the .NET Framework app-models, in part because many of them are built on Windows technologies,
such as WPF (built on top of DirectX). The console and ASP.NET Core app-models are supported by both .NET Core and .NET Framework.
APIs -- .NET Core contains many of the same, but fewer, APIs as the .NET Framework, and with a different factoring (assembly names are different;
type shape differs in key cases). These differences currently typically require changes to port source to .NET Core. .NET Core implements the .NET
Standard API, which will grow to include more of the .NET Framework BCL API over time.
Subsystems -- .NET Core implements a subset of the subsystems in the .NET Framework, with the goal of a simpler implementation and
programming model. For example, Code Access Security (CAS) is not supported, while reflection is supported.
Platforms -- The .NET Framework supports Windows and Windows Server while .NET Core also supports macOS and Linux.
Open Source -- .NET Core is open source, while a read-only subset of the .NET Framework is open source.

While .NET Core is unique and has significant differences to the .NET Framework and other .NET implementations, it is straightforward to share code,
using either source or binary sharing techniques.

Mono is the original cross-platform and open source .NET implementation, first shipping in 2004. It can be thought of as a community clone of the
.NET Framework. The Mono project team relied on the open .NET standards (notably ECMA 335) published by Microsoft in order to provide a
compatible implementation.

The major differences between .NET Core and Mono:

App-models -- Mono supports a subset of the .NET Framework app-models (for example, Windows Forms) and some additional ones (for
example, Xamarin.iOS) through the Xamarin product. .NET Core doesn't support these.
APIs -- Mono supports a large subset of the .NET Framework APIs, using the same assembly names and factoring.
Platforms -- Mono supports many platforms and CPUs.
Open Source -- Mono and .NET Core both use the MIT license and are .NET Foundation projects.
Focus -- The primary focus of Mono in recent years is mobile platforms, while .NET Core is focused on cloud workloads.

https://github.com/dotnet/corefx/tree/master/src/System.IO
https://github.com/dotnet/corefx/tree/master/src/System.Security.Cryptography.Algorithms
https://github.com/dotnet/corefx/tree/master/src/System.Collections
https://github.com/dotnet/corefx/tree/master/src/System.Linq
https://github.com/microsoft/referencesource
http://www.mono-project.com/
https://github.com/mono/mono
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md
https://www.xamarin.com/platform
http://docs.go-mono.com/?link=root%3a%2fclasslib

Get started with .NET Core
7/4/2018 • 2 minutes to read • Edit Online

Create an application

dotnet new console --output sample1
dotnet run --project sample1

Hello World!

Tutorials

This article provides information on getting started with .NET Core. .NET Core can be installed on Windows, Linux, and macOS. You can code in your
favorite text editor and produce cross-platform libraries and applications.

If you're unsure what .NET Core is, or how it relates to other .NET technologies, start with the What is .NET overview. Put simply, .NET Core is an open-
source, cross-platform, implementation of .NET.

First, download and install the .NET Core SDK on your computer.

Next, open a terminal such as PowerShell, Command Prompt, or bash. Type the following dotnet commands to create and run a C# application.

You should see the following output:

Congratulations! You've created a simple .NET Core application. You can also use Visual Studio Code, Visual Studio 2017 (Windows only), or Visual
Studio for Mac (macOS only), to create a .NET Core application.

You can get started developing .NET Core applications by following these step-by-step tutorials.

Windows
Linux
macOS

Build a C# "Hello World" Application with .NET Core in Visual Studio 2017.

Build a C# class library with .NET Core in Visual Studio 2017.

Build a Visual Basic "Hello World" application with .NET Core in Visual Studio 2017.

Build a class library with Visual Basic and .NET Core in Visual Studio 2017.

Watch a video on how to install and use Visual Studio Code and .NET Core.

Watch a video on how to install and use Visual Studio 2017 and .NET Core.

Getting started with .NET Core using the command-line.

See the Prerequisites for Windows development article for a list of the supported Windows versions.

https://github.com/dotnet/docs/blob/master/docs/core/get-started.md
https://www.microsoft.com/net/learn/what-is-dotnet
https://www.microsoft.com/net/download/
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core/
https://channel9.msdn.com/Blogs/dotnet/Get-Started-NET-Core-Visual-Studio-2017/

Get Started with C# and Visual Studio Code
7/20/2018 • 3 minutes to read • Edit Online

Prerequisites

Hello World

.NET Core gives you a fast and modular platform for creating applications that run on Windows, Linux, and macOS. Use Visual Studio Code with the C#
extension to get a powerful editing experience with full support for C# IntelliSense (smart code completion) and debugging.

1. Install Visual Studio Code.
2. Install the .NET Core SDK.
3. Install the C# extension for Visual Studio Code. For more information about how to install extensions on Visual Studio Code, see VS Code Extension

Marketplace.

Let's get started with a simple "Hello World" program on .NET Core:

1. Open a project:

Open Visual Studio Code.
Click on the Explorer icon on the left menu and then click Open Folder.
Select File > Open Folder from the main menu to open the folder you want your C# project to be in and click Select Folder. For our
example, we're creating a folder for our project named HelloWorld.

2. Initialize a C# project:

Open the Integrated Terminal from Visual Studio Code by selecting View > Integrated Terminal from the main menu.
In the terminal window, type dotnet new console .
This command creates a Program.cs file in your folder with a simple "Hello World" program already written, along with a C# project file
named HelloWorld.csproj .

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/with-visual-studio-code.md
https://code.visualstudio.com/
https://www.microsoft.com/net/download/core
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://code.visualstudio.com/docs/editor/extension-gallery

3. Resolve the build assets:

NOTENOTE

For .NET Core 1.x, type dotnet restore . Running dotnet restore gives you access to the required .NET Core packages that are needed
to build your project.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as
dotnet new , dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as

continuous integration builds in Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

4. Run the "Hello World" program:

Type dotnet run .

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Debug

You can also watch a short video tutorial for further setup help on Windows, macOS, or Linux.

1. Open Program.cs by clicking on it. The first time you open a C# file in Visual Studio Code, OmniSharp loads in the editor.

2. Visual Studio Code should prompt you to add the missing assets to build and debug your app. Select Yes.

3. To open the Debug view, click on the Debugging icon on the left side menu.

https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-using-CSharp-and-NET-Core-on-MacOS
https://channel9.msdn.com/Blogs/dotnet/Get-started-with-VS-Code-Csharp-dotnet-Core-Ubuntu
http://www.omnisharp.net/

4. Locate the green arrow at the top of the pane. Make sure the drop-down next to it has .NET Core Launch (console) selected.

5. Add a breakpoint to your project by clicking on the editor margin, which is the space on the left of the line numbers in the editor, next to line 9,
or move the text cursor onto line 9 in the editor and press F9.

TIPTIP

"program": "${workspaceFolder}/app/bin/Debug/netcoreapp2.1/app.dll",

6. To start debugging, select F5 or the green arrow. The debugger stops execution of your program when it reaches the breakpoint you set in the
previous step.

While debugging, you can view your local variables in the top left pane or use the debug console.

7. Select the green arrow at the top to continue debugging, or select the red square at the top to stop.

For more information and troubleshooting tips on .NET Core debugging with OmniSharp in Visual Studio Code, see Instructions for setting up the .NET Core debugger.

8. If debugging doesn't work in Visual Studio Code, you might need to change some configurations. Open .vscode/launcher.json file; you'll see 3
configuration sections:

"name": ".NET Core Launch (console)"

"name": ".NET Core Launch (web)"

"name": ".NET Core Attach"

In the first section, "name": ".NET Core Launch (console)" , find the "program" field. Change its value to

That section of your .vscode/launch.json should then look like this after the change:

https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md

{
 "name": ".NET Core Launch (console)",
 "type": "coreclr",
 "request": "launch",
 "preLaunchTask": "build",
 "program": "${workspaceFolder}/app/bin/Debug/netcoreapp2.1/app.dll",
 "args": [],
 "cwd": "${workspaceFolder}",
 "console": "internalConsole",
 "stopAtEntry": false,
 "internalConsoleOptions": "openOnSessionStart"
},

See also

Debugging in Visual Studio Code should work after that change.

Setting up Visual Studio Code
Debugging in Visual Studio Code

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/Docs/editor/debugging

Build a C# Hello World application with .NET Core in Visual Studio 2017
5/4/2018 • 3 minutes to read • Edit Online

Prerequisites

A simple Hello World application

This topic provides a step-by-step introduction to building, debugging, and publishing a simple .NET Core console application using C# in Visual Studio
2017. Visual Studio 2017 provides a full-featured development environment for building .NET Core applications. As long as the application doesn't
have platform-specific dependencies, the application can run on any platform that .NET Core targets and on any system that has .NET Core installed.

Visual Studio 2017 with the ".NET Core cross-platform development" workload installed. You can develop your app with either .NET Core 1.1 or .NET
Core 2.0.

For more information, see the Prerequisites for .NET Core on Windows topic.

Begin by creating a simple "Hello World" console application. Follow these steps:

1. Launch Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project* dialog, select the Visual C# node followed by
the .NET Core node. Then select the Console App (.NET Core) project template. In the Name text box, type "HelloWorld". Select the OK
button.

2. Visual Studio uses the template to create your project. The C# Console Application template for .NET Core automatically defines a class, Program

, with a single method, Main , that takes a String array as an argument. Main is the application entry point, the method that's called automatically
by the runtime when it launches the application. Any command-line arguments supplied when the application is launched are available in the
args array.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/with-visual-studio.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://docs.microsoft.com/en-us/dotnet/core/windows-prerequisites
https://docs.microsoft.com/dotnet/api/system.string

Enhancing the Hello World application

Console.Write("Press any key to continue...");
Console.ReadKey(true);

The template creates a simple "Hello World" application. It calls the Console.WriteLine(String) method to display the literal string "Hello World!"
in the console window. By selecting the HelloWorld button with the green arrow on the toolbar, you can run the program in Debug mode. If you
do, the console window is visible for only a brief time interval before it closes. This occurs because the Main method terminates and the
application ends as soon as the single statement in the Main method executes.

3. To cause the application to pause before it closes the console window, add the following code immediately after the call to the
Console.WriteLine(String) method:

This code prompts the user to press any key and then pauses the program until a key is pressed.

4. On the menu bar, select Build > Build Solution. This compiles your program into an intermediate language (IL) that's converted into binary
code by a just-in-time (JIT) compiler.

5. Run the program by selecting the HelloWorld button with the green arrow on the toolbar.

6. Press any key to close the console window.

Enhance your application to prompt the user for their name and display it along with the date and time. To modify and test the program, do the
following:

1. Enter the following C# code in the code window immediately after the opening bracket that follows the static void Main(string[] args) line and
before the first closing bracket:

https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_

Related topics

Console.WriteLine("\nWhat is your name? ");
var name = Console.ReadLine();
var date = DateTime.Now;
Console.WriteLine($"\nHello, {name}, on {date:d} at {date:t}!");
Console.Write("\nPress any key to exit...");
Console.ReadKey(true);

This code replaces the existing Console.WriteLine, Console.Write, and Console.ReadKey statements.

This code displays "What is your name?" in the console window and waits until the user enters a string followed by the Enter key. It stores this
string into a variable named name . It also retrieves the value of the DateTime.Now property, which contains the current local time, and assigns it
to a variable named date . Finally, it uses an interpolated string to display these values in the console window.

2. Compile the program by choosing Build > Build Solution.

3. Run the program in Debug mode in Visual Studio by selecting the green arrow on the toolbar, pressing F5, or choosing the Debug > Start
Debugging menu item. Respond to the prompt by entering a name and pressing the Enter key.

4. Press any key to close the console window.

You've created and run your application. To develop a professional application, take some additional steps to make your application ready for release:

For information on debugging your application, see Debugging your C# Hello World application with Visual Studio 2017.

For information on developing and publishing a distributable version of your application, see Publishing your C# Hello World application with
Visual Studio 2017.

Instead of a console application, you can also build a class library with .NET Core and Visual Studio 2017. For a step-by-step introduction, see Building
a class library with C# and .NET Core in Visual Studio 2017.

You can also develop a .NET Core console app on Mac, Linux, and Windows by using Visual Studio Code, a downloadable code editor. For a step-by-
step tutorial, see Getting Started with Visual Studio Code.

https://docs.microsoft.com/dotnet/api/system.console.writeline
https://docs.microsoft.com/dotnet/api/system.console.write
https://docs.microsoft.com/dotnet/api/system.console.readkey
https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://docs.microsoft.com/en-us/dotnet/core/tutorials/debugging-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/publishing-with-visual-studio
https://code.visualstudio.com/

Build a Visual Basic Hello World application with .NET Core in Visual
Studio 2017
5/4/2018 • 3 minutes to read • Edit Online

Prerequisites

A simple Hello World application

This topic provides a step-by-step introduction to building, debugging, and publishing a simple .NET Core console application using Visual Basic in
Visual Studio 2017. Visual Studio 2017 provides a full-featured development environment for building .NET Core applications. As long as the
application doesn't have platform-specific dependencies, the application can run on any platform that .NET Core targets and on any system that has
.NET Core installed.

Visual Studio 2017 with the ".NET Core cross-platform development" workload installed. You can develop your app with .NET Core 2.0.

For more information, see Prerequisites for .NET Core on Windows.

Begin by creating a simple "Hello World" console application. Follow these steps:

1. Launch Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project* dialog, select the Visual Basic node followed
by the .NET Core node. Then select the Console App (.NET Core) project template. In the Name text box, type "HelloWorld". Select the OK
button.

2. Visual Studio uses the template to create your project. The Visual Basic Console Application template for .NET Core automatically defines a class,
Program , with a single method, Main , that takes a String array as an argument. Main is the application entry point, the method that's called

automatically by the runtime when it launches the application. Any command-line arguments supplied when the application is launched are
available in the args array.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/vb-with-visual-studio.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://docs.microsoft.com/dotnet/api/system.string

Enhancing the Hello World application

Console.Write("Press any key to continue...")
Console.ReadKey(true)

The template creates a simple "Hello World" application. It calls the Console.WriteLine(String) method to display the literal string "Hello World!"
in the console window. By selecting the HelloWorld button with the green arrow on the toolbar, you can run the program in Debug mode. If you
do, the console window is visible for only a brief time interval before it closes. This occurs because the Main method terminates and the
application ends as soon as the single statement in the Main method executes.

3. To cause the application to pause before it closes the console window, add the following code immediately after the call to the
Console.WriteLine(String) method:

This code prompts the user to press any key and then pauses the program until a key is pressed.

4. On the menu bar, select Build > Build Solution. This compiles your program into an intermediate language (IL) that's converted into binary
code by a just-in-time (JIT) compiler.

5. Run the program by selecting the HelloWorld button with the green arrow on the toolbar.

6. Press any key to close the console window.

Enhance your application to prompt the user for his or her name and to display it along with the date and time. To modify and test the program, do the
following:

Console.WriteLine(vbCrLf + "What is your name? ")
Dim name = Console.ReadLine()
Dim currentDate = DateTime.Now
Console.WriteLine($"{vbCrLf}Hello, {name}, on {currentDate:d} at {currentDate:t}")
Console.Write(vbCrLf + "Press any key to exit... ")
Console.ReadKey(True)

1. Enter the following Visual Basic code in the code window immediately after the opening bracket that follows the Sub Main(args As String()) line
and before the first closing bracket:

https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine_System_String_

This code replaces the existing Console.WriteLine, Console.Write, and Console.ReadKey statements.

This code displays "What is your name?" in the console window and waits until the user enters a string followed by the Enter key. It stores this
string into a variable named name . It also retrieves the value of the DateTime.Now property, which contains the current local time, and assigns it
to a variable named currentDate . Finally, it uses an interpolated string to display these values in the console window.

2. Compile the program by choosing Build > Build Solution.

3. Run the program in Debug mode in Visual Studio by selecting the green arrow on the toolbar, pressing F5, or choosing the Debug > Start
Debugging menu item. Respond to the prompt by entering a name and pressing the Enter key.

4. Press any key to close the console window.

You've created and run your application. To develop a professional application, take some additional steps to make your application ready for release:

For information on debugging your application, see Debugging your C# Hello World application with Visual Studio 2017.

For information on developing and publishing a distributable version of your application, see Publishing your C# Hello World application with
Visual Studio 2017.

https://docs.microsoft.com/dotnet/api/system.console.writeline
https://docs.microsoft.com/dotnet/api/system.console.write
https://docs.microsoft.com/dotnet/api/system.console.readkey
https://docs.microsoft.com/dotnet/api/system.datetime.now#System_DateTime_Now
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/interpolated-strings
https://docs.microsoft.com/en-us/dotnet/core/tutorials/debugging-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/publishing-with-visual-studio

Building a class library with C# and .NET Core in Visual Studio 2017
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Creating a class library solution

Creating the class library project

A class library defines types and methods that are called by an application. A class library that targets the .NET Standard 2.0 allows your library to be
called by any .NET implementation that supports that version of the .NET Standard. When you finish your class library, you can decide whether you
want to distribute it as a third-party component or whether you want to include it as a bundled component with one or more applications.

For a list of the .NET Standard versions and the platforms they support, see .NET Standard.

In this topic, you'll create a simple utility library that contains a single string-handling method. You'll implement it as an extension method so that you
can call it as if it were a member of the String class.

Start by creating a solution for your class library project and its related projects. A Visual Studio Solution just serves as a container for one or more
projects. To create the solution:

1. On the Visual Studio menu bar, choose File > New > Project.

2. In the New Project dialog, expand the Other Project Types node, and select Visual Studio Solutions. Name the solution
"ClassLibraryProjects" and select the OK button.

Create your class library project:

1. In Solution Explorer, right-click on the ClassLibraryProjects solution file and from the context menu, select Add > New Project.

2. In the Add New Project dialog, expand the Visual C# node, then select the .NET Standard node followed by the Class Library (.NET
Standard) project template. In the Name text box, enter "StringLibrary" as the name of the project. Select OK to create the class library project.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/library-with-visual-studio.md
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/dotnet/api/system.string

The code window then opens in the Visual Studio development environment.

3. Check to make sure that our library targets the correct version of the .NET Standard. Right-click on the library project in the Solution Explorer
windows, then select Properties. The Target Framework text box shows that we're targeting .NET Standard 2.0.

Next step

using System;

namespace UtilityLibraries
{
 public static class StringLibrary
 {
 public static bool StartsWithUpper(this String str)
 {
 if (String.IsNullOrWhiteSpace(str))
 return false;

 Char ch = str[0];
 return Char.IsUpper(ch);
 }
 }
}

4. Replace the code in the code window with the following code and save the file:

The class library, UtilityLibraries.StringLibrary , contains a method named StartsWithUpper , which returns a Boolean value that indicates
whether the current string instance begins with an uppercase character. The Unicode standard distinguishes uppercase characters from lowercase
characters. The Char.IsUpper(Char) method returns true if a character is uppercase.

5. On the menu bar, select Build > Build Solution. The project should compile without error.

You've successfully built the library. Because you haven't called any of its methods, you don't know whether it works as expected. The next step in
developing your library is to test it by using a Unit Test Project.

https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char.isupper#System_Char_IsUpper_System_Char_
https://docs.microsoft.com/en-us/dotnet/core/tutorials/testing-library-with-visual-studio

Building a class library with Visual Basic and .NET Core in Visual Studio
2017
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Creating a class library solution

Creating the class library project

A class library defines types and methods that are called by an application. A class library that targets the .NET Standard 2.0 allows your library to be
called by any .NET implementation that supports that version of the .NET Standard. When you finish your class library, you can decide whether you
want to distribute it as a third-party component or whether you want to include it as a bundled component with one or more applications.

For a list of the .NET Standard versions and the platforms they support, see .NET Standard.

In this topic, you'll create a simple utility library that contains a single string-handling method. You'll implement it as an extension method so that you
can call it as if it were a member of the String class.

Start by creating a solution for your class library project and its related projects. A Visual Studio Solution just serves as a container for one or more
projects. To create the solution:

1. On the Visual Studio menu bar, choose File > New > Project.

2. In the New Project dialog, expand the Other Project Types node, and select Visual Studio Solutions. Name the solution
"ClassLibraryProjects" and select the OK button.

Create your class library project:

1. In Solution Explorer, right-click on the ClassLibraryProjects solution file and from the context menu, select Add > New Project.

2. In the Add New Project dialog, expand the Visual Basic node, then select the .NET Standard node followed by the Class Library (.NET
Standard) project template. In the Name text box, enter "StringLibrary" as the name of the project. Select OK to create the class library project.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/vb-library-with-visual-studio.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods
https://docs.microsoft.com/dotnet/api/system.string

The code window then opens in the Visual Studio development environment.

3. Check to make sure that the library targets the correct version of the .NET Standard. Right-click on the library project in the Solution Explorer
windows, then select Properties. The Target Framework text box shows that we're targeting .NET Standard 2.0.

Imports System.Runtime.CompilerServices

Namespace UtilityLibraries
 Public Module StringLibrary
 <Extension>
 Public Function StartsWithUpper(str As String) As Boolean
 If String.IsNullOrWhiteSpace(str) Then
 Return False
 End If

 Dim ch As Char = str(0)
 Return Char.IsUpper(ch)
 End Function
 End Module
End Namespace

Next step

4. Also in the Properties dialog, clear the text in the Root namespace text box. For each project, Visual Basic automatically creates a namespace
that corresponds to the project name, and any namespaces defined in source code files are parents of that namespace. We want to define a top-
level namespace by using the namespace keyword.

5. Replace the code in the code window with the following code and save the file:

The class library, UtilityLibraries.StringLibrary , contains a method named StartsWithUpper , which returns a Boolean value that indicates whether the
current string instance begins with an uppercase character. The Unicode standard distinguishes uppercase characters from lowercase characters. The
Char.IsUpper(Char) method returns true if a character is uppercase.

1. On the menu bar, select Build > Build Solution. The project should compile without error.

You've successfully built the library. Because you haven't called any of its methods, you don't know whether it works as expected. The next step in
developing your library is to test it by using a Unit Test Project.

https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.char.isupper#System_Char_IsUpper_System_Char_
https://docs.microsoft.com/en-us/dotnet/core/tutorials/testing-library-with-visual-studio

Prerequisites for .NET Core on Windows
5/19/2018 • 3 minutes to read • Edit Online

.NET Core supported Windows versions

.NET Core dependencies

NOTENOTE

Prerequisites with Visual Studio 2017

This article shows the dependencies needed to develop .NET Core applications on Windows. The supported OS versions and dependencies that follow
apply to the three ways of developing .NET Core apps on Windows:

Command line
Visual Studio 2017
Visual Studio Code

.NET Core is supported on the following versions of:

Windows 7 SP1
Windows 8.1
Windows 10 Anniversary Update (version 1607) or later versions
Windows Server 2008 R2 SP1 (Full Server or Server Core)
Windows Server 2012 SP1 (Full Server or Server Core)
Windows Server 2012 R2 (Full Server or Server Core)
Windows Server 2016 or later versions (Full Server, Server Core, or Nano Server)

The following articles have a complete list of .NET Core supported operating systems per version:

.NET Core 2.1 - Supported OS Versions

.NET Core 2.0 - Supported OS Versions

.NET Core 1.x - Supported OS Versions

.NET Core 1.1 and earlier versions require the Visual C++ Redistributable when running on Windows versions earlier than Windows 10 and Windows
Server 2016. This dependency is automatically installed by the .NET Core installer.

Microsoft Visual C++ 2015 Redistributable Update 3 must be manually installed when:

Installing .NET Core with the installer script.
Deploying a self-contained .NET Core application.
Building the product from source.
Installing .NET Core via a .zip file. This can include build/CI/CD servers.

For Windows 8.1 and earlier versions, or Windows Server 2012 R2 and earlier versions:

Make sure that your Windows installation is up-to-date and includes KB2999226, which can be installed through Windows Update. If you don't have this update
installed, you'll see an error like the following when you launch a .NET Core application:
The program can't start because api-ms-win-crt-runtime-1-1-0.dll is missing from your computer. Try reinstalling the program to fix this
problem.

For Windows 7 or Windows Server 2008 R2:

In addition to KB2999226, make sure you also have KB2533623 installed. If you don't have this update installed, you'll see an error similar to the following when you
launch a .NET Core application: The library hostfxr.dll was found, but loading it from C:\<path_to_app>\hostfxr.dll failed .

You can use any editor to develop .NET Core applications using the .NET Core SDK. Visual Studio 2017 provides an integrated development
environment for .NET Core apps on Windows.

You can read more about the changes in Visual Studio 2017 in the release notes.

.NET Core 2.x

.NET Core 1.x

To develop .NET Core 2.x apps in Visual Studio 2017:

1. Download and install Visual Studio 2017 version 15.3.0 or higher with the .NET Core cross-platform development workload (in the Other
Toolsets section) selected.

https://github.com/dotnet/docs/blob/master/docs/core/windows-prerequisites.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://code.visualstudio.com/
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0-supported-os.md
https://www.microsoft.com/download/details.aspx?id=52685
https://support.microsoft.com/en-us/help/2999226/update-for-universal-c-runtime-in-windows
https://support.microsoft.com/en-us/help/2533623/microsoft-security-advisory-insecure-library-loading-could-allow-remot
https://docs.microsoft.com/visualstudio/releasenotes/vs2017-relnotes
https://docs.microsoft.com/visualstudio/install/install-visual-studio

After the .NET Core cross-platform development toolset is installed, Visual Studio 2017 uses .NET Core 1.x by default. Install the .NET Core 2.x SDK
to get .NET Core 2.x support in Visual Studio 2017.

2. Install the .NET Core 2.x SDK.
3. Retarget existing or new .NET Core 1.x projects to .NET Core 2.x using the following instructions:

On the Project menu, Choose Properties.
In the Target framework selection menu, set the value to .NET Core 2.0.

Once the .NET Core 2.x SDK is installed, Visual Studio 2017 uses the .NET Core SDK 2.x by default, and supports the following actions:

Open, build, and run existing .NET Core 1.x projects.
Retarget .NET Core 1.x projects to .NET Core 2.x, build, and run.
Create new .NET Core 2.x projects.

https://www.microsoft.com/net/download/core

TIPTIP
To verify your Visual Studio 2017 version:

On the Help menu, choose About Microsoft Visual Studio.
In the About Microsoft Visual Studio dialog, verify the version number.

For .NET Core 2.1 RC apps, Visual Studio 2017 version 15.7 or higher.
For .NET Core 2.0 apps, Visual Studio 2017 version 15.3 or higher.
For .NET Core 1.x apps, Visual Studio 2017 version 15.0 or higher.

Prerequisites for .NET Core on macOS
6/22/2018 • 2 minutes to read • Edit Online

Supported macOS versions

.NET Core dependencies

Increase the maximum open file limit (.NET Core versions before .NET Core SDK 2.0.2)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>limit.maxfiles</string>
 <key>ProgramArguments</key>
 <array>
 <string>launchctl</string>
 <string>limit</string>
 <string>maxfiles</string>
 <string>2048</string>
 <string>4096</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>ServiceIPC</key>
 <false/>
 </dict>
</plist>

echo 'ulimit -n 2048' | sudo tee -a /etc/profile

Visual Studio for Mac

This article shows you the supported macOS versions and .NET Core dependencies that you need to develop, deploy, and run .NET Core applications
on macOS machines. The supported OS versions and dependencies that follow apply to the three ways of developing .NET Core apps on a Mac: via the
command-line with your favorite editor, Visual Studio Code, and Visual Studio for Mac.

.NET Core 2.x

.NET Core 1.x

.NET Core 2.x is supported on the following versions of macOS:

macOS 10.12 "Sierra" and later versions

See .NET Core 2.x Supported OS Versions for the complete list of .NET Core 2.x supported operating systems, out of support OS versions, and lifecycle
policy links.

.NET Core 2.x

.NET Core 1.x

Download and install the .NET Core SDK from .NET Downloads. If you have problems with the installation on macOS, consult the Known issues topic
for the version you have installed.

In older .NET Core versions (before .NET Core SDK 2.0.2), the default open file limit on macOS may not be sufficient for some .NET Core workloads,
such as restoring projects or running unit tests.

You can increase this limit by following these steps:

1. Using a text editor, create a new file /Library/LaunchDaemons/limit.maxfiles.plist, and save the file with this content:

2. In a terminal window, run the following command:

3. Reboot your Mac to apply these settings.

You can use any editor to develop .NET Core applications using the .NET Core SDK. However, if you want to develop .NET Core applications on a Mac
in an integrated development environment, you can use Visual Studio for Mac.

.NET Core development on macOS with Visual Studio for Mac requires:

A supported version of the macOS operating system

https://github.com/dotnet/docs/blob/master/docs/core/macos-prerequisites.md
https://code.visualstudio.com/
https://visualstudio.microsoft.com/vs/visual-studio-mac/
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://www.microsoft.com/net/download/core
https://github.com/dotnet/core/tree/master/release-notes/2.0
https://visualstudio.microsoft.com/vs/visual-studio-mac/

OpenSSL (.NET Core 1.x only; .NET Core 2.x uses security services available natively in macOS)
.NET Core SDK for Mac
Visual Studio for Mac

https://visualstudio.microsoft.com/vs/visual-studio-mac/

Prerequisites for .NET Core on Linux
7/18/2018 • 11 minutes to read • Edit Online

NOTENOTE

Supported Linux versions

Linux distribution dependencies

UbuntuUbuntu

This article shows the dependencies needed to develop .NET Core applications on Linux. The supported Linux distributions/versions, and dependencies
that follow apply to the two ways of developing .NET Core apps on Linux:

Command-line with your favorite editor
Visual Studio Code

The .NET Core SDK package is not required for production servers/environments. Only the .NET Core runtime package is needed for apps deployed to production
environments. The .NET Core runtime is deployed with apps as part of a self-contained deployment, however, it must be deployed for Framework-dependent deployed
apps separately. For more information about framework-dependent and self-contained deployment types, see .NET Core application deployment. Also see Self-
contained Linux applications for specific guidelines.

.NET Core 2.x

.NET Core 1.x

.NET Core 2.x treats Linux as a single operating system. There is a single Linux build (per chip architecture) for supported Linux distributions.

NET Core 2.1

NET Core 2.1 is supported on the following Linux 64-bit (x86_64 or amd64) distributions/versions:

Red Hat Enterprise Linux 7, 6
CentOS 7
Oracle Linux 7
Fedora 28, 27
Debian 9, 8.7 or later versions
Ubuntu 18.04, 17.10, 16.04, 14.04
Linux Mint 18, 17
openSUSE 42.3 or later versions
SUSE Enterprise Linux (SLES) 12 Service Pack 2 or later
Alpine Linux 3.7 or later versions

See .NET Core 2.1 Supported OS Versions for the complete list of .NET Core 2.1 supported operating systems, distributions and versions, out of
support OS versions, and lifecycle policy links.

NET Core 2.0

NET Core 2.0 is supported on the following Linux 64-bit (x86_64 or amd64) distributions/versions:

Red Hat Enterprise Linux 7
CentOS 7
Oracle Linux 7
Fedora 27
Debian 9, 8.7 or later versions
Ubuntu 18.04, 17.10, 16.04, 14.04
Linux Mint 18, 17
openSUSE 42.3 or later versions
SUSE Enterprise Linux (SLES) 12 Service Pack 2 or later

See .NET Core 2.0 Supported OS Versions for the complete list of .NET Core 2.0 supported operating systems, distributions and versions, out of
support OS versions, and lifecycle policy links.

The following are intended to be examples. The exact versions and names may vary slightly on your Linux distribution of choice.

Ubuntu distributions require the following libraries installed:

liblttng-ust0
libcurl3

https://github.com/dotnet/docs/blob/master/docs/core/linux-prerequisites.md
https://code.visualstudio.com/
https://github.com/dotnet/core/blob/master/Documentation/self-contained-linux-apps.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md

CentOSCentOS

Installing .NET Core dependencies with the native installers

Scripting Installs with the .NET Core installer scriptScripting Installs with the .NET Core installer script

Install .NET Core for supported Red Hat Enterprise Linux (RHEL) versions

Install .NET Core for supported Ubuntu and Linux Mint distributions/versions (64 bit)

libssl1.0.0
libkrb5-3
zlib1g
libicu52 (for 14.x)
libicu55 (for 16.x)
libicu57 (for 17.x)
libicu60 (for 18.x)

For versions earlier than .NET Core 2.1, following dependencies are also required:

libunwind8
libuuid1

CentOS distributions require the following libraries installed:

lttng-ust
libcurl
openssl-libs
krb5-libs
libicu
zlib

For versions earlier than .NET Core 2.1, following dependencies are also required:

libunwind
libuuid

For more information about the dependencies, see Self-contained Linux applications.

.NET Core native installers are available for supported Linux distributions/versions. The native installers require admin (sudo) access to the server. The
advantage of using a native installer is that all of the .NET Core native dependencies are installed. Native installers also install the .NET Core SDK
system-wide.

On Linux, there are two installer package choices:

Using a feed-based package manager, such as apt-get for Ubuntu, or yum for CentOS/RHEL.
Using the packages themselves, DEB or RPM.

The dotnet-install scripts are used to perform a non-admin install of the CLI toolchain and the shared runtime. You can download the script from
https://dot.net/v1/dotnet-install.sh.

The installer bash script is used in automation scenarios and non-admin installations. This script also reads PowerShell switches, so they can be used
with the script on Linux/OS X systems.

To install .NET Core on supported RHEL versions:

.NET Core 2.x

.NET Core 1.x

.NET Core 2.0

Install .NET Core 2.0 on supported RHEL versions:

.NET Core Runtime 2.0.8 install link

.NET Core Runtime 2.0.7 install link

.NET Core Runtime 2.0.6 install link

.NET Core Runtime 2.0.5 install link

.NET Core SDK 2.1.200 install link

.NET Core SDK 2.1.105 install link

.NET Core SDK 2.1.103 install link

.NET Core SDK 2.0.3 install link

.NET Core SDK 2.0.0 install link

.NET Core 2.x

https://github.com/dotnet/core/blob/master/Documentation/self-contained-linux-apps.md
https://dot.net/v1/dotnet-install.sh
https://www.microsoft.com/net/download/linux-package-manager/rhel/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/rhel/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/rhel/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/rhel/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/rhel/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/rhel/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/rhel/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/rhel/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/rhel/sdk-2.0.0

RUNTIMES / SDKS UBUNTU 18.04 UBUNTU 17.10 UBUNTU 16.04 / LINUX MINT 18 UBUNTU 14.04 / LINUX MINT 17

.NET Core Runtime 2.0.8 Install link Install link Install link Install link

.NET Core Runtime 2.0.7 Install link Install link Install link Install link

.NET Core Runtime 2.0.6 Install link Install link Install link Install link

.NET Core Runtime 2.0.5 Install link Install link Install link Install link

.NET Core SDK 2.1.200 Install link Install link Install link Install link

.NET Core SDK 2.1.105 Install link Install link Install link Install link

.NET Core SDK 2.1.103 Install link Install link Install link Install link

.NET Core SDK 2.0.3 Install link Install link Install link Install link

.NET Core SDK 2.0.0 Install link Install link Install link Install link

IMPORTANTIMPORTANT

RUNTIMES / SDKS UBUNTU 18.04 UBUNTU 17.10 UBUNTU 16.04 / LINUX MINT 18 UBUNTU 14.04 / LINUX MINT 17

.NET Core Runtime 2.1.0 Install link Install link Install link Install link

.NET Core SDK 2.1.300 Install link Install link Install link Install link

Install .NET Core for supported Debian versions (64 bit)

NOTENOTE

RUNTIMES / SDKS DEBIAN 9 DEBIAN 8

.NET Core Runtime 2.0.8 Install link Install link

.NET Core Runtime 2.0.7 Install link Install link

.NET Core Runtime 2.0.6 Install link Install link

.NET Core Runtime 2.0.5 Install link Install link

.NET Core SDK 2.1.200 Install link Install link

.NET Core SDK 2.1.105 Install link Install link

.NET Core 1.x

1. Remove any previous preview versions of .NET Core from your system.

2. Install .NET Core 2.x on supported Ubuntu and Linux Mint distributions/versions (64 bit):

.NET Core 2.0

.NET Core 2.1

To use .NET Core 2.1 with Visual Studio, you need to install Visual Studio 2017 15.7 or newer.

To install .NET Core on supported Debian versions (64 bit):

A user-controlled directory is required for Linux system installs from tar.gz.

.NET Core 2.x

.NET Core 1.x

1. Remove any previous preview versions of .NET Core from your system.

2. Install .NET Core 2.x on supported Debian versions (64 bit):

.NET Core 2.0

https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.0.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.0.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.0.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.0.0
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/ubuntu18-04/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/ubuntu17-10/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/ubuntu16-04/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/ubuntu14-04/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/debian9/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/debian8/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/debian9/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/debian8/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/debian9/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/debian8/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/debian9/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/debian8/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.1.105

.NET Core SDK 2.1.103 Install link Install link

.NET Core SDK 2.0.3 Install link Install link

.NET Core SDK 2.0.0 Install link Install link

RUNTIMES / SDKS DEBIAN 9 DEBIAN 8

IMPORTANTIMPORTANT

RUNTIMES / SDKS DEBIAN 9 DEBIAN 8

.NET Core Runtime 2.1.0 Install link Install link

.NET Core SDK 2.1.300 Install link Install link

Install .NET Core for supported Fedora versions (64 bit)

NOTENOTE

RUNTIMES / SDKS FEDORA 26 OR LATER FEDORA 25 OR PREVIOUS

.NET Core Runtime 2.0.8 Install link Install link

.NET Core Runtime 2.0.7 Install link Install link

.NET Core Runtime 2.0.6 Install link Install link

.NET Core Runtime 2.0.5 Install link Install link

.NET Core SDK 2.1.200 Install link Install link

.NET Core SDK 2.1.105 Install link Install link

.NET Core SDK 2.1.103 Install link Install link

.NET Core SDK 2.0.3 Install link Install link

IMPORTANTIMPORTANT

RUNTIMES / SDKS FEDORA 27 FEDORA 26

.NET Core Runtime 2.1.0 Install link Install link

.NET Core SDK 2.1.300 Install link Install link

.NET Core 2.1

To use .NET Core 2.1 with Visual Studio, you need to install Visual Studio 2017 15.7 or newer.

To install .NET Core on supported Fedora versions:

A user-controlled directory is required for Linux system installs from tar.gz.

.NET Core 2.x

.NET Core 1.x

1. Remove any previous preview versions of .NET Core from your system.

2. Install .NET Core 2.x on supported Fedora versions (64 bit):

.NET Core 2.0

.NET Core 2.1

To use .NET Core 2.1 with Visual Studio, you need to install Visual Studio 2017 15.7 or newer.

https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.0.0
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.0.0
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://www.microsoft.com/net/download/linux-package-manager/debian9/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/debian8/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/debian9/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/debian8/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/fedora26/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/fedora25/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/fedora26/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/fedora25/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/fedora26/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/fedora25/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/fedora26/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/fedora25/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/fedora26/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/fedora25/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/fedora26/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/fedora25/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/fedora26/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/fedora25/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/fedora26/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/fedora25/sdk-2.0.3
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://www.microsoft.com/net/download/linux-package-manager/fedora27/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/fedora26/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/fedora27/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/fedora26/sdk-2.1.300

Install .NET Core for supported CentOS and Oracle Linux distributions/versions (64 bit)

NOTENOTE

IMPORTANTIMPORTANT

Install .NET Core for supported SUSE Linux Enterprise Server and OpenSUSE
distributions/versions (64 bit)

To install .NET Core for supported CentOS and Oracle Linux distributions/versions (64 bit):

A user-controlled directory is required for Linux system installs from tar.gz.

.NET Core 2.x

.NET Core 1.x

1. Remove any previous preview versions of .NET Core from your system.

2. Install .NET Core 2.x on supported CentOS and Oracle Linux distributions/versions (64 bit):

.NET Core 2.0

.NET Core Runtime 2.0.8 install link

.NET Core Runtime 2.0.7 install link

.NET Core Runtime 2.0.6 install link

.NET Core Runtime 2.0.5 install link

.NET Core SDK 2.1.200 install link

.NET Core SDK 2.1.105 install link

.NET Core SDK 2.1.103 install link

.NET Core SDK 2.0.3 install link

.NET Core SDK 2.0.0 install link

.NET Core 2.1

To use .NET Core 2.1 with Visual Studio, you need to install Visual Studio 2017 15.7 or newer.

.NET Core Runtime 2.1.0 install link

.NET Core SDK 2.1.300 install link

To install .NET Core 2.x for supported SUSE Linux Enterprise Server and OpenSUSE distributions/versions (64 bit):

.NET Core 2.x

.NET Core 1.x

1. Remove any previous preview versions of .NET Core from your system.

2. Install .NET Core 2.x on supported SUSE Linux Enterprise Server and OpenSUSE distributions/versions (64 bit):

.NET Core 2.0

SUSE Linux Enterprise Server

.NET Core Runtime 2.0.8 install link

.NET Core Runtime 2.0.7 install link

.NET Core Runtime 2.0.6 install link

.NET Core Runtime 2.0.5 install link

.NET Core SDK 2.1.200 install link

.NET Core SDK 2.1.105 install link

.NET Core SDK 2.1.103 install link

.NET Core SDK 2.0.3 install link

.NET Core SDK 2.0.0 install link

openSUSE

.NET Core Runtime 2.0.8 install link

.NET Core Runtime 2.0.7 install link

.NET Core Runtime 2.0.6 install link

.NET Core Runtime 2.0.5 install link

.NET Core SDK 2.1.105 install link

.NET Core SDK 2.1.103 install link

https://www.microsoft.com/net/download/linux-package-manager/centos/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/centos/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/centos/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/centos/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.0.0
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://www.microsoft.com/net/download/linux-package-manager/centos/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/centos/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.1.200
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.1.103
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.0.0
https://www.microsoft.com/net/download/linux-package-manager/opensuse/runtime-2.0.8
https://www.microsoft.com/net/download/linux-package-manager/opensuse/runtime-2.0.7
https://www.microsoft.com/net/download/linux-package-manager/opensuse/runtime-2.0.6
https://www.microsoft.com/net/download/linux-package-manager/opensuse/runtime-2.0.5
https://www.microsoft.com/net/download/linux-package-manager/opensuse/sdk-2.1.105
https://www.microsoft.com/net/download/linux-package-manager/opensuse/sdk-2.1.103

IMPORTANTIMPORTANT

Install .NET Core for supported Alpine Linux versions (64 bit)

NOTENOTE

IMPORTANTIMPORTANT

.NET Core SDK 2.0.3 install link

.NET Core SDK 2.0.0 install link

.NET Core 2.1

To use .NET Core 2.1 with Visual Studio, you need to install Visual Studio 2017 15.7 or newer.

SUSE Linux Enterprise Server

.NET Core Runtime 2.1.0 install link

.NET Core SDK 2.1.300 install link

openSUSE

.NET Core Runtime 2.1.0 install link

.NET Core SDK 2.1.300 install link

A user-controlled directory is required for Linux system installs from tar.gz.

Download and follow the .NET Core 2.1 installation instructions for supported Alpine Linux versions (64 bit) at the following links:

.NET Core Runtime 2.1.0 download link

.NET Core SDK 2.1.300 download link

If you have problems with a .NET Core installation on a supported Linux distribution/version, consult the following topics for your installed distributions/versions:

.NET Core 2.1 known issues

.NET Core 2.0 known issues

.NET Core 1.1 known issues

.NET Core 1.0 known issues

https://www.microsoft.com/net/download/linux-package-manager/opensuse/sdk-2.0.3
https://www.microsoft.com/net/download/linux-package-manager/opensuse/sdk-2.0.0
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/opensuse/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/opensuse/sdk-2.1.300
https://www.microsoft.com/net/download/linux-package-manager/sles/runtime-2.1.0
https://www.microsoft.com/net/download/linux-package-manager/sles/sdk-2.1.300
https://github.com/dotnet/core/tree/master/release-notes/2.1
https://github.com/dotnet/core/tree/master/release-notes/2.0
https://github.com/dotnet/core/blob/master/release-notes/1.1
https://github.com/dotnet/core/blob/master/release-notes/1.0

What's new in .NET Core
5/30/2018 • 2 minutes to read • Edit Online

See also

This page provides a summary of new features in each release of .NET Core starting with .NET Core 2.0. The following links provide detailed
information on the major features added in each release.

.NET Core 2.1

.NET Core 2.0

What's new in ASP.NET Core 2.0

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/index.md
https://docs.microsoft.com/aspnet/core/aspnetcore-2.0

What's new in .NET Core 2.1
7/6/2018 • 8 minutes to read • Edit Online

Tooling

Build performance improvementsBuild performance improvements

New CLI commandsNew CLI commands

Global ToolsGlobal Tools

dotnet tool install -g dotnetsay

Tool management with the Tool management with the dotnet tool command command

.NET Core 2.1 includes enhancements and new features in the following areas:

Tooling
Roll forward
Deployment
Windows Compatibility Pack
JIT compilation improvements
API changes

The .NET Core 2.1 SDK (v 2.1.300), the tooling included with .NET Core 2.1, includes the following changes and enhancements:

A major focus of .NET Core 2.1 is improving build-time performance, particularly for incremental builds. These performance improvements apply to
both command-line builds using dotnet build and to builds in Visual Studio. Some individual areas of improvement include:

dotnet buildserver shutdown

For package asset resolution, resolving only assets used by a build rather than all assets.

Caching of assembly references.

Use of long-running SDK build servers, which are processes that span across individual dotnet build invocations. They eliminate the need to
JIT-compile large blocks of code every time dotnet build is run. Build server processes can be automatically terminated with the following
command:

A number of tools that were available only on a per project basis using DotnetCliToolReference are now available as part of the .NET Core SDK. These
tools include:

dotnet watch -- --verbose build

dotnet watch provides a file system watcher that waits for a file to change before executing a designated set of commands. For example, the
following command automatically rebuilds the current project and generates verbose output whenever a file in it changes:

Note the -- option that precedes the --verbose option. It delimits the options passed directly to the dotnet watch command from the
arguments that are passed to the child dotnet process. Without it, the --verbose option applies to the dotnet watch command, not the
dotnet build command.

For more information, see Develop ASP.NET Core apps using dotnet watch

dotnet dev-certs generates and manages certificates used during development in ASP.NET Core applications.

dotnet user-secrets manages the secrets in a user secret store in ASP.NET Core applications.

dotnet sql-cache creates a table and indexes in a Microsoft SQL Server database to be used for distributed caching.

dotnet ef is a tool for managing databases, DbContext objects, and migrations in Entity Framework Core applications. For more information,
see EF Core .NET Command-line Tools.

.NET Core 2.1 supports Global Tools -- that is, custom tools that are available globally from the command line. The extensibility model in previous
versions of .NET Core made custom tools available on a per project basis only by using DotnetCliToolReference .

To install a Global Tool, you use the dotnet tool install command. For example:

Once installed, the tool can be run from the command line by specifying the tool name. For more information, see .NET Core Global Tools overview.

In .NET Core SDK 2.1 (v 2.1.300), all tools operations use the dotnet tool command. The following options are available:

dotnet tool install to install a tool.

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-2-1.md
https://docs.microsoft.com/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet

Roll forward

IMPORTANTIMPORTANT

Deployment
Self-contained application servicingSelf-contained application servicing

Windows Compatibility Pack

JIT compiler improvements

dotnet tool update to uninstall and reinstall a tool, which effectively updates it.

dotnet tool list to list currently installed tools.

dotnet tool uninstall to uninstall currently installed tools.

All .NET Core applications starting with the .NET Core 2.0 automatically roll forward to the latest minor version installed on a system.

Starting with .NET Core 2.0, if the version of .NET Core that an application was built with is not present at runtime, the application automatically runs
against the latest installed minor version of .NET Core. In other words, if an application is built with .NET Core 2.0, and .NET Core 2.0 is not present on
the host system but .NET Core 2.1 is, the application runs with .NET Core 2.1.

This roll-forward behavior doesn't apply to preview releases. Nor does it apply to major releases. For example, a .NET Core 1.0 application wouldn't roll forward to .NET
Core 2.0 or .NET Core 2.1.

You can also disable minor version roll forward in any of three ways:

"rollForwardOnNoCandidateFx" : 0

dotnet run --rollForwardOnNoCandidateFx=0

Set the DOTNET_ROLL_FORWARD_ON_NO_CANDIDATE_FX environment variable to 0.

Add the following line to the runtimeconfig.json file:

When using .NET Core CLI tools, include the following option with a .NET Core command such as run :

dotnet publish now publishes self-contained applications with a serviced runtime version. When you publish a self-contained application with the .NET
Core 2.1 SDK (v 2.1.300), your application includes the latest serviced runtime version known by that SDK. When you upgrade to the latest SDK, you’ll
publish with the latest .NET Core runtime version. This applies for .NET Core 1.0 runtimes and later.

Self-contained publishing relies on runtime versions on NuGet.org. You do not need to have the serviced runtime on your machine.

Using the .NET Core 2.0 SDK, self-contained applications are published with the .NET Core 2.0.0 runtime unless a different version is specified via the
RuntimeFrameworkVersion property. With this new behavior, you’ll no longer need to set this property to select a higher runtime version for a self-

contained application. The easiest approach going forward is to always publish with .NET Core 2.1 SDK (v 2.1.300).

When you port existing code from the .NET Framework to .NET Core, you can use the Windows Compatibility Pack. It provides access to 20,000 more
APIs than are available in .NET Core. These APIs include types in the System.Drawing namespace, the EventLog class, WMI, Performance Counters,
Windows Services, and the Windows registry types and members.

.NET Core incorporates a new JIT compiler technology called tiered compilation (also known as adaptive optimization) that can significantly improve
performance. Tiered compilation is an opt-in setting.

One of the important tasks performed by the JIT compiler is optimizing code execution. For little-used code paths, however, the compiler may spend
more time optimizing code than the runtime spends running unoptimized code. Tiered compilation introduces two stages in JIT compilation:

A first tier, which generates code as quickly as possible.

A second tier, which generates optimized code for those methods that are executed frequently. The second tier of compilation is performed in
parallel for enhanced performance.

You can opt into tiered compilation in either of two ways.

COMPlus_TieredCompilation="1"

To use tiered compilation in all projects that use the .NET Core 2.1 SDK, set the following environment variable:

To use tiered compilation on a per-project basis, add the <TieredCompilation> property to the <PropertyGroup> section of the MSBuild project
file, as the following example shows:

https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://docs.microsoft.com/dotnet/api/system.drawing
https://docs.microsoft.com/dotnet/api/system.diagnostics.eventlog

 API changes
Span<T> and and Memory<T>

using System;

class Program
{
 static void Main()
 {
 int[] numbers = new int[100];
 for (int i = 0; i < 100; i++)
 {
 numbers[i] = i * 2;
 }

 var part = new Span<int>(numbers, start: 10, length: 10);
 foreach (var value in part)
 Console.Write($"{value} ");
 }
}
// The example displays the following output:
// 20 22 24 26 28 30 32 34 36 38

Brotli compressionBrotli compression

public static Stream DecompressWithBrotli(Stream toDecompress)
{
 MemoryStream decompressedStream = new MemoryStream();
 using (BrotliStream decompressionStream = new BrotliStream(toDecompress, CompressionMode.Decompress))
 {
 decompressionStream.CopyTo(decompressedStream);
 }
 decompressedStream.Position = 0;
 return decompressedStream;
}

New cryptography APIs and cryptography improvementsNew cryptography APIs and cryptography improvements

<PropertyGroup>
 <!-- other property definitions -->

 <TieredCompilation>true</TieredCompilation>
</PropertyGroup>

.NET Core 2.1 includes some new types that make working with arrays and other types of memory much more efficient. The new types include:

System.Span<T> and System.ReadOnlySpan<T>.

System.Memory<T> and System.ReadOnlyMemory<T>.

Without these types, when passing such items as a portion of an array or a section of a memory buffer, you have to make a copy of some portion of the
data before passing it to a method. These types provide a virtual view of that data that eliminates the need for the additional memory allocation and
copy operations.

The following example uses a Span<T> instance to provide a virtual view of 10 elements of an array.

.NET Core 2.1 adds support for Brotli compression and decompression. Brotli is a general-purpose lossless compression algorithm that is defined in
RFC 7932 and is supported by most web browsers and major web servers. You can use the stream-based System.IO.Compression.BrotliStream class or
the high-performance span-based System.IO.Compression.BrotliEncoder and System.IO.Compression.BrotliDecoder classes. The following example
illustrates compression with the BrotliStream class:

The BrotliStream behavior is the same as DeflateStream and GZipStream, which makes it easy to convert code that calls these APIs to BrotliStream.

.NET Core 2.1 includes numerous enhancements to the cryptography APIs:

System.Security.Cryptography.Pkcs.SignedCms is available in the System.Security.Cryptography.Pkcs package. The implementation is the same
as the SignedCms class in the .NET Framework.

New overloads of the X509Certificate.GetCertHash and X509Certificate.GetCertHashString methods accept a hash algorithm identifier to
enable callers to get certificate thumbprint values using algorithms other than SHA-1.

New Span<T>-based cryptography APIs are available for hashing, HMAC, cryptographic random number generation, asymmetric signature
generation, asymmetric signature processing, and RSA encryption.

The performance of System.Security.Cryptography.Rfc2898DeriveBytes has improved by about 15% by using a Span<T>-based
implementation.

The new System.Security.Cryptography.CryptographicOperations class includes two new methods:

https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.readonlyspan-1
https://docs.microsoft.com/dotnet/api/system.memory-1
https://docs.microsoft.com/dotnet/api/system.readonlymemory-1
https://docs.microsoft.com/dotnet/api/system.span-1
https://www.ietf.org/rfc/rfc7932.txt
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotliencoder
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlidecoder
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.io.compression.deflatestream
https://docs.microsoft.com/dotnet/api/system.io.compression.gzipstream
https://docs.microsoft.com/dotnet/api/system.io.compression.brotlistream
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate.getcerthash
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate.getcerthashstring
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rfc2898derivebytes
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations

Sockets improvementsSockets improvements

AppContext.SetSwitch("System.Net.Http.UseSocketsHttpHandler", false);

AppContext.SetSwitch("System.Net.Http.UseSocketsHttpHandler", False)

See also

FixedTimeEquals takes a fixed amount of time to return for any two inputs of the same length, which makes it suitable for use in
cryptographic verification to avoid contributing to timing side-channel information.

ZeroMemory is a memory-clearing routine that cannot be optimized.

The static System.Security.Cryptography.RandomNumberGenerator.Fill method fills a Span<T> with random values.

The System.Security.Cryptography.Pkcs.EnvelopedCms is now supported on Linux and maxOS.

Elliptic-Curve Diffie-Hellman (ECDH) is now available in the System.Security.Cryptography.ECDiffieHellman class family. The surface area is the
same as in the .NET Framework.

The instance returned by RSA.Create can encrypt or decrypt with OAEP using a SHA-2 digest, as well as generate or validate signatures using
RSA-PSS.

.NET Core includes a new type, System.Net.Http.SocketsHttpHandler, and a rewritten System.Net.Http.HttpMessageHandler, that form the basis of
higher-level networking APIs. System.Net.Http.SocketsHttpHandler, for example, is the basis of the HttpClient implementation. In previous versions of
.NET Core, higher-level APIs were based on native networking implementations.

The sockets implementation introduced in .NET Core 2.1 has a number of advantages:

A significant performance improvement when compared with the previous implementation.

Elimination of platform dependencies, which simplifies deployment and servicing.

Consistent behavior across all .NET Core platforms.

SocketsHttpHandler is the default implementation in .NET Core 2.1. However, you can configure your application to use the older HttpClientHandler
class by calling the SetSwitch method:

You can also use an environment variable to opt out of using sockets implementations based on SocketsHttpHandler. To do this, set the
DOTNET_SYSTEM_NET_HTTP_USESOCKETSHTTPHANDLER to either false or 0.

On Windows, you can also choose to use System.Net.Http.WinHttpHandler, which relies on a native implementation, or the SocketsHttpHandler class
by passing an instance of the class to the HttpClient constructor.

On Linux and macOS, you can only configure HttpClient on a per-process basis. On Linux, you need to deploy libcurl if you want to use the old
HttpClient implementation. (It is installed with .NET Core 2.0.)

What's new in .NET Core
New features in EF Core 2.1
What's new in ASP.NET Core 2.1

https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations.fixedtimeequals
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptographicoperations.zeromemory
https://docs.microsoft.com/dotnet/api/system.security.cryptography.randomnumbergenerator.fill
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.envelopedcms
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa.create
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpmessagehandler
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclienthandler
https://docs.microsoft.com/dotnet/api/system.appcontext.setswitch
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.winhttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.socketshttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://curl.haxx.se/libcurl/
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/ef/core/what-is-new/ef-core-2.1
https://docs.microsoft.com/aspnet/core/aspnetcore-2.1

What's new in .NET Core 2.0
5/30/2018 • 6 minutes to read • Edit Online

Tooling
dotnet restore runs implicitlydotnet restore runs implicitly

NOTENOTE

Retargeting to .NET Core 2.0Retargeting to .NET Core 2.0

<PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

<PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>

Language support

Visual BasicVisual Basic

.NET Core 2.0 includes enhancements and new features in the following areas:

Tooling
Language support
Platform improvements
API changes
Visual Studio integration
Documentation improvements

In previous versions of .NET Core, you had to run the dotnet restore command to download dependencies immediately after you created a new project
with the dotnet new command, as well as whenever you added a new dependency to your project.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

You can also disable the automatic invocation of dotnet restore by passing the --no-restore switch to the new , run , build , publish , pack , and
test commands.

If the .NET Core 2.0 SDK is installed, projects that target .NET Core 1.x can be retargeted to .NET Core 2.0.

To retarget to .NET Core 2.0, edit your project file by changing the value of the <TargetFramework> element (or the <TargetFrameworks> element if you
have more than one target in your project file) from 1.x to 2.0:

You can also retarget .NET Standard libraries to .NET Standard 2.0 the same way:

For more information about migrating your project to .NET Core 2.0, see Migrating from ASP.NET Core 1.x to ASP.NET Core 2.0.

In addition to supporting C# and F#, .NET Core 2.0 also supports Visual Basic.

With version 2.0, .NET Core now supports Visual Basic 2017. You can use Visual Basic to create the following project types:

.NET Core console apps

.NET Core class libraries

.NET Standard class libraries

.NET Core unit test projects

.NET Core xUnit test projects

For example, to create a Visual Basic "Hello World" application, do the following steps from the command line:

1. Open a console window, create a directory for your project, and make it the current directory.

2. Enter the command dotnet new console -lang vb .

The command creates a project file with a .vbproj file extension, along with a Visual Basic source code file named Program.vb. This file contains
the source code to write the string "Hello World!" to the console window.

https://github.com/dotnet/docs/blob/master/docs/core/whats-new/dotnet-core-2-0.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/aspnet/core/migration/1x-to-2x/index

Support for C# 7.1Support for C# 7.1

Platform improvements

.NET Core for Linux is a single implementation.NET Core for Linux is a single implementation

Support for the Apple cryptographic librariesSupport for the Apple cryptographic libraries

API changes and library support
Support for .NET Standard 2.0Support for .NET Standard 2.0

Expanded surface areaExpanded surface area

Support for .NET Framework librariesSupport for .NET Framework libraries

Visual Studio integration

Retargeting .NET Core apps and .NET Standard librariesRetargeting .NET Core apps and .NET Standard libraries

Live Unit Testing support for .NET CoreLive Unit Testing support for .NET Core

Better support for multiple target frameworksBetter support for multiple target frameworks

3. Enter the command dotnet run . The .NET Core CLI automatically compiles and executes the application, which displays the message "Hello
World!" in the console window.

.NET Core 2.0 supports C# 7.1, which adds a number of new features, including:

The Main method, the application entry point, can be marked with the async keyword.
Inferred tuple names.
Default expressions.

.NET Core 2.0 includes a number of features that make it easier to install .NET Core and to use it on supported operating systems.

.NET Core 2.0 offers a single Linux implementation that works on multiple Linux distributions. .NET Core 1.x required that you download a distribution-
specific Linux implementation.

You can also develop apps that target Linux as a single operating system. .NET Core 1.x required that you target each Linux distribution separately.

.NET Core 1.x on macOS required the OpenSSL toolkit's cryptographic library. .NET Core 2.0 uses the Apple cryptographic libraries and doesn't require
OpenSSL, so you no longer need to install it.

The .NET Standard defines a versioned set of APIs that must be available on .NET implementations that comply with that version of the standard. The
.NET Standard is targeted at library developers. It aims to guarantee the functionality that is available to a library that targets a version of the .NET
Standard on each .NET implementation. .NET Core 1.x supports the .NET Standard version 1.6; .NET Core 2.0 supports the latest version, .NET
Standard 2.0. For more information, see .NET Standard.

.NET Standard 2.0 includes over 20,000 more APIs than were available in the .NET Standard 1.6. Much of this expanded surface area results from
incorporating APIs that are common to the .NET Framework and Xamarin into .NET Standard.

.NET Standard 2.0 class libraries can also reference .NET Framework class libraries, provided that they call APIs that are present in the .NET Standard
2.0. No recompilation of the .NET Framework libraries is required.

For a list of the APIs that have been added to the .NET Standard since its last version, the .NET Standard 1.6, see .NET Standard 2.0 vs. 1.6.

The total number of APIs available on .NET Core 2.0 has more than doubled in comparison with .NET Core 1.1.

And with the Windows Compatibility Pack porting from .NET Framework has also become much simpler.

.NET Core code can reference existing .NET Framework libraries, including existing NuGet packages. Note that the libraries must use APIs that are
found in .NET Standard.

Visual Studio 2017 version 15.3 and in some cases Visual Studio for Mac offer a number of significant enhancements for .NET Core developers.

If the .NET Core 2.0 SDK is installed, you can retarget .NET Core 1.x projects to .NET Core 2.0 and .NET Standard 1.x libraries to .NET Standard 2.0.

To retarget your project in Visual Studio, you open the Application tab of the project's properties dialog and change the Target framework value to
.NET Core 2.0 or .NET Standard 2.0. You can also change it by right-clicking on the project and selecting the Edit *.csproj file option. For more
information, see the Tooling section earlier in this topic.

Whenever you modify your code, Live Unit Testing automatically runs any affected unit tests in the background and displays the results and code
coverage live in the Visual Studio environment. .NET Core 2.0 now supports Live Unit Testing. Previously, Live Unit Testing was available only for .NET
Framework applications.

For more information, see Live Unit Testing with Visual Studio 2017 and the Live Unit Testing FAQ.

If you're building a project for multiple target frameworks, you can now select the target platform from the top-level menu. In the following figure, a
project named SCD1 targets 64-bit macOS X 10.11 (osx.10.11-x64) and 64-bit Windows 10/Windows Server 2016 (win10-x64). You can select the
target framework before selecting the project button, in this case to run a debug build.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://raw.githubusercontent.com/dotnet/standard/master/docs/versions/netstandard2.0_diff.md
https://docs.microsoft.com/visualstudio/test/live-unit-testing
https://docs.microsoft.com/visualstudio/test/live-unit-testing-faq

Side-by-side support for .NET Core SDKsSide-by-side support for .NET Core SDKs

Documentation improvements
.NET Application Architecture.NET Application Architecture

See also

You can now install the .NET Core SDK independently of Visual Studio. This makes it possible for a single version of Visual Studio to build projects that
target different versions of .NET Core. Previously, Visual Studio and the .NET Core SDK were tightly coupled; a particular version of the SDK
accompanied a particular version of Visual Studio.

.NET Application Architecture gives you access to a set of e-books that provide guidance, best practices, and sample applications when using .NET to
build:

Microservices and Docker containers
Web applications with ASP.NET
Mobile applications with Xamarin
Applications that are deployed to the Cloud with Azure

What's new in ASP.NET Core 2.0

https://www.microsoft.com/net/learn/architecture
https://docs.microsoft.com/xamarin/xamarin-forms/enterprise-application-patterns/index.md
https://docs.microsoft.com/azure/architecture/reference-architectures/index.md
https://docs.microsoft.com/aspnet/core/aspnetcore-2.0

.NET Core Tutorials
5/4/2018 • 2 minutes to read • Edit Online

Building applications with Visual Studio 2017

Building applications with Visual Studio Code

Building applications with Visual Studio for Mac

Building applications with the .NET Core CLI tools

Other

The following tutorials are available for learning about .NET Core.

Building a C# Hello World application
Debugging your C# Hello World application
Publishing your C# Hello World application
Building a C# class library
Building a class library with Visual Basic
Testing a class library
Consuming a class library
Building a complete C# .NET Core solution on Windows
Azure Cosmos DB: Getting started with the SQL API and .NET Core

Getting Started with C# and Visual Studio Code
Getting started with .NET Core on macOS

Getting started with .NET Core on macOS using Visual Studio for Mac
Building a complete .NET Core solution on macOS using Visual Studio for Mac

Getting started with .NET Core on Windows/Linux/macOS using the .NET Core CLI tools
Organizing and testing projects with the .NET Core CLI tools
Get started with F#

Unit Testing in .NET Core using dotnet test
Unit testing with MSTest and .NET Core
Developing Libraries with Cross Platform Tools
How to Manage Package Dependency Versions for .NET Core 1.0
Hosting .NET Core from native code
Create a custom template for dotnet new

For tutorials about developing ASP.NET Core web applications, see the ASP.NET Core documentation.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/index.md
https://docs.microsoft.com/en-us/dotnet/core/tutorials/debugging-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/publishing-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/testing-library-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/consuming-library-with-visual-studio
https://docs.microsoft.com/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/aspnet/core/

Building a complete .NET Core solution on Windows, using Visual Studio
2017
5/4/2018 • 2 minutes to read • Edit Online

Prerequisites

A solution using only .NET Core projects
Writing the libraryWriting the library

Writing the test projectWriting the test project

Writing the console appWriting the console app

Visual Studio 2017 provides a full-featured development environment for developing .NET Core applications. The procedures in this document describe
the steps necessary to build a typical .NET Core solution that includes reusable libraries, testing, and using third-party libraries.

Follow the instructions on our prerequisites page to update your environment.

1. In Visual Studio, choose File, New, Project. In the New Project dialog, expand the Visual C# node and choose the .NET Standard node, and
then choose Class Library (.NET Standard).

2. Name the project "Library" and the solution "Golden". Leave Create directory for solution checked. Click OK.

3. In Solution Explorer, open the context menu for the Dependencies node and choose Manage NuGet Packages.

4. Choose "nuget.org" as the Package source, and choose the Browse tab. Browse for Newtonsoft.Json. Click Install, and accept the license
agreement. The package should now appear under Dependencies/NuGet and be automatically restored.

5. Rename the Class1.cs file to Thing.cs . Accept the rename of the class. Add a method:
public int Get(int number) => Newtonsoft.Json.JsonConvert.DeserializeObject<int>($"{number}");

6. On the Build menu, choose Build Solution.

The solution should build without error.

[TestMethod]
public void ThingGetsObjectValFromNumber()
{
 Assert.AreEqual(42, new Thing().Get(42));
}

1. In Solution Explorer, open the context menu for the Solution node and choose Add, New Project. In the New Project dialog, under Visual C#
/ .NET Core, choose Unit Test Project (.NET Core). Name it "TestLibrary" and click OK.

2. In the TestLibrary project, open the context menu for the Dependencies node and choose Add Reference. Click Projects, then check the
Library project and click OK. This adds a reference to your library from the test project.

3. Rename the UnitTest1.cs file to LibraryTests.cs and accept the class rename. Add using Library; to the top of the file, and replace the
TestMethod1 method with the following code:

You should now be able to build the solution.

4. On the Test menu, choose Windows, Test Explorer in order to get the test explorer window into your workspace. After a few seconds, the
ThingGetsObjectValFromNumber test should appear in the test explorer. Choose Run All.

The test should pass.

1. In Solution Explorer, open the context menu for the solution, and add a new Console App (.NET Core) project. Name it "App".

2. In the App project, open the context menu for the Dependencies node and choose Add, Reference.

3. In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK

4. Open the context menu for the App node and choose Set as StartUp Project. This ensures that hitting F5 or CTRL+F5 will start the console
app.

5. Open the Program.cs file, add a using Library; directive to the top of the file, and then add
Console.WriteLine($"The answer is {new Thing().Get(42)}."); to the Main method.

6. Set a breakpoint after the line that you just added.

7. Press F5 to run the application..

The application should build without error, and should hit the breakpoint. You should also be able to check that the application output "The

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-windows-full-solution.md

answer is 42.".

Getting started with .NET Core on macOS
5/4/2018 • 6 minutes to read • Edit Online

NOTENOTE

Prerequisites

Getting started

dotnet new sln

dotnet new classlib -o library

dotnet sln add library/library.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>

</Project>

dotnet add library package Newtonsoft.Json

<ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.1" />
</ItemGroup>

This document provides the steps and workflow to create a .NET Core solution for macOS. Learn how to create projects, unit tests, use the debugging
tools, and incorporate third-party libraries via NuGet.

This article uses Visual Studio Code on macOS.

Install the .NET Core SDK. The .NET Core SDK includes the latest release of the .NET Core framework and runtime.

Install Visual Studio Code. During the course of this article, you also install Visual Studio Code extensions that improve the .NET Core development
experience.

Install the Visual Studio Code C# extension by opening Visual Studio Code and pressing F1 to open the Visual Studio Code palette. Type ext install to
see the list of extensions. Select the C# extension. Restart Visual Studio Code to activate the extension. For more information, see the Visual Studio
Code C# Extension documentation.

In this tutorial, you create three projects: a library project, tests for that library project, and a console application that makes use of the library. You can
view or download the source for this topic at the dotnet/samples repository on GitHub. For download instructions, see Samples and Tutorials.

Start Visual Studio Code. Press Ctrl+` (the backquote or backtick character) or select View > Integrated Terminal from the menu to open an
embedded terminal in Visual Studio Code. You can still open an external shell with the Explorer Open in Command Prompt command (Open in
Terminal on Mac or Linux) if you prefer to work outside of Visual Studio Code.

Begin by creating a solution file, which serves as a container for one or more .NET Core projects. In the terminal, create a golden folder and open the
folder. This folder is the root of your solution. Run the dotnet new command to create a new solution, golden.sln:

From the golden folder, execute the following command to create a library project, which produces two files,library.csproj and Class1.cs, in the library
folder :

Execute the dotnet sln command to add the newly created library.csproj project to the solution:

The library.csproj file contains the following information:

Our library methods serialize and deserialize objects in JSON format. To support JSON serialization and deserialization, add a reference to the
Newtonsoft.Json NuGet package. The dotnet add command adds new items to a project. To add a reference to a NuGet package, use the
dotnet add package command and specify the name of the package:

This adds Newtonsoft.Json and its dependencies to the library project. Alternatively, manually edit the library.csproj file and add the following node:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-macos.md
https://www.nuget.org/
http://code.visualstudio.com
https://www.microsoft.com/net/core
http://code.visualstudio.com
https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md
https://github.com/dotnet/samples/tree/master/core/getting-started/golden

dotnet restore

using static Newtonsoft.Json.JsonConvert;

namespace Library
{
 public class Thing
 {
 public int Get(int left, int right) =>
 DeserializeObject<int>($"{left + right}");
 }
}

dotnet build

Create the test project

dotnet new xunit -o test-library

dotnet sln add test-library/test-library.csproj

dotnet add test-library/test-library.csproj reference library/library.csproj

<ItemGroup>
 <ProjectReference Include="..\library\library.csproj" />
</ItemGroup>

using Library;
using Xunit;

namespace TestApp
{
 public class LibraryTests
 {
 [Fact]
 public void TestThing() {
 Assert.NotEqual(42, new Thing().Get(19, 23));
 }
 }
}

Execute dotnet restore , (see note) which restores dependencies and creates an obj folder inside library with three files in it, including a
project.assets.json file:

In the library folder, rename the file Class1.cs to Thing.cs. Replace the code with the following:

The Thing class contains one public method, Get , which returns the sum of two numbers but does so by converting the sum into a string and then
deserializing it into an integer. This makes use of a number of modern C# features, such as using static directives, expression-bodied members, and
string interpolation.

Build the library with the dotnet build command. This produces a library.dll file under golden/library/bin/Debug/netstandard1.4:

Build a test project for the library. From the golden folder, create a new test project:

Add the test project to the solution:

Add a project reference the library you created in the previous section so that the compiler can find and use the library project. Use the
dotnet add reference command:

Alternatively, manually edit the test-library.csproj file and add the following node:

Now that the dependencies have been properly configured, create the tests for your library. Open UnitTest1.cs and replace its contents with the
following code:

Note that you assert the value 42 is not equal to 19+23 (or 42) when you first create the unit test (Assert.NotEqual), which will fail. An important step
in building unit tests is to create the test to fail once first to confirm its logic.

From the golden folder, execute the following commands:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-static
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

dotnet restore
dotnet test test-library/test-library.csproj

dotnet test test-library/test-library.csproj

Create the console app

dotnet new console -o app

dotnet sln add app/app.csproj

dotnet add app/app.csproj reference library/library.csproj

WriteLine($"The answer is {new Thing().Get(19, 23)}");

using static System.Console;
using Library;

dotnet run -p app/app.csproj

Debug the application

These commands will recursively find all projects to restore dependencies, build them, and activate the xUnit test runner to run the tests. The single test
fails, as you expect.

Edit the UnitTest1.cs file and change the assertion from Assert.NotEqual to Assert.Equal . Execute the following command from the golden folder to re-
run the test, which passes this time:

The console app you create over the following steps takes a dependency on the library project you created earlier and calls its library method when it
runs. Using this pattern of development, you see how to create reusable libraries for multiple projects.

Create a new console application from the golden folder :

Add the console app project to the solution:

Create the dependency on the library by running the dotnet add reference command:

Run dotnet restore (see note) to restore the dependencies of the three projects in the solution. Open Program.cs and replace the contents of the Main

method with the following line:

Add two using directives to the top of the Program.cs file:

Execute the following dotnet run command to run the executable, where the -p option to dotnet run specifies the project for the main application.
The app produces the string "The answer is 42".

Set a breakpoint at the WriteLine statement in the Main method. Do this by either pressing the F9 key when the cursor is over the WriteLine line or
by clicking the mouse in the left margin on the line where you want to set the breakpoint. A red circle will appear in the margin next to the line of code.
When the breakpoint is reached, code execution will stop before the breakpoint line is executed.

Open the debugger tab by selecting the Debug icon in the Visual Studio Code toolbar, selecting View > Debug from the menu bar, or using the
keyboard shortcut CTRL+SHIFT+D:

Press the Play button to start the application under the debugger. The app begins execution and runs to the breakpoint, where it stops. Step into the

NOTENOTE

Get method and make sure that you have passed in the correct arguments. Confirm that the answer is 42.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Getting started with .NET Core on macOS using Visual Studio for Mac
6/22/2018 • 2 minutes to read • Edit Online

NOTENOTE

Prerequisites

Getting started

Creating a project

Visual Studio for Mac provides a full-featured Integrated Development Environment (IDE) for developing .NET Core applications. This topic walks you
through building a simple console application using Visual Studio for Mac and .NET Core.

Your feedback is highly valued. There are a two ways you can provide feedback to the development team on Visual Studio for Mac:

In Visual Studio for Mac, select Help > Report a Problem from the menu or Report a Problem from the Welcome screen, which will open a window for filing a
bug report. You can track your feedback in the Developer Community portal.
To make a suggestion, select Help > Provide a Suggestion from the menu or Provide a Suggestion from the Welcome screen, which will take you to the Visual
Studio for Mac UserVoice webpage.

See the Prerequisites for .NET Core on Mac topic.

If you've already installed the prerequisites and Visual Studio for Mac, skip this section and proceed to Creating a project. Follow these steps to install
the prerequisites and Visual Studio for Mac:

Download the Visual Studio for Mac installer. Run the installer. Read and accept the license agreement. During the install, you're provided the
opportunity to install Xamarin, a cross-platform mobile app development technology. Installing Xamarin and its related components is optional for .NET
Core development. For a walk-through of the Visual Studio for Mac install process, see Introducing Visual Studio for Mac. When the install is complete,
start the Visual Studio for Mac IDE.

1. Select New Project on the Welcome screen.

2. In the New Project dialog, select App under the .NET Core node. Select the Console Application template followed by Next.

3. Type "HelloWorld" for the Project Name. Select Create.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-mac-vs.md
https://developercommunity.visualstudio.com/spaces/8/index.html
https://visualstudio.uservoice.com/forums/563332-visual-studio-for-mac
https://visualstudio.microsoft.com/vs/visual-studio-mac/
https://developer.xamarin.com/guides/cross-platform/visual-studio-mac/

Run the application

Next step

4. Wait while the project's dependencies are restored. The project has a single C# file, Program.cs, containing a Program class with a Main method.
The Console.WriteLine statement will output "Hello World!" to the console when the app is run.

Run the app in Debug mode using F5 or in Release mode using CTRL+F5.

The Building a complete .NET Core solution on macOS using Visual Studio for Mac topic shows you how to build a complete .NET Core solution that
includes a reusable library and unit testing.

Building a complete .NET Core solution on macOS using Visual Studio
for Mac
7/17/2018 • 9 minutes to read • Edit Online

NOTENOTE

Prerequisites

Building a library

Visual Studio for Mac provides a full-featured Integrated Development Environment (IDE) for developing .NET Core applications. This topic walks you
through building a .NET Core solution that includes a reusable library and unit testing.

This tutorial shows you how to create an application that accepts a search word and a string of text from the user, counts the number of times the search
word appears in the string using a method in a class library, and returns the result to the user. The solution also includes unit testing for the class library
as an introduction to unit testing concepts. If you prefer to proceed through the tutorial with a complete sample, download the sample solution. For
download instructions, see Samples and Tutorials.

Your feedback is highly valued. There are two ways you can provide feedback to the development team on Visual Studio for Mac:

In Visual Studio for Mac, select Help > Report a Problem from the menu or Report a Problem from the Welcome screen, which opens a window for filing a bug
report. You can track your feedback in the Developer Community portal.
To make a suggestion, select Help > Provide a Suggestion from the menu or Provide a Suggestion from the Welcome screen, which takes you to the Visual
Studio for Mac UserVoice webpage.

OpenSSL (if running .NET Core 1.1): See the Prerequisites for .NET Core on Mac topic.
.NET Core SDK 1.1 or later
Visual Studio 2017 for Mac

For more information on prerequisites, see the Prerequisites for .NET Core on Mac. For the full system requirements of Visual Studio 2017 for Mac, see
Visual Studio 2017 for Mac Product Family System Requirements.

1. On the Welcome screen, select New Project. In the New Project dialog under the Multiplatform node, select the .NET Standard Library
template. Select Next.

2. Name the project "TextUtils" (a short name for "Text Utilities") and the solution "WordCounter". Leave Create a project directory within the
solution directory checked. Select Create.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-on-mac-vs-full-solution.md
https://github.com/dotnet/samples/blob/master/core/tutorials/using-on-mac-vs-full-solution/WordCounter
https://developercommunity.visualstudio.com/spaces/41/index.html
https://visualstudio.uservoice.com/forums/563332-visual-studio-for-mac
https://www.microsoft.com/net/core#macos
https://visualstudio.microsoft.com/vs/visual-studio-mac/
https://docs.microsoft.com/visualstudio/productinfo/vs2017-system-requirements-mac

using System;
using System.Linq;

namespace TextUtils
{
 public static class WordCount
 {
 public static int GetWordCount(string searchWord, string inputString)
 {
 // Null check these variables and determine if they have values.
 if (string.IsNullOrEmpty(searchWord) || string.IsNullOrEmpty(inputString))
 {
 return 0;
 }

 //Convert the string into an array of words
 var source = inputString.Split(new char[] { '.', '?', '!', ' ', ';', ':', ',' },
 StringSplitOptions.RemoveEmptyEntries);

 // Create the query. Use ToLowerInvariant to match uppercase/lowercase strings.
 var matchQuery = from word in source
 where word.ToLowerInvariant() == searchWord.ToLowerInvariant()
 select word;

 // Count the matches, which executes the query. Return the result.
 return matchQuery.Count();
 }
 }
}

3. In the Solution sidebar, expand the TextUtils node to reveal the class file provided by the template, Class1.cs. Right-click the file, select
Rename from the context menu, and rename the file to WordCount.cs. Open the file and replace the contents with the following code:

4. Save the file by using any of three different methods: use the keyboard shortcut ⌘+s, select File > Save from the menu, or right-click on the
file's tab and select Save from the contextual menu. The following image shows the IDE window:

5. Select Errors in the margin at the bottom of the IDE window to open the Errors panel. Select the Build Output button.

Creating a test project

6. Select Build > Build All from the menu.

The solution builds. The build output panel shows that the build is successful.

Unit tests provide automated software testing during your development and publishing. The testing framework that you use in this tutorial is xUnit
(version 2.2.0 or later), which is installed automatically when the xUnit test project is added to the solution in the following steps:

1. In the Solution sidebar, right-click the WordCounter solution and select Add > Add New Project.

2. In the New Project dialog, select Tests from the .NET Core node. Select the xUnit Test Project followed by Next.

3. Name the new project "TestLibrary" and select Create.

4. In order for the test library to work with the WordCount class, add a reference to the TextUtils project. In the Solution sidebar, right-click
Dependencies under TestLibrary. Select Edit References from the context menu.

5. In the Edit References dialog, select the TextUtils project on the Projects tab. Select OK.

https://xunit.github.io/

using Xunit;
using TextUtils;
using System.Diagnostics;

namespace TestLibrary
{
 public class TextUtils_GetWordCountShould
 {
 [Fact]
 public void IgnoreCasing()
 {
 var wordCount = WordCount.GetWordCount("Jack", "Jack jack");

 Assert.NotEqual(2, wordCount);
 }
 }
}

6. In the TestLibrary project, rename the UnitTest1.cs file to TextUtilsTests.cs.

7. Open the file and replace the code with the following:

The following image shows the IDE with the unit test code in place. Pay attention to the Assert.NotEqual statement.

It's important to make a new test fail once to confirm its testing logic is correct. The method passes in the name "Jack" (uppercase) and a string
with "Jack" and "jack" (uppercase and lowercase). If the GetWordCount method is working properly, it returns a count of two instances of the
search word. In order to fail this test on purpose, you first implement the test asserting that two instances of the search word "Jack" aren't
returned by the GetWordCount method. Continue to the next step to fail the test on purpose.

8. Open the Unit Tests panel on the right side of the screen.

9. Click the Dock icon to keep the panel open.

10. Click the Run All button.

The test fails, which is the correct result. The test method asserts that two instances of the inputString , "Jack," aren't returned from the string
"Jack jack" provided to the GetWordCount method. Since word casing was factored out in the GetWordCount method, two instances are returned.
The assertion that 2 is not equal to 2 fails. This is the correct outcome, and the logic of our test is good.

Adding a console app

[Theory]
[InlineData(0, "Ting", "Does not appear in the string.")]
[InlineData(1, "Ting", "Ting appears once.")]
[InlineData(2, "Ting", "Ting appears twice with Ting.")]
public void CountInstancesCorrectly(int count,
 string searchWord,
 string inputString)
{
 Assert.NotEqual(count, WordCount.GetWordCount(searchWord,
 inputString));
}

11. Modify the IgnoreCasing test method by changing Assert.NotEqual to Assert.Equal . Save the file by using the keyboard shortcut ⌘+s, File >
Save from the menu, or right-clicking on the file's tab and selecting Save from the context menu.

You expect that the searchWord "Jack" returns two instances with inputString "Jack jack" passed into GetWordCount . Run the test again by
clicking the Run Tests button in the Unit Tests panel or the Rerun Tests button in the Test Results panel at the bottom of the screen. The test
passes. There are two instances of "Jack" in the string "Jack jack" (ignoring casing), and the test assertion is true .

12. Testing individual return values with a Fact is only the beginning of what you can do with unit testing. Another powerful technique allows you
to test several values at once using a Theory . Add the following method to your TextUtils_GetWordCountShould class. You have two methods in
the class after you add this method:

The CountInstancesCorrectly checks that the GetWordCount method counts correctly. The InlineData provides a count, a search word, and an
input string to check. The test method runs once for each line of data. Note once again that you're asserting a failure first by using
Assert.NotEqual , even when you know that the counts in the data are correct and that the values match the counts returned by the GetWordCount

method. Performing the step of failing the test on purpose might seem like a waste of time at first, but checking the logic of the test by failing it
first is an important check on the logic of your tests. When you come across a test method that passes when you expect it to fail, you've found a
bug in the logic of the test. It's worth the effort to take this step every time you create a test method.

13. Save the file and run the tests again. The casing test passes but the three count tests fail. This is exactly what you expect to happen.

14. Modify the CountInstancesCorrectly test method by changing Assert.NotEqual to Assert.Equal . Save the file. Run the tests again. All tests pass.

1. In the Solution sidebar, right-click the WordCounter solution. Add a new Console Application project by selecting the template from the .NET
Core > App templates. Select Next. Name the project WordCounterApp. Select Create to create the project in the solution.

2. In the Solutions sidebar, right-click the Dependencies node of the new WordCounterApp project. In the Edit References dialog, check
TextUtils and select OK.

3. Open the Program.cs file. Replace the code with the following:

using System;
using TextUtils;

namespace WordCounterApp
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Enter a search word:");
 var searchWord = Console.ReadLine();
 Console.WriteLine("Provide a string to search:");
 var inputString = Console.ReadLine();

 var wordCount = WordCount.GetWordCount(searchWord, inputString);

 var pluralChar = "s";
 if (wordCount == 1)
 {
 pluralChar = string.Empty;
 }

 Console.WriteLine($"The search word {searchWord} appears " +
 $"{wordCount} time{pluralChar}.");
 }
 }
}

4. To run the app in a console window instead of the IDE, right-click the WordCounterApp project, select Options, and open the Default node under
Configurations. Check the box for Run on external console. Leave the Pause console output option checked. This setting causes the app to
spawn in a console window so that you can type input for the Console.ReadLine statements. If you leave the app to run in the IDE, you can only
see the output of Console.WriteLine statements. Console.ReadLine statements do not work in the IDE's Application Output panel.

5. Because the current version of Visual Studio for Mac cannot run the tests when the solution is run, you run the console app directly. Right-click
on the WordCounterApp project and select Run item from the context menu. If you attempt to run the app with the Play button, the test runner
and app fail to run. For more information on the status of the work on this issue, see xunit/xamarinstudio.xunit (#60). When you run the app,
provide values for the search word and input string at the prompts in the console window. The app indicates the number of times the search
word appears in the string.

6. The last feature to explore is debugging with Visual Studio for Mac. Set a breakpoint on the Console.WriteLine statement: Select in the left
margin of line 23, and you see a red circle appear next to the line of code. Alternatively, select anywhere on the line of code and select Run >
Toggle Breakpoint from the menu.

https://github.com/xunit/xamarinstudio.xunit/issues/60

See also

7. Right-click the WordCounterApp project. Select Start Debugging item from the context menu. When the app runs, enter the search word "cat"
and "The dog chased the cat, but the cat escaped." for the string to search. When the Console.WriteLine statement is reached, program execution
halts before the statement is executed. In the Locals tab, you can see the searchWord , inputString , wordCount , and pluralChar values.

8. In the Immediate pane, type "wordCount = 999;" and press Enter. This assigns a nonsense value of 999 to the wordCount variable showing that
you can replace variable values while debugging.

9. In the toolbar, click the continue arrow. Look at the output in the console window. It reports the incorrect value of 999 that you set when you were
debugging the app.

Visual Studio 2017 for Mac Release Notes

https://docs.microsoft.com/visualstudio/releasenotes/vs2017-mac-relnotes

Getting started with .NET Core on Windows/Linux/macOS using the
command line
5/4/2018 • 5 minutes to read • Edit Online

Prerequisites

Hello, Console App!

$ dotnet new console
$ dotnet restore
$ dotnet run

This topic will show you how to start developing cross-platforms apps in your machine using the .NET Core CLI tools.

If you're unfamiliar with the .NET Core CLI toolset, read the .NET Core SDK overview.

.NET Core SDK 1.0.
A text editor or code editor of your choice.

You can view or download the sample code from the dotnet/samples GitHub repository. For download instructions, see Samples and Tutorials.

Open a command prompt and create a folder named Hello. Navigate to the folder you created and type the following:

Let's do a quick walkthrough:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.0</TargetFramework>
 </PropertyGroup>

</Project>

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

1. $ dotnet new console

dotnet new creates an up-to-date Hello.csproj project file with the dependencies necessary to build a console app. It also creates a Program.cs ,
a basic file containing the entry point for the application.

Hello.csproj :

The project file specifies everything that's needed to restore dependencies and build the program.

The OutputType tag specifies that we're building an executable, in other words a console application.
The TargetFramework tag specifies what .NET implementation we're targeting. In an advanced scenario, you can specify multiple target
frameworks and build to all those in a single operation. In this tutorial, we'll stick to building only for .NET Core 1.0.

Program.cs :

The program starts by using System , which means "bring everything in the System namespace into scope for this file". The System namespace
includes basic constructs such as string , or numeric types.

We then define a namespace called Hello . You can change this to anything you want. A class named Program is defined within that namespace,
with a Main method that takes an array of strings as its argument. This array contains the list of arguments passed in when the compiled
program is called. As it is, this array is not used: all the program is doing is to write "Hello World!" to the console. Later, we'll make changes to the
code that will make use of this argument.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/using-with-xplat-cli.md
https://www.microsoft.com/net/download/core
https://github.com/dotnet/samples/tree/master/core/console-apps/HelloMsBuild

Augmenting the programAugmenting the program

NOTENOTE

$ dotnet run
Hello World!

$ dotnet bin\Debug\netcoreapp1.0\Hello.dll
Hello World!

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as
dotnet new , dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous

integration builds in Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

2. $ dotnet restore

dotnet restore calls into NuGet (.NET package manager) to restore the tree of dependencies. NuGet analyzes the Hello.csproj file, downloads
the dependencies stated in the file (or grabs them from a cache on your machine), and writes the obj/project.assets.json file. The project.assets.json
file is necessary to be able to compile and run.

The project.assets.json file is a persisted and complete set of the graph of NuGet dependencies and other information describing an app. This file
is read by other tools, such as dotnet build and dotnet run , enabling them to process the source code with a correct set of NuGet
dependencies and binding resolutions.

3. $ dotnet run

dotnet run calls dotnet build to ensure that the build targets have been built, and then calls dotnet <assembly.dll> to run the target
application.

Alternatively, you can also execute dotnet build to compile the code without running the build console applications. This results in a compiled
application as a DLL file that can be run with dotnet bin\Debug\netcoreapp1.0\Hello.dll on Windows (use / for non-Windows systems). You
may also specify arguments to the application as you'll see later on the topic.

As an advanced scenario, it's possible to build the application as a self-contained set of platform-specific files that can be deployed and run to a
machine that doesn't necessarily have .NET Core installed. See .NET Core Application Deployment for details.

Let's change the program a bit. Fibonacci numbers are fun, so let's add that in addition to use the argument to greet the person running the app.

1. Replace the contents of your Program.cs file with the following code:

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://www.nuget.org/

Working with multiple files

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 if (args.Length > 0)
 {
 Console.WriteLine($"Hello {args[0]}!");
 }
 else
 {
 Console.WriteLine("Hello!");
 }

 Console.WriteLine("Fibonacci Numbers 1-15:");

 for (int i = 0; i < 15; i++)
 {
 Console.WriteLine($"{i + 1}: {FibonacciNumber(i)}");
 }
 }

 static int FibonacciNumber(int n)
 {
 int a = 0;
 int b = 1;
 int tmp;

 for (int i = 0; i < n; i++)
 {
 tmp = a;
 a = b;
 b += tmp;
 }

 return a;
 }

 }
}

$ dotnet run -- John
Hello John!
Fibonacci Numbers 1-15:
1: 0
2: 1
3: 1
4: 2
5: 3
6: 5
7: 8
8: 13
9: 21
10: 34
11: 55
12: 89
13: 144
14: 233
15: 377

2. Execute dotnet build to compile the changes.

3. Run the program passing a parameter to the app:

And that's it! You can augment Program.cs any way you like.

Single files are fine for simple one-off programs, but if you're building a more complex app, you're probably going to have multiple source files on your
project Let's build off of the previous Fibonacci example by caching some Fibonacci values and add some recursive features.

1. Add a new file inside the Hello directory named FibonacciGenerator.cs with the following code:

See also

using System;
using System.Collections.Generic;

namespace Hello
{
 public class FibonacciGenerator
 {
 private Dictionary<int, int> _cache = new Dictionary<int, int>();

 private int Fib(int n) => n < 2 ? n : FibValue(n - 1) + FibValue(n - 2);

 private int FibValue(int n)
 {
 if (!_cache.ContainsKey(n))
 {
 _cache.Add(n, Fib(n));
 }

 return _cache[n];
 }

 public IEnumerable<int> Generate(int n)
 {
 for (int i = 0; i < n; i++)
 {
 yield return FibValue(i);
 }
 }
 }
}

using System;

namespace Hello
{
 class Program
 {
 static void Main(string[] args)
 {
 var generator = new FibonacciGenerator();
 foreach (var digit in generator.Generate(15))
 {
 Console.WriteLine(digit);
 }
 }
 }
}

0
1
1
2
3
5
8
13
21
34
55
89
144
233
377

2. Change the Main method in your Program.cs file to instantiate the new class and call its method as in the following example:

3. Execute dotnet build to compile the changes.

4. Run your app by executing dotnet run . The following shows the program output:

And that's it! Now, you can start using the basic concepts learned here to create your own programs.

Note that the commands and steps shown in this tutorial to run your application are used during development time only. Once you're ready to deploy
your app, you'll want to take a look at the different deployment strategies for .NET Core apps and the dotnet publish command.

Organizing and testing projects with the .NET Core CLI tools

Organizing and testing projects with the .NET Core command line
7/17/2018 • 6 minutes to read • Edit Online

Using folders to organize code

/MyProject
|__AccountInformation.cs
|__MonthlyReportRecords.cs
|__MyProject.csproj
|__Program.cs

/MyProject
|__/Models
 |__AccountInformation.cs
 |__MonthlyReportRecords.cs
|__MyProject.csproj
|__Program.cs

Organizing and testing using the NewTypes Pets Sample
Building the sampleBuilding the sample

/NewTypes
|__/src
 |__/NewTypes
 |__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
 |__Program.cs
 |__NewTypes.csproj

using System;

namespace Pets
{
 public interface IPet
 {
 string TalkToOwner();
 }
}

This tutorial follows Getting started with .NET Core on Windows/Linux/macOS using the command line, taking you beyond the creation of a simple
console app to develop advanced and well-organized applications. After showing you how to use folders to organize your code, this tutorial shows you
how to extend a console application with the xUnit testing framework.

If you want to introduce new types into a console app, you can do so by adding files containing the types to the app. For example if you add files
containing AccountInformation and MonthlyReportRecords types to your project, the project file structure is flat and easy to navigate:

However, this only works well when the size of your project is relatively small. Can you imagine what will happen if you add 20 types to the project? The
project definitely wouldn't be easy to navigate and maintain with that many files littering the project's root directory.

To organize the project, create a new folder and name it Models to hold the type files. Place the type files into the Models folder :

Projects that logically group files into folders are easy to navigate and maintain. In the next section, you create a more complex sample with folders and
unit testing.

For the following steps, you can either follow along using the NewTypes Pets Sample or create your own files and folders. The types are logically
organized into a folder structure that permits the addition of more types later, and tests are also logically placed in folders permitting the addition of
more tests later.

The sample contains two types, Dog and Cat , and has them implement a common interface, IPet . For the NewTypes project, your goal is to organize
the pet-related types into a Pets folder. If another set of types is added later, WildAnimals for example, they're placed in the NewTypes folder alongside
the Pets folder. The WildAnimals folder may contain types for animals that aren't pets, such as Squirrel and Rabbit types. In this way as types are
added, the project remains well organized.

Create the following folder structure with file content indicated:

IPet.cs:

Dog.cs:

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/testing-with-cli.md
https://xunit.github.io/
https://github.com/dotnet/samples/tree/master/core/console-apps/NewTypesMsBuild

using System;

namespace Pets
{
 public class Dog : IPet
 {
 public string TalkToOwner() => "Woof!";
 }
}

using System;

namespace Pets
{
 public class Cat : IPet
 {
 public string TalkToOwner() => "Meow!";
 }
}

using System;
using Pets;
using System.Collections.Generic;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 List<IPet> pets = new List<IPet>
 {
 new Dog(),
 new Cat()
 };

 foreach (var pet in pets)
 {
 Console.WriteLine(pet.TalkToOwner());
 }
 }
 }
}

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

</Project>

dotnet run

Woof!
Meow!

Testing the sampleTesting the sample

Cat.cs:

Program.cs:

NewTypes.csproj:

Execute the following commands:

Obtain the following output:

Optional exercise: You can add a new pet type, such as a Bird , by extending this project. Make the bird's TalkToOwner method give a Tweet! to the
owner. Run the app again. The output will include Tweet!

The NewTypes project is in place, and you've organized it by keeping the pets-related types in a folder. Next, create your test project and start writing
tests with the xUnit test framework. Unit testing allows you to automatically check the bevahior of your pet types to confirm that they're operating
properly.

Create a test folder with a NewTypesTests folder within it. At a command prompt from the NewTypesTests folder, execute dotnet new xunit . This

https://xunit.github.io/

dotnet add reference ../../src/NewTypes/NewTypes.csproj

<ItemGroup>
 <ProjectReference Include="../../src/NewTypes/NewTypes.csproj" />
</ItemGroup>

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference Include="../../src/NewTypes/NewTypes.csproj"/>
 </ItemGroup>

</Project>

using System;
using Xunit;
using Pets;

public class PetTests
{
 [Fact]
 public void DogTalkToOwnerReturnsWoof()
 {
 string expected = "Woof!";
 string actual = new Dog().TalkToOwner();

 Assert.NotEqual(expected, actual);
 }

 [Fact]
 public void CatTalkToOwnerReturnsMeow()
 {
 string expected = "Meow!";
 string actual = new Cat().TalkToOwner();

 Assert.NotEqual(expected, actual);
 }
}

NOTENOTE

produces two files: NewTypesTests.csproj and UnitTest1.cs.

The test project cannot currently test the types in NewTypes and requires a project reference to the NewTypes project. To add a project reference, use the
dotnet add reference command:

You also have the option of manually adding the project reference by adding an <ItemGroup> node to the NewTypesTests.csproj file:

NewTypesTests.csproj:

The NewTypesTests.csproj file contains the following:

Package reference to Microsoft.NET.Test.Sdk , the .NET testing infrastructure
Package reference to xunit , the xUnit testing framework
Package reference to xunit.runner.visualstudio , the test runner
Project reference to NewTypes , the code to test

Change the name of UnitTest1.cs to PetTests.cs and replace the code in the file with the following:

Optional exercise: If you added a Bird type earlier that yields a Tweet! to the owner, add a test method to the PetTests.cs file,
BirdTalkToOwnerReturnsTweet , to check that the TalkToOwner method works correctly for the Bird type.

Although you expect that the expected and actual values are equal, an initial assertion with the Assert.NotEqual check specifies that these values are not

equal. Always initially create a test to fail in order to check the logic of the test. After you confirm that the test fails, adjust the assertion to allow the test to pass.

The following shows the complete project structure:

/NewTypes
|__/src
 |__/NewTypes
 |__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
 |__Program.cs
 |__NewTypes.csproj
|__/test
 |__NewTypesTests
 |__PetTests.cs
 |__NewTypesTests.csproj

NOTENOTE

Test run for C:\NewTypesMsBuild\test\NewTypesTests\bin\Debug\netcoreapp1.1\NewTypesTests.dll(.NETCoreApp,Version=v1.1)
Microsoft (R) Test Execution Command Line Tool Version 15.0.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:00.7271827] Discovering: NewTypesTests
[xUnit.net 00:00:00.8258687] Discovered: NewTypesTests
[xUnit.net 00:00:00.8663545] Starting: NewTypesTests
[xUnit.net 00:00:01.0109236] PetTests.CatTalkToOwnerReturnsMeow [FAIL]
[xUnit.net 00:00:01.0119107] Assert.NotEqual() Failure
[xUnit.net 00:00:01.0120278] Expected: Not "Meow!"
[xUnit.net 00:00:01.0120968] Actual: "Meow!"
[xUnit.net 00:00:01.0130500] Stack Trace:
[xUnit.net 00:00:01.0141240] C:\NewTypesMsBuild\test\NewTypesTests\PetTests.cs(22,0): at PetTests.CatTalkToOwnerReturnsMeow()
[xUnit.net 00:00:01.0272364] PetTests.DogTalkToOwnerReturnsWoof [FAIL]
[xUnit.net 00:00:01.0273649] Assert.NotEqual() Failure
[xUnit.net 00:00:01.0274166] Expected: Not "Woof!"
[xUnit.net 00:00:01.0274690] Actual: "Woof!"
[xUnit.net 00:00:01.0275264] Stack Trace:
[xUnit.net 00:00:01.0275960] C:\NewTypesMsBuild\test\NewTypesTests\PetTests.cs(13,0): at PetTests.DogTalkToOwnerReturnsWoof()
[xUnit.net 00:00:01.0294509] Finished: NewTypesTests
Failed PetTests.CatTalkToOwnerReturnsMeow
Error Message:
 Assert.NotEqual() Failure
Expected: Not "Meow!"
Actual: "Meow!"
Stack Trace:
 at PetTests.CatTalkToOwnerReturnsMeow() in C:\NewTypesMsBuild\test\NewTypesTests\PetTests.cs:line 22
Failed PetTests.DogTalkToOwnerReturnsWoof
Error Message:
 Assert.NotEqual() Failure
Expected: Not "Woof!"
Actual: "Woof!"
Stack Trace:
 at PetTests.DogTalkToOwnerReturnsWoof() in C:\NewTypesMsBuild\test\NewTypesTests\PetTests.cs:line 13

Total tests: 2. Passed: 0. Failed: 2. Skipped: 0.
Test Run Failed.
Test execution time: 2.1371 Seconds

Start in the test/NewTypesTests directory. Restore the test project with the dotnet restore command. Run the tests with the dotnet test command.
This command starts the test runner specified in the project file.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

As expected, testing fails, and the console displays the following output:

Change the assertions of your tests from Assert.NotEqual to Assert.Equal :

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

using System;
using Xunit;
using Pets;

public class PetTests
{
 [Fact]
 public void DogTalkToOwnerReturnsWoof()
 {
 string expected = "Woof!";
 string actual = new Dog().TalkToOwner();

 Assert.Equal(expected, actual);
 }

 [Fact]
 public void CatTalkToOwnerReturnsMeow()
 {
 string expected = "Meow!";
 string actual = new Cat().TalkToOwner();

 Assert.Equal(expected, actual);
 }
}

Microsoft (R) Test Execution Command Line Tool Version 15.0.0.0
Copyright (c) Microsoft Corporation. All rights reserved.

Starting test execution, please wait...
[xUnit.net 00:00:01.3882374] Discovering: NewTypesTests
[xUnit.net 00:00:01.4767970] Discovered: NewTypesTests
[xUnit.net 00:00:01.5157667] Starting: NewTypesTests
[xUnit.net 00:00:01.6408870] Finished: NewTypesTests

Total tests: 2. Passed: 2. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1.6634 Seconds

Re-run the tests with the dotnet test command and obtain the following output:

Testing passes. The pet types' methods return the correct values when talking to the owner.

You've learned techniques for organizing and testing projects using xUnit. Go forward with these techniques applying them in your own projects. Happy
coding!

Developing Libraries with Cross Platform Tools
5/4/2018 • 11 minutes to read • Edit Online

Prerequisites

.NET FRAMEWORK VERSION WHAT TO DOWNLOAD

4.6.1 .NET Framework 4.6.1 Targeting Pack

4.6 .NET Framework 4.6 Targeting Pack

4.5.2 .NET Framework 4.5.2 Developer Pack

4.5.1 .NET Framework 4.5.1 Developer Pack

4.5 Windows Software Development Kit for Windows 8

4.0 Windows SDK for Windows 7 and .NET Framework 4

2.0, 3.0, and 3.5 .NET Framework 3.5 SP1 Runtime (or Windows 8+ version)

How to target the .NET Standard

.NET
STANDARD 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0

.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

.NET
Framework

4.5 4.5 4.5.1 4.6 4.6.1 4.6.1 4.6.1 4.6.1

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4

Xamarin.iOS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14

Xamarin.Mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8

Xamarin.Andro
id

7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0

Universal
Windows
Platform

10.0 10.0 10.0 10.0 10.0 10.0.16299 10.0.16299 10.0.16299

Windows 8.0 8.0 8.1

Windows
Phone

8.1 8.1 8.1

Windows
Phone
Silverlight

8.0

This article covers how to write libraries for .NET using cross-platform CLI tools. The CLI provides an efficient and low-level experience that works
across any supported OS. You can still build libraries with Visual Studio, and if that is your preferred experience refer to the Visual Studio guide.

You need the .NET Core SDK and CLI installed on your machine.

For the sections of this document dealing with .NET Framework versions, you need the .NET Framework installed on a Windows machine.

Additionally, if you wish to support older .NET Framework targets, you need to install targeting/developer packs for older framework versions from the
.NET target platforms page. Refer to this table:

If you're not quite familiar with the .NET Standard, refer to the .NET Standard to learn more.

In that article, there is a table which maps .NET Standard versions to various implementations:

1

1 The versions listed for .NET Framework apply to .NET Core SDK 2.0 and later versions of the tooling. Older versions used a different mapping for .NET Standard 1.5 and higher.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/libraries.md
https://docs.microsoft.com/en-us/dotnet/core/tutorials/libraries-with-vs
https://www.microsoft.com/net/core
http://getdotnet.azurewebsites.net/
http://getdotnet.azurewebsites.net/target-dotnet-platforms.html
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.0.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.1.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.2.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.3.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.4.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.5.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard1.6.md
https://github.com/dotnet/standard/blob/master/docs/versions/netstandard2.0.md

How to target the .NET Framework

NOTENOTE

.NET Framework 2.0 --> net20

.NET Framework 3.0 --> net30

.NET Framework 3.5 --> net35

.NET Framework 4.0 --> net40

.NET Framework 4.5 --> net45

.NET Framework 4.5.1 --> net451

.NET Framework 4.5.2 --> net452

.NET Framework 4.6 --> net46

.NET Framework 4.6.1 --> net461

.NET Framework 4.6.2 --> net462

.NET Framework 4.7 --> net47

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net40</TargetFramework>
 </PropertyGroup>
</Project>

How to Multitarget

The columns represent .NET Standard versions. Each header cell is a link to a document that shows which APIs got added in that version of .NET
Standard.
The rows represent the different .NET implementations.
The version number in each cell indicates the minimum version of the implementation you'll need in order to target that .NET Standard version.
For an interactive table, see .NET Standard versions.

Here's what this table means for the purposes of creating a library:

The version of the .NET Standard you pick will be a tradeoff between access to the newest APIs and the ability to target more .NET implementations
and .NET Standard versions. You control the range of targetable platforms and versions by picking a version of netstandardX.X (Where X.X is a
version number) and adding it to your project file (.csproj or .fsproj).

You have three primary options when targeting the .NET Standard, depending on your needs.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.4</TargetFramework>
 </PropertyGroup>
</Project>

1. You can use the default version of the .NET Standard supplied by templates - netstandard1.4 - which gives you access to most APIs on .NET
Standard while still being compatible with UWP, .NET Framework 4.6.1, and the forthcoming .NET Standard 2.0.

2. You can use a lower or higher version of the .NET Standard by modifying the value in the TargetFramework node of your project file.

.NET Standard versions are backward compatible. That means that netstandard1.0 libraries run on netstandard1.1 platforms and higher.
However, there is no forward compatibility - lower .NET Standard platforms cannot reference higher ones. This means that netstandard1.0

libraries cannot reference libraries targeting netstandard1.1 or higher. Select the Standard version that has the right mix of APIs and platform
support for your needs. We recommend netstandard1.4 for now.

3. If you want to target the .NET Framework versions 4.0 or below, or you wish to use an API available in the .NET Framework but not in the .NET
Standard (for example, System.Drawing), read the following sections and learn how to multitarget.

These instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites to get dependencies installed.

Keep in mind that some of the .NET Framework versions used here are no longer in support. Refer to the .NET Framework Support Lifecycle Policy
FAQ about unsupported versions.

If you want to reach the maximum number of developers and projects, use the .NET Framework 4.0 as your baseline target. To target the .NET
Framework, you will need to begin by using the correct Target Framework Moniker (TFM) that corresponds to the .NET Framework version you wish to
support.

You then insert this TFM into the TargetFramework section of your project file. For example, here's how you would write a library which targets the .NET
Framework 4.0:

And that's it! Although this compiled only for the .NET Framework 4, you can use the library on newer versions of the .NET Framework.

http://immo.landwerth.net/netstandard-versions/#
https://support.microsoft.com/gp/framework_faq/en-us

NOTENOTE

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFrameworks>netstandard1.4;net40;net45</TargetFrameworks>
 </PropertyGroup>

 <!-- Need to conditionally bring in references for the .NET Framework 4.0 target -->
 <ItemGroup Condition="'$(TargetFramework)' == 'net40'">
 <Reference Include="System.Net" />
 </ItemGroup>

 <!-- Need to conditionally bring in references for the .NET Framework 4.5 target -->
 <ItemGroup Condition="'$(TargetFramework)' == 'net45'">
 <Reference Include="System.Net.Http" />
 <Reference Include="System.Threading.Tasks" />
 </ItemGroup>
</Project>

TARGET FRAMEWORKS SYMBOLS

.NET Framework NET20 , NET35 , NET40 , NET45 , NET451 , NET452 , NET46 , NET461 , NET462 ,
NET47 , NET471 , NET472

.NET Standard NETSTANDARD1_0 , NETSTANDARD1_1 , NETSTANDARD1_2 , NETSTANDARD1_3 ,
NETSTANDARD1_4 , NETSTANDARD1_5 , NETSTANDARD1_6 , NETSTANDARD2_0

.NET Core NETCOREAPP1_0 , NETCOREAPP1_1 , NETCOREAPP2_0 , NETCOREAPP2_1

The following instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites section to learn which dependencies you need to
install and where to download them from.

You may need to target older versions of the .NET Framework when your project supports both the .NET Framework and .NET Core. In this scenario, if
you want to use newer APIs and language constructs for the newer targets, use #if directives in your code. You also might need to add different
packages and dependencies for each platform you're targeting to include the different APIs needed for each case.

For example, let's say you have a library that performs networking operations over HTTP. For .NET Standard and the .NET Framework versions 4.5 or
higher, you can use the HttpClient class from the System.Net.Http namespace. However, earlier versions of the .NET Framework don't have the
HttpClient class, so you could use the WebClient class from the System.Net namespace for those instead.

Your project file could look like this:

You'll notice three major changes here:

1. The TargetFramework node has been replaced by TargetFrameworks , and three TFMs are expressed inside.
2. There is an <ItemGroup> node for the net40 target pulling in one .NET Framework reference.
3. There is an <ItemGroup> node for the net45 target pulling in two .NET Framework references.

The build system is aware of the following preprocessor symbols used in #if directives:

Here is an example making use of conditional compilation per-target:

using System;
using System.Text.RegularExpressions;
#if NET40
// This only compiles for the .NET Framework 4 targets
using System.Net;
#else
 // This compiles for all other targets
using System.Net.Http;
using System.Threading.Tasks;
#endif

namespace MultitargetLib
{
 public class Library
 {
#if NET40
 private readonly WebClient _client = new WebClient();
 private readonly object _locker = new object();
#else
 private readonly HttpClient _client = new HttpClient();
#endif

#if NET40
 // .NET Framework 4.0 does not have async/await
 public string GetDotNetCount()
 {
 string url = "http://www.dotnetfoundation.org/";

 var uri = new Uri(url);

 string result = "";

 // Lock here to provide thread-safety.
 lock(_locker)
 {
 result = _client.DownloadString(uri);
 }

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"Dotnet Foundation mentions .NET {dotNetCount} times!";
 }
#else
 // .NET 4.5+ can use async/await!
 public async Task<string> GetDotNetCountAsync()
 {
 string url = "http://www.dotnetfoundation.org/";

 // HttpClient is thread-safe, so no need to explicitly lock here
 var result = await _client.GetStringAsync(url);

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"dotnetfoundation.org mentions .NET {dotNetCount} times in its HTML!";
 }
#endif
 }
}

net40/
net45/
netstandard1.4/

How to test libraries on .NET Core

NOTENOTE

If you build this project with dotnet build , you'll notice three directories under the bin/ folder :

Each of these contain the .dll files for each target.

It's important to be able to test across platforms. You can use either xUnit or MSTest out of the box. Both are perfectly suitable for unit testing your
library on .NET Core. How you set up your solution with test projects will depend on the structure of your solution. The following example assumes that
the test and source directories live in the same top-level directory.

This uses some .NET Core CLI commands. See dotnet new and dotnet sln for more information.

1. Set up your solution. You can do so with the following commands:

http://xunit.github.io/

How to use multiple projects

using AwesomeLibrary.CSharp;

public Task DoThings(Data data)
{
 var convertResult = await AwesomeLibrary.ConvertAsync(data);
 var result = AwesomeLibrary.Process(convertResult);
 // do something with result
}

open AwesomeLibrary.FSharp

let doWork data = async {
 let! result = AwesomeLibrary.AsyncConvert data // Uses an F# async function rather than C# async method
 // do something with result
}

mkdir SolutionWithSrcAndTest
cd SolutionWithSrcAndTest
dotnet new sln
dotnet new classlib -o MyProject
dotnet new xunit -o MyProject.Test
dotnet sln add MyProject/MyProject.csproj
dotnet sln add MyProject.Test/MyProject.Test.csproj

/SolutionWithSrcAndTest
|__SolutionWithSrcAndTest.sln
|__MyProject/
|__MyProject.Test/

cd MyProject.Test
dotnet add reference ../MyProject/MyProject.csproj

dotnet restore
dotnet build

NOTENOTE

This will create projects and link them together in a solution. Your directory for SolutionWithSrcAndTest should look like this:

2. Navigate to the test project's directory and add a reference to MyProject.Test from MyProject .

3. Restore packages and build projects:

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as
dotnet new , dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous

integration builds in Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

4. Verify that xUnit runs by executing the dotnet test command. If you chose to use MSTest, then the MSTest console runner should run instead.

And that's it! You can now test your library across all platforms using command line tools. To continue testing now that you have everything set up,
testing your library is very simple:

1. Make changes to your library.
2. Run tests from the command line, in your test directory, with dotnet test command.

Your code will be automatically rebuilt when you invoke dotnet test command.

A common need for larger libraries is to place functionality in different projects.

Imagine you wished to build a library which could be consumed in idiomatic C# and F#. That would mean that consumers of your library consume
them in ways which are natural to C# or F#. For example, in C# you might consume the library like this:

In F#, it might look like this:

Consumption scenarios like this mean that the APIs being accessed have to have a different structure for C# and F#. A common approach to
accomplishing this is to factor all of the logic of a library into a core project, with C# and F# projects defining the API layers that call into that core
project. The rest of the section will use the following names:

AwesomeLibrary.Core - A core project which contains all logic for the library
AwesomeLibrary.CSharp - A project with public APIs intended for consumption in C#

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

mkdir AwesomeLibrary && cd AwesomeLibrary
dotnet new sln
mkdir AwesomeLibrary.Core && cd AwesomeLibrary.Core && dotnet new classlib
cd ..
mkdir AwesomeLibrary.CSharp && cd AwesomeLibrary.CSharp && dotnet new classlib
cd ..
mkdir AwesomeLibrary.FSharp && cd AwesomeLibrary.FSharp && dotnet new classlib -lang F#
cd ..
dotnet sln add AwesomeLibrary.Core/AwesomeLibrary.Core.csproj
dotnet sln add AwesomeLibrary.CSharp/AwesomeLibrary.CSharp.csproj
dotnet sln add AwesomeLibrary.FSharp/AwesomeLibrary.FSharp.fsproj

Project-to-project referencingProject-to-project referencing

$ dotnet add reference ../AwesomeLibrary.Core/AwesomeLibrary.Core.csproj

<ItemGroup>
 <ProjectReference Include="..\AwesomeLibrary.Core\AwesomeLibrary.Core.csproj" />
</ItemGroup>

Structuring a solutionStructuring a solution

AwesomeLibrary.FSharp - A project with public APIs intended for consumption in F#

You can run the following commands in your terminal to produce the same structure as this guide:

This will add the three projects above and a solution file which links them together. Creating the solution file and linking projects will allow you to
restore and build projects from a top-level.

The best way to reference a project is to use the .NET Core CLI to add a project reference. From the AwesomeLibrary.CSharp and
AwesomeLibrary.FSharp project directories, you can run the following command:

The project files for both AwesomeLibrary.CSharp and AwesomeLibrary.FSharp will now reference AwesomeLibrary.Core as a ProjectReference

target. You can verify this by inspecting the project files and seeing the following in them:

You can add this section to each project file manually if you prefer not to use the .NET Core CLI.

Another important aspect of multi-project solutions is establishing a good overall project structure. You can organize code however you like, and as
long as you link each project to your solution file with dotnet sln add , you will be able to run dotnet restore and dotnet build at the solution level.

Getting started with ASP.NET Core
5/4/2018 • 2 minutes to read • Edit Online

For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/aspnet-core.md
https://docs.microsoft.com/aspnet/core/

How to Manage Package Dependency Versions for .NET Core 1.0
5/4/2018 • 2 minutes to read • Edit Online

Glossary

Fix your dependencies to .NET Core 1.0

Why does this matter?Why does this matter?

ScenariosScenarios

A note on using a splat string (*) when versioningA note on using a splat string (*) when versioning

Packages and Version Numbers organized by Metapackage

This article covers what you need to know about package versions for your .NET Core libraries and apps.

Fix - Fixing dependencies means you are using the same "family" of packages released on NuGet for .NET Core 1.0.

Metapackage - A NuGet package that represents a set of NuGet packages.

Trimming - The act of removing the packages you do not depend on from a metapackage. This is something relevant for NuGet package authors. See
Reducing Package Dependencies with project.json for more information.

To reliably restore packages and write reliable code, it's important that you fix your dependencies to the versions of packages shipping alongside .NET
Core 1.0. This means every package should have a single version with no additional qualifiers.

Examples of packages fixed to 1.0

"System.Collections":"4.0.11"

"NETStandard.Library":"1.6.0"

"Microsoft.NETCore.App":"1.0.0"

Examples of packages that are NOT fixed to 1.0

"Microsoft.NETCore.App":"1.0.0-rc4-00454-00"

"System.Net.Http":"4.1.0-*"

"System.Text.RegularExpressions":"4.0.10-rc3-24021-00"

We guarantee that if you fix your dependencies to what ships alongside .NET Core 1.0, those packages will all work together. There is no such guarantee
if you use packages which aren't fixed in this way.

Although there is a big list of all packages and their versions released with .NET Core 1.0, you may not have to look through it if your code falls under
certain scenarios.

Are you depending only on NETStandard.Library ?

If so, you should fix your NETStandard.Library package to version 1.6 . Because this is a curated metapackage, its package closure is also fixed to 1.0.

Are you depending only on Microsoft.NETCore.App ?

If so, you should fix your Microsoft.NETCore.App package to version 1.0.0 . Because this is a curated metapackage, its package closure is also fixed to
1.0.

Are you trimming your NETStandard.Library or Microsoft.NETCore.App metapackage dependencies?

If so, you should ensure that the metapackage you start with is fixed to 1.0. The individual packages you depend on after trimming are also fixed to 1.0.

Are you depending on packages outside the NETStandard.Library or Microsoft.NETCore.App metapackages?

If so, you need to fix your other dependencies to 1.0. See the correct package versions and build numbers at the end of this article.

You may have adopted a versioning pattern which uses a splat (*) string like this: "System.Collections":"4.0.11-*" .

You should not do this. Using the splat string could result in restoring packages from different builds, some of which may be further along than .NET
Core 1.0. This could then result in some packages being incompatible.

List of all .NET Standard packages and their versions for 1.0.

List of all runtime packages and their versions for 1.0.

List of all .NET Core application packages and their versions for 1.0.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/managing-package-dependency-versions.md
https://docs.microsoft.com/en-us/dotnet/core/deploying/reducing-dependencies
https://docs.microsoft.com/en-us/dotnet/core/deploying/reducing-dependencies
https://github.com/dotnet/versions/blob/master/build-info/dotnet/corefx/release/1.0.0/Latest_Packages.txt
https://github.com/dotnet/versions/blob/master/build-info/dotnet/coreclr/release/1.0.0/LKG_Packages.txt
https://github.com/dotnet/versions/blob/master/build-info/dotnet/core-setup/release/1.0.0/Latest_Packages.txt

Hosting .NET Core
5/4/2018 • 14 minutes to read • Edit Online

Prerequisites

Creating the host

A note about mscoree.hA note about mscoree.h

Step 1 - Identify the managed entry pointStep 1 - Identify the managed entry point

// The managed application to run should be the first command-line parameter.
// Subsequent command line parameters will be passed to the managed app later in this host.
wchar_t targetApp[MAX_PATH];
GetFullPathNameW(argv[1], MAX_PATH, targetApp, NULL);

Step 2 - Find and load CoreCLR.dllStep 2 - Find and load CoreCLR.dll

HMODULE ret = LoadLibraryExW(coreDllPath, NULL, 0);

Step 3 - Get an ICLRRuntimeHost2 InstanceStep 3 - Get an ICLRRuntimeHost2 Instance

Like all managed code, .NET Core applications are executed by a host. The host is responsible for starting the runtime (including components like the
JIT and garbage collector), creating AppDomains, and invoking managed entry points.

Hosting the .NET Core runtime is an advanced scenario and, in most cases, .NET Core developers don't need to worry about hosting because .NET Core
build processes provide a default host to run .NET Core applications. In some specialized circumstances, though, it can be useful to explicitly host the
.NET Core runtime, either as a means of invoking managed code in a native process or in order to gain more control over how the runtime works.

This article gives an overview of the steps necessary to start the .NET Core runtime from native code, create an initial application domain (AppDomain),
and execute managed code in it.

Because hosts are native applications, this tutorial will cover constructing a C++ application to host .NET Core. You will need a C++ development
environment (such as that provided by Visual Studio).

You will also want a simple .NET Core application to test the host with, so you should install the .NET Core SDK and build a small .NET Core test app
(such as a 'Hello World' app). The 'Hello World' app created by the new .NET Core console project template is sufficient.

This tutorial and its associated sample build a Windows host; see the notes at the end of this article about hosting on Unix.

A sample host demonstrating the steps outlined in this article is available in the dotnet/samples GitHub repository. Comments in the sample's host.cpp
file clearly associate the numbered steps from this tutorial with where they're performed in the sample. For download instructions, see Samples and
Tutorials.

Keep in mind that the sample host is meant to be used for learning purposes, so it is light on error checking and is designed to emphasize readability
over efficiency. More real-world host samples are available in the dotnet/coreclr repository. The CoreRun host, in particular, is a good general-purpose
host to study after reading through the simpler sample.

The primary .NET Core hosting interface (ICLRRuntimeHost2) is defined in MSCOREE.IDL. A header version of this file (mscoree.h), which your host will
need to reference, is produced via MIDL when the .NET Core runtime is built. If you do not want to build the .NET Core runtime, mscoree.h is also
available as a pre-built header in the dotnet/coreclr repository. Instructions on building the .NET Core runtime can be found in its GitHub repository.

After referencing necessary headers (mscoree.h and stdio.h, for example), one of the first things a .NET Core host must do is locate the managed entry
point it will be using. In our sample host, this is done by just taking the first command line argument to our host as the path to a managed binary whose
main method will be executed.

The .NET Core runtime APIs are in CoreCLR.dll (on Windows). To get our hosting interface (ICLRRuntimeHost2), it's necessary to find and load
CoreCLR.dll. It is up to the host to define a convention for how it will locate CoreCLR.dll. Some hosts expect the file to be present in a well-known
machine-wide location (such as %programfiles%\dotnet\shared\Microsoft.NETCore.App\1.1.0). Others expect that CoreCLR.dll will be loaded from a
location next to either the host itself or the app to be hosted. Still others might consult an environment variable to find the library.

On Linux or Mac, the core runtime library is libcoreclr.so or libcoreclr.dylib, respectively.

Our sample host probes a few common locations for CoreCLR.dll. Once found, it must be loaded via LoadLibrary (or dlopen on Linux/Mac).

The ICLRRuntimeHost2 hosting interface is retrieved by calling GetProcAddress (or dlsym on Linux/Mac) on GetCLRRuntimeHost , and then invoking that
function.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/netcore-hosting.md
https://docs.microsoft.com/dotnet/api/system.appdomain
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://www.microsoft.com/net/core
https://github.com/dotnet/samples/tree/master/core/hosting
https://github.com/dotnet/coreclr/tree/master/src/coreclr/hosts
https://github.com/dotnet/coreclr/tree/master/src/coreclr/hosts/corerun
https://github.com/dotnet/coreclr/blob/master/src/inc/MSCOREE.IDL
https://github.com/dotnet/coreclr/
https://github.com/dotnet/coreclr/tree/master/src/pal/prebuilt/inc
https://github.com/dotnet/coreclr#building-the-repository
https://github.com/dotnet/coreclr/tree/master/src/pal/prebuilt/inc/mscoree.h

ICLRRuntimeHost2* runtimeHost;

FnGetCLRRuntimeHost pfnGetCLRRuntimeHost =
 (FnGetCLRRuntimeHost)::GetProcAddress(coreCLRModule, "GetCLRRuntimeHost");

if (!pfnGetCLRRuntimeHost)
{
 printf("ERROR - GetCLRRuntimeHost not found");
 return -1;
}

// Get the hosting interface
HRESULT hr = pfnGetCLRRuntimeHost(IID_ICLRRuntimeHost2, (IUnknown**)&runtimeHost);

Step 4 - Setting startup flags and starting the runtimeStep 4 - Setting startup flags and starting the runtime

hr = runtimeHost->SetStartupFlags(
 // These startup flags control runtime-wide behaviors.
 // A complete list of STARTUP_FLAGS can be found in mscoree.h,
 // but some of the more common ones are listed below.
 static_cast<STARTUP_FLAGS>(
 // STARTUP_FLAGS::STARTUP_SERVER_GC | // Use server GC
 // STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | // Maximize domain-neutral loading
 // STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN_HOST | // Domain-neutral loading for strongly-named assemblies
 STARTUP_FLAGS::STARTUP_CONCURRENT_GC | // Use concurrent GC
 STARTUP_FLAGS::STARTUP_SINGLE_APPDOMAIN | // All code executes in the default AppDomain
 // (required to use the runtimeHost->ExecuteAssembly helper function)
 STARTUP_FLAGS::STARTUP_LOADER_OPTIMIZATION_SINGLE_DOMAIN // Prevents domain-neutral loading
)
);

hr = runtimeHost->Start();

Step 5 - Preparing AppDomain settingsStep 5 - Preparing AppDomain settings

int appDomainFlags =
 // APPDOMAIN_FORCE_TRIVIAL_WAIT_OPERATIONS | // Do not pump messages during wait
 // APPDOMAIN_SECURITY_SANDBOXED | // Causes assemblies not from the TPA list to be loaded as partially trusted
 APPDOMAIN_ENABLE_PLATFORM_SPECIFIC_APPS | // Enable platform-specific assemblies to run
 APPDOMAIN_ENABLE_PINVOKE_AND_CLASSIC_COMINTEROP | // Allow PInvoking from non-TPA assemblies
 APPDOMAIN_DISABLE_TRANSPARENCY_ENFORCEMENT; // Entirely disables transparency checks

// TRUSTED_PLATFORM_ASSEMBLIES

With an ICLRRuntimeHost2 in-hand, we can now specify runtime-wide startup flags and start the runtime. Startup flags will determine which garbage
collector (GC) to use (concurrent or server), whether we will use a single AppDomain or multiple AppDomains, and what loader optimization policy to
use (for domain-neutral loading of assemblies).

The runtime is started with a call to the Start function.

Once the runtime is started, we will want to set up an AppDomain. There are a number of options that must be specified when creating a .NET
AppDomain, however, so it's necessary to prepare those first.

AppDomain flags specify AppDomain behaviors related to security and interop. Older Silverlight hosts used these settings to sandbox user code, but
most modern .NET Core hosts run user code as full trust and enable interop.

After deciding which AppDomain flags to use, AppDomain properties must be defined. The properties are key/value pairs of strings. Many of the
properties relate to how the AppDomain will load assemblies.

Common AppDomain properties include:

TRUSTED_PLATFORM_ASSEMBLIES This is a list of assembly paths (delimited by ';' on Windows and ':' on Unix) which the AppDomain should prioritize
loading and give full trust to (even in partially-trusted domains). This list is meant to contain 'Framework' assemblies and other trusted modules,
similar to the GAC in .NET Framework scenarios. Some hosts will put any library next to coreclr.dll on this list, others have hard-coded manifests
listing trusted assemblies for their purposes.
APP_PATHS This is a list of paths to probe in for an assembly if it can't be found in the trusted platform assemblies (TPA) list. These paths are meant to

be the locations where users' assemblies can be found. In a sandboxed AppDomain, assemblies loaded from these paths will only be granted partial
trust. Common APP_PATH paths include the path the target app was loaded from or other locations where user assets are known to live.
APP_NI_PATHS This list is very similar to APP_PATHS except that it's meant to be paths that will be probed for native images.
NATIVE_DLL_SEARCH_DIRECTORIES This property is a list of paths the loader should probe when looking for native DLLs called via p/invoke.
PLATFORM_RESOURCE_ROOTS This list includes paths to probe in for resource satellite assemblies (in culture-specific sub-directories).
AppDomainCompatSwitch This string specifies which compatibility quirks should be used for assemblies without an explicit Target Framework Moniker

(an assembly-level attribute indicating which Framework an assembly is meant to run against). Typically, this should be set to
"UseLatestBehaviorWhenTFMNotSpecified" but some hosts may prefer to get older Silverlight or Windows Phone compatibility quirks, instead.

In our simple sample host, these properties are set up as follows:

https://github.com/dotnet/samples/tree/master/core/hosting

// TRUSTED_PLATFORM_ASSEMBLIES
// "Trusted Platform Assemblies" are prioritized by the loader and always loaded with full trust.
// A common pattern is to include any assemblies next to CoreCLR.dll as platform assemblies.
// More sophisticated hosts may also include their own Framework extensions (such as AppDomain managers)
// in this list.
int tpaSize = 100 * MAX_PATH; // Starting size for our TPA (Trusted Platform Assemblies) list
wchar_t* trustedPlatformAssemblies = new wchar_t[tpaSize];
trustedPlatformAssemblies[0] = L'\0';

// Extensions to probe for when finding TPA list files
wchar_t *tpaExtensions[] = {
 L"*.dll",
 L"*.exe",
 L"*.winmd"
};

// Probe next to CoreCLR.dll for any files matching the extensions from tpaExtensions and
// add them to the TPA list. In a real host, this would likely be extracted into a separate function
// and perhaps also run on other directories of interest.
for (int i = 0; i < _countof(tpaExtensions); i++)
{
 // Construct the file name search pattern
 wchar_t searchPath[MAX_PATH];
 wcscpy_s(searchPath, MAX_PATH, coreRoot);
 wcscat_s(searchPath, MAX_PATH, L"\\");
 wcscat_s(searchPath, MAX_PATH, tpaExtensions[i]);

 // Find files matching the search pattern
 WIN32_FIND_DATAW findData;
 HANDLE fileHandle = FindFirstFileW(searchPath, &findData);

 if (fileHandle != INVALID_HANDLE_VALUE)
 {
 do
 {
 // Construct the full path of the trusted assembly
 wchar_t pathToAdd[MAX_PATH];
 wcscpy_s(pathToAdd, MAX_PATH, coreRoot);
 wcscat_s(pathToAdd, MAX_PATH, L"\\");
 wcscat_s(pathToAdd, MAX_PATH, findData.cFileName);

 // Check to see if TPA list needs expanded
 if (wcslen(pathToAdd) + (3) + wcslen(trustedPlatformAssemblies) >= tpaSize)
 {
 // Expand, if needed
 tpaSize *= 2;
 wchar_t* newTPAList = new wchar_t[tpaSize];
 wcscpy_s(newTPAList, tpaSize, trustedPlatformAssemblies);
 trustedPlatformAssemblies = newTPAList;
 }

 // Add the assembly to the list and delimited with a semi-colon
 wcscat_s(trustedPlatformAssemblies, tpaSize, pathToAdd);
 wcscat_s(trustedPlatformAssemblies, tpaSize, L";");

 // Note that the CLR does not guarantee which assembly will be loaded if an assembly
 // is in the TPA list multiple times (perhaps from different paths or perhaps with different NI/NI.dll
 // extensions. Therefore, a real host should probably add items to the list in priority order and only
 // add a file if it's not already present on the list.
 //
 // For this simple sample, though, and because we're only loading TPA assemblies from a single path,
 // we can ignore that complication.
 }
 while (FindNextFileW(fileHandle, &findData));
 FindClose(fileHandle);
 }
}

// APP_PATHS
// App paths are directories to probe in for assemblies which are not one of the well-known Framework assemblies
// included in the TPA list.
//
// For this simple sample, we just include the directory the target application is in.
// More complex hosts may want to also check the current working directory or other
// locations known to contain application assets.
wchar_t appPaths[MAX_PATH * 50];

// Just use the targetApp provided by the user and remove the file name
wcscpy_s(appPaths, targetAppPath);

// APP_NI_PATHS
// App (NI) paths are the paths that will be probed for native images not found on the TPA list.
// It will typically be similar to the app paths.
// For this sample, we probe next to the app and in a hypothetical directory of the same name with 'NI' suffixed to the end.
wchar_t appNiPaths[MAX_PATH * 50];
wcscpy_s(appNiPaths, targetAppPath);
wcscat_s(appNiPaths, MAX_PATH * 50, L";");
wcscat_s(appNiPaths, MAX_PATH * 50, targetAppPath);
wcscat_s(appNiPaths, MAX_PATH * 50, L"NI");

wcscat_s(appNiPaths, MAX_PATH * 50, L"NI");

// NATIVE_DLL_SEARCH_DIRECTORIES
// Native dll search directories are paths that the runtime will probe for native DLLs called via PInvoke
wchar_t nativeDllSearchDirectories[MAX_PATH * 50];
wcscpy_s(nativeDllSearchDirectories, appPaths);
wcscat_s(nativeDllSearchDirectories, MAX_PATH * 50, L";");
wcscat_s(nativeDllSearchDirectories, MAX_PATH * 50, coreRoot);

// PLATFORM_RESOURCE_ROOTS
// Platform resource roots are paths to probe in for resource assemblies (in culture-specific sub-directories)
wchar_t platformResourceRoots[MAX_PATH * 50];
wcscpy_s(platformResourceRoots, appPaths);

// AppDomainCompatSwitch
// Specifies compatibility behavior for the app domain. This indicates which compatibility
// quirks to apply if an assembly doesn't have an explicit Target Framework Moniker. If a TFM is
// present on an assembly, the runtime will always attempt to use quirks appropriate to the version
// of the TFM.
//
// Typically the latest behavior is desired, but some hosts may want to default to older Silverlight
// or Windows Phone behaviors for compatibility reasons.
wchar_t* appDomainCompatSwitch = L"UseLatestBehaviorWhenTFMNotSpecified";

Step 6 - Create the AppDomainStep 6 - Create the AppDomain

DWORD domainId;

// Setup key/value pairs for AppDomain properties
const wchar_t* propertyKeys[] = {
 L"TRUSTED_PLATFORM_ASSEMBLIES",
 L"APP_PATHS",
 L"APP_NI_PATHS",
 L"NATIVE_DLL_SEARCH_DIRECTORIES",
 L"PLATFORM_RESOURCE_ROOTS",
 L"AppDomainCompatSwitch"
};

// Property values which were constructed in step 5
const wchar_t* propertyValues[] = {
 trustedPlatformAssemblies,
 appPaths,
 appNiPaths,
 nativeDllSearchDirectories,
 platformResourceRoots,
 appDomainCompatSwitch
};

// Create the AppDomain
hr = runtimeHost->CreateAppDomainWithManager(
 L"Sample Host AppDomain", // Friendly AD name
 appDomainFlags,
 NULL, // Optional AppDomain manager assembly name
 NULL, // Optional AppDomain manager type (including namespace)
 sizeof(propertyKeys)/sizeof(wchar_t*),
 propertyKeys,
 propertyValues,
 &domainId);

Step 7 - Run managed code!Step 7 - Run managed code!

DWORD exitCode = -1;
hr = runtimeHost->ExecuteAssembly(domainId, targetApp, argc - 1, (LPCWSTR*)(argc > 1 ? &argv[1] : NULL), &exitCode);

Once all AppDomain flags and properties are prepared, ICLRRuntimeHost2::CreateAppDomainWithManager can be used to set up the AppDomain. This
function optionally takes a fully qualified assembly name and type name to use as the domain's AppDomain manager. An AppDomain manager can
allow a host to control some aspects of AppDomain behavior and may provide entry points for launching managed code if the host doesn't intend to
invoke user code directly.

With an AppDomain up and running, the host can now start executing managed code. The easiest way to do this is to use
ICLRRuntimeHost2::ExecuteAssembly to invoke a managed assembly's entry point method. Note that this function only works in single-domain scenarios.

Another option, if ExecuteAssembly doesn't meet your host's needs, is to use CreateDelegate to create a function pointer to a static managed method.
This requires the host to know the signature of the method it is calling into (in order to create the function pointer type) but allows hosts the flexibility to
invoke code other than an assembly's entry point.

void *pfnDelegate = NULL;
hr = runtimeHost->CreateDelegate(
 domainId,
 L"HW, Version=1.0.0.0, Culture=neutral", // Target managed assembly
 L"ConsoleApplication.Program", // Target managed type
 L"Main", // Target entry point (static method)
 (INT_PTR*)&pfnDelegate);

((MainMethodFp*)pfnDelegate)(NULL);

Step 8 - Clean upStep 8 - Clean up

runtimeHost->UnloadAppDomain(domainId, true /* Wait until unload complete */);
runtimeHost->Stop();
runtimeHost->Release();

About Hosting .NET Core on Unix

Conclusion

Finally, the host should clean up after itself by unloading AppDomains, stopping the runtime, and releasing the ICLRRuntimeHost2 reference.

.NET Core is a cross-platform product, running on Windows, Linux, and Mac operating systems. As native applications, though, hosts for different
platforms will have some differences between them. The process described above of using ICLRRuntimeHost2 to start the runtime, create an
AppDomain, and execute managed code, should work on any supported operating system. However, the interfaces defined in mscoree.h can be
cumbersome to work with on Unix platforms since mscoree makes many Win32 assumptions.

To make hosting on Unix platforms easier, a set of more platform-neutral hosting API wrappers are available in coreclrhost.h.

An example of using coreclrhost.h (instead of mscoree.h directly) can be seen in the UnixCoreRun host. The steps to use the APIs from coreclrhost.h to
host the runtime are similar to the steps when using mscoree.h:

1. Identify the managed code to execute (from command line parameters, for example).
2. Load the CoreCLR library.

3. Get function pointers to CoreCLR's coreclr_initialize , coreclr_create_delegate , coreclr_execute_assembly , and coreclr_shutdown functions using
dlsym

4. Set up AppDomain properties (such as the TPA list). This is the same as step 5 from the mscoree workflow, above.
5. Use coreclr_initialize to start the runtime and create an AppDomain. This will also create a hostHandle pointer that will be used in future hosting

calls.

6. Use either coreclr_execute_assembly or coreclr_create_delegate to execute managed code. These functions are analogous to mscoree's
ExecuteAssembly and CreateDelegate functions from step 7 of the previous workflow.

7. Use coreclr_shutdown to unload the AppDomain and shut down the runtime.

a. dlopen("./libcoreclr.so", RTLD_NOW | RTLD_LOCAL);

a. coreclr_initialize_ptr coreclr_initialize = (coreclr_initialize_ptr)dlsym(coreclrLib, "coreclr_initialize");

a. Note that this function performs the roles of both steps 4 and 6 from the previous workflow.

Once your host is built, it can be tested by running it from the command line and passing any arguments (like the managed app to run) the host expects.
When specifying the .NET Core app for the host to run, be sure to use the .dll that is produced by dotnet build . Executables produced by
dotnet publish for self-contained applications are actually the default .NET Core host (so that the app can be launched directly from the command line

in mainline scenarios); user code is compiled into a dll of the same name.

If things don't work initially, double-check that coreclr.dll is available in the location expected by the host, that all necessary Framework libraries are in
the TPA list, and that CoreCLR's bitness (32- or 64-bit) matches how the host was built.

Hosting the .NET Core runtime is an advanced scenario that many developers won't require, but for those who need to launch managed code from a
native process, or who need more control over the .NET Core runtime's behavior, it can be very useful. Because .NET Core is able to run side-by-side
with itself, it's even possible to create hosts which initialize and start multiple versions of the .NET Core runtime and execute apps on all of them in the
same process.

https://github.com/dotnet/coreclr/blob/master/src/coreclr/hosts/inc/coreclrhost.h
https://github.com/dotnet/coreclr/tree/master/src/coreclr/hosts

Create a custom template for dotnet new
5/4/2018 • 7 minutes to read • Edit Online

Prerequisites

Create a template from a project

{
 "$schema": "http://json.schemastore.org/template",
 "author": "Catalina Garcia",
 "classifications": ["Common", "Console"],
 "identity": "GarciaSoftware.ConsoleTemplate.CSharp",
 "name": "Garcia Software Console Application",
 "shortName": "garciaconsole"
}

Use NuGet Distribution
Pack the template into a NuGet packagePack the template into a NuGet package

This tutorial shows you how to:

Create a basic template from an existing project or a new console app project.
Pack the template for distribution at nuget.org or from a local nupkg file.
Install the template from nuget.org, a local nupkg file, or the local file system.
Uninstall the template.

If you prefer to proceed through the tutorial with a complete sample, download the sample project template. The sample template is configured for
NuGet distribution.

If you wish to use the downloaded sample with file system distribution, do the following:

Move the contents of the content folder of the sample up one level into the GarciaSoftware.ConsoleTemplate.CSharp folder.
Delete the empty content folder.
Delete the nuspec file.

Install the .NET Core 2.0 SDK or later versions.
Read the reference topic Custom templates for dotnet new.

Use an existing project that you've confirmed compiles and runs, or create a new console app project in a folder on your hard drive. This tutorial
assumes that the name of the project folder is GarciaSoftware.ConsoleTemplate.CSharp stored at Documents\Templates in the user's profile. The
tutorial project template name is in the format <Company Name>.<Template Type>.<Programming Language>, but you're free to name your project
and template anything you wish.

1. Add a folder to the root of the project named .template.config.
2. Inside the .template.config folder, create a template.json file to configure your template. For more information and member definitions for the

template.json file, see the Custom templates for dotnet new topic and the template.json schema at the JSON Schema Store.

The template is finished. At this point, you have two options for template distribution. To continue this tutorial, choose one path or the other :

1. NuGet distribution: install the template from NuGet or from the local nupkg file, and use the installed template.
2. File system distribution.

1. Create a folder for the NuGet package. For the tutorial, the folder name GarciaSoftware.ConsoleTemplate.CSharp is used, and the folder is created
inside a Documents\NuGetTemplates folder in the user's profile. Create a folder named content inside of the new template folder to hold the project
files.

2. Copy the contents of your project folder, together with its .template.config/template.json file, into the content folder you created.
3. Next to the content folder, add a nuspec file. The nuspec file is an XML manifest file that describes a package's contents and drives the process of

creating the NuGet package.

https://github.com/dotnet/docs/blob/master/docs/core/tutorials/create-custom-template.md
https://github.com/dotnet/dotnet-template-samples/tree/master/16-nuget-package
https://www.microsoft.com/net/core
http://json.schemastore.org/template
https://docs.microsoft.com/nuget/create-packages/creating-a-package

Publishing the package to nuget.orgPublishing the package to nuget.org

Install the template from a NuGet packageInstall the template from a NuGet package

ELEMENT TYPE DESCRIPTION

<authors> string A comma-separated list of packages authors,
matching the profile names on nuget.org. Authors
are displayed in the NuGet Gallery on nuget.org
and are used to cross-reference packages by the
same authors.

<description> string A long description of the package for UI display.

<id> string The case-insensitive package identifier, which must
be unique across nuget.org or whatever gallery the
package will reside in. IDs may not contain spaces
or characters that are not valid for a URL and
generally follow .NET namespace rules. See
Choosing a unique package identifier and setting
the version number for guidance.

<packageType> string Place this element inside a <packageTypes>
element among the <metadata> elements. Set
the name attribute of the <packageType>
element to Template .

<version> string The version of the package, following the
major.minor.patch pattern. Version numbers may
include a pre-release suffix as described in Pre-
release versions.

<?xml version="1.0" encoding="utf-8"?>
<package xmlns="http://schemas.microsoft.com/packaging/2012/06/nuspec.xsd">
 <metadata>
 <id>GarciaSoftware.ConsoleTemplate.CSharp</id>
 <version>1.0.0</version>
 <description>
 Creates the Garcia Software console app.
 </description>
 <authors>Catalina Garcia</authors>
 <packageTypes>
 <packageType name="Template" />
 </packageTypes>
 </metadata>
</package>

nuget pack C:\Users\<USER>\Documents\NuGetTemplates\GarciaSoftware.ConsoleTemplate.CSharp\GarciaSoftware.ConsoleTemplate.CSharp.nuspec

4. Inside of a <packageTypes> element in the nuspec file, include a <packageType> element with a name attribute value of Template . Both the
content folder and the nuspec file should reside in the same directory. The table shows the minimum nuspec file elements required to produce a
template as a NuGet package.

See the .nuspec reference for the complete nuspec file schema.

The nuspec file for the tutorial is named GarciaSoftware.ConsoleTemplate.CSharp.nuspec and contains the following content:

5. Create the package using the nuget pack <PATH_TO_NUSPEC_FILE> command. The following command assumes that the folder that holds the
NuGet assets is at C:\Users\<USER>\Documents\Templates\GarciaSoftware.ConsoleTemplate.CSharp. But wherever you place the folder on
your system, the nuget pack command accepts the path to the nuspec file:

To publish a NuGet package, follow the instructions in the Create and publish a package topic. However, we recommend that you don't publish the
tutorial template to NuGet as it can never be deleted once published, only delisted. Now that you have the NuGet package in the form of a nupkg file,
we suggest that you follow the instructions below to install the template directly from the local nupkg file.

https://docs.microsoft.com/nuget/create-packages/creating-a-package#choosing-a-unique-package-identifier-and-setting-the-version-number
https://docs.microsoft.com/nuget/create-packages/prerelease-packages#semantic-versioning
https://docs.microsoft.com/nuget/schema/nuspec
https://docs.microsoft.com/nuget/create-packages/creating-a-package#creating-the-package
https://docs.microsoft.com/nuget/quickstart/create-and-publish-a-package#publish-the-package

 Install the template from the local Install the template from the local nupkgnupkg file file

dotnet new -i C:\Users\<USER>\GarciaSoftware.ConsoleTemplate.CSharp.1.0.0.nupkg

Install the template from a NuGet package stored at nuget.orgInstall the template from a NuGet package stored at nuget.org

dotnet new -i GarciaSoftware.ConsoleTemplate.CSharp

NOTENOTE

dotnet new -i NUnit3.DotNetNew.Template

Create a project from the templateCreate a project from the template

dotnet new nunit

To uninstall a template from a NuGet package stored at nuget.orgTo uninstall a template from a NuGet package stored at nuget.org

dotnet new -u GarciaSoftware.ConsoleTemplate.CSharp

To install the template from the nupkg file that you produced, use the dotnet new command with the -i|--install option and provide the path to the
nupkg file:

If you wish to install a template from a NuGet package stored at nuget.org, use the dotnet new command with the -i|--install option and supply the
name of the NuGet package:

The example is for demonstration purposes only. There isn't a GarciaSoftware.ConsoleTemplate.CSharp NuGet package at nuget.org, and we don't recommend that
you publish and consume test templates from NuGet. If you run the command, no template is installed. However, you can install a template that hasn't been published
to nuget.org by referencing the nupkg file directly on your local file system as shown in the previous section Install the template from the local nupkg file.

If you'd like a live example of how to install a template from a package at nuget.org, you can use the NUnit 3 template for dotnet-new. This template
sets up a project to use NUnit unit testing. Use the following command to install it:

When you list the templates with dotnet new -l , you see the NUnit 3 Test Project with a short name of nunit in the template list. You're ready to use the
template in the next section.

After the template is installed from NuGet, use the template by executing the dotnet new <TEMPLATE> command from the directory where you want to
the template engine's output placed (unless you're using the -o|--output option to specify a specific directory). For more information, see dotnet new

Options. Supply the template's short name directly to the dotnet new command. To create a project from the NUnit template, run the following
command:

The console shows that the project is created and that the project's packages are restored. After the command is run, the project is ready for use.

https://www.nuget.org/packages/NUnit3.DotNetNew.Template/

NOTENOTE

dotnet new -u NUnit3.DotNetNew.Template

Uninstall the template from a local nupkg fileUninstall the template from a local nupkg file

dotnet new -u GarciaSoftware.ConsoleTemplate.CSharp.1.0.0

Use file system distribution

dotnet new -i C:\Users\<USER>\Documents\Templates\GarciaSoftware.ConsoleTemplate.CSharp

Create a project from the templateCreate a project from the template

dotnet new garciaconsole

Uninstall the templateUninstall the template

dotnet new -u C:\Users\<USER>\Documents\Templates\GarciaSoftware.ConsoleTemplate.CSharp

NOTENOTE

See also

The example is for demonstration purposes only. There isn't a GarciaSoftware.ConsoleTemplate.CSharp NuGet package at nuget.org or installed with the .NET Core
SDK. If you run the command, no package/template is uninstalled and you receive the following exception:

Could not find something to uninstall called 'GarciaSoftware.ConsoleTemplate.CSharp'.

If you installed the NUnit 3 template for dotnet-new and wish to uninstall it, use the following command:

When you wish to uninstall the template, don't attempt to use the path to the nupkg file. Attempting to uninstall a template using
dotnet new -u <PATH_TO_NUPKG_FILE> fails. Reference the package by its id :

To distribute the template, place the project template folder in a location accessible to users on your network. Use the dotnet new command with the
-i|--install option and specify the path to the template folder (the project folder containing the project and the .template.config folder).

The tutorial assumes the project template is stored in the Documents/Templates folder of the user's profile. From that location, install the template with
the following command replacing <USER> with the user's profile name:

After the template is installed from the file system, use the template by executing the dotnet new <TEMPLATE> command from the directory where you
want to the template engine's output placed (unless you're using the -o|--output option to specify a specific directory). For more information, see
dotnet new Options. Supply the template's short name directly to the dotnet new command.

From a new project folder created at C:\Users\<USER>\Documents\Projects\MyConsoleApp, create a project from the garciaconsole template:

If you created the template on your local file system at C:\Users\<USER>\Documents\Templates\GarciaSoftware.ConsoleTemplate.CSharp, uninstall it
with the -u|--uninstall switch and the path to the template folder :

To uninstall the template from your local file system, you need to fully qualify the path. For example, C:\Users\
<USER>\Documents\Templates\GarciaSoftware.ConsoleTemplate.CSharp will work, but ./GarciaSoftware.ConsoleTemplate.CSharp from the containing folder will not.
Additionally, do not include a final terminating directory slash on your template path.

dotnet/templating GitHub repo Wiki
dotnet/dotnet-template-samples GitHub repo
How to create your own templates for dotnet new
template.json schema at the JSON Schema Store

https://www.nuget.org/packages/NUnit3.DotNetNew.Template/
https://github.com/dotnet/templating/wiki
https://github.com/dotnet/dotnet-template-samples
https://blogs.msdn.microsoft.com/dotnet/2017/04/02/how-to-create-your-own-templates-for-dotnet-new/
http://json.schemastore.org/template

Packages, metapackages and frameworks
5/24/2018 • 7 minutes to read • Edit Online

Packages

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.6</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="System.Runtime" Version="4.3.0" />
 </ItemGroup>
</Project>

Metapackages

.NET Core is a platform made of NuGet packages. Some product experiences benefit from fine-grained definition of packages while others from coarse-
grained. To accommodate this duality, the product is distributed as a fine-grained set of packages and then described in coarser chunks with a package
type informally called a "metapackage".

Each of the .NET Core packages support being run on multiple .NET implementations, represented as frameworks. Some of those frameworks are
traditional frameworks, like net46 , representing the .NET Framework. Another set is new frameworks that can be thought of as "package-based
frameworks", which establish a new model for defining frameworks. These package-based frameworks are entirely formed and defined as packages,
forming a strong relationship between packages and frameworks.

.NET Core is split into a set of packages, which provide primitives, higher-level data types, app composition types and common utilities. Each of these
packages represent a single assembly of the same name. For example, System.Runtime contains System.Runtime.dll.

There are advantages to defining packages in a fine-grained manner :

Fine-grained packages can ship on their own schedule with relatively limited testing of other packages.
Fine-grained packages can provide differing OS and CPU support.
Fine-grained packages can have dependencies specific to only one library.
Apps are smaller because unreferenced packages don't become part of the app distribution.

Some of these benefits are only used in certain circumstances. For example, NET Core packages will typically ship on the same schedule with the same
platform support. In the case of servicing, fixes can be distributed and installed as small single package updates. Due to the narrow scope of change, the
validation and time to make a fix available is limited to what is needed for a single library.

The following is a list of the key NuGet packages for .NET Core:

System.Runtime - The most fundamental .NET Core package, including Object, String, Array, Action, and IList<T>.
System.Collections - A set of (primarily) generic collections, including List<T> and Dictionary<TKey,TValue>.
System.Net.Http - A set of types for HTTP network communication, including HttpClient and HttpResponseMessage.
System.IO.FileSystem - A set of types for reading and writing to local or networked disk-based storage, including File and Directory.
System.Linq - A set of types for querying objects, including Enumerable and ILookup<TKey,TElement>.
System.Reflection - A set of types for loading, inspecting, and activating types, including Assembly, TypeInfo and MethodInfo.

Typically, rather than including packages in your projects on a package-by-package basis, it is far easier to include a metapackage, which is a set of
packages that are often used together. (For more information on metapackages, see the following section.) However, when you need a single package,
you can include it as in the example below, which references the System.Runtime package.

Metapackages are a NuGet package convention for describing a set of packages that are meaningful together. They represent this set of packages by
making them dependencies. They can optionally establish a framework for this set of packages by specifying a framework.

Previous versions of the .NET Core tools (both project.json and csproj-based tools) by default specified both a framework and a metapackage. Currently,
however, the metapackage is implicitly referenced by the target framework, so that each metapackage is tied to a target framework. For example, the
netstandard1.6 framework references the NetStandard.Library version 1.6.0 metapackage. Similarly, the netcoreapp1.1 framework references the

Microsoft.NETCore.App Version 1.1.0 metapackage. For more information, see Implicit metapackage package reference in the .NET Core SDK.

Targeting a framework and implicitly referencing a metapackage means that you in effect are adding a reference to each of its dependent packages as a
single gesture. That makes all of the libraries in those packages available for IntelliSense (or similar experience) and for publishing your app.

There are advantages to using metapackages:

Provides a convenient user experience to reference a large set of fine-grained packages.
Defines a set of packages (including specific versions) that are tested and work well together.

The .NET Standard metapackage is:

https://github.com/dotnet/docs/blob/master/docs/core/packages.md
https://www.nuget.org/packages/System.Runtime
https://www.nuget.org/packages/System.Runtime
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.action
https://docs.microsoft.com/dotnet/api/system.collections.generic.ilist-1
https://www.nuget.org/packages/System.Collections
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://www.nuget.org/packages/System.Net.Http
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpresponsemessage
https://www.nuget.org/packages/System.IO.FileSystem
https://docs.microsoft.com/dotnet/api/system.io.file
https://docs.microsoft.com/dotnet/api/system.io.directory
https://www.nuget.org/packages/System.Linq
https://docs.microsoft.com/dotnet/api/system.linq.ilookup-2
https://www.nuget.org/packages/System.Reflection
https://docs.microsoft.com/dotnet/api/system.reflection.assembly
https://docs.microsoft.com/dotnet/api/system.reflection.typeinfo
https://docs.microsoft.com/dotnet/api/system.reflection.methodinfo
https://www.nuget.org/packages/System.Runtime/
https://github.com/dotnet/core/blob/master/release-notes/1.0/sdk/1.0-rc3-implicit-package-refs.md

Frameworks

Package-based frameworks

NETStandard.Library - Describes the libraries that are part of the ".NET Standard". Applies to all .NET implementations (for example, .NET
Framework, .NET Core and Mono) that support .NET Standard. Establishes the 'netstandard' framework.

The key .NET Core metapackages are:

Microsoft.NETCore.App - Describes the libraries that are part of the .NET Core distribution. Establishes the .NETCoreApp framework. Depends on the
smaller NETStandard.Library .
Microsoft.AspNetCore.All - Includes all the supported packages from ASP.NET Core, Entity Framework Core, and internal and third-party
dependencies used by ASP.NET Core and Entity Framework Core. See Microsoft.AspNetCore.All metapackage for ASP.NET Core 2.x for more
information.
Microsoft.NETCore.Portable.Compatibility - A set of compatibility facades that enable mscorlib-based Portable Class Libraries (PCLs) to run on .NET
Core.

.NET Core packages each support a set of runtime frameworks. Frameworks describe an available API set (and potentially other characteristics) that
you can rely on when you target a given framework. They are versioned as new APIs are added.

For example, System.IO.FileSystem supports the following frameworks:

.NETFramework,Version=4.6

.NETStandard,Version=1.3
6 Xamarin platforms (for example, xamarinios10)

It is useful to contrast the first two of these frameworks, since they are examples of the two different ways that frameworks are defined.

The .NETFramework,Version=4.6 framework represents the available APIs in the .NET Framework 4.6. You can produce libraries compiled with the .NET
Framework 4.6 reference assemblies and then distribute those libraries in NuGet packages in a net46 lib folder. It will be used for apps that target the
.NET Framework 4.6 or that are compatible with it. This is how all frameworks have traditionally worked.

The .NETStandard,Version=1.3 framework is a package-based framework. It relies on packages that target the framework to define and expose APIs in
terms of the framework.

There is a two-way relationship between frameworks and packages. The first part is defining the APIs available for a given framework, for example
netstandard1.3 . Packages that target netstandard1.3 (or compatible frameworks, like netstandard1.0) define the APIs available for netstandard1.3 .

That may sound like a circular definition, but it isn't. By virtue of being "package-based", the API definition for the framework comes from packages. The
framework itself doesn't define any APIs.

The second part of the relationship is asset selection. Packages can contain assets for multiple frameworks. Given a reference to a set of packages
and/or metapackages, the framework is needed to determine which asset should be selected, for example net46 or netstandard1.3 . It is important to
select the correct asset. For example, a net46 asset is not likely to be compatible with .NET Framework 4.0 or .NET Core 1.0.

You can see this relationship in the following image. The API targets and defines the framework. The framework is used for asset selection. The asset
gives you the API.

https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/Microsoft.NETCore.App
https://github.com/dotnet/core-setup/blob/release/1.1.0/pkg/projects/Microsoft.NETCore.App/Microsoft.NETCore.App.pkgproj
https://www.nuget.org/packages/Microsoft.AspNetCore.All
https://docs.microsoft.com/aspnet/core/fundamentals/metapackage
https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility
https://www.nuget.org/packages/System.IO.FileSystem

.NET Standard.NET Standard

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.6</TargetFramework>
 </PropertyGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard1.3</TargetFramework>
 <NetStandardImplicitPackageVersion>1.6.0</NetStandardImplicitPackageVersion>
 </PropertyGroup>
</Project>

.NET Core application.NET Core application

The two primary package-based frameworks used with .NET Core are:

netstandard

netcoreapp

The .NET Standard (target framework moniker : netstandard) framework represents the APIs defined by and built on top of the .NET Standard.
Libraries that are intended to run on multiple runtimes should target this framework. They will be supported on any .NET Standard compliant runtime,
such as .NET Core, .NET Framework and Mono/Xamarin. Each of these runtimes supports a set of .NET Standard versions, depending on which APIs
they implement.

The netstandard framework implicitly references the NETStandard.Library metapackage. For example, the following MSBuild project file indicates that
the project targets netstandard1.6 , which references the NETStandard.Library version 1.6 metapackage.

However, the framework and metapackage references in the project file do not need to match, and you can use the <NetStandardImplicitPackageVersion>

element in your project file to specify a framework version that is lower than the metapackage version. For example, the following project file is valid.

It may seem strange to target netstandard1.3 but use the 1.6.0 version of NETStandard.Library . It is a valid use-case, since the metapackage maintains
support for older netstandard versions. It could be the case you've standardized on the 1.6.0 version of the metapackage and use it for all your libraries,
which target a variety of netstandard versions. With this approach, you only need to restore NETStandard.Library 1.6.0 and not earlier versions.

The reverse would not be valid: targeting netstandard1.6 with the 1.3.0 version of NETStandard.Library . You cannot target a higher framework with a
lower metapackage, since the lower version metapackage will not expose any assets for that higher framework. The versioning scheme for
metapackages asserts that metapackages match the highest version of the framework they describe. By virtue of the versioning scheme, the first
version of NETStandard.Library is v1.6.0 given that it contains netstandard1.6 assets. v1.3.0 is used in the example above, for symmetry with the
example above, but does not actually exist.

The .NET Core Application (TFM: netcoreapp) framework represents the packages and associated APIs that come with the .NET Core distribution and

https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/NETStandard.Library/1.6.0

the console application model that it provides. .NET Core apps must use this framework, due to targeting the console application model, as should
libraries that intended to run only on .NET Core. Using this framework restricts apps and libraries to running only on .NET Core.

The Microsoft.NETCore.App metapackage targets the netcoreapp framework. It provides access to ~60 libraries, ~40 provided by the
NETStandard.Library package and ~20 more in addition. You can reference additional libraries that target netcoreapp or compatible frameworks, such

as netstandard , to get access to additional APIs.

Most of the additional libraries provided by Microsoft.NETCore.App also target netstandard given that their dependencies are satisfied by other
netstandard libraries. That means that netstandard libraries can also reference those packages as dependencies.

High-level overview of changes in the .NET Core tools
6/1/2018 • 4 minutes to read • Edit Online

Moving away from project.json

NOTENOTE

The tooling layers

This document describes the changes associated with moving from project.json to MSBuild and the csproj project system with information on the
changes to the layering of the .NET Core tooling and the implementation of the CLI commands. These changes occurred with the release of .NET Core
SDK 1.0 and Visual Studio 2017 on March 7, 2017 (see the announcement) but were initially implemented with the release of the .NET Core SDK
Preview 3.

The biggest change in the tooling for .NET Core is certainly the move away from project.json to csproj as the project system. The latest versions of the
command-line tools don't support project.json files. That means that it cannot be used to build, run or publish project.json based applications and
libraries. In order to use this version of the tools, you will need to migrate your existing projects or start new ones.

As part of this move, the custom build engine that was developed to build project.json projects was replaced with a mature and fully capable build
engine called MSBuild. MSBuild is a well-known engine in the .NET community, since it has been a key technology since the platform's first release. Of
course, because it needs to build .NET Core applications, MSBuild has been ported to .NET Core and can be used on any platform that .NET Core runs
on. One of the main promises of .NET Core is that of a cross-platform development stack, and we have made sure that this move does not break that
promise.

If you are new to MSBuild and would like to learn more about it, you can start by reading the MSBuild Concepts article.

With the move away from the existing project system as well as with building engine switches, the question that naturally follows is do any of these
changes change the overall "layering" of the whole .NET Core tooling ecosystem? Are there new bits and components?

Let's start with a quick refresher on Preview 2 layering as shown in the following picture:

The layering of the tools is quite simple. At the bottom we have the .NET Core Command Line tools as a foundation. All other, higher-level tools such as
Visual Studio or Visual Studio Code, depend and rely on the CLI to build projects, restore dependencies and so on. This meant that, for example, if
Visual Studio wanted to perform a restore operation, it would call into dotnet restore (see note) command in the CLI.

With the move to the new project system, the previous diagram changes:

The main difference is that the CLI is not the foundational layer anymore; this role is now filled by the "shared SDK component". This shared SDK
component is a set of targets and associated tasks that are responsible for compiling your code, publishing it, packing NuGet packages etc. The SDK
itself is open-source and is available on GitHub on the SDK repo.

https://github.com/dotnet/docs/blob/master/docs/core/tools/cli-msbuild-architecture.md
https://blogs.msdn.microsoft.com/dotnet/2017/03/07/announcing-net-core-tools-1-0/
https://blogs.msdn.microsoft.com/dotnet/2016/05/23/changes-to-project-json/
https://github.com/Microsoft/msbuild
https://docs.microsoft.com/visualstudio/msbuild/msbuild-concepts
https://github.com/dotnet/sdk

NOTENOTE

CLI commandsCLI commands

NOTENOTE

A "target" is a MSBuild term that indicates a named operation that MSBuild can invoke. It is usually coupled with one or more tasks that execute some logic that the
target is supposed to do. MSBuild supports many ready-made targets such as Copy or Execute ; it also allows users to write their own tasks using managed code
and define targets to execute those tasks. For more information, see MSBuild tasks.

All the toolsets now consume the shared SDK component and its targets, CLI included. For example, the next version of Visual Studio will not call into
dotnet restore (see note) command to restore dependencies for .NET Core projects, it will use the "Restore" target directly. Since these are MSBuild

targets, you can also use raw MSBuild to execute them using the dotnet msbuild command.

The shared SDK component means that the majority of existing CLI commands have been re-implemented as MSBuild tasks and targets. What does
this mean for the CLI commands and your usage of the toolset?

From an usage perspective, it doesn't change the way you use the CLI. The CLI still has the core commands that exist in Preview 2 release:

new

restore

run

build

publish

test

pack

These commands still do what you expect them to do (new up a project, build it, publish it, pack it and so on). Majority of the options are not changed,
and are still there, and you can consult either the commands' help screens (using dotnet <command> --help) or documentation on this site to get familiar
with any changes.

From an execution perspective, the CLI commands will take their parameters and construct a call to "raw" MSBuild that will set the needed properties
and run the desired target. To better illustrate this, consider the following command:

dotnet publish -o pub -c Release

This command is publishing an application into a pub folder using the "Release" configuration. Internally, this command gets translated into the
following MSBuild invocation:

dotnet msbuild /t:Publish /p:OutputPath=pub /p:Configuration=Release

The notable exception to this rule are new and run commands, as they have not been implemented as MSBuild targets.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Managing dependencies with .NET Core SDK 1.0
5/4/2018 • 2 minutes to read • Edit Online

The new <PackageReference> element

<PackageReference Include="PACKAGE_ID" Version="PACKAGE_VERSION" />

NOTENOTE

<PackageReference Include="PACKAGE_ID" Version="PACKAGE_VERSION" Condition="'$(TargetFramework)' == 'netcoreapp1.0'" />

Adding a dependency to your project

<PackageReference Include="Newtonsoft.Json" Version="9.0.1" />

NOTENOTE

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
 </ItemGroup>
</Project>

With the move of .NET Core projects from project.json to csproj and MSBuild, a significant investment also happened that resulted in unification of the
project file and assets that allow tracking of dependencies. For .NET Core projects this is similar to what project.json did. There is no separate JSON or
XML file that tracks NuGet dependencies. With this change, we've also introduced another type of reference into the csproj syntax called the
<PackageReference> .

This document describes the new reference type. It also shows how to add a package dependency using this new reference type to your project.

The <PackageReference> has the following basic structure:

If you are familiar with MSBuild, it will look familiar to the other reference types that already exist. The key is the Include statement which specifies the
package id that you wish to add to the project. The <Version> child element specifies the version to get. The versions are specified as per NuGet version
rules.

If you are not familiar with the overall csproj syntax, see the MSBuild project reference documentation for more information.

Adding a dependency that is available only in a specific target is done using conditions like in the following example:

The above means that the dependency will only be valid if the build is happening for that given target. The $(TargetFramework) in the condition is a
MSBuild property that is being set in the project. For most common .NET Core applications, you will not need to do this.

Adding a dependency to your project is straightforward. Here is an example of how to add Json.NET version 9.0.1 to your project. Of course, it is
applicable to any other NuGet dependency.

When you open your project file, you will see two or more <ItemGroup> nodes. You will notice that one of the nodes already has <PackageReference>

elements in it. You can add your new dependency to this node, or create a new one; it is completely up to you as the result will be the same.

In this example we will use the default template that is dropped by dotnet new console . This is a simple console application. When we open up the
project, we first find the <ItemGroup> with already existing <PackageReference> in it. We then add the following to it:

After this, we save the project and run the dotnet restore command to install the dependency.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

The full project looks like this:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dependencies.md
https://docs.microsoft.com/nuget/create-packages/dependency-versions#version-ranges
https://docs.microsoft.com/visualstudio/msbuild/msbuild-project-file-schema-reference
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Removing a dependency from the project
Removing a dependency from the project file involves simply removing the <PackageReference> from the project file.

Additions to the csproj format for .NET Core
5/4/2018 • 10 minutes to read • Edit Online

Implicit package references

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

<PropertyGroup>
 <TargetFrameworks>netcoreapp1.1;net462</TargetFrameworks>
</PropertyGroup>

RecommendationsRecommendations

Default compilation includes in .NET Core projects

ELEMENT INCLUDE GLOB EXCLUDE GLOB REMOVE GLOB

Compile **/*.cs (or other language extensions) **/*.user; **/*.*proj; **/*.sln; **/*.vssscc N/A

EmbeddedResource **/*.resx **/*.user; **/*.*proj; **/*.sln; **/*.vssscc N/A

None **/* **/*.user; **/*.*proj; **/*.sln; **/*.vssscc - **/*.cs; **/*.resx

<PropertyGroup>
 <EnableDefaultCompileItems>false</EnableDefaultCompileItems>
</PropertyGroup>

This document outlines the changes that were added to the project files as part of the move from project.json to csproj and MSBuild. For more
information about general project file syntax and reference, see the MSBuild project file documentation.

Metapackages are implicitly referenced based on the target framework(s) specified in the <TargetFramework> or <TargetFrameworks> property of your
project file. <TargetFrameworks> is ignored if <TargetFramework> is specified, independent of order.

Since Microsoft.NETCore.App or NetStandard.Library metapackages are implicitly referenced, the following are our recommended best practices:

When targeting .NET Core or .NET Standard, never have an explicit reference to the Microsoft.NETCore.App or NetStandard.Library metapackages
via a <PackageReference> item in your project file.
If you need a specific version of the runtime when targeting .NET Core, you should use the <RuntimeFrameworkVersion> property in your project (for
example, 1.0.4) instead of referencing the metapackage.

If you need a specific version of the NetStandard.Library metapackage when targeting .NET Standard, you can use the
<NetStandardImplicitPackageVersion> property and set the version you need.

Don't explicitly add or update references to either the Microsoft.NETCore.App or NetStandard.Library metapackage in .NET Framework projects. If
any version of NetStandard.Library is needed when using a .NET Standard-based NuGet package, NuGet automatically installs that version.

This might happen if you are using self-contained deployments and you need a specific patch version of 1.0.0 LTS runtime, for example.

With the move to the csproj format in the latest SDK versions, we've moved the default includes and excludes for compile items and embedded
resources to the SDK properties files. This means that you no longer need to specify these items in your project file.

The main reason for doing this is to reduce the clutter in your project file. The defaults that are present in the SDK should cover most common use
cases, so there is no need to repeat them in every project that you create. This leads to smaller project files that are much easier to understand as well as
edit by hand, if needed.

The following table shows which element and which globs are both included and excluded in the SDK:

If you have globs in your project and you try to build it using the newest SDK, you'll get the following error :

Duplicate Compile items were included. The .NET SDK includes Compile items from your project directory by default. You can either remove these
items from your project file, or set the 'EnableDefaultCompileItems' property to 'false' if you want to explicitly include them in your project file.

In order to get around this error, you can either remove the explicit Compile items that match the ones listed on the previous table, or you can set the
<EnableDefaultCompileItems> property to false , like this:

Setting this property to false will override implicit inclusion and the behavior will revert back to the previous SDKs where you had to specify the
default globs in your project.

https://github.com/dotnet/docs/blob/master/docs/core/tools/csproj.md
https://github.com/Microsoft/MSBuild
https://docs.microsoft.com/visualstudio/msbuild/msbuild-project-file-schema-reference
https://en.wikipedia.org/wiki/Glob_(programming)

<PropertyGroup>
 <EnableDefaultItems>false</EnableDefaultItems>
</PropertyGroup>

RecommendationRecommendation

How to see the whole project as MSBuild sees it

Additions
Sdk attributeSdk attribute

PackageReferencePackageReference

<PackageReference Include="<package-id>" Version="" PrivateAssets="" IncludeAssets="" ExcludeAssets="" />

VersionVersion

IncludeAssets, ExcludeAssets and PrivateAssetsIncludeAssets, ExcludeAssets and PrivateAssets

NOTENOTE

This change does not modify the main mechanics of other includes. However, if you wish to specify, for example, some files to get published with your
app, you can still use the known mechanisms in csproj for that (for example, the <Content> element).

<EnableDefaultCompileItems> only disables Compile globs but doesn't affect other globs, like the implicit None glob, which also applies to *.cs items.
Because of that, Solution Explorer will continue show *.cs items as part of the project, included as None items. In a similar way, you can use
<EnableDefaultNoneItems> to disable the implicit None glob.

To disable all implicit globs, you can set the <EnableDefaultItems> property to false as in the following example:

With csproj, we recommend that you remove the default globs from your project and only add file paths with globs for those artifacts that your
app/library needs for various scenarios (for example, runtime and NuGet packaging).

While those csproj changes greatly simplify project files, you might want to see the fully expanded project as MSBuild sees it once the SDK and its
targets are included. Preprocess the project with the /pp switch of the dotnet msbuild command, which shows which files are imported, their sources,
and their contributions to the build without actually building the project:

dotnet msbuild /pp:fullproject.xml

If the project has multiple target frameworks, the results of the command should be focused on only one of them by specifying it as an MSBuild
property:

dotnet msbuild /p:TargetFramework=netcoreapp2.0 /pp:fullproject.xml

The <Project> element of the .csproj file has a new attribute called Sdk . Sdk specifies which SDK will be used by the project. The SDK, as the layering
document describes, is a set of MSBuild tasks and targets that can build .NET Core code. We ship two main SDKs with the .NET Core tools:

1. The .NET Core SDK with the ID of Microsoft.NET.Sdk

2. The .NET Core web SDK with the ID of Microsoft.NET.Sdk.Web

You need to have the Sdk attribute set to one of those IDs on the <Project> element in order to use the .NET Core tools and build your code.

Item that specifies a NuGet dependency in the project. The Include attribute specifies the package ID.

Version specifies the version of the package to restore. The attribute respects the rules of the NuGet versioning scheme. The default behavior is an
exact version match. For example, specifying Version="1.2.3" is equivalent to NuGet notation [1.2.3] for the exact 1.2.3 version of the package.

IncludeAssets attribute specifies what assets belonging to the package specified by <PackageReference> should be consumed.

ExcludeAssets attribute specifies what assets belonging to the package specified by <PackageReference> should not be consumed.

PrivateAssets attribute specifies what assets belonging to the package specified by <PackageReference> should be consumed but that they should not
flow to the next project.

PrivateAssets is equivalent to the project.json/xproj SuppressParent element.

These attributes can contain one or more of the following items:

Compile – the contents of the lib folder are available to compile against.
Runtime – the contents of the runtime folder are distributed.
ContentFiles – the contents of the contentfiles folder are used.
Build – the props/targets in the build folder are used.
Native – the contents from native assets are copied to the output folder for runtime.
Analyzers – the analyzers are used.

https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference#preprocess
https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets
https://docs.microsoft.com/nuget/create-packages/dependency-versions#version-ranges

DotNetCliToolReferenceDotNetCliToolReference

<DotNetCliToolReference Include="<package-id>" Version="" />

VersionVersion

RuntimeIdentifiersRuntimeIdentifiers

<RuntimeIdentifiers>win10-x64;osx.10.11-x64;ubuntu.16.04-x64</RuntimeIdentifiers>

RuntimeIdentifierRuntimeIdentifier

<RuntimeIdentifier>ubuntu.16.04-x64</RuntimeIdentifier>

PackageTargetFallbackPackageTargetFallback

<PackageTargetFallback>
 $(PackageTargetFallback);portable-net45+win8+wpa81+wp8
</PackageTargetFallback >

<PackageTargetFallback Condition="'$(TargetFramework)'=='netcoreapp1.0'">
 $(PackageTargetFallback);portable-net45+win8+wpa81+wp8
</PackageTargetFallback >

NuGet metadata properties

IsPackableIsPackable

PackageVersionPackageVersion

PackageIdPackageId

TitleTitle

AuthorsAuthors

Alternatively, the attribute can contain:

None – none of the assets are used.
All – all assets are used.

<DotNetCliToolReference> item element specifies the CLI tool that the user wants to restore in the context of the project. It's a replacement for the
tools node in project.json.

Version specifies the version of the package to restore. The attribute respects the rules of the NuGet versioning scheme. The default behavior is an
exact version match. For example, specifying Version="1.2.3" is equivalent to NuGet notation [1.2.3] for the exact 1.2.3 version of the package.

The <RuntimeIdentifiers> element lets you specify a semicolon-delimited list of Runtime Identifiers (RIDs) for the project. RIDs enable publishing a
self-contained deployments.

The <RuntimeIdentifier> element allows you to specify only one Runtime Identifier (RID) for the project. RIDs enable publishing a self-contained
deployment.

The <PackageTargetFallback> element allows you to specify a set of compatible targets to be used when restoring packages. It's designed to allow
packages that use the dotnet TxM (Target x Moniker) to operate with packages that don't declare a dotnet TxM. If your project uses the dotnet TxM, then
all the packages it depends on must also have a dotnet TxM, unless you add the <PackageTargetFallback> to your project in order to allow non-dotnet
platforms to be compatible with dotnet.

The following example provides the fallbacks for all targets in your project:

The following example specifies the fallbacks only for the netcoreapp1.0 target:

With the move to MSbuild, we have moved the input metadata that is used when packing a NuGet package from project.json to .csproj files. The inputs
are MSBuild properties so they have to go within a <PropertyGroup> group. The following is the list of properties that are used as inputs to the packing
process when using the dotnet pack command or the Pack MSBuild target that is part of the SDK.

A Boolean value that specifies whether the project can be packed. The default value is true .

Specifies the version that the resulting package will have. Accepts all forms of NuGet version string. Default is the value of $(Version) , that is, of the
property Version in the project.

Specifies the name for the resulting package. If not specified, the pack operation will default to using the AssemblyName or directory name as the name
of the package.

A human-friendly title of the package, typically used in UI displays as on nuget.org and the Package Manager in Visual Studio. If not specified, the
package ID is used instead.

A semicolon-separated list of packages authors, matching the profile names on nuget.org. These are displayed in the NuGet Gallery on nuget.org and

https://docs.microsoft.com/nuget/create-packages/dependency-versions#version-ranges
https://docs.microsoft.com/nuget/schema/target-frameworks

DescriptionDescription

CopyrightCopyright

PackageRequireLicenseAcceptancePackageRequireLicenseAcceptance

PackageLicenseUrlPackageLicenseUrl

PackageProjectUrlPackageProjectUrl

PackageIconUrlPackageIconUrl

PackageReleaseNotesPackageReleaseNotes

PackageTagsPackageTags

PackageOutputPathPackageOutputPath

IncludeSymbolsIncludeSymbols

IncludeSourceIncludeSource

IsToolIsTool

RepositoryUrlRepositoryUrl

RepositoryTypeRepositoryType

NoPackageAnalysisNoPackageAnalysis

MinClientVersionMinClientVersion

IncludeBuildOutputIncludeBuildOutput

IncludeContentInPackIncludeContentInPack

BuildOutputTargetFolderBuildOutputTargetFolder

ContentTargetFoldersContentTargetFolders

NuspecFileNuspecFile

are used to cross-reference packages by the same authors.

A long description of the package for UI display.

Copyright details for the package.

A Boolean value that specifies whether the client must prompt the consumer to accept the package license before installing the package. The default is
false .

An URL to the license that is applicable to the package.

A URL for the package's home page, often shown in UI displays as well as nuget.org.

A URL for a 64x64 image with transparent background to use as the icon for the package in UI display.

Release notes for the package.

A semicolon-delimited list of tags that designates the package.

Determines the output path in which the packed package will be dropped. Default is $(OutputPath) .

This Boolean value indicates whether the package should create an additional symbols package when the project is packed. This package will have a
.symbols.nupkg extension and will copy the PDB files along with the DLL and other output files.

This Boolean value indicates whether the pack process should create a source package. The source package contains the library's source code as well as
PDB files. Source files are put under the src/ProjectName directory in the resulting package file.

Specifies whether all output files are copied to the tools folder instead of the lib folder. Note that this is different from a DotNetCliTool which is specified
by setting the PackageType in the .csproj file.

Specifies the URL for the repository where the source code for the package resides and/or from which it's being built.

Specifies the type of the repository. Default is "git".

Specifies that pack should not run package analysis after building the package.

Specifies the minimum version of the NuGet client that can install this package, enforced by nuget.exe and the Visual Studio Package Manager.

This Boolean values specifies whether the build output assemblies should be packed into the .nupkg file or not.

This Boolean value specifies whether any items that have a type of Content will be included in the resulting package automatically. The default is true .

Specifies the folder where to place the output assemblies. The output assemblies (and other output files) are copied into their respective framework
folders.

This property specifies the default location of where all the content files should go if PackagePath is not specified for them. The default value is
"content;contentFiles".

Relative or absolute path to the .nuspec file being used for packing.

NOTENOTE

NuspecBasePathNuspecBasePath

NuspecPropertiesNuspecProperties

If the .nuspec file is specified, it's used exclusively for packaging information and any information in the projects is not used.

Base path for the .nuspec file.

Semicolon separated list of key=value pairs.

Migrate from .NET Core 2.0 to 2.1
6/22/2018 • 2 minutes to read • Edit Online

Update the project file to use 2.1 versions

See also

This article shows you the basic steps for migrating your .NET Core 2.0 app to 2.1. If you're looking to migrate your ASP.NET Core app to 2.1, see
Migrate from ASP.NET Core 2.0 to 2.1.

For an overview of the new features in .NET Core 2.1, see What's new in .NET Core 2.1.

Open the project file (the *.csproj, *.vbproj, or *.fsproj file).

Change the target framework value from netcoreapp2.0 to netcoreapp2.1 . The target framework is defined by the <TargetFramework> or
<TargetFrameworks> element.

For example, change <TargetFramework>netcoreapp2.0</TargetFramework> to <TargetFramework>netcoreapp2.1</TargetFramework> .

Remove <DotNetCliToolReference> references for tools that are bundled in the .NET Core 2.1 SDK (v 2.1.300 or later). These references include:

dotnet-watch (Microsoft.DotNet.Watcher.Tools)
dotnet-user-secrets (Microsoft.Extensions.SecretManager.Tools)
dotnet-sql-cache (Microsoft.Extensions.Caching.SqlConfig.Tools)
dotnet-ef (Microsoft.EntityFrameworkCore.Tools.DotNet)

Migrate from ASP.NET Core 2.0 to 2.1
What's new in .NET Core 2.1

https://github.com/dotnet/docs/blob/master/docs/core/migration/20-21.md
https://docs.microsoft.com/aspnet/core/migration/20_21
https://github.com/aspnet/DotNetTools/blob/dev/src/dotnet-watch/README.md
https://github.com/aspnet/DotNetTools/blob/dev/src/dotnet-user-secrets/README.md
https://github.com/aspnet/DotNetTools/blob/dev/src/dotnet-sql-cache/README.md
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/aspnet/core/migration/20_21

Migrating .NET Core projects to the .csproj format
5/4/2018 • 4 minutes to read • Edit Online

Migration from project.json to csproj

Visual Studio 2017Visual Studio 2017

IMPORTANTIMPORTANT

dotnet migratedotnet migrate

NOTENOTE

Common issuesCommon issues

This document will cover migration scenarios for .NET Core projects and will go over the following three migration scenarios:

1. Migration from a valid latest schema of project.json to csproj

2. Migration from DNX to csproj
3. Migration from RC3 and previous .NET Core csproj projects to the final format

Migration from project.json to .csproj can be done using one of the following methods:

Visual Studio 2017
dotnet migrate command-line tool

Both methods use the same underlying engine to migrate the projects, so the results will be the same for both. In most cases, using one of these two
ways to migrate the project.json to csproj is the only thing that is needed and no further manual editing of the project file is necessary. The resulting
.csproj file will be named the same as the containing directory name.

When you open a .xproj file or a solution file which references .xproj files, the One-way upgrade dialog appears. The dialog displays the projects to be
migrated. If you open a solution file, all the projects specified in the solution file will be listed. Review the list of projects to be migrated and select OK.

Visual Studio will migrate the projects chosen automatically. When migrating a solution, if you don't choose all projects, the same dialog will appear
asking you to upgrade the remaining projects from that solution. After the project is migrated, you can see and modify its contents by right-clicking the
project in the Solution Explorer window and selecting Edit <project name>.csproj.

Files that were migrated (project.json, global.json, .xproj and solution file) will be moved to a Backup folder. The solution file that is migrated will be
upgraded to Visual Studio 2017 and you won't be able to open that solution file in previous versions of Visual Studio. A file named UpgradeLog.htm is
also saved and automatically opened that contains a migration report.

The new tooling is not available in Visual Studio 2015, so you cannot migrate your projects using that version of Visual Studio.

In the command-line scenario, you can use the dotnet migrate command. It will migrate a project, a solution or a set of folders in that order, depending
on which ones were found. When you migrate a project, the project and all its dependencies are migrated.

Files that were migrated (project.json, global.json and .xproj) will be moved to a backup folder.

If you are using Visual Studio Code, the dotnet migrate command will not modify Visual Studio Code-specific files such as tasks.json . These files need to be
changed manually. This is also true if you are using Project Ryder or any editor or Integrated Development Environment (IDE) other than Visual Studio.

See A mapping between project.json and csproj properties for a comparison of project.json and csproj formats.

If you get an error : "No executable found matching command dotnet-migrate":

Run dotnet --version to see which version you are using. dotnet migrate requires .NET Core CLI RC3 or higher. You’ll get this error if you have a

https://github.com/dotnet/docs/blob/master/docs/core/migration/index.md

Migration from DNX to csproj

NOTENOTE

Migration from earlier .NET Core csproj formats to RTM csproj

See also

global.json file in the current or parent directory and the sdk version is set to an older version.

If you are still using DNX for .NET Core development, your migration process should be done in two stages:

1. Use the existing DNX migration guidance to migrate from DNX to project-json enabled CLI.
2. Follow the steps from the previous section to migrate from project.json to .csproj.

DNX has become officially deprecated during the Preview 1 release of the .NET Core CLI.

The .NET Core csproj format has been changing and evolving with each new pre-release version of the tooling. There is no tool that will migrate your
project file from earlier versions of csproj to the latest, so you need to manually edit the project file. The actual steps depend on the version of the
project file you are migrating. The following is some guidance to consider based on the changes that happened between versions:

Remove the tools version property from the <Project> element, if it exists.
Remove the XML namespace (xmlns) from the <Project> element.
If it doesn't exist, add the Sdk attribute to the <Project> element and set it to Microsoft.NET.Sdk or Microsoft.NET.Sdk.Web . This attribute specifies
that the project uses the SDK to be used. Microsoft.NET.Sdk.Web is used for web apps.
Remove the <Import Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" /> and
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> statements from the top and bottom of the project. These import statements are

implied by the SDK, so there is no need for them to be in the project.
If you have Microsoft.NETCore.App or NETStandard.Library <PackageReference> items in your project, you should remove them. These package
references are implied by the SDK.
Remove the Microsoft.NET.Sdk <PackageReference> element, if it exists. The SDK reference comes through the Sdk attribute on the <Project>

element.
Remove the globs that are implied by the SDK. Leaving these globs in your project will cause an error on build because compile items will be
duplicated.

After these steps your project should be fully compatible with the RTM .NET Core csproj format.

For examples of before and after the migration from old csproj format to the new one, see the Updating Visual Studio 2017 RC – .NET Core Tooling
improvements article on the .NET blog.

Port, Migrate, and Upgrade Visual Studio Projects

https://aka.ms/sdkimplicitrefs
https://en.wikipedia.org/wiki/Glob_(programming)
https://blogs.msdn.microsoft.com/dotnet/2016/12/12/updating-visual-studio-2017-rc-net-core-tooling-improvements/
https://docs.microsoft.com/visualstudio/porting/port-migrate-and-upgrade-visual-studio-projects

A mapping between project.json and csproj properties
5/4/2018 • 6 minutes to read • Edit Online

The csproj format

<Project Sdk="Microsoft.NET.Sdk">
...
</Project>

Common top-level properties
namename

{
 "name": "MyProjectName"
}

<PropertyGroup>
 <AssemblyName>MyProjectName</AssemblyName>
 <PackageId>MyProjectName</PackageId>
</PropertyGroup>

versionversion

{
 "version": "1.0.0-alpha-*"
}

<PropertyGroup>
 <VersionPrefix>1.0.0</VersionPrefix>
 <VersionSuffix>alpha</VersionSuffix>
</PropertyGroup>

<PropertyGroup>
 <Version>1.0.0-alpha</Version>
</PropertyGroup>

Other common root-level optionsOther common root-level options

By Nate McMaster

During the development of the .NET Core tooling, an important design change was made to no longer support project.json files and instead move the
.NET Core projects to the MSBuild/csproj format.

This article shows how the settings in project.json are represented in the MSBuild/csproj format so you can learn how to use the new format and
understand the changes made by the migration tools when you're upgrading your project to the latest version of the tooling.

The new format, *.csproj, is an XML-based format. The following example shows the root node of a .NET Core project using the Microsoft.NET.Sdk . For
web projects, the SDK used is Microsoft.NET.Sdk.Web .

No longer supported. In csproj, this is determined by the project filename, which is defined by the directory name. For example, MyProjectName.csproj .

By default, the project filename also specifies the value of the <AssemblyName> and <PackageId> properties.

The <AssemblyName> will have a different value than <PackageId> if buildOptions\outputName property was defined in project.json. For more
information, see Other common build options.

Use the VersionPrefix and VersionSuffix properties:

You can also use the Version property, but this may override version settings during packaging:

https://github.com/dotnet/docs/blob/master/docs/core/tools/project-json-to-csproj.md
https://github.com/natemcmaster

{
 "authors": ["Anne", "Bob"],
 "company": "Contoso",
 "language": "en-US",
 "title": "My library",
 "description": "This is my library.\r\nAnd it's really great!",
 "copyright": "Nugetizer 3000",
 "userSecretsId": "xyz123"
}

<PropertyGroup>
 <Authors>Anne;Bob</Authors>
 <Company>Contoso</Company>
 <NeutralLanguage>en-US</NeutralLanguage>
 <AssemblyTitle>My library</AssemblyTitle>
 <Description>This is my library.
And it's really great!</Description>
 <Copyright>Nugetizer 3000</Copyright>
 <UserSecretsId>xyz123</UserSecretsId>
</PropertyGroup>

frameworks
One target frameworkOne target framework

{
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

<PropertyGroup>
 <TargetFramework>netcoreapp1.0</TargetFramework>
</PropertyGroup>

Multiple target frameworksMultiple target frameworks

{
 "frameworks": {
 "netcoreapp1.0": {},
 "net451": {}
 }
}

<PropertyGroup>
 <TargetFrameworks>netcoreapp1.0;net451</TargetFrameworks>
</PropertyGroup>

dependencies

IMPORTANTIMPORTANT

NETStandard.Library metapackageNETStandard.Library metapackage

{
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 }
}

<PropertyGroup>
 <NetStandardImplicitPackageVersion>1.6.0</NetStandardImplicitPackageVersion>
</PropertyGroup>

Microsoft.NETCore.App metapackageMicrosoft.NETCore.App metapackage

Use the TargetFrameworks property to define your list of target frameworks. Use semi-colon to separate multiple framework values.

If the dependency is a project and not a package, the format is different. For more information, see the dependency type section.

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.0"
 }
}

<PropertyGroup>
 <RuntimeFrameworkVersion>1.0.3</RuntimeFrameworkVersion>
</PropertyGroup>

Top-level dependenciesTop-level dependencies

{
 "dependencies": {
 "Microsoft.AspNetCore": "1.1.0"
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.0" />
</ItemGroup>

Per-framework dependenciesPer-framework dependencies

{
 "framework": {
 "net451": {
 "dependencies": {
 "System.Collections.Immutable": "1.3.1"
 }
 },
 "netstandard1.5": {
 "dependencies": {
 "Newtonsoft.Json": "9.0.1"
 }
 }
 }
}

<ItemGroup Condition="'$(TargetFramework)'=='net451'">
 <PackageReference Include="System.Collections.Immutable" Version="1.3.1" />
</ItemGroup>

<ItemGroup Condition="'$(TargetFramework)'=='netstandard1.5'">
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
</ItemGroup>

importsimports

{
 "dependencies": {
 "YamlDotNet": "4.0.1-pre309"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": [
 "dnxcore50",
 "dotnet"
]
 }
 }
}

<PropertyGroup>
 <PackageTargetFallback>dnxcore50;dotnet</PackageTargetFallback>
</PropertyGroup>
<ItemGroup>
 <PackageReference Include="YamlDotNet" Version="4.0.1-pre309" />
</ItemGroup>

dependency typedependency type
type: projecttype: project

Note that the <RuntimeFrameworkVersion> value in the migrated project is determined by the version of the SDK you have installed.

{
 "dependencies": {
 "MyOtherProject": "1.0.0-*",
 "AnotherProject": {
 "type": "project"
 }
 }
}

<ItemGroup>
 <ProjectReference Include="..\MyOtherProject\MyOtherProject.csproj" />
 <ProjectReference Include="..\AnotherProject\AnotherProject.csproj" />
</ItemGroup>

NOTENOTE

type: buildtype: build

{
 "dependencies": {
 "Microsoft.EntityFrameworkCore.Design": {
 "version": "1.1.0",
 "type": "build"
 }
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design" Version="1.1.0" PrivateAssets="All" />
</ItemGroup>

type: platformtype: platform

{
 "dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.1.0",
 "type": "platform"
 }
 }
}

runtimes
{
 "runtimes": {
 "win7-x64": {},
 "osx.10.11-x64": {},
 "ubuntu.16.04-x64": {}
 }
}

<PropertyGroup>
 <RuntimeIdentifiers>win7-x64;osx.10.11-x64;ubuntu.16.04-x64</RuntimeIdentifiers>
</PropertyGroup>

Standalone apps (self-contained deployment)Standalone apps (self-contained deployment)

tools

This will break the way that dotnet pack --version-suffix $suffix determines the dependency version of a project reference.

There is no equivalent in csproj.

In project.json, defining a runtimes section means the app was standalone during build and publish. In MSBuild, all projects are portable during build,
but can be published as standalone.

dotnet publish --framework netcoreapp1.0 --runtime osx.10.11-x64

For more information, see Self-contained deployments (SCD).

{
 "tools": {
 "Microsoft.EntityFrameworkCore.Tools.DotNet": "1.0.0-*"
 }
}

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet" Version="1.0.0" />
</ItemGroup>

NOTENOTE

buildOptions

emitEntryPointemitEntryPoint

{
 "buildOptions": {
 "emitEntryPoint": true
 }
}

<PropertyGroup>
 <OutputType>Exe</OutputType>
</PropertyGroup>

{
 "buildOptions": {
 "emitEntryPoint": false
 }
}

<PropertyGroup>
 <OutputType>Library</OutputType>
 <!-- or, omit altogether. It defaults to 'Library' -->
</PropertyGroup>

keyFilekeyFile

{
 "buildOptions": {
 "keyFile": "MyKey.snk"
 }
}

<PropertyGroup>
 <AssemblyOriginatorKeyFile>MyKey.snk</AssemblyOriginatorKeyFile>
 <SignAssembly>true</SignAssembly>
 <PublicSign Condition="'$(OS)' != 'Windows_NT'">true</PublicSign>
</PropertyGroup>

Other common build optionsOther common build options

imports on tools are not supported in csproj. Tools that need imports will not work with the new Microsoft.NET.Sdk .

See also Files.

If emitEntryPoint was false , the value of OutputType is converted to Library , which is the default value:

The keyFile element expands to three properties in MSBuild:

{
 "buildOptions": {
 "warningsAsErrors": true,
 "nowarn": ["CS0168", "CS0219"],
 "xmlDoc": true,
 "preserveCompilationContext": true,
 "outputName": "Different.AssemblyName",
 "debugType": "portable",
 "allowUnsafe": true,
 "define": ["TEST", "OTHERCONDITION"]
 }
}

<PropertyGroup>
 <TreatWarningsAsErrors>true</TreatWarningsAsErrors>
 <NoWarn>$(NoWarn);CS0168;CS0219</NoWarn>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 <PreserveCompilationContext>true</PreserveCompilationContext>
 <AssemblyName>Different.AssemblyName</AssemblyName>
 <DebugType>portable</DebugType>
 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>
 <DefineConstants>$(DefineConstants);TEST;OTHERCONDITION</DefineConstants>
</PropertyGroup>

packOptions

Common pack optionsCommon pack options

{
 "packOptions": {
 "summary": "numl is a machine learning library intended to ease the use of using standard modeling techniques for both prediction and
clustering.",
 "tags": ["machine learning", "framework"],
 "releaseNotes": "Version 0.9.12-beta",
 "iconUrl": "http://numl.net/images/ico.png",
 "projectUrl": "http://numl.net",
 "licenseUrl": "https://raw.githubusercontent.com/sethjuarez/numl/master/LICENSE.md",
 "requireLicenseAcceptance": false,
 "repository": {
 "type": "git",
 "url": "https://raw.githubusercontent.com/sethjuarez/numl"
 },
 "owners": ["Seth Juarez"]
 }
}

<PropertyGroup>
 <!-- summary is not migrated from project.json, but you can use the <Description> property for that if needed. -->
 <PackageTags>machine learning;framework</PackageTags>
 <PackageReleaseNotes>Version 0.9.12-beta</PackageReleaseNotes>
 <PackageIconUrl>http://numl.net/images/ico.png</PackageIconUrl>
 <PackageProjectUrl>http://numl.net</PackageProjectUrl>
 <PackageLicenseUrl>https://raw.githubusercontent.com/sethjuarez/numl/master/LICENSE.md</PackageLicenseUrl>
 <PackageRequireLicenseAcceptance>false</PackageRequireLicenseAcceptance>
 <RepositoryType>git</RepositoryType>
 <RepositoryUrl>https://raw.githubusercontent.com/sethjuarez/numl</RepositoryUrl>
 <!-- owners is not supported in MSBuild -->
</PropertyGroup>

scripts
{
 "scripts": {
 "precompile": "generateCode.cmd",
 "postpublish": ["obfuscate.cmd", "removeTempFiles.cmd"]
 }
}

See also Files.

There is no equivalent for the owners element in MSBuild. For summary , you can use the MSBuild <Description> property, even though the value of
summary is not migrated automatically to that property, since that property is mapped to the description element.

Their equivalent in MSBuild are targets:

https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets

<Target Name="MyPreCompileTarget" BeforeTargets="Build">
 <Exec Command="generateCode.cmd" />
</Target>

<Target Name="MyPostCompileTarget" AfterTargets="Publish">
 <Exec Command="obfuscate.cmd" />
 <Exec Command="removeTempFiles.cmd" />
</Target>

runtimeOptions
{
 "runtimeOptions": {
 "configProperties": {
 "System.GC.Server": true,
 "System.GC.Concurrent": true,
 "System.GC.RetainVM": true,
 "System.Threading.ThreadPool.MinThreads": 4,
 "System.Threading.ThreadPool.MaxThreads": 25
 }
 }
}

{
 "configProperties": {
 "System.GC.Concurrent": true,
 "System.GC.RetainVM": true,
 "System.Threading.ThreadPool.MinThreads": 4,
 "System.Threading.ThreadPool.MaxThreads": 25
 }
}

<PropertyGroup>
 <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

<PropertyGroup>
 <ServerGarbageCollection>true</ServerGarbageCollection>
 <ConcurrentGarbageCollection>true</ConcurrentGarbageCollection>
 <RetainVMGarbageCollection>true</RetainVMGarbageCollection>
 <ThreadPoolMinThreads>4</ThreadPoolMinThreads>
 <ThreadPoolMaxThreads>25</ThreadPoolMaxThreads>
</PropertyGroup>

shared
{
 "shared": "shared/**/*.cs"
}

files

All settings in this group, except for the "System.GC.Server" property, are placed into a file called runtimeconfig.template.json in the project folder, with
options lifted to the root object during the migration process:

The "System.GC.Server" property is migrated into the csproj file:

However, you can set all those values in the csproj as well as MSBuild properties:

Not supported in csproj. You must instead create include content files in your .nuspec file. For more information, see Including content files.

In project.json, build and pack could be extended to compile and embed from different folders. In MSBuild, this is done using items. The following
example is a common conversion:

https://docs.microsoft.com/nuget/schema/nuspec#including-content-files
https://docs.microsoft.com/visualstudio/msbuild/common-msbuild-project-items

{
 "buildOptions": {
 "compile": {
 "copyToOutput": "notes.txt",
 "include": "../Shared/*.cs",
 "exclude": "../Shared/Not/*.cs"
 },
 "embed": {
 "include": "../Shared/*.resx"
 }
 },
 "packOptions": {
 "include": "Views/",
 "mappings": {
 "some/path/in/project.txt": "in/package.txt"
 }
 },
 "publishOptions": {
 "include": [
 "files/",
 "publishnotes.txt"
]
 }
}

<ItemGroup>
 <Compile Include="..\Shared*.cs" Exclude="..\Shared\Not*.cs" />
 <EmbeddedResource Include="..\Shared*.resx" />
 <Content Include="Views***" PackagePath="%(Identity)" />
 <None Include="some/path/in/project.txt" Pack="true" PackagePath="in/package.txt" />

 <None Include="notes.txt" CopyToOutputDirectory="Always" />
 <!-- CopyToOutputDirectory = { Always, PreserveNewest, Never } -->

 <Content Include="files***" CopyToPublishDirectory="PreserveNewest" />
 <None Include="publishnotes.txt" CopyToPublishDirectory="Always" />
 <!-- CopyToPublishDirectory = { Always, PreserveNewest, Never } -->
</ItemGroup>

NOTENOTE

testRunner
xUnitxUnit

{
 "testRunner": "xunit",
 "dependencies": {
 "dotnet-test-xunit": "<any>"
 }
}

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0-*" />
 <PackageReference Include="xunit" Version="2.2.0-*" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0-*" />
</ItemGroup>

MSTestMSTest

{
 "testRunner": "mstest",
 "dependencies": {
 "dotnet-test-mstest": "<any>"
 }
}

Many of the default globbing patterns are added automatically by the .NET Core SDK. For more information, see Default Compile Item Values.

All MSBuild ItemGroup elements support Include , Exclude , and Remove .

Package layout inside the .nupkg can be modified with PackagePath="path" .

Except for Content , most item groups require explicitly adding Pack="true" to be included in the package. Content will be put in the content folder in a
package since the MSBuild <IncludeContentInPack> property is set to true by default. For more information, see Including content in a package.

PackagePath="%(Identity)" is a short way of setting package path to the project-relative file path.

https://en.wikipedia.org/wiki/Glob_(programming)
https://aka.ms/sdkimplicititems
https://docs.microsoft.com/nuget/schema/msbuild-targets#including-content-in-a-package

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0-*" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.12-*" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.11-*" />
</ItemGroup>

See Also
High-level overview of changes in CLI

Migrating from DNX to .NET Core CLI (project.json)
5/4/2018 • 8 minutes to read • Edit Online

Overview

Main changes in the tooling

No more DNVMNo more DNVM

Different commandsDifferent commands

DNX COMMAND CLI COMMAND DESCRIPTION

dnx run dotnet run Run code from source.

dnu build dotnet build Build an IL binary of your code.

dnu pack dotnet pack Package up a NuGet package of your code.

dnx [command] (for example, "dnx web") N/A* In DNX world, run a command as defined in the
project.json.

dnu install N/A* In the DNX world, install a package as a dependency.

dnu restore dotnet restore Restore dependencies specified in your project.json.
(see note)

dnu publish dotnet publish Publish your application for deployment in one of the
three forms (portable, portable with native and
standalone).

dnu wrap N/A* In DNX world, wrap a project.json in csproj.

The RC1 release of .NET Core and ASP.NET Core 1.0 introduced DNX tooling. The RC2 release of .NET Core and ASP.NET Core 1.0 moved from DNX
to the .NET Core CLI.

As a slight refresher, let's recap what DNX was about. DNX was a runtime and a toolset used to build .NET Core and, more specifically, ASP.NET Core
1.0 applications. It consisted of 3 main pieces:

1. DNVM - an install script for obtaining DNX
2. DNX (Dotnet Execution Runtime) - the runtime that executes your code
3. DNU (Dotnet Developer Utility) - tooling for managing dependencies, building and publishing your applications

With the introduction of the CLI, all of the above are now part of a single toolset. However, since DNX was available in RC1 timeframe, you might have
projects that were built using it that you would want to move off to the new CLI tooling.

This migration guide will cover the essentials on how to migrate projects off of DNX and onto .NET Core CLI. If you are just starting a project on .NET
Core from scratch, you can freely skip this document.

There are some general changes in the tooling that should be outlined first.

DNVM, short for DotNet Version Manager was a bash/PowerShell script used to install a DNX on your machine. It helped users get the DNX they need
from the feed they specified (or default ones) as well as mark a certain DNX "active", which would put it on the $PATH for the given session. This would
allow you to use the various tools.

DNVM was discontinued because its feature set was made redundant by changes coming in the .NET Core CLI tools.

The CLI tools come packaged in two main ways:

1. Native installers for a given platform
2. Install script for other situations (like CI servers)

Given this, the DNVM install features are not needed. But what about the runtime selection features?

You reference a runtime in your project.json by adding a package of a certain version to your dependencies. With this change, your application will be
able to use the new runtime bits. Getting these bits to your machine is the same as with the CLI: you install the runtime via one of the native installers it
supports or via its install script.

If you were using DNX, you used some commands from one of its three parts (DNX, DNU or DNVM). With the CLI, some of these commands change,
some are not available and some are the same but have slightly different semantics.

The table below shows the mapping between the DNX/DNU commands and their CLI counterparts.

https://github.com/dotnet/docs/blob/master/docs/core/migration/from-dnx.md

dnu commands N/A* In DNX world, manage the globally installed
commands.

DNX COMMAND CLI COMMAND DESCRIPTION

DNX features that are not supported

Global commandsGlobal commands

Installing dependenciesInstalling dependencies

Running your codeRunning your code

Migrating your DNX project to .NET Core CLI

Changing the global.json fileChanging the global.json file

{
 "sdk": {
 "version": "1.0.0-preview2-003121"
 }
}

Migrating the project fileMigrating the project file

"buildOptions": {
 "emitEntryPoint": true
}

(*) - these features are not supported in the CLI by design.

As the table above shows, there are features from the DNX world that we decided not to support in the CLI, at least for the time being. This section will
go through the most important ones and outline the rationale behind not supporting them as well as workarounds if you do need them.

DNU came with a concept called "global commands". These were, essentially, console applications packaged up as NuGet packages with a shell script
that would invoke the DNX you specified to run the application.

The CLI does not support this concept. It does, however, support the concept of adding per-project commands that can be invoked using the familiar
dotnet <command> syntax.

As of v1, the .NET Core CLI tools don't have an install command for installing dependencies. In order to install a package from NuGet, you would
need to add it as a dependency to your project.json file and then run dotnet restore (see note).

There are two main ways to run your code. One is from source, with dotnet run . Unlike dnx run , this will not do any in-memory compilation. It will
actually invoke dotnet build to build your code and then run the built binary.

Another way is using the dotnet itself to run your code. This is done by providing a path to your assembly: dotnet path/to/an/assembly.dll .

In addition to using new commands when working with your code, there are three major things left in migrating from DNX:

1. Migrate the global.json file if you have it to be able to use CLI.
2. Migrating the project file (project.json) itself to the CLI tooling.
3. Migrating off of any DNX APIs to their BCL counterparts.

The global.json file acts like a solution file for both the RC1 and RC2 (or later) projects. In order for the CLI tools (as well as Visual Studio) to
differentiate between RC1 and later versions, they use the "sdk": { "version" } property to make the distinction which project is RC1 or later. If
global.json doesn't have this node at all, it is assumed to be the latest.

In order to update the global.json file, either remove the property or set it to the exact version of the tools that you wish to use, in this case 1.0.0-
preview2-003121:

The CLI and DNX both use the same basic project system based on project.json file. The syntax and the semantics of the project file are pretty much
the same, with small differences based on the scenarios. There are also some changes to the schema which you can see in the schema file.

If you are building a console application, you need to add the following snippet to your project file:

This instructs dotnet build to emit an entry point for your application, effectively making your code runnable. If you are building a class library, simply
omit the above section. Of course, once you add the above snippet to your project.json file, you need to add a static entry point. With the move off
DNX, the DI services it provided are no longer available and thus this needs to be a basic .NET entry point: static void Main() .

If you have a "commands" section in your project.json , you can remove it. Some of the commands that used to exist as DNU commands, such as
Entity Framework CLI commands, are being ported to be per-project extensions to the CLI. If you built your own commands that you are using in your
projects, you need to replace them with CLI extensions. In this case, the commands node in project.json needs to be replaced by the tools node and it
needs to list the tools dependencies.

After these things are done, you need to decide which type of portability you wish for you app. With .NET Core, we have invested into providing a
spectrum of portability options that you can choose from. For instance, you may want to have a fully portable application or you may want to have a

http://json.schemastore.org/project

 "frameworks": {
 "netcoreapp1.0": {
 "imports": ["dnxcore50", "portable-net45+win8"]
 }
 }

NOTENOTE

self-contained application. The portable application option is more like .NET Framework applications work: it needs a shared component to execute it
on the target machine (.NET Core). The self-contained application doesn't require .NET Core to be installed on the target, but you have to produce one
application for each OS you wish to support. These portability types and more are discussed in the application portability type document.

Once you make a call on what type of portability you want, you need to change your targeted framework(s). If you were writing applications for .NET
Core, you were most likely using dnxcore50 as your targeted framework. With the CLI and the changes that the new .NET Standard brought, the
framework needs to be one of the following:

1. netcoreapp1.0 - if you are writing applications on .NET Core (including ASP.NET Core applications)
2. netstandard1.6 - if you are writing class libraries for .NET Core

If you are using other dnx targets, like dnx451 you will need to change those as well. dnx451 should be changed to net451 . Please refer to the .NET
Standard topic for more information.

Your project.json is now mostly ready. You need to go through your dependencies list and update the dependencies to their newer versions, especially
if you are using ASP.NET Core dependencies. If you were using separate packages for BCL APIs, you can use the runtime package as explained in the
application portability type document.

Once you are ready, you can try restoring with dotnet restore (see note). Depending on the version of your dependencies, you may encounter errors if
NuGet cannot resolve the dependencies for one of the targeted frameworks above. This is a "point-in-time" problem; as time progresses, more and
more packages will include support for these frameworks. For now, if you run into this, you can use the imports statement within the framework node
to specify to NuGet that it can restore the packages targeting the framework within the "imports" statement. The restoring errors you get in this case
should provide enough information to tell you which frameworks you need to import. If you are slightly lost or new to this, in general, specifying
dnxcore50 and portable-net45+win8 in the imports statement should do the trick. The JSON snippet below shows how this looks like:

Running dotnet build will show any eventual build errors, though there shouldn't be too many of them. After your code is building and running
properly, you can test it out with the runner. Execute dotnet <path-to-your-assembly> and see it run.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

.NET Core application deployment
7/4/2018 • 3 minutes to read • Edit Online

Framework-dependent deployments (FDD)

Why create a framework-dependent deployment?Why create a framework-dependent deployment?

Self-contained deployments (SCD)

Why deploy a self-contained deployment?Why deploy a self-contained deployment?

Step-by-step examples

You can create two types of deployments for .NET Core applications:

Framework-dependent deployment. As the name implies, framework-dependent deployment (FDD) relies on the presence of a shared system-
wide version of .NET Core on the target system. Because .NET Core is already present, your app is also portable between installations of .NET
Core. Your app contains only its own code and any third-party dependencies that are outside of the .NET Core libraries. FDDs contain .dll files
that can be launched by using the dotnet utility from the command line. For example, dotnet app.dll runs an application named app .

Self-contained deployment. Unlike FDD, a self-contained deployment (SCD) doesn't rely on the presence of shared components on the target
system. All components, including both the .NET Core libraries and the .NET Core runtime, are included with the application and are isolated
from other .NET Core applications. SCDs include an executable (such as app.exe on Windows platforms for an application named app), which is
a renamed version of the platform-specific .NET Core host, and a .dll file (such as app.dll), which is the actual application.

For an FDD, you deploy only your app and any third-party dependencies. You don't have to deploy .NET Core, since your app will use the version of
.NET Core that's present on the target system. This is the default deployment model for .NET Core apps.

Deploying an FDD has a number of advantages:

You don't have to define the target operating systems that your .NET Core app will run on in advance. Because .NET Core uses a common PE file
format for executables and libraries regardless of operating system, .NET Core can execute your app regardless of the underlying operating
system. For more information on the PE file format, see .NET Assembly File Format.

The size of your deployment package is small. You only deploy your app and its dependencies, not .NET Core itself.

Multiple apps use the same .NET Core installation, which reduces both disk space and memory usage on host systems.

There are also a few disadvantages:

Your app can run only if the version of .NET Core that you target, or a later version, is already installed on the host system.

It's possible for the .NET Core runtime and libraries to change without your knowledge in future releases. In rare cases, this may change the
behavior of your app.

For a self-contained deployment, you deploy your app and any required third-party dependencies along with the version of .NET Core that you used to
build the app. Creating an SCD doesn't include the native dependencies of .NET Core on various platforms, so these must be present before the app
runs. For more information on version binding at runtime, see the article on version binding in .NET Core

FDD and SCD deployments use separate host executables, so you can sign a host executable for an SCD with your publisher signature.

Deploying a Self-contained deployment has two major advantages:

You have sole control of the version of .NET Core that is deployed with your app. .NET Core can be serviced only by you.

You can be assured that the target system can run your .NET Core app, since you're providing the version of .NET Core that it will run on.

It also has a number of disadvantages:

Because .NET Core is included in your deployment package, you must select the target platforms for which you build deployment packages in
advance.

The size of your deployment package is relatively large, since you have to include .NET Core as well as your app and its third-party dependencies.

Deploying numerous self-contained .NET Core apps to a system can consume significant amounts of disk space, since each app duplicates .NET
Core files.

For step-by-step examples of deploying .NET Core apps with CLI tools, see Deploying .NET Core Apps with CLI Tools. For step-by-step examples of
deploying .NET Core apps with Visual Studio, see Deploying .NET Core Apps with Visual Studio. Each topic includes examples of the following
deployments:

Framework-dependent deployment
Framework-dependent deployment with third-party dependencies
Self-contained deployment

https://github.com/dotnet/docs/blob/master/docs/core/deploying/index.md
https://github.com/dotnet/core/blob/master/Documentation/prereqs.md

See also
Self-contained deployment with third-party dependencies

Deploying .NET Core Apps with CLI Tools
Deploying .NET Core Apps with Visual Studio
Packages, Metapackages and Frameworks
.NET Core Runtime IDentifier (RID) catalog

Deploying .NET Core apps with command-line interface (CLI) tools
5/4/2018 • 8 minutes to read • Edit Online

Framework-dependent deployment

You can deploy a .NET Core application either as a framework-dependent deployment, which includes your application binaries but depends on the
presence of .NET Core on the target system, or as a self-contained deployment, which includes both your application and the .NET Core binaries. For an
overview, see .NET Core Application Deployment.

The following sections show how to use .NET Core command-line interface tools to create the following kinds of deployments:

Framework-dependent deployment
Framework-dependent deployment with third-party dependencies
Self-contained deployment
Self-contained deployment with third-party dependencies

When working from the command line, you can use a program editor of your choice. If your program editor is Visual Studio Code, you can open a
command console inside your Visual Studio Code environment by selecting View > Integrated Terminal.

Deploying a framework-dependent deployment with no third-party dependencies simply involves building, testing, and publishing the app. A simple
example written in C# illustrates the process.

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position {matches[ctr].Index}");
 }
 }
 }
 }
}

1. Create a project directory.

Create a directory for your project and make it your current directory.

2. Create the project.

From the command line, type dotnet new console to create a new C# console project in that directory.

3. Add the application's source code.

Open the Program.cs file in your editor and replace the auto-generated code with the following code. It prompts the user to enter text and
displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

4. Update the project's dependencies and tools.

Run the dotnet restore (see note) command to restore the dependencies specified in your project.

5. Create a Debug build of your app.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/deploy-with-cli.md
https://code.visualstudio.com

Framework-dependent deployment with third-party dependencies

Self-contained deployment without third-party dependencies

dotnet publish -f netcoreapp1.1 -c Release

Use the dotnet build command to build your application or the dotnet run command to build and run it.

6. Deploy your app.

After you've debugged and tested the program, create the deployment by using the following command:

This creates a Release (rather than a Debug) version of your app. The resulting files are placed in a directory named publish that's in a
subdirectory of your project's bin directory.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains debugging information about your
app. The file is useful primarily for debugging exceptions. You can choose not to distribute it with your application's files. You should, however,
save it in the event that you want to debug the Release build of your app.

You can deploy the complete set of application files in any way you like. For example, you can package them in a Zip file, use a simple copy

command, or deploy them with any installation package of your choice.

7. Run your app

Once installed, users can execute your application by using the dotnet command and providing the application filename, such as
dotnet fdd.dll .

In addition to the application binaries, your installer should also either bundle the shared framework installer or check for it as a prerequisite as
part of the application installation. Installation of the shared framework requires Administrator/root access.

Deploying a framework-dependent deployment with one or more third-party dependencies requires that those dependencies be available to your
project. Two additional steps are required before you can run the dotnet restore (see note) command:

<ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
</ItemGroup>

1. Add references to required third-party libraries to the <ItemGroup> section of your csproj file. The following <ItemGroup> section contains a
dependency on Json.NET as a third-party library:

2. If you haven't already, download the NuGet package containing the third-party dependency. To download the package, execute the
dotnet restore (see note) command after adding the dependency. Because the dependency is resolved out of the local NuGet cache at publish

time, it must be available on your system.

Note that a framework-dependent deployment with third-party dependencies is only as portable as its third-party dependencies. For example, if a third-
party library only supports macOS, the app isn't portable to Windows systems. This happens if the third-party dependency itself depends on native
code. A good example of this is Kestrel server, which requires a native dependency on libuv. When an FDD is created for an application with this kind of
third-party dependency, the published output contains a folder for each Runtime Identifier (RID) that the native dependency supports (and that exists in
its NuGet package).

Deploying a self-contained deployment without third-party dependencies involves creating the project, modifying the csproj file, building, testing, and
publishing the app. A simple example written in C# illustrates the process. The example shows how to create a self-contained deployment using the
dotnet utility from the command line.

1. Create a directory for the project.

Create a directory for your project, and make it your current directory.

2. Create the project.

From the command line, type dotnet new console to create a new C# console project in that directory.

3. Add the application's source code.

Open the Program.cs file in your editor and replace the auto-generated code with the following code. It prompts the user to enter text and
displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

http://www.newtonsoft.com/json
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://github.com/libuv/libuv

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position {matches[ctr].Index}");
 }
 }
 }
 }
}

<PropertyGroup>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
</PropertyGroup>

dotnet publish -c Release -r win10-x64
dotnet publish -c Release -r osx.10.11-x64

4. Define the platforms that your app will target.

Create a <RuntimeIdentifiers> tag in the <PropertyGroup> section of your csproj file that defines the platforms your app targets and specify the
runtime identifier (RID) for each platform that you target. Note that you also need to add a semicolon to separate the RIDs. See Runtime
IDentifier catalog for a list of runtime identifiers.

For example, the following <PropertyGroup> section indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X
Version 10.11 operating system.

Note that the <RuntimeIdentifiers> element can appear in any <PropertyGroup> in your csproj file. A complete sample csproj file appears later in
this section.

5. Update the project's dependencies and tools.

Run the dotnet restore (see note) command to restore the dependencies specified in your project.

6. Create a Debug build of your app.

From the command line, use the dotnet build command.

7. After you've debugged and tested the program, create the files to be deployed with your app for each platform that it targets.

Use the dotnet publish command for both target platforms as follows:

This creates a Release (rather than a Debug) version of your app for each target platform. The resulting files are placed in a subdirectory named
publish that's in a subdirectory of your project's .\bin\Release\netcoreapp1.1<runtime_identifier> subdirectory. Note that each subdirectory
contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The
file is useful primarily for debugging exceptions. You can choose not to package it with your application's files. You should, however, save it in the event
that you want to debug the Release build of your app.

Deploy the published files in any way you like. For example, you can package them in a Zip file, use a simple copy command, or deploy them with any
installation package of your choice.

The following is the complete csproj file for this project.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
</Project>

Self-contained deployment with third-party dependencies

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
 </ItemGroup>
</Project>

NOTENOTE

See also

Deploying a self-contained deployment with one or more third-party dependencies involves adding the dependencies. Two additional steps are required
before you can run the dotnet restore (see note) command:

 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
 </ItemGroup>

1. Add references to any third-party libraries to the <ItemGroup> section of your csproj file. The following <ItemGroup> section uses Json.NET as a
third-party library.

2. If you haven't already, download the NuGet package containing the third-party dependency to your system. To make the dependency available to
your app, execute the dotnet restore (see note) command after adding the dependency. Because the dependency is resolved out of the local
NuGet cache at publish time, it must be available on your system.

The following is the complete csproj file for this project:

When you deploy your application, any third-party dependencies used in your app are also contained with your application files. Third-party libraries
aren't required on the system on which the app is running.

Note that you can only deploy a self-contained deployment with a third-party library to platforms supported by that library. This is similar to having
third-party dependencies with native dependencies in a framework-dependent deployment, where the native dependencies must be compatible with the
platform to which the app is deployed.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

.NET Core Application Deployment

.NET Core Runtime IDentifier (RID) catalog

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Deploying .NET Core apps with Visual Studio
5/4/2018 • 10 minutes to read • Edit Online

Framework-dependent deployment

You can deploy a .NET Core application either as a framework-dependent deployment, which includes your application binaries but depends on the
presence of .NET Core on the target system, or as a self-contained deployment, which includes both your application and .NET Core binaries. For an
overview of .NET Core application deployment, see .NET Core Application Deployment.

The following sections show how to use Microsoft Visual Studio to create the following kinds of deployments:

Framework-dependent deployment
Framework-dependent deployment with third-party dependencies
Self-contained deployment
Self-contained deployment with third-party dependencies

For information on using Visual Studio to develop .NET Core applications, see Prerequisites for .NET Core on Windows.

Deploying a framework-dependent deployment with no third-party dependencies simply involves building, testing, and publishing the app. A simple
example written in C# illustrates the process.

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position {matches[ctr].Index}");
 }
 }
 }
 }
}

1. Create the project.

Select File > New > Project. In the New Project dialog, select .NET Core in the Installed project types pane, and select the Console App
(.NET Core) template in the center pane. Enter a project name, such as "FDD", in the Name text box. Select the OK button.

2. Add the application's source code.

Open the Program.cs file in the editor and replace the auto-generated code with the following code. It prompts the user to enter text and displays
the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

3. Create a Debug build of your app.

Select Build > Build Solution. You can also compile and run the Debug build of your application by selecting Debug > Start Debugging.

4. Deploy your app.

After you've debugged and tested the program, create the files to be deployed with your app. To publish from Visual Studio, do the following:

a. Change the solution configuration from Debug to Release on the toolbar to build a Release (rather than a Debug) version of your app.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/deploy-with-vs.md

Framework-dependent deployment with third-party dependencies

Self-contained deployment without third-party dependencies

b. Right-click on the project (not the solution) in Solution Explorer, and select Publish.

c. In the Publish tab, select Publish. Visual Studio writes the files that comprise your application to the local file system.

d. The Publish tab now shows a single profile, FolderProfile. The profile's configuration settings are shown in the Summary section of the
tab.

The resulting files are placed in a directory named PublishOutput that is in a subdirectory of your project's .\bin\release subdirectory.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The
file is useful primarily for debugging exceptions. You can choose not to package it with your application's files. You should, however, save it in the event
that you want to debug the Release build of your app.

Deploy the complete set of application files in any way you like. For example, you can package them in a Zip file, use a simple copy command, or
deploy them with any installation package of your choice. Once installed, users can then execute your application by using the dotnet command and
providing the application filename, such as dotnet fdd.dll .

In addition to the application binaries, your installer should also either bundle the shared framework installer or check for it as a prerequisite as part of
the application installation. Installation of the shared framework requires Administrator/root access since it is machine-wide.

Deploying a framework-dependent deployment with one or more third-party dependencies requires that any dependencies be available to your project.
The following additional steps are required before you can build your app:

1. Use the NuGet Package Manager to add a reference to a NuGet package to your project; and if the package is not already available on your
system, install it. To open the package manager, select Tools > NuGet Package Manager > Manage NuGet Packages for Solution.

2. Confirm that Newtonsoft.Json is installed on your system and, if it is not, install it. The Installed tab lists NuGet packages installed on your
system. If Newtonsoft.Json is not listed there, select the Browse tab and enter "Newtonsoft.Json" in the search box. Select Newtonsoft.Json and,
in the right pane, select your project before selecting Install.

3. If Newtonsoft.Json is already installed on your system, add it to your project by selecting your project in the right pane of hte Manage Packages
for Solution tab.

Note that a framework-dependent deployment with third-party dependencies is only as portable as its third-party dependencies. For example, if a third-
party library only supports macOS, the app isn't portable to Windows systems. This happens if the third-party dependency itself depends on native
code. A good example of this is Kestrel server, which requires a native dependency on libuv. When an FDD is created for an application with this kind of
third-party dependency, the published output contains a folder for each Runtime Identifier (RID) that the native dependency supports (and that exists in
its NuGet package).

Deploying a self-contained deployment with no third-party dependencies involves creating the project, modifying the csproj file, building, testing, and
publishing the app. A simple example written in C# illustrates the process.

1. Create the project.

Select File > New > Project. In the Add New Project dialog, select .NET Core in the Installed project types pane, and select the Console
App (.NET Core) template in the center pane. Enter a project name, such as "SCD", in the Name text box, and select the OK button.

2. Add the application's source code.

Open the Program.cs file in your editor, and replace the auto-generated code with the following code. It prompts the user to enter text and
displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

http://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://github.com/libuv/libuv

<PropertyGroup>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
</PropertyGroup>

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 {
 Console.WriteLine("\nNo words were identified in your input.");
 }
 else
 {
 Console.WriteLine($"\nThere are {matches.Count} words in your string:");
 for (int ctr = 0; ctr < matches.Count; ctr++)
 {
 Console.WriteLine($" #{ctr,2}: '{matches[ctr].Value}' at position {matches[ctr].Index}");
 }
 }
 }
 }
}

3. Define the platforms that your app will target.

a. Right-click on your project (not the solution) In Solution Explorer, and select Edit SCD.csproj.

b. Create a <RuntimeIdentifiers> tag in the <PropertyGroup> section of your csproj file that defines the platforms your app targets, and
specify the runtime identifier (RID) of each platform that you target. Note that you also need to add a semicolon to separate the RIDs. See
Runtime IDentifier catalog for a list of runtime identifiers.

For example, the following example indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X Version 10.11
operating system.

Note that the <RuntimeIdentifiers> element can go into any <PropertyGroup> that you have in your csproj file. A complete sample csproj file appears
later in this section.

1. Create a Debug build of your app.

Select Build > Build Solution. You can also compile and run the Debug build of your application by selecting Debug > Start Debugging.

2. Publish your app.

After you've debugged and tested the program, create the files to be deployed with your app for each platform that it targets.

To publish your app from Visual Studio, do the following:

a. Change the solution configuration from Debug to Release on the toolbar to build a Release (rather than a Debug) version of your app.

b. Right-click on the project (not the solution) in Solution Explorer and select Publish.

c. In the Publish tab, select Publish. Visual Studio writes the files that comprise your application to the local file system.

d. The Publish tab now shows a single profile, FolderProfile. The profile's configuration settings are shown in the Summary section of the
tab. Target Runtime identifies which runtime has been published, and Target Location identifies where the files for the self-contained
deployment were written.

e. Visual Studio by default writes all published files to a single directory. For convenience, it's best to create separate profiles for each target
runtime and to place published files in a platform-specific directory. This involves creating a separate publishing profile for each target
platform. So now rebuild the application for each platform by doing the following:

a. Select Create new profile in the Publish dialog.

b. In the Pick a publish target dialog, change the Choose a folder location to bin\Release\PublishOutput\win10-x64. Select OK.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
</Project>

Self-contained deployment with third-party dependencies

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64;osx.10.11-x64</RuntimeIdentifiers>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.2" />
 </ItemGroup>
</Project>

See also

c. Select the new profile (FolderProfile1) in the list of profiles, and make sure that the Target Runtime is win10-x64 . If it isn't, select
Settings. In the Profile Settings dialog, change the Target Runtime to win10-x64 and select Save. Otherwise, select Cancel.

d. Select Publish to publish your app for 64-bit Windows 10 platforms.

e. Follow the previous steps again to create a profile for the osx.10.11-x64 platform. The Target Location is
bin\Release\PublishOutput\osx.10.11-x64, and the Target Runtime is osx.10.11-x64 . The name that Visual Studio assigns to this
profile is FolderProfile2.

Note that each target location contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.

Along with your application's files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The
file is useful primarily for debugging exceptions. You can choose not to package it with your application's files. You should, however, save it in the event
that you want to debug the Release build of your app.

Deploy the published files in any way you like. For example, you can package them in a Zip file, use a simple copy command, or deploy them with any
installation package of your choice.

The following is the complete csproj file for this project.

Deploying a self-contained deployment with one or more third-party dependencies involves adding the dependencies. The following additional steps
are required before you can build your app:

1. Use the NuGet Package Manager to add a reference to a NuGet package to your project; and if the package is not already available on your
system, install it. To open the package manager, select Tools > NuGet Package Manager > Manage NuGet Packages for Solution.

2. Confirm that Newtonsoft.Json is installed on your system and, if it is not, install it. The Installed tab lists NuGet packages installed on your
system. If Newtonsoft.Json is not listed there, select the Browse tab and enter "Newtonsoft.Json" in the search box. Select Newtonsoft.Json and,
in the right pane, select your project before selecting Install.

3. If Newtonsoft.Json is already installed on your system, add it to your project by selecting your project in the right pane of the Manage Packages
for Solution tab.

The following is the complete csproj file for this project:

When you deploy your application, any third-party dependencies used in your app are also contained with your application files. Third-party libraries
aren't required on the system on which the app is running.

Note that you can only deploy a self-contained deployment with a third-party library to platforms supported by that library. This is similar to having
third-party dependencies with native dependencies in your framework-dependent deployment, where the native dependencies won't exist on the target
platform unless they were previously installed there.

.NET Core Application Deployment

.NET Core Runtime IDentifier (RID) catalog

How to Create a NuGet Package with Cross Platform Tools
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

$ ls bin/Debug

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

$ ls bin/release

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

Don't confuse dotnet pack with dotnet publish

The following shows command-line samples using Unix. The dotnet pack command as shown here works the same way on Windows.

For .NET Core 1.0, libraries are expected to be distributed as NuGet packages. This is in fact how all of the .NET Standard libraries are distributed and
consumed. This is most easily done with the dotnet pack command.

Imagine that you just wrote an awesome new library that you would like to distribute over NuGet. You can create a NuGet package with cross platform
tools to do exactly that! The following example assumes a library called SuperAwesomeLibrary which targets netstandard1.0 .

If you have transitive dependencies; that is, a project which depends on another project, you'll need to make sure to restore packages for your entire
solution with the dotnet restore command before creating a NuGet package. Failing to do so will result in the dotnet pack command to not work
properly.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

After ensuring packages are restored, you can navigate to the directory where a library lives:

$ cd src/SuperAwesomeLibrary

Then it's just a single command from the command line:

$ dotnet pack

Your /bin/Debug folder will now look like this:

Note that this will produce a package which is capable of being debugged. If you want to build a NuGet package with release binaries, all you need to
do is add the -c / --configuration switch and use release as the argument.

$ dotnet pack --configuration release

Your /bin folder will now have a release folder containing your NuGet package with release binaries:

And now you have the necessary files to publish a NuGet package!

It is important to note that at no point is the dotnet publish command involved. The dotnet publish command is for deploying applications with all of
their dependencies in the same bundle - not for generating a NuGet package to be distributed and consumed via NuGet.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/creating-nuget-packages.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Self-contained deployment runtime roll forward
6/28/2018 • 2 minutes to read • Edit Online

Patch version roll forward overview

NOTENOTE

How to avoid restore during publish

No-restore argument with dotnet publish options

.NET Core self-contained application deployments include both the .NET Core libraries and the .NET Core runtime. Starting in .NET Core SDK 2.1.300
(.NET Core 2.1), a self-contained application deployment publishes the highest patch runtime on your machine. By default, dotnet publish for a self-
contained deployment selects the latest version installed as part of the SDK on the publishing machine. This enables your deployed application to run
with security fixes (and other fixes) available during publish . The application must be re-published to obtain a new patch. Self-contained applications
are created by specifying -r <RID> on dotnet publish command or by specifying the runtime identifier (RID) in the project file (csproj / vbproj) or on
the command line.

restore , build and publish are dotnet commands that can run separately. The runtime choice is part of the restore operation, not publish or
build . If you call publish , the latest patch version will be chosen. If you call publish with the --no-restore argument, then you may not get the

desired patch version because a prior restore may not have been executed with the new self-contained application publishing policy. In this case, a
build error is generated with text similar to the following:

"The project was restored using Microsoft.NETCore.App version 2.0.0, but with current settings, version 2.0.6 would be used instead. To resolve this
issue, make sure the same settings are used for restore and for subsequent operations such as build or publish. Typically this issue can occur if the
RuntimeIdentifier property is set during build or publish but not during restore."

restore and build can be run implicitly as part of another command, like publish . When run implicitly as part of another command, they are provided with
additional context so that the right artifacts are produced. When you publish with a runtime (for example, dotnet publish -r linux-x64), the implicit restore

restores packages for the linux-x64 runtime. If you call restore explicitly, it does not restore runtime packages by default, because it doesn't have that context.

Running restore as part of the publish operation may be undesirable for your scenario. To avoid restore during publish while creating self-
contained applications, do the following:

Set the RuntimeIdentifiers property to a semicolon-separated list of all the RIDs to be published.
Set the TargetLatestRuntimePatch property to true .

If you want to create both self-contained applications and framework-dependent applications with the same project file, and you want to use the
--no-restore argument with dotnet publish , then choose one of the following:

1. Prefer the framework-dependent behavior. If the application is framework-dependent, this is the default behavior. If the application is self-
contained, and can use an unpatched 2.1.0 local runtime, set the TargetLatestRuntimePatch to false in the project file.

2. Prefer the self-contained behavior. If the application is self-contained, this is the default behavior. If the application is framework-dependent, and
requires the latest patch installed, set TargetLatestRuntimePatch to true in the project file.

3. Take explicit control of the runtime framework version by setting RuntimeFrameworkVersion to the specific patch version in the project file.

https://github.com/dotnet/docs/blob/master/docs/core/deploying/runtime-patch-selection.md
https://github.com/dotnet/designs/pull/36

Runtime package store
5/4/2018 • 5 minutes to read • Edit Online

Preparing a runtime environment

<Project Sdk="Microsoft.NET.Sdk">
 <ItemGroup>
 <PackageReference Include="<NUGET_PACKAGE>" Version="<VERSION>" />
 <!-- Include additional packages here -->
 </ItemGroup>
</Project>

<Project Sdk="Microsoft.NET.Sdk">
 <ItemGroup>
 <PackageReference Include="Newtonsoft.Json" Version="10.0.3" />
 <PackageReference Include="Moq" Version="4.7.63" />
 </ItemGroup>
</Project>

dotnet store --manifest <PATH_TO_MANIFEST_FILE> --runtime <RUNTIME_IDENTIFIER> --framework <FRAMEWORK>

dotnet store --manifest packages.csproj --runtime win10-x64 --framework netcoreapp2.0 --framework-version 2.0.0

Starting with .NET Core 2.0, it's possible to package and deploy apps against a known set of packages that exist in the target environment. The benefits
are faster deployments, lower disk space use, and improved startup performance in some cases.

This feature is implemented as a runtime package store, which is a directory on disk where packages are stored (typically at
/usr/local/share/dotnet/store on macOS/Linux and C:/Program Files/dotnet/store on Windows). Under this directory, there are subdirectories for
architectures and target frameworks. The file layout is similar to the way that NuGet assets are laid out on disk:

\dotnet
 \store
 \x64
 \netcoreapp2.0
 \microsoft.applicationinsights
 \microsoft.aspnetcore
 ...
 \x86
 \netcoreapp2.0
 \microsoft.applicationinsights
 \microsoft.aspnetcore
 ...

A target manifest file lists the packages in the runtime package store. Developers can target this manifest when publishing their app. The target
manifest is typically provided by the owner of the targeted production environment.

The administrator of a runtime environment can optimize apps for faster deployments and lower disk space use by building a runtime package store
and the corresponding target manifest.

The first step is to create a package store manifest that lists the packages that compose the runtime package store. This file format is compatible with
the project file format (csproj).

Example

The following example package store manifest (packages.csproj) is used to add Newtonsoft.Json and Moq to a runtime package store:

Provision the runtime package store by executing dotnet store with the package store manifest, runtime, and framework:

Example

You can pass multiple target package store manifest paths to a single dotnet store command by repeating the option and path in the command.

By default, the output of the command is a package store under the .dotnet/store subdirectory of the user's profile. You can specify a different location
using the --output <OUTPUT_DIRECTORY> option. The root directory of the store contains a target manifest artifact.xml file. This file can be made available
for download and be used by app authors who want to target this store when publishing.

Example

The following artifact.xml file is produced after running the previous example. Note that Castle.Core is a dependency of Moq , so it's included

https://github.com/dotnet/docs/blob/master/docs/core/deploying/runtime-store.md
https://docs.microsoft.com/nuget/create-packages/supporting-multiple-target-frameworks#framework-version-folder-structure
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/moq/
https://www.nuget.org/packages/Castle.Core/

<StoreArtifacts>
 <Package Id="Newtonsoft.Json" Version="10.0.3" />
 <Package Id="Castle.Core" Version="4.1.0" />
 <Package Id="Moq" Version="4.7.63" />
</StoreArtifacts>

Publishing an app against a target manifest

dotnet publish --manifest <PATH_TO_MANIFEST_FILE>

dotnet publish --manifest manifest.xml

Specifying target manifests in the project file

<PropertyGroup>
 <TargetManifestFiles>manifest1.xml;manifest2.xml</TargetManifestFiles>
</PropertyGroup>

ASP.NET Core implicit store

<PropertyGroup>
 <PublishWithAspNetCoreTargetManifest>false</PublishWithAspNetCoreTargetManifest>
</PropertyGroup>

NOTENOTE

automatically and appears in the artifacts.xml manifest file.

If you have a target manifest file on disk, you specify the path to the file when publishing your app with the dotnet publish command:

Example

You deploy the resulting published app to an environment that has the packages described in the target manifest. Failing to do so results in the app
failing to start.

Specify multiple target manifests when publishing an app by repeating the option and path (for example,
--manifest manifest1.xml --manifest manifest2.xml). When you do so, the app is trimmed for the union of packages specified in the target manifest files

provided to the command.

An alternative to specifying target manifests with the dotnet publish command is to specify them in the project file as a semicolon-separated list of
paths under a <TargetManifestFiles> tag.

Specify the target manifests in the project file only when the target environment for the app is well-known, such as for .NET Core projects. This isn't the
case for open-source projects. The users of an open-source project typically deploy it to different production environments. These production
environments generally have different sets of packages pre-installed. You can't make assumptions about the target manifest in such environments, so
you should use the --manifest option of dotnet publish .

The runtime package store feature is used implicitly by an ASP.NET Core app when the app is deployed as a framework-dependent deployment (FDD)
app. The targets in Microsoft.NET.Sdk.Web include manifests referencing the implicit package store on the target system. Additionally, any FDD app that
depends on the Microsoft.AspNetCore.All package results in a published app that contains only the app and its assets and not the packages listed in the
Microsoft.AspNetCore.All metapackage. It's assumed that those packages are present on the target system.

The runtime package store is installed on the host when the .NET Core SDK is installed. Other installers may provide the runtime package store,
including Zip/tarball installations of the .NET Core SDK, apt-get , Red Hat Yum, the .NET Core Windows Server Hosting bundle, and manual runtime
package store installations.

When deploying a framework-dependent deployment (FDD) app, make sure that the target environment has the .NET Core SDK installed. If the app is
deployed to an environment that doesn't include ASP.NET Core, you can opt out of the implicit store by specifying
<PublishWithAspNetCoreTargetManifest> set to false in the project file as in the following example:

For self-contained deployment (SCD) apps, it's assumed that the target system doesn't necessarily contain the required manifest packages. Therefore,
<PublishWithAspNetCoreTargetManifest> cannot be set to true for an SCD app.

If you deploy an application with a manifest dependency that's present in the deployment (the assembly is present in the bin folder), the runtime
package store isn't used on the host for that assembly. The bin folder assembly is used regardless of its presence in the runtime package store on the
host.

The version of the dependency indicated in the manifest must match the version of the dependency in the runtime package store. If you have a version
mismatch between the dependency in the target manifest and the version that exists in the runtime package store and the app doesn't include the

https://github.com/aspnet/websdk

See also

required version of the package in its deployment, the app fails to start. The exception includes the name of the target manifest that called for the
runtime package store assembly, which helps you troubleshoot the mismatch.

When the deployment is trimmed on publish, only the specific versions of the manifest packages you indicate are withheld from the published output.
The packages at the versions indicated must be present on the host for the app to start.

dotnet-publish
dotnet-store

Docker and .NET Core
5/4/2018 • 2 minutes to read • Edit Online

The following tutorials are available for learning about using Docker with .NET Core.

Introduction to .NET and Docker
Learn Docker Basics with .NET Core
Building Docker Images for .NET Core Applications
Visual Studio Tools for Docker

For tutorials about developing ASP.NET Core web applications, see the ASP.NET Core documentation.

https://github.com/dotnet/docs/blob/master/docs/core/docker/index.md
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://docs.microsoft.com/aspnet/core/

Introduction to .NET and Docker
5/4/2018 • 6 minutes to read • Edit Online

Docker: Packaging your apps to deploy and run anywhere

Further reading (and watching)Further reading (and watching)

Getting .NET Docker imagesGetting .NET Docker images

Scenario based guidance

Common Docker development scenariosCommon Docker development scenarios
.NET Core.NET Core

This article provides an introduction and conceptual background to working with .NET on Docker.

Docker is an open platform that enables developers and administrators to build images, ship, and run distributed applications in a loosely isolated
environment called a container. This approach enables efficient application lifecycle management between development, QA, and production
environments.

The Docker platform uses the Docker Engine to quickly build and package apps as Docker images created using files written in the Dockerfile format
that then is deployed and run in a layered container.

You can either create your own layered images as dockerfiles or use existing ones from a registry, like Docker Hub.

The relationship between Docker containers, images, and registries is an important concept when architecting and building containerized applications
or microservices. This approach greatly shortens the time between development and deployment.

Windows-based containers: Modern app development with enterprise-grade control.
Docker overview
Dockerfile on Windows Containers
Best practices for writing Dockerfiles
Building Docker Images for .NET Core applications

The Official .NET Docker images are created and optimized by Microsoft. They are publicly available in the Microsoft repositories on Docker Hub. Each
repository can contain multiple images, depending on .NET versions, and on OS versions. Most image repos provide extensive tagging to help you
select both a specific framework version and an OS (Linux distro or Windows version).

Microsoft’s intent for .NET repositories is to have granular and focused repos, which represent a specific scenario or workload.

The microsoft/aspnetcore images are optimized for ASP.NET Core apps on Docker, so containers can start faster.

The .NET Core images (microsoft/dotnet) are intended for console apps based on .NET Core. For example, batch processes, Azure WebJobs, and other
console scenarios should use optimized .NET Core images.

The most obvious horizontal scenario for using Docker and .NET applications is for production deployment and hosting. It turns out that production is
just one scenario and the other ones are equally useful. These scenarios are not specific to .NET, but should apply to most developer platforms.

Low friction install — You can try out .NET without a local install. Just download a Docker image with .NET in it.

Develop in a container — You can develop in a consistent environment, making development and production environments similar (avoiding
issues like global state on developer machines). Visual Studio Tools for Docker even enable you to start a container directly from Visual Studio.

Test in a container — You can test in a container, reducing failures due to incorrectly configured environments or other changes left behind
from the last test.

Build in a container — You can build code in a container, avoiding the need to correctly configure shared build machines for multiple
environments but instead move to a “BYOC” (bring your own container) approach.

Deployment in all environments — You can deploy an image through all of your environments. This approach reduces failures due to
configuration differences, typically changing the image behavior via external configuration (for example, injected environment variables).

General guidance for deciding between .NET Core and .NET Framework for Docker container development.

.NET Core resources

Pick the .NET Core samples that fit your scenarios of interest. All sample instructions describe how to target Windows or Linux Docker images from
Windows, Linux, or macOS hosts.

The samples use .NET Core 2.0. They use Docker multi-stage build and multi-arch tags where appropriate.

.NET Core images on DockerHub

Dockerize a .NET Core application

https://github.com/dotnet/docs/blob/master/docs/core/docker/intro-net-docker.md
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined
https://docs.docker.com/glossary/?term=image
https://www.docker.com/what-container
https://docs.docker.com/engine/docker-overview/#the-docker-platform
https://docs.docker.com/engine/docker-overview/#docker-engine
https://docs.docker.com/glossary/?term=image
https://docs.docker.com/glossary/?term=Dockerfile
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#container-and-layers
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/glossary/?term=registry
https://docs.docker.com/glossary/?term=Docker Hub
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-containers-images-registries
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/architect-microservice-container-applications/index
https://www.youtube.com/watch?v=Ryx3o0rD5lY&feature=youtu.be
https://docs.docker.com/engine/docker-overview/
https://docs.microsoft.com/virtualization/windowscontainers/manage-docker/manage-windows-dockerfile
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/net-core-net-framework-containers/general-guidance
https://github.com/dotnet/announcements/issues/18
https://github.com/dotnet/announcements/issues/14
https://hub.docker.com/r/microsoft/dotnet/
https://docs.docker.com/engine/examples/dotnetcore/

ARM32 / Raspberry PiARM32 / Raspberry Pi

.NET Framework.NET Framework

ASP.NET CoreASP.NET Core

ASP.NET FrameworkASP.NET Framework

Windows Communication Framework (WCF)Windows Communication Framework (WCF)

Internet Information Server (IIS)Internet Information Server (IIS)

Interact with other Microsoft stack container imagesInteract with other Microsoft stack container images
Microsoft SQL ServerMicrosoft SQL Server

Visual Studio Team Services (VSTS) agentVisual Studio Team Services (VSTS) agent

Operations Management Suite (OMS) Linux agentOperations Management Suite (OMS) Linux agent

This .NET Core Docker sample demonstrates how to use Docker in your .NET Core development process. The sample works with both Linux and
Windows containers.

This .NET Core Docker sample demonstrates a best practice pattern for building Docker images for .NET Core apps for production. The sample
works with both Linux and Windows containers.

This .NET Core Docker sample demonstrates a best practice pattern for building Docker images for self-contained .NET Core applications. Used
for the smallest production container without a benefit from sharing base images between containers. However, lower Docker layers could be
shared.

.NET Core Runtime ARM32 builds announcement

ARM32 / Raspberry Pi .NET Core images on DockerHub

ARM32 / Raspberry Pi .NET Core Docker Samples on GitHub

.NET Framework images on DockerHub

This repo contain samples that demonstrate various .NET Framework Docker configurations. You can use these images as the basis of your own Docker
images.

.NET Framework 4.7

The dotnet-framework:4.7 sample demonstrates basic "hello world" usage of the .NET Framework 4.7. It shows you how you can build and deploy the
app relying on the .NET Framework 4.7 docker image.

.NET Framework 4.6.2

The dotnet-framework:4.6.2 sample demonstrates basic "hello world" usage of the .NET Framework 4.6.2. It shows you how you can build and deploy
the app relying on the .NET Framework 4.6.2 docker image.

.NET Framework 3.5

The dotnet-framework:3.5 sample demonstrates basic "hello world" usage of .NET Framework 3.5. It shows you how you can build and deploy a project
relying on .NET Framework 3.5 in Docker.

This ASP.NET Core Docker sample demonstrates a best practice pattern for building Docker images for ASP.NET Core apps for production. The
sample works with both Linux and Windows containers.

ASP.NET Core images on DockerHub

ASP.NET Core images on GitHub

ASP.NET Framework images on DockerHub

ASP.NET Web Forms app on .NET Framework 4.6.2 sample

Windows Communication Framework (WCF) images on DockerHub

Windows Communication Framework (WCF) images on GitHub

Windows Communication Framework (WCF) Docker samples using .NET Full Framework 4.6.2

Internet Information Server (IIS) images on DockerHub

Internet Information Server (IIS) images on GitHub

Run the Microsoft SQL Server for Linux 2017 container image with Docker Quickstart

Microsoft SQL Server for Linux images on DockerHub

Microsoft SQL Server Express Edition images for Windows Containers on DockerHub

Microsoft SQL Server Developer Edition images for Windows Containers on DockerHub

Visual Studio Team Services (VSTS) agent images on DockerHub

Visual Studio Team Services (VSTS) agent images on GitHub

Operations Management Suite (OMS) Linux agent overview

Operations Management Suite (OMS) images on DockerHub

https://github.com/dotnet/dotnet-docker-samples/tree/master/dotnetapp-dev
https://github.com/dotnet/dotnet-docker-samples/tree/master/dotnetapp-prod
https://github.com/dotnet/dotnet-docker-samples/tree/master/dotnetapp-selfcontained
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://github.com/dotnet/announcements/issues/29
https://hub.docker.com/r/microsoft/dotnet/
https://github.com/dotnet/dotnet-docker-samples#arm32--raspberry-pi
https://hub.docker.com/r/microsoft/dotnet-framework/
https://github.com/Microsoft/dotnet-framework-docker-samples/tree/master/dotnetapp-4.7
https://github.com/Microsoft/dotnet-framework-docker-samples/blob/master/dotnetapp-4.7/Dockerfile
https://github.com/Microsoft/dotnet-framework-docker-samples/tree/master/dotnetapp-4.6.2
https://github.com/Microsoft/dotnet-framework-docker-samples/blob/master/dotnetapp-4.6.2/Dockerfile
https://github.com/Microsoft/dotnet-framework-docker-samples/tree/master/dotnetapp-3.5
https://github.com/Microsoft/dotnet-framework-docker-samples/blob/master/dotnetapp-3.5/dotnetapp-3.5/Dockerfile
https://github.com/dotnet/dotnet-docker-samples/tree/master/aspnetapp
https://hub.docker.com/r/microsoft/aspnetcore-build/
https://github.com/aspnet/aspnet-docker
https://hub.docker.com/r/microsoft/aspnet/
https://github.com/Microsoft/dotnet-framework-docker-samples/tree/master/aspnetapp
https://hub.docker.com/r/microsoft/wcf/
https://github.com/microsoft/wcf-docker
https://github.com/Microsoft/wcf-docker-samples
https://hub.docker.com/r/microsoft/iis/
https://github.com/microsoft/iis-docker
https://docs.microsoft.com/sql/linux/quickstart-install-connect-docker
https://hub.docker.com/r/microsoft/mssql-server-linux/
https://hub.docker.com/r/microsoft/mssql-server-windows-express/
https://hub.docker.com/r/microsoft/mssql-server-windows-developer/
https://hub.docker.com/r/microsoft/vsts-agent/
https://github.com/Microsoft/vsts-agent-docker
https://github.com/Microsoft/OMS-Agent-for-Linux/blob/master/docs/Docker-Instructions.md
https://hub.docker.com/r/microsoft/oms/

Microsoft Azure Command Line Interface (CLI)Microsoft Azure Command Line Interface (CLI)

NOTENOTE

Microsoft Azure Cosmos DB Emulator (Windows Containers only)Microsoft Azure Cosmos DB Emulator (Windows Containers only)

Exploring the rich Docker development ecosystem

Next steps

Operations Management Suite (OMS) images on GitHub

Microsoft Azure Command Line Interface (CLI) images on DockerHub

Microsoft Azure Command-Line Interface (CLI) images on GitHub

If you do not have an Azure subscription, sign up today for a free 30-day account and get $200 in Azure Credits to try out any combination of Azure services.

Microsoft Azure Cosmos DB Emulator images on DockerHub

Use the Azure Cosmos DB Emulator for local development and testing

Now that you have learned about the Docker platform and different Docker images, the next step is to explore the rich Docker ecosystem. The following
links show you how the Microsoft tools complement container development.

Using .NET and Docker together
Designing and Developing Multi-Container and Microservice-Based .NET Applications
Visual Studio Code Docker extension
Learn how to use Azure Service Fabric
Service Fabric Getting Started Sample
Benefits of Windows Containers
Working with Visual Studio Docker Tools
Deploying Docker Images from the Azure Container Registry to Azure Container Instances
Debugging with Visual Studio Code
Getting hands on with Visual Studio for Mac, containers, and serverless code in the cloud
Getting Started with Docker and Visual Studio for Mac Lab

Learn Docker Basics with .NET Core
Building .NET Core Docker Images

https://github.com/Microsoft/OMS-docker
https://hub.docker.com/r/microsoft/azure-cli/
https://github.com/Azure/azure-cli#Docker
https://azure.microsoft.com/free/?b=16.48
https://hub.docker.com/r/microsoft/azure-cosmosdb-emulator
https://docs.microsoft.com/azure/cosmos-db/local-emulator#developing-with-the-emulator
https://blogs.msdn.microsoft.com/dotnet/2017/05/25/using-net-and-docker-together/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/index
https://code.visualstudio.com/docs/languages/dockerfile
https://docs.microsoft.com/azure/service-fabric/index
https://azure.microsoft.com/resources/samples/service-fabric-dotnet-getting-started/
https://docs.microsoft.com/virtualization/windowscontainers/about/index#video-overview
https://docs.microsoft.com/aspnet/core/host-and-deploy/docker/visual-studio-tools-for-docker
https://blogs.msdn.microsoft.com/stevelasker/2017/07/28/deploying-docker-images-from-the-azure-container-registry-to-azure-container-instances/
https://code.visualstudio.com/docs/nodejs/debugging-recipes#_nodejs-typescript-docker-container
https://blogs.msdn.microsoft.com/visualstudio/2017/08/31/hands-on-with-visual-studio-for-mac-containers-serverless-code-in-the-cloud/#comments
https://github.com/Microsoft/vs4mac-labs/tree/master/Docker/Getting-Started

Learn Docker Basics with .NET Core
5/4/2018 • 7 minutes to read • Edit Online

.NET Core: Easiest way to get started

Your first .NET Core Docker app
PrerequisitesPrerequisites

.NET Core 2.0 SDK.NET Core 2.0 SDK

TIPTIP

Installing Docker ClientInstalling Docker Client

Create a .NET Core 2.0 console app for DockerizationCreate a .NET Core 2.0 console app for Dockerization

dotnet new console
dotnet run

This tutorial teaches the Docker container build and deploy tasks for a .NET Core application. During the course of this tutorial, you learn:

How to create a Dockerfile
How to create a .NET Core app.
How to deploy your app into a Docker container.

The Docker platform uses the Docker Engine to quickly build and package apps as Docker images. These images are written in the Dockerfile format to
be deployed and run in a layered container.

Before creating the Docker image, you need an application to containerize. You can create it on Linux, MacOS, or Windows. The quickest and easiest
way to do that is to use .NET Core.

If you're unfamiliar with the .NET Core CLI toolset, read the .NET Core SDK overview.

You can build both Windows and Linux containers with multi-arch based tags.

To complete this tutorial:

Install .NET Core SDK 2.0.

See .NET Core 2.x Supported OS Versions for the complete list of .NET Core 2.x supported operating systems, out of support OS versions, and lifecycle
policy links.

Install your favorite code editor, if you haven't already.

Need to install a code editor? Try Visual Studio!

Install Docker 17.06 or later of the Docker client.

The Docker client can be installed in:

Linux distributions

CentOS

Debian

Fedora

Ubuntu

macOS

Windows.

Open a command prompt and create a folder named Hello. Navigate to the folder you created and type the following commands:

Let's do a quick walkthrough:

1. $ dotnet new console

dotnet new creates an up-to-date Hello.csproj project file with the dependencies necessary to build a console app. It also creates a Program.cs ,
a basic file containing the entry point for the application.

Hello.csproj :

https://github.com/dotnet/docs/blob/master/docs/core/docker/docker-basics-dotnet-core.md
https://docs.docker.com/engine/docker-overview/#the-docker-platform
https://docs.docker.com/engine/docker-overview/#docker-engine
https://docs.docker.com/glossary/?term=image
https://docs.docker.com/glossary/?term=Dockerfile
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#container-and-layers
https://github.com/dotnet/announcements/issues/14
https://www.microsoft.com/net/core
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://visualstudio.com/downloads
https://docs.docker.com/release-notes/docker-ce/
https://www.docker.com/docker-centos-distribution
https://www.docker.com/docker-debian
https://www.docker.com/docker-fedora
https://www.docker.com/docker-ubuntu
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/

NOTENOTE

Dockerize the .NET Core application

Your first DockerfileYour first Dockerfile

FROM microsoft/dotnet:2.0-sdk
WORKDIR /app

copy csproj and restore as distinct layers
COPY *.csproj ./
RUN dotnet restore

copy and build everything else
COPY . ./
RUN dotnet publish -c Release -o out
ENTRYPOINT ["dotnet", "out/Hello.dll"]

FROM microsoft/dotnet:2.0-sdk

The project file specifies everything that's needed to restore dependencies and build the program.

The OutputType tag specifies that we're building an executable, in other words a console application.
The TargetFramework tag specifies what .NET implementation we're targeting. In an advanced scenario, you can specify multiple target
frameworks and build to the specified frameworks in a single operation. In this tutorial, we build for .NET Core 2.0.

Program.cs :

The program starts by using System . This statement means, "Bring everything in the System namespace into scope for this file." The System

namespace includes basic constructs such as string , or numeric types.

We then define a namespace called Hello . You can change namespace to anything you want. A class named Program is defined within that
namespace, with a Main method that takes an array of strings as its argument. This array contains the list of arguments passed in when the
compiled program is called. In our example, the program only writes "Hello World!" to the console.

2. $ dotnet restore

In .NET Core 2.x, dotnet new runs the dotnet restore command. Dotnet restore restores the tree of dependencies with a NuGet(.NET
package manager) call. NuGet performs the following tasks:

analyzes the Hello.csproj file
downloads the file dependencies (or grabs from your machine cache)
writes the obj/project.assets.json file

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

The project.assets.json file is a complete set of the NuGet dependencies graph, binding resolutions, and other app metadata. This required file is used by
other tools, such as dotnet build and dotnet run , to correctly process the source code.

$ dotnet run

Hello World!

3. $ dotnet run

dotnet run calls dotnet build to confirm a successful build, and then calls dotnet <assembly.dll> to run the application.

For advanced scenarios, see .NET Core Application Deployment for details.

The Hello .NET Core console app successfully runs locally. Now let's take it a step further and build and run the app in Docker.

Open your text editor and let's get started! We're still working from the Hello directory we built the app in.

Add the following Docker instructions for either Linux or Windows Containers to a new file. When finished, save it in the root of your Hello directory as
Dockerfile, with no extension (You may need to set your file type to All types (*.*) or something similar).

The Dockerfile contains Docker build instructions that run sequentially.

The first instruction must be FROM. This instruction initializes a new build stage and sets the Base Image for the remaining instructions. The multi-arch
tags pull either Windows or Linux containers depending on the Docker for Windows container mode. The Base Image for our sample is the 2.0-sdk
image from the microsoft/dotnet repository,

The WORKDIR instruction sets the working directory for any remaining RUN, CMD, ENTRYPOINT, COPY, and ADD Dockerfile instructions. If the

https://www.nuget.org/
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/docker-for-windows/#switch-between-windows-and-linux-containers
https://docs.docker.com/engine/reference/builder/#workdir

WORKDIR /app

COPY *.csproj ./

RUN dotnet restore

COPY . ./

RUN dotnet publish -c Release -o out

ENTRYPOINT ["dotnet", "out/Hello.dll"]

Build and run the Hello .NET Core 2.0 appBuild and run the Hello .NET Core 2.0 app
Essential Docker commandsEssential Docker commands

Build and runBuild and run

docker build -t dotnetapp-dev .
docker run --rm dotnetapp-dev Hello from Docker

directory doesn't exist, it's created. In this case, WORKDIR is set to the app directory.

The COPY instruction copies new files or directories from the source path and adds them to the destination container filesystem. With this instruction,
we are copying the C# project file to the container.

The RUN instruction executes any commands in a new layer on top of the current image and commit the results. The resulting committed image is
used for the next step in the Dockerfile. We are running dotnet restore to get the needed dependencies of the C# project file.

This COPY instruction copies the rest of the files into our container into new layers.

We are publishing the app with this RUN instruction. The dotnet publish command compiles the application, reads through its dependencies specified
in the project file, and publishes the resulting set of files to a directory. Our app is published with a Release configuration and output to the default
directory.

The ENTRYPOINT instruction allows the container to run as an executable.

Now you have a Dockerfile that:

copies your app to the image
your app's dependencies to the image
builds the app to run as an executable

These Docker commands are essential:

docker build
docker run
docker ps
docker stop
docker rm
docker rmi
docker image

You wrote the dockerfile; now Docker builds your app and then runs the container.

The output from the docker build command should be similar to the following console output:

https://docs.docker.com/engine/reference/builder/#copy
https://docs.docker.com/engine/reference/builder/#run
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/image/

Sending build context to Docker daemon 72.7kB
Step 1/7 : FROM microsoft/dotnet:2.0-sdk
 ---> d84f64b126a6
Step 2/7 : WORKDIR /app
 ---> Using cache
 ---> 9af1fbdc7972
Step 3/7 : COPY *.csproj ./
 ---> Using cache
 ---> 86c8c332d4b3
Step 4/7 : RUN dotnet restore
 ---> Using cache
 ---> 86fcd7dd0ea4
Step 5/7 : COPY . ./
 ---> Using cache
 ---> 6faf0a53607f
Step 6/7 : RUN dotnet publish -c Release -o out
 ---> Using cache
 ---> f972328318c8
Step 7/7 : ENTRYPOINT dotnet out/Hello.dll
 ---> Using cache
 ---> 53c337887e18
Successfully built 53c337887e18
Successfully tagged dotnetapp-dev:latest

Hello World!

Next Steps

NOTENOTE

Docker Images used in this sample

Related Resources

As you can see from the output, the Docker Engine used the Dockerfile to build our container.

The output from the docker run command should be similar to the following console output:

Congratulations! you have just:

Created a local .NET Core app
Created a Dockerfile to build your first container
Built and ran your Dockerized app

Here are some next steps you can take:

Introduction to .NET Docker Images Video
Visual Studio, Docker & Azure Container Instances better together!
Docker for Azure Quickstarts
Deploy your app on Docker for Azure

If you do not have an Azure subscription, sign up today for a free 30-day account and get $200 in Azure Credits to try out any combination of Azure services.

The following Docker images are used in this sample

microsoft/dotnet:2.0-sdk

.NET Core Docker samples
Dockerfile on Windows Containers
.NET Framework Docker samples
ASP.NET Core on DockerHub
Dockerize a .NET Core application - Docker Tutorial
Working with Visual Studio Docker Tools
Deploying Docker Images from the Azure Container Registry to Azure Container Instances

https://channel9.msdn.com/Shows/Code-Conversations/Introduction-to-NET-Docker-Images-with-Kendra-Havens?term=docker
https://blogs.msdn.microsoft.com/alimaz/2017/08/17/visual-studio-docker-azure-container-instances-better-together/
https://docs.docker.com/docker-for-azure/#docker-community-edition-ce-for-azure
https://docs.docker.com/docker-for-azure/deploy/
https://azure.microsoft.com/free/?b=16.48
https://hub.docker.com/r/microsoft/dotnet
https://github.com/dotnet/dotnet-docker-samples/README.md
https://docs.microsoft.com/virtualization/windowscontainers/manage-docker/manage-windows-dockerfile
https://github.com/Microsoft/dotnet-framework-docker-samples
https://hub.docker.com/r/microsoft/aspnetcore/
https://docs.docker.com/engine/examples/dotnetcore/
https://docs.microsoft.com/aspnet/core/publishing/visual-studio-tools-for-docker
https://blogs.msdn.microsoft.com/stevelasker/2017/07/28/deploying-docker-images-from-the-azure-container-registry-to-azure-container-instances/

Building Docker Images for .NET Core Applications
7/11/2018 • 8 minutes to read • Edit Online

Docker Image Optimizations

Docker image variations

TIPTIP

Alternative images

In this tutorial, We focus on how to use .NET Core on Docker. First, we explore the different Docker images offered and maintained by Microsoft, and
use cases. We then learn how to build and dockerize an ASP.NET Core app.

During the course of this tutorial, you learn:

Learn about Microsoft .NET Core Docker images
Get an ASP.NET Core sample app to Dockerize
Run the ASP.NET sample app locally
Build and run the sample with Docker for Linux containers
Build and run the sample with Docker for Windows containers

When building Docker images for developers, we focused on three main scenarios:

Images used to develop .NET Core apps
Images used to build .NET Core apps
Images used to run .NET Core apps

Why three images? When developing, building, and running containerized applications, we have different priorities.

Development: The priority focuses on quickly iterate changes, and the ability to debug the changes. The size of the image isn't as important,
rather can you make changes to your code and see them quickly?

Build: This image contains everything needed to compile your app, which includes the compiler and any other dependencies to optimize the
binaries. You use the build image to create the assets you place into a production image. The build image would be used for continuous
integration, or in a build environment. This approach allows a build agent to compile and build the application (with all the required
dependencies) in a build image instance. Your build agent only needs to know how to run this Docker image.

Production: How fast you can deploy and start your image? This image is small so network performance from your Docker Registry to your
Docker hosts is optimized. The contents are ready to run enabling the fastest time from Docker run to processing results. Dynamic code
compilation isn't needed in the Docker model. The content you place in this image would be limited to the binaries and content needed to run the
application.

For example, the dotnet publish output contains:

the compiled binaries
.js and .css files

The reason to include the dotnet publish command output in your production image is to keep its size to a minimum.

Some .NET Core images share layers between different tags so downloading the latest tag is a relatively lightweight process. If you already have an
older version on your machine, this architecture decreases the needed disk space.

When multiple applications use common images on the same machine, memory is shared between the common images. The images must be the same
to be shared.

To achieve the goals above, we provide image variants under microsoft/dotnet .

microsoft/dotnet:<version>-sdk (microsoft/dotnet:2.1-sdk) This image contains the .NET Core SDK, which includes the .NET Core and Command
Line Tools (CLI). This image maps to the development scenario. You use this image for local development, debugging, and unit testing. This image
can also be used for your build scenarios. Using microsoft/dotnet:sdk always gives you the latest version.

If you are unsure about your needs, you want to use the microsoft/dotnet:<version>-sdk image. As the "de facto" image, it's designed to be used as a throw away
container (mount your source code and start the container to start your app), and as the base image to build other images from.

microsoft/dotnet:<version>-runtime : This image contains the .NET Core (runtime and libraries) and is optimized for running .NET Core apps in
production.

In addition to the optimized scenarios of development, build and production, we provide additional images:

https://github.com/dotnet/docs/blob/master/docs/core/docker/building-net-docker-images.md
https://hub.docker.com/r/microsoft/dotnet/

Samples to explore

Forward the request scheme and original IP address

Your first ASP.NET Core Docker app

NOTENOTE

PrerequisitesPrerequisites

.NET Core 2.1 SDK.NET Core 2.1 SDK

TIPTIP

Installing Docker ClientInstalling Docker Client

microsoft/dotnet:<version>-runtime-deps : The runtime-deps image contains the operating system with all of the native dependencies needed by
.NET Core. This image is for self-contained applications.

Latest versions of each variant:

microsoft/dotnet or microsoft/dotnet:latest (alias for the SDK image)
microsoft/dotnet:sdk

microsoft/dotnet:runtime

microsoft/dotnet:runtime-deps

This ASP.NET Core Docker sample demonstrates a best practice pattern for building Docker images for ASP.NET Core apps for production. The
sample works with both Linux and Windows containers.

This .NET Core Docker sample demonstrates a best practice pattern for building Docker images for .NET Core apps for production.

Proxy servers, load balancers, and other network appliances often obscure information about a request before it reaches the containerized app:

When HTTPS requests are proxied over HTTP, the original scheme (HTTPS) is lost and must be forwarded in a header.
Because an app receives a request from the proxy and not its true source on the Internet or corporate network, the original client IP address must
also be forwarded in a header.

This information may be important in request processing, for example in redirects, authentication, link generation, policy evaluation, and client
geolocation.

To forward the scheme and original IP address to a containerized ASP.NET Core app, use Forwarded Headers Middleware. For more information, see
Configure ASP.NET Core to work with proxy servers and load balancers.

For this tutorial, lets use an ASP.NET Core Docker sample application for the app we want to dockerize. This ASP.NET Core Docker sample application
demonstrates a best practice pattern for building Docker images for ASP.NET Core apps for production. The sample works with both Linux and
Windows containers.

The sample Dockerfile creates an ASP.NET Core application Docker image based off of the ASP.NET Core Runtime Docker base image.

It uses the Docker multi-stage build feature to:

build the sample in a container based on the larger ASP.NET Core Build Docker base image
copies the final build result into a Docker image based on the smaller ASP.NET Core Docker Runtime base image

The build image contains required tools to build applications while the runtime image does not.

To build and run, install the following items:

Install .NET Core SDK 2.1.

Install your favorite code editor, if you haven't already.

Need to install a code editor? Try Visual Studio!

Install Docker 18.03 or later of the Docker client.

The Docker client can be installed in:

Linux distributions

CentOS

Debian

Fedora

Ubuntu

https://github.com/dotnet/dotnet-docker/tree/master/samples/aspnetapp
https://github.com/dotnet/dotnet-docker/tree/master/samples/dotnetapp
https://docs.microsoft.com/aspnet/core/host-and-deploy/proxy-load-balancer
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://www.microsoft.com/net/core
https://visualstudio.com/downloads
https://docs.docker.com/release-notes/docker-ce/
https://www.docker.com/docker-centos-distribution
https://www.docker.com/docker-debian
https://www.docker.com/docker-fedora
https://www.docker.com/docker-ubuntu

Installing Git for sample repositoryInstalling Git for sample repository

Getting the sample applicationGetting the sample application

git clone https://github.com/dotnet/dotnet-docker

Run the ASP.NET app locallyRun the ASP.NET app locally

cd dotnet-docker
cd samples
cd aspnetapp // solution scope where the dockerfile is located
cd aspnetapp // project scope

dotnet run

Build and run the sample with Docker for Linux containersBuild and run the sample with Docker for Linux containers

cd dotnet-docker
cd samples
cd aspnetapp // solution scope where the dockerfile is located

docker build -t aspnetapp .
docker run -it --rm -p 5000:80 --name aspnetcore_sample aspnetapp

NOTENOTE

Build and run the sample with Docker for Windows containersBuild and run the sample with Docker for Windows containers

cd dotnet-docker
cd samples
cd aspnetapp // solution scope where the dockerfile is located

docker build -t aspnetapp .
docker run -it --rm --name aspnetcore_sample aspnetapp

IMPORTANTIMPORTANT

NOTENOTE

macOS

Windows.

Install git if you wish to clone the repository.

The easiest way to get the sample is by cloning the .NET Core Docker repository with git, using the following instructions:

You can also download the repository (it is small) as a zip from the .NET Core Docker repository.

For a reference point, before we containerize the application, first run the application locally.

You can build and run the application locally with the .NET Core 2.1 SDK using the following commands (The instructions assume the root of the
repository):

After the application starts, visit http://localhost:5000 in your web browser.

You can build and run the sample in Docker using Linux containers using the following commands (The instructions assume the root of the repository):

The docker run '-p' argument maps port 5000 on your local machine to port 80 in the container (the port mapping form is host:container). For more
information, see the docker run reference on command-line parameters.

After the application starts, visit http://localhost:5000 in your web browser.

You can build and run the sample in Docker using Windows containers using the following commands (The instructions assume the root of the
repository):

You must navigate to the container IP address (as opposed to http://localhost) in your browser directly when using Windows containers. You can get the IP address
of your container with the following steps:

Open up another command prompt.
Run docker ps to see your running containers. The "aspnetcore_sample" container should be there.
Run docker exec aspnetcore_sample ipconfig .
Copy the container IP address and paste into your browser (for example, 172.29.245.43).

Docker exec supports identifying containers with name or hash. The name (aspnetcore_sample) is used in our example.

https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://git-scm.com/download
https://github.com/dotnet/dotnet-docker
http://localhost:5000
https://docs.docker.com/engine/reference/commandline/exec/
http://localhost:5000
http://localhost

docker exec aspnetcore_sample ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

 Connection-specific DNS Suffix . : contoso.com
 Link-local IPv6 Address : fe80::1967:6598:124:cfa3%4
 IPv4 Address. : 172.29.245.43
 Subnet Mask : 255.255.240.0
 Default Gateway : 172.29.240.1

NOTENOTE

dotnet publish -c Release -o published

NOTENOTE

dotnet published\aspnetapp.dll

dotnet published/aspnetapp.dll

Docker Images used in this sampleDocker Images used in this sample

NOTENOTE

See the following example of how to get the IP address of a running Windows container.

Docker exec runs a new command in a running container. For more information, see the docker exec reference on command-line parameters.

You can produce an application that is ready to deploy to production locally using the dotnet publish command.

The -c Release argument builds the application in release mode (the default is debug mode). For more information, see the dotnet run reference on command-line
parameters.

You can run the application on Windows using the following command.

You can run the application on Linux or macOS using the following command.

The following Docker images are used in this sample's dockerfile.

microsoft/dotnet:2.1-sdk

microsoft/dotnet:2.1-aspnetcore-runtime

Congratulations! you have just:

Learned about Microsoft .NET Core Docker images
Got an ASP.NET Core sample app to Dockerize
Ran the ASP.NET sample app locally
Built and ran the sample with Docker for Linux containers
Built and ran the sample with Docker for Windows containers

Next Steps

Here are some next steps you can take:

Working with Visual Studio Docker Tools
Deploying Docker Images from the Azure Container Registry to Azure Container Instances
Debugging with Visual Studio Code
Getting hands on with Visual Studio for Mac, containers, and serverless code in the cloud
Getting Started with Docker and Visual Studio for Mac Lab

If you do not have an Azure subscription, sign up today for a free 30-day account and get $200 in Azure Credits to try out any combination of Azure services.

https://docs.docker.com/engine/reference/commandline/exec/
https://docs.microsoft.com/aspnet/core/publishing/visual-studio-tools-for-docker
https://blogs.msdn.microsoft.com/stevelasker/2017/07/28/deploying-docker-images-from-the-azure-container-registry-to-azure-container-instances/
https://code.visualstudio.com/docs/nodejs/debugging-recipes#_nodejs-typescript-docker-container
https://blogs.msdn.microsoft.com/visualstudio/2017/08/31/hands-on-with-visual-studio-for-mac-containers-serverless-code-in-the-cloud/#comments
https://github.com/Microsoft/vs4mac-labs/tree/master/Docker/Getting-Started
https://azure.microsoft.com/free/?b=16.48

Unit Testing in .NET Core and .NET Standard
5/4/2018 • 3 minutes to read • Edit Online

Getting Started with Testing

NOTENOTE

.NET Core has been designed with testability in mind, so that creating unit tests for your applications is easier than ever before. This article briefly
introduces unit tests (and how they differ from other kinds of tests). Linked resources demonstrate how to add a test project to your solution and then
run unit tests using either the command line or Visual Studio.

.NET Core 2.0 supports .NET Standard 2.0. The libraries used to demonstrate unit testing in this section rely on .NET Standard and will work in other
project types as well.

Beginning with .NET Core 2.0, there are unit test project templates for Visual Basic and F# as well as C#.

Having a suite of automated tests is one of the best ways to ensure a software application does what its authors intended it to do. There are different
kinds of tests for software applications, including integration tests, web tests, load tests, and others. Unit tests that test individual software components
or methods are the lowest level tests. Unit tests should only test code within the developer’s control, and should not test infrastructure concerns, like
databases, file systems, or network resources. Unit tests may be written using Test Driven Development (TDD), or they can be added to existing code to
confirm its correctness. In either case, they should be small, well-named, and fast, since ideally you want to be able to run hundreds of them before
pushing your changes into the project’s shared code repository.

Developers often struggle with coming up with good names for their test classes and methods. As a starting point, the ASP.NET product team follows these
conventions.

When writing unit tests, be careful you don’t accidentally introduce dependencies on infrastructure. These tend to make tests slower and more brittle,
and thus should be reserved for integration tests. You can avoid these hidden dependencies in your application code by following the Explicit
Dependencies Principle and using Dependency Injection to request your dependencies from the framework. You can also keep your unit tests in a
separate project from your integration tests, and ensure your unit test project doesn’t have references to or dependencies on infrastructure packages.

Learn more about unit testing in .NET Core projects:

Unit Test projects for .NET Core are supported for C#, F# and Visual Basic. You can also choose between xUnit, NUnit and MSTest.

You can read about those combinations in these walkthroughs:

Create unit tests using XUnit and C# with the .NET Core CLI.
Create unit tests using NUnit and C# with the .NET Core CLI.
Create unit tests using MSTest and C# with the .NET Core CLI.
Create unit tests using XUnit and F# with the .NET Core CLI.
Create unit tests using NUnit and F# with the .NET Core CLI.
Create unit tests using MSTest and F# with the .NET Core CLI.
Create unit tests using XUnit and Visual Basic with the .NET Core CLI.
Create unit tests using NUnit and Visual Basic with the .NET Core CLI.
Create unit tests using MSTest and Visual Basic with the .NET Core CLI.

You can choose different languages for your class libraries and your unit test libraries. You can learn how by mixing and matching the walkthroughs
referenced above.

Visual Studio Enterprise offers great testing tools for .NET Core. Check out Live Unit Testing or code coverage to learn more.
For additional information and examples on how to use selective unit test filtering, see Running selective unit tests, or including and excluding tests
with Visual Studio.
The XUnit team has written a tutorial that shows how to use xUnit with .NET Core and Visual Studio.

https://github.com/dotnet/docs/blob/master/docs/core/testing/index.md
http://deviq.com/test-driven-development/
https://github.com/aspnet/Home/wiki/Engineering-guidelines#unit-tests-and-functional-tests
http://deviq.com/explicit-dependencies-principle/
https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection
http://xunit.github.io
http://nunit.org
https://github.com/Microsoft/vstest-docs
https://docs.microsoft.com/visualstudio/test/live-unit-testing
https://github.com/Microsoft/vstest-docs/blob/master/docs/analyze.md#working-with-code-coverage
https://docs.microsoft.com/visualstudio/test/live-unit-testing#including-and-excluding-test-projects-and-test-methods
http://xunit.github.io/docs/getting-started-dotnet-core.html

Unit testing C# in .NET Core using dotnet test and xUnit
7/18/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first");
 }
 }
}

dotnet sln add .\PrimeService\PrimeService.csproj

Creating the test project

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-using-dotnet-test to hold the solution. Inside this new directory, run dotnet new sln to
create a new solution. Having a solution makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a
PrimeService directory. The directory and file structure thus far should be as follows:

Make PrimeService the current directory and run dotnet new classlib to create the source project. Rename Class1.cs to PrimeService.cs. To use test-
driven development (TDD), you first create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-dotnet-test directory.

Run the dotnet sln command to add the class library project to the solution:

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new xunit . This command creates a test project that
uses xUnit as the test library. The generated template configures the test runner in the PrimeServiceTests.csproj file similar to the following code:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit and the xUnit runner. Now, add the
PrimeService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

The following shows the final solution layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-using-dotnet-test/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService.Tests/PrimeService.Tests.csproj

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.csproj

dotnet sln add .\PrimeService.Tests\PrimeService.Tests.csproj

Creating the first test

using Xunit;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;

 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [Fact]
 public void ReturnFalseGivenValueOf1()
 {
 var result = _primeService.IsPrime(1);

 Assert.False(result, "1 should not be prime");
 }
 }
}

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first");
}

Adding more features

To add the test project to the solution, run the dotnet sln command in the unit-testing-using-dotnet-test directory:

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.cs from the PrimeService.Tests
directory and create a new C# file named PrimeService_IsPrimeShould.cs. Add the following code:

The [Fact] attribute indicates a test method that is run by the test runner. From the PrimeService.Tests folder, execute dotnet test to build the tests
and the class library and then run the tests. The xUnit test runner contains the program entry point to run your tests. dotnet test starts the test runner
using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the PrimeService class that works.
Replace the existing IsPrime method implementation with the following code:

In the PrimeService.Tests directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add those cases as
new tests with the [Fact] attribute, but that quickly becomes tedious. There are other xUnit attributes that enable you to write a suite of similar tests:

[Theory] represents a suite of tests that execute the same code but have different input arguments.

[InlineData] attribute specifies values for those inputs.

Instead of creating new tests, apply these two attributes, [Theory] and [InlineData] , to create a single theory in the PrimeService_IsPrimeShould.cs

file. The theory is a method that tests several values less than two, which is the lowest prime number:

[Theory]
[InlineData(-1)]
[InlineData(0)]
[InlineData(1)]
public void ReturnFalseGivenValuesLessThan2(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.False(result, $"{value} should not be prime");
}

if (candidate < 2)

Additional resourcesAdditional resources

Run dotnet test again, and two of these tests should fail. To make all of the tests pass, change the if clause at the beginning of the IsPrime method
in the PrimeService.cs file:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

Testing controller logic in ASP.NET Core

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-dotnet-test/PrimeService/PrimeService.cs
https://docs.microsoft.com/aspnet/core/mvc/controllers/testing

Unit testing C# with NUnit and .NET Core
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first");
 }
 }
}

Install the NUnit project template

dotnet new -i NUnit3.DotNetNew.Template

Creating the test projectCreating the test project

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="NUnit" Version="3.9.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.9.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-using-nunit to hold the solution. Inside this new directory, run dotnet new sln to create a
new solution file for the class library and the test project. Next, create a PrimeService directory. The following outline shows the directory and file
structure thus far :

Make PrimeService the current directory and run dotnet new classlib to create the source project. Rename Class1.cs to PrimeService.cs. To use test-
driven development (TDD), you create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-nunit directory. Run dotnet sln add PrimeService/PrimeService.csproj to add the class library
project to the solution.

The NUnit test project templates need to be installed before creating a test project. This only needs to be done once on each developer machine where
you'll create new NUnit projects. Run dotnet new -i NUnit3.DotNetNew.Template to install the NUnit templates.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new nunit . The dotnet new command creates a test
project that uses NUnit as the test library. The generated template configures the test runner in the PrimeServiceTests.csproj file:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added the Microsoft test SDK, the NUnit test
framework, and the NUnit test adapter. Now, add the PrimeService class library as another dependency to the project. Use the dotnet add reference

command:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-nunit.md
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/

/unit-testing-using-nunit
 unit-testing-using-nunit.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.csproj

Creating the first test

using NUnit.Framework;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 [TestFixture]
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;

 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [Test]
 public void ReturnFalseGivenValueOf1()
 {
 var result = _primeService.IsPrime(1);

 Assert.IsFalse(result, "1 should not be prime");
 }
 }
}

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first");
}

Adding more features

You can see the entire file in the samples repository on GitHub.

The following outline shows the final solution layout:

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.csproj in the unit-testing-using-dotnet-test directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.cs from the PrimeService.Tests
directory and create a new C# file named PrimeService_IsPrimeShould.cs with the following content:

The [TestFixture] attribute denotes a class that contains unit tests. The [Test] attribute indicates a method is a test method.

Save this file and execute dotnet test to build the tests and the class library and then run the tests. The NUnit test runner contains the program entry
point to run your tests. dotnet test starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the PrimeService class that works:

In the unit-testing-using-nunit directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add new tests with
the [Test] attribute, but that quickly becomes tedious. There are other NUnit attributes that enable you to write a suite of similar tests. A [TestCase]

attribute is used to create a suite of tests that execute the same code but have different input arguments. You can use the [TestCase] attribute to specify
values for those inputs.

Instead of creating new tests, apply this attribute to create a single data driven test. The data driven test is a method that tests several values less than
two, which is the lowest prime number:

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService.Tests/PrimeService.Tests.csproj

[TestCase(-1)]
[TestCase(0)]
[TestCase(1)]
public void ReturnFalseGivenValuesLessThan2(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.IsFalse(result, $"{value} should not be prime");
}

if (candidate < 2)

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-nunit/PrimeService/PrimeService.cs

Unit testing C# with MSTest and .NET Core
6/29/2018 • 4 minutes to read • Edit Online

Creating the source projectCreating the source project

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first");
 }
 }
}

Creating the test projectCreating the test project

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.csproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-using-mstest to hold the solution. Inside this new directory, run dotnet new sln to create a
new solution file for the class library and the test project. Next, create a PrimeService directory. The following outline shows the directory and file
structure thus far :

Make PrimeService the current directory and run dotnet new classlib to create the source project. Rename Class1.cs to PrimeService.cs. To use test-
driven development (TDD), you create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-using-mstest directory. Run dotnet sln add PrimeService/PrimeService.csproj to add the class library
project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new mstest . The dotnet new command creates a test
project that uses MStest as the test library. The generated template configures the test runner in the PrimeServiceTests.csproj file:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added the MSTest SDK, the MSTest test
framework, and the MSTest runner. Now, add the PrimeService class library as another dependency to the project. Use the dotnet add reference

command:

You can see the entire file in the samples repository on GitHub.

The following outline shows the final solution layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-with-mstest.md
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService.Tests/PrimeService.Tests.csproj

/unit-testing-using-mstest
 unit-testing-using-mstest.sln
 /PrimeService
 Source Files
 PrimeService.csproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.csproj

Creating the first test

using Microsoft.VisualStudio.TestTools.UnitTesting;
using Prime.Services;

namespace Prime.UnitTests.Services
{
 [TestClass]
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;

 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [TestMethod]
 public void ReturnFalseGivenValueOf1()
 {
 var result = _primeService.IsPrime(1);

 Assert.IsFalse(result, "1 should not be prime");
 }
 }
}

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first");
}

Adding more features

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.csproj in the unit-testing-using-dotnet-test directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.cs from the PrimeService.Tests
directory and create a new C# file named PrimeService_IsPrimeShould.cs with the following content:

The [TestClass] attribute denotes a class that contains unit tests. The [TestMethod] attribute indicates a method is a test method.

Save this file and execute dotnet test to build the tests and the class library and then run the tests. The MSTest test runner contains the program entry
point to run your tests. dotnet test starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing the simplest code in the PrimeService class that works:

In the unit-testing-using-mstest directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add new tests with
the [TestMethod] attribute, but that quickly becomes tedious. There are other MSTest attributes that enable you to write a suite of similar tests. A
[DataTestMethod] attribute represents a suite of tests that execute the same code but have different input arguments. You can use the [DataRow]

attribute to specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single data driven test. The data driven test is a method that tests several values less
than two, which is the lowest prime number: :

[DataTestMethod]
[DataRow(-1)]
[DataRow(0)]
[DataRow(1)]
public void ReturnFalseGivenValuesLessThan2(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.IsFalse(result, $"{value} should not be prime");
}

if (candidate < 2)

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService.Tests/PrimeService_IsPrimeShould.cs
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-using-mstest/PrimeService/PrimeService.cs

Unit testing F# libraries in .NET Core using dotnet test and xUnit
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

Creating the test project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathServiceTests.fsproj

Creating the first test

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new directory, run dotnet new sln to create a
new solution. This makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a MathService directory.
The directory and file structure thus far is shown below:

Make MathService the current directory and run dotnet new classlib -lang F# to create the source project. To use test-driven development (TDD),
you'll create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run dotnet sln add .\MathService\MathService.fsproj to add the class library
project to the solution.

Next, create the MathService.Tests directory. The following outline shows the directory structure:

Make the MathService.Tests directory the current directory and create a new project using dotnet new xunit -lang F# . This creates a test project that
uses xUnit as the test library. The generated template configures the test runner in the MathServiceTests.fsproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit and the xUnit runner. Now, add the
MathService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute dotnet sln add .\MathService.Tests\MathService.Tests.fsproj in the unit-testing-with-fsharp directory.

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

[<Fact>]
let ``My test`` () =
 Assert.True(true)

[<Fact>]
let ``Fail every time`` () = Assert.True(false)

[<Fact>]
let ``Sequence of Evens returns empty collection`` () =
 let expected = Seq.empty<int>
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.Equal<Collections.Generic.IEnumerable<int>>(expected, actual)

let squaresOfOdds xs =
 Seq.empty<int>

Completing the requirements

[<Fact>]
let ``Sequences of Ones and Evens returns Ones`` () =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.Equal<Collections.Generic.IEnumerable<int>>(expected, actual)

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd

[<Fact>]
let ``SquaresOfOdds works`` () =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.Equal(expected, actual)

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Open Tests.fs and add the following code:

The [<Fact>] attribute denotes a test method that is run by the test runner. From the unit-testing-with-fsharp, execute dotnet test to build the tests
and the class library and then run the tests. The xUnit test runner contains the program entry point to run your tests. dotnet test starts the test runner
using the unit test project you've created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now, create a test for the squaresOfOdds

method. The squaresOfOdds method returns a sequence of the squares of all odd integer values that are part of the input sequence. Rather than trying
to write all of those functions at once, you can iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty sequence of integers. Here's that
test:

Your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the MathService class that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the MathService project and then for the
MathService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose only odd number is 1 . The number 1
is easier because the square of 1 is 1. Here's that next test:

Executing dotnet test runs your tests and shows you that the new test fails. Now, update the squaresOfOdds method to handle this new test. You filter
all the even numbers out of the sequence to make this test pass. You can do that by writing a small filter function and using Seq.filter :

There's one more step to go: square each of the odd numbers. Start by writing a new test:

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd number:

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

Unit testing F# libraries in .NET Core using dotnet test and NUnit
5/4/2018 • 5 minutes to read • Edit Online

Creating the source project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

Install the NUnit project template

dotnet new -i NUnit3.DotNetNew.Template

Creating the test project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="NUnit" Version="3.9.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.9.0" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new directory, run dotnet new sln to create a
new solution. This makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a MathService directory.
The directory and file structure thus far is shown below:

Make MathService the current directory and run dotnet new classlib -lang F# to create the source project. To use test-driven development (TDD),
you'll create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run dotnet sln add .\MathService\MathService.fsproj to add the class library
project to the solution.

The NUnit test project templates need to be installed before creating a test project. This only needs to be done once on each developer machine where
you'll create new NUnit projects. Run dotnet new -i NUnit3.DotNetNew.Template to install the NUnit templates.

Next, create the MathService.Tests directory. The following outline shows the directory structure:

Make the MathService.Tests directory the current directory and create a new project using dotnet new nunit -lang F# . This creates a test project that
uses NUnit as the test framework. The generated template configures the test runner in the MathServiceTests.fsproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added NUnit and the NUnit test adapter. Now, add
the MathService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-nunit.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp-nunit/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathServiceTests.fsproj

Creating the first test

namespace MathService.Tests

open System
open NUnit.Framework
open MathService

[<TestFixture>]
type TestClass () =

 [<Test>]
 member this.TestMethodPassing() =
 Assert.True(true)

 [<Test>]
 member this.FailEveryTime() = Assert.True(false)

[<Test>]
member this.TestEvenSequence() =
 let expected = Seq.empty<int>
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.That(actual, Is.EqualTo(expected))

let squaresOfOdds xs =
 Seq.empty<int>

Completing the requirements

[<Test>]
member public this.TestOnesAndEvens() =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.That(actual, Is.EqualTo(expected))

Execute dotnet sln add .\MathService.Tests\MathService.Tests.fsproj in the unit-testing-with-fsharp directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Open Tests.fs and add the following code:

The [<TestFixture>] attribute denotes a class that contains tests. The [<Test>] attribute denotes a test method that is run by the test runner. From the
unit-testing-with-fsharp directory, execute dotnet test to build the tests and the class library and then run the tests. The NUnit test runner contains the
program entry point to run your tests. dotnet test starts the test runner using the unit test project you've created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now, create a test for the squaresOfOdds

method. The squaresOfOdds method returns a sequence of the squares of all odd integer values that are part of the input sequence. Rather than trying
to write all of those functions at once, you can iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty sequence of integers. Here's that
test:

Notice that the expected sequence has been converted to a list. The NUnit framework relies on many standard .NET types. That dependency means
that your public interface and expected results support ICollection rather than IEnumerable.

When you run the test, you see that your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the
Mathservice class that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the MathService project and then for the
MathService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose only odd number is 1 . The number 1
is easier because the square of 1 is 1. Here's that next test:

Executing dotnet test fails the new test. You must update the squaresOfOdds method to handle this new test. You must filter all the even numbers out
of the sequence to make this test pass. You can do that by writing a small filter function and using Seq.filter :

https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd

[<Test>]
member public this.TestSquaresOfOdds() =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.That(actual, Is.EqualTo(expected))

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square

Notice the call to Seq.toList . That creates a list, which implements the ICollection interface.

There's one more step to go: square each of the odd numbers. Start by writing a new test:

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd number:

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://docs.microsoft.com/dotnet/api/system.collections.icollection

Unit testing F# libraries in .NET Core using dotnet test and MSTest
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService

module MyMath =
 let squaresOfOdds xs = raise (System.NotImplementedException("You haven't written a test yet!"))

Creating the test project

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../MathService/MathService.fsproj

/unit-testing-with-fsharp
 unit-testing-with-fsharp.sln
 /MathService
 Source Files
 MathService.fsproj
 /MathService.Tests
 Test Source Files
 MathServiceTests.fsproj

Creating the first test

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-with-fsharp to hold the solution. Inside this new directory, run dotnet new sln to create a
new solution. This makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a MathService directory.
The directory and file structure thus far is shown below:

Make MathService the current directory and run dotnet new classlib -lang F# to create the source project. To use test-driven development (TDD),
you'll create a failing implementation of the math service:

Change the directory back to the unit-testing-with-fsharp directory. Run dotnet sln add .\MathService\MathService.fsproj to add the class library
project to the solution.

Next, create the MathService.Tests directory. The following outline shows the directory structure:

Make the MathService.Tests directory the current directory and create a new project using dotnet new mstest -lang F# . This creates a test project that
uses MSTest as the test framework. The generated template configures the test runner in the MathServiceTests.fsproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added MSTest and the MSTest runner. Now, add
the MathService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

Execute dotnet sln add .\MathService.Tests\MathService.Tests.fsproj in the unit-testing-with-fsharp directory.

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-fsharp-with-mstest.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-with-fsharp-mstest/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-with-fsharp/MathService.Tests/MathService.Tests.fsproj

namespace MathService.Tests

open System
open Microsoft.VisualStudio.TestTools.UnitTesting
open MathService

[<TestClass>]
type TestClass () =

 [<TestMethod>]
 member this.TestMethodPassing() =
 Assert.IsTrue(true)

 [<TestMethod>]
 member this.FailEveryTime() = Assert.IsTrue(false)

[<TestMethod>]
member this.TestEvenSequence() =
 let expected = Seq.empty<int> |> Seq.toList
 let actual = MyMath.squaresOfOdds [2; 4; 6; 8; 10]
 Assert.AreEqual(expected, actual)

let squaresOfOdds xs =
 Seq.empty<int> |> Seq.toList

Completing the requirements

[<TestMethod>]
member public this.TestOnesAndEvens() =
 let expected = [1; 1; 1; 1]
 let actual = MyMath.squaresOfOdds [2; 1; 4; 1; 6; 1; 8; 1; 10]
 Assert.AreEqual(expected, actual)

let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd |> Seq.toList

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Open Tests.fs and add the following code:

The [<TestClass>] attribute denotes a class that contains tests. The [<TestMethod>] attribute denotes a test method that is run by the test runner. From
the unit-testing-with-fsharp directory, execute dotnet test to build the tests and the class library and then run the tests. The MSTest test runner
contains the program entry point to run your tests. dotnet test starts the test runner using the unit test project you've created.

These two tests show the most basic passing and failing tests. My test passes, and Fail every time fails. Now, create a test for the squaresOfOdds

method. The squaresOfOdds method returns a list of the squares of all odd integer values that are part of the input sequence. Rather than trying to write
all of those functions at once, you can iteratively create tests that validate the functionality. Making each test pass means creating the necessary
functionality for the method.

The simplest test we can write is to call squaresOfOdds with all even numbers, where the result should be an empty sequence of integers. Here's that
test:

Notice that the expected sequence has been converted to a list. The MSTest library relies on many standard .NET types. That dependency means that
your public interface and expected results support ICollection rather than IEnumerable.

When you run the test, you see that your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the
Mathservice class that works:

In the unit-testing-with-fsharp directory, run dotnet test again. The dotnet test command runs a build for the MathService project and then for the
MathService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. The next simple case works with a sequence whose only odd number is 1 . The number 1
is easier because the square of 1 is 1. Here's that next test:

Executing dotnet test fails the new test. You must update the squaresOfOdds method to handle this new test. You must filter all the even numbers out
of the sequence to make this test pass. You can do that by writing a small filter function and using Seq.filter :

Notice the call to Seq.toList . That creates a list, which implements the ICollection interface.

There's one more step to go: square each of the odd numbers. Start by writing a new test:

https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.icollection

[<TestMethod>]
member public this.TestSquaresOfOdds() =
 let expected = [1; 9; 25; 49; 81]
 let actual = MyMath.squaresOfOdds [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
 Assert.AreEqual(expected, actual)

let private square x = x * x
let private isOdd x = x % 2 <> 0

let squaresOfOdds xs =
 xs
 |> Seq.filter isOdd
 |> Seq.map square
 |> Seq.toList

You can fix the test by piping the filtered sequence through a map operation to compute the square of each odd number:

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

Unit testing Visual Basic .NET Core libraries using dotnet test and xUnit
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first")
 End Function
 End Class
End Namespace

Creating the test project

/unit-testing-vb-using-dotnet-test
 unit-testing-vb-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

/unit-testing-using-dotnet-test
 unit-testing-using-dotnet-test.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.vbproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-vb-using-dotnet-test to hold the solution. Inside this new directory, run dotnet new sln to
create a new solution. This practice makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a
PrimeService directory. You have the following directory and file structure thus far :

Make PrimeService the current directory and run dotnet new classlib -lang VB to create the source project. Rename Class1.VB to PrimeService.VB. To
use test-driven development (TDD), you create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-dotnet-test directory. Run dotnet sln add .\PrimeService\PrimeService.vbproj to add the class
library project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new xunit -lang VB . This command creates a test
project that uses xUnit as the test library. The generated template configures the test runner in the PrimeServiceTests.vbproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added xUnit and the xUnit runner. Now, add the
PrimeService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final folder layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-dotnet-test.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-dotnet-test
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService.Tests/PrimeService.Tests.vbproj

Creating the first test

Imports Xunit

Namespace PrimeService.Tests
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Fact>
 Sub ReturnFalseGivenValueOf1()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.False(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first")
End Function

Adding more features

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj in the unit-testing-vb-using-dotnet-test directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.vb from the PrimeService.Tests
directory and create a new Visual Basic file named PrimeService_IsPrimeShould.VB. Add the following code:

The <Fact> attribute denotes a test method that is run by the test runner. From the unit-testing-using-dotnet-test, execute dotnet test to build the
tests and the class library and then run the tests. The xUnit test runner contains the program entry point to run your tests. dotnet test starts the test
runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the PrimeService class that works:

In the unit-testing-vb-using-dotnet-test directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and
then for the PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add those cases as
new tests with the <Fact> attribute, but that quickly becomes tedious. There are other xUnit attributes that enable you to write a suite of similar tests. A
<Theory> attribute represents a suite of tests that execute the same code but have different input arguments. You can use the <InlineData> attribute to

specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single theory. The theory is a method that tests several values less than two, which is
the lowest prime number:

Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Theory>
 <InlineData(-1)>
 <InlineData(0)>
 <InlineData(1)>
 Sub ReturnFalseGivenValuesLessThan2(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.False(result, $"{value} should not be prime")
 End Sub

 <Theory>
 <InlineData(2)>
 <InlineData(3)>
 <InlineData(5)>
 <InlineData(7)>
 Public Sub ReturnTrueGivenPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.True(result, $"{value} should be prime")
 End Sub

 <Theory>
 <InlineData(4)>
 <InlineData(6)>
 <InlineData(8)>
 <InlineData(9)>
 Public Sub ReturnFalseGivenNonPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.False(result, $"{value} should not be prime")
 End Sub
End Class

if candidate < 2

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-dotnet-test/PrimeService/PrimeService.vb

Unit testing Visual Basic .NET Core libraries using dotnet test and NUnit
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService

Imports System

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first")
 End Function
 End Class
End Namespace

Install the NUnit project template

dotnet new -i NUnit3.DotNetNew.Template

Creating the test project

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="NUnit" Version="3.9.0" />
 <PackageReference Include="NUnit3TestAdapter" Version="3.9.0" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-vb-nunit to hold the solution. Inside this new directory, run dotnet new sln to create a new
solution. This practice makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a PrimeService
directory. You have the following directory and file structure thus far :

Make PrimeService the current directory and run dotnet new classlib -lang VB to create the source project. Rename Class1.VB to PrimeService.VB. To
use test-driven development (TDD), you create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-stest directory. Run dotnet sln add .\PrimeService\PrimeService.vbproj to add the class library
project to the solution.

The NUnit test project templates need to be installed before creating a test project. This only needs to be done once on each developer machine where
you'll create new NUnit projects. Run dotnet new -i NUnit3.DotNetNew.Template to install the NUnit templates.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new nunit -lang VB . This command creates a test
project that uses NUnit as the test library. The generated template configures the test runner in the PrimeServiceTests.vbproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added NUnit and the NUnit test adapter. Now, add
the PrimeService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-nunit.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-nunit/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService.Tests/PrimeService.Tests.vbproj

/unit-testing-vb-nunit
 unit-testing-vb-nunit.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.vbproj

Creating the first test

Imports NUnit.Framework

Namespace PrimeService.Tests
 <TestFixture>
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <Test>
 Sub ReturnFalseGivenValueOf1()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.False(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first")
End Function

Adding more features

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj in the unit-testing-vb-nunit directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.vb from the PrimeService.Tests
directory and create a new Visual Basic file named PrimeService_IsPrimeShould.VB. Add the following code:

The <TestFixture> attribute indicates a class that contains tests. The <Test> attribute denotes a method that is run by the test runner. From the unit-

testing-vb-nunit, execute dotnet test to build the tests and the class library and then run the tests. The NUnit test runner contains the program entry
point to run your tests. dotnet test starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the PrimeService class that works:

In the unit-testing-vb-nunit directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add those cases as
new tests with the <Test> attribute, but that quickly becomes tedious. There are other xUnit attributes that enable you to write a suite of similar tests. A
<TestCase> attribute represents a suite of tests that execute the same code but have different input arguments. You can use the <TestCase> attribute to

specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a series of tests that test several values less than two, which is the lowest prime
number:

<TestFixture>
Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <TestCase(-1)>
 <TestCase(0)>
 <TestCase(1)>
 Sub ReturnFalseGivenValuesLessThan2(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub

 <TestCase(2)>
 <TestCase(3)>
 <TestCase(5)>
 <TestCase(7)>
 Public Sub ReturnTrueGivenPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsTrue(result, $"{value} should be prime")
 End Sub

 <TestCase(4)>
 <TestCase(6)>
 <TestCase(8)>
 <TestCase(9)>
 Public Sub ReturnFalseGivenNonPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub
End Class

if candidate < 2

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-nunit/PrimeService/PrimeService.vb

Unit testing Visual Basic .NET Core libraries using dotnet test and MStest
5/4/2018 • 4 minutes to read • Edit Online

Creating the source project

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService

Imports System

Namespace Prime.Services
 Public Class PrimeService
 Public Function IsPrime(candidate As Integer) As Boolean
 Throw New NotImplementedException("Please create a test first")
 End Function
 End Class
End Namespace

Creating the test project

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests

<ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.5.0" />
 <PackageReference Include="MSTest.TestAdapter" Version="1.1.18" />
 <PackageReference Include="MSTest.TestFramework" Version="1.1.18" />
</ItemGroup>

dotnet add reference ../PrimeService/PrimeService.vbproj

This tutorial takes you through an interactive experience building a sample solution step-by-step to learn unit testing concepts. If you prefer to follow
the tutorial using a pre-built solution, view or download the sample code before you begin. For download instructions, see Samples and Tutorials.

Open a shell window. Create a directory called unit-testing-vb-mstest to hold the solution. Inside this new directory, run dotnet new sln to create a new
solution. This practice makes it easier to manage both the class library and the unit test project. Inside the solution directory, create a PrimeService
directory. You have the following directory and file structure thus far :

Make PrimeService the current directory and run dotnet new classlib -lang VB to create the source project. Rename Class1.VB to PrimeService.VB. To
use test-driven development (TDD), you create a failing implementation of the PrimeService class:

Change the directory back to the unit-testing-vb-using-stest directory. Run dotnet sln add .\PrimeService\PrimeService.vbproj to add the class library
project to the solution.

Next, create the PrimeService.Tests directory. The following outline shows the directory structure:

Make the PrimeService.Tests directory the current directory and create a new project using dotnet new mstest -lang VB . This command creates a test
project that uses MSTest as the test library. The generated template configures the test runner in the PrimeServiceTests.vbproj:

The test project requires other packages to create and run unit tests. dotnet new in the previous step added MSTest and the MSTest runner. Now, add
the PrimeService class library as another dependency to the project. Use the dotnet add reference command:

You can see the entire file in the samples repository on GitHub.

You have the following final solution layout:

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-visual-basic-with-mstest.md
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-vb-mstest/
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService.Tests/PrimeService.Tests.vbproj

/unit-testing-vb-mstest
 unit-testing-vb-mstest.sln
 /PrimeService
 Source Files
 PrimeService.vbproj
 /PrimeService.Tests
 Test Source Files
 PrimeServiceTests.vbproj

Creating the first test

Imports Microsoft.VisualStudio.TestTools.UnitTesting

Namespace PrimeService.Tests
 <TestClass>
 Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <TestMethod>
 Sub ReturnFalseGivenValueOf1()
 Dim result As Boolean = _primeService.IsPrime(1)

 Assert.False(result, "1 should not be prime")
 End Sub

 End Class
End Namespace

Public Function IsPrime(candidate As Integer) As Boolean
 If candidate = 1 Then
 Return False
 End If
 Throw New NotImplementedException("Please create a test first")
End Function

Adding more features

Execute dotnet sln add .\PrimeService.Tests\PrimeService.Tests.vbproj in the unit-testing-vb-mstest directory.

The TDD approach calls for writing one failing test, making it pass, then repeating the process. Remove UnitTest1.vb from the PrimeService.Tests
directory and create a new Visual Basic file named PrimeService_IsPrimeShould.VB. Add the following code:

The <TestClass> attribute indicates a class that contains tests. The <TestMethod> attribute denotes a method that is run by the test runner. From the
unit-testing-vb-mstest, execute dotnet test to build the tests and the class library and then run the tests. The MSTest test runner contains the program
entry point to run your tests. dotnet test starts the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test by writing the simplest code in the PrimeService class that works:

In the unit-testing-vb-mstest directory, run dotnet test again. The dotnet test command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It passes.

Now that you've made one test pass, it's time to write more. There are a few other simple cases for prime numbers: 0, -1. You could add those cases as
new tests with the <TestMethod> attribute, but that quickly becomes tedious. There are other MSTest attributes that enable you to write a suite of similar
tests. A <DataTestMethod> attribute represents a suite of tests that execute the same code but have different input arguments. You can use the
<DataRow> attribute to specify values for those inputs.

Instead of creating new tests, apply these two attributes to create a single theory. The theory is a method that tests several values less than two, which is
the lowest prime number:

<TestClass>
Public Class PrimeService_IsPrimeShould
 Private _primeService As Prime.Services.PrimeService = New Prime.Services.PrimeService()

 <DataTestMethod>
 <DataRow(-1)>
 <DataRow(0)>
 <DataRow(1)>
 Sub ReturnFalseGivenValuesLessThan2(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub

 <DataTestMethod>
 <DataRow(2)>
 <DataRow(3)>
 <DataRow(5)>
 <DataRow(7)>
 Public Sub ReturnTrueGivenPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsTrue(result, $"{value} should be prime")
 End Sub

 <DataTestMethod>
 <DataRow(4)>
 <DataRow(6)>
 <DataRow(8)>
 <DataRow(9)>
 Public Sub ReturnFalseGivenNonPrimesLessThan10(value As Integer)
 Dim result As Boolean = _primeService.IsPrime(value)

 Assert.IsFalse(result, $"{value} should not be prime")
 End Sub
End Class

if candidate < 2

Run dotnet test , and two of these tests fail. To make all of the tests pass, change the if clause at the beginning of the method:

Continue to iterate by adding more tests, more theories, and more code in the main library. You have the finished version of the tests and the complete
implementation of the library.

You've built a small library and a set of unit tests for that library. You've structured the solution so that adding new packages and tests is part of the
normal workflow. You've concentrated most of your time and effort on solving the goals of the application.

https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService.Tests/PrimeService_IsPrimeShould.vb
https://github.com/dotnet/samples/blob/master/core/getting-started/unit-testing-vb-mstest/PrimeService/PrimeService.vb

Running selective unit tests
5/4/2018 • 2 minutes to read • Edit Online

MSTest
namespace MSTestNamespace
{
 using Microsoft.VisualStudio.TestTools.UnitTesting;

 [TestClass]
 public class UnitTestClass1
 {
 [Priority(2)]
 [TestMethod]
 public void TestMethod1()
 {
 }

 [TestCategory("CategoryA")]
 [Priority(3)]
 [TestMethod]
 public void TestMethod2()
 {
 }
 }
}

EXPRESSION RESULT

dotnet test --filter Method Runs tests whose FullyQualifiedName contains Method . Available in
vstest 15.1+ .

dotnet test --filter Name~TestMethod1 Runs tests whose name contains TestMethod1 .

dotnet test --filter ClassName=MSTestNamespace.UnitTestClass1 Runs tests which are in class MSTestNamespace.UnitTestClass1 .
Note: The ClassName value should have a namespace, so
ClassName=UnitTestClass1 won't work.

dotnet test --filter
FullyQualifiedName!=MSTestNamespace.UnitTestClass1.TestMethod1

Runs all tests except MSTestNamespace.UnitTestClass1.TestMethod1 .

dotnet test --filter TestCategory=CategoryA Runs tests which are annotated with [TestCategory("CategoryA")] .

dotnet test --filter Priority=3 Runs tests which are annotated with [Priority(3)] .
Note: Priority~3 is an invalid value, as it isn't a string.

EXPRESSION RESULT

dotnet test --filter
"FullyQualifiedName~UnitTestClass1|TestCategory=CategoryA"

Runs tests which have UnitTestClass1 in FullyQualifiedName or
TestCategory is CategoryA .

dotnet test --filter
"FullyQualifiedName~UnitTestClass1&TestCategory=CategoryA"

Runs tests which have UnitTestClass1 in FullyQualifiedName and
TestCategory is CategoryA .

dotnet test --filter "
(FullyQualifiedName~UnitTestClass1&TestCategory=CategoryA)|Priority=1"

Runs tests which have either FullyQualifiedName containing UnitTestClass1

and TestCategory is CategoryA or Priority is 1.

xUnit

The following examples use dotnet test . If you're using vstest.console.exe , replace --filter with --testcasefilter: .

Using conditional operators | and &

https://github.com/dotnet/docs/blob/master/docs/core/testing/selective-unit-tests.md

namespace XUnitNamespace
{
 public class TestClass1
 {
 [Trait("Category", "bvt")]
 [Trait("Priority", "1")]
 [Fact]
 public void foo()
 {
 }

 [Trait("Category", "Nightly")]
 [Trait("Priority", "2")]
 [Fact]
 public void bar()
 {
 }
 }
}

EXPRESSION RESULT

dotnet test --filter DisplayName=XUnitNamespace.TestClass1.Test1 Runs only one test, XUnitNamespace.TestClass1.Test1 .

dotnet test --filter
FullyQualifiedName!=XUnitNamespace.TestClass1.Test1

Runs all tests except XUnitNamespace.TestClass1.Test1 .

dotnet test --filter DisplayName~TestClass1 Runs tests whose display name contains TestClass1 .

EXPRESSION RESULT

dotnet test --filter XUnit Runs tests whose FullyQualifiedName contains XUnit . Available in
vstest 15.1+ .

dotnet test --filter Category=bvt Runs tests which have [Trait("Category", "bvt")] .

EXPRESSION RESULT

dotnet test --filter "FullyQualifiedName~TestClass1|Category=Nightly" Runs tests which has TestClass1 in FullyQualifiedName or Category is
Nightly .

dotnet test --filter "FullyQualifiedName~TestClass1&Category=Nightly" Runs tests which has TestClass1 in FullyQualifiedName and Category is
Nightly .

dotnet test --filter "
(FullyQualifiedName~TestClass1&Category=Nightly)|Priority=1"

Runs tests which have either FullyQualifiedName containing TestClass1 and
Category is CategoryA or Priority is 1.

In the code example, the defined traits with keys Category and Priority can be used for filtering.

Using conditional operators | and &

Test published output with dotnet vstest
5/4/2018 • 2 minutes to read • Edit Online

dotnet vstest <MyPublishedTests>.dll

Example of running tests on a published DLL
dotnet new mstest -o MyProject.Tests
cd MyProject.Tests
dotnet publish -o out
dotnet vstest out/MyProject.Tests.dll

NOTENOTE

See also

You can run tests on already published output by using the dotnet vstest command. This will work on xUnit, MSTest, and NUnit tests. Simply locate
the DLL file that was part of your published output and run:

where <MyPublishedTests> is the name of your published test project.

Note: If your app is targeting a framework other than netcoreapp you can still run the dotnet vstest command by passing in the targeted framework with a
framework flag. For example, dotnet vstest <MyPublishedTests>.dll --Framework:".NETFramework,Version=v4.6" . In Visual Studio 2017 Update 5 the desired
framework is automatically detected.

Unit Testing with dotnet test and xUnit
Unit Testing with dotnet test and MSTest

https://github.com/dotnet/docs/blob/master/docs/core/testing/unit-testing-published-output.md

.NET Core versioning
7/4/2018 • 12 minutes to read • Edit Online

IMPORTANTIMPORTANT

Versioning details

Version selectionVersion selection

InstallersInstallers

File name formatFile name format

dotnet-runtime-2.0.4-osx.10.12-x64.pkg # Mac runtime installer
dotnet-sdk-2.0.4-win-x64.exe # Windows SDK installer
dotnet-sdk-2.0.4-linux-x64.tar.gz # Linux binary archive

#Ubuntu file set needed for the SDK
dotnet-host-2.0.4-ubuntu.16.04-x64.deb # Host / muxer and host policy
dotnet-runtime-2.0.4-ubuntu.16.04-x64.deb # runtime
dotnet-sdk-2.0.4-ubuntu.16.04-x64.deb # SDK tools

UI string formatUI string format

INSTALLER WINDOW TITLE OTHER CONTENT IN INSTALLER WHAT IS INSTALLED

SDK .NET Core 2.0 SDK (x64) Installer .NET Core 2.0.4 SDK .NET Core 2.0.4 Tools + .NET Core 2.0.4
Runtime

.NET Core is made of NuGet packages, tools, and frameworks that are distributed as a unit. Each of these platform layers can be versioned separately,
enabling better agility. While there is significant versioning flexibility in that regard, there's also a desire to version the platform as a unit to make the
product easier to understand.

This article aims at clarifying how the .NET Core SDK and runtime are versioned.

There are lots of moving parts that version independently in .NET Core. However, starting with .NET Core 2.0, there is an easy to understand top-level
version number that everybody understands to be the version of ".NET Core" as a whole. The rest of this document goes into the details of the
versioning of all those parts. These details can be important if you're a package manager, for example.

The versioning details explained on this topic don't apply to the current version of the .NET Core SDK and runtime. The version scheme is changing in future releases.
You can see the current proposal at the dotnet/designs repository.

With .NET Core 2.0, downloads show a single version number in their file name. The following version numbers were unified:

The shared framework and associated runtime.
The .NET Core SDK and associated .NET Core CLI.
The Microsoft.NETCore.App metapackage.

The use of a single version number makes it easier for users to know what version of the SDK to install on their dev machines, and what the
corresponding version of the shared framework should be when time comes to provision a production environment. When downloading an SDK or
runtime, the version number you see is going to be the same.

.NET Core applies a set of policies that determine which versions of the .NET Core runtime and SDK are used in various scenarios. These scenarios and
policies are fully explored in the article on version selection.

You can think of these policies as performing the following roles:

Enable easy and efficient deployment of .NET Core, including security and reliability updates.
Enable developers to use the latest tools and commands independent of target runtime.

With .NET Core 2.0, downloads for the daily builds and releases adhere to a new naming scheme that is easier to understand. The installer UI in those
downloads was also modified to clearly present the names and versions of the components being installed. In particular, titles now show the same
version number that is in the download's file name.

[product]-[component]-[major].[minor].[patch]-[previewN]-[optional build #]-[rid].[file ext]

Here are some examples of this format:

The format is readable and clearly shows what you're downloading, what version it is, and where you can use it. The runtime package name includes
runtime , and the SDK includes SDK .

All web site descriptions and UI strings in the installers are kept consistent, accurate, and simple. The following table shows some examples:

https://github.com/dotnet/docs/blob/master/docs/core/versions/index.md
https://github.com/dotnet/designs/pull/29
https://github.com/dotnet/core-setup#daily-builds
https://www.microsoft.com/net/download/core

Runtime .NET Core 2.0 Runtime (x64) Installer .NET Core 2.0.4 Runtime .NET Core 2.0.4 Runtime

INSTALLER WINDOW TITLE OTHER CONTENT IN INSTALLER WHAT IS INSTALLED

INSTALLER WINDOW TITLE OTHER CONTENT IN INSTALLER WHAT IS INSTALLED

SDK .NET Core 2.0 Preview 1 SDK (x64)
Installer

.NET Core 2.0.0 Preview 1 SDK .NET Core 2.0.0 Preview 1 Tools + .NET
Core 2.0.0 Preview 1 Runtime

Runtime .NET Core 2.0 Preview 1 Runtime (x64)
Installer

.NET Core 2.0.0 Preview 1 Runtime .NET Core 2.0.0 Preview 1 Runtime

INSTALLER WINDOW TITLE OTHER CONTENT IN INSTALLER WHAT IS INSTALLED

SDK .NET Core 2.1 SDK (x64) Installer .NET Core 2.1.1 SDK
.NET Core 2.1.1 Runtime
.NET Core 2.0.6 Runtime

.NET Core 2.1.1 Tools + .NET Core 2.1.1
Runtime + .NET Core 2.0.6 Runtime

Package managersPackage managers

Minimum package setMinimum package set

P r e v i e w v e r s i o n sP r e v i e w v e r s i o n s

DockerDocker

Preview releases differ only slightly:

It may happen that an SDK release contains more than one version of the runtime. When that happens, the installer UX looks like the following (only
the SDK version is shown and the installed Runtime versions are shown on a summary page at the end of the installation process on Windows and
Mac):

It's also possible that .NET Core Tools need to be updated, without runtime changes. In that case, the SDK version is increased (for example, to 2.1.2)
and then the Runtime catches up the next time it ships (for example, both the Runtime and SDK ship the next time as 2.1.3).

.NET Core can be distributed by other entities than Microsoft. In particular, Linux distribution owners and package maintainers may add .NET Core
packages to their package managers. For recommendations on how those packages should be named and versioned, see .NET Core distribution
packaging.

dotnet-runtime-[major].[minor] : a runtime with the specified version (only the latest patch version for a given major+minor combination should
be available in the package manager). New patch versions update the package, but new minor or major versions are separate packages.

Dependencies: dotnet-host

dotnet-sdk : the latest SDK. update rolls forward major, minor, and patch versions.

Dependencies: the latest dotnet-sdk-[major].[minor] .

dotnet-sdk-[major].[minor] : the SDK with the specified version. The version specified is the highest included version of included shared
frameworks, so that users can easily relate an SDK to a shared framework. New patch versions update the package, but new minor or major
versions are separate packages.

Dependencies: dotnet-host , one or more dotnet-runtime-[major].[minor] (one of those is used by the SDK code itself, the others are here for
users to build and run against).

dotnet-host : the latest host.

Package maintainers may decide to include preview versions of the runtime and SDK. Don't include those preview versions in the unversioned
dotnet-sdk package, but you can release them as versioned packages with an additional preview marker appended to the major and minor version

sections of the name. For example, there may be a dotnet-sdk-2.0-preview1-final package.

A general Docker tag naming convention is to place the version number before the component name. This convention may continue to be utilized. The
current tags include only the Runtime version as follows.

1.0.8-runtime
1.0.8-sdk
2.0.4-runtime
2.0.4-sdk
2.1.1-runtime
2.1.1-sdk

The SDK tags should be updated to represent the SDK version rather than Runtime.

It's also possible that the .NET Core CLI tools (included in the SDK) are fixed but reship with an existing runtime. In that case, the SDK version is
increased (for example, to 2.1.2), and then the Runtime catches up the next time it ships (for example, both the Runtime and SDK ship the following time
as 2.1.3).

Semantic Versioning

MAJOR.MINOR.PATCH[-PRERELEASE-BUILDNUMBER]

How version numbers are incremented?How version numbers are incremented?

Preview versionsPreview versions

Servicing versionsServicing versions

LTS vs. currentLTS vs. current

Versioning scheme details

.NET Standard.NET Standard

.NET Core uses Semantic Versioning (SemVer), adopting the use of MAJOR.MINOR.PATCH versioning, using the various parts of the version number to
describe the degree and type of change.

The optional PRERELEASE and BUILDNUMBER parts are never part of supported releases and only exist on nightly builds, local builds from source targets,
and unsupported preview releases.

MAJOR is incremented when:

An old version is no longer supported.
A newer MAJOR version of an existing dependency is adopted.
The default setting of a compatibility quirk is changed to "off."

MINOR is incremented when:

Public API surface area is added.
A new behavior is added.
A newer MINOR version of an existing dependency is adopted.
A new dependency is introduced.

PATCH is incremented when:

Bug fixes are made.
Support for a newer platform is added.
A newer PATCH version of an existing dependency is adopted.
Any other change doesn't fit one of the previous cases.

When there are multiple changes, the highest element affected by individual changes is incremented, and the following ones are reset to zero. For
example, when MAJOR is incremented, MINOR and PATCH are reset to zero. When MINOR is incremented, PATCH is reset to zero while MAJOR is left
untouched.

Preview versions have a -preview[number]-([build]|"final") appended to the version. For example, 2.0.0-preview1-final .

After a release goes out, the release branches generally stop producing daily builds and instead start producing servicing builds. Servicing versions
have a -servicing-[number] appended to the version. For example, 2.0.1-servicing-006924 .

There are two trains of releases for .NET Core: Long Term Support (LTS) and Current. That enables users to pick the level of stability and new features
they want, while still being supported.

LTS means you get new features less frequently, but you have a more mature platform. LTS also has a longer period of support.
Current means you get new features and APIs more frequently, but the disadvantage is that you have a shorter window of time to install updates,
and those updates happen more frequently. Current is also fully supported but the support period is shorter than LTS.

A "Current" version may get promoted to LTS.

"LTS" and "Current" should be considered as labels that we put on specific releases to make a statement about the associated level of support.

For more information, see .NET Core Support Lifecycle Fact Sheet.

.NET Core is made of the following parts:

A host: either dotnet.exe for framework-dependent applications, or <appname>.exe for self-contained applications.
An SDK (the set of tools necessary on a developer's machine, but not in production).
A runtime.
A shared framework implementation, distributed as packages. Each package is versioned independently, particularly for patch versioning.
Optionally, a set of metapackages that reference fine-grained packages as a versioned unit. Metapackages can be versioned separately from
packages.

.NET Core also includes a set of target frameworks (for example, netstandard or netcoreapp) that represent a progressively larger API set, as version
numbers are incremented.

.NET Standard has been using a MAJOR.MINOR versioning scheme. PATCH level isn't useful for .NET Standard because it expresses a set of contracts that

http://semver.org/
https://www.microsoft.com/net/core/support

PackagesPackages

MetapackagesMetapackages

Target frameworksTarget frameworks

Versioning in practice

Shipping a patch releaseShipping a patch release

Shipping a minor releaseShipping a minor release

Shipping a major releaseShipping a major release

are iterated on less often and doesn't present the same requirements for versioning as an actual implementation.

There is no real coupling between .NET Standard versions and .NET Core versions: .NET Core 2.0 happens to implement .NET Standard 2.0, but there is
no guarantee that future versions of .NET Core will map to the same .NET Standard version. .NET Core can ship APIs that aren't defined by .NET
Standard, and, as such, may ship new versions without requiring a new .NET Standard. .NET Standard is also a concept that applies to other targets,
such as .NET Framework or Mono, even if its inception happened to coincide with that of .NET Core.

Library packages evolve and version independently. Packages that overlap with .NET Framework System.* assemblies typically use 4.x versions,
aligning with the .NET Framework 4.x versioning (a historical choice). Packages that do not overlap with the .NET Framework libraries (for example,
System.Reflection.Metadata) typically start at 1.0 and increment from there.

The packages described by NETStandard.Library are treated specially due to being at the base of the platform.

NETStandard.Library packages will typically version as a set, since they have implementation-level dependencies between them.

Versioning for .NET Core metapackages is based on the .NET Core version they are a part of.

For instance, the metapackages in .NET Core 2.1.3 should all have 2.1 as their MAJOR and MINOR version numbers.

The patch version for the metapackage is incremented every time any referenced package is updated. Patch versions don't include an updated
framework version. As a result, the metapackages aren't strictly SemVer-compliant because their versioning scheme doesn't represent the degree of
change in the underlying packages, but primarily of the API level.

There are currently two primary metapackages for .NET Core:

Microsoft.NETCore.App

v1.0 as of .NET Core 1.0 (these versions match).
Maps to the netcoreapp framework.
Describes the packages in the .NET Core distribution.

Note: Microsoft.NETCore.Portable.Compatibility is another .NET Core metapackage that exists to enable compatibility with pre-.NET Standard
implementation of .NET. It doesn't map to a particular framework, so it versions like a package.

NETStandard.Library

NETStandard.Library describes the libraries that are part of the .NET Standard. Applies to all .NET implementations that support .NET Standard, such as
.NET Framework, .NET Core, and Mono.

Target framework versions are updated when new APIs are added. They have no concept of patch version, since they represent API shape and not
implementation concerns. Major and minor versioning follows the SemVer rules specified earlier, and coincides with the MAJOR and MINOR numbers of
the .NET Core distributions that implement them.

When you download .NET Core, the name of the downloaded file carries the version, for example, dotnet-sdk-2.0.4-win10-x64.exe .

There are commits and pull requests on .NET Core repos on GitHub on a daily basis, resulting in new builds of many libraries. It isn't practical to create
new public versions of .NET Core for every change. Instead, changes are aggregated over an undetermined period of time (for example, weeks or
months) before making a new public stable .NET Core version.

A new version of .NET Core could mean several things:

New versions of packages and metapackages.
New versions of various frameworks, assuming the addition of new APIs.
New version of the .NET Core distribution.

After shipping a major release of .NET Core, such as version 2.0.0, patch-level changes are made to .NET Core libraries to fix bugs and improve
performance and reliability. That means that no new APIs are introduced. The various metapackages are updated to reference the updated .NET Core
library packages. The metapackages are versioned as patch updates (MAJOR.MINOR.PATCH). Target frameworks are never updated as part of patch
releases. A new .NET Core distribution is released with a version number that matches that of the Microsoft.NETCore.App metapackage.

After shipping a .NET Core version with an incremented MAJOR version number, new APIs are added to .NET Core libraries to enable new scenarios.
The various metapackages are updated to reference the updated .NET Core library packages. The metapackages are versioned as patch updates with
MAJOR and MINOR version numbers matching the new framework version. New target framework names with the new MAJOR.MINOR version are added

to describe the new APIs (for example, netcoreapp2.1). A new .NET Core distribution is released with a matching version number to the
Microsoft.NETCore.App metapackage.

Every time a new major version of .NET Core ships, the MAJOR version number gets incremented, and the MINOR version number gets reset to zero.

https://www.nuget.org/packages/System.Reflection.Metadata
https://www.nuget.org/packages/NETStandard.Library
https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility
https://www.nuget.org/packages/NETStandard.Library
https://docs.microsoft.com/en-us/dotnet/standard/library

See also

The new major version contains at least all the APIs that were added by minor releases after the previous major version. A new major version should
enable important new scenarios, and it may also drop support for an older platform.

The various metapackages are updated to reference the updated .NET Core library packages. The Microsoft.NETCore.App metapackage and the
netcore target framework are versioned as a major update matching the MAJOR version number of the new release.

Target frameworks
.NET Core distribution packaging
.NET Core Support Lifecycle Fact Sheet
.NET Core 2+ Version Binding

https://www.nuget.org/packages/Microsoft.NETCore.App
https://www.microsoft.com/net/core/support
https://github.com/dotnet/designs/issues/3

.NET Core version selection
7/11/2018 • 5 minutes to read • Edit Online

The SDK uses the latest installed version

{
 "sdk": {
 "version": "2.0.0"
 }
}

Target Framework Monikers define build time APIs

<TargetFramework>netcoreapp2.0</TargetFramework>

<TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>

This topic applies to: ✓✓ .NET Core SDK 2.0 and later versions

This article explains the policies used by the .NET Core tools, SDK, and runtime for selecting versions. These policies provide a balance between running
applications using the specified versions and enabling ease of upgrading both developer and end user machines. These policies perform the following:

Easy and efficient deployment of .NET Core, including security and reliability updates.
Use the latest tools and commands independent of target runtime.

Version selection occurs:

When you run an SDK command, the sdk uses the latest installed version.
When you build an assembly, target framework monikers define build time APIs.
When you run a .NET Core application, target framework dependent apps roll forward.
When you publish a self-contained application, self-contained deployments include the selected runtime.

The rest of this document examines those four scenarios.

SDK commands include dotnet new , dotnet build or dotnet run . The dotnet CLI must choose an SDK version for any command. The .NET Core CLI
uses the latest SDK installed on the machine by default. You'll use the .NET Core SDK v2.1.301 when it's installed, even if the project you are working
with targets the .NET Core Runtime 2.0. Note that this is true for preview versions as well as released versions. You can take advantage of the latest
SDK features and improvements while targeting earlier .NET Core runtime versions. You can target multiple runtime versions of .NET Core on different
projects, using the same SDK tools for all projects.

On rare occasions, you may need to use an earlier version of the SDK. You specify that version in a global.json file. The "use latest" policy means you
only use global.json to specify a .NET Core SDK version earlier than the latest installed version.

global.json can be placed anywhere in the file hierarchy. The CLI searches upward from the project directory for the first global.json it finds. You control
which projects a given global.json applies to by its place in the file system. The .NET CLI searches for a global.json file iteratively navigating the path
upward from the current working directory. The first global.json file found specifies the version used. If that version is installed, that version is used. If
the SDK specified in the global.json is not found, the .NET CLI rolls forward to the latest SDK installed. This is the same as the default behavior, when no
global.json file is found.

The following example shows the global.json syntax:

The process for selecting an SDK version is:

1. dotnet searches for a global.json file iteratively reverse-navigating the path upward from the current working directory.
2. dotnet uses the SDK specified in the first global.json found.
3. dotnet uses the latest installed SDK if no global.json is found.

You can learn more about selecting an SDK version in the Matching rules section of the topic on global.json.

You build your project against APIs defined in a Target Framework Moniker (TFM). You specify the target framework in the project file. Set the
TargetFramework element in your project file as shown in the following example:

You may build your project against multiple TFMs. Setting multiple target frameworks is more common for libraries but can be done with applications
as well. You specify a TargetFrameworks property (plural of TargetFramework). The target frameworks are semicolon-delimited as shown in the following
example:

A given SDK supports a fixed set of frameworks, capped to the target framework of the runtime it ships with. For example, the .NET Core 2.0 SDK
includes the .NET Core 2.0 runtime, which is an implementation of the netcoreapp2.0 target framework. The .NET Core 2.0 SDK supports

https://github.com/dotnet/docs/blob/master/docs/core/versions/selection.md

Framework-dependent apps roll forward

Self-contained deployments include the selected runtime

<RuntimeFrameworkVersion>2.0.4</RuntimeFrameworkVersion>

netcoreapp1.0 , netcoreapp1.1 , and netcoreapp2.0 but not netcoreapp2.1 (or higher). You install the .NET Core 2.1 SDK to build for netcoreapp2.1 .

.NET Standard target frameworks are also capped to the target framework of the runtime the SDK ships with. The .NET Core 2.0 SDK is capped to
netstandard2.0 .

You run an application from source with dotnet run . dotnet run both builds and runs an application. The dotnet executable is the host for the
application in development environments.

The host chooses the latest patch version installed on the machine. For example, if you specified netcoreapp2.0 in your project file, and 2.0.4 is the
latest .NET runtime installed, the 2.0.4 runtime is used.

If no acceptable 2.0.* version is found, a new 2.* version is used. For example, if you specified netcoreapp2.0 and only 2.1.0 is installed, the
application runs using the 2.1.0 runtime. This behavior is referred to as "minor version roll-forward." Lower versions also won't be considered. When
no acceptable runtime is installed, the application won't run.

A few usage examples demonstrate the behavior :

2.0.4 is required. 2.0.5 is the highest patch version installed. 2.0.5 is used.
2.0.4 is required. No 2.0.* versions are installed. 1.1.1 is the highest runtime installed. An error message is displayed.
2.0.4 is required. 2.0.0 is the highest version installed. An error message is displayed.
2.0.4 is required. No 2.0.* versions are installed. 2.2.2 is the highest 2.x runtime version installed. 2.2.2 is used.
2.0.4 is required. No 2.x versions are installed. 3.0.0 (not a currently available version) is installed. An error message is displayed.

Minor version roll-forward has one side-effect that may affect end users. Consider the following scenario:

2.0.4 is required. No 2.0.* versions are installed. 2.2.2 is installed. 2.2.2 is used.
2.0.5 is later installed. 2.0.5 will be used for subsequent application launches, not 2.2.2. The latest patch of the required minor version is preferred
over a higher minor version.
It's possible that 2.0.5 and 2.2.2 behave differently, particularly for scenarios like serializing binary data.

You can publish an application as a self-contained distribution. This approach bundles the .NET Core runtime and libraries with your application.
Self-contained deployments don't have a dependency on runtime environments. Runtime version selection occurs at publishing time, not run time.

The publishing process selects the latest patch version of the given runtime family. For example, dotnet publish will select .NET Core 2.0.4 if it is the
latest patch version in the .NET Core 2.0 runtime family. The target framework (including the latest installed security patches) is packaged with the
application.

It's an error if the minimum version specified for an application isn't satisfied. dotnet publish binds to the latest runtime patch version (within a given
major.minor version family). dotnet publish doesn't support the roll-forward semantics of dotnet run . For more information about patches and self-
contained deployments, see the article on runtime patch selection in deploying .NET Core applications.

Self-contained deployments may require a specific patch version. You can override the minimum runtime patch version (to higher or lower versions) in
the project file, as shown in the following example:

The RuntimeFrameworkVersion element overrides the default version policy. For self-contained deployments, the RuntimeFrameworkVersion specifies the
exact runtime framework version. For framework dependent applications, the RuntimeFrameworkVersion specifies the minimum required runtime
framework version.

.NET Core RID Catalog
5/4/2018 • 3 minutes to read • Edit Online

RID graph

"osx.10.12-x64": {
 "#import": ["osx.10.12", "osx.10.11-x64"]
}

 win7-x64 win7-x86
 | \ / |
 | win7 |
 | | |
 win-x64 | win-x86
 \ | /
 win
 |
 any

RID is short for Runtime IDentifier. R ID values are used to identify target platforms where the application runs. They're used by .NET packages to
represent platform-specific assets in NuGet packages. The following values are examples of RIDs: linux-x64 , ubuntu.14.04-x64 , win7-x64 , or
osx.10.12-x64 . For the packages with native dependencies, the RID designates on which platforms the package can be restored.

A single RID can be set in the <RuntimeIdentifier> element of your project file. Multiple RIDs can be defined as a semicolon-delimited list in the project
file's <RuntimeIdentifiers> element. They're also used via the --runtime option with the following .NET Core CLI commands:

dotnet build
dotnet clean
dotnet pack
dotnet publish
dotnet restore
dotnet run
dotnet store

RIDs that represent concrete operating systems usually follow this pattern: [os].[version]-[architecture]-[additional qualifiers] where:

[os] is the operating/platform system moniker. For example, ubuntu .

[version] is the operating system version in the form of a dot-separated (.) version number. For example, 15.10 .

The version shouldn't be marketing versions, as they often represent multiple discrete versions of the operating system with varying
platform API surface area.

[architecture] is the processor architecture. For example: x86 , x64 , arm , or arm64 .

[additional qualifiers] further differentiate different platforms. For example: aot or corert .

The RID graph or runtime fallback graph is a list of RIDs that are compatible with each other. The RIDs are defined in the Microsoft.NETCore.Platforms
package. You can see the list of supported RIDs and the RID graph in the runtime.json file, which is located at the CoreFX repo. In this file, you can see
that all RIDs, except for the base one, contain an "#import" statement. These statements indicate compatible RIDs.

When NuGet restores packages, it tries to find an exact match for the specified runtime. If an exact match is not found, NuGet walks back the graph until
it finds the closest compatible system according to the RID graph.

The following example is the actual entry for the osx.10.12-x64 RID:

The above RID specifies that osx.10.12-x64 imports osx.10.11-x64 . So, when NuGet restores packages, it tries to find an exact match for
osx.10.12-x64 in the package. If NuGet cannot find the specific runtime, it can restore packages that specify osx.10.11-x64 runtimes, for example.

The following example shows a slightly bigger RID graph also defined in the runtime.json file:

All RIDs eventually map back to the root any RID.

There are some considerations about RIDs that you have to keep in mind when working with them:

RIDs are opaque strings and should be treated as black boxes.
Don't build RIDs programmatically.
Use RIDs that are already defined for the platform.
The RIDs need to be specific, so don't assume anything from the actual RID value.

https://github.com/dotnet/docs/blob/master/docs/core/rid-catalog.md
https://www.nuget.org/packages/Microsoft.NETCore.Platforms/
https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/runtime.json

Using RIDs

Windows RIDs

Linux RIDs

To be able to use RIDs, you have to know which RIDs exist. New values are added regularly to the platform. For the latest and complete version, see the
runtime.json file on CoreFX repo.

.NET Core 2.0 SDK introduces the concept of portable RIDs. They are new values added to the RID graph that aren't tied to a specific version or OS
distribution. They're particularly useful when dealing with multiple Linux distros.

The following list shows the most common RIDs used for each OS. It doesn't cover arm or corert values.

Portable

Windows 7 / Windows Server 2008 R2

Windows 8 / Windows Server 2012

Windows 8.1 / Windows Server 2012 R2

Windows 10 / Windows Server 2016

win-x86

win-x64

win7-x64

win7-x86

win8-x64

win8-x86

win8-arm

win81-x64

win81-x86

win81-arm

win10-x64

win10-x86

win10-arm

win10-arm64

See Prerequisites for .NET Core on Windows for more information.

Portable

CentOS

Debian

Fedora

Gentoo (.NET Core 2.0 or later versions)

openSUSE

Oracle Linux

Red Hat Enterprise Linux

linux-x64

centos-x64

centos.7-x64

debian-x64

debian.8-x64

fedora-x64

fedora.24-x64

fedora.25-x64 (.NET Core 2.0 or later versions)
fedora.26-x64 (.NET Core 2.0 or later versions)

gentoo-x64

opensuse-x64

opensuse.42.1-x64

ol-x64

ol.7-x64

ol.7.0-x64

ol.7.1-x64

ol.7.2-x64

rhel-x64

rhel.6-x64 (.NET Core 2.0 or later versions)

https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/runtime.json

macOS RIDs

Android RIDs (.NET Core 2.0 or later versions)

See also

Tizen (.NET Core 2.0 or later versions)

Ubuntu

Ubuntu derivatives

rhel.7-x64

rhel.7.1-x64

rhel.7.2-x64

rhel.7.3-x64 (.NET Core 2.0 or later versions)
rhel.7.4-x64 (.NET Core 2.0 or later versions)

tizen

ubuntu-x64

ubuntu.14.04-x64

ubuntu.14.10-x64

ubuntu.15.04-x64

ubuntu.15.10-x64

ubuntu.16.04-x64

ubuntu.16.10-x64

linuxmint.17-x64

linuxmint.17.1-x64

linuxmint.17.2-x64

linuxmint.17.3-x64

linuxmint.18-x64

linuxmint.18.1-x64 (.NET Core 2.0 or later versions)

See Prerequisites for .NET Core on Linux for more information.

macOS RIDs use the older "OSX" branding.

osx-x64 (.NET Core 2.0 or later versions, minimum version is osx.10.12-x64)
osx.10.10-x64

osx.10.11-x64

osx.10.12-x64 (.NET Core 1.1 or later versions)
osx.10.13-x64

See Prerequisites for .NET Core on macOS for more information.

android

android.21

Runtime IDs

https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/readme.md

.NET Core SDK Overview
5/4/2018 • 2 minutes to read • Edit Online

Introduction

Acquiring the .NET Core SDK

.NET Core Software Development Kit (SDK) is a set of libraries and tools that allow developers to create .NET Core applications and libraries. This is the
package that developers will most likely acquire.

It contains the following components:

1. The .NET Core Command Line Tools that are used to build applications
2. .NET Core (libraries and runtime) that allow applications to both be built and run
3. The dotnet driver for running the CLI commands as well as running applications

As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can either use the native installers to install the
SDK or use the installation shell script.

The native installers are primarily meant for developer's machines. The SDK is distributed using each supported platform's native install mechanism, for
instance DEB packages on Ubuntu or MSI bundles on Windows. These installers will install and set up the environment as needed for the user to use
the SDK immediately after the install. However, they also require administrative privileges on the machine. You can view the installation instructions on
the .NET Core installation guide.

Install scripts, on the other hand, do not require administrative privileges. However, they will also not install any prerequisites on the machine; you need
to install all of the prerequisites manually. The scripts are meant mostly for setting up build servers or when you wish to install the tools without admin
privileges (do note the prerequisites caveat above). You can find more information on the install script reference topic. If you are interested in how to set
up SDK on your CI build server you can take a look at the SDK with CI servers document.

By default, the SDK will install in a "side-by-side" (SxS) manner. This means that multiple versions of the CLI tools can coexist at any given time on a
single machine. How the correct version gets used is explained in more detail in the driver section of .NET Core Command Line Tools topic.

https://github.com/dotnet/docs/blob/master/docs/core/sdk.md
https://aka.ms/dotnetcoregs

.NET Core command-line interface (CLI) tools
5/4/2018 • 3 minutes to read • Edit Online

Installation

CLI commands

Command structure

The .NET Core command-line interface (CLI) is a new cross-platform toolchain for developing .NET applications. The CLI is a foundation upon which
higher-level tools, such as Integrated Development Environments (IDEs), editors, and build orchestrators, can rest.

Either use the native installers or use the installation shell scripts:

The native installers are primarily used on developer's machines and use each supported platform's native install mechanism, for instance, DEB
packages on Ubuntu or MSI bundles on Windows. These installers install and configure the environment for immediate use by the developer but
require administrative privileges on the machine. You can view the installation instructions in the .NET Core installation guide.
Shell scripts are primarily used for setting up build servers or when you wish to install the tools without administrative privileges. Install scripts don't
install prerequisites on the machine, which must be installed manually. For more information, see the install script reference topic. For information
on how to set up CLI on your continuous integration (CI) build server, see Using .NET Core SDK and tools in Continuous Integration (CI).

By default, the CLI installs in a side-by-side (SxS) manner, so multiple versions of the CLI tools can coexist on a single machine. Determining which
version is used on a machine where multiple versions are installed is explained in more detail in the Driver section.

The following commands are installed by default:

.NET Core 2.x

.NET Core 1.x

Basic commands

new
restore
build
publish
run
test
vstest
pack
migrate
clean
sln
help
store

Project modification commands

add package
add reference
remove package
remove reference
list reference

Advanced commands

nuget delete
nuget locals
nuget push
msbuild
dotnet install script

The CLI adopts an extensibility model that allows you to specify additional tools for your projects. For more information, see the .NET Core CLI
extensibility model topic.

CLI command structure consists of the driver ("dotnet"), the command (or "verb"), and possibly command arguments and options. You see this pattern
in most CLI operations, such as creating a new console app and running it from the command line as the following commands show when executed

https://github.com/dotnet/docs/blob/master/docs/core/tools/index.md
https://aka.ms/dotnetcoregs

dotnet new console
dotnet build --output /build_output
dotnet /build_output/my_app.dll

DriverDriver

Command ("verb")Command ("verb")

ArgumentsArguments

OptionsOptions

Migration from project.json

See also

from a directory named my_app:

.NET Core 2.x

.NET Core 1.x

The driver is named dotnet and has two responsibilities, either running a framework-dependent app or executing a command. The only time dotnet is
used without a command is when it's used to start an application.

To run a framework-dependent app, specify the app after the driver, for example, dotnet /path/to/my_app.dll . When executing the command from the
folder where the app's DLL resides, simply execute dotnet my_app.dll .

When you supply a command to the driver, dotnet.exe starts the CLI command execution process. First, the driver determines the version of the SDK
to use. If the version isn't specified in the command options, the driver uses the latest version available. To specify a version other than the latest
installed version, use the --fx-version <VERSION> option (see the dotnet command reference). Once the SDK version is determined, the driver executes
the command.

The command (or "verb") is simply a command that performs an action. For example, dotnet build builds your code. dotnet publish publishes your
code. The commands are implemented as a console application using a dotnet {verb} convention.

The arguments you pass on the command line are the arguments to the command invoked. For example when you execute
dotnet publish my_app.csproj , the my_app.csproj argument indicates the project to publish and is passed to the publish command.

The options you pass on the command line are the options to the command invoked. For example when you execute
dotnet publish --output /build_output , the --output option and its value are passed to the publish command.

If you used Preview 2 tooling to produce project.json-based projects, consult the dotnet migrate topic for information on migrating your project to
MSBuild/.csproj for use with release tooling. For .NET Core projects created prior to the release of Preview 2 tooling, either manually update the project
following the guidance in Migrating from DNX to .NET Core CLI (project.json) and then use dotnet migrate or directly upgrade your projects.

dotnet/CLI GitHub Repository
.NET Core installation guide

https://github.com/dotnet/cli/
https://aka.ms/dotnetcoregs

.NET Core SDK telemetry
6/22/2018 • 4 minutes to read • Edit Online

Scope

How to opt out

Data points

Published data

The .NET Core SDK includes a telemetry feature that collects usage information. It's important that the .NET Team understands how the tools are used
so they can be improved. For more information, see What we've learned from .NET Core SDK Telemetry.

The collected data is anonymous and published in an aggregated form for use by both Microsoft and the community under the Creative Commons
Attribution License.

The dotnet command is used to launch both apps and the .NET Core CLI. The dotnet command itself doesn't collect telemetry. The .NET Core CLI
commands run by the dotnet command collect the telemetry.

Telemetry isn't enabled when using the dotnet command itself, with no command attached:

dotnet

dotnet [path-to-app]

Telemetry is enabled when using the .NET Core CLI commands, such as:

dotnet build

dotnet pack

dotnet restore

dotnet run

The .NET Core SDK telemetry feature is enabled by default. Opt out of the telemetry feature by setting the DOTNET_CLI_TELEMETRY_OPTOUT environment
variable to 1 or true .

The feature collects the following data:

Timestamp of invocation†
Command invoked (for example, "build")†
Three octet IP address used to determine geographical location†
ExitCode of the command

Test runner (for test projects)
Operating system and version†
Whether runtime IDs are present in the runtimes node
.NET Core SDK version†

†This metric is published.

Starting with .NET Core SDK 2.0, new data points are collected:

dotnet command arguments and options: only known arguments and options are collected (not arbitrary strings).
Whether the SDK is running in a container.
Target frameworks.
Hashed MAC address: a cryptographically (SHA256) anonymous and unique ID for a machine. This metric isn't published.
Hashed current working directory.

The feature doesn't collect personal data, such as usernames or email addresses. It doesn't scan your code and doesn't extract sensitive project-level
data, such as name, repo, or author. The data is sent securely to Microsoft servers using Microsoft Azure Application Insights technology, held under
restricted access, and published under strict security controls from secure Azure Storage systems.

The .NET team wants to know how the tools are used and if they're working well, not what you're building with the tools. If you suspect that the
telemetry is collecting sensitive data or that the data is being insecurely or inappropriately handled, file an issue in the dotnet/cli repository for
investigation.

Published data is available quarterly and are listed at .NET Core SDK Usage Data. The columns of a data file are:

Timestamp
Occurrences†

https://github.com/dotnet/docs/blob/master/docs/core/tools/telemetry.md
https://github.com/dotnet/cli/tree/master/src/dotnet/Telemetry
https://blogs.msdn.microsoft.com/dotnet/2017/07/21/what-weve-learned-from-net-core-sdk-telemetry/
https://creativecommons.org/licenses/by/4.0/
https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/storage/
https://github.com/dotnet/cli/issues
https://github.com/dotnet/core/blob/master/release-notes/cli-usage-data.md

ExampleExample

TIMESTAMP OCCURRENCES COMMAND GEOGRAPHY OSFAMILY RUNTIMEID OSVERSION SDKVERSION

4/16/2017 0:00 8 run Uganda Darwin osx.10.12-x64 10.12 1.0.1

DatasetsDatasets

License

Disclosure

Welcome to .NET Core!

Learn more about .NET Core: https://aka.ms/dotnet-docs
Use 'dotnet --help' to see available commands or visit: https://aka.ms/dotnet-cli-docs

Telemetry

The .NET Core tools collect usage data in order to help us improve your experience.
The data is anonymous and doesn't include command-line arguments.
The data is collected by Microsoft and shared with the community.
You can opt-out of telemetry by setting the DOTNET_CLI_TELEMETRY_OPTOUT environment variable to '1' or 'true' using your favorite shell.

Read more about .NET Core CLI Tools telemetry: https://aka.ms/dotnet-cli-telemetry

See also

Command
Geography‡
OSFamily
RuntimeID
OSVersion
SDKVersion

†The Occurrences column displays the aggregate count of that command's use for that row's metrics that day.

‡Typically, the Geography column displays the name of a country. In some cases, the continent of Antarctica appears in this column, either due to
researchers using .NET Core in Antarctica or incorrect location data.

2016 - Q3
2016 - Q4
2017 - Q1
2017 - Q2
2017 - Q3
2017 - Q4

Additional datasets are posted using a standard URL format. Replace <YEAR> with the year and replace <QUARTER> with the quarter of the year (use 1 ,
2 , 3 , or 4). The files are in tab-separated values (TSV) format.

https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-<YEAR>-q<QUARTER>.tsv

The Microsoft distribution of .NET Core is licensed with the MICROSOFT .NET LIBRARY EUL A. This license includes the "DATA" section to enable
telemetry (shown below).

.NET NuGet packages use the same license but don't enable telemetry (see Scope).

2. DATA. The software may collect information about you and your use of the software, and send that to Microsoft. Microsoft may use this
information to improve our products and services. You can learn more about data collection and use in the help documentation and the privacy
statement at http://go.microsoft.com/fwlink/?LinkId=528096. Your use of the software operates as your consent to these practices.

The .NET Core SDK displays the following text when you first run one of the .NET Core CLI commands (for example, dotnet restore). Text may vary
slightly depending on the version of the SDK you're running. This "first run" experience is how Microsoft notifies you about data collection.

What we've learned from .NET Core SDK Telemetry
Telemetry reference source (dotnet/cli repo)
.NET Core SDK Usage Data

https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2016-q3.tsv
https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2016-q4.tsv
https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2017-q1.tsv
https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2017-q2.tsv
https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2017-q3.tsv
https://dotnetcli.blob.core.windows.net/usagedata/dotnet-cli-usage-2017-q4.tsv
https://aka.ms/dotnet-core-eula
https://www.nuget.org/profiles/dotnetframework
http://go.microsoft.com/fwlink/?LinkId=528096
https://blogs.msdn.microsoft.com/dotnet/2017/07/21/what-weve-learned-from-net-core-sdk-telemetry/
https://github.com/dotnet/cli/tree/master/src/dotnet/Telemetry
https://github.com/dotnet/core/blob/master/release-notes/cli-usage-data.md

.NET Core Global Tools overview
5/30/2018 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Find a .NET Core Global Tool

Check the author and statistics

Install a Global Tool

dotnet tool install -g dotnetsay

dotnet tool install -g <package-name> --version <version-number>

You can invoke the tool using the following command: dotnetsay
Tool 'dotnetsay' (version '2.0.0') was successfully installed.

OS PATH

Linux/macOS $HOME/.dotnet/tools

Windows %USERPROFILE%\.dotnet\tools

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

A .NET Core Global Tool is a special NuGet package that contains a console application. A Global Tool can be installed on your machine on a default
location that is included in the PATH environment variable or on a custom location.

If you want to use a .NET Core Global Tool:

Find information about the tool (usually a website or GitHub page).
Check the author and statistics in the home for the feed (usually NuGet.org).
Install the tool.
Call the tool.
Update the tool.
Uninstall the tool.

.NET Core Global Tools appear on your path and run in full trust. Do not install .NET Core Global Tools unless you trust the author.

Currently, there isn't a Global Tool search feature in the .NET Core Command-line Interface (CLI).

You can find .NET Core Global Tools on NuGet. However, NuGet doesn't yet allow you to search specifically for .NET Core Global Tools.

You may also find tool recommendations in blog posts or in the natemcmaster/dotnet-tools GitHub repository.

You can also see the source code for the Global Tools created by the ASP.NET team at the aspnet/DotNetTools GitHub repository.

Since .NET Core Global Tools run in full trust and are generally installed on your path, they can be very powerful. Don't download tools from people
you don't trust.

If the tool is hosted on NuGet, you can check the author and statistics by searching for the tool.

To install a Global Tool, you use the dotnet tool install .NET Core CLI command. The following example shows how to install a Global Tool in the default
location:

If the tool can't be installed, error messages are displayed. Check that the feeds you expected are being checked.

If you're trying to install a pre-release version or a specific version of the tool, you can specify the version number using the following format:

If installation is successful, a message is displayed showing the command used to call the tool and the version installed, similar to the following example:

Global Tools can be installed in the default directory or in a specific location. The default directories are:

These locations are added to the user's path when the SDK is first run, so Global Tools installed there can be called directly.

Note that the Global Tools are user-specific, not machine global. Being user-specific means you cannot install a Global Tool that is available to all users

https://github.com/dotnet/docs/blob/master/docs/core/tools/global-tools.md
https://www.nuget.org
https://github.com/natemcmaster/dotnet-tools
https://github.com/aspnet/DotNetTools/

Use the tool

dotnetsay

dotnet doc

<command> --help
dotnet <command> --help

What could go wrongWhat could go wrong

dotnet --list-runtimes

Other CLI commands

dotnet tool --help

dotnet tool update -g <packagename>

of the machine. The tool is only available for each user profile where the tool was installed.

Global Tools can also be installed in a specific directory. When installed in a specific directory, the user must ensure the command is available, by
including that directory in the path, by calling the command with the directory specified, or calling the tool from within the specified directory. In this
case, the .NET Core CLI doesn't add this location automatically to the PATH environment variable.

Once the tool is installed, you can call it by using its command. Note that the command may not be the same as the package name.

If the command is dotnetsay , you call it with:

If the tool author wanted the tool to appear in the context of the dotnet prompt, they may have written it in a way that you call it as dotnet <command> ,
such as:

You can find which tools are included in an installed Global Tool package by listing the installed packages using the dotnet tool list command.

You can also look for usage instructions at the tool's website or by typing one of the following commands:

Global Tools are framework-dependent applications, which means they rely on a .NET Core runtime installed on your machine. If the expected runtime
is not found, they follow normal .NET Core runtime roll-forward rules such as:

An application rolls forward to the highest patch release of the specified major and minor version.
If there is no matching runtime with a matching major and minor version number, the next higher minor version is used.
Roll forward doesn't occur between preview versions of the runtime or between preview versions and release versions. Thus, Global Tools created
using preview versions must be rebuilt and republished by the author and reinstalled.
Additional issues can occur with Global Tools created in .NET Core 2.1 Preview 1. For more information, see .NET Core 2.1 Preview 2 Known Issues.

If an application cannot find an appropriate runtime, it fails to run and reports an error.

Another issue that might happen is that a Global Tool that was created during an earlier preview may not run with your currently installed .NET Core
runtimes. You can see which runtimes are installed on your machine using the following command:

Contact the author of the Global Tool and see if they can recompile and republish their tool package to NuGet with an updated version number. Once
they have updated the package on NuGet, you can update your copy.

The .NET Core CLI tries to add the default locations to the PATH environment variable on its first usage. However, there are a couple of scenarios where
the location might not be added to PATH automatically, such as:

If you've set the DOTNET_SKIP_FIRST_TIME_EXPERIENCE environment variable.
On macOS, if you've installed the .NET Core SDK using .tar.gz files and not .pkg.
On Linux, you need to edit the shell environment file to configure the PATH.

The .NET Core SDK contains other commands that support .NET Core Global Tools. Use any of the dotnet tool commands with one of the following
options:

--global or -g specifies that the command is applicable to user-wide Global Tools.
--tool-path specifies a custom location for Global Tools.

To find out which commands are available for Global Tools:

Updating a Global Tool involves uninstalling and reinstalling it with the latest stable version. To update a Global Tool, use the dotnet tool update
command:

https://github.com/dotnet/core/blob/master/release-notes/2.1/Preview/2.1.0-preview2-known-issues.md

dotnet tool uninstall -g <packagename>

dotnet tool list -g

Remove a Global Tool using the dotnet tool uninstall:

To display all of the Global Tools currently installed on the machine, along with their version and commands, use the dotnet tool list command:

.NET Core CLI tools extensibility model
5/10/2018 • 8 minutes to read • Edit Online

How to extend CLI tools

Per-project based extensibility

Consuming per-project toolsConsuming per-project tools

NOTENOTE

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <!-- The tools reference -->
 <ItemGroup>
 <DotNetCliToolReference Include="dotnet-api-search" Version="1.0.0" />
 </ItemGroup>
</Project>

This document covers the different ways you can extend the .NET Core Command-line Interface (CLI) tools and explain the scenarios that drive each
one of them. You'll see how to consume the tools as well as how to build the different types of tools.

The CLI tools can be extended in three main ways:

1. Via NuGet packages on a per-project basis

Per-project tools are contained within the project's context, but they allow easy installation through restoration.

2. Via NuGet packages with custom targets

Custom targets allow you to easily extend the build process with custom tasks.

3. Via the system's PATH

PATH-based tools are good for general, cross-project tools that are usable on a single machine.

The three extensibility mechanisms outlined above are not exclusive. You can use one, or all, or a combination of them. Which one to pick depends
largely on the goal you are trying to achieve with your extension.

Per-project tools are framework-dependent deployments that are distributed as NuGet packages. Tools are only available in the context of the project
that references them and for which they are restored. Invocation outside of the context of the project (for example, outside of the directory that contains
the project) will fail because the command cannot be found.

These tools are perfect for build servers, since nothing outside of the project file is needed. The build process runs restore for the project it builds and
tools will be available. Language projects, such as F#, are also in this category since each project can only be written in one specific language.

Finally, this extensibility model provides support for creation of tools that need access to the built output of the project. For instance, various Razor view
tools in ASP.NET MVC applications fall into this category.

Consuming these tools requires you to add a <DotNetCliToolReference> element to your project file for each tool you want to use. Inside the
<DotNetCliToolReference> element, you reference the package in which the tool resides and specify the version you need. After running dotnet restore ,

the tool and its dependencies are restored.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

For tools that need to load the build output of the project for execution, there is usually another dependency which is listed under the regular
dependencies in the project file. Since CLI uses MSBuild as its build engine, we recommend that these parts of the tool be written as custom MSBuild
targets and tasks, since they can then take part in the overall build process. Also, they can get any and all data easily that is produced via the build, such
as the location of the output files, the current configuration being built, etc. All this information becomes a set of MSBuild properties that can be read
from any target. You can see how to add a custom target using NuGet later in this document.

Let's review an example of adding a simple tools-only tool to a simple project. Given an example command called dotnet-api-search that allows you to
search through the NuGet packages for the specified API, here is a console application's project file that uses that tool:

The <DotNetCliToolReference> element is structured in a similar way as the <PackageReference> element. It needs the package ID of the package
containing the tool and its version to be able to restore.

https://github.com/dotnet/docs/blob/master/docs/core/tools/extensibility.md
https://www.asp.net/
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets
https://docs.microsoft.com/visualstudio/msbuild/msbuild-tasks

Building toolsBuilding tools

NOTENOTE

Custom targetsCustom targets

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <Description>Sample Packer</Description>
 <VersionPrefix>0.1.0-preview</VersionPrefix>
 <TargetFramework>netstandard1.3</TargetFramework>
 <DebugType>portable</DebugType>
 <AssemblyName>SampleTargets.PackerTarget</AssemblyName>
 </PropertyGroup>
 <ItemGroup>
 <EmbeddedResource Include="Resources\Pkg\dist-template.xml;compiler\resources***" Exclude="bin**;obj**;***.xproj;packages**" />
 <None Include="build\SampleTargets.PackerTarget.targets" />
 </ItemGroup>
 <ItemGroup Label="dotnet pack instructions">
 <Content Include="build*.targets">
 <Pack>true</Pack>
 <PackagePath>build\</PackagePath>
 </Content>
 </ItemGroup>
 <Target Name="CollectRuntimeOutputs" BeforeTargets="_GetPackageFiles">
 <!-- Collect these items inside a target that runs after build but before packaging. -->
 <ItemGroup>
 <Content Include="$(OutputPath)*.dll;$(OutputPath)*.json">
 <Pack>true</Pack>
 <PackagePath>build\</PackagePath>
 </Content>
 </ItemGroup>
 </Target>
 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.DependencyModel" Version="1.0.1-beta-000933"/>
 <PackageReference Include="Microsoft.Build.Framework" Version="0.1.0-preview-00028-160627" />
 <PackageReference Include="Microsoft.Build.Utilities.Core" Version="0.1.0-preview-00028-160627" />
 <PackageReference Include="Newtonsoft.Json" Version="9.0.1" />
 </ItemGroup>
 <ItemGroup />
 <PropertyGroup Label="Globals">
 <ProjectGuid>463c66f0-921d-4d34-8bde-7c9d0bffaf7b</ProjectGuid>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(TargetFramework)' == 'netstandard1.3' ">
 <DefineConstants>$(DefineConstants);NETSTANDARD1_3</DefineConstants>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
 <DefineConstants>$(DefineConstants);RELEASE</DefineConstants>
 </PropertyGroup>
</Project>

As mentioned, tools are just portable console applications. You build tools as you would build any other console application. After you build it, you use
the dotnet pack command to create a NuGet package (.nupkg file) that contains your code, information about its dependencies, and so on. You can give
any name to the package, but the application inside, the actual tool binary, has to conform to the convention of dotnet-<command> in order for dotnet to
be able to invoke it.

In pre-RC3 versions of the .NET Core command-line tools, the dotnet pack command had a bug that caused the runtime.config.json to not be packed with the
tool. Lacking that file results in errors at runtime. If you encounter this behavior, be sure to update to the latest tooling and try the dotnet pack again.

Since tools are portable applications, the user consuming the tool must have the version of the .NET Core libraries that the tool was built against in
order to run the tool. Any other dependency that the tool uses and that is not contained within the .NET Core libraries is restored and placed in the
NuGet cache. The entire tool is, therefore, run using the assemblies from the .NET Core libraries as well as assemblies from the NuGet cache.

These kinds of tools have a dependency graph that is completely separate from the dependency graph of the project that uses them. The restore process
first restores the project's dependencies and then restores each of the tools and their dependencies.

You can find richer examples and different combinations of this in the .NET Core CLI repo. You can also see the implementation of tools used in the
same repo.

NuGet has the capability to package custom MSBuild targets and props files. With the move of the .NET Core CLI tools to use MSBuild, the same
mechanism of extensibility now applies to .NET Core projects. You would use this type of extensibility when you want to extend the build process, or
when you want to access any of the artifacts in the build process, such as generated files, or you want to inspect the configuration under which the build
is invoked, etc.

In the following example, you can see the target's project file using the csproj syntax. This instructs the dotnet pack command what to package,
placing the targets files as well as the assemblies into the build folder inside the package. Notice the <ItemGroup> element that has the Label property
set to dotnet pack instructions , and the Target defined beneath it.

Consuming custom targets is done by providing a <PackageReference> that points to the package and its version inside the project that is being
extended. Unlike the tools, the custom targets package does get included into the consuming project's dependency closure.

https://github.com/dotnet/cli/tree/release/2.1/TestAssets/TestProjects
https://github.com/dotnet/cli/tree/release/2.1/TestAssets/TestPackages
https://docs.microsoft.com/nuget/create-packages/creating-a-package#including-msbuild-props-and-targets-in-a-package

 PATH-based extensibilityPATH-based extensibility

#!/bin/bash

echo "Hello World!"

echo "Hello World"

Using the custom target depends solely on how you configure it. Since it's an MSBuild target, it can depend on a given target, run after another target
and can also be manually invoked using the dotnet msbuild /t:<target-name> command.

However, if you want to provide a better user experience to your users, you can combine per-project tools and custom targets. In this scenario, the per-
project tool would essentially just accept whatever needed parameters and would translate that into the required dotnet msbuild invocation that would
execute the target. You can see a sample of this kind of synergy on the MVP Summit 2016 Hackathon samples repo in the dotnet-packer project.

PATH-based extensibility is usually used for development machines where you need a tool that conceptually covers more than a single project. The
main drawback of this extension mechanism is that it's tied to the machine where the tool exists. If you need it on another machine, you would have to
deploy it.

This pattern of CLI toolset extensibility is very simple. As covered in the .NET Core CLI overview, dotnet driver can run any command that is named
after the dotnet-<command> convention. The default resolution logic first probes several locations and finally falls back to the system PATH. If the
requested command exists in the system PATH and is a binary that can be invoked, dotnet driver will invoke it.

The file must be executable. On Unix systems, this means anything that has the execute bit set via chmod +x . On Windows, you can use cmd files.

Let's take a look at the very simple implementation of a "Hello World" tool. We will use both bash and cmd on Windows. The following command will
simply echo "Hello World" to the console.

On macOS, we can save this script as dotnet-hello and set its executable bit with chmod +x dotnet-hello . We can then create a symbolic link to it in
/usr/local/bin using the command ln -s <full_path>/dotnet-hello /usr/local/bin/ . This will make it possible to invoke the command using the
dotnet hello syntax.

On Windows, we can save this script as dotnet-hello.cmd and put it in a location that is in a system path (or you can add it to a folder that is already in
the path). After this, you can just use dotnet hello to run this example.

https://github.com/dotnet/MVPSummitHackathon2016
https://github.com/dotnet/MVPSummitHackathon2016/tree/master/dotnet-packer

Using .NET Core SDK and tools in Continuous Integration (CI)
5/4/2018 • 8 minutes to read • Edit Online

Overview

Installation options for CI build servers
Using the native installersUsing the native installers

Using the installer scriptUsing the installer script

NOTENOTE

CI setup examples

Manual setupManual setup

This document outlines using the .NET Core SDK and its tools on a build server. The .NET Core toolset works both interactively, where a developer
types commands at a command prompt, and automatically, where a Continuous Integration (CI) server runs a build script. The commands, options,
inputs, and outputs are the same, and the only things you supply are a way to acquire the tooling and a system to build your app. This document
focuses on scenarios of tool acquisition for CI with recommendations on how to design and structure your build scripts.

Native installers are available for macOS, Linux, and Windows. The installers require admin (sudo) access to the build server. The advantage of using a
native installer is that it installs all of the native dependencies required for the tooling to run. Native installers also provide a system-wide installation of
the SDK.

macOS users should use the PKG installers. On Linux, there's a choice of using a feed-based package manager, such as apt-get for Ubuntu or yum for
CentOS, or using the packages themselves, DEB or RPM. On Windows, use the MSI installer.

The latest stable binaries are found at Get Started with .NET Core. If you wish to use the latest (and potentially unstable) pre-release tooling, use the
links provided at the dotnet/cli GitHub repository. For Linux distributions, tar.gz archives (also known as tarballs) are available; use the installation
scripts within the archives to install .NET Core.

Using the installer script allows for non-administrative installation on your build server and easy automation for obtaining the tooling. The script takes
care of downloading the tooling and extracting it into a default or specified location for use. You can also specify a version of the tooling that you wish to
install and whether you want to install the entire SDK or only the shared runtime.

The installer script is automated to run at the start of the build to fetch and install the desired version of the SDK. The desired version is whatever
version of the SDK your projects require to build. The script allows you to install the SDK in a local directory on the server, run the tools from the
installed location, and then clean up (or let the CI service clean up) after the build. This provides encapsulation and isolation to your entire build process.
The installation script reference is found in the dotnet-install topic.

When using the installer script, native dependencies aren't installed automatically. You must install the native dependencies if the operating system doesn't have them.
See the list of prerequisites in the .NET Core native prerequisites topic.

This section describes a manual setup using a PowerShell or bash script, along with a description of several software as a service (SaaS) CI solutions.
The SaaS CI solutions covered are Travis CI, AppVeyor, and Visual Studio Team Services Build.

Each SaaS service has its own methods for creating and configuring a build process. If you use different SaaS solution than those listed or require
customization beyond the pre-packaged support, you must perform at least some manual configuration.

In general, a manual setup requires you to acquire a version of the tools (or the latest nightly builds of the tools) and run your build script. You can use a
PowerShell or bash script to orchestrate the .NET Core commands or use a project file that outlines the build process. The orchestration section
provides more detail on these options.

After you create a script that performs a manual CI build server setup, use it on your dev machine to build your code locally for testing purposes. Once
you confirm that the script is running well locally, deploy it to your CI build server. A relatively simple PowerShell script demonstrates how to obtain the
.NET Core SDK and install it on a Windows build server :

https://github.com/dotnet/docs/blob/master/docs/core/tools/using-ci-with-cli.md
https://aka.ms/dotnetcoregs
https://github.com/dotnet/cli#installers-and-binaries
https://github.com/dotnet/core/blob/master/Documentation/prereqs.md
https://travis-ci.org/
https://www.appveyor.com/
https://docs.microsoft.com/vsts/build-release/index

$ErrorActionPreference="Stop"
$ProgressPreference="SilentlyContinue"

$LocalDotnet is the path to the locally-installed SDK to ensure the
correct version of the tools are executed.
$LocalDotnet=""
$InstallDir and $CliVersion variables can come from options to the
script.
$InstallDir = "./cli-tools"
$CliVersion = "1.0.1"

Test the path provided by $InstallDir to confirm it exists. If it
does, it's removed. This is not strictly required, but it's a
good way to reset the environment.
if (Test-Path $InstallDir)
{
 rm -Recurse $InstallDir
}
New-Item -Type "directory" -Path $InstallDir

Write-Host "Downloading the CLI installer..."

Use the Invoke-WebRequest PowerShell cmdlet to obtain the
installation script and save it into the installation directory.
Invoke-WebRequest `
 -Uri "https://dot.net/v1/dotnet-install.ps1" `
 -OutFile "$InstallDir/dotnet-install.ps1"

Write-Host "Installing the CLI requested version ($CliVersion) ..."

Install the SDK of the version specified in $CliVersion into the
specified location ($InstallDir).
& $InstallDir/dotnet-install.ps1 -Version $CliVersion `
 -InstallDir $InstallDir

Write-Host "Downloading and installation of the SDK is complete."

$LocalDotnet holds the path to dotnet.exe for future use by the
script.
$LocalDotnet = "$InstallDir/dotnet"

Run the build process now. Implement your build script here.

#!/bin/bash
INSTALLDIR="cli-tools"
CLI_VERSION=1.0.1
DOWNLOADER=$(which curl)
if [-d "$INSTALLDIR"]
then
 rm -rf "$INSTALLDIR"
fi
mkdir -p "$INSTALLDIR"
echo Downloading the CLI installer.
$DOWNLOADER https://dot.net/v1/dotnet-install.sh > "$INSTALLDIR/dotnet-install.sh"
chmod +x "$INSTALLDIR/dotnet-install.sh"
echo Installing the CLI requested version $CLI_VERSION. Please wait, installation may take a few minutes.
"$INSTALLDIR/dotnet-install.sh" --install-dir "$INSTALLDIR" --version $CLI_VERSION
if [$? -ne 0]
then
 echo Download of $CLI_VERSION version of the CLI failed. Exiting now.
 exit 0
fi
echo The CLI has been installed.
LOCALDOTNET="$INSTALLDIR/dotnet"
Run the build process now. Implement your build script here.

Travis CITravis CI

AppVeyorAppVeyor

You provide the implementation for your build process at the end of the script. The script acquires the tools and then executes your build process. For
UNIX machines, the following bash script performs the actions described in the PowerShell script in a similar manner :

You can configure Travis CI to install the .NET Core SDK using the csharp language and the dotnet key. See the official Travis CI docs on Building a
C#, F#, or Visual Basic Project for more information. Note as you access the Travis CI information that the community-maintained language: csharp

language identifier works for all .NET languages, including F#, and Mono.

Travis CI runs both macOS (OS X 10.11, OS X 10.12) and Linux (Ubuntu 14.04) jobs in a build matrix, where you specify a combination of runtime,
environment, and exclusions/inclusions to cover your build combinations for your app. See the .travis.yml example file and Customizing the Build in the
Travis CI docs for more information. The MSBuild-based tools include the LTS (1.0.x) and Current (1.1.x) runtimes in the package; so by installing the
SDK, you receive everything you need to build.

AppVeyor installs the .NET Core 1.0.1 SDK with the Visual Studio 2017 build worker image. Other build images with different versions of the .NET
Core SDK are available; see the appveyor.yml example and the Build worker images topic in the AppVeyor docs for more information.

https://travis-ci.org/
https://docs.travis-ci.com/user/languages/csharp/
https://github.com/dotnet/docs/blob/master/.travis.yml
https://docs.travis-ci.com/user/customizing-the-build
https://www.appveyor.com/
https://github.com/dotnet/docs/blob/master/appveyor.yml
https://www.appveyor.com/docs/build-environment/#build-worker-images

environment:
 matrix:
 - CLI_VERSION: 1.0.1
 - CLI_VERSION: Latest

install:
 # See appveyor.yml example for install script

Visual Studio Team Services (VSTS)Visual Studio Team Services (VSTS)

The .NET Core SDK binaries are downloaded and unzipped in a subdirectory using the install script, and then they're added to the PATH environment
variable. Add a build matrix to run integration tests with multiple versions of the .NET Core SDK:

Configure Visual Studio Team Services (VSTS) to build .NET Core projects using one of these approaches:

1. Run the script from the manual setup step using your commands.
2. Create a build composed of several VSTS built-in build tasks that are configured to use .NET Core tools.

Both solutions are valid. Using a manual setup script, you control the version of the tools that you receive, since you download them as part of the build.
The build is run from a script that you must create. This topic only covers the manual option. For more information on composing a build with VSTS
build tasks, visit the VSTS Continuous integration and deployment topic.

To use a manual setup script in VSTS, create a new build definition and specify the script to run for the build step. This is accomplished using the VSTS
user interface:

1. Start by creating a new build definition. Once you reach the screen that provides you an option to define what kind of a build you wish to create,
select the Empty option.

2. After configuring the repository to build, you're directed to the build definitions. Select Add build step:

3. You're presented with the Task catalog. The catalog contains tasks that you use in the build. Since you have a script, select the Add button for
PowerShell: Run a PowerShell script.

https://docs.microsoft.com/vsts/build-release/index

 Orchestrating the build

See also

4. Configure the build step. Add the script from the repository that you're building:

Most of this document describes how to acquire the .NET Core tools and configure various CI services without providing information on how to
orchestrate, or actually build, your code with .NET Core. The choices on how to structure the build process depend on many factors that cannot be
covered in a general way here. Explore the resources and samples provided in the documentation sets of Travis CI, AppVeyor, and VSTS for more
information on orchestrating your builds with each technology.

Two general approaches that you take in structuring the build process for .NET Core code using the .NET Core tools are using MSBuild directly or using
the .NET Core command-line commands. Which approach you should take is determined by your comfort level with the approaches and trade-offs in
complexity. MSBuild provides you the ability to express your build process as tasks and targets, but it comes with the added complexity of learning
MSBuild project file syntax. Using the .NET Core command-line tools is perhaps simpler, but it requires you to write orchestration logic in a scripting
language like bash or PowerShell.

Ubuntu acquisition steps

https://travis-ci.org/
https://www.appveyor.com/
https://docs.microsoft.com/vsts/build-release/index
https://www.microsoft.com/net/core#linuxubuntu

Custom templates for dotnet new
5/4/2018 • 6 minutes to read • Edit Online

Configuration

Source files and foldersSource files and folders

template.jsontemplate.json

MEMBER TYPE DESCRIPTION

$schema URI The JSON schema for the template.json file. Editors
that support JSON schemas enable JSON-editing
features when the schema is specified. For example,
Visual Studio Code requires this member to enable
IntelliSense. Use a value of
http://json.schemastore.org/template .

author string The author of the template.

classifications array(string) Zero or more characteristics of the template that a
user might use to find the template when searching
for it. The classifications also appear in the Tags
column when it appears in a list of templates
produced by using the dotnet new -l|--list

command.

identity string A unique name for this template.

name string The name for the template that users should see.

The .NET Core SDK comes with many templates pre-installed to use with the dotnet new command. Starting with .NET Core 2.0, you can create your
own custom templates for any type of project, such as an app, service, tool, or class library. You can even create a template that outputs one or more
independent files, such as a configuration file.

You can install custom templates from a NuGet package on any NuGet feed, by referencing a NuGet nupkg file directly, or by specifying a file system
directory that contains the template. The template engine offers features that allow you to replace values, include and exclude files and regions of files,
and execute custom processing operations when your template is used.

The template engine is open source, and the online code repository is at dotnet/templating on GitHub. Visit the dotnet/dotnet-template-samples repo
for samples of templates. More templates, including templates from third parties, are found at Available templates for dotnet new on GitHub. For more
information about creating and using custom templates, see How to create your own templates for dotnet new and the dotnet/templating GitHub repo
Wiki.

To follow a walkthrough and create a template, see the Create a custom template for dotnet new tutorial.

A template is composed of the following components:

Source files and folders
A configuration file (template.json)

The source files and folders include whatever files and folders you want the template engine to use when the dotnet new <TEMPLATE> command is
executed. The template engine is designed to use runnable projects as source code to produce projects. This has several benefits:

The template engine doesn't require you to inject special tokens into your project's source code.
The code files aren't special files or modified in any way to work with the template engine. So, the tools you normally use when working with
projects also work with template content.
You build, run, and debug your template projects just like you do for any of your other projects.
You can quickly create a template from an existing project just by adding a template.json configuration file to the project.

Files and folders stored in the template aren't limited to formal .NET project types, such as .NET Core or .NET Framework solutions. Source files and
folders may consist of any content that you wish to create when the template is used, even if the template engine produces just one file for its output,
such as a configuration file or a solution file. For example, you can create a template that contains a web.config source file and creates a modified
web.config file for projects where the template is used. The modifications to source files are based on logic and settings you've provided in the
template.json configuration file along with values provided by the user passed as options to the dotnet new <TEMPLATE> command.

The template.json file is placed in a .template.config folder in the root directory of the template. The file provides configuration information to the
template engine. The minimum configuration requires the members shown in the following table, which is sufficient to create a functional template.

https://github.com/dotnet/docs/blob/master/docs/core/tools/custom-templates.md
https://www.microsoft.com/net/download/core
https://github.com/dotnet/templating/
https://github.com/dotnet/dotnet-template-samples
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://blogs.msdn.microsoft.com/dotnet/2017/04/02/how-to-create-your-own-templates-for-dotnet-new/
https://github.com/dotnet/templating/wiki
https://code.visualstudio.com/

shortName string A default shorthand for selecting the template that
applies to environments where the template name is
specified by the user, not selected via a GUI. For
example, the short name is useful when using
templates from a command prompt with CLI
commands.

MEMBER TYPE DESCRIPTION

Example:Example:

{
 "$schema": "http://json.schemastore.org/template",
 "author": "Catalina Garcia",
 "classifications": ["Common", "Console"],
 "identity": "GarciaSoftware.ConsoleTemplate.CSharp",
 "name": "Garcia Software Console Application",
 "shortName": "garciaconsole"
}

.NET default templates

dotnet new -l

Packing a template into a NuGet package (nupkg file)

ELEMENT TYPE DESCRIPTION

<authors> string A comma-separated list of packages authors,
matching the profile names on nuget.org. Authors are
displayed in the NuGet Gallery on nuget.org and are
used to cross-reference packages by the same
authors.

<description> string A long description of the package for UI display.

<id> string The case-insensitive package identifier, which must be
unique across nuget.org or whatever gallery the
package will reside in. IDs may not contain spaces or
characters that are not valid for a URL and generally
follow .NET namespace rules. See Choosing a unique
package identifier and setting the version number for
guidance.

<packageType> string Place this element inside a <packageTypes>
element among the <metadata> elements. Set the
name attribute of the <packageType> element to
Template .

<version> string The version of the package, following the
major.minor.patch pattern. Version numbers may
include a pre-release suffix as described in the Pre-
release versions topic.

Installing a template

The full schema for the template.json file is found at the JSON Schema Store.

When you install the .NET Core SDK, you receive over a dozen built-in templates for creating projects and files, including console apps, class libraries,
unit test projects, ASP.NET Core apps (including Angular and React projects), and configuration files. To list the built-in templates, execute the
dotnet new command with the -l|--list option:

Currently, a custom template is packed on Windows with nuget.exe (not dotnet pack). For cross-platform packaging, consider using NuGetizer 3000.

The contents of the project folder, together with its .template.config/template.json file, are placed into a folder named content. Next to the content folder,
add a nuspec file, which is an XML manifest file that describes a package's contents and drives the process of creating the NuGet package. Inside of a
<packageTypes> element in the nuspec file, include a <packageType> element with a name attribute value of Template . Both the content folder and
the nuspec file should reside in the same directory. The table shows the minimum nuspec file elements required to produce a template as a NuGet
package.

See the .nuspec reference for the complete nuspec file schema. An example nuspec file for a template appears in the Create a custom template for
dotnet new tutorial.

Create a package using the nuget pack <PATH_TO_NUSPEC_FILE> command.

http://json.schemastore.org/template
https://www.microsoft.com/net/download/core
https://angular.io/
https://facebook.github.io/react/
https://dist.nuget.org/win-x86-commandline/latest/nuget.exe
https://github.com/NuGet/Home/wiki/NuGetizer-3000
https://docs.microsoft.com/nuget/create-packages/creating-a-package
https://docs.microsoft.com/nuget/create-packages/creating-a-package#choosing-a-unique-package-identifier-and-setting-the-version-number
https://docs.microsoft.com/nuget/create-packages/prerelease-packages#semantic-versioning
https://docs.microsoft.com/nuget/schema/nuspec
https://docs.microsoft.com/nuget/create-packages/creating-a-package#creating-the-package

To install a template from a NuGet package stored at nuget.orgTo install a template from a NuGet package stored at nuget.org

dotnet new -i <NUGET_PACKAGE_ID>

To install a template from a local nupkg fileTo install a template from a local nupkg file

dotnet new -i <PATH_TO_NUPKG_FILE>

To install a template from a file system directoryTo install a template from a file system directory

dotnet new -i <FILE_SYSTEM_DIRECTORY>

Uninstalling a template

To uninstall a template from a NuGet package stored at nuget.orgTo uninstall a template from a NuGet package stored at nuget.org

dotnet new -u <NUGET_PACKAGE_ID>

To uninstall a template from a local nupkg fileTo uninstall a template from a local nupkg file

dotnet new -u <NUGET_PACKAGE_ID>

To uninstall a template from a file system directoryTo uninstall a template from a file system directory

dotnet new -u <FILE_SYSTEM_DIRECTORY>

Create a project using a custom template

dotnet new <TEMPLATE>

See also

Install a custom template from a NuGet package on any NuGet feed by referencing a nupkg file directly or by specifying a file system directory that
contains a templating configuration. Use the -i|--install option with the dotnet new command.

The FILE_SYSTEM_DIRECTORY is the project folder containing the project and the .template.config folder :

Uninstall a custom template by referencing a NuGet package by its id or by specifying a file system directory that contains a templating configuration.
Use the -u|--uninstall install option with the dotnet new command.

When you wish to uninstall the template, don't attempt to use the path to the nupkg file. Attempting to uninstall a template using
dotnet new -u <PATH_TO_NUPKG_FILE> fails. Reference the package by its id :

The FILE_SYSTEM_DIRECTORY is the project folder containing the project and the .template.config folder :

After a template is installed, use the template by executing the dotnet new <TEMPLATE> command as you would with any other pre-installed template.
You can also specify options to the dotnet new command, including template specific options you configured in the template settings. Supply the
template's short name directly to the command:

Create a custom template for dotnet new (tutorial)
dotnet/templating GitHub repo Wiki
dotnet/dotnet-template-samples GitHub repo
How to create your own templates for dotnet new
template.json schema at the JSON Schema Store

https://github.com/dotnet/templating/wiki
https://github.com/dotnet/dotnet-template-samples
https://blogs.msdn.microsoft.com/dotnet/2017/04/02/how-to-create-your-own-templates-for-dotnet-new/
http://json.schemastore.org/template

dotnet command
6/6/2018 • 8 minutes to read • Edit Online

Name

Synopsis

dotnet [command] [arguments] [--additional-deps] [--additionalprobingpath] [-d|--diagnostics] [--fx-version]
 [-h|--help] [--info] [--list-runtimes] [--list-sdks] [--roll-forward-on-no-candidate-fx] [-v|--verbosity] [--version]

Description

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet - General driver for running the command-line commands.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

dotnet is a generic driver for the Command Line Interface (CLI) toolchain. Invoked on its own, it provides brief usage instructions.

Each specific feature is implemented as a command. To use the feature, the command is specified after dotnet , such as dotnet build . All of the
arguments following the command are its own arguments.

The only time dotnet is used as a command on its own is to run framework-dependent apps. Specify an application DLL after the dotnet verb to
execute the application (for example, dotnet myapp.dll).

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--additional-deps <PATH>

Path to additional deps.json file.

--additionalprobingpath <PATH>

Path containing probing policy and assemblies to probe.

-d|--diagnostics

Enables diagnostic output.

--fx-version <VERSION>

Version of the installed .NET Core runtime to use to run the application.

-h|--help

Prints out a short help for the command. If using with dotnet , it also prints a list of the available commands.

--info

Prints out detailed information about the CLI tooling and the environment, such as the current operating system, commit SHA for the version, and
other information.

--list-runtimes

Displays the installed .NET Core runtimes.

--list-sdks

Displays the installed .NET Core SDKs.

--roll-forward-on-no-candidate-fx

Rolls forward on no candidate shared framework.

-v|--verbosity <LEVEL>

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet.md

dotnet commands
GeneralGeneral

COMMAND FUNCTION

dotnet build Builds a .NET Core application.

dotnet build-server Interacts with servers started by a build.

dotnet clean Clean build outputs.

dotnet help Shows more detailed documentation online for the command.

dotnet migrate Migrates a valid Preview 2 project to a .NET Core SDK 1.0 project.

dotnet msbuild Provides access to the MSBuild command line.

dotnet new Initializes a C# or F# project for a given template.

dotnet pack Creates a NuGet package of your code.

dotnet publish Publishes a .NET framework-dependent or self-contained application.

dotnet restore Restores the dependencies for a given application.

dotnet run Runs the application from source.

dotnet sln Options to add, remove, and list projects in a solution file.

dotnet store Stores assemblies in the runtime package store.

dotnet test Runs tests using a test runner.

Project referencesProject references

COMMAND FUNCTION

dotnet add reference Adds a project reference.

dotnet list reference Lists project references.

dotnet remove reference Removes a project reference.

NuGet packagesNuGet packages

COMMAND FUNCTION

dotnet add package Adds a NuGet package.

dotnet remove package Removes a NuGet package.

NuGet commandsNuGet commands

COMMAND FUNCTION

dotnet nuget delete Deletes or unlists a package from the server.

dotnet nuget locals Clears or lists local NuGet resources such as http-request cache, temporary cache,
or machine-wide global packages folder.

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] . Not supported in every
command; see specific command page to determine if this option is available.

--version

Prints out the version of the .NET Core SDK in use.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

dotnet nuget push Pushes a package to the server and publishes it.

COMMAND FUNCTION

Global Tools commandsGlobal Tools commands

COMMAND FUNCTION

dotnet tool install Installs a Global Tool on your machine.

dotnet tool list Lists all Global Tools currently installed in the default directory on your machine or
in the specified path.

dotnet tool uninstall Uninstalls a Global Tool from your machine.

dotnet tool update Updates a Global Tool on your machine.

Additional toolsAdditional tools

TOOL FUNCTION

dev-certs Creates and manages development certificates.

ef Entity Framework Core command-line tools.

sql-cache SQL Server cache command-line tools.

user-secrets Manages development user secrets.

watch Starts a file watcher that runs a command when files change.

Examples

NOTENOTE

Environment variables

.NET Core Global Tools are available starting with .NET Core SDK 2.1.300:

Starting with .NET Core SDK 2.1.300, a number of tools that were available only on a per project basis using DotnetCliToolReference are now available
as part of the .NET Core SDK. These tools include:

For more information about each tool, execute dotnet <tool-name> --help .

Creates a new .NET Core console application:

dotnet new console

Restore dependencies for a given application:

dotnet restore

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

Build a project and its dependencies in a given directory:

dotnet build

Run a framework-dependent app named myapp.dll :

dotnet myapp.dll

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

DOTNET_PACKAGES

The primary package cache. If not set, it defaults to $HOME/.nuget/packages on Unix or %HOME%\NuGet\Packages on Windows.

DOTNET_SERVICING

https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/aspnet/core/security/app-secrets
https://docs.microsoft.com/aspnet/core/tutorials/dotnet-watch
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Specifies the location of the servicing index to use by the shared host when loading the runtime.

DOTNET_CLI_TELEMETRY_OPTOUT

Specifies whether data about the .NET Core tools usage is collected and sent to Microsoft. Set to true to opt-out of the telemetry feature (values true ,
1 , or yes accepted). Otherwise, set to false to opt into the telemetry features (values false , 0 , or no accepted). If not set, the default is false

and the telemetry feature is active.

DOTNET_MULTILEVEL_LOOKUP

Specifies whether .NET Core runtime, shared framework, or SDK are resolved from the global location. If not set, it defaults to true . Set to false to
not resolve from the global location and have isolated .NET Core installations (values 0 or false are accepted). For more information about multi-
level lookup, see Multi-level SharedFX Lookup.

DOTNET_ROLL_FORWARD_ON_NO_CANDIDATE_FX

Disables minor version roll forward. For more information, see Roll forward.

https://github.com/dotnet/core-setup/blob/master/Documentation/design-docs/multilevel-sharedfx-lookup.md

dotnet-build
5/30/2018 • 4 minutes to read • Edit Online

Name

Synopsis

dotnet build [<PROJECT>] [-c|--configuration] [-f|--framework] [--force] [--no-dependencies] [--no-incremental]
 [--no-restore] [-o|--output] [-r|--runtime] [-v|--verbosity] [--version-suffix]
dotnet build [-h|--help]

Description

NOTENOTE

<PropertyGroup>
 <OutputType>Exe</OutputType>
</PropertyGroup>

Arguments

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet build - Builds a project and all of its dependencies.

.NET Core 2.x

.NET Core 1.x

The dotnet build command builds the project and its dependencies into a set of binaries. The binaries include the project's code in Intermediate
Language (IL) files with a .dll extension and symbol files used for debugging with a .pdb extension. A dependencies JSON file (*.deps.json) is produced
that lists the dependencies of the application. A *.runtimeconfig.json file is produced, which specifies the shared runtime and its version for the
application.

If the project has third-party dependencies, such as libraries from NuGet, they're resolved from the NuGet cache and aren't available with the project's
built output. With that in mind, the product of dotnet build isn't ready to be transferred to another machine to run. This is in contrast to the behavior of
the .NET Framework in which building an executable project (an application) produces output that's runnable on any machine where the .NET
Framework is installed. To have a similar experience with .NET Core, you need to use the dotnet publish command. For more information, see .NET
Core Application Deployment.

Building requires the project.assets.json file, which lists the dependencies of your application. The file is created when dotnet restore is executed.
Without the assets file in place, the tooling cannot resolve reference assemblies, which results in errors. With .NET Core 1.x SDK, you needed to
explicitly run the dotnet restore before running dotnet build . Starting with .NET Core 2.0 SDK, dotnet restore runs implicitly when you run
dotnet build . If you want to disable implicit restore when running the build command, you can pass the --no-restore option.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands, such as dotnet build and dotnet run , that
require a restore to occur. It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in Visual
Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source). Short form options, such as -s , are not
supported.

dotnet build uses MSBuild to build the project, so it supports both parallel and incremental builds. For more information, see Incremental Builds.

In addition to its options, the dotnet build command accepts MSBuild options, such as /p for setting properties or /l to define a logger. For more
information about these options, see the MSBuild Command-Line Reference.

Whether the project is executable or not is determined by the <OutputType> property in the project file. The following example shows a project that
produces executable code:

In order to produce a library, omit the <OutputType> property. The main difference in built output is that the IL DLL for a library doesn't contain entry
points and can't be executed.

PROJECT

The project file to build. If a project file is not specified, MSBuild searches the current working directory for a file that has a file extension that ends in
proj and uses that file.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-build.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/visualstudio/msbuild/incremental-builds
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference

Options

Examples

.NET Core 2.x

.NET Core 1.x

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

-f|--framework <FRAMEWORK>

Compiles for a specific framework. The framework must be defined in the project file.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--no-dependencies

Ignores project-to-project (P2P) references and only builds the specified root project.

--no-incremental

Marks the build as unsafe for incremental build. This flag turns off incremental compilation and forces a clean rebuild of the project's dependency graph.

--no-restore

Doesn't execute an implicit restore during build.

-o|--output <OUTPUT_DIRECTORY>

Directory in which to place the built binaries. You also need to define --framework when you specify this option.

-r|--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime. For a list of Runtime Identifiers (RIDs), see the RID catalog.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

--version-suffix <VERSION_SUFFIX>

Defines the version suffix for an asterisk (*) in the version field of the project file. The format follows NuGet's version guidelines.

Build a project and its dependencies:

dotnet build

Build a project and its dependencies using Release configuration:

dotnet build --configuration Release

Build a project and its dependencies for a specific runtime (in this example, Ubuntu 16.04):

dotnet build --runtime ubuntu.16.04-x64

Build the project and use the specified NuGet package source during the restore operation (.NET Core SDK 2.0 and later versions):

dotnet build --source c:\packages\mypackages

dotnet build-server
7/3/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet build-server shutdown [--msbuild] [--razor] [--vbcscompiler]
dotnet build-server shutdown [-h|--help]
dotnet build-server [-h|--help]

Commands

Options

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

dotnet build-server - Interacts with servers started by a build.

shutdown

Shuts down build servers that are started from dotnet. By default, all servers are shut down.

-h|--help

Prints out a short help for the command.

--msbuild

Shuts down the MSBuild build server.

--razor

Shuts down the Razor build server.

--vbcscompiler

Shuts down the VB/C# compiler build server.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-build-server.md

dotnet-clean
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

dotnet clean [<PROJECT>] [-c|--configuration] [-f|--framework] [-o|--output] [-r|--runtime] [-v|--verbosity]
dotnet clean [-h|--help]

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet clean - Cleans the output of a project.

.NET Core 2.x

.NET Core 1.x

The dotnet clean command cleans the output of the previous build. It's implemented as an MSBuild target, so the project is evaluated when the
command is run. Only the outputs created during the build are cleaned. Both intermediate (obj) and final output (bin) folders are cleaned.

PROJECT

The MSBuild project to clean. If a project file is not specified, MSBuild searches the current working directory for a file that has a file extension that ends
in proj and uses that file.

.NET Core 2.x

.NET Core 1.x

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug . This option is only required when cleaning if you specified it during build time.

-f|--framework <FRAMEWORK>

The framework that was specified at build time. The framework must be defined in the project file. If you specified the framework at build time, you
must specify the framework when cleaning.

-h|--help

Prints out a short help for the command.

-o|--output <OUTPUT_DIRECTORY>

Directory in which the build outputs are placed. Specify the -f|--framework <FRAMEWORK> switch with the output directory switch if you specified the
framework when the project was built.

-r|--runtime <RUNTIME_IDENTIFIER>

Cleans the output folder of the specified runtime. This is used when a self-contained deployment was created.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed levels are q[uiet], m[inimal], n[ormal], d[etailed], and diag[nostic].

Clean a default build of the project:

dotnet clean

Clean a project built using the Release configuration:

dotnet clean --configuration Release

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-clean.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-targets

dotnet help reference
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 2.0 and later versions

dotnet help - Shows more detailed documentation online for the specified command.

dotnet help <COMMAND_NAME> [-h|--help]

The dotnet help command opens up the reference page for more detailed information about the specified command at docs.microsoft.com.

COMMAND_NAME

Name of the .NET Core CLI command. For a list of the valid CLI commands, see CLI commands.

-h|--help

Prints out a short help for the command.

Opens the documentation page for the dotnet new command:

dotnet help new

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-help.md

dotnet-install scripts reference
5/4/2018 • 3 minutes to read • Edit Online

Name

Synopsis

Description

Options

dotnet-install.ps1 | dotnet-install.sh - Script used to install the .NET Core CLI tools and the shared runtime.

Windows:

dotnet-install.ps1 [-Channel] [-Version] [-InstallDir] [-Architecture] [-SharedRuntime] [-DryRun] [-NoPath] [-AzureFeed] [-ProxyAddress] [--Verbose]
[--Help]

macOS/Linux:

dotnet-install.sh [--channel] [--version] [--install-dir] [--architecture] [--shared-runtime] [--dry-run] [--no-path] [--azure-feed] [--verbose] [--
help]

The dotnet-install scripts are used to perform a non-admin installation of the .NET Core SDK, which includes the .NET Core CLI tools and the shared
runtime.

We recommend that you use the stable version that is hosted on .NET Core main website. The direct paths to the scripts are:

https://dot.net/v1/dotnet-install.sh (bash, UNIX)
https://dot.net/v1/dotnet-install.ps1 (Powershell, Windows)

The main usefulness of these scripts is in automation scenarios and non-admin installations. There are two scripts: One is a PowerShell script that works
on Windows. The other script is a bash script that works on Linux/macOS. Both scripts have the same behavior. The bash script also reads PowerShell
switches, so you can use PowerShell switches with the script on Linux/macOS systems.

The installation scripts download the ZIP/tarball file from the CLI build drops and proceed to install it in either the default location or in a location
specified by -InstallDir|--install-dir . By default, the installation scripts download the SDK and install it. If you wish to only obtain the shared
runtime, specify the --shared-runtime argument.

By default, the script adds the install location to the $PATH for the current session. Override this default behavior by specifying the --no-path

argument.

Before running the script, install the required dependencies.

You can install a specific version using the --version argument. The version must be specified as a 3-part version (for example, 1.0.0-13232). If
omitted, it uses the latest version.

-Channel <CHANNEL>

Specifies the source channel for the installation. The possible values are:

Current - Current release
LTS - Long-Term Support channel (current supported release)

Two-part version in X.Y format representing a specific release (for example, 2.0 or 1.0)
Branch name [for example, release/2.0.0 , release/2.0.0-preview2 , or master for the latest from the master branch ("bleeding edge" nightly
releases)]

The default value is LTS . For more information on .NET support channels, see the .NET Core Support Lifecycle topic.

-Version <VERSION>

Represents a specific build version. The possible values are:

latest - Latest build on the channel (used with the -Channel option)
coherent - Latest coherent build on the channel; uses the latest stable package combination (used with Branch name -Channel options)

Three-part version in X.Y.Z format representing a specific build version; supersedes the -Channel option. For example: 2.0.0-preview2-006120

If omitted, -Version defaults to latest .

-InstallDir <DIRECTORY>

Specifies the installation path. The directory is created if it doesn't exist. The default value is %LocalAppData%.dotnet. Note that binaries are placed
directly in the directory.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-install-script.md
https://dot.net
https://dot.net/v1/dotnet-install.sh
https://dot.net/v1/dotnet-install.ps1
https://github.com/dotnet/core/blob/master/Documentation/prereqs.md
https://www.microsoft.com/net/core/support

Examples

See also

-Architecture <ARCHITECTURE>

Architecture of the .NET Core binaries to install. Possible values are auto , x64 , and x86 . The default value is auto , which represents the currently
running OS architecture.

-SharedRuntime

If set, this switch limits installation to the shared runtime. The entire SDK isn't installed.

-DryRun

If set, the script won't perform the installation; but instead, it displays what command line to use to consistently install the currently requested version of
the .NET Core CLI. For example if you specify version latest , it displays a link with the specific version so that this command can be used
deterministically in a build script. It also displays the binary's location if you prefer to install or download it yourself.

-NoPath

If set, the prefix/installdir are not exported to the path for the current session. By default, the script will modify the PATH, which makes the CLI tools
available immediately after install.

-AzureFeed

Specifies the URL for the Azure feed to the installer. It isn't recommended that you change this value. The default is
https://dotnetcli.azureedge.net/dotnet .

-ProxyAddress

If set, the installer uses the proxy when making web requests. (Only valid for Windows)

--verbose

Display diagnostics information.

--help

Prints out help for the script.

Install the latest long-term supported (LTS) version to the default location:

Windows:

./dotnet-install.ps1 -Channel LTS

macOS/Linux:

./dotnet-install.sh --channel LTS

Install the latest version from 2.0 channel to the specified location:

Windows:

./dotnet-install.ps1 -Channel 2.0 -InstallDir C:\cli

macOS/Linux:

./dotnet-install.sh --channel 2.0 --install-dir ~/cli

Install the 1.1.0 version of the shared runtime:

Windows:

./dotnet-install.ps1 -SharedRuntime -Version 1.1.0

macOS/Linux:

./dotnet-install.sh --shared-runtime --version 1.1.0

Obtain script and install .NET Core CLI one-liner examples:

Windows:

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "&([scriptblock]::Create((Invoke-WebRequest -useb 'https://dot.net/v1/dotnet-
install.ps1'))) <additional install-script args>"

macOS/Linux:

curl -sSL https://dot.net/v1/dotnet-install.sh | bash /dev/stdin <additional install-script args>

.NET Core releases

https://github.com/dotnet/core/releases

.NET Core Runtime and SDK download archive

https://github.com/dotnet/core/blob/master/release-notes/download-archive.md

dotnet migrate
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet migrate [<SOLUTION_FILE|PROJECT_DIR>] [--format-report-file-json] [-r|--report-file] [-s|--skip-project-references] [--skip-backup] [-t|--
template-file] [-v|--sdk-package-version] [-x|--xproj-file]
dotnet migrate [-h|--help]

Description

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet migrate - Migrates a Preview 2 .NET Core project to a .NET Core SDK 1.0 project.

The dotnet migrate command migrates a valid Preview 2 project.json-based project to a valid .NET Core SDK 1.0 csproj project.

By default, the command migrates the root project and any project references that the root project contains. This behavior is disabled using the
--skip-project-references option at runtime.

Migration can be performed on the following assets:

A single project by specifying the project.json file to migrate.
All of the directories specified in the global.json file by passing in a path to the global.json file.
A solution.sln file, where it migrates the projects referenced in the solution.
On all subdirectories of the given directory recursively.

The dotnet migrate command keeps the migrated project.json file inside a backup directory, which it creates if the directory doesn't exist. This behavior
is overridden using the --skip-backup option.

By default, the migration operation outputs the state of the migration process to standard output (STDOUT). If you use the
--report-file <REPORT_FILE> option, the output is saved to the file specify.

The dotnet migrate command only supports valid Preview 2 project.json-based projects. This means that you cannot use it to migrate DNX or Preview
1 project.json-based projects directly to MSBuild/csproj projects. You first need to manually migrate the project to a Preview 2 project.json-based
project and then use the dotnet migrate command to migrate the project.

PROJECT_JSON/GLOBAL_JSON/SOLUTION_FILE/PROJECT_DIR

The path to one of the following:

a project.json file to migrate.
a global.json file: the folders specified in global.json are migrated.
a solution.sln file: the projects referenced in the solution are migrated.
a directory to migrate: recursively searches for project.json files to migrate inside the specified directory.

Defaults to current directory if nothing is specified.

--format-report-file-json <REPORT_FILE>

Output migration report file as JSON rather than user messages.

-h|--help

Prints out a short help for the command.

-r|--report-file <REPORT_FILE>

Output migration report to a file in addition to the console.

-s|--skip-project-references [Debug|Release]

Skip migrating project references. By default, project references are migrated recursively.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-migrate.md

Examples

--skip-backup

Skip moving project.json, global.json, and *.xproj to a backup directory after successful migration.

-t|--template-file <TEMPLATE_FILE>

Template csproj file to use for migration. By default, the same template as the one dropped by dotnet new console is used.

-v|--sdk-package-version <VERSION>

The version of the sdk package that's referenced in the migrated app. The default is the version of the SDK in dotnet new .

-x|--xproj-file <FILE>

The path to the xproj file to use. Required when there is more than one xproj in a project directory.

Migrate a project in the current directory and all of its project-to-project dependencies:

dotnet migrate

Migrate all projects that global.json file includes:

dotnet migrate path/to/global.json

Migrate only the current project and no project-to-project (P2P) dependencies. Also, use a specific SDK version:

dotnet migrate -s -v 1.0.0-preview4

dotnet msbuild
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet msbuild - Builds a project and all of its dependencies.

dotnet msbuild <msbuild_arguments> [-h]

The dotnet msbuild command allows access to a fully functional MSBuild.

The command has the exact same capabilities as existing MSBuild command-line client. The options are all the same. For more information about the
available options, see the MSBuild Command-Line Reference.

Build a project and its dependencies:

dotnet msbuild

Build a project and its dependencies using Release configuration:

dotnet msbuild /p:Configuration=Release

Run the publish target and publish for the osx.10.11-x64 RID:

dotnet msbuild /t:Publish /p:RuntimeIdentifiers=osx.10.11-x64

See the whole project with all targets included by the SDK:

dotnet msbuild /pp

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-msbuild.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference

dotnet new
6/15/2018 • 15 minutes to read • Edit Online

Name

Synopsis

dotnet new <TEMPLATE> [--force] [-i|--install] [-lang|--language] [-n|--name] [--nuget-source] [-o|--output]
 [-u|--uninstall] [Template options]
dotnet new <TEMPLATE> [-l|--list] [--type]
dotnet new [-h|--help]

Description

Arguments

TEMPLATE DESCRIPTION TEMPLATE NAME LANGUAGES

Console application console [C#], F#, VB

Class library classlib [C#], F#, VB

Unit test project mstest [C#], F#, VB

xUnit test project xunit [C#], F#, VB

Razor page page [C#]

MVC ViewImports viewimports [C#]

MVC ViewStart viewstart [C#]

ASP.NET Core empty web [C#], F#

ASP.NET Core Web App (Model-View-Controller) mvc [C#], F#

ASP.NET Core Web App razor [C#]

ASP.NET Core with Angular angular [C#]

ASP.NET Core with React.js react [C#]

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet new - Creates a new project, configuration file, or solution based on the specified template.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet new command provides a convenient way to initialize a valid .NET Core project.

The command calls the template engine to create the artifacts on disk based on the specified template and options.

TEMPLATE

The template to instantiate when the command is invoked. Each template might have specific options you can pass. For more information, see Template
options.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The command contains a default list of templates. Use dotnet new -l to obtain a list of the available templates. The following table shows the templates
that come pre-installed with the .NET Core SDK 2.1.300. The default language for the template is shown inside the brackets.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-new.md
https://github.com/dotnet/templating

ASP.NET Core with React.js and Redux reactredux [C#]

ASP.NET Core Web API webapi [C#], F#

Razor class library razorclasslib [C#]

global.json file globaljson

NuGet config nugetconfig

Web config webconfig

Solution file sln

TEMPLATE DESCRIPTION TEMPLATE NAME LANGUAGES

Options

NOTENOTE

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--force

Forces content to be generated even if it would change existing files. This is required when the output directory already contains a project.

-h|--help

Prints out help for the command. It can be invoked for the dotnet new command itself or for any template, such as dotnet new mvc --help .

-i|--install <PATH|NUGET_ID>

Installs a source or template pack from the PATH or NUGET_ID provided. If you want to install a prerelease version of a template package, you need to
specify the version in the format of <package-name>::<package-version> . By default, dotnet new passes * for the version, which represents the last stable
package version. See an example at the Examples section.

For information on creating custom templates, see Custom templates for dotnet new.

-l|--list

Lists templates containing the specified name. If invoked for the dotnet new command, it lists the possible templates available for the given directory.
For example if the directory already contains a project, it doesn't list all project templates.

-lang|--language {C#|F#|VB}

The language of the template to create. The language accepted varies by the template (see defaults in the arguments section). Not valid for some
templates.

Some shells interpret # as a special character. In those cases, you need to enclose the language parameter value, such as dotnet new console -lang "F#" .

-n|--name <OUTPUT_NAME>

The name for the created output. If no name is specified, the name of the current directory is used.

--nuget-source

Specifies a NuGet source to use during install.

-o|--output <OUTPUT_DIRECTORY>

Location to place the generated output. The default is the current directory.

--type

Filters templates based on available types. Predefined values are "project", "item" or "other".

-u|--uninstall <PATH|NUGET_ID>

Uninstalls a source or template pack at the PATH or NUGET_ID provided.

NOTENOTE

Template options

To uninstall a template using a PATH , you need to fully qualify the path. For example,
C:/Users/<USER>/Documents/Templates/GarciaSoftware.ConsoleTemplate.CSharp will work, but ./GarciaSoftware.ConsoleTemplate.CSharp from the containing
folder will not. Additionally, do not include a final terminating directory slash on your template path.

Each project template may have additional options available. The core templates have the following additional options:

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

console, angular, react, reactredux, razorclasslib

--no-restore - Doesn't execute an implicit restore during project creation.

classlib

-f|--framework <FRAMEWORK> - Specifies the framework to target. Values: netcoreapp2.0 to create a .NET Core Class Library or netstandard2.0 to create
a .NET Standard Class Library. The default value is netstandard2.0 .

--no-restore - Doesn't execute an implicit restore during project creation.

mstest, xunit

-p|--enable-pack - Enables packaging for the project using dotnet pack.

--no-restore - Doesn't execute an implicit restore during project creation.

globaljson

--sdk-version <VERSION_NUMBER> - Specifies the version of the .NET Core SDK to use in the global.json file.

web

--use-launch-settings - Includes launchSettings.json in the generated template output.

--no-restore - Doesn't execute an implicit restore during project creation.

webapi

-au|--auth <AUTHENTICATION_TYPE> - The type of authentication to use. The possible values are:

None - No authentication (Default).
IndividualB2C - Individual authentication with Azure AD B2C.
SingleOrg - Organizational authentication for a single tenant.
Windows - Windows authentication.

--aad-b2c-instance <INSTANCE> - The Azure Active Directory B2C instance to connect to. Use with IndividualB2C authentication. The default value is
https://login.microsoftonline.com/tfp/ .

-ssp|--susi-policy-id <ID> - The sign-in and sign-up policy ID for this project. Use with IndividualB2C authentication.

--aad-instance <INSTANCE> - The Azure Active Directory instance to connect to. Use with SingleOrg authentication. The default value is
https://login.microsoftonline.com/ .

--client-id <ID> - The Client ID for this project. Use with IndividualB2C or SingleOrg authentication. The default value is
11111111-1111-1111-11111111111111111 .

--domain <DOMAIN> - The domain for the directory tenant. Use with SingleOrg or IndividualB2C authentication. The default value is
qualified.domain.name .

--tenant-id <ID> - The TenantId ID of the directory to connect to. Use with SingleOrg authentication. The default value is
22222222-2222-2222-2222-222222222222 .

-r|--org-read-access - Allows this application read-access to the directory. Only applies to SingleOrg or MultiOrg authentication.

--use-launch-settings - Includes launchSettings.json in the generated template output.

-uld|--use-local-db - Specifies LocalDB should be used instead of SQLite. Only applies to Individual or IndividualB2C authentication.

--no-restore - Doesn't execute an implicit restore during project creation.

mvc, razor

-au|--auth <AUTHENTICATION_TYPE> - The type of authentication to use. The possible values are:

Examples

None - No authentication (Default).
Individual - Individual authentication.
IndividualB2C - Individual authentication with Azure AD B2C.
SingleOrg - Organizational authentication for a single tenant.
MultiOrg - Organizational authentication for multiple tenants.
Windows - Windows authentication.

--aad-b2c-instance <INSTANCE> - The Azure Active Directory B2C instance to connect to. Use with IndividualB2C authentication. The default value is
https://login.microsoftonline.com/tfp/ .

-ssp|--susi-policy-id <ID> - The sign-in and sign-up policy ID for this project. Use with IndividualB2C authentication.

-rp|--reset-password-policy-id <ID> - The reset password policy ID for this project. Use with IndividualB2C authentication.

-ep|--edit-profile-policy-id <ID> - The edit profile policy ID for this project. Use with IndividualB2C authentication.

--aad-instance <INSTANCE> - The Azure Active Directory instance to connect to. Use with SingleOrg or MultiOrg authentication. The default value is
https://login.microsoftonline.com/ .

--client-id <ID> - The Client ID for this project. Use with IndividualB2C , SingleOrg , or MultiOrg authentication. The default value is
11111111-1111-1111-11111111111111111 .

--domain <DOMAIN> - The domain for the directory tenant. Use with SingleOrg or IndividualB2C authentication. The default value is
qualified.domain.name .

--tenant-id <ID> - The TenantId ID of the directory to connect to. Use with SingleOrg authentication. The default value is
22222222-2222-2222-2222-222222222222 .

--callback-path <PATH> - The request path within the application's base path of the redirect URI. Use with SingleOrg or IndividualB2C authentication.
The default value is /signin-oidc .

-r|--org-read-access - Allows this application read-access to the directory. Only applies to SingleOrg or MultiOrg authentication.

--use-launch-settings - Includes launchSettings.json in the generated template output.

--use-browserlink - Includes BrowserLink in the project.

-uld|--use-local-db - Specifies LocalDB should be used instead of SQLite. Only applies to Individual or IndividualB2C authentication.

--no-restore - Doesn't execute an implicit restore during project creation.

page

-na|--namespace <NAMESPACE_NAME> - Namespace for the generated code. The default value is MyApp.Namespace .

-np|--no-pagemodel - Creates the page without a PageModel.

viewimports

-na|--namespace <NAMESPACE_NAME> - Namespace for the generated code. The default value is MyApp.Namespace .

Create an F# console application project in the current directory:

dotnet new console -lang F#

Create a .NET Standard class library project in the specified directory (available only with .NET Core SDK 2.0 or later versions):

dotnet new classlib -lang VB -o MyLibrary

Create a new ASP.NET Core C# MVC application project in the current directory with no authentication:

dotnet new mvc -au None

Create a new xUnit application:

dotnet new xunit

List all templates available for MVC:

dotnet new mvc -l

Install version 2.0 of the Single Page Application templates for ASP.NET Core (command option available for .NET Core SDK 1.1 and later versions
only):

dotnet new -i Microsoft.DotNet.Web.Spa.ProjectTemplates::2.0.0

Create a global.json in the current directory setting the SDK version to 2.0.0 (available only with .NET Core SDK 2.0 or later versions):

See also

dotnet new globaljson --sdk-version 2.0.0

Custom templates for dotnet new
Create a custom template for dotnet new
dotnet/dotnet-template-samples GitHub repo
Available templates for dotnet new

https://github.com/dotnet/dotnet-template-samples
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

dotnet nuget delete
6/2/2018 • 2 minutes to read • Edit Online

Name

Synopsis

dotnet nuget delete [<PACKAGE_NAME> <PACKAGE_VERSION>] [--force-english-output] [-k|--api-key] [--no-service-endpoint]
 [--non-interactive] [-s|--source]
dotnet nuget delete [-h|--help]

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet nuget delete - Deletes or unlists a package from the server.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet nuget delete command deletes or unlists a package from the server. For nuget.org, the action is to unlist the package.

PACKAGE_NAME

Name/ID of the package to delete.

PACKAGE_VERSION

Version of the package to delete.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

-k|--api-key <API_KEY>

The API key for the server.

--no-service-endpoint Doesn't append "api/v2/package" to the source URL.

--non-interactive

Doesn't prompt for user input or confirmations.

-s|--source <SOURCE>

Specifies the server URL. Supported URLs for nuget.org include http://www.nuget.org , http://www.nuget.org/api/v3 , and
http://www.nuget.org/api/v2/package . For private feeds, replace the host name (for example, %hostname%/api/v3).

Deletes version 1.0 of package Microsoft.AspNetCore.Mvc :

dotnet nuget delete Microsoft.AspNetCore.Mvc 1.0

Deletes version 1.0 of package Microsoft.AspNetCore.Mvc , not prompting user for credentials or other input:

dotnet nuget delete Microsoft.AspNetCore.Mvc 1.0 --non-interactive

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-delete.md
https://www.nuget.org/

dotnet nuget locals
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet nuget locals <CACHE_LOCATION> [(-c|--clear)|(-l|--list)] [--force-english-output]
dotnet nuget locals [-h|--help]

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet nuget locals - Clears or lists local NuGet resources.

The dotnet nuget locals command clears or lists local NuGet resources in the http-request cache, temporary cache, or machine-wide global packages
folder.

CACHE_LOCATION

The cache location to list or clear. It accepts one of the following values:

all - Indicates that the specified operation is applied to all cache types: http-request cache, global packages cache, and the temporary cache.
http-cache - Indicates that the specified operation is applied only to the http-request cache. The other cache locations aren't affected.
global-packages - Indicates that the specified operation is applied only to the global packages cache. The other cache locations aren't affected.
temp - Indicates that the specified operation is applied only to the temporary cache. The other cache locations aren't affected.

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

-c|--clear

The clear option executes a clear operation on the specified cache type. The contents of the cache directories are deleted recursively. The executing
user/group must have permission to the files in the cache directories. If not, an error is displayed indicating the files/folders that weren't cleared.

-l|--list

The list option is used to display the location of the specified cache type.

Displays the paths of all the local cache directories (http-cache directory, global-packages cache directory, and temporary cache directory):

dotnet nuget locals –l all

Displays the path for the local http-cache directory:

dotnet nuget locals --list http-cache

Clears all files from all local cache directories (http-cache directory, global-packages cache directory, and temporary cache directory):

dotnet nuget locals --clear all

Clears all files in local global-packages cache directory:

dotnet nuget locals -c global-packages

Clears all files in local temporary cache directory:

dotnet nuget locals -c temp

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-locals.md

Troubleshooting
For information on common problems and errors while using the dotnet nuget locals command, see Managing the NuGet cache.

https://docs.microsoft.com/nuget/consume-packages/managing-the-nuget-cache

dotnet nuget push
6/2/2018 • 3 minutes to read • Edit Online

Name

Synopsis

dotnet nuget push [<ROOT>] [-d|--disable-buffering] [--force-english-output] [-k|--api-key] [-n|--no-symbols]
 [--no-service-endpoint] [-s|--source] [-sk|--symbol-api-key] [-ss|--symbol-source] [-t|--timeout]
dotnet nuget push [-h|--help]

Description

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet nuget push - Pushes a package to the server and publishes it.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet nuget push command pushes a package to the server and publishes it. The push command uses server and credential details found in the
system's NuGet config file or chain of config files. For more information on config files, see Configuring NuGet Behavior. NuGet's default configuration
is obtained by loading %AppData%\NuGet\NuGet.config (Windows) or $HOME/.local/share (Linux/macOS), then loading any nuget.config or
.nuget\nuget.config starting from the root of drive and ending in the current directory.

ROOT

Specifies the file path to the package to be pushed.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

-d|--disable-buffering

Disables buffering when pushing to an HTTP(S) server to reduce memory usage.

--force-english-output

Forces the application to run using an invariant, English-based culture.

-h|--help

Prints out a short help for the command.

-k|--api-key <API_KEY>

The API key for the server.

-n|--no-symbols

Doesn't push symbols (even if present).

--no-service-endpoint

Doesn't append "api/v2/package" to the source URL.

-s|--source <SOURCE>

Specifies the server URL. This option is required unless DefaultPushSource config value is set in the NuGet config file.

-sk|--symbol-api-key <API_KEY>

The API key for the symbol server.

-ss|--symbol-source <SOURCE>

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-nuget-push.md
https://docs.microsoft.com/nuget/consume-packages/configuring-nuget-behavior

Examples

Specifies the symbol server URL.

-t|--timeout <TIMEOUT>

Specifies the timeout for pushing to a server in seconds. Defaults to 300 seconds (5 minutes). Specifying 0 (zero seconds) applies the default value.

Pushes foo.nupkg to the default push source, specifying an API key:

dotnet nuget push foo.nupkg -k 4003d786-cc37-4004-bfdf-c4f3e8ef9b3a

Push foo.nupkg to the custom push source http://customsource , specifying an API key:

dotnet nuget push foo.nupkg -k 4003d786-cc37-4004-bfdf-c4f3e8ef9b3a -s http://customsource/

Pushes foo.nupkg to the default push source:

dotnet nuget push foo.nupkg

Pushes foo.symbols.nupkg to the default symbols source:

dotnet nuget push foo.symbols.nupkg

Pushes foo.nupkg to the default push source, specifying a 360-second timeout:

dotnet nuget push foo.nupkg --timeout 360

Pushes all .nupkg files in the current directory to the default push source:

dotnet nuget push *.nupkg

Pushes all .nupkg files in the current directory to the default push source, specifying a custom config file ./config/My.Config:

dotnet nuget push *.nupkg --config-file ./config/My.Config

dotnet pack
5/30/2018 • 4 minutes to read • Edit Online

Name

Synopsis

dotnet pack [<PROJECT>] [-c|--configuration] [--force] [--include-source] [--include-symbols] [--no-build] [--no-dependencies]
 [--no-restore] [-o|--output] [--runtime] [-s|--serviceable] [-v|--verbosity] [--version-suffix]
dotnet pack [-h|--help]

Description

NOTENOTE

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet pack - Packs the code into a NuGet package.

.NET Core 2.x

.NET Core 1.x

The dotnet pack command builds the project and creates NuGet packages. The result of this command is a NuGet package. If the --include-symbols

option is present, another package containing the debug symbols is created.

NuGet dependencies of the packed project are added to the .nuspec file, so they're properly resolved when the package is installed. Project-to-project
references aren't packaged inside the project. Currently, you must have a package per project if you have project-to-project dependencies.

By default, dotnet pack builds the project first. If you wish to avoid this behavior, pass the --no-build option. This option is often useful in Continuous
Integration (CI) build scenarios where you know the code was previously built.

You can provide MSBuild properties to the dotnet pack command for the packing process. For more information, see NuGet metadata properties and
the MSBuild Command-Line Reference. The Examples section shows how to use the MSBuild /p switch for a couple of different scenarios.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands, such as dotnet build and dotnet run , that
require a restore to occur. It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in Visual
Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source). Short form options, such as -s , are not
supported.

PROJECT

The project to pack. It's either a path to a csproj file or to a directory. If not specified, it defaults to the current directory.

.NET Core 2.x

.NET Core 1.x

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--include-source

Includes the source files in the NuGet package. The sources files are included in the src folder within the nupkg .

--include-symbols

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-pack.md
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Examples

Generates the symbols nupkg .

--no-build

Doesn't build the project before packing. It also implicit sets the --no-restore flag.

--no-dependencies

Ignores project-to-project references and only restores the root project.

--no-restore

Doesn't execute an implicit restore when running the command.

-o|--output <OUTPUT_DIRECTORY>

Places the built packages in the directory specified.

--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime to restore packages for. For a list of Runtime Identifiers (RIDs), see the RID catalog.

-s|--serviceable

Sets the serviceable flag in the package. For more information, see .NET Blog: .NET 4.5.1 Supports Microsoft Security Updates for .NET NuGet
Libraries.

--version-suffix <VERSION_SUFFIX>

Defines the value for the $(VersionSuffix) MSBuild property in the project.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

Pack the project in the current directory:

dotnet pack

Pack the app1 project:

dotnet pack ~/projects/app1/project.csproj

Pack the project in the current directory and place the resulting packages into the nupkgs folder :

dotnet pack --output nupkgs

Pack the project in the current directory into the nupkgs folder and skip the build step:

dotnet pack --no-build --output nupkgs

With the project's version suffix configured as <VersionSuffix>$(VersionSuffix)</VersionSuffix> in the .csproj file, pack the current project and update
the resulting package version with the given suffix:

dotnet pack --version-suffix "ci-1234"

Set the package version to 2.1.0 with the PackageVersion MSBuild property:

dotnet pack /p:PackageVersion=2.1.0

Pack the project for a specific target framework:

dotnet pack /p:TargetFrameworks=net45

Pack the project and use a specific runtime (Windows 10) for the restore operation (.NET Core SDK 2.0 and later versions):

dotnet pack --runtime win10-x64

https://aka.ms/nupkgservicing

dotnet publish
5/30/2018 • 6 minutes to read • Edit Online

Name

Synopsis

dotnet publish [<PROJECT>] [-c|--configuration] [-f|--framework] [--force] [--manifest] [--no-build] [--no-dependencies]
 [--no-restore] [-o|--output] [-r|--runtime] [--self-contained] [-v|--verbosity] [--version-suffix]
dotnet publish [-h|--help]

Description

NOTENOTE

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet publish - Packs the application and its dependencies into a folder for deployment to a hosting system.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

dotnet publish compiles the application, reads through its dependencies specified in the project file, and publishes the resulting set of files to a
directory. The output includes the following assets:

Intermediate Language (IL) code in an assembly with a dll extension.
.deps.json file that includes all of the dependencies of the project.
.runtime.config.json file that specifies the shared runtime that the application expects, as well as other configuration options for the runtime (for
example, garbage collection type).
The application's dependencies, which are copied from the NuGet cache into the output folder.

The dotnet publish command's output is ready for deployment to a hosting system (for example, a server, PC, Mac, laptop) for execution. It's the only
officially supported way to prepare the application for deployment. Depending on the type of deployment that the project specifies, the hosting system
may or may not have the .NET Core shared runtime installed on it. For more information, see .NET Core Application Deployment. For the directory
structure of a published application, see Directory structure.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands, such as dotnet build and dotnet run , that
require a restore to occur. It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in Visual
Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source). Short form options, such as -s , are not
supported.

PROJECT

The project to publish. If not specified, it defaults to the current directory.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

-f|--framework <FRAMEWORK>

Publishes the application for the specified target framework. You must specify the target framework in the project file.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same as deleting the project.assets.json file.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-publish.md
https://docs.microsoft.com/aspnet/core/hosting/directory-structure
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Examples

See also

-h|--help

Prints out a short help for the command.

--manifest <PATH_TO_MANIFEST_FILE>

Specifies one or several target manifests to use to trim the set of packages published with the app. The manifest file is part of the output of the
dotnet store command. To specify multiple manifests, add a --manifest option for each manifest. This option is available starting with .NET Core 2.0

SDK.

--no-build

Doesn't build the project before publishing. It also implicit sets the --no-restore flag.

--no-dependencies

Ignores project-to-project references and only restores the root project.

--no-restore

Doesn't execute an implicit restore when running the command.

-o|--output <OUTPUT_DIRECTORY>

Specifies the path for the output directory. If not specified, it defaults to ./bin/[configuration]/[framework]/publish/ for a framework-dependent
deployment or ./bin/[configuration]/[framework]/[runtime]/publish/ for a self-contained deployment. If the path is relative, the output directory
generated is relative to the project file location, not to the current working directory.

--self-contained

Publishes the .NET Core runtime with your application so the runtime doesn't need to be installed on the target machine. If a runtime identifier is
specified, its default value is true . For more information about the different deployment types, see .NET Core application deployment.

-r|--runtime <RUNTIME_IDENTIFIER>

Publishes the application for a given runtime. This is used when creating a self-contained deployment (SCD). For a list of Runtime Identifiers (RIDs), see
the RID catalog. Default is to publish a framework-dependent deployment (FDD).

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

--version-suffix <VERSION_SUFFIX>

Defines the version suffix to replace the asterisk (*) in the version field of the project file.

Publish the project in the current directory:

dotnet publish

Publish the application using the specified project file:

dotnet publish ~/projects/app1/app1.csproj

Publish the project in the current directory using the netcoreapp1.1 framework:

dotnet publish --framework netcoreapp1.1

Publish the current application using the netcoreapp1.1 framework and the runtime for OS X 10.10 (you must list this RID in the project file).

dotnet publish --framework netcoreapp1.1 --runtime osx.10.11-x64

Publish the current application but don't restore project-to-project (P2P) references, just the root project during the restore operation (.NET Core SDK
2.0 and later versions):

dotnet publish --no-dependencies

Target frameworks
Runtime IDentifier (RID) catalog

dotnet restore
6/30/2018 • 4 minutes to read • Edit Online

Name

Synopsis

dotnet restore [<ROOT>] [--configfile] [--disable-parallel] [--force] [--ignore-failed-sources] [--no-cache]
 [--no-dependencies] [--packages] [-r|--runtime] [-s|--source] [-v|--verbosity]
dotnet restore [-h|--help]

Description

NOTENOTE

Implicit dotnet restore

Arguments

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet restore - Restores the dependencies and tools of a project.

.NET Core 2.x

.NET Core 1.x

The dotnet restore command uses NuGet to restore dependencies as well as project-specific tools that are specified in the project file. By default, the
restoration of dependencies and tools are executed in parallel.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

To restore the dependencies, NuGet needs the feeds where the packages are located. Feeds are usually provided via the NuGet.config configuration file.
A default configuration file is provided when the CLI tools are installed. You specify additional feeds by creating your own NuGet.config file in the
project directory. You also specify additional feeds per invocation at a command prompt.

For dependencies, you specify where the restored packages are placed during the restore operation using the --packages argument. If not specified, the
default NuGet package cache is used, which is found in the .nuget/packages directory in the user's home directory on all operating systems. For
example, /home/user1 on Linux or C:\Users\user1 on Windows.

For project-specific tooling, dotnet restore first restores the package in which the tool is packed, and then proceeds to restore the tool's dependencies
as specified in its project file.

The behavior of the dotnet restore command is affected by some of the settings in the Nuget.Config file, if present. For example, setting the
globalPackagesFolder in NuGet.Config places the restored NuGet packages in the specified folder. This is an alternative to specifying the --packages

option on the dotnet restore command. For more information, see the NuGet.Config reference.

Starting with .NET Core 2.0, dotnet restore is run implicitly if necessary when you issue the following commands:

dotnet new

dotnet build

dotnet build-server

dotnet run

dotnet test

dotnet publish

dotnet pack

In most cases, you no longer need to explicitly use the dotnet restore command.

Sometimes, it might be inconvenient to run dotnet restore implicitly. For example, some automated systems, such as build systems, need to call
dotnet restore explicitly to control when the restore occurs so that they can control network usage. To prevent dotnet restore from running implicitly,

you can use the --no-restore flag with any of these commands to disable implicit restore.

ROOT

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-restore.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/nuget/schema/nuget-config-file

Options

Optional path to the project file to restore.

.NET Core 2.x

.NET Core 1.x

--configfile <FILE>

The NuGet configuration file (NuGet.config) to use for the restore operation.

--disable-parallel

Disables restoring multiple projects in parallel.

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--ignore-failed-sources

Only warn about failed sources if there are packages meeting the version requirement.

--no-cache

Specifies to not cache packages and HTTP requests.

--no-dependencies

When restoring a project with project-to-project (P2P) references, restores the root project and not the references.

--packages <PACKAGES_DIRECTORY>

Specifies the directory for restored packages.

-r|--runtime <RUNTIME_IDENTIFIER>

Specifies a runtime for the package restore. This is used to restore packages for runtimes not explicitly listed in the <RuntimeIdentifiers> tag in the
.csproj file. For a list of Runtime Identifiers (RIDs), see the RID catalog. Provide multiple RIDs by specifying this option multiple times.

-s|--source <SOURCE>

Specifies a NuGet package source to use during the restore operation. This setting overrides all of the sources specified in the NuGet.config files.
Multiple sources can be provided by specifying this option multiple times.

--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

dotnet run
6/28/2018 • 5 minutes to read • Edit Online

Name

Synopsis

dotnet run [-c|--configuration] [-f|--framework] [--force] [--launch-profile] [--no-build] [--no-dependencies]
 [--no-launch-profile] [--no-restore] [-p|--project] [--runtime] [-v|--verbosity] [[--] [application arguments]]
dotnet run [-h|--help]

Description

dotnet myapp.dll

NOTENOTE

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet run - Runs source code without any explicit compile or launch commands.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet run command provides a convenient option to run your application from the source code with one command. It's useful for fast iterative
development from the command line. The command depends on the dotnet build command to build the code. Any requirements for the build, such as
that the project must be restored first, apply to dotnet run as well.

Output files are written into the default location, which is bin/<configuration>/<target> . For example if you have a netcoreapp1.0 application and you
run dotnet run , the output is placed in bin/Debug/netcoreapp1.0 . Files are overwritten as needed. Temporary files are placed in the obj directory.

If the project specifies multiple frameworks, executing dotnet run results in an error unless the -f|--framework <FRAMEWORK> option is used to specify
the framework.

The dotnet run command is used in the context of projects, not built assemblies. If you're trying to run a framework-dependent application DLL
instead, you must use dotnet without a command. For example, to run myapp.dll , use:

For more information on the dotnet driver, see the .NET Core Command Line Tools (CLI) topic.

To run the application, the dotnet run command resolves the dependencies of the application that are outside of the shared runtime from the NuGet
cache. Because it uses cached dependencies, it's not recommended to use dotnet run to run applications in production. Instead, create a deployment
using the dotnet publish command and deploy the published output.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands, such as dotnet build and dotnet run , that
require a restore to occur. It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in Visual
Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

This command also supports the dotnet restore options when passed in the long form (for example, --source). Short form options, such as -s , are not
supported.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--

Delimits arguments to dotnet run from arguments for the application being run. All arguments after this delimiter are passed to the application run.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug .

-f|--framework <FRAMEWORK>

Builds and runs the app using the specified framework. The framework must be specified in the project file.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-run.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core

Examples

--force

Forces all dependencies to be resolved even if the last restore was successful. Specifying this flag is the same as deleting the project.assets.json file.

-h|--help

Prints out a short help for the command.

--launch-profile <NAME>

The name of the launch profile (if any) to use when launching the application. Launch profiles are defined in the launchSettings.json file and are typically
called Development , Staging , and Production . For more information, see Working with multiple environments.

--no-build

Doesn't build the project before running. It also implicit sets the --no-restore flag.

--no-dependencies

When restoring a project with project-to-project (P2P) references, restores the root project and not the references.

--no-launch-profile

Doesn't try to use launchSettings.json to configure the application.

--no-restore

Doesn't execute an implicit restore when running the command.

-p|--project <PATH>

Specifies the path of the project file to run (folder name or full path). If not specified, it defaults to the current directory.

--runtime <RUNTIME_IDENTIFIER>

Specifies the target runtime to restore packages for. For a list of Runtime Identifiers (RIDs), see the RID catalog.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

Run the project in the current directory:

dotnet run

Run the specified project:

dotnet run --project ./projects/proj1/proj1.csproj

Run the project in the current directory (the --help argument in this example is passed to the application, since the blank -- option is used):

dotnet run --configuration Release -- --help

Restore dependencies and tools for the project in the current directory only showing minimal output and then run the project: (.NET Core SDK 2.0 and
later versions):

dotnet run --verbosity m

https://docs.microsoft.com/aspnet/core/fundamentals/environments

dotnet sln
6/15/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet sln [<SOLUTION_NAME>] add <PROJECT> <PROJECT> ...
dotnet sln [<SOLUTION_NAME>] add <GLOBBING_PATTERN>
dotnet sln [<SOLUTION_NAME>] remove <PROJECT> <PROJECT> ...
dotnet sln [<SOLUTION_NAME>] remove <GLOBBING_PATTERN>
dotnet sln [<SOLUTION_NAME>] list
dotnet sln [-h|--help]

Description

dotnet new sln

Commands

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet sln - Modifies a .NET Core solution file.

The dotnet sln command provides a convenient way to add, remove, and list projects in a solution file.

To use the dotnet sln command, the solution file must already exist. If you need to create one, use the dotnet new command, like in the following
example:

add <PROJECT> ...

add <GLOBBING_PATTERN>

Adds a project or multiple projects to the solution file. Globbing patterns are supported on Unix/Linux based terminals.

remove <PROJECT> ...

remove <GLOBBING_PATTERN>

Removes a project or multiple projects from the solution file. Globbing patterns are supported on Unix/Linux based terminals.

list

Lists all projects in a solution file.

SOLUTION_NAME

Solution file to use. If not specified, the command searches the current directory for one. If there are multiple solution files in the directory, one must be
specified.

-h|--help

Prints out a short help for the command.

Add a C# project to a solution:

dotnet sln todo.sln add todo-app/todo-app.csproj

Remove a C# project from a solution:

dotnet sln todo.sln remove todo-app/todo-app.csproj

Add multiple C# projects to a solution:

dotnet sln todo.sln add todo-app/todo-app.csproj back-end/back-end.csproj

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-sln.md
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Glob_(programming)

Remove multiple C# projects from a solution:

dotnet sln todo.sln remove todo-app/todo-app.csproj back-end/back-end.csproj

Add multiple C# projects to a solution using a globbing pattern:

dotnet sln todo.sln add **/*.csproj

Remove multiple C# projects from a solution using a globbing pattern:

dotnet sln todo.sln remove **/*.csproj

dotnet store
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Required options

Optional options

Examples

This topic applies to: ✓✓ .NET Core SDK 2.0 and later versions

dotnet store - Stores the specified assemblies in the runtime package store.

dotnet store -m|--manifest -f|--framework -r|--runtime [--framework-version] [-h|--help] [--output] [--skip-optimization] [--skip-symbols] [-v|--
verbosity] [--working-dir]

dotnet store stores the specified assemblies in the runtime package store. By default, assemblies are optimized for the target runtime and framework.
For more information, see the runtime package store topic.

-f|--framework <FRAMEWORK>

Specifies the target framework.

-m|--manifest <PATH_TO_MANIFEST_FILE>

The package store manifest file is an XML file that contains the list of packages to store. The format of the manifest file is compatible with the SDK-style
project format. So, a project file that references the desired packages can be used with the -m|--manifest option to store assemblies in the runtime
package store. To specify multiple manifest files, repeat the option and path for each file. For example:
--manifest packages1.csproj --manifest packages2.csproj .

-r|--runtime <RUNTIME_IDENTIFIER>

The runtime identifier to target.

--framework-version <FRAMEWORK_VERSION>

Specifies the .NET Core SDK version. This option enables you to select a specific framework version beyond the framework specified by the
-f|--framework option.

-h|--help

Shows help information.

-o|--output <OUTPUT_DIRECTORY>

Specifies the path to the runtime package store. If not specified, it defaults to the store subdirectory of the user profile .NET Core installation directory.

--skip-optimization

Skips the optimization phase.

--skip-symbols

Skips symbol generation. Currently, you can only generate symbols on Windows and Linux.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

-w|--working-dir <INTERMEDIATE_WORKING_DIRECTORY>

The working directory used by the command. If not specified, it uses the obj subdirectory of the current directory.

Store the packages specified in the packages.csproj project file for .NET Core 2.0.0:

dotnet store --manifest packages.csproj --framework-version 2.0.0

Store the packages specified in the packages.csproj without optimization:

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-store.md

See also

dotnet store --manifest packages.csproj --skip-optimization

Runtime package store

dotnet test
5/30/2018 • 5 minutes to read • Edit Online

Name

Synopsis

dotnet test [<PROJECT>] [-a|--test-adapter-path] [--blame] [-c|--configuration] [--collect] [-d|--diag] [-f|--framework] [--filter]
 [-l|--logger] [--no-build] [--no-restore] [-o|--output] [-r|--results-directory] [-s|--settings] [-t|--list-tests] [-v|--verbosity]
dotnet test [-h|--help]

Description

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.0.0" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 </ItemGroup>

</Project>

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet test - .NET test driver used to execute unit tests.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet test command is used to execute unit tests in a given project. The dotnet test command launches the test runner console application
specified for a project. The test runner executes the tests defined for a unit test framework (for example, MSTest, NUnit, or xUnit) and reports the
success or failure of each test. The test runner and the unit test library are packaged as NuGet packages and are restored as ordinary dependencies for
the project.

Test projects specify the test runner using an ordinary <PackageReference> element, as seen in the following sample project file:

PROJECT

Path to the test project. If not specified, it defaults to current directory.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

-a|--test-adapter-path <PATH_TO_ADAPTER>

Use the custom test adapters from the specified path in the test run.

--blame

Runs the tests in blame mode. This option is helpful in isolating the problematic tests causing test host to crash. It creates an output file in the current
directory as Sequence.xml that captures the order of tests execution before the crash.

-c|--configuration {Debug|Release}

Defines the build configuration. The default value is Debug , but your project's configuration could override this default SDK setting.

--collect <DATA_COLLECTOR_FRIENDLY_NAME>

Enables data collector for the test run. For more information, see Monitor and analyze test run.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-test.md
https://aka.ms/vstest-collect

Examples

Filter option details

TEST FRAMEWORK SUPPORTED PROPERTIES

MSTest

xUnit

-d|--diag <PATH_TO_DIAGNOSTICS_FILE>

Enables diagnostic mode for the test platform and write diagnostic messages to the specified file.

-f|--framework <FRAMEWORK>

Looks for test binaries for a specific framework.

--filter <EXPRESSION>

Filters out tests in the current project using the given expression. For more information, see the Filter option details section. For more information and
examples on how to use selective unit test filtering, see Running selective unit tests.

-h|--help

Prints out a short help for the command.

-l|--logger <LoggerUri/FriendlyName>

Specifies a logger for test results.

--no-build

Doesn't build the test project before running it. It also implicit sets the --no-restore flag.

--no-restore

Doesn't execute an implicit restore when running the command.

-o|--output <OUTPUT_DIRECTORY>

Directory in which to find the binaries to run.

-r|--results-directory <PATH>

The directory where the test results are going to be placed. If the specified directory doesn't exist, it's created.

-s|--settings <SETTINGS_FILE>

Settings to use when running tests.

-t|--list-tests

List all of the discovered tests in the current project.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

Run the tests in the project in the current directory:

dotnet test

Run the tests in the test1 project:

dotnet test ~/projects/test1/test1.csproj

--filter <EXPRESSION>

<Expression> has the format <property><operator><value>[|&<Expression>] .

<property> is an attribute of the Test Case . The following are the properties supported by popular unit test frameworks:

FullyQualifiedName
Name
ClassName
Priority
TestCategory

FullyQualifiedName
DisplayName
Traits

OPERATOR FUNCTION

= Exact match

!= Not exact match

~ Contains

OPERATOR FUNCTION

| OR

& AND

See also

The <operator> describes the relationship between the property and the value:

<value> is a string. All the lookups are case insensitive.

An expression without an <operator> is automatically considered as a contains on FullyQualifiedName property (for example,
dotnet test --filter xyz is same as dotnet test --filter FullyQualifiedName~xyz).

Expressions can be joined with conditional operators:

You can enclose expressions in parenthesis when using conditional operators (for example, (Name~TestMethod1) | (Name~TestMethod2)).

For more information and examples on how to use selective unit test filtering, see Running selective unit tests.

Frameworks and Targets
.NET Core Runtime IDentifier (RID) catalog

dotnet tool install
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool install <PACKAGE_NAME> <-g|--global> [--add-source] [--configfile] [--framework] [-v|--verbosity] [--version]
dotnet tool install <PACKAGE_NAME> <--tool-path> [--add-source] [--configfile] [--framework] [-v|--verbosity] [--version]
dotnet tool install <-h|--help>

Description

OS PATH

Linux/macOS $HOME/.dotnet/tools

Windows %USERPROFILE%\.dotnet\tools

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

dotnet tool install - Installs the specified .NET Core Global Tool on your machine.

The dotnet tool install command provides a way for you to install .NET Core Global Tools on your machine. To use the command, you either have to
specify that you want a user-wide installation using the --global option or you specify a path to install it using the --tool-path option.

Global Tools are installed in the following directories by default when you specify the -g (or --global) option:

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to install.

--add-source <SOURCE>

Adds an additional NuGet package source to use during installation.

--configfile <FILE>

The NuGet configuration (nuget.config) file to use.

--framework <FRAMEWORK>

Specifies the target framework to install the tool for. By default, the .NET Core SDK tries to choose the most appropriate target framework.

-g|--global

Specifies that the installation is user wide. Can't be combined with the --tool-path option. If you don't specify this option, you must specify the
--tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies the location where to install the Global Tool. PATH can be absolute or relative. If PATH doesn't exist, the command tries to create it. Can't be
combined with the --global option. If you don't specify this option, you must specify the --global option.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

--version <VERSION_NUMBER>

The version of the tool to install. By default, the latest stable package version is installed. Use this option to install preview or older versions of the tool.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-install.md

Examples

See also

Installs the dotnetsay Global Tool in the default location:

dotnet tool install -g dotnetsay

Installs the dotnetsay Global Tool on a specific Windows folder :

dotnet tool install dotnetsay --tool-path c:\global-tools

Installs the dotnetsay Global Tool on a specific Linux/macOS folder :

dotnet tool install dotnetsay --tool-path ~/bin

Installs version 2.0.0 of the dotnetsay Global Tool:

dotnet tool install -g dotnetsay --version 2.0.0

.NET Core Global Tools

https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

dotnet tool list
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool list <-g|--global>
dotnet tool list <--tool-path>
dotnet tool list <-h|--help>

Description

Options

Examples

See also

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

dotnet tool list - Lists all .NET Core Global Tools currently installed in the default directory on your machine or in the specified path.

The dotnet tool list command provides a way for you to list all .NET Core Global Tools installed user-wide on your machine (current user profile) or
in the specified path. The command lists the package name, version installed, and the Global Tool command. To use the list command, you either have to
specify that you want to see all user-wide tools using the --global option or specify a custom path using the --tool-path option.

-g|--global

Lists user-wide Global Tools. Can't be combined with the --tool-path option. If you don't specify this option, you must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies a custom location where to find Global Tools. PATH can be absolute or relative. Can't be combined with the --global option. If you don't
specify this option, you must specify the --global option.

Lists all Global Tools installed user-wide on your machine (current user profile):

dotnet tool list -g

Lists the Global Tools from a specific Windows folder :

dotnet tool list --tool-path c:\global-tools

Lists the Global Tools from a specific Linux/macOS folder :

dotnet tool list --tool-path ~/bin

.NET Core Global Tools

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-list.md

dotnet tool uninstall
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool uninstall <PACKAGE_NAME> <-g|--global>
dotnet tool uninstall <PACKAGE_NAME> <--tool-path>
dotnet tool uninstall <-h|--help>

Description

Arguments

Options

Examples

See also

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

dotnet tool uninstall - Uninstalls the specified .NET Core Global Tool from your machine.

The dotnet tool uninstall command provides a way for you to uninstall .NET Core Global Tools from your machine. To use the command, you either
have to specify that you want to remove a user-wide tool using the --global option or specify a path to where the tool is installed using the
--tool-path option.

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to uninstall. You can find the package name using the dotnet tool list
command.

-g|--global

Specifies that the tool to be removed is from a user-wide installation. Can't be combined with the --tool-path option. If you don't specify this option,
you must specify the --tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies the location where to uninstall the Global Tool. PATH can be absolute or relative. Can't be combined with the --global option. If you don't
specify this option, you must specify the --global option.

Uninstalls the dotnetsay Global Tool:

dotnet tool uninstall -g dotnetsay

Uninstalls the dotnetsay Global Tool from a specific Windows folder :

dotnet tool uninstall dotnetsay --tool-path c:\global-tools

Uninstalls the dotnetsay Global Tool from a specific Linux/macOS folder :

dotnet tool uninstall dotnetsay --tool-path ~/bin

.NET Core Global Tools

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-uninstall.md
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

dotnet tool update
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis
dotnet tool update <PACKAGE_NAME> <-g|--global> [--configfile] [--framework] [-v|--verbosity]
dotnet tool update <PACKAGE_NAME> <--tool-path> [--configfile] [--framework] [-v|--verbosity]
dotnet tool update <-h|--help>

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 2.1.300 and later versions

dotnet tool update - Updates the specified .NET Core Global Tool on your machine.

The dotnet tool update command provides a way for you to update .NET Core Global Tools on your machine to the latest stable version of the
package. The command uninstalls and reinstalls a tool, effectively updating it. To use the command, you either have to specify that you want to update a
tool from a user-wide installation using the --global option or specify a path to where the tool is installed using the --tool-path option.

PACKAGE_NAME

Name/ID of the NuGet package that contains the .NET Core Global Tool to update. You can find the package name using the dotnet tool list command.

--add-source <SOURCE>

Adds an additional NuGet package source to use during installation.

--configfile <FILE>

The NuGet configuration (nuget.config) file to use.

--framework <FRAMEWORK>

Specifies the target framework to update the tool for.

-g|--global

Specifies that the update is for a user-wide tool. Can't be combined with the --tool-path option. If you don't specify this option, you must specify the
--tool-path option.

-h|--help

Prints out a short help for the command.

--tool-path <PATH>

Specifies the location where the Global Tool is installed. PATH can be absolute or relative. Can't be combined with the --global option. If you don't
specify this option, you must specify the --global option.

-v|--verbosity <LEVEL>

Sets the verbosity level of the command. Allowed values are q[uiet] , m[inimal] , n[ormal] , d[etailed] , and diag[nostic] .

Updates the dotnetsay Global Tool:

dotnet tool update -g dotnetsay

Updates the dotnetsay Global Tool located on a specific Windows folder :

dotnet tool update dotnetsay --tool-path c:\global-tools

Updates the dotnetsay Global Tool located on a specific Linux/macOS folder :

dotnet tool update dotnetsay --tool-path ~/bin

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-tool-update.md
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/
https://www.nuget.org/packages/dotnetsay/

See also
.NET Core Global Tools

dotnet vstest
5/30/2018 • 6 minutes to read • Edit Online

Name

Synopsis

dotnet vstest [<TEST_FILE_NAMES>] [--Settings|/Settings] [--Tests|/Tests] [--TestAdapterPath|/TestAdapterPath]
 [--Platform|/Platform] [--Framework|/Framework] [--Parallel|/Parallel] [--TestCaseFilter|/TestCaseFilter] [--logger|/logger]
 [-lt|--ListTests|/lt|/ListTests] [--ParentProcessId|/ParentProcessId] [--Port|/Port] [--Diag|/Diag] [--Blame|/Blame] [--
InIsolation|/InIsolation]
 [[--] <args>...]] [-?|--Help|/?|/Help]

Description

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet-vstest - Runs tests from the specified files.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

The dotnet-vstest command runs the VSTest.Console command-line application to run automated unit and coded UI application tests.

TEST_FILE_NAMES

Run tests from the specified assemblies. Separate multiple test assembly names with spaces.

.NET Core 2.1

.NET Core 2.0

.NET Core 1.x

--Settings|/Settings:<Settings File>

Settings to use when running tests.

--Tests|/Tests:<Test Names>

Run tests with names that match the provided values. Separate multiple values with commas.

--TestAdapterPath|/TestAdapterPath

Use custom test adapters from a given path (if any) in the test run.

--Platform|/Platform:<Platform type>

Target platform architecture used for test execution. Valid values are x86 , x64 , and ARM .

--Framework|/Framework:<Framework Version>

Target .NET Framework version used for test execution. Examples of valid values are .NETFramework,Version=v4.6 or .NETCoreApp,Version=v1.0 . Other
supported values are Framework35 , Framework40 , Framework45 , FrameworkCore10 , and FrameworkUap10 .

--Parallel|/Parallel

Execute tests in parallel. By default, all available cores on the machine are available for use. Set an explicit number of cores with a settings file.

--TestCaseFilter|/TestCaseFilter:<Expression>

Run tests that match the given expression. <Expression> is of the format <property>Operator<value>[|&<Expression>] , where Operator is one of = , != ,
or ~ . Operator ~ has 'contains' semantics and is applicable for string properties like DisplayName . Parenthesis () are used to group sub-expressions.

-?|--Help|/?|/Help

Prints out a short help for the command.

--logger|/logger:<Logger Uri/FriendlyName>

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-vstest.md

Examples

Specify a logger for test results.

/logger:TfsPublisher;
 Collection=<team project collection url>;
 BuildName=<build name>;
 TeamProject=<team project name>
 [;Platform=<Defaults to "Any CPU">]
 [;Flavor=<Defaults to "Debug">]
 [;RunTitle=<title>]

/logger:trx [;LogFileName=<Defaults to unique file name>]

To publish test results to Team Foundation Server, use the TfsPublisher logger provider :

To log results to a Visual Studio Test Results File (TRX), use the trx logger provider. This switch creates a file in the test results directory with
given log file name. If LogFileName isn't provided, a unique file name is created to hold the test results.

-lt|--ListTests|/lt|/ListTests:<File Name>

Lists all discovered tests from the given test container.

--ParentProcessId|/ParentProcessId:<ParentProcessId>

Process ID of the parent process responsible for launching the current process.

--Port|/Port:<Port>

Specifies the port for the socket connection and receiving the event messages.

--Diag|/Diag:<Path to log file>

Enables verbose logs for the test platform. Logs are written to the provided file.

--Blame|/Blame

Runs the tests in blame mode. This option is helpful in isolating the problematic tests causing test host to crash. It creates an output file in the current
directory as Sequence.xml that captures the order of tests execution before the crash.

--InIsolation|/InIsolation

Runs the tests in an isolated process. This makes vstest.console.exe process less likely to be stopped on an error in the tests, but tests may run slower.

@<file>

Reads response file for more options.

args

Specifies extra arguments to pass to the adapter. Arguments are specified as name-value pairs of the form <n>=<v> , where <n> is the argument name
and <v> is the argument value. Use a space to separate multiple arguments.

Run tests in mytestproject.dll :

dotnet vstest mytestproject.dll

Run tests in mytestproject.dll , exporting to custom folder with custom name:

dotnet vstest mytestproject.dll --logger:"trx;LogFileName=custom_file_name.trx" --ResultsDirectory:custom/file/path

Run tests in mytestproject.dll and myothertestproject.exe :

dotnet vstest mytestproject.dll myothertestproject.exe

Run TestMethod1 tests:

dotnet vstest /Tests:TestMethod1

Run TestMethod1 and TestMethod2 tests:

dotnet vstest /Tests:TestMethod1,TestMethod2

dotnet-add reference
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

<ItemGroup>
 <ProjectReference Include="app.csproj" />
 <ProjectReference Include="..\lib2\lib2.csproj" />
 <ProjectReference Include="..\lib1\lib1.csproj" />
</ItemGroup>

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet add reference - Adds project-to-project (P2P) references.

dotnet add [<PROJECT>] reference [-f|--framework] <PROJECT_REFERENCES> [-h|--help]

The dotnet add reference command provides a convenient option to add project references to a project. After running the command, the
<ProjectReference> elements are added to the project file.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

PROJECT_REFERENCES

Project-to-project (P2P) references to add. Specify one or more projects. Glob patterns are supported on Unix/Linux-based systems.

-h|--help

Prints out a short help for the command.

-f|--framework <FRAMEWORK>

Adds project references only when targeting a specific framework.

Add a project reference:

dotnet add app/app.csproj reference lib/lib.csproj

Add multiple project references to the project in the current directory:

dotnet add reference lib1/lib1.csproj lib2/lib2.csproj

Add multiple project references using a globbing pattern on Linux/Unix:

dotnet add app/app.csproj reference **/*.csproj

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-add-reference.md
https://docs.microsoft.com/visualstudio/msbuild/common-msbuild-project-items
https://en.wikipedia.org/wiki/Glob_(programming)

dotnet list reference
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet list reference - Lists project-to-project references.

dotnet list [<PROJECT>] reference [-h|--help]

The dotnet list reference command provides a convenient option to list project references for a given project.

PROJECT

Specifies the project file to use for listing references. If not specified, the command searches the current directory for a project file.

-h|--help

Prints out a short help for the command.

List the project references for the specified project:

dotnet list app/app.csproj reference

List the project references for the project in the current directory:

dotnet list reference

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-list-reference.md

dotnet remove reference
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet remove reference - Removes project-to-project references.

dotnet remove [<PROJECT>] reference [-f|--framework] <PROJECT_REFERENCES> [-h|--help]

The dotnet remove reference command provides a convenient option to remove project references from a project.

PROJECT

Target project file. If not specified, the command searches the current directory for one.

PROJECT_REFERENCES

Project-to-project (P2P) references to remove. You can specify one or multiple projects. Glob patterns are supported on Unix/Linux based terminals.

-h|--help

Prints out a short help for the command.

-f|--framework <FRAMEWORK>

Removes the reference only when targeting a specific framework.

Remove a project reference from the specified project:

dotnet remove app/app.csproj reference lib/lib.csproj

Remove multiple project references from the project in the current directory:

dotnet remove reference lib1/lib1.csproj lib2/lib2.csproj

Remove multiple project references using a glob pattern on Unix/Linux:

dotnet remove app/app.csproj reference **/*.csproj

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-remove-reference.md
https://en.wikipedia.org/wiki/Glob_(programming)

dotnet add package
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

NOTENOTE

 Writing C:\Users\mairaw\AppData\Local\Temp\tmp95A8.tmp
info : Adding PackageReference for package 'Newtonsoft.Json' into project 'C:\projects\ToDo\ToDo.csproj'.
log : Restoring packages for C:\projects\ToDo\ToDo.csproj...
info : GET https://api.nuget.org/v3-flatcontainer/newtonsoft.json/index.json
info : OK https://api.nuget.org/v3-flatcontainer/newtonsoft.json/index.json 235ms
info : Package 'Newtonsoft.Json' is compatible with all the specified frameworks in project 'C:\projects\ToDo\ToDo.csproj'.
info : PackageReference for package 'Newtonsoft.Json' version '10.0.3' added to file 'C:\projects\ToDo\ToDo.csproj'.

<PackageReference Include="Newtonsoft.Json" Version="9.0.1" />

Arguments

Options

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet add package - Adds a package reference to a project file.

dotnet add [<PROJECT>] package <PACKAGE_NAME> [-h|--help] [-f|--framework] [-n|--no-restore] [--package-directory] [-s|--source] [-v|--version]

The dotnet add package command provides a convenient option to add a package reference to a project file. After running the command, there's a
compatibility check to ensure the package is compatible with the frameworks in the project. If the check passes, a <PackageReference> element is added
to the project file and dotnet restore is run.

Starting with .NET Core 2.0, you don't have to run dotnet restore because it's run implicitly by all commands that require a restore to occur, such as dotnet new ,
dotnet build and dotnet run . It's still a valid command in certain scenarios where doing an explicit restore makes sense, such as continuous integration builds in

Visual Studio Team Services or in build systems that need to explicitly control the time at which the restore occurs.

For example, adding Newtonsoft.Json to ToDo.csproj produces output similar to the following example:

The ToDo.csproj file now contains a <PackageReference> element for the referenced package.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

PACKAGE_NAME

The package reference to add.

-h|--help

Prints out a short help for the command.

-f|--framework <FRAMEWORK>

Adds a package reference only when targeting a specific framework.

-n|--no-restore

Adds a package reference without performing a restore preview and compatibility check.

--package-directory <PACKAGE_DIRECTORY>

Restores the package to the specified directory.

-s|--source <SOURCE>

Uses a specific NuGet package source during the restore operation.

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-add-package.md
https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/nuget/consume-packages/package-references-in-project-files

Examples

-v|--version <VERSION>

Version of the package.

Add Newtonsoft.Json NuGet package to a project:

dotnet add package Newtonsoft.Json

Add a specific version of a package to a project:

dotnet add ToDo.csproj package Microsoft.Azure.DocumentDB.Core -v 1.0.0

Add a package using a specific NuGet source:

dotnet add package Microsoft.AspNetCore.StaticFiles -s https://dotnet.myget.org/F/dotnet-core/api/v3/index.json

dotnet remove package
5/30/2018 • 2 minutes to read • Edit Online

Name

Synopsis

Description

Arguments

Options

Examples

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

dotnet remove package - Removes package reference from a project file.

dotnet remove [<PROJECT>] package <PACKAGE_NAME> [-h|--help]

The dotnet remove package command provides a convenient option to remove a NuGet package reference from a project.

PROJECT

Specifies the project file. If not specified, the command searches the current directory for one.

PACKAGE_NAME

The package reference to remove.

-h|--help

Prints out a short help for the command.

Removes Newtonsoft.Json NuGet package from a project in the current directory:

dotnet remove package Newtonsoft.Json

https://github.com/dotnet/docs/blob/master/docs/core/tools/dotnet-remove-package.md

global.json overview
7/10/2018 • 4 minutes to read • Edit Online

global.json schema
sdksdk

versionversion

{
 "sdk": {
 "version": "2.1.300"
 }
}

global.json and the .NET Core CLI

dotnet --list-sdks

dotnet new globaljson --sdk-version 2.1.300

Matching rules

NOTENOTE

This topic applies to: ✓✓ .NET Core SDK 1.x ✓✓ .NET Core SDK 2.x

The global.json file allows you to define which .NET Core SDK version is used when you run .NET Core CLI commands. Selecting the .NET Core SDK is
independent from specifying the runtime your project targets. The .NET Core SDK version indicates which versions of the .NET Core CLI tools are used.
In general, you want to use the latest version of the tools, so no global.json file is needed.

For more information about specifying the runtime instead, see Target frameworks.

.NET Core SDK looks for a global.json file in the current working directory (which isn't necessarily the same as the project directory) or one of its parent
directories.

Type: Object

Specifies information about the .NET Core SDK to select.

Type: String

The version of the .NET Core SDK to use.

Note that this field:

Doesn't have globbing support, that is, the full version number has to be specified.
Doesn't support version ranges.

The following example shows the contents of a global.json file:

It's helpful to know which versions are available in order to set one in the global.json file. You can find the full list of supported available SDKs at the
.NET Downloads site. Starting with .NET Core SDK 2.1, you can run the following command to verify which SDK versions are already installed on your
machine:

To install additional .NET Core SDK versions on your machine, visit the .NET Downloads site.

You can create a new the global.json file in the current directory by executing the dotnet new command, similar to the following example:

The matching rules are governed by the apphost, which is part of the .NET Core runtime. The latest version of the host is used when you have multiple runtimes
installed side-by-side.

Starting with .NET Core 2.0, the following rules apply when determining which version of the SDK to use:

If no global.json file is found or global.json doesn't specify an SDK version, the latest installed SDK version is used. Latest SDK version can be either
release or pre-release - the highest version number wins.
If global.json does specify an SDK version:

If the specified SDK version is found on the machine, that exact version is used.
If the specified SDK version can't be found on the machine, the latest installed SDK patch version of that version is used. Latest installed

https://github.com/dotnet/docs/blob/master/docs/core/tools/global-json.md
https://www.microsoft.com/net/download/all
https://www.microsoft.com/net/download/all

Troubleshooting build warnings

WARNINGWARNING

WARNINGWARNING

See also

SDK patch version can be either release or pre-release - the highest version number wins. In .NET Core 2.1 and higher, the patch versions
lower than the patch version specified are ignored in the SDK selection.
If the specified SDK version and an appropriate SDK patch version can't be found, an error is thrown.

The SDK version is currently composed of the following parts:

[.NET Core major version].[.NET Core minor version].[xyz][-optional preview name]

The feature release of the .NET Core SDK is represented by the first digit (x) in the last portion of the number (xyz) for SDK versions 2.1.100 and
higher. In general, the .NET Core SDK has a faster release cycle than .NET Core.

The patch version is defined by the last two digits (yz) in the last portion of the number (xyz) for SDK versions 2.1.100 and higher. For example, if
you specify 2.1.300 as the SDK version, SDK selection finds up to 2.1.399 but 2.1.400 isn't considered a patch version for 2.1.300 .

.NET Core SDK versions 2.1.100 through 2.1.201 were released during the transition between version number schemes and don't correctly handle
the xyz notation. We highly recommend if you specify these versions in the global.json file, that you ensure the specified versions are on the target
machines.

With .NET Core SDK 1.x, if you specified a version and no exact match was found, the latest installed SDK version was used. Latest SDK version can be
either release or pre-release - the highest version number wins.

You are working with a preview version of the .NET Core SDK. You can define the SDK version via a global.json file in the current project. More at
https://go.microsoft.com/fwlink/?linkid=869452

This warning indicates that your project is being compiled using a preview version of the .NET Core SDK, as explained in the Matching rules section.
.NET Core SDK versions have a history and commitment of being high quality. However, if you don't want to use a preview version, add a global.json
file to your project hierarchy structure to specify which SDK version to use, and use dotnet --list-sdks to confirm that the version is installed on your
machine. When a new version is released, to use the new version, either remove the global.json file or update it to use the newer version.

Startup project '{startupProject}' targets framework '.NETCoreApp' version '{targetFrameworkVersion}'. This version of the Entity Framework Core .NET Command-line
Tools only supports version 2.0 or higher. For information on using older versions of the tools, see https://go.microsoft.com/fwlink/?linkid=871254

Starting with .NET Core SDK 2.1 (v. 2.1.300), the dotnet ef command comes included in the SDK. This warning indicates that your project targets EF
Core 1.0 or 1.1, which isn't compatible with .NET Core SDK 2.1 and later versions. To compile your project, install .NET Core SDK 2.0 (v. 2.1.201) and
earlier on your machine. For more information, see EF Core .NET Command-line Tools.

How project SDKs are resolved

https://go.microsoft.com/fwlink/?linkid=869452
https://go.microsoft.com/fwlink/?linkid=871254
https://docs.microsoft.com/ef/core/miscellaneous/cli/dotnet
https://docs.microsoft.com/visualstudio/msbuild/how-to-use-project-sdk#how-project-sdks-are-resolved

.NET Core additional tools
6/22/2018 • 2 minutes to read • Edit Online

WCF Web Service Reference tool

WCF dotnet-svcutil tool

XML Serializer Generator

This section compiles a list of tools that support and extend the .NET Core functionality, in addition to the .NET Core command-line interface (CLI) tools.

The WCF (Windows Communication Foundation) Web Service Reference is a Visual Studio connected service provider that made its debut in Visual
Studio 2017 version 15.5. This tool retrieves metadata from a web service in the current solution, on a network location, or from a WSDL file, and
generates a source file compatible with .NET Core, defining a WCF proxy class with methods that you can use to access the web service operations.

The WCF (Windows Communication Foundation) dotnet-svcutil tool is a .NET Core CLI tool that retrieves metadata from a web service on a network
location or from a WSDL file, and generates a source file compatible with .NET Core, defining a WCF proxy class with methods that you can use to
access the web service operations. The dotnet-svcutil tool is an alternative option to the WCF Web Service Reference Visual Studio connected
service provider which first shipped with Visual Studio 2017 v15.5. The dotnet-svcutil tool as a .NET Core CLI tool, is available cross-platform on
Linux, macOS, and Windows.

Like the Xml Serializer Generator (sgen.exe) for the .NET Framework, the Microsoft.XmlSerializer.Generator NuGet package is the solution for .NET
Core and .NET Standard libraries. It creates an XML serialization assembly for types contained in an assembly to improve the startup performance of
XML serialization when serializing or de-serializing objects of those types using XmlSerializer.

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/index.md
https://visualstudio.microsoft.com/news/releasenotes/vs2017-relnotes#WCFTools
https://docs.microsoft.com/dotnet/core/additional-tools/wcf-web-service-reference-guide
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-serializer-generator-tool-sgen-exe
https://www.nuget.org/packages/Microsoft.XmlSerializer.Generator
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer

Microsoft WCF Web Service Reference Provider Tool
5/4/2018 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

How to use the extension

NOTENOTE

Over the years, many Visual Studio developers have enjoyed the productivity that the Add Service Reference tool provided when their .NET
Framework projects needed to access web services. The WCF Web Service Reference tool is a Visual Studio connected service extension that
provides an experience like the Add Service Reference functionality for .NET Core and ASP.NET Core projects. This tool retrieves metadata from a web
service in the current solution, on a network location, or from a WSDL file, and generates a .NET Core compatible source file containing Windows
Communication Foundation (WCF) client proxy code that you can use to access the web service.

You should only reference services from a trusted source. Adding references from an untrusted source may compromise security.

Visual Studio 2017 15.5 or later versions

The WCF Web Service Reference option is applicable to projects created using the following project templates:

Visual C# > .NET Core
Visual C# > .NET Standard
Visual C# > Web > ASP.NET Core Web Application

Using the ASP.NET Core Web Application project template as an example, this article walks you through adding a WCF service reference to the
project:

1. In Solution Explorer, double-click the Connected Services node of the project (for a .NET Core or .NET Standard project this option is available
when you right-click on the Dependencies node of the project in Solution Explorer).

The Connected Services page appears as shown in the following image:

2. On the Connected Services page, click Microsoft WCF Web Service Reference Provider. This brings up the Configure WCF Web Service
Reference wizard:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/wcf-web-service-reference-guide.md
https://docs.microsoft.com/visualstudio/data-tools/how-to-add-update-or-remove-a-wcf-data-service-reference
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

NOTENOTE

3. Select a service.

3a. There are several services search options available within the Configure WCF Web Service Reference wizard:

To search for services defined in the current solution, click the Discover button.
To search for services hosted at a specified address, enter a service URL in the Address box and click the Go button.
To select a WSDL file that contains the web service metadata information, click the Browse button.

3b. Select the service from the search results list in the Services box. If needed, enter the namespace for the generated code in the
corresponding Namespace text box.

3c. Click the Next button to open the Data Type Options and the Client Options pages. Alternatively, click the Finish button to use the default
options.

4. The Data Type Options form enables you to refine the generated service reference configuration settings:

The Reuse types in referenced assemblies check box option is useful when data types needed for service reference code generation are defined in one of your
project's referenced assemblies. It's important to reuse those existing data types to avoid compile-time type clash or runtime issues.

There may be a delay while type information is loaded, depending on the number of project dependencies and other system performance factors. The
Finish button is disabled during loading unless the Reuse types in referenced assemblies check box is unchecked.

5. Click Finish when you are done.

Next steps
Feedback & questionsFeedback & questions

Release notesRelease notes

While displaying progress, the tool:

Downloads metadata from the WCF service.
Generates the service reference code in a file named reference.cs, and adds it to your project under the Connected Services node.
Updates the project file (.csproj) with NuGet package references required to compile and run on the target platform.

When these processes complete, you can create an instance of the generated WCF client type and invoke the service operations.

If you have any questions or feedback, open an issue on GitHub. You can also review any existing questions or issues at the WCF repo on GitHub.

Refer to the Release notes for updated release information, including known issues.

https://github.com/dotnet/wcf/issues/new
https://github.com/dotnet/wcf/issues?utf8=%E2%9C%93&q=is:issue label:tooling
https://github.com/dotnet/wcf/blob/master/release-notes/WCF-Web-Service-Reference-notes.md

Microsoft WCF dotnet-svcutil tool
6/4/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

Getting started

[ServiceContract]
public interface ISayHello
{
 [OperationContract]
 string Hello(string name);
}

mkdir HelloSvcutil
cd HelloSvcutil

dotnet new console

<ItemGroup>
 <DotNetCliToolReference Include="dotnet-svcutil" Version="1.0.0" />
</ItemGroup>

dotnet restore

dotnet svcutil http://contoso.com/SayHello.svc

The Windows Communication Foundation (WCF) dotnet-svcutil tool is a .NET Core CLI tool that retrieves metadata from a web service on a network
location or from a WSDL file, and generates a WCF class containing client proxy methods that access the web service operations.

Similar to the Service Model Metadata - svcutil tool for .NET Framework projects, the dotnet-svcutil is a command-line tool for generating a web
service reference compatible with .NET Core and .NET Standard projects.

The dotnet-svcutil tool is an alternative option to the WCF Web Service Reference Visual Studio connected service provider that first shipped with
Visual Studio 2017 v15.5. The dotnet-svcutil tool as a .NET Core CLI tool, is available cross-platform on Linux, macOS, and Windows.

You should only reference services from a trusted source. Adding references from an untrusted source may compromise security.

.NET Core SDK v1.0.4 or later versions
Your favorite code editor

The following example walks you through the steps required to add a web service reference to a .NET Core console project and invoke the service. You
will create a .NET Core console application named HelloSvcutil and will add a reference to a web service that implements the following contract:

For this example, the web service will be assumed to be hosted at the following address: http://contoso.com/SayHello.svc

From a Windows, macOS, or Linux command window perform the following steps:

1. Create a directory named HelloSvcutil for your project and make it your current directory, as in the following example:

2. Create a new C# console project in that directory using the dotnet new command as follows:

3. Open the HelloSvcutil.csproj project file in your editor, edit the Project element, and add the dotnet-svcutil NuGet package as a CLI tool
reference, using the following code:

4. Restore the dotnet-svcutil package using the dotnet restore command as follows:

5. Run dotnet with the svcutil command to generate the web service reference file as follows:

The generated file is saved as HelloSvcutil/ServiceReference1/Reference.cs. The dotnet_svcutil tool also adds to the project the appropriate WCF
packages required by the proxy code as package references.

6. Restore the WCF packages using the dotnet restore command as follows:

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/dotnet-svcutil-guide.md
https://docs.microsoft.com/en-us/dotnet/framework/wcf/servicemodel-metadata-utility-tool-svcutil-exe
https://www.microsoft.com/net/download
https://nuget.org/packages/dotnet-svcutil

dotnet restore

static void Main(string[] args)
{
 var client = new SayHelloClient();
 Console.WriteLine(client.HelloAsync("dotnet-svcutil").Result);
}

dotnet run

dotnet svcutil --help

Next steps
Feedback & questionsFeedback & questions

Release notesRelease notes

InformationInformation

7. Open the Program.cs file in your editor, edit the Main() method, and replace the auto-generated code with the following code to invoke the web
service:

8. Run the application using the dotnet run command as follows:

You should see the following output: "Hello dotnet-svcutil!"

For a detailed description of the dotnet-svcutil tool parameters, invoke the tool passing the help parameter as follows:

If you have any questions or feedback, open an issue on GitHub. You can also review any existing questions or issues at the WCF repo on GitHub.

Refer to the Release notes for updated release information, including known issues.

dotnet-svcutil NuGet Package

https://github.com/dotnet/wcf/issues/new
https://github.com/dotnet/wcf/issues?utf8=%E2%9C%93&q=is:issue label:tooling
https://github.com/dotnet/wcf/blob/master/release-notes/dotnet-svcutil-notes.md
https://nuget.org/packages/dotnet-svcutil

Using Microsoft XML Serializer Generator on .NET Core
5/4/2018 • 2 minutes to read • Edit Online

Prerequisites

TIPTIP

Use Microsoft XML Serializer Generator in a .NET Core console application

Create a .NET Core console applicationCreate a .NET Core console application

dotnet new console

Add a reference to the Microsoft.XmlSerializer.Generator package in the MyApp projectAdd a reference to the Microsoft.XmlSerializer.Generator package in the MyApp project

dotnet add package Microsoft.XmlSerializer.Generator -v 1.0.0

Verify changes to MyApp.csproj after adding the packageVerify changes to MyApp.csproj after adding the package

<ItemGroup>
 <PackageReference Include="Microsoft.XmlSerializer.Generator" Version="1.0.0" />
</ItemGroup>

Add another ItemGroup section for .NET Core CLI Tool supportAdd another ItemGroup section for .NET Core CLI Tool support

<ItemGroup>
 <DotNetCliToolReference Include="Microsoft.XmlSerializer.Generator" Version="1.0.0" />
</ItemGroup>

Add a class in the applicationAdd a class in the application

This tutorial teaches you how to use the Microsoft XML Serializer Generator in a C# .NET Core application. During the course of this tutorial, you learn:

How to create a .NET Core app
How to add a reference to the Microsoft.XmlSerializer.Generator package
How to edit your MyApp.csproj to add dependencies
How to add a class and an XmlSerializer
How to build and run the application

Like the Xml Serializer Generator (sgen.exe) for the .NET Framework, the Microsoft.XmlSerializer.Generator NuGet package is the equivalent for .NET
Core and .NET Standard projects. It creates an XML serialization assembly for types contained in an assembly to improve the startup performance of
XML serialization when serializing or de-serializing objects of those types using XmlSerializer.

To complete this tutorial:

Install .NET Core SDK 2.1.3 or later
Install your favorite code editor, if you haven't already.

Need to install a code editor? Try Visual Studio!

The following instructions show you how to use XML Serializer Generator in a .NET Core console application.

Open a command prompt and create a folder named MyApp. Navigate to the folder you created and type the following command:

Use the dotnet add package command to add the reference in your project.

Type:

Open your code editor and let's get started! We're still working from the MyApp directory we built the app in.

Open MyApp.csproj in your text editor.

After running the dotnet add package command, the following lines are added to your MyApp.csproj project file:

Add the following lines after the ItemGroup section that we inspected:

Open Program.cs in your text editor. Add the class named MyClass in Program.cs.

https://github.com/dotnet/docs/blob/master/docs/core/additional-tools/xml-serializer-generator.md
https://docs.microsoft.com/en-us/dotnet/standard/serialization/xml-serializer-generator-tool-sgen-exe
https://www.nuget.org/packages/Microsoft.XmlSerializer.Generator
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer
https://www.microsoft.com/net/download
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

public class MyClass
{
 public int Value;
}

Create an Create an XmlSerializer for MyClass for MyClass

var serializer = new System.Xml.Serialization.XmlSerializer(typeof(MyClass));

Build and run the applicationBuild and run the application

$ dotnet run

NOTENOTE

IMPORTANTIMPORTANT

Related Resources

Add the following line inside Main to create an XmlSerializer for MyClass:

Still within the MyApp folder, run the application via dotnet run and it automatically loads and uses the pre-generated serializers at runtime.

Type the following command in your console window:

dotnet run calls dotnet build to ensure that the build targets have been built, and then calls dotnet <assembly.dll> to run the target application.

The commands and steps shown in this tutorial to run your application are used during development time only. Once you're ready to deploy your app, take a look at
the different deployment strategies for .NET Core apps and the dotnet publish command.

If everything succeeds, an assembly named MyApp.XmlSerializers.dll is generated in the output folder.

Congratulations! You have just:

Created a .NET Core app.
Added a reference to the Microsoft.XmlSerializer.Generator package.
Edited your MyApp.csproj to add dependencies.
Added a class and an XmlSerializer.
Built and ran the application.

Introducing XML Serialization
How to: Serialize Using XmlSerializer (C#)
How to: Serialize Using XmlSerializer (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/standard/serialization/introducing-xml-serialization
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-serialize-using-xmlserializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/how-to-serialize-using-xmlserializer

Porting to .NET Core from .NET Framework
5/4/2018 • 2 minutes to read • Edit Online

Overview of the Porting Process

Tools to help

Next steps

If you've got code running on the .NET Framework, you may be interested in running your code on .NET Core 1.0. This article covers an overview of the
porting process and a list of the tools you may find helpful when porting to .NET Core.

The recommended process for porting follows the following series of steps. Each of these parts of the process are covered in more detail in further
articles.

1. Identify and account for your third-party dependencies.

This will involve understanding what your third-party dependencies are, how you depend on them, how to see if they also run on .NET Core, and
steps you can take if they don't.

2. Retarget all projects you wish to port to target .NET Framework 4.6.2.

This ensures that you can use API alternatives for .NET Framework-specific targets in the cases where .NET Core can't support a particular API.

3. Use the API Portability Analyzer tool to analyze your assemblies and develop a plan to port based on its results.

The API Portability Analyzer tool will analyze your compiled assemblies and generate a report which shows a high-level portability summary
and a breakdown of each API you're using that isn't available on .NET Core. You can use this report alongside an analysis of your codebase to
develop a plan for how you'll port your code over.

4. Port your tests code.

Because porting to .NET Core is such a big change to your codebase, it's highly recommended to get your tests ported so that you can run tests
as you port code over. MSTest, xUnit, and NUnit all support .NET Core 1.0 today.

5. Execute your plan for porting!

Here's a short list of the tools you'll find helpful:

NuGet - Nuget Client or NuGet Package Explorer, Microsoft's package manager for .NET implementations.
Api Portability Analyzer - command line tool or Visual Studio Extension, a toolchain that can generate a report of how portable your code is between
.NET Framework and .NET Core, with an assembly-by-assembly breakdown of issues. See Tooling to help you on the process for more information.
Reverse Package Search - A useful web service that allows you to search for a type and find packages containing that type.

Analyzing your third-party dependencies.

https://github.com/dotnet/docs/blob/master/docs/core/porting/index.md
https://github.com/Microsoft/dotnet-apiport/
https://dist.nuget.org/index.html
https://github.com/NuGetPackageExplorer/NuGetPackageExplorer
https://github.com/Microsoft/dotnet-apiport/releases
https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b
https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/
https://packagesearch.azurewebsites.net

Organizing your project to support .NET Framework and .NET Core
5/4/2018 • 2 minutes to read • Edit Online

Example

Replace existing projects with a multi-targeted .NET Core project

This article helps project owners who want to compile their solution against .NET Framework and .NET Core side-by-side. It provides several options to
organize projects to help developers achieve this goal. The following list provides some typical scenarios to consider when you're deciding how to setup
your project layout with .NET Core. The list may not cover everything you want; prioritize based on your project's needs.

Combine existing projects and .NET Core projects into single projects

What this is good for:

Simplifying your build process by compiling a single project rather than compiling multiple projects, each targeting a different .NET
Framework version or platform.
Simplifying source file management for multi-targeted projects because you must manage a single project file. When adding/removing
source files, the alternatives require you to manually sync these with your other projects.
Easily generating a NuGet package for consumption.
Allows you to write code for a specific .NET Framework version in your libraries through the use of compiler directives.

Unsupported scenarios:

Requires developers to use Visual Studio 2017 to open existing projects. To support older versions of Visual Studio, keeping your project files
in different folders is a better option.

 Keep existing projects and new .NET Core projects separate

What this is good for:

Continuing to support development on existing projects without having to upgrade for developers/contributors who may not have Visual
Studio 2017.
Decreasing the possibility of creating new bugs in existing projects because no code churn is required in those projects.

Consider the repository below:

Source Code

The following describes several ways to add support for .NET Core for this repository depending on the constraints and complexity of the existing
projects.

Reorganize the repository so that any existing *.csproj files are removed and a single *.csproj file is created that targets multiple frameworks. This is a
great option because a single project is able to compile for different frameworks. It also has the power to handle different compilation options and
dependencies per targeted framework.

https://github.com/dotnet/docs/blob/master/docs/core/porting/project-structure.md
https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library/

 Keep existing projects and create a .NET Core project

See Also

Source Code

Changes to note are:

Replacement of packages.config and *.csproj with a new .NET Core *.csproj. NuGet packages are specified with <PackageReference> ItemGroup .

If there are existing projects that target older frameworks, you may want to leave these projects untouched and use a .NET Core project to target future
frameworks.

Source Code

Changes to note are:

The .NET Core and existing projects are kept in separate folders.
Keeping projects in separate folders avoids forcing you to have Visual Studio 2017. You can create a separate solution that only opens the old
projects.

Please see the .NET Core porting documentation for more guidance on migrating to .NET Core.

https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj/
https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj/src/Car/Car.csproj
https://github.com/dotnet/samples/tree/master/framework/libraries/migrate-library-csproj-keep-existing/

Analyze your third-party dependencies
5/4/2018 • 5 minutes to read • Edit Online

Analyze referenced NuGet packages in your project

Analyze NuGet packages using NuGet Package ExplorerAnalyze NuGet packages using NuGet Package Explorer

netstandard1.0
netstandard1.1
netstandard1.2
netstandard1.3
netstandard1.4
netstandard1.5
netstandard1.6
netstandard2.0
netcoreapp1.0
netcoreapp1.1
netcoreapp2.0
portable-net45-win8
portable-win8-wpa8
portable-net451-win81
portable-net45-win8-wpa8-wpa81

IMPORTANTIMPORTANT

dnxcore50
dotnet5.0
dotnet5.1
dotnet5.2
dotnet5.3
dotnet5.4
dotnet5.5

If you're looking to port your code to .NET Core or .NET Standard, the first step in the porting process is to understand your third-party dependencies.
Third-party dependencies are either NuGet packages or DLLs you're referencing in your project. Evaluate each dependency and develop a contingency
plan for the dependencies that aren't compatible with .NET Core. This article shows you how to determine if the dependency is compatible with .NET
Core.

If you're referencing NuGet packages in your project, you need to verify if they're compatible with .NET Core. There are two ways to accomplish that:

Using the NuGet Package Explorer app (the most reliable method).
Using the nuget.org site.

After analyzing the packages, if they're not compatible with .NET Core and only target .NET Framework, you can check if the .NET Framework
compatibility mode can help with your porting process.

A NuGet package is itself a set of folders that contain platform-specific assemblies. So you need to check if there's a folder that contains a compatible
assembly inside the package.

The easiest way to inspect NuGet Package folders is to use the NuGet Package Explorer tool. After installing it, use the following steps to see the folder
names:

1. Open the NuGet Package Explorer.
2. Click Open package from online feed.
3. Search for the name of the package.
4. Select the package name from the search results and click open.
5. Expand the lib folder on the right-hand side and look at folder names.

Look for a folder with any of the following names:

These values are the Target Framework Monikers (TFMs) that map to versions of the .NET Standard, .NET Core, and traditional Portable Class Library
(PCL) profiles that are compatible with .NET Core.

When looking at the TFMs that a package supports, note that netcoreapp* , while compatible, is for .NET Core projects only and not for .NET Standard projects. A
library that only targets netcoreapp* and not netstandard* can only be consumed by other .NET Core apps.

There are also some legacy TFMs used in pre-release versions of .NET Core that may also be compatible:

While these TFMs likely work with your code, there is no guarantee of compatibility. Packages with these TFMs were built with pre-release .NET Core
packages. Take note of when (or if) packages using these TFMs are updated to be .NET Standard-based.

https://github.com/dotnet/docs/blob/master/docs/core/porting/third-party-deps.md
https://github.com/NuGetPackageExplorer/NuGetPackageExplorer

NOTENOTE

Analyze NuGet packages using nuget.orgAnalyze NuGet packages using nuget.org

.NET Framework compatibility mode.NET Framework compatibility mode

<ItemGroup>
 <PackageReference Include="Huitian.PowerCollections" Version="1.0.0" NoWarn="NU1701" />
</ItemGroup>

What to do when your NuGet package dependency doesn't run on .NET CoreWhat to do when your NuGet package dependency doesn't run on .NET Core

Analyze dependencies that aren't NuGet packages

Next steps

To use a package targeting a traditional PCL or pre-release .NET Core target, you must use the PackageTargetFallback MSBuild element in your project file. For
more information about this MSBuild element, see PackageTargetFallback .

Alternatively, you can see the TFMs that each package supports on nuget.org under the Dependencies section of the package page.

Although using the site is an easier method to verify the compatibility, Dependencies information is not available on the site for all packages.

After analyzing the NuGet packages, you might find that they only target the .NET Framework, as most NuGet packages do.

Starting with .NET Standard 2.0, the .NET Framework compatibility mode was introduced. This compatibility mode allows .NET Standard and .NET
Core projects to reference .NET Framework libraries. Referencing .NET Framework libraries doesn't work for all projects, such as if the library uses
Windows Presentation Foundation (WPF) APIs, but it does unblock many porting scenarios.

When you reference NuGet packages that target the .NET Framework in your project, such as Huitian.PowerCollections, you get a package fallback
warning (NU1701) similar to the following example:

NU1701: Package ‘Huitian.PowerCollections 1.0.0’ was restored using ‘.NETFramework,Version=v4.6.1’ instead of the project target framework
‘.NETStandard,Version=v2.0’. This package may not be fully compatible with your project.

That warning is displayed when you add the package and every time you build to make sure you test that package with your project. If your project is
working as expected, you can suppress that warning by editing the package properties in Visual Studio or by manually editing the project file in your
favorite code editor.

To suppress the warning by editing the project file, find the PackageReference entry for the package you want to suppress the warning for and add the
NoWarn attribute. The NoWarn attribute accepts a comma-separated list of all the warning IDs. The following example shows how to suppress the
NU1701 warning for the Huitian.PowerCollections package by editing your project file manually:

For more information on how to suppress compiler warnings in Visual Studio, see Suppressing warnings for NuGet packages.

There are a few things you can do if a NuGet package you depend on doesn't run on .NET Core:

1. If the project is open source and hosted somewhere like GitHub, you can engage the developers directly.
2. You can contact the author directly on nuget.org. Search for the package and click Contact Owners on the left-hand side of the package's page.
3. You can search for another package that runs on .NET Core that accomplishes the same task as the package you were using.
4. You can attempt to write the code the package was doing yourself.
5. You could eliminate the dependency on the package by changing the functionality of your app, at least until a compatible version of the package

becomes available.

Remember that open-source project maintainers and NuGet package publishers are often volunteers. They contribute because they care about a given
domain, do it for free, and often have a different daytime job. So be mindful of that when contacting them to ask for .NET Core support.

If you can't resolve your issue with any of the above, you may have to port to .NET Core at a later date.

The .NET Team would like to know which libraries are the most important to support with .NET Core. You can send an email to dotnet@microsoft.com
about the libraries you'd like to use.

You may have a dependency that isn't a NuGet package, such as a DLL in the file system. The only way to determine the portability of that dependency
is to run the .NET Portability Analyzer tool. The tool can analyze assemblies that target the .NET Framework and identify APIs that aren't portable to
other .NET platforms such as .NET Core. You can run the tool as a console application or as a Visual Studio extension.

If you're porting a library, check out Porting your Libraries.

https://www.nuget.org/
https://www.nuget.org/packages/Huitian.PowerCollections
https://docs.microsoft.com/nuget/reference/errors-and-warnings#nu1701
https://docs.microsoft.com/visualstudio/ide/how-to-suppress-compiler-warnings#suppressing-warnings-for-nuget-packages
https://www.nuget.org/
https://github.com/Microsoft/dotnet-apiport

Porting to .NET Core - Libraries
6/27/2018 • 10 minutes to read • Edit Online

Prerequisites

.NET Framework technologies unavailable on .NET Core

AppDomainsAppDomains

RemotingRemoting

Code Access Security (CAS)Code Access Security (CAS)

This article discusses porting library code to .NET Core so that it runs cross-platform.

This article assumes that you:

Are using Visual Studio 2017 or later.

Understand the recommended porting process.
Have resolved any issues with third-party dependencies.

.NET Core isn't supported on earlier versions of Visual Studio

You should also become familiar with the content of the following topics:

.NET Standard
This topic describes the formal specification of .NET APIs that are intended to be available on all .NET implementations.

Packages, Metapackages and Frameworks
This article discusses how .NET Core defines and uses packages and how packages support code running on multiple .NET implementations.

Developing Libraries with Cross Platform Tools
This topic explains how to write libraries for .NET using cross-platform CLI tools.

Additions to the csproj format for .NET Core
This article outlines the changes that were added to the project file as part of the move to csproj and MSBuild.

Porting to .NET Core - Analyzing your Third-Party Party Dependencies
This topic discusses the portability of third-party dependencies and what to do when a NuGet package dependency doesn't run on .NET Core.

Several technologies available to .NET Framework libraries aren't available for use with .NET Core, such as AppDomains, Remoting, Code Access
Security (CAS), and Security Transparency. If your libraries rely on one or more of these technologies, consider the alternative approaches outlined
below. For more information on API compatibility, the CoreFX team maintains a List of behavioral changes/compat breaks and deprecated/legacy APIs
at GitHub.

Just because an API or technology isn't currently implemented doesn't imply it's intentionally unsupported. File an issue in the dotnet/corefx repository
issues at GitHub to ask for specific APIs and technologies. Porting requests in the issues are marked with the port-to-core label.

AppDomains isolate apps from one another. AppDomains require runtime support and are generally quite expensive. They're not implemented in .NET
Core. We don't plan on adding this capability in future. For code isolation, we recommend separate processes or using containers as an alternative. For
the dynamic loading of assemblies, we recommend the new AssemblyLoadContext class.

To make code migration from .NET Framework easier, we've exposed some of the AppDomain API surface in .NET Core. Some of the API functions
normally (for example, AppDomain.UnhandledException), some members do nothing (for example, SetCachePath), and some of them throw
PlatformNotSupportedException (for example, CreateDomain). Check the types you use against the System.AppDomain reference source in the
dotnet/corefx GitHub repository making sure to select the branch that matches your implemented version.

.NET Remoting was identified as a problematic architecture. It's used for cross-AppDomain communication, which is no longer supported. Also,
Remoting requires runtime support, which is expensive to maintain. For these reasons, .NET Remoting isn't supported on .NET Core, and we don't plan
on adding support for it in the future.

For communication across processes, consider inter-process communication (IPC) mechanisms as an alternative to Remoting, such as the
System.IO.Pipes or the MemoryMappedFile class.

Across machines, use a network-based solution as an alternative. Preferably, use a low-overhead plain text protocol, such as HTTP. The Kestrel web
server, the web server used by ASP.NET Core, is an option here. Also consider using System.Net.Sockets for network-based, cross-machine scenarios.
For more options, see .NET Open Source Developer Projects: Messaging.

Sandboxing, which is relying on the runtime or the framework to constrain which resources a managed application or library uses or runs, isn't
supported on .NET Framework and therefore is also not supported on .NET Core. We believe that there are too many cases in the .NET Framework and
runtime where an elevation of privileges occurs to continue treating CAS as a security boundary. In addition, CAS makes the implementation more
complicated and often has correctness-performance implications for applications that don't intend to use it.

Use security boundaries provided by the operating system, such as virtualization, containers, or user accounts for running processes with the least set of

https://github.com/dotnet/docs/blob/master/docs/core/porting/libraries.md
https://github.com/dotnet/corefx/wiki/ApiCompat
https://github.com/dotnet/corefx/issues
https://github.com/dotnet/corefx/labels/port-to-core
https://docs.microsoft.com/dotnet/api/system.runtime.loader.assemblyloadcontext
https://docs.microsoft.com/dotnet/api/system.appdomain
https://docs.microsoft.com/dotnet/api/system.appdomain.unhandledexception
https://docs.microsoft.com/dotnet/api/system.appdomain.setcachepath
https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/dotnet/api/system.appdomain.createdomain
https://github.com/dotnet/corefx/blob/master/src/System.Runtime.Extensions/src/System/AppDomain.cs
https://github.com/dotnet/corefx
https://docs.microsoft.com/dotnet/api/system.io.pipes
https://docs.microsoft.com/dotnet/api/system.io.memorymappedfiles.memorymappedfile
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/dotnet/api/system.net.sockets
https://github.com/Microsoft/dotnet/blob/master/dotnet-developer-projects.md#messaging
https://docs.microsoft.com/en-us/dotnet/framework/misc/code-access-security

Security TransparencySecurity Transparency

Converting a PCL project

Retargeting your .NET Framework code to .NET Framework 4.6.2

Determining the portability of your code

Dealing primarily with the compilerDealing primarily with the compiler

Staying on the .NET Framework until portability issues are resolvedStaying on the .NET Framework until portability issues are resolved

privileges.

Similar to CAS, Security Transparency allows separating sandboxed code from security critical code in a declarative fashion but is no longer supported
as a security boundary. This feature is heavily used by Silverlight.

Use security boundaries provided by the operating system, such as virtualization, containers, or user accounts for running processes with the least set of
privileges.

You can convert the targets of a PCL project to .NET Standard by loading the library in Visual Studio 2017 and performing the following steps:

1. Right-click on the project file and select Properties.
2. Under Library, select Target .NET Platform Standard.

If your packages support NuGet 3.0, the project retargets to .NET Standard.

If your packages don't support NuGet 3.0, you receive a dialog from Visual Studio telling you to uninstall your current packages. If you receive this
notice, perform the following steps:

1. Right-click the project, select Manage NuGet Packages.
2. Make a note of the project's packages.
3. Uninstall the packages one-by-one.
4. You might need to restart Visual Studio to complete the uninstall process. If so, a Restart button is presented to you in the NuGet Package

Manager window.
5. When the project reloads, it targets .NET Standard. Add the packages you were required to uninstall.

If your code isn't targeting .NET Framework 4.6.2, we recommended that you retarget to .NET Framework 4.6.2. This ensures the availability of the
latest API alternatives for cases where the .NET Standard doesn't support existing APIs.

For each of your projects in Visual Studio you wish to port, do the following:

1. Right-click on the project and select Properties.
2. In the Target Framework dropdown, select .NET Framework 4.6.2.
3. Recompile your projects.

Because your projects now target .NET Framework 4.6.2, use that version of the .NET Framework as your base for porting code.

The next step is to run the API Portability Analyzer (ApiPort) to generate a portability report for analysis.

Make sure you understand the API Portability Analyzer (ApiPort) and how to generate portability reports for targeting .NET Core. How you do this
likely varies based on your needs and personal tastes. What follows are a few different approaches. You may find yourself mixing steps of these
approaches depending on how your code is structured.

This approach may be the best for small projects or projects which don't use many .NET Framework APIs. The approach is simple:

1. Optionally, run ApiPort on your project. If you run ApiPort, gain knowledge from the report on issues you'll need to address.
2. Copy all of your code over into a new .NET Core project.
3. While referring to the portability report (if generated), solve compiler errors until the project fully compiles.

Although this approach is unstructured, the code-focused approach often leads to resolving issues quickly and might be the best approach for smaller
projects or libraries. A project that contains only data models might be an ideal candidate for this approach.

This approach might be the best if you prefer to have code that compiles during the entire process. The approach is as follows:

1. Run ApiPort on a project.
2. Address issues by using different APIs that are portable.
3. Take note of any areas where you're prevented from using a direct alternative.
4. Repeat the prior steps for all projects you're porting until you're confident each is ready to be copied over into a new .NET Core project.
5. Copy the code into a new .NET Core project.
6. Work out any issues where you noted that a direct alternative doesn't exist.

This careful approach is more structured than simply working out compiler errors, but it's still relatively code-focused and has the benefit of always
having code that compiles. The way you resolve certain issues that couldn't be addressed by just using another API varies greatly. You may find that you
need to develop a more comprehensive plan for certain projects, which is covered as the next approach.

https://docs.microsoft.com/en-us/dotnet/framework/misc/security-transparent-code

Developing a comprehensive plan of attackDeveloping a comprehensive plan of attack

Mixing approachesMixing approaches

Porting your tests

Recommended approach to porting

This approach might be best for larger and more complex projects, where restructuring code or completely rewriting certain areas of code might be
necessary to support .NET Core. The approach is as follows:

1. Run ApiPort on a project.
2. Understand where each non-portable type is used and how that affects overall portability.

3. If you have assemblies that are difficult to port, is it worth leaving them on .NET Framework for now? Here are some things to consider :

4. Is it reasonable to write your own implementation of an unavailable .NET Framework API? You could consider copying, modifying, and using code
from the .NET Framework Reference Source. The reference source code is licensed under the MIT License, so you have significant freedom to use
the source as a basis for your own code. Just be sure to properly attribute Microsoft in your code.

5. Repeat this process as needed for different projects.

Understand the nature of those types. Are they small in number but used frequently? Are they large in number but used infrequently? Is their
use concentrated, or is it spread throughout your code?
Is it easy to isolate code that isn't portable so that you can deal with it more effectively?
Do you need to refactor your code?
For those types which aren't portable, are there alternative APIs that accomplish the same task? For example if you're using the WebClient
class, you might be able to use the HttpClient class instead.
Are there different portable APIs available to accomplish a task, even if it's not a drop-in replacement? For example if you're using
XmlSchema to parse XML but don't require XML schema discovery, you could use System.Xml.Linq APIs and implement parsing yourself as
opposed to relying on an API.

You may have some functionality in your library that's incompatible with .NET Core because it relies too heavily on .NET Framework or
Windows-specific functionality. Is it worth leaving that functionality behind for now and releasing a .NET Core version of your library with
less features on a temporary basis until resources are available to port the features?
Would a refactor help?

The analysis phase could take some time depending on the size of your codebase. Spending time in this phase to thoroughly understand the scope of
changes needed and to develop a plan usually saves you time in the long run, particularly if you have a complex codebase.

Your plan could involve making significant changes to your codebase while still targeting .NET Framework 4.6.2, making this a more structured version
of the previous approach. How you go about executing your plan is dependent on your codebase.

It's likely that you'll mix the above approaches on a per-project basis. You should do what makes the most sense to you and for your codebase.

The best way to make sure everything works when you've ported your code is to test your code as you port it to .NET Core. To do this, you'll need to
use a testing framework that builds and runs tests for .NET Core. Currently, you have three options:

xUnit

NUnit

MSTest

Getting Started
Tool to convert an MSTest project to xUnit

Getting Started
Blog post about migrating from MSTest to NUnit

Ultimately, the porting effort depends heavily on how your .NET Framework code is structured. A good way to port your code is to begin with the base
of your library, which are the foundational components of your code. This might be data models or some other foundational classes and methods that
everything else uses directly or indirectly.

1. Port the test project that tests the layer of your library that you're currently porting.
2. Copy over the base of your library into a new .NET Core project and select the version of the .NET Standard you wish to support.
3. Make any changes needed to get the code to compile. Much of this may require adding NuGet package dependencies to your csproj file.
4. Run the tests and make any needed adjustments.
5. Pick the next layer of code to port over and repeat the prior steps.

If you start with the base of your library and move outward from the base and test each layer as needed, porting is a systematic process where
problems are isolated to one layer of code at a time.

https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.xml.schema.xmlschema
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://github.com/Microsoft/referencesource
https://github.com/Microsoft/referencesource/blob/master/LICENSE.txt
https://xunit.github.io/
http://xunit.github.io/docs/getting-started-dotnet-core.html
https://github.com/dotnet/codeformatter/tree/master/src/XUnitConverter
http://www.nunit.org/
https://github.com/nunit/docs/wiki/Installation
http://www.florian-rappl.de/News/Page/275/convert-mstest-to-nunit
https://docs.microsoft.com/visualstudio/test/unit-test-basics

Using the Windows Compatibility Pack
5/30/2018 • 2 minutes to read • Edit Online

Package contents

Get started

One of the most common issues that developers face when porting their existing code to .NET Core is that they depend on APIs and technologies that
only exist in the .NET Framework. The Windows Compatibility Pack is about providing many of these technologies so that building .NET Core
applications as well as .NET Standard libraries becomes much more viable for existing code.

This package is a logical extension of .NET Standard 2.0 that significantly increases API set and existing code compiles with almost no modifications. But
in order to keep the promise of .NET Standard ("it is the set of APIs that all .NET implementations provide"), this didn't include technologies that can't
work across all platforms, such as registry, Windows Management Instrumentation (WMI), or reflection emit APIs.

The Windows Compatibility Pack sits on top of .NET Standard and provides access to technologies that are Windows only. It's especially useful for
customers that want to move to .NET Core but plan to stay on Windows as a first step. In that scenario, not being able to use Windows-only
technologies is only a migration hurdle with zero architectural benefits.

The Windows Compatibility Pack is provided via the NuGet Package Microsoft.Windows.Compatibility and can be referenced from projects targeting
.NET Core or .NET Standard.

It provides about 20,000 APIs, including Windows-only as well as cross-platform APIs from the following technology areas:

Code Pages
CodeDom
Configuration
Directory Services
Drawing
ODBC
Permissions
Ports
Windows Access Control Lists (ACL)
Windows Communication Foundation (WCF)
Windows Cryptography
Windows EventLog
Windows Management Instrumentation (WMI)
Windows Performance Counters
Windows Registry
Windows Runtime Caching
Windows Services

For more information, see the spec of the compatibility pack.

1. Before porting, make sure to take a look at the Porting Process.

2. When porting existing code to .NET Core or .NET Standard, install the NuGet package Microsoft.Windows.Compatibility.

3. If you want to stay on Windows, you're all set.

4. If you want to run the .NET Core application or .NET Standard library on Linux or macOS, use the API Analyzer to find usage of APIs that won't
work cross-platform.

5. Either remove the usages of those APIs, replace them with cross-platform alternatives, or guard them using a platform check, like:

https://github.com/dotnet/docs/blob/master/docs/core/porting/windows-compat-pack.md
https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://github.com/dotnet/designs/blob/master/accepted/compat-pack/compat-pack.md
https://www.nuget.org/packages/Microsoft.Windows.Compatibility
https://blogs.msdn.microsoft.com/dotnet/2017/10/31/introducing-api-analyzer/

private static string GetLoggingPath()
{
 // Verify the code is running on Windows.
 if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
 {
 using (var key = Registry.CurrentUser.OpenSubKey(@"Software\Fabrikam\AssetManagement"))
 {
 if (key?.GetValue("LoggingDirectoryPath") is string configuredPath)
 return configuredPath;
 }
 }

 // This is either not running on Windows or no logging path was configured,
 // so just use the path for non-roaming user-specific data files.
 var appDataPath = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData);
 return Path.Combine(appDataPath, "Fabrikam", "AssetManagement", "Logging");
}

For a demo, check out the Channel 9 video of the Windows Compatibility Pack.

https://channel9.msdn.com/Events/Connect/2017/T123

Build .NET Core from source
5/4/2018 • 3 minutes to read • Edit Online

Build the CLR from source

 .\build skiptests

 .\build release skiptests

Using Your BuildUsing Your Build

The ability to build .NET Core from its source code is important in multiple ways: it makes it easier to port .NET Core to new platforms, it enables
contributions and fixes to the product, and it enables the creation of custom versions of .NET. This article gives guidance to developers who want to
build and distribute their own versions of .NET Core.

The source code for the .NET CoreCLR can be found in the dotnet/coreclr repository on GitHub.

The build currently depends on the following prerequisites:

Git
CMake
Python
a C++ compiler.

After you've installed these prerequisites are installed, you can build the CLR by invoking the build script (build.cmd on Windows, or build.sh on
Linux and macOS) at the base of the dotnet/coreclr repository.

Installing the components differ depending on the operating system (OS). See the build instructions for your specific OS:

Windows
Linux
macOS
FreeBSD
NetBSD

There is no cross-building across OS (only for ARM, which is built on X64).
You have to be on the particular platform to build that platform.

The build has two main buildTypes :

Debug (default)- Compiles the runtime with minimal optimizations and additional runtime checks (asserts). This reduction in optimization level and
the additional checks slow runtime execution but are valuable for debugging. This is the recommended setting for development and testing
environments.
Release - Compiles the runtime with full optimizations and without the additional runtime checks. This will yield much faster run time performance
but it can take a bit longer to build and can be difficult to debug. Pass release to the build script to select this build type.

In addition, by default the build not only creates the runtime executables, but it also builds all the tests. There are quite a few tests, taking a significant
amount of time that isn't necessary if you just want to experiment with changes. You can skip the tests builds by adding the skiptests argument to the
build script, like in the following example (replace .\build with ./build.sh on Unix machines):

The previous example showed how to build the Debug flavor, which has development time checks (asserts) enabled and optimizations disabled. To build
the release (full speed) flavor, do the following:

You can find more build options with build by using the -? or -help qualifier.

The build places all of its generated files under the bin directory at the base of the repository. There is a bin\Log directory that contains log files
generated during the build (Most useful when the build fails). The actual output is placed in a bin\Product[platform].[CPU architecture].[build type]

directory, such as bin\Product\Windows_NT.x64.Release.

While the 'raw' output of the build is sometimes useful, normally you're only interested in the NuGet packages, which are placed in the .nuget\pkg

subdirectory of the previous output directory.

There are two basic techniques for using your new runtime:

1. Use dotnet.exe and NuGet to compose an application. See Using Your Build for instructions on creating a program that uses your new
runtime by using the NuGet packages you just created and the 'dotnet' command-line interface (CLI). This technique is the expected way non-
runtime developers are likely to consume your new runtime.

2. Use corerun.exe to run an application using unpackaged DLLs. This repository also defines a simple host called corerun.exe that does NOT

https://github.com/dotnet/docs/blob/master/docs/core/build/index.md
https://github.com/dotnet/coreclr/
https://git-scm.com/
https://cmake.org/
https://www.python.org/
https://github.com/dotnet/coreclr/
https://github.com/dotnet/coreclr/blob/master/Documentation/building/windows-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/linux-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/osx-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/freebsd-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/building/netbsd-instructions.md
https://github.com/dotnet/coreclr/blob/master/Documentation/workflow/UsingYourBuild.md

Build the CLI from source

Using your buildUsing your build

See also

take any dependency on NuGet. You need to tell the host where to get the required DLLs you actually use, and you have to manually gather them
together. This technique is used by all the tests in the dotnet/coreclr repo, and is useful for quick local 'edit-compile-debug' loop such as
preliminary unit testing. See Executing .NET Core Apps with CoreRun.exe for details on using this technique.

The source code for the .NET Core CLI can be found in the dotnet/cli repository on GitHub.

In order to build the .NET Core CLI, you need the following installed on your machine.

Windows & Linux:

macOS:
git on the PATH

git on the PATH
Xcode
OpenSSL

In order to build, run build.cmd on Windows, or build.sh on Linux and macOS from the root. If you don't want to execute tests, run
build.cmd /t:Compile or ./build.sh /t:Compile . To build the CLI in macOS Sierra, you need to set the DOTNET_RUNTIME_ID environment variable

by running export DOTNET_RUNTIME_ID=osx.10.11-x64 .

Use the dotnet executable from artifacts/{os}-{arch}/stage2 to try out the newly built CLI. If you want to use the build output when invoking dotnet

from the current console, you can also add artifacts/{os}-{arch}/stage2 to the PATH.

.NET Core Common Language Runtime (CoreCLR)

.NET Core CLI Developer Guide

.NET Core distribution packaging

https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr/blob/master/Documentation/workflow/UsingCoreRun.md
https://github.com/dotnet/cli/
https://github.com/dotnet/coreclr/blob/master/README.md
https://github.com/dotnet/cli/blob/master/Documentation/project-docs/developer-guide.md

.NET Core distribution packaging
5/4/2018 • 4 minutes to read • Edit Online

Disk layout

.
├── dotnet (1)
├── LICENSE.txt (8)
├── ThirdPartyNotices.txt (8)
├── host
│ └── fxr
│ └── <fxr version> (2)
├── sdk
│ ├── <sdk version> (3)
│ └── NuGetFallbackFolder (4)
└── shared
 ├── Microsoft.NETCore.App
 │ └── <runtime version> (5)
 └── Microsoft.AspNetCore.App
 └── <aspnetcore version> (6)
 └── Microsoft.AspNetCore.All
 └── <aspnetcore version> (7)
/
├─usr/share/man/man1
│ └── dotnet.1.gz (9)
└─usr/bin
 └── dotnet (10)

Recommended packages

As .NET Core becomes available on more and more platforms, it's useful to learn how to package, name, and version it. This way, package maintainers
can help ensure a consistent experience no matter where users choose to run .NET.

When installed, .NET Core consists of several components that are layed out as follows in the filesystem:

(1) dotnet The host (also known as the "muxer") has two distinct roles: activate a runtime to launch an application, and activate an SDK to dispatch
commands to it. The host is a native executable (dotnet.exe).

While there is a single host, most of the other components are in versioned directories (2,3,5,6). These means multiple versions can be present on the
system since they are installed side-by-side.

(2) host/fxr/<fxr version> contains the framework resolution logic used by the host. The host uses the latest hostfxr that is installed. The
hostfxr is responsible for selecting the appropriate runtime when executing a .NET Core application. For example, an application built for .NET
Core 2.0.0 will use the 2.0.5 runtime when it is available. Similarly, hostfxr selects the appropriate SDK during development.

(3) sdk/<sdk version> The SDK (also known as "the tooling") is a set of managed tools that can be used to write and build .NET Core libraries
and applications. The SDK includes the CLI, the Roslyn compiler, MSBuild, and associated build tasks and targets, NuGet, new project templates,
etc.

(4) sdk/NuGetFallbackFolder contains a cache of NuGet packages used by an SDK during the dotnet restore step.

The shared folder contains frameworks. A shared framework provides a set of libraries at a central location so they can be used by different
applications.

(5) shared/Microsoft.NETCore.App/<runtime version> This framework contains the .NET Core runtime and supporting managed libraries.

(6,7) shared/Microsoft.AspNetCore.{App,All}/<aspnetcore version> contains the ASP.NET Core libraries. The libraries under
Microsoft.AspNetCore.App are developed and supported as part of the .NET Core project. The libraries under Microsoft.AspNetCore.All are a

superset which also contains 3rd party libraries.

(8) LICENSE.txt,ThirdPartyNotices.txt are the .NET Core license and licenses of third-party libraries used in .NET Core.

(9,10) dotnet.1.gz, dotnet dotnet.1.gz is the dotnet man page. dotnet is a symlink to the dotnet host(1). These files are installed at well
known locations for system integration.

.NET Core versioning is based on the runtime component [major].[minor] version numbers. The SDK version uses the same [major].[minor] and has
an independent [patch] which combines feature and patch semantics for the SDK. For example: SDK version 2.2.302 is a the 2nd patch release of the
3rd feature release of the SDK that supports the 2.2 runtime.

Some of the packages include part of the version number in their name. This allows the end-user to install a specific version. The remainder of the
version is not included in the version name. This allows the OS package manager to update the packages (e.g. automatically installing security fixes).

The following tables shows the recommended packages.

https://github.com/dotnet/docs/blob/master/docs/core/build/distribution-packaging.md

NAME EXAMPLE USE CASE: INSTALL ... CONTAINS DEPENDENCIES VERSION

dotnet-sdk-[major] dotnet-sdk-2 Latest sdk for runtime
major

dotnet-sdk-[major].
[latestminor]

<sdk version>

dotnet-sdk-[major].
[minor]

dotnet-sdk-2.1 Latest sdk for specific
runtime

dotnet-sdk-[major].
[minor].[latest sdk feat]xx

<sdk version>

dotnet-sdk-[major].
[minor].[sdk feat]xx

dotnet-sdk-2.1.3xx Specific sdk feature
release

(3),(4) aspnetcore-runtime-
[major].[minor]

<sdk version>

aspnetcore-runtime-
[major].[minor]

aspnetcore-runtime-2.1 Specific ASP.NET Core
runtime

(6),[(7)] dotnet-runtime-[major].
[minor]

<runtime version>

dotnet-runtime-[major].
[minor]

dotnet-runtime-2.1 Specific runtime (5) host-fxr:<runtime
version>+

<runtime version>

dotnet-host-fxr dotnet-host-fxr dependency (2) host:<runtime
version>+

<runtime version>

dotnet-host dotnet-host dependency (1),(8),(9),(10) <runtime version>

Preview versionsPreview versions

Patch packagesPatch packages

NAME EXAMPLE CONTAINS DEPENDENCIES

dotnet-sdk-[major] dotnet-sdk-2 dotnet-sdk-[major].[latest sdk minor]

dotnet-sdk-[major].[minor] dotnet-sdk-2.1 dotnet-sdk-[major].[minor].[latest sdk
feat]xx

dotnet-sdk-[major].[minor].[sdk feat]xx dotnet-sdk-2.1.3xx dotnet-sdk-[major].[minor].[latest sdk
patch]

dotnet-sdk-[major].[minor].[patch] dotnet-sdk-2.1.300 (3),(4) aspnetcore-runtime-[major].[minor].
[sdk runtime patch]

aspnetcore-runtime-[major].[minor] aspnetcore-runtime-2.1 aspnetcore-runtime-[major].[minor].
[latest runtime patch]

aspnetcore-runtime-[major].
[minor].[patch]

aspnetcore-runtime-2.1.0 (6),[(7)] dotnet-runtime-[major].[minor].[patch]

dotnet-runtime-[major].[minor] dotnet-runtime-2.1 dotnet-runtime-[major].[minor].[latest
runtime patch]

dotnet-runtime-[major].[minor].
[patch]

dotnet-runtime-2.1.0 (5) host-fxr:<runtime version>+

dotnet-host-fxr dotnet-host-fxr (2) host:<runtime version>+

dotnet-host dotnet-host (1),(8),(9),(10)

Most distributions require all artifacts to be built from source. This has some impact on the packages:

The 3rd party libraries under shared/Microsoft.AspNetCore.All cannot be easily built from source. So that folder is omitted from the
aspnetcore-runtime package.

The NuGetFallbackFolder is populated using binary artifacts from nuget.org . It should remain empty.

Multiple dotnet-sdk packages may provide the same files for the NuGetFallbackFolder . To avoid issues with the package manager, these files should be
identical (checksum, modification date, ...).

Package maintainers may decide to provide preview versions of the shared framework and SDK. Preview releases may be provided using the
dotnet-sdk-[major].[minor].[sdk feat]xx , aspnetcore-runtime-[major].[minor] , dotnet-runtime-[major].[minor] packages. For preview releases, the

package version major must be set to zero. This way, the final release will be installed as an upgrade of the package.

Since a patch version of a packages may cause a breaking change, a package maintainer may want to provide patch packages. These packages allows to
install a specific patch version which is not automatically upgraded. Patch packages should only be used in rare circumstances as they will not be
upgraded with (security) fixes.

The following table shows the recommended packages and patch packages.

An alternative to using patch packages is pinning the packages to a specific version using the package manager. To avoid affecting other

Building packages

applications/users, such applications can be built and deployed in a container.

The https://github.com/dotnet/source-build repository provides instructions on how to build a source tarball of the .NET Core SDK and all its
components. The output of the source-build repository matches the layout described in the first section of this article.

https://github.com/dotnet/source-build

project.json and Visual Studio 2015 with .NET Core
5/30/2018 • 2 minutes to read • Edit Online

PDF files

Documentation repository branch

Current version of the documentation

On March 7, 2017, the .NET Core and ASP.NET Core documentation was updated for the release of Visual Studio 2017. The previous version of the
documentation used Visual Studio 2015 and pre-release tooling based on the project.json file.

The documentation version from before the March 7 update is available in a PDF file and in a branch in the documentation repository.

The best source of the earlier documentation is PDF files:

.NET Core - PDF for project.json and Visual Studio 2015
ASP.NET Core - PDF for project.json and Visual Studio 2015

You can view the earlier version of the documentation in the repository, but many links won't work and many code snippets are references that aren't
expanded.

.NET Core - project.json branch in the documentation repository

.NET Core documentation
ASP.NET Core documentation

https://github.com/dotnet/docs/blob/master/docs/project-json.md
https://github.com/dotnet/docs/blob/project.json/net-core-project-json.pdf
https://github.com/aspnet/Docs/blob/master/aspnetcore/common/_static/aspnet-core-project-json.pdf
https://github.com/dotnet/docs/tree/project.json/docs
https://docs.microsoft.com/aspnet/core/

.NET Framework Guide
5/2/2018 • 2 minutes to read • Edit Online

NOTENOTE

Installation

In This Section

This .NET Framework content set includes information for .NET Framework versions 4.5, 4.5.1, 4.5.2, 4.6, 4.6.1, 4.6.2, 4.7, 4.7.1, and 4.7.2. To download the .NET
Framework, see Installing the .NET Framework. For a list of new features and changes in the NET Framework 4.5, the .NET Framework 4.6, their point releases, and the
.NET Framework 4.7, 4.7.1, and 4.7.2, see What's New in the .NET Framework. For a list of supported platforms, see .NET Framework System Requirements.

The .NET Framework is a development platform for building apps for web, Windows, Windows Phone, Windows Server, and Microsoft Azure. It
consists of the common language runtime (CLR) and the .NET Framework class library, which includes a broad range of functionality and support for
many industry standards.

The .NET Framework provides many services, including memory management, type and memory safety, security, networking, and application
deployment. It provides easy-to-use data structures and APIs that abstract the lower-level Windows operating system. You can use a variety of
programming languages with the .NET Framework, including C#, F#, and Visual Basic.

For a general introduction to the .NET Framework for both users and developers, see Getting Started. For an introduction to the architecture and key
features of the .NET Framework, see the overview.

The .NET Framework can be used with Docker and with Windows Containers. See Deploying .NET Framework applications with Docker to learn how to
run your applications in Docker containers.

The .NET Framework comes with Windows, enabling you to run .NET Framework applications. You may need a later version of the .NET Framework
than comes with your Windows version. For more information, see Install the .NET Framework on Windows.

See Repair the .NET Framework to learn how to repair your .NET Framework installation if you are experiencing errors when installing the .NET
Framework.

For more detailed information on downloading the .NET Framework, see Install the .NET Framework for developers.

What's New
Describes key new features and changes in the latest versions of the .NET Framework. Includes lists of obsolete types and members, and provides a
guide for migrating your applications from the previous version of the .NET Framework.

Getting Started
Provides a comprehensive overview of the .NET Framework and links to additional resources.

Migration Guide
Provides resources and a list of changes you need to consider if you're migrating your application to a new version of the .NET Framework.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application, and information about dynamic programming, interoperability, extensibility, memory management, and threading.

Tools
Describes the tools that help you develop, configure, and deploy applications by using .NET Framework technologies.

.NET Framework Class Library
Supplies syntax, code examples, and related information for each class contained in the .NET Framework namespaces.

Additional Class Libraries and APIs
Provides documentation for classes contained in out-of-band (OOB) releases, as well as for classes that target specific platforms or implementations of
the .NET Framework.

https://github.com/dotnet/docs/blob/master/docs/framework/index.md
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://msdn.microsoft.com/virtualization/windowscontainers/about/about_overview
https://docs.microsoft.com/en-us/dotnet/framework/install/repair
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/dotnet/api/?view=netframework-4.7.2

What's new in the .NET Framework
5/22/2018 • 80 minutes to read • Edit Online

NOTENOTE

Introducing the .NET Framework 4.7.2

Downloading and installing the .NET Framework 4.7.2Downloading and installing the .NET Framework 4.7.2

What's new in the .NET Framework 4.7.2What's new in the .NET Framework 4.7.2

CoreCore

 This article summarizes key new features and improvements in the following versions of the .NET Framework:

.NET Framework 4.7.2

.NET Framework 4.7.1

.NET Framework 4.7

.NET Framework 4.6.2

.NET Framework 4.6.1

.NET 2015 and .NET Framework 4.6

.NET Framework 4.5.2

.NET Framework 4.5.1

.NET Framework 4.5

This article does not provide comprehensive information about each new feature and is subject to change. For general information about the .NET
Framework, see Getting Started. For supported platforms, see System Requirements. For download links and installation instructions, see Installation
Guide.

The .NET Framework team also releases features out of band with NuGet to expand platform support and to introduce new functionality, such as immutable collections
and SIMD-enabled vector types. For more information, see Additional Class Libraries and APIs and The .NET Framework and Out-of-Band Releases. See a complete list
of NuGet packages for the .NET Framework, or subscribe to our feed.

The .NET Framework 4.7.2 builds on previous versions of the .NET Framework 4.x by adding many new fixes and several new features while remaining
a very stable product.

You can download the .NET Framework 4.7.2 from the following locations:

.NET Framework 4.7.2 Web Installer

NET Framework 4.7.2 Offline Installer

The .NET Framework 4.7.2 can be installed on Windows 10, Windows 8.1, Windows 7 SP1, and the corresponding server platforms starting with
Windows Server 2008 R2 SP1. You can install the .NET Framework 4.7.2 by using either the web installer or the offline installer. The recommended way
for most users is to use the web installer.

You can target the .NET Framework 4.7.2 in Visual Studio 2012 or later by installing the .NET Framework 4.7.2 Developer Pack.

The .NET Framework 4.7.2 includes new features in the following areas:

Core
ASP.NET
Networking
SQL
WPF
ClickOnce

A continuing focus in the .NET Framework 4.7.2 is improved accessibility, which allows an application to provide an appropriate experience for users of
Assistive Technology. For information on accessibility improvement in the .NET Framework 4.7.2, see What's new in accessibility in the .NET
Framework.

The .NET Framework 4.7.2 features a large number of cryptographic enhancements, better decompression support for ZIP archives, and additional
collection APIs.

New overloads of RSA.Create and DSA.Create

The DSA.Create(DSAParameters) and RSA.Create(RSAParameters) methods let you supply key parameters when instantiated a new DSA or RSA key.
They allow you to replace code like the following:

https://github.com/dotnet/docs/blob/master/docs/framework/whats-new/index.md
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/get-started/the-net-framework-and-out-of-band-releases
https://blogs.msdn.microsoft.com/dotnet/p/nugetpackages/
https://nuget.org/api/v2/curated-feeds/dotnetframework/Packages/
http://go.microsoft.com/fwlink/?LinkId=863262
http://go.microsoft.com/fwlink/?LinkId=863265
http://go.microsoft.com/fwlink/?LinkId=874338
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/whats-new-in-accessibility
https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsa.create#System_Security_Cryptography_DSA_Create_System_Security_Cryptography_DSAParameters_
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa.create#System_Security_Cryptography_RSA_Create_System_Security_Cryptography_RSAParameters_
https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa

// Before .NET Framework 4.7.2
using (RSA rsa = RSA.Create())
{
 rsa.ImportParameters(rsaParameters);
 // Other code to execute using the RSA instance.
}

' Before .NET Framework 4.7.2
Using rsa = RSA.Create()
 rsa.ImportParameters(rsaParameters)
 ' Other code to execute using the rsa instance.
End Using

// Starting with .NET Framework 4.7.2
using (RSA rsa = RSA.Create(rsaParameters))
{
 // Other code to execute using the rsa instance.
}

' Starting with .NET Framework 4.7.2
Using rsa = RSA.Create(rsaParameters)
 ' Other code to execute using the rsa instance.
End Using

using (DSA dsa = DSA.Create(2048))
{
 // Other code to execute using the dsa instance.
}

Using dsa = DSA.Create(2048)
 ' Other code to execute using the dsa instance.
End Using

private static byte[] DeriveKey(string password, out int iterations, out byte[] salt,
 out HashAlgorithmName algorithm)
{
 iterations = 100000;
 algorithm = HashAlgorithmName.SHA256;

 const int SaltSize = 32;
 const int DerivedValueSize = 32;

 using (Rfc2898DeriveBytes pbkdf2 = new Rfc2898DeriveBytes(password, SaltSize,
 iterations, algorithm))
 {
 salt = pbkdf2.Salt;
 return pbkdf2.GetBytes(DerivedValueSize);
 }
}

Private Shared Function DeriveKey(password As String, ByRef iterations As Integer,
 ByRef salt AS Byte(), ByRef algorithm As HashAlgorithmName) As Byte()
 iterations = 100000
 algorithm = HashAlgorithmName.SHA256

 Const SaltSize As Integer = 32
 Const DerivedValueSize As Integer = 32

 Using pbkdf2 = New Rfc2898DeriveBytes(password, SaltSize, iterations, algorithm)
 salt = pbkdf2.Salt
 Return pbkdf2.GetBytes(DerivedValueSize)
 End Using
End Function

with code like this:

The DSA.Create(Int32) and RSA.Create(Int32) methods let you generate new DSA or RSA keys with a specific key size. For example:

Rfc2898DeriveBytes constructors accept a hash algorithm name

The Rfc2898DeriveBytes class has three new constructors with a HashAlgorithmName parameter that identifies the HMAC algorithm to use when
deriving keys. Instead of using SHA-1, developers should use a SHA-2-based HMAC like SHA-256, as shown in the following example:

Support for ephemeral keys

https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsa.create#System_Security_Cryptography_DSA_Create_System_Int32_
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa.create#System_Security_Cryptography_RSA_Create_System_Int32_
https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rfc2898derivebytes
https://docs.microsoft.com/dotnet/api/system.security.cryptography.hashalgorithmname

var cStream = new CryptoStream(stream, transform, mode, leaveOpen: true);

Dim cStream = New CryptoStream(stream, transform, mode, leaveOpen:=true)

<AppContextSwitchOverrides value="Switch.System.IO.Compression.DoNotUseNativeZipLibraryForDecompression=false" />

public TValue AddOrUpdate<TArg>(TKey key, Func<TKey, TArg, TValue> addValueFactory, Func<TKey, TValue, TArg, TValue> updateValueFactory, TArg
factoryArgument)

public TValue GetOrAdd<TArg>(TKey key, Func<TKey, TArg, TValue> valueFactory, TArg factoryArgument)

PFX import can optionally load private keys directly from memory, bypassing the hard drive. When the new X509KeyStorageFlags.EphemeralKeySet
flag is specified in an X509Certificate2 constructor or one of the overloads of the X509Certificate2.Import method, the private keys will be loaded as
ephemeral keys. This prevents the keys from being visible on the disk. However :

Since the keys are not persisted to disk, certificates loaded with this flag are not good candidates to add to an X509Store.

Keys loaded in this manner are almost always loaded via Windows CNG. Therefore, callers must access the private key by calling extension
methods, such as cert.GetRSAPrivateKey(). The X509Certificate2.PrivateKey property does not function.

Since the legacy X509Certificate2.PrivateKey property does not work with certificates, developers should perform rigorous testing before
switching to ephemeral keys.

Programmatic creation of PKCS#10 certification signing requests and X.509 public key certificates

Starting with the .NET Framework 4.7.2, workloads can generate certificate signing requests (CSRs), which allows certificate request generation to be
staged into existing tooling. This is frequently useful in test scenarios.

For more information and code examples, see "Programmatic creation of PKCS#10 certification signing requests and X.509 public key certificates" in
the .NET Blog.

New SignerInfo members

Starting with the .NET Framework 4.7.2, the SignerInfo class exposes more information about the signature. You can retrieve the value of the
System.Security.Cryptography.Pkcs.SignerInfo.SignatureAlgorithm property to determine the signature algorithm used by the signer.
SignerInfo.GetSignature can be called to get a copy of the cryptographic signature for this signer.

Leaving a wrapped stream open after CryptoStream is disposed

Starting with the .NET Framework 4.7.2, the CryptoStream class has an additional constructor that allows Dispose to not close the wrapped stream. To
leave the wrapped stream open after the CryptoStream instance is disposed, call the new CryptoStream constructor as follows:

Decompression changes in DeflateStream

Starting with the .NET Framework 4.7.2, the implementation of decompression operations in the DeflateStream class has changed to use native
Windows APIs by default. Typically, this results in a substantial performance improvement.

Support for decompression by using Windows APIs is enabled by default for applications that target .NET Framework 4.7.2. Applications that target
earlier versions of .NET Framework but are running under .NET Framework 4.7.2 can opt into this behavior by adding the following AppContext switch
to the application configuration file:

Additional collection APIs

The .NET Framework 4.7.2 adds a number of new APIs to the SortedSet<T> and HashSet<T> types. These include:

TryGetValue methods, which extend the try pattern used in other collection types to these two types. The methods are:

Enumerable.To* extension methods, which convert a collection to a HashSet<T>:

New HashSet<T> constructors that let you set the collection's capacity, which yields a performance benefit when you know the size of the
HashSet<T> in advance:

`public bool HashSet.TryGetValue(T equalValue, out T actualValue);
`public bool SortedSet.TryGetValue(T equalValue, out T actualValue);

public static HashSet ToHashSet(this IEnumerable source);
public static HashSet ToHashSet(this IEnumerable source, IEqualityComparer comparer);

public HashSet(int capacity)
public HashSet(int capacity, IEqualityComparer comparer)

The ConcurrentDictionary<TKey,TValue> class includes new overloads of the AddOrUpdate and GetOrAdd methods to retrieve a value from the
dictionary or to add it if it is not found, and to add a value to the dictionary or to update it if it already exists.

https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509keystorageflags#System_Security_Cryptography_X509Certificates_X509KeyStorageFlags_EphemeralKeySet
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.import
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.rsacertificateextensions.getrsaprivatekey
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.privatekey#System_Security_Cryptography_X509Certificates_X509Certificate2_PrivateKey
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.privatekey#System_Security_Cryptography_X509Certificates_X509Certificate2_PrivateKey
https://blogs.msdn.microsoft.com/dotnet/2018/03/08/net-framework-4-7-2-developer-pack-early-access-build-3056-is-available/
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signerinfo
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signerinfo.signaturealgorithm#System_Security_Cryptography_Pkcs_SignerInfo_SignatureAlgorithm
https://docs.microsoft.com/dotnet/api/system.security.cryptography.pkcs.signerinfo.getsignature
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptostream
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptostream.dispose
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptostream
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptostream
https://docs.microsoft.com/dotnet/api/system.io.compression.deflatestream
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/appcontextswitchoverrides-element
https://docs.microsoft.com/dotnet/api/system.collections.generic.sortedset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.sortedset-1.trygetvalue
https://docs.microsoft.com/dotnet/api/system.collections.generic.sortedset-1.trygetvalue
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.tohashset
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.tohashset
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1.-ctor#System_Collections_Generic_HashSet_1__ctor_System_Int32_
https://docs.microsoft.com/dotnet/api/system.collections.generic.hashset-1.-ctor#System_Collections_Generic_HashSet_1__ctor_System_Int32_System_Collections_Generic_IEqualityComparer__0__
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentdictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentdictionary-2.addorupdate
https://docs.microsoft.com/dotnet/api/system.collections.concurrent.concurrentdictionary-2.getoradd

Public AddOrUpdate(Of TArg)(key As TKey, addValueFactory As Func(Of TKey, TArg, TValue), updateValueFactory As Func(Of TKey, TValue, TArg, TValue),
factoryArgument As TArg) As TValue

Public GetOrAdd(Of TArg)(key As TKey, valueFactory As Func(Of TKey, TArg, TValue), factoryArgument As TArg) As TValue

ASP.NETASP.NET

var c = new HttpCookie("secureCookie", "same origin");
c.SameSite = SameSiteMode.Lax;

Dim c As New HttpCookie("secureCookie", "same origin")
c.SameSite = SameSiteMode.Lax

<system.web>
 <httpCookies sameSite="Strict" />
</system.web>

<system.web>
 <authentication mode="Forms">
 <forms cookieSameSite="Lax">
 <!-- ... -->
 </forms>
 <authentication />
 <sessionSate cookieSameSite="Lax"></sessionState>
</system.web>

NetworkingNetworking

SQLClientSQLClient

Support for dependency injection in Web Forms

Dependency injection (DI) decouples objects and their dependencies so that an object's code no longer needs to be changed just because a dependency
has changed. When developing ASP.NET applications that target the .NET Framework 4.7.2, you can:

Use setter-based, interface-based, and constructor-based injection in handlers and modules, Page instances, and user controls of ASP.NET web
application projects.

Use setter-based and interface-based injection in handlers and modules, Page instances, and user controls of ASP.NET web site projects.

Plug in different dependency injection frameworks.

Support for same-site cookies

SameSite prevents a browser from sending a cookie along with a cross-site request. The .NET Framework 4.7.2 adds a HttpCookie.SameSite property
whose value is a System.Web.SameSiteMode enumeration member. If its value is SameSiteMode.Strict or SameSiteMode.Lax, ASP.NET adds the
SameSite attribute to the set-cookie header. SameSite support applies to HttpCookie objects, as well as to FormsAuthentication and

System.Web.SessionState cookies.

You can set SameSite for an HttpCookie object as follows:

You can also configure SameSite cookies at the application level by modifying the web.config file:

You can add SameSite for FormsAuthentication and System.Web.SessionState cookies by modifying the web config file:

Implementation of HttpClientHandler properties

The .NET Framework 4.7.1 added eight properties to the System.Net.Http.HttpClientHandler class. However, two threw a
PlatformNotSupportedException. The .NET Framework 4.7.2 now provides an implementation for these properties. The properties are:

CheckCertificateRevocationList
SslProtocols

Support for Azure Active Directory Universal Authentication and Multi-Factor authentication

Growing compliance and security demands require that many customers use multi-factor authentication (MFA). In addition, current best practices
discourage including user passwords directly in connection strings. To support these changes, the .NET Framework 4.7.2 extends SQLClient connection
strings by adding a new value, "Active Directory Interactive", for the existing "Authentication" keyword to support MFA and Azure AD Authentication.
The new interactive method supports native and federated Azure AD users as well as Azure AD guest users. When this method is used, the MFA
authentication imposed by Azure AD is supported for SQL databases. In addition, the authentication process requests a user password to adhere to
security best practices.

In previous versions of the .NET Framework, SQL connectivity supported only the SqlAuthenticationMethod.ActiveDirectoryPassword and
SqlAuthenticationMethod.ActiveDirectoryIntegrated options. Both of these are part of the non-interactive ADAL protocol, which does not support
MFA. With the new SqlAuthenticationMethod.ActiveDirectoryInteractive option, SQL connectivity supports MFA as well as existing authentication
methods (password and integrated authentication), which allows users to enter user passwords interactively without persisting passwords in the
connection string.

https://docs.microsoft.com/aspnet/core/fundamentals/dependency-injection#what-is-dependency-injection
https://msdn.microsoft.com/en-us/library/bb398986.aspx
https://docs.microsoft.com/dotnet/api/system.web.ui.page
https://msdn.microsoft.com/en-us/library/y6wb1a0e.aspx
https://msdn.microsoft.com/en-us/library/bb398986.aspx
https://docs.microsoft.com/dotnet/api/system.web.ui.page
https://msdn.microsoft.com/en-us/library/y6wb1a0e.aspx
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://docs.microsoft.com/dotnet/api/system.web.httpcookie.samesite#System_Web_HttpCookie_SameSite
https://docs.microsoft.com/dotnet/api/system.web.samesitemode
https://docs.microsoft.com/dotnet/api/system.web.samesitemode#System_Web_SameSiteMode_Strict
https://docs.microsoft.com/dotnet/api/system.web.samesitemode#System_Web_SameSiteMode_Lax
https://docs.microsoft.com/dotnet/api/system.web.httpcookie
https://docs.microsoft.com/dotnet/api/system.web.security.formsauthentication
https://docs.microsoft.com/dotnet/api/system.web.sessionstate
https://docs.microsoft.com/dotnet/api/system.web.httpcookie
https://docs.microsoft.com/dotnet/api/system.web.security.formsauthentication
https://docs.microsoft.com/dotnet/api/system.web.sessionstate
https://docs.microsoft.com/dotnet/api/system.net.http.httpclienthandler
https://docs.microsoft.com/dotnet/api/system.platformnotsupportedexception
https://docs.microsoft.com/dotnet/api/system.net.http.httpclienthandler.checkcertificaterevocationlist#System_Net_Http_HttpClientHandler_CheckCertificateRevocationList
https://docs.microsoft.com/dotnet/api/system.net.http.httpclienthandler.sslprotocols#System_Net_Http_HttpClientHandler_SslProtocols
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection.connectionstring#System_Data_SqlClient_SqlConnection_ConnectionString
https://docs.microsoft.com/azure/sql-database/sql-database-aad-authentication-configure
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlauthenticationmethod#System_Data_SqlClient_SqlAuthenticationMethod_ActiveDirectoryPassword
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlauthenticationmethod#System_Data_SqlClient_SqlAuthenticationMethod_ActiveDirectoryIntegrated
https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-libraries
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlauthenticationmethod#System_Data_SqlClient_SqlAuthenticationMethod_ActiveDirectoryInteractive

<configuration>
 <configSections>
 <section name="SqlColumnEncryptionEnclaveProviders"
type="System.Data.SqlClient.SqlColumnEncryptionEnclaveProviderConfigurationSection,System.Data,Version=4.0.0.0,Culture=neutral,PublicKeyToken=b77a5
c561934e089"/>
 </configSections>
 <SqlColumnEncryptionEnclaveProviders>
 <providers>
 <add name="Azure" type="Microsoft.SqlServer.Management.AlwaysEncrypted.AzureEnclaveProvider,MyApp"/>
 <add name="HGS" type="Microsoft.SqlServer.Management.AlwaysEncrypted.HGSEnclaveProvider,MyApp" />
 </providers>
 </SqlColumnEncryptionEnclaveProviders >
</configuration>

Windows Presentation FoundationWindows Presentation Foundation

<ResourceDictionary Source="MyRD.xaml">

IEnumerable<ResourceDictionary> dictionaries = ResourceDictionaryDiagnostics.GetResourceDictionariesForSource(new
Uri("pack://application:,,,/MyApp;component/MyRD.xaml"));

Dim dictionaries As IEnumerable(Of ResourceDictionary) = ResourceDictionaryDiagnostics.GetResourceDictionariesForSource(New
Uri("pack://application:,,,/MyApp;component/MyRD.xaml"))

For more information and an example, see "SQL -- Azure AD Universal and Multi-factor Authentication Support" in the .NET Blog.

Support for Always Encrypted version 2

NET Framework 4.7.2 adds supports for enclave-based Always Encrypted. The original version of Always Encrypted is a client-side encryption
technology in which encryption keys never leave the client. In enclave-based Always Encrypted, the client can optionally send the encryption keys to a
secure enclave, which is a secure computational entity that can be considered part of SQL Server but that SQL Server code cannot tamper with. To
support enclave-based Always Encrypted, the .NET Framework 4.7.2 adds the following types and members to the System.Data.SqlClient namespace:

SqlConnectionStringBuilder.EnclaveAttestationUrl, which specifies the Uri for enclave-based Always Encrypted.

SqlColumnEncryptionEnclaveProvider, which is an abstract class from which all enclave providers are derived.

SqlEnclaveSession, which encapsulates the state for a given enclave session.

SqlEnclaveAttestationParameters, which provides the attestation parameters used by SQL Server to get information required to execute a
particular Attestation Protocol.

The application configuration file then specifies a concrete implementation of the abstract System.Data.SqlClient.SqlColumnEncryptionEnclaveProvider
class that provides the functionality for the enclave provider. For example:

The basic flow of enclave-based Always Encrypted is:

1. The user creates an AlwaysEncrypted connection to SQL Server that supported enclave-based Always Encrypted. The driver contacts the
attestation service to ensure that it is connecting to right enclave.

2. Once the enclave has been attested, the driver establishes a secure channel with the secure enclave hosted on SQL Server.

3. The driver shares encryption keys authorized by the client with the secure enclave for the duration of the SQL connection.

Finding ResourceDictionaries by Source

Starting with the .NET Framework 4.7.2, a diagnostic assistant can locate the ResourceDictionaries that have been created from a given source Uri. (This
feature is for use by diagnostic assistants, not by production applications.) A diagnostic assistant such as Visual Studio’s “Edit-and-Continue” facility lets
its user edit a ResourceDictionary with the intent that the changes be applied to the running application. One step in achieving this is finding all the
ResourceDictionaries that the running application has created from the dictionary that’s being edited. For example, an application can declare a
ResourceDictionary whose content is copied from a given source URI:

A diagnostic assistant that edits the original markup in MyRD.xaml can use the new feature to locate the dictionary. The feature is implemented by a
new static method, ResourceDictionaryDiagnostics.GetResourceDictionariesForSource. The diagnostic assistant calls the new method using an absolute
Uri that identifies the original markup, as illustrated by the following code:

The method returns an empty enumerable unless VisualDiagnostics is enabled and the ENABLE_XAML_DIAGNOSTICS_SOURCE_INFO environment variable is
set.

Finding ResourceDictionary owners

Starting with the .NET Framework 4.7.2, a diagnostic assistant can locate the owners of a given ResourceDictionary. (The feature is for use by diagnostic
assistants and not by production applications.) Whenever a change is made to a ResourceDictionary, WPF automatically finds all DynamicResource
references that might be affected by the change.

A diagnostic assistant such as Visual Studio’s “Edit-and-Continue” facility may want extend this to handle StaticResource references. The first step in this

https://blogs.msdn.microsoft.com/dotnet/2018/03/08/net-framework-4-7-2-developer-pack-early-access-build-3056-is-available/
https://docs.microsoft.com/dotnet/api/system.data.sqlclient
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.enclaveattestationurl#System_Data_SqlClient_SqlConnectionStringBuilder_EnclaveAttestationUrl
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlcolumnencryptionenclaveprovider
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlenclavesession
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlenclaveattestationparameters
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlcolumnencryptionenclaveprovider
https://docs.microsoft.com/dotnet/api/system.windows.xps.packaging.ixpsfixedpagereader.resourcedictionaries#System_Windows_Xps_Packaging_IXpsFixedPageReader_ResourceDictionaries
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics.getresourcedictionariesforsource
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics.getxamlsourceinfo
https://docs.microsoft.com/uwp/api/windows.ui.xaml.resourcedictionary
https://docs.microsoft.com/uwp/api/windows.ui.xaml.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/staticresource-markup-extension

public static event EventHandler<StaticResourceResolvedEventArgs> StaticResourceResolved;

Public Shared Event StaticResourceResolved As EventHandler(Of StaticResourceResolvedEventArgs)

public class StaticResourceResolvedEventArgs : EventArgs
{
 public Object TargetObject { get; }

 public Object TargetProperty { get; }

 public ResourceDictionary ResourceDictionary { get; }

 public object ResourceKey { get; }
}

ClickOnceClickOnce

<windowsSettings>
 <dpiAware xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">true</dpiAware>
</windowsSettings>

What's new in the .NET Framework 4.7.1

CoreCore

process is to find the owners of the dictionary; that is, to find all the objects whose Resources property refers to the dictionary (either directly, or
indirectly via the ResourceDictionary.MergedDictionaries property). Three new static methods implemented on the
System.Windows.Diagnostics.ResourceDictionaryDiagnostics class, one for each of the base types that has a Resources property, support this step:

public static IEnumerable<FrameworkElement> GetFrameworkElementOwners(ResourceDictionary dictionary);

public static IEnumerable<FrameworkContentElement> GetFrameworkContentElementOwners(ResourceDictionary dictionary);

public static IEnumerable<Application> GetApplicationOwners(ResourceDictionary dictionary);

These methods return an empty enumerable unless VisualDiagnostics is enabled and the ENABLE_XAML_DIAGNOSTICS_SOURCE_INFO environment variable is
set.

Finding StaticResource references

A diagnostic assistant can now receive a notification whenever a StaticResource reference is resolved. (The feature is for use by diagnostic assistants, not
by production applications.) A diagnostic assistant such as Visual Studio’s “Edit-and-Continue” facility may want to update all uses of a resource when
its value in a ResourceDictionary changes. WPF does this automatically for DynamicResource references, but it intentionally does not do so for
StaticResource references. Starting with the .NET Framework 4.7.2, the diagnostic assistant can use these notifications to locate those uses of the static
resource.

The notification is implemented by the new ResourceDictionaryDiagnostics.StaticResourceResolved event:

This event is raised whenever the runtime resolves a StaticResource reference. The StaticResourceResolvedEventArgs arguments describe the
resolution, and indicate the object and property that host the StaticResource reference and the ResourceDictionary and key used for the resolution:

The event is not raised (and its add accessor is ignored) unless VisualDiagnostics is enabled and the ENABLE_XAML_DIAGNOSTICS_SOURCE_INFO environment
variable is set.

HDPI-aware applications for Windows Forms, Windows Presentation Foundation (WPF), and Visual Studio Tools for Office (VSTO) can all be deployed
by using ClickOnce. If the following entry is found in the application manifest, deployment will succeed under .NET Framework 4.7.2:

For Windows Forms application, the previous workaround of setting DPI awareness in the application configuration file rather than the application
manifest is no longer necessary for ClickOnce deployment to succeed.

The .NET Framework 4.7.1 includes new features in the following areas:

Core
Common language runtime (CLR)
Networking
ASP.NET

In addition, a major focus in the .NET Framework 4.7.1 is improved accessibility, which allows an application to provide an appropriate experience for
users of Assistive Technology. For information on accessibility improvements in the .NET Framework 4.7.1, see What's new in accessibility in the .NET
Framework.

Support for .NET Standard 2.0

.NET Standard defines a set of APIs that must be available on each .NET implementation that supports that version of the standard. The .NET
Framework 4.7.1 fully supports .NET Standard 2.0 and adds about 200 APIs that are defined in .NET Standard 2.0 and are missing from the .NET
Framework 4.6.1, 4.6.2, and 4.7. (Note that these versions of the .NET Framework support .NET Standard 2.0 only if additional .NET Standard support

https://docs.microsoft.com/dotnet/api/system.windows.resourcedictionary.mergeddictionaries#System_Windows_ResourceDictionary_MergedDictionaries
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics.getframeworkelementowners
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics.getframeworkcontentelementowners
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics.getapplicationowners
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics.getxamlsourceinfo
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/uwp/api/windows.ui.xaml.resourcedictionary
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dynamicresource-markup-extension
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.resourcedictionarydiagnostics.staticresourceresolved
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.staticresourceresolvedeventargs
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/staticresource-markup-extension
https://docs.microsoft.com/uwp/api/windows.ui.xaml.resourcedictionary
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics
https://docs.microsoft.com/dotnet/api/system.windows.diagnostics.visualdiagnostics.getxamlsourceinfo
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/whats-new-in-accessibility
https://github.com/dotnet/standard/blob/master/netstandard/src/ApiCompatBaseline.net461.txt

Common language runtime (CLR)Common language runtime (CLR)

NetworkingNetworking

ASP.NETASP.NET

files are also deployed on the target system.) For more information, see "BCL - .NET Standard 2.0 Support" in the .NET Framework 4.7.1 Runtime and
Compiler Features blog post.

Support for configuration builders

Configuration builders allow developers to inject and build configuration settings for applications dynamically at run time. Custom configuration
builders can be used to modify existing data in a configuration section or to build a configuration section entirely from scratch. Without configuration
builders, .config files are static, and their settings are defined some time before an application is launched.

To create a custom configuration builder, you derive your builder from the abstract ConfigurationBuilder class and override its
ConfigurationBuilder.ProcessConfigurationSection and ConfigurationBuilder.ProcessRawXml. You also define your builders in your .config file. For
more information, see the "Configuration Builders" section in the .NET Framework 4.7.1 ASP.NET and Configuration Features blog post.

Run-time feature detection

The System.Runtime.CompilerServices.RuntimeFeature class provides a mechanism for determine whether a predefined feature is supported on a
given .NET implementation at compile time or run time. At compile time, a compiler can check whether a specified field exists to determine whether the
feature is supported; if so, it can emit code that takes advantage of that feature. At run time, an application can call the RuntimeFeature.IsSupported
method before emitting code at runtime. For more information, see Add helper method to describe features supported by the runtime.

Value tuple types are serializable

Starting with the .NET Framework 4.7.1, System.ValueTuple and its associated generic types are marked as Serializable, which allows binary
serialization. This should make migrating Tuple types, such as Tuple<T1,T2,T3> and Tuple<T1,T2,T3,T4>, to value tuple types easier. For more
information, see "Compiler -- ValueTuple is Serializable" in the .NET Framework 4.7.1 Runtime and Compiler Features blog post.

Support for read-only references

The .NET Framework 4.7.1 adds the System.Runtime.CompilerServices.IsReadOnlyAttribute. This attribute is used by language compilers to mark
members that have read-only ref return types or parameters. For more information, see "Compiler -- Support for ReadOnlyReferences" in the .NET
Framework 4.7.1 Runtime and Compiler Features blog post. For information on ref return values, see Ref return values and ref locals (C# Guide) and
Ref return values (Visual Basic).

Garbage collection performance improvements

Changes to garbage collection (GC) in the .NET Framework 4.7.1 improve overall performance, especially for Large Object Heap (LOH) allocations. In
the .NET Framework 4.7.1, separate locks are used for Small Object Heap (SOH) and LOH allocations, which allows LOH allocations to occur when
Background GC (BGC) is sweeping the SOH. As a result, applications that make a large number of LOH allocations should see a reduction in allocation
lock contention and improved performance. For more information, see the "Runtime -- GC Performance Improvements" section in the .NET Framework
4.7.1 Runtime and Compiler Features blog post.

SHA-2 support for Message.HashAlgorithm

In the .NET Framework 4.7 and earlier versions, the Message.HashAlgorithm property supported values of HashAlgorithm.Md5 and
HashAlgorithm.Sha only. Starting with the .NET Framework 4.7.1, HashAlgorithm.Sha256, HashAlgorithm.Sha384, and HashAlgorithm.Sha512 are
also supported. Whether this value is actually used depends on MSMQ, since the Message instance itself does no hashing but simply passes on values
to MSMQ. For more information, see the "SHA-2 support for Message.HashAlgorithm" section in the .NET Framework 4.7.1 ASP.NET and
Configuration features blog post.

Execution steps in ASP.NET applications

ASP.NET processes requests in a predefined pipeline that includes 23 events. ASP.NET executes each event handler as an execution step. In versions of
ASP.NET up to the .NET Framework 4.7, ASP.NET can't flow the execution context due to switching between native and managed threads. Instead,
ASP.NET selectively flows only the HttpContext. Starting with the .NET Framework 4.7.1, the
HttpApplication.OnExecuteRequestStep(Action<HttpContextBase,Action>) method also allows modules to restore ambient data. This feature is
targeted at libraries concerned with tracing, profiling, diagnostics, or transactions, for example, that care about the execution flow of the application. For
more information, see the "ASP.NET Execution Step Feature" in the .NET Framework 4.7.1 ASP.NET and Configuration Features blog post.

ASP.NET HttpCookie parsing

The .NET Framework 4.7.1 includes a new method, HttpCookie.TryParse, that provides a standardized way to create an HttpCookie object from a string
and accurately assign cookie values such as expiration date and path. For more information, see "ASP.NET HttpCookie parsing" in the .NET Framework
4.7.1 ASP.NET and Configuration Features blog post.

SHA-2 hash options for ASP.NET forms authentication credentials

In the .NET Framework 4.7 and earlier versions, ASP.NET allowed developers to store user credentials with hashed passwords in configuration files
using either MD5 or SHA1. Starting with the .NET Framework 4.7.1, ASP.NET also supports new secure SHA-2 hash options such as SHA256,
SHA384, and SHA512. SHA1 remains the default, and a non-default hash algorithm can be defined in the web configuration file. For example:

https://blogs.msdn.microsoft.com/dotnet/2017/09/28/net-framework-4-7-1-runtime-and-compiler-features
https://docs.microsoft.com/dotnet/api/system.configuration.configurationbuilder
https://docs.microsoft.com/dotnet/api/system.configuration.configurationbuilder.processconfigurationsection
https://docs.microsoft.com/dotnet/api/system.configuration.configurationbuilder.processrawxml
https://blogs.msdn.microsoft.com/dotnet/2017/09/13/net-framework-4-7-1-asp-net-and-configuration-features
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.runtimefeature
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.runtimefeature.issupported
https://github.com/dotnet/corefx/issues/17116
https://docs.microsoft.com/dotnet/api/system.valuetuple
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.tuple-3
https://docs.microsoft.com/dotnet/api/system.tuple-4
https://blogs.msdn.microsoft.com/dotnet/2017/09/28/net-framework-4-7-1-runtime-and-compiler-features
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.isreadonlyattribute
https://blogs.msdn.microsoft.com/dotnet/2017/09/28/net-framework-4-7-1-runtime-and-compiler-features
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/ref-returns
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/ref-return-values
https://blogs.msdn.microsoft.com/dotnet/2017/09/28/net-framework-4-7-1-runtime-and-compiler-features/
https://docs.microsoft.com/dotnet/api/system.messaging.message.hashalgorithm
https://docs.microsoft.com/dotnet/api/system.messaging.hashalgorithm#System_Messaging_HashAlgorithm_Md5
https://docs.microsoft.com/dotnet/api/system.messaging.hashalgorithm#System_Messaging_HashAlgorithm_Sha
https://docs.microsoft.com/dotnet/api/system.messaging.hashalgorithm#System_Messaging_HashAlgorithm_Sha256
https://docs.microsoft.com/dotnet/api/system.messaging.hashalgorithm#System_Messaging_HashAlgorithm_Sha384
https://docs.microsoft.com/dotnet/api/system.messaging.hashalgorithm#System_Messaging_HashAlgorithm_Sha512
https://docs.microsoft.com/dotnet/api/system.messaging.message
https://blogs.msdn.microsoft.com/dotnet/2017/09/13/net-framework-4-7-1-asp-net-and-configuration-features/
https://docs.microsoft.com/dotnet/api/system.web.httpcontext
https://docs.microsoft.com/dotnet/api/system.web.httpapplication.onexecuterequeststep#System_Web_HttpApplication_OnExecuteRequestStep_System_Action_System_Web_HttpContextBase_System_Action__
https://blogs.msdn.microsoft.com/dotnet/2017/09/13/net-framework-4-7-1-asp-net-and-configuration-features
https://docs.microsoft.com/dotnet/api/system.web.httpcookie.tryparse
https://docs.microsoft.com/dotnet/api/system.web.httpcookie
https://blogs.msdn.microsoft.com/dotnet/2017/09/13/net-framework-4-7-1-asp-net-and-configuration-features

<system.web>
 <authentication mode="Forms">
 <forms loginUrl="~/login.aspx">
 <credentials passwordFormat="SHA512">
 <user name="jdoe"
password="6D003E98EA1C7F04ABF8FCB375388907B7F3EE06F278DB966BE960E7CBBD103DF30CA6D61F7E7FD981B2E4E3A64D43C836A4BEDCA165C33B163E6BCDC538A664" />
 </credentials>
 </forms>
 </authentication>
</system.web>

What's new in the .NET Framework 4.7

CoreCore

NetworkingNetworking

ASP.NETASP.NET

Windows Communication Foundation (WCF)Windows Communication Foundation (WCF)

The .NET Framework 4.7 includes new features in the following areas:

Core
Networking
ASP.NET
Windows Communication Foundation (WCF)
Windows Forms
Windows Presentation Foundation (WPF)

For a list of new APIs added to the .NET Framework 4.7, see .NET Framework 4.7 API Changes on GitHub. For a list of feature improvements and bug
fixes in the .NET Framework 4.7, see .NET Framework 4.7 List of Changes on GitHub. For additional information, see Announcing the .NET Framework
4.7 in the .NET blog.

The .NET Framework 4.7 improves serialization by the DataContractJsonSerializer:

Enhanced functionality with Elliptic Curve Cryptography (ECC)*

In the .NET Framework 4.7, ImportParameters(ECParameters) methods were added to the ECDsa and ECDiffieHellman classes to allow for an object to
represent an already-established key. An ExportParameters(Boolean) method was also added for exporting the key using explicit curve parameters.

The .NET Framework 4.7 also adds support for additional curves (including the Brainpool curve suite), and has added predefined definitions for ease-
of-creation through the new Create and Create factory methods.

You can see an example of .NET Framework 4.7 cryptography improvements on GitHub.

Better support for control characters by the DataContractJsonSerializer

In the .NET Framework 4.7, the DataContractJsonSerializer serializes control characters in conformity with the ECMAScript 6 standard. This behavior is
enabled by default for applications that target the .NET Framework 4.7, and is an opt-in feature for applications that are running under the .NET
Framework 4.7 but target a previous version of the .NET Framework. For more information, see Retargeting Changes in the .NET Framework 4.7.

The .NET Framework 4.7 adds the following network-related feature:

Default operating system support for TLS protocols*

The TLS stack, which is used by System.Net.Security.SslStream and up-stack components such as HTTP, FTP, and SMTP, allows developers to use the
default TLS protocols supported by the operating system. Developers need no longer hard-code a TLS version.

In the .NET Framework 4.7, ASP.NET includes the following new features:

Object Cache Extensibility

Starting with the .NET Framework 4.7, ASP.NET adds a new set of APIs that allow developers to replace the default ASP.NET implementations for in-
memory object caching and memory monitoring. Developers can now replace any of the following three components if the ASP.NET implementation is
not adequate:

Object Cache Store. By using the new cache providers configuration section, developers can plug in new implementations of an object cache for
an ASP.NET application by using the new ICacheStoreProvider interface.

Memory monitoring. The default memory monitor in ASP.NET notifies applications when they are running close to the configured private
bytes limit for the process, or when the machine is low on total available physical RAM. When these limits are near, notifications are fired. For
some applications, notifications are fired too close to the configured limits to allow for useful reactions. Developers can now write their own
memory monitors to replace the default by using the ApplicationMonitors.MemoryMonitor property.

Memory Limit Reactions. By default, ASP.NET attempts to trim the object cache and periodically call GC.Collect when the private byte process
limit is near. For some applications, the frequency of calls to GC.Collect or the amount of cache that is trimmed are inefficient. Developers can
now replace or supplement the default behavior by subscribing IObserver implementations to the application's memory monitor.

Windows Communication Foundation (WCF) adds the following features and changes:

https://github.com/Microsoft/dotnet/blob/master/releases/net47/dotnet47-api-changes.md
http://github.com/Microsoft/dotnet/blob/master/releases/net47/dotnet47-changes.md
https://blogs.msdn.microsoft.com/dotnet/2017/04/05/announcing-the-net-framework-4-7/
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.json.datacontractjsonserializer
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdsa.create
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman.create
https://gist.github.com/richlander/5a182899895a87a296c21ada97f7a54e
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.json.datacontractjsonserializer
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/retargeting-changes-in-the-net-framework-4-7
https://docs.microsoft.com/dotnet/api/system.net.security.sslstream
https://docs.microsoft.com/dotnet/api/system.web.hosting.applicationmonitors.memorymonitor
https://docs.microsoft.com/dotnet/api/system.gc.collect
https://docs.microsoft.com/dotnet/api/system.gc.collect

<runtime>
 <AppContextSwitchOverrides
value="Switch.System.ServiceModel.DisableUsingServicePointManagerSecurityProtocols=false;Switch.System.Net.DontEnableSchUseStrongCrypto=false" />
</runtime>

Windows FormsWindows Forms

Windows Presentation Foundation (WPF)Windows Presentation Foundation (WPF)

What's new in the .NET Framework 4.6.2

ASP.NETASP.NET

Ability to configure the default message security settings to TLS 1.1 or TLS 1.2

Starting with the .NET Framework 4.7, WCF allows you to configure TSL 1.1 or TLS 1.2 in addition to SSL 3.0 and TSL 1.0 as the default message
security protocol. This is an opt-in setting; to enable it, you must add the following entry to your application configuration file:

Improved reliability of WCF applications and WCF serialization

WCF includes a number of code changes that eliminate race conditions, thereby improving performance and the reliability of serialization options.
These include:

Better support for mixing asynchronous and synchronous code in calls to SocketConnection.BeginRead and SocketConnection.Read.
Improved reliability when aborting a connection with SharedConnectionListener and DuplexChannelBinder.
Improved reliability of serialization operations when calling the FormatterServices.GetSerializableMembers(Type) method.
Improved reliability when removing a waiter by calling the ChannelSynchronizer.RemoveWaiter method.

In the .NET Framework 4.7, Windows Forms improves support for high DPI monitors.

High DPI support

Starting with applications that target the .NET Framework 4.7, the .NET Framework features high DPI and dynamic DPI support for Windows Forms
applications. High DPI support improves the layout and appearance of forms and controls on high DPI monitors. Dynamic DPI changes the layout and
appearance of forms and controls when the user changes the DPI or display scale factor of a running application.

High DPI support is an opt-in feature that you configure by defining a <System.Windows.Forms.ConfigurationSection> section in your application
configuration file. For more information on adding high DPI support and dynamic DPI support to your Windows Forms application, see High DPI
Support in Windows Forms.

In the .NET Framework 4.7, WPF includes the following enhancements:

Support for a touch/stylus stack based on Windows WM_POINTER messages

You now have the option of using a touch/stylus stack based on WM_POINTER messages instead of the Windows Ink Services Platform (WISP). This is
an opt-in feature in the .NET Framework. For more information, see Retargeting Changes in the .NET Framework 4.7.

New implementation for WPF printing APIs

WPF's printing APIs in the System.Printing.PrintQueue class call the Windows Print Document Package API instead of the deprecated XPS Print API.
For the impact of this change on application compatibility, see Retargeting Changes in the .NET Framework 4.7.

The .NET Framework 4.6.2 includes new features in the following areas:

ASP.NET

Character categories

Cryptography

SqlClient

Windows Communication Foundation

Windows Presentation Foundation (WPF)

Windows Workflow Foundation (WF)

ClickOnce

Converting Windows Forms and WPF apps to UWP apps

Debugging improvements

For a list of new APIs added to the .NET Framework 4.6.2, see .NET Framework 4.6.2 API Changes on GitHub. For a list of feature improvements and
bug fixes in the .NET Framework 4.6.2, see .NET Framework 4.6.2 List of Changes on GitHub. For additional information, see Announcing .NET
Framework 4.6.2 in the .NET blog.

In the .NET Framework 4.6.2, ASP.NET includes the following enhancements:

Improved support for localized error messages in data annotation validators

https://docs.microsoft.com/dotnet/api/system.runtime.serialization.formatterservices.getserializablemembers#System_Runtime_Serialization_FormatterServices_GetSerializableMembers_System_Type_
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/winforms/index
https://docs.microsoft.com/en-us/dotnet/framework/winforms/high-dpi-support-in-windows-forms
https://msdn.microsoft.com/library/windows/desktop/hh454903.aspx
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/retargeting-changes-in-the-net-framework-4-7
https://docs.microsoft.com/dotnet/api/system.printing.printqueue
https://msdn.microsoft.com/library/windows/desktop/hh448418(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ff686814(v=vs.85).aspx
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/retargeting-changes-in-the-net-framework-4-7
https://github.com/Microsoft/dotnet/blob/master/releases/net462/dotnet462-api-changes.md
http://go.microsoft.com/fwlink/?LinkId=708778
https://blogs.msdn.microsoft.com/dotnet/2016/08/02/announcing-net-framework-4-6-2/

public class RatingInfo
{
 [Required(ErrorMessage = "The rating must be between 1 and 10.")]
 [Display(Name = "Your Rating")]
 public int Rating { get; set; }
}

Public Class RatingInfo
 <Required(ErrorMessage = "The rating must be between 1 and 10.")>
 <Display(Name = "Your Rating")>
 Public Property Rating As Integer = 1
End Class

NAME VALUE

The rating must be between 1 and 10. La note doit être comprise entre 1 et 10.

public interface ISessionStateModule : IHttpModule {
 void ReleaseSessionState(HttpContext context);
 Task ReleaseSessionStateAsync(HttpContext context);
}

Data annotation validators enable you to perform validation by adding one or more attributes to a class property. The attribute's
ValidationAttribute.ErrorMessage element defines the text of the error message if validation fails. Starting with the .NET Framework 4.6.2, ASP.NET
makes it easy to localize error messages. Error messages will be localized if:

1. The ValidationAttribute.ErrorMessage is provided in the validation attribute.

2. The resource file is stored in the App_LocalResources folder.

3. The name of the localized resources file has the form DataAnnotation.Localization.{ name }.resx , where name is a culture name in the format
languageCode - country/regionCode or languageCode.

4. The key name of the resource is the string assigned to the ValidationAttribute.ErrorMessage attribute, and its value is the localized error
message.

For example, the following data annotation attribute defines the default culture's error message for an invalid rating.

You can then create a resource file, DataAnnotation.Localization.fr.resx, whose key is the error message string and whose value is the localized error
message. The file must be found in the App.LocalResources folder. For example, the following is the key and its value in a localized French (fr) language
error message:

In addition, data annotation localization is extensible. Developers can plug in their own string localizer provider by implementing the
IStringLocalizerProvider interface to store localization string somewhere other than in a resource file.

Async support with session-state store providers

ASP.NET now allows task-returning methods to be used with session-state store providers, thereby allowing ASP.NET apps to get the scalability benefits
of async. To supports asynchronous operations with session state store providers, ASP.NET includes a new interface,
System.Web.SessionState.ISessionStateModule, which inherits from IHttpModule and allows developers to implement their own session-state module
and async session store providers. The interface is defined as follows:

In addition, the SessionStateUtility class includes two new methods, IsSessionStateReadOnly and IsSessionStateRequired, that can be used to support
asynchronous operations.

Async support for output-cache providers

Starting with the .NET Framework 4.6.2, task-returning methods can be used with output-cache providers to provide the scalability benefits of async.
Providers that implement these methods reduce thread-blocking on a web server and improve the scalability of an ASP.NET service.

The following APIs have been added to support asynchronous output-cache providers:

The System.Web.Caching.OutputCacheProviderAsync class, which inherits from System.Web.Caching.OutputCacheProvider and allows
developers to implement an asynchronous output-cache provider.

The OutputCacheUtility class, which provides helper methods for configuring the output cache.

18 new methods in the System.Web.HttpCachePolicy class. These include GetCacheability, GetCacheExtensions, GetETag,
GetETagFromFileDependencies, GetMaxAge, GetMaxAge, GetNoStore, GetNoTransforms, GetOmitVaryStar, GetProxyMaxAge, GetRevalidation,
GetUtcLastModified, GetVaryByCustom, HasSlidingExpiration, and IsValidUntilExpires.

2 new methods in the System.Web.HttpCacheVaryByContentEncodings class: GetContentEncodings and SetContentEncodings.

2 new methods in the System.Web.HttpCacheVaryByHeaders class: GetHeaders and SetHeaders.

2 new methods in the System.Web.HttpCacheVaryByParams class: GetParams and SetParams.

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.validationattribute.errormessage
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.validationattribute.errormessage
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations.validationattribute.errormessage
https://docs.microsoft.com/dotnet/api/system.web.globalization.istringlocalizerprovider
https://docs.microsoft.com/dotnet/api/system.web.sessionstate.isessionstatemodule
https://docs.microsoft.com/dotnet/api/system.web.ihttpmodule
https://docs.microsoft.com/dotnet/api/system.web.sessionstate.sessionstateutility
https://docs.microsoft.com/dotnet/api/system.web.sessionstate.sessionstateutility.issessionstatereadonly
https://docs.microsoft.com/dotnet/api/system.web.sessionstate.sessionstateutility.issessionstaterequired
https://docs.microsoft.com/dotnet/api/system.web.caching.outputcacheproviderasync
https://docs.microsoft.com/dotnet/api/system.web.caching.outputcacheprovider
https://docs.microsoft.com/dotnet/api/system.web.caching.outputcacheutility
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getcacheability
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getcacheextensions
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getetag
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getetagfromfiledependencies
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getmaxage
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getmaxage
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getnostore
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getnotransforms
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getomitvarystar
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getproxymaxage
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getrevalidation
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getutclastmodified
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.getvarybycustom
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.hasslidingexpiration
https://docs.microsoft.com/dotnet/api/system.web.httpcachepolicy.isvaliduntilexpires
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybycontentencodings
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybycontentencodings.getcontentencodings
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybycontentencodings.setcontentencodings
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyheaders
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyheaders.getheaders
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyheaders.setheaders
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyparams
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyparams.getparams
https://docs.microsoft.com/dotnet/api/system.web.httpcachevarybyparams.setparams

Character categoriesCharacter categories

CryptographyCryptography

public static byte[] SignDataDsaSha384(byte[] data, X509Certificate2 cert)
{
 using (DSA dsa = cert.GetDSAPrivateKey())
 {
 return dsa.SignData(data, HashAlgorithmName.SHA384);
 }
}

Public Shared Function SignDataDsaSha384(data As Byte(), cert As X509Certificate2) As Byte()
 Using DSA As DSA = cert.GetDSAPrivateKey()
 Return DSA.SignData(data, HashAlgorithmName.SHA384)
 End Using
End Function

public static bool VerifyDataDsaSha384(byte[] data, byte[] signature, X509Certificate2 cert)
{
 using (DSA dsa = cert.GetDSAPublicKey())
 {
 return dsa.VerifyData(data, signature, HashAlgorithmName.SHA384);
 }
}

 Public Shared Function VerifyDataDsaSha384(data As Byte(), signature As Byte(), cert As X509Certificate2) As Boolean
 Using dsa As DSA = cert.GetDSAPublicKey()
 Return dsa.VerifyData(data, signature, HashAlgorithmName.SHA384)
 End Using
End Function

ECDIFFIEHELLMAN METHOD DESCRIPTION

In the System.Web.Caching.AggregateCacheDependency class, the GetFileDependencies method.

In the CacheDependency, the GetFileDependencies method.

Characters in the .NET Framework 4.6.2 are classified based on the Unicode Standard, Version 8.0.0. In .NET Framework 4.6 and .NET Framework 4.6.1,
characters were classified based on Unicode 6.3 character categories.

Support for Unicode 8.0 is limited to the classification of characters by the CharUnicodeInfo class and to types and methods that rely on it. These
include the StringInfo class, the overloaded Char.GetUnicodeCategory method, and the character classes recognized by the .NET Framework regular
expression engine. Character and string comparison and sorting is unaffected by this change and continues to rely on the underlying operating system
or, on Windows 7 systems, on character data provided by the .NET Framework.

For changes in character categories from Unicode 6.0 to Unicode 7.0, see The Unicode Standard, Version 7.0.0 at The Unicode Consortium website. For
changes from Unicode 7.0 to Unicode 8.0, see The Unicode Standard, Version 8.0.0 at The Unicode Consortium website.

Support for X509 certificates containing FIPS 186-3 DSA

The .NET Framework 4.6.2 adds support for DSA (Digital Signature Algorithm) X509 certificates whose keys exceed the FIPS 186-2 1024-bit limit.

In addition to supporting the larger key sizes of FIPS 186-3, the .NET Framework 4.6.2 allows computing signatures with the SHA-2 family of hash
algorithms (SHA256, SHA384, and SHA512). FIPS 186-3 support is provided by the new System.Security.Cryptography.DSACng class.

In keeping with recent changes to the RSA class in the .NET Framework 4.6 and the ECDsa class in the .NET Framework 4.6.1, the DSA abstract base
class in .NET Framework 4.6.2 has additional methods to allow callers to use this functionality without casting. You can call the
DSACertificateExtensions.GetDSAPrivateKey extension method to sign data, as the following example shows.

And you can call the DSACertificateExtensions.GetDSAPublicKey extension method to verify signed data, as the following example shows.

Increased clarity for inputs to ECDiffieHellman key derivation routines

The .NET Framework 3.5 added support for Ellipic Curve Diffie-Hellman Key Agreement with three different Key Derivation Function (KDF) routines.
The inputs to the routines, and the routines themselves, were configured via properties on the ECDiffieHellmanCng object. But since not every routine
read every input property, there was ample room for confusion on the past of the developer.

To address this in the .NET Framework 4.6.2, the following three methods have been added to the ECDiffieHellman base class to more clearly represent
these KDF routines and their inputs:

https://docs.microsoft.com/dotnet/api/system.web.caching.aggregatecachedependency
https://docs.microsoft.com/dotnet/api/system.web.caching.aggregatecachedependency.getfiledependencies
https://docs.microsoft.com/dotnet/api/system.web.caching.cachedependency
https://docs.microsoft.com/dotnet/api/system.web.caching.cachedependency.getfiledependencies
http://www.unicode.org/versions/Unicode8.0.0/
https://docs.microsoft.com/dotnet/api/system.globalization.charunicodeinfo
https://docs.microsoft.com/dotnet/api/system.globalization.stringinfo
https://docs.microsoft.com/dotnet/api/system.char.getunicodecategory
https://docs.microsoft.com/en-us/dotnet/standard/base-types/character-classes-in-regular-expressions
http://www.unicode.org/versions/Unicode7.0.0/
http://www.unicode.org/versions/Unicode8.0.0/
https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsacng
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.dsa
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.dsacertificateextensions.getdsaprivatekey
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.dsacertificateextensions.getdsapublickey
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellmancng
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman

DeriveKeyFromHash(ECDiffieHellmanPublicKey, HashAlgorithmName, Byte[], Byte[]) Derives key material using the formula

HASH(secretPrepend || x || secretAppend)

HASH(secretPrepend OrElse x OrElse secretAppend)

where x is the computed result of the EC Diffie-Hellman algorithm.

DeriveKeyFromHmac(ECDiffieHellmanPublicKey, HashAlgorithmName, Byte[], Byte[],
Byte[])

Derives key material using the formula

HMAC(hmacKey, secretPrepend || x || secretAppend)

HMAC(hmacKey, secretPrepend OrElse x OrElse secretAppend)

where x is the computed result of the EC Diffie-Hellman algorithm.

DeriveKeyTls(ECDiffieHellmanPublicKey, Byte[], Byte[]) Derives key material using the TLS pseudo-random function (PRF) derivation
algorithm.

ECDIFFIEHELLMAN METHOD DESCRIPTION

public static byte[] EncryptDataWithPersistedKey(byte[] data, byte[] iv)
{
 using (Aes aes = new AesCng("AesDemoKey", CngProvider.MicrosoftSoftwareKeyStorageProvider))
 {
 aes.IV = iv;

 // Using the zero-argument overload is required to make use of the persisted key
 using (ICryptoTransform encryptor = aes.CreateEncryptor())
 {
 if (!encryptor.CanTransformMultipleBlocks)
 {
 throw new InvalidOperationException("This is a sample, this case wasn’t handled...");
 }

 return encryptor.TransformFinalBlock(data, 0, data.Length);
 }
 }
}

Public Shared Function EncryptDataWithPersistedKey(data As Byte(), iv As Byte()) As Byte()
 Using Aes As Aes = New AesCng("AesDemoKey", CngProvider.MicrosoftSoftwareKeyStorageProvider)
 Aes.IV = iv

 ' Using the zero-argument overload Is required to make use of the persisted key
 Using encryptor As ICryptoTransform = Aes.CreateEncryptor()
 If Not encryptor.CanTransformMultipleBlocks Then
 Throw New InvalidOperationException("This is a sample, this case wasn’t handled...")
 End If
 Return encryptor.TransformFinalBlock(data, 0, data.Length)
 End Using
 End Using
End Function

SIGNEDXML FIELD CONSTANT

XmlDsigSHA256Url "http://www.w3.org/2001/04/xmlenc#sha256"

XmlDsigRSASHA256Url "http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"

XmlDsigSHA384Url "http://www.w3.org/2001/04/xmldsig-more#sha384"

Support for persisted-key symmetric encryption

The Windows cryptography library (CNG) added support for storing persisted symmetric keys and using hardware-stored symmetric keys, and the
.NET Framework 4.6.2 mades it possible for developers to make use of this feature. Since the notion of key names and key providers is implementation-
specific, using this feature requires utilizing the constructor of the concrete implementation types instead of the preferred factory approach (such as
calling Aes.Create).

Persisted-key symmetric encryption support exists for the AES (AesCng) and 3DES (TripleDESCng) algorithms. For example:

SignedXml support for SHA-2 hashing

The .NET Framework 4.6.2 adds support to the SignedXml class for RSA-SHA256, RSA-SHA384, and RSA-SHA512 PKCS#1 signature methods, and
SHA256, SHA384, and SHA512 reference digest algorithms.

The URI constants are all exposed on SignedXml:

https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman.derivekeyfromhash#System_Security_Cryptography_ECDiffieHellman_DeriveKeyFromHash_System_Security_Cryptography_ECDiffieHellmanPublicKey_System_Security_Cryptography_HashAlgorithmName_System_Byte___System_Byte___
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman.derivekeyfromhmac#System_Security_Cryptography_ECDiffieHellman_DeriveKeyFromHmac_System_Security_Cryptography_ECDiffieHellmanPublicKey_System_Security_Cryptography_HashAlgorithmName_System_Byte___System_Byte___System_Byte___
https://docs.microsoft.com/dotnet/api/system.security.cryptography.ecdiffiehellman.derivekeytls#System_Security_Cryptography_ECDiffieHellman_DeriveKeyTls_System_Security_Cryptography_ECDiffieHellmanPublicKey_System_Byte___System_Byte___
https://docs.microsoft.com/dotnet/api/system.security.cryptography.aescng
https://docs.microsoft.com/dotnet/api/system.security.cryptography.tripledescng
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigsha256url
http://www.w3.org/2001/04/xmlenc#sha256
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigrsasha256url
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigsha384url
http://www.w3.org/2001/04/xmldsig-more#sha384

XmlDsigRSASHA384Url "http://www.w3.org/2001/04/xmldsig-more#rsa-sha384"

XmlDsigSHA512Url "http://www.w3.org/2001/04/xmlenc#sha512"

XmlDsigRSASHA512Url "http://www.w3.org/2001/04/xmldsig-more#rsa-sha512"

SIGNEDXML FIELD CONSTANT

SqlClientSqlClient

Windows Communication FoundationWindows Communication Foundation

<AppContextSwitchOverrides
 value="Switch.System.ServiceModel.DisableCngCertificates=false"
/>

private const string DisableCngCertificates = @"Switch.System.ServiceModel.DisableCngCertificates";
AppContext.SetSwitch(disableCngCertificates, false);

Const DisableCngCertificates As String = "Switch.System.ServiceModel.DisableCngCertificates"
AppContext.SetSwitch(disableCngCertificates, False)

Any programs that have registered a custom SignatureDescription handler into CryptoConfig to add support for these algorithms will continue to
function as they did in the past, but since there are now platform defaults, the CryptoConfig registration is no longer necessary.

.NET Framework Data Provider for SQL Server (System.Data.SqlClient) includes the following new features in the .NET Framework 4.6.2:

Connection pooling and timeouts with Azure SQL databases

When connection pooling is enabled and a timeout or other login error occurs, an exception is cached, and the cached exception is thrown on any
subsequent connection attempt for the next 5 seconds to 1 minute. For more details, see SQL Server Connection Pooling (ADO.NET).

This behavior is not desirable when connecting to Azure SQL Databases, since connection attempts can fail with transient errors that are typically
recovered quickly. To better optimize the connection retry experience, the connection pool blocking period behavior is removed when connections to
Azure SQL Databases fail.

The addition of the new PoolBlockingPeriod keyword lets you to select the blocking period best suited for your app. Values include:

Auto The connection pool blocking period for an application that connects to an Azure SQL Database is disabled, and the connection pool blocking
period for an application that connects to any other SQL Server instance is enabled. This is the default value. If the Server endpoint name ends with any
of the following, they are considered Azure SQL Databases:

.database.windows.net

.database.chinacloudapi.cn

.database.usgovcloudapi.net

.database.cloudapi.de

AlwaysBlock The connection pool blocking period is always enabled.

NeverBlock The connection pool blocking period is always disabled.

Enhancements for Always Encrypted

SQLClient introduces two enhancements for Always Encrypted:

To improve performance of parameterized queries against encrypted database columns, encryption metadata for query parameters is now
cached. With the SqlConnection.ColumnEncryptionQueryMetadataCacheEnabled property set to true (which is the default value), if the same
query is called multiple times, the client retrieves parameter metadata from the server only once.

Column encryption key entries in the key cache are now evicted after a configurable time interval, set using the
SqlConnection.ColumnEncryptionKeyCacheTtl property.

In the .NET Framework 4.6.2, Windows Communication Foundation has been enhanced in the following areas:

WCF transport security support for certificates stored using CNG

WCF transport security supports certificates stored using the Windows cryptography library (CNG). In the .NET Framework 4.6.2, this support is
limited to using certificates with a public key that has an exponent no more than 32 bits in length. When an application targets the .NET Framework
4.6.2, this feature is on by default.

For applications that target the .NET Framework 4.6.1 and earlier but are running on the .NET Framework 4.6.2, this feature can be enabled by adding
the following line to the <runtime> section of the app.config or web.config file.

This can also be done programmatically with code like the following:

https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigrsasha384url
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigsha512url
http://www.w3.org/2001/04/xmlenc#sha512
https://docs.microsoft.com/dotnet/api/system.security.cryptography.xml.signedxml.xmldsigrsasha512url
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
https://docs.microsoft.com/dotnet/api/system.security.cryptography.signaturedescription
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptoconfig
https://docs.microsoft.com/dotnet/api/system.security.cryptography.cryptoconfig
https://docs.microsoft.com/dotnet/api/system.data.sqlclient
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql-server-connection-pooling
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection.columnencryptionquerymetadatacacheenabled
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnection.columnencryptionkeycachettl
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/runtime-element

<runtime>
 <AppContextSwitchOverrides value="Switch.System.Runtime.Serialization.DoNotUseTimeZoneInfo=false" />
</runtime>

NOTENOTE

<configuration>
 <appSettings>
 <add key="wcf:useBestMatchNamedPipeUri" value="true" />
 </appSettings>
</configuration>

Windows Presentation Foundation (WPF)Windows Presentation Foundation (WPF)

Better support for multiple daylight saving time adjustment rules by the DataContractJsonSerializer class

Customers can use an application configuration setting to determine whether the DataContractJsonSerializer class supports multiple adjustment rules
for a single time zone. This is an opt-in feature. To enable it, add the following setting to your app.config file:

When this feature is enabled, a DataContractJsonSerializer object uses the TimeZoneInfo type instead of the TimeZone type to deserialize date and
time data. TimeZoneInfo supports multiple adjustment rules, which makes it possible to work with historic time zone data; TimeZone does not.

For more information on the TimeZoneInfo structure and time zone adjustments, see Time Zone Overview.

NetNamedPipeBinding best match

WCF has a new app setting that can be set on client applications to ensure they always connect to the service listening on the URI that best matches the
one that they request. With this app setting set to false (the default), it is possible for clients using NetNamedPipeBinding to attempt to connect to a
service listening on a URI that is a substring of the requested URI.

For example, a client tries to connect to a service listening at net.pipe://localhost/Service1 , but a different service on that machine running with
administrator privilege is listening at net.pipe://localhost . With this app setting set to false , the client would attempt to connect to the wrong
service. After setting the app setting to true , the client will always connect to the best matching service.

Clients using NetNamedPipeBinding find services based on the service's base address (if it exists) rather than the full endpoint address. To ensure this setting always
works the service should use a unique base address.

To enable this change, add the following app setting to your client application's App.config or Web.config file:

SSL 3.0 is not a default protocol

When using NetTcp with transport security and a credential type of certificate, SSL 3.0 is no longer a default protocol used for negotiating a secure
connection. In most cases, there should be no impact to existing apps, because TLS 1.0 is included in the protocol list for NetTcp. All existing clients
should be able to negotiate a connection using at least TLS 1.0. If Ssl3 is required, use one of the following configuration mechanisms to add it to the
list of negotiated protocols.

The SslStreamSecurityBindingElement.SslProtocols property

The TcpTransportSecurity.SslProtocols property

The <transport> section of the <netTcpBinding> section

The <sslStreamSecurity> section of the <customBinding> section

In the .NET Framework 4.6.2, Windows Presentation Foundation has been enhanced in the following areas:

Group sorting

An application that uses a CollectionView object to group data can now explicitly declare how to sort the groups. Explicit sorting addresses the problem
of non-intuitive ordering that occurs when an app dynamically adds or removes groups, or when it changes the value of item properties involved in
grouping. It can also improve the performance of the group creation process by moving comparisons of the grouping properties from the sort of the
full collection to the sort of the groups.

To support group sorting, the new GroupDescription.SortDescriptions and GroupDescription.CustomSort properties describe how to sort the
collection of groups produced by the GroupDescription object. This is analogous to the way the identically named ListCollectionView properties
describe how to sort the data items.

Two new static properties of the PropertyGroupDescription class, CompareNameAscending and CompareNameDescending, can be used for the most
common cases.

For example, the following XAML groups data by age, sort the age groups in ascending order, and group the items within each age group by last name.

https://docs.microsoft.com/dotnet/api/system.runtime.serialization.json.datacontractjsonserializer
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.json.datacontractjsonserializer
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezoneinfo
https://docs.microsoft.com/en-us/dotnet/standard/datetime/time-zone-overview
https://docs.microsoft.com/dotnet/api/system.servicemodel.netnamedpipebinding
https://docs.microsoft.com/dotnet/api/system.servicemodel.netnamedpipebinding
https://docs.microsoft.com/dotnet/api/system.servicemodel.channels.sslstreamsecuritybindingelement.sslprotocols
https://docs.microsoft.com/dotnet/api/system.servicemodel.tcptransportsecurity.sslprotocols
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf/transport-of-nettcpbinding
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf/nettcpbinding
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf/sslstreamsecurity
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/wcf/custombinding
https://docs.microsoft.com/dotnet/api/system.windows.data.collectionview
https://docs.microsoft.com/dotnet/api/system.componentmodel.groupdescription.sortdescriptions
https://docs.microsoft.com/dotnet/api/system.componentmodel.groupdescription.customsort
https://docs.microsoft.com/dotnet/api/system.componentmodel.groupdescription
https://docs.microsoft.com/dotnet/api/system.windows.data.listcollectionview
https://docs.microsoft.com/dotnet/api/system.windows.data.propertygroupdescription
https://docs.microsoft.com/dotnet/api/system.windows.data.propertygroupdescription.comparenameascending
https://docs.microsoft.com/dotnet/api/system.windows.data.propertygroupdescription.comparenamedescending

<GroupDescriptions>
 <PropertyGroupDescription
 PropertyName="Age"
 CustomSort=
 "{x:Static PropertyGroupDescription.CompareNamesAscending}"/>
 </PropertyGroupDescription>
</GroupDescriptions>

<SortDescriptions>
 <SortDescription PropertyName="LastName"/>
</SortDescriptions>

<runtime>
 <AppContextSwitchOverrides value="Switch.System.Windows.DoNotScaleForDpiChanges=false"/>
</runtime>

Windows Workflow Foundation (WF)Windows Workflow Foundation (WF)

<add key="microsoft:WorkflowRuntime:FIPSRequired" value="true" />

ClickOnceClickOnce

Soft keyboard support

Soft Keyboard support enables focus tracking in a WPF applications by automatically invoking and dismissing the new Soft Keyboard in Windows 10
when the touch input is received by a control that can take textual input.

In previous versions of the .NET Framework, WPF applications cannot opt into the focus tracking without disabling WPF pen/touch gesture support. As
a result, WPF applications must choose between full WPF touch support or rely on Windows mouse promotion.

Per-monitor DPI

To support the recent proliferation of high-DPI and hybrid-DPI environments for WPF apps, WPF in the .NET Framework 4.6.2 enables per-monitor
awareness. See the samples and developer guide on GitHub for more information about how to enable your WPF app to become per-monitor DPI
aware.

In previous versions of the .NET Framework, WPF apps are system-DPI aware. In other words, the application's UI is scaled by the OS as appropriate,
depending on the DPI of the monitor on which the app is rendered. ,

For apps running under the .NET Framework 4.6.2, you can disable per-monitor DPI changes in WPF apps by adding a configuration statement to the
<runtime> section of your application configuration file, as follows:

In the .NET Framework 4.6.2, Windows Workflow Foundation has been enhanced in the following area:

Support for C# expressions and IntelliSense in the Re-hosted WF Designer

Starting with the .NET Framework 4.5, WF supports C# expressions in both the Visual Studio Designer and in code workflows. The Re-hosted
Workflow Designer is a key feature of WF that allows for the Workflow Designer to be in an application outside Visual Studio (for example, in WPF).
Windows Workflow Foundation provides the ability to support C# expressions and IntelliSense in the Re-hosted Workflow Designer. For more
information, see the Windows Workflow Foundation blog.

Availability of IntelliSense when a customer rebuilds a workflow project from Visual Studio In versions of the .NET Framework prior to the .NET
Framework 4.6.2, WF Designer IntelliSense is broken when a customer rebuilds a workflow project from Visual Studio. While the project build is
successful, the workflow types are not found on the designer, and warnings from IntelliSense for the missing workflow types appear in the Error List
window. The .NET Framework 4.6.2 addresses this issue and makes IntelliSense available.

Workflow V1 applications with Workflow Tracking on now run under FIPS-mode

Machines with FIPS Compliance Mode enabled can now successfully run a workflow Version 1-style application with Workflow tracking on. To enable
this scenario, you must make the following change to your app.config file:

If this scenario is not enabled, running the application continues to generate an exception with the message, "This implementation is not part of the
Windows Platform FIPS validated cryptographic algorithms."

Workflow Improvements when using Dynamic Update with Visual Studio Workflow Designer

The Workflow Designer, FlowChart Activity Designer, and other Workflow Activity Designers now successfully load and display workflows that have
been saved after calling the DynamicUpdateServices.PrepareForUpdate method. In versions of the .NET Framework before the .NET Framework 4.6.2,
loading a XAML file in Visual Studio for a workflow that has been saved after calling DynamicUpdateServices.PrepareForUpdate can result in the
following issues:

The Workflow Designer can't load the XAML file correctly (when the ViewStateData.Id is at the end of the line).

Flowchart Activity Designer or other Workflow Activity Designers may display all objects in their default locations as opposed to attached
property values.

ClickOnce has been updated to support TLS 1.1 and TLS 1.2 in addition to the 1.0 protocol, which it already supports. ClickOnce automatically detects
which protocol is required; no extra steps within the ClickOnce application are required to enable TLS 1.1 and 1.2 support.

https://github.com/Microsoft/WPF-Samples/tree/master/PerMonitorDPI
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/runtime-element
http://go.microsoft.com/fwlink/?LinkID=809042&clcid=0x409
https://docs.microsoft.com/dotnet/api/system.activities.dynamicupdate.dynamicupdateservices.prepareforupdate
https://docs.microsoft.com/dotnet/api/system.activities.dynamicupdate.dynamicupdateservices.prepareforupdate
https://docs.microsoft.com/dotnet/api/system.activities.presentation.viewstate.viewstatedata.id

Converting Windows Forms and WPF apps to Converting Windows Forms and WPF apps to UWP appsUWP apps

Debugging improvementsDebugging improvements

What's new in the .NET Framework 4.6.1

Cryptography: Support for X509 certificates containing ECDSACryptography: Support for X509 certificates containing ECDSA

using System;
using System.Security.Cryptography;
using System.Security.Cryptography.X509Certificates;

public class Net461Code
{
 public static byte[] SignECDsaSha512(byte[] data, X509Certificate2 cert)
 {
 using (ECDsa privateKey = cert.GetECDsaPrivateKey())
 {
 return privateKey.SignData(data, HashAlgorithmName.SHA512);
 }
 }

 public static byte[] SignECDsaSha512(byte[] data, ECDsa privateKey)
 {
 return privateKey.SignData(data, HashAlgorithmName.SHA512);
 }
}

Windows now offers capabilities to bring existing Windows desktop apps, including WPF and Windows Forms apps, to the Universal Windows
Platform (UWP). This technology acts as a bridge by enabling you to gradually migrate your existing code base to UWP, thereby bringing your app to all
Windows 10 devices.

Converted desktop apps gain an app identity similar to the app identity of UWP apps, which makes UWP APIs accessible to enable features such as
Live Tiles and notifications. The app continues to behave as before and runs as a full trust app. Once the app is converted, an app container process can
be added to the existing full trust process to add an adaptive user interface. When all functionality is moved to the app container process, the full trust
process can be removed and the new UWP app can be made available to all Windows 10 devices.

The unmanaged debugging API has been enhanced in the .NET Framework 4.6.2 to perform additional analysis when a NullReferenceException is
thrown so that it is possible to determine which variable in a single line of source code is null . To support this scenario, the following APIs have been
added to the unmanaged debugging API.

The ICorDebugCode4, ICorDebugVariableHome, and ICorDebugVariableHomeEnum interfaces, which expose the native homes of managed
variables. This enables debuggers to do some code flow analysis when a NullReferenceException occurs and to work backwards to determine the
managed variable that corresponds to the native location that was null .

The ICorDebugType2::GetTypeID method provides a mapping for ICorDebugType to COR_TYPEID, which allows the debugger to obtain a
COR_TYPEID without an instance of the ICorDebugType. Existing APIs on COR_TYPEID can then be used to determine the class layout of the
type.

The .NET Framework 4.6.1 includes new features in the following areas:

Cryptography

ADO.NET

Windows Presentation Foundation (WPF)

Windows Workflow Foundation

Profiling

NGen

For more information on the .NET Framework 4.6.1, see the following topics:

The .NET Framework 4.6.1 list of changes

Application Compatibility in 4.6.1

The .NET Framework API diff (on GitHub)

The .NET Framework 4.6 added RSACng support for X509 certificates. The .NET Framework 4.6.1 adds support for ECDSA (Elliptic Curve Digital
Signature Algorithm) X509 certificates.

ECDSA offers better performance and is a more secure cryptography algorithm than RSA, providing an excellent choice where Transport Layer
Security (TLS) performance and scalability is a concern. The .NET Framework implementation wraps calls into existing Windows functionality.

The following example code shows how easy it is to generate a signature for a byte stream by using the new support for ECDSA X509 certificates
included in the .NET Framework 4.6.1.

https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugcode4-interface
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugvariablehome-interface
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugvariablehomeenum-interface
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugtype2-gettypeid-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/cor-typeid-structure
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/cor-typeid-structure
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/cor-typeid-structure
http://go.microsoft.com/fwlink/?LinkId=622964
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/application-compatibility-in-the-net-framework-4-6-1
http://go.microsoft.com/fwlink/?LinkId=622989

Imports System
Imports System.Security.Cryptography
Imports System.Security.Cryptography.X509Certificates

Public Class Net461Code
 Public Shared Function SignECDsaSha512(data As Byte(), cert As X509Certificate2) As Byte()
 Using privateKey As ECDsa = cert.GetECDsaPrivateKey()
 Return privateKey.SignData(data, HashAlgorithmName.SHA512)
 End Using
 End Function

 Public Shared Function SignECDsaSha512(data As Byte, privateKey As ECDsa) As Byte()
 Return privateKey.SignData(data, HashAlgorithmName.SHA512)
 End Function
End Class

using System;
using System.Security.Cryptography;
using System.Security.Cryptography.X509Certificates;

public class Net46Code
{
 public static byte[] SignECDsaSha512(byte[] data, X509Certificate2 cert)
 {
 // This would require using cert.Handle and a series of p/invokes to get at the
 // underlying key, then passing that to a CngKey object, and passing that to
 // new ECDsa(CngKey). It's a lot of work.
 throw new Exception("That's a lot of work...");
 }

 public static byte[] SignECDsaSha512(byte[] data, ECDsa privateKey)
 {
 // This way works, but SignData probably better matches what you want.
 using (SHA512 hasher = SHA512.Create())
 {
 byte[] signature1 = privateKey.SignHash(hasher.ComputeHash(data));
 }

 // This might not be the ECDsa you got!
 ECDsaCng ecDsaCng = (ECDsaCng)privateKey;
 ecDsaCng.HashAlgorithm = CngAlgorithm.Sha512;
 return ecDsaCng.SignData(data);
 }
}

Imports System
Imports System.Security.Cryptography
Imports System.Security.Cryptography.X509Certificates

Public Class Net46Code
 Public Shared Function SignECDsaSha512(data As Byte(), cert As X509Certificate2) As Byte()
 ' This would require using cert.Handle and a series of p/invokes to get at the
 ' underlying key, then passing that to a CngKey object, and passing that to
 ' new ECDsa(CngKey). It's a lot of work.
 Throw New Exception("That's a lot of work...")
 End Function

 Public Shared Function SignECDsaSha512(data As Byte(), privateKey As ECDsa) As Byte()
 ' This way works, but SignData probably better matches what you want.
 Using hasher As SHA512 = SHA512.Create()
 Dim signature1 As Byte() = privateKey.SignHash(hasher.ComputeHash(data))
 End Using

 ' This might not be the ECDsa you got!
 Dim ecDsaCng As ECDsaCng = CType(privateKey, ECDsaCng)
 ecDsaCng.HashAlgorithm = CngAlgorithm.Sha512
 Return ecDsaCng.SignData(data)
 End Function
End Class

ADO.NETADO.NET

This offers a marked contrast to the code needed to generate a signature in the .NET Framework 4.6.

The following have been added to ADO.NET:

Always Encrypted support for hardware protected keys

ADO.NET now supports storing Always Encrypted column master keys natively in Hardware Security Modules (HSMs). With this support, customers
can leverage asymmetric keys stored in HSMs without having to write custom column master key store providers and registering them in applications.

Customers need to install the HSM vendor-provided CSP provider or CNG key store providers on the app servers or client computers in order to
access Always Encrypted data protected with column master keys stored in a HSM.

Windows Presentation Foundation (WPF)Windows Presentation Foundation (WPF)

NOTENOTE

Windows Workflow Foundation: TransactionsWindows Workflow Foundation: Transactions

Improved MultiSubnetFailover connection behavior for AlwaysOn

SqlClient now automatically provides faster connections to an AlwaysOn Availability Group (AG). It transparently detects whether your application is
connecting to an AlwaysOn availability group (AG) on a different subnet and quickly discovers the current active server and provides a connection to
the server. Prior to this release, an application had to set the connection string to include "MultisubnetFailover=true" to indicate that it was connecting
to an AlwaysOn Availability Group. Without setting the connection keyword to true , an application might experience a timeout while connecting to an
AlwaysOn Availability Group. With this release, an application does not need to set MultiSubnetFailover to true anymore. For more information about
SqlClient support for Always On Availability Groups, see SqlClient Support for High Availability, Disaster Recovery.

Windows Presentation Foundation includes a number of improvements and changes.

Improved performance

The delay in firing touch events has been fixed in the .NET Framework 4.6.1. In addition, typing in a RichTextBox control no longer ties up the render
thread during fast input.

Spell checking improvements

The spell checker in WPF has been updated on Windows 8.1 and later versions to leverage operating system support for spell-checking additional
languages. There is no change in functionality on Windows versions prior to Windows 8.1.

As in previous versions of the .NET Framework, the language for a TextBox control ora RichTextBox block is detected by looking for information in the
following order :

xml:lang , if it is present.

Current input language.

Current thread culture.

For additional information on language support in WPF, see the WPF blog post on .NET Framework 4.6.1 features.

Additional support for per-user custom dictionaries

In .NET Framework 4.6.1, WPF recognizes custom dictionaries that are registered globally. This capability is available in addition to the ability to register
them per-control.

In previous versions of WPF, custom dictionaries did not recognize Excluded Words and AutoCorrect lists. They are supported on Windows 8.1 and
Windows 10 through the use of files that can be placed under the %AppData%\Microsoft\Spelling\<language tag> directory. The following rules apply to
these files:

The files should have extensions of .dic (for added words), .exc (for excluded words), or .acl (for AutoCorrect).

The files should be UTF-16 LE plaintext that starts with the Byte Order Mark (BOM).

Each line should consist of a word (in the added and excluded word lists), or an autocorrect pair with the words separated by a vertical bar ("|") (in
the AutoCorrect word list).

These files are considered read-only and are not modified by the system.

These new file-formats are not directly supported by the WPF spell checking API’s, and the custom dictionaries supplied to WPF in applications should continue to use
.lex files.

Samples

There are a number of WPF Samples on MSDN. More than 200 of the most popular samples (based on their usage) will be moved into an Open
Source GitHub repository. Help us improve our samples by sending us a pull-request or opening a GitHub issue.

DirectX extensions

WPF includes a NuGet package that provides new implementations of D3DImage that make it easy for you to interoperate with DX10 and Dx11
content. The code for this package has been open sourced and is available on GitHub.

The Transaction.EnlistPromotableSinglePhase method can now use a distributed transaction manager other than MSDTC to promote the transaction.
You do this by specifying a GUID transaction promoter identifier to the new
Transaction.EnlistPromotableSinglePhase(IPromotableSinglePhaseNotification, Guid) overload . If this operation is successful, there are limitations
placed on the capabilities of the transaction. Once a non-MSDTC transaction promoter is enlisted, the following methods throw a
TransactionPromotionException because these methods require promotion to MSDTC:

Transaction.EnlistDurable

TransactionInterop.GetDtcTransaction

TransactionInterop.GetExportCookie

https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.multisubnetfailover
https://docs.microsoft.com/dotnet/api/system.data.sqlclient.sqlconnectionstringbuilder.multisubnetfailover
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/sqlclient-support-for-high-availability-disaster-recovery
https://docs.microsoft.com/dotnet/api/system.windows.controls.richtextbox
https://docs.microsoft.com/dotnet/api/system.windows.controls.textbox
https://docs.microsoft.com/dotnet/api/system.windows.controls.richtextbox
http://go.microsoft.com/fwlink/?LinkID=691819
https://msdn.microsoft.com/library/ms771633.aspx
https://github.com/Microsoft/WPF-Samples
https://github.com/Microsoft/WPF-Samples/issues
http://go.microsoft.com/fwlink/?LinkID=691342
https://docs.microsoft.com/dotnet/api/system.windows.interop.d3dimage
https://github.com/Microsoft/WPFDXInterop
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistpromotablesinglephase
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistpromotablesinglephase#System_Transactions_Transaction_EnlistPromotableSinglePhase_System_Transactions_IPromotableSinglePhaseNotification_System_Guid_
https://docs.microsoft.com/dotnet/api/system.transactions.transactionpromotionexception
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistdurable
https://docs.microsoft.com/dotnet/api/system.transactions.transactioninterop.getdtctransaction
https://docs.microsoft.com/dotnet/api/system.transactions.transactioninterop.getexportcookie

ProfilingProfiling

Native Image Generator (NGEN) PDBsNative Image Generator (NGEN) PDBs

What's new in .NET 2015

TransactionInterop.GetTransmitterPropagationToken

Once a non-MSDTC transaction promoter is enlisted, it must be used for future durable enlistments by using protocols that it defines. The Guid of the
transaction promoter can be obtained by using the PromoterType property. When the transaction promotes, the transaction promoter provides a Byte
array that represents the promoted token. An application can obtain the promoted token for a non-MSDTC promoted transaction with the
GetPromotedToken method.

Users of the new Transaction.EnlistPromotableSinglePhase(IPromotableSinglePhaseNotification, Guid) overload must follow a specific call sequence in
order for the promotion operation to complete successfully. These rules are documented in the method's documentation.

The unmanaged profiling API has been enhanced follows:

Better support for accessing PDBs in the ICorProfilerInfo7 interface In ASP.Net 5, it is becoming much more common for assemblies to be compiled in-
memory by Roslyn. For developers making profiling tools, this means that PDBs that historically were serialized on disk may no longer be present.
Profiler tools often use PDBs to map code back to source lines for tasks such as code coverage or line-by-line performance analysis. The
ICorProfilerInfo7 interface now includes two new methods, ICorProfilerInfo7::GetInMemorySymbolsLength and
ICorProfilerInfo7::ReadInMemorySymbols, to provide these profiler tools with access to the in-memory PDB data, By using the new APIs, a profiler can
obtain the contents of an in-memory PDB as a byte array and then process it or serialize it to disk.

Better instrumentation with the ICorProfiler interface Profilers that are using the ICorProfiler API’s ReJit functionality for dynamic instrumentation
can now modify some metadata. Previously such tools could instrument IL at any time, but metadata could only be modified at module load time.
Because IL refers to metadata, this limited the kinds of instrumentation that could be done. We have lifted some of those limits by adding the
ICorProfilerInfo7::ApplyMetaData method to support a subset of metadata edits after the module loads, in particular by adding new AssemblyRef ,
TypeRef , TypeSpec , MemberRef , MemberSpec , and UserString records. This change makes a much broader range of on-the-fly instrumentation possible.

Cross-machine event tracing allows customers to profile a program on Machine A and look at the profiling data with source line mapping on Machine
B. Using previous versions of the .NET Framework, the user would copy all the modules and native images from the profiled machine to the analysis
machine that contains the IL PDB to create the source-to-native mapping. While this process may work well when the files are relatively small, such as
for phone applications, the files can be very large on desktop systems and require significant time to copy.

With Ngen PDBs, NGen can create a PDB that contains the IL-to-native mapping without a dependency on the IL PDB. In our cross-machine event
tracing scenario, all that is needed is to copy the native image PDB that is generated by Machine A to Machine B and to use Debug Interface Access
APIs to read the IL PDB's source-to-IL mapping and the native image PDB's IL-to-native mapping. Combining both mappings provides a source-to-
native mapping. Since the native image PDB is much smaller than all the modules and native images, the process of copying from Machine A to
Machine B is much faster.

.NET 2015 introduces the .NET Framework 4.6 and .NET Core. Some new features apply to both, and other features are specific to .NET Framework 4.6
or .NET Core.

ASP.NET 5

.NET 2015 includes ASP.NET 5, which is a lean .NET implementation for building modern cloud-based apps. ASP.NET 5 is modular so you can
include only those features that are needed in your application. It can be hosted on IIS or self-hosted in a custom process, and you can run apps
with different versions of the .NET Framework on the same server. It includes a new environment configuration system that is designed for cloud
deployment.

MVC, Web API, and Web Pages are unified into a single framework called MVC 6. You build ASP.NET 5 apps through the new tools in Visual
Studio 2015. Your existing applications will work on the new .NET Framework; however to build an app that uses MVC 6 or SignalR 3, you must
use the project system in Visual Studio 2015.

For information, see ASP.NET 5.

ASP.NET Updates

Task-based API for Asynchronous Response Flushing

ASP.NET now provides a simple task-based API for asynchronous response flushing, HttpResponse.FlushAsync, that allows responses to
be flushed asynchronously by using your language's async/await support.

Model binding supports task-returning methods

In the .NET Framework 4.5, ASP.NET added the Model Binding feature that enabled an extensible, code-focused approach to CRUD-based
data operations in Web Forms pages and user controls. The Model Binding system now supports Task-returning model binding methods.
This feature allows Web Forms developers to get the scalability benefits of async with the ease of the data-binding system when using
newer versions of ORMs, including the Entity Framework.

Async model binding is controlled by the aspnet:EnableAsyncModelBinding configuration setting.

https://docs.microsoft.com/dotnet/api/system.transactions.transactioninterop.gettransmitterpropagationtoken
https://docs.microsoft.com/dotnet/api/system.guid
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.promotertype
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.getpromotedtoken
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistpromotablesinglephase#System_Transactions_Transaction_EnlistPromotableSinglePhase_System_Transactions_IPromotableSinglePhaseNotification_System_Guid_
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo7-interface
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo7-interface
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo7-getinmemorysymbolslength-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo7-readinmemorysymbols
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo7-applymetadata-method
https://docs.microsoft.com/visualstudio/debugger/debug-interface-access/debug-interface-access-sdk-reference
http://go.microsoft.com/fwlink/?LinkId=518238
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.flushasync
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

<appSettings>
 <add key=" aspnet:EnableAsyncModelBinding" value="true|false" />
</appSettings>

NOTENOTE

<appSettings>
 <add key="aspnet:UseRandomizedStringHashAlgorithm" value="true|false" />
</appSettings>

On apps the target the .NET Framework 4.6, it defaults to true . On apps running on the .NET Framework 4.6 that target an earlier
version of the .NET Framework, it is false by default. It can be enabled by setting the configuration setting to true .

HTTP/2 Support (Windows 10)

HTTP/2 is a new version of the HTTP protocol that provides much better connection utilization (fewer round-trips between client and
server), resulting in lower latency web page loading for users. Web pages (as opposed to services) benefit the most from HTTP/2, since
the protocol optimizes for multiple artifacts being requested as part of a single experience. HTTP/2 support has been added to ASP.NET in
the .NET Framework 4.6. Because networking functionality exists at multiple layers, new features were required in Windows, in IIS, and in
ASP.NET to enable HTTP/2. You must be running on Windows 10 to use HTTP/2 with ASP.NET.

HTTP/2 is also supported and on by default for Windows 10 Universal Windows Platform (UWP) apps that use the
System.Net.Http.HttpClient API.

In order to provide a way to use the PUSH_PROMISE feature in ASP.NET applications, a new method with two overloads,
PushPromise(String) and PushPromise(String, String, NameValueCollection), has been added to the HttpResponse class.

While ASP.NET 5 supports HTTP/2, support for the PUSH PROMISE feature has not yet been added.

The browser and the web server (IIS on Windows) do all the work. You don't have to do any heavy-lifting for your users.

Most of the major browsers support HTTP/2, so it's likely that your users will benefit from HTTP/2 support if your server supports it.

Support for the Token Binding Protocol

Microsoft and Google have been collaborating on a new approach to authentication, called the Token Binding Protocol. The premise is that
authentication tokens (in your browser cache) can be stolen and used by criminals to access otherwise secure resources (e.g. your bank
account) without requiring your password or any other privileged knowledge. The new protocol aims to mitigate this problem.

The Token Binding Protocol will be implemented in Windows 10 as a browser feature. ASP.NET apps will participate in the protocol, so
that authentication tokens are validated to be legitimate. The client and the server implementations establish the end-to-end protection
specified by the protocol.

Randomized string hash algorithms

The .NET Framework 4.5 introduced a randomized string hash algorithm. However, it was not supported by ASP.NET because of some
ASP.NET features depended on a stable hash code. In .NET Framework 4.6, randomized string hash algorithms are now supported. To
enable this feature, use the aspnet:UseRandomizedStringHashAlgorithm config setting.

ADO.NET

ADO .NET now supports the Always Encrypted feature available in SQL Server 2016 Community Technology Preview 2 (CTP2). With Always
Encrypted, SQL Server can perform operations on encrypted data, and best of all the encryption key resides with the application inside the
customer’s trusted environment and not on the server. Always Encrypted secures customer data so DBAs do not have access to plain text data.
Encryption and decryption of data happens transparently at the driver level, minimizing changes that have to be made to existing applications.
For details, see Always Encrypted (Database Engine) and Always Encrypted (client development).

64-bit JIT Compiler for managed code

The .NET Framework 4.6 features a new version of the 64-bit JIT compiler (originally code-named RyuJIT). The new 64-bit compiler provides
significant performance improvements over the older 64-bit JIT compiler. The new 64-bit compiler is enabled for 64-bit processes running on
top of the .NET Framework 4.6. Your app will run in a 64-bit process if it is compiled as 64-bit or AnyCPU and is running on a 64-bit operating
system. While care has been taken to make the transition to the new compiler as transparent as possible, changes in behavior are possible. We
would like to hear directly about any issues encountered when using the new JIT compiler. Please contact us through Microsoft Connect if you
encounter an issue that may be related to the new 64-bit JIT compiler.

The new 64-bit JIT compiler also includes hardware SIMD acceleration features when coupled with SIMD-enabled types in the System.Numerics
namespace, which can yield good performance improvements.

Assembly loader improvements

The assembly loader now uses memory more efficiently by unloading IL assemblies after a corresponding NGEN image is loaded. This change
decreases virtual memory, which is particularly beneficial for large 32-bit apps (such as Visual Studio), and also saves physical memory.

Base class library changes

http://www.wikipedia.org/wiki/HTTP/2
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
http://http2.github.io/http2-spec/#PUSH_PROMISE
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.pushpromise#System_Web_HttpResponse_PushPromise_System_String_
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.pushpromise#System_Web_HttpResponse_PushPromise_System_String_System_String_System_Collections_Specialized_NameValueCollection_
https://docs.microsoft.com/dotnet/api/system.web.httpresponse
http://www.wikipedia.org/wiki/HTTP/2
https://github.com/TokenBinding/Internet-Drafts
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/userandomizedstringhashalgorithm-element
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-client-development
http://connect.microsoft.com/
https://docs.microsoft.com/dotnet/api/system.numerics

Many new APIs have been added around to .NET Framework 4.6 to enable key scenarios. These include the following changes and additions:

IReadOnlyCollection<T> implementations

Additional collections implement IReadOnlyCollection<T> such as Queue<T> and Stack<T>.

CultureInfo.CurrentCulture and CultureInfo.CurrentUICulture

The CultureInfo.CurrentCulture and CultureInfo.CurrentUICulture properties are now read-write rather than read-only. If you assign a
new CultureInfo object to these properties, the current thread culture defined by the Thread.CurrentThread.CurrentCulture property and
the current UI thread culture defined by the Thread.CurrentThread.CurrentUICulture properties also change.

Enhancements to garbage collection (GC)

The GC class now includes TryStartNoGCRegion and EndNoGCRegion methods that allow you to disallow garbage collection during the
execution of a critical path.

A new overload of the GC.Collect(Int32, GCCollectionMode, Boolean, Boolean) method allows you to control whether both the small
object heap and the large object heap are swept and compacted or swept only.

SIMD-enabled types

The System.Numerics namespace now includes a number of S IMD-enabled types, such as Matrix3x2, Matrix4x4, Plane, Quaternion,
Vector2, Vector3, and Vector4.

Because the new 64-bit JIT compiler also includes hardware SIMD acceleration features, there are especially significant performance
improvements when using the SIMD-enabled types with the new 64-bit JIT compiler.

Cryptography updates

The System.Security.Cryptography API is being updated to support the Windows CNG cryptography APIs. Previous versions of the .NET
Framework have relied entirely on an earlier version of the Windows Cryptography APIs as the basis for the
System.Security.Cryptography implementation. We have had requests to support the CNG API, since it supports modern cryptography
algorithms, which are important for certain categories of apps.

The .NET Framework 4.6 includes the following new enhancements to support the Windows CNG cryptography APIs:

RSACryptoServiceProvider rsa = (RSACryptoServiceProvider)cert.PrivateKey;
byte[] oaepEncrypted = rsa.Encrypt(data, true);
byte[] pkcs1Encrypted = rsa.Encrypt(data, false);

Dim rsa As RSACryptoServiceProvider = CType(cert.PrivateKey, RSACryptoServiceProvider)
Dim oaepEncrypted() As Byte = rsa.Encrypt(data, True)
Dim pkcs1Encrypted() As Byte = rsa.Encrypt(data, False)

RSA rsa = cert.GetRSAPrivateKey();
if (rsa == null)
 throw new InvalidOperationException("An RSA certificate was expected");

byte[] oaepEncrypted = rsa.Encrypt(data, RSAEncryptionPadding.OaepSHA1);
byte[] pkcs1Encrypted = rsa.Encrypt(data, RSAEncryptionPadding.Pkcs1);

Dim rsa As RSA = cert.GetRSAPrivateKey()
If rsa Is Nothing Then
 Throw New InvalidOperationException("An RSA certificate was expected")
 End If

Dim oaepEncrypted() As Byte = rsa.Encrypt(data, RSAEncryptionPadding.OaepSHA1)
Dim pkcs1Encrypted() As Byte = rsa.Encrypt(data, RSAEncryptionPadding.Pkcs1)

A set of extension methods for X509 Certificates,
System.Security.Cryptography.X509Certificates.RSACertificateExtensions.GetRSAPublicKey(System.Security.Cryptography.X509Certificates.X509Certificate2)

and
System.Security.Cryptography.X509Certificates.RSACertificateExtensions.GetRSAPrivateKey(System.Security.Cryptography.X509Certificates.X509Certificate2)

, that return a CNG-based implementation rather than a CAPI-based implementation when possible. (Some smartcards, etc., still
require CAPI, and the APIs handle the fallback).

The System.Security.Cryptography.RSACng class, which provides a CNG implementation of the RSA algorithm.

Enhancements to the RSA API so that common actions no longer require casting. For example, encrypting data using an
X509Certificate2 object requires code like the following in previous versions of the .NET Framework.

Code that uses the new cryptography APIs in the .NET Framework 4.6 can be rewritten as follows to avoid the cast.

Support for converting dates and times to or from Unix time

https://docs.microsoft.com/dotnet/api/system.collections.generic.ireadonlycollection-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.queue-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.stack-1
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.currentculture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.currentuiculture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.gc
https://docs.microsoft.com/dotnet/api/system.gc.trystartnogcregion
https://docs.microsoft.com/dotnet/api/system.gc.endnogcregion
https://docs.microsoft.com/dotnet/api/system.gc.collect#System_GC_Collect_System_Int32_System_GCCollectionMode_System_Boolean_System_Boolean_
https://docs.microsoft.com/dotnet/api/system.numerics
https://docs.microsoft.com/dotnet/api/system.numerics.matrix3x2
https://docs.microsoft.com/dotnet/api/system.numerics.matrix4x4
https://docs.microsoft.com/dotnet/api/system.numerics.plane
https://docs.microsoft.com/dotnet/api/system.numerics.quaternion
https://docs.microsoft.com/dotnet/api/system.numerics.vector2
https://docs.microsoft.com/dotnet/api/system.numerics.vector3
https://docs.microsoft.com/dotnet/api/system.numerics.vector4
https://docs.microsoft.com/dotnet/api/system.security.cryptography
https://msdn.microsoft.com/library/windows/desktop/aa376214.aspx
https://msdn.microsoft.com/library/windows/desktop/aa380255.aspx
https://docs.microsoft.com/dotnet/api/system.security.cryptography
https://msdn.microsoft.com/library/windows/desktop/bb204775.aspx#suite_b_support
https://docs.microsoft.com/dotnet/api/system.security.cryptography.rsacng
https://docs.microsoft.com/dotnet/api/system.security.cryptography.x509certificates.x509certificate2

AppContext.SetSwitch("Switch.AmazingLib.ThrowOnException", true);

if (!AppContext.TryGetSwitch("Switch.AmazingLib.ThrowOnException", out shouldThrow))
{
 // This is the case where the switch value was not set by the application.
 // The library can choose to get the value of shouldThrow by other means.
 // If no overrides nor default values are specified, the value should be 'false'.
 // A false value implies the latest behavior.
}

 // The library can use the value of shouldThrow to throw exceptions or not.
 if (shouldThrow)
 {
 // old code
 }
 else {
 // new code
 }
}

The following new methods have been added to the DateTimeOffset structure to support converting date and time values to or from Unix
time:

DateTimeOffset.FromUnixTimeSeconds

DateTimeOffset.FromUnixTimeMilliseconds

DateTimeOffset.ToUnixTimeSeconds

DateTimeOffset.ToUnixTimeMilliseconds

Compatibility switches

The new AppContext class adds a new compatibility feature that enables library writers to provide a uniform opt-out mechanism for new
functionality for their users. It establishes a loosely-coupled contract between components in order to communicate an opt-out request.
This capability is typically important when a change is made to existing functionality. Conversely, there is already an implicit opt-in for new
functionality.

With AppContext, libraries define and expose compatibility switches, while code that depends on them can set those switches to affect the
library behavior. By default, libraries provide the new functionality, and they only alter it (that is, they provide the previous functionality) if
the switch is set.

An application (or a library) can declare the value of a switch (which is always a Boolean value) that a dependent library defines. The
switch is always implicitly false . Setting the switch to true enables it. Explicitly setting the switch to false provides the new behavior.

The library must check if a consumer has declared the value of the switch and then appropriately act on it.

It's beneficial to use a consistent format for switches, since they are a formal contract exposed by a library. The following are two obvious
formats.

Switch.namespace.switchname

Switch.library.switchname

Changes to the task-based asynchronous pattern (TAP)

For apps that target the .NET Framework 4.6, Task and Task<TResult> objects inherit the culture and UI culture of the calling thread. The
behavior of apps that target previous versions of the .NET Framework, or that do not target a specific version of the .NET Framework, is
unaffected. For more information, see the "Culture and task-based asynchronous operations" section of the CultureInfo class topic.

The System.Threading.AsyncLocal<T> class allows you to represent ambient data that is local to a given asynchronous control flow, such
as an async method. It can be used to persist data across threads. You can also define a callback method that is notified whenever the
ambient data changes either because the AsyncLocal<T>.Value property was explicitly changed, or because the thread encountered a
context transition.

Three convenience methods, Task.CompletedTask, Task.FromCanceled, and Task.FromException, have been added to the task-based
asynchronous pattern (TAP) to return completed tasks in a particular state.

The NamedPipeClientStream class now supports asynchronous communication with its new ConnectAsync. method.

EventSource now supports writing to the Event log

You now can use the EventSource class to log administrative or operational messages to the event log, in addition to any existing ETW
sessions created on the machine. In the past, you had to use the Microsoft.Diagnostics.Tracing.EventSource NuGet package for this
functionality. This functionality is now built-into the .NET Framework 4.6.

Both the NuGet package and the .NET Framework 4.6 have been updated with the following features:

Dynamic events

https://docs.microsoft.com/dotnet/api/system.datetimeoffset
https://docs.microsoft.com/dotnet/api/system.datetimeoffset.fromunixtimeseconds
https://docs.microsoft.com/dotnet/api/system.datetimeoffset.fromunixtimemilliseconds
https://docs.microsoft.com/dotnet/api/system.datetimeoffset.tounixtimeseconds
https://docs.microsoft.com/dotnet/api/system.datetimeoffset.tounixtimemilliseconds
https://docs.microsoft.com/dotnet/api/system.appcontext
https://docs.microsoft.com/dotnet/api/system.appcontext
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.threading.asynclocal-1
https://docs.microsoft.com/dotnet/api/system.threading.asynclocal-1.value
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.completedtask
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.fromcanceled
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.fromexception
https://docs.microsoft.com/dotnet/api/system.io.pipes.namedpipeclientstream
https://docs.microsoft.com/dotnet/api/system.io.pipes.namedpipeclientstream.connectasync
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource

Allows events defined "on the fly" without creating event methods.

Rich payloads

Allows specially attributed classes and arrays as well as primitive types to be passed as a payload

Activity tracking

Causes Start and Stop events to tag events between them with an ID that represents all currently active activities.

To support these features, the overloaded Write method has been added to the EventSource class.

Windows Presentation Foundation (WPF)

<AppContextSwitchOverrides
value="Switch.MS.Internal.DoNotApplyLayoutRoundingToMarginsAndBorderThickness=false"
/>

<add key="EnableMultiMonitorDisplayClipping" value="true"/>

HDPI improvements

HDPI support in WPF is now better in the .NET Framework 4.6. Changes have been made to layout rounding to reduce instances of
clipping in controls with borders. By default, this feature is enabled only if your TargetFrameworkAttribute is set to .NET 4.6. Applications
that target earlier versions of the framework but are running on the .NET Framework 4.6 can opt in to the new behavior by adding the
following line to the <runtime> section of the app.config file:

WPF windows straddling multiple monitors with different DPI settings (Multi-DPI setup) are now completely rendered without blacked-
out regions. You can opt out of this behavior by adding the following line to the <appSettings> section of the app.config file to disable this
new behavior :

Support for automatically loading the right cursor based on DPI setting has been added to System.Windows.Input.Cursor.

Touch is better

Customer reports on Connect that touch produces unpredictable behavior have been addressed in the .NET Framework 4.6. The double
tap threshold for Windows Store applications and WPF applications is now the same in Windows 8.1 and above.

Transparent child window support

WPF in the .NET Framework 4.6 supports transparent child windows in Windows 8.1 and above. This allows you to create non-
rectangular and transparent child windows in your top-level windows. You can enable this feature by setting the
HwndSourceParameters.UsesPerPixelTransparency property to true .

Windows Communication Foundation (WCF)

<netTcpBinding>
 <binding>
 <security mode= "None|Transport|Message|TransportWithMessageCredential" >
 <transport clientCredentialType="None|Windows|Certificate"
 protectionLevel="None|Sign|EncryptAndSign"
 sslProtocols="Ssl3|Tls1|Tls11|Tls12">
 </transport>
 </security>
 </binding>
</netTcpBinding>

SSL support

WCF now supports SSL version TLS 1.1 and TLS 1.2, in addition to SSL 3.0 and TLS 1.0, when using NetTcp with transport security and
client authentication. It is now possible to select which protocol to use, or to disable old lesser secure protocols. This can be done either by
setting the SslProtocols property or by adding the following to a configuration file.

Sending messages using different HTTP connections

WCF now allows users to ensure certain messages are sent using different underlying HTTP connections. There are two ways to do this:

Using a connection group name prefix

Users can specify a string that WCF will use as a prefix for the connection group name. Two messages with different prefixes are
sent using different underlying HTTP connections. You set the prefix by adding a key/value pair to the message's
Message.Properties property. The key is "HttpTransportConnectionGroupNamePrefix"; the value is the desired prefix.

Using different channel factories

Users can also enable a feature that ensures that messages sent using channels created by different channel factories will use
different underlying HTTP connections. To enable this feature, users must set the following appSetting to true :

https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource.write
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource
https://docs.microsoft.com/dotnet/api/system.runtime.versioning.targetframeworkattribute
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/runtime-element
https://docs.microsoft.com/dotnet/api/system.windows.input.cursor
https://connect.microsoft.com/VisualStudio/feedback/details/903760/
https://docs.microsoft.com/dotnet/api/system.windows.interop.hwndsourceparameters.usesperpixeltransparency
https://docs.microsoft.com/dotnet/api/system.servicemodel.tcptransportsecurity.sslprotocols
https://docs.microsoft.com/dotnet/api/system.servicemodel.channels.message.properties

<add key="microsoft:WorkflowServices:FilterResumeTimeoutInSeconds" value="60"/>

Operation 'Request3|{http://tempuri.org/}IService' on service instance with identifier '2b0667b6-09c8-4093-9d02-f6c67d534292' cannot be
performed at this time. Please ensure that the operations are performed in the correct order and that the binding in use provides ordered
delivery guarantees.

<add key="Transactions:IncludeDistributedTransactionIdInExceptionMessage" value="true"/>

<appSettings>
 <add key="wcf:httpTransportBinding:useUniqueConnectionPoolPerFactory" value="true" />
</appSettings>

Windows Workflow Foundation (WWF)

You can now specify the number of seconds a workflow service will hold on to an out-of-order operation request when there is an outstanding
"non-protocol" bookmark before timing out the request. A "non-protocol" bookmark is a bookmark that is not related to outstanding Receive
activities. Some activities create non-protocol bookmarks within their implementation, so it may not be obvious that a non-protocol bookmark
exists. These include State and Pick. So if you have a workflow service implemented with a state machine or containing a Pick activity, you will
most likely have non-protocol bookmarks. You specify the interval by adding a line like the following to the appSettings section of your
app.config file:

The default value is 60 seconds. If value is set to 0, out-of-order requests are immediately rejected with a fault with text that looks like this:

This is the same message that you receive if an out-of-order operation message is received and there are no non-protocol bookmarks.

If the value of the FilterResumeTimeoutInSeconds element is non-zero, there are non-protocol bookmarks, and the timeout interval expires, the
operation fails with a timeout message.

Transactions

You can now include the distributed transaction identifier for the transaction that has caused an exception derived from TransactionException to
be thrown. You do this by adding the following key to the appSettings section of your app.config file:

The default value is false .

Networking

Socket reuse

Windows 10 includes a new high-scalability networking algorithm that makes better use of machine resources by reusing local ports for
outbound TCP connections. The .NET Framework 4.6 supports the new algorithm, enabling .NET apps to take advantage of the new
behavior. In previous versions of Windows, there was an artificial concurrent connection limit (typically 16,384, the default size of the
dynamic port range), which could limit the scalability of a service by causing port exhaustion when under load.

In the .NET Framework 4.6, two new APIs have been added to enable port reuse, which effectively removes the 64K limit on concurrent
connections:

The System.Net.Sockets.SocketOptionName enumeration value.

The ServicePointManager.ReusePort property.

By default, the ServicePointManager.ReusePort property is false unless the HWRPortReuseOnSocketBind value of the
HKLM\SOFTWARE\Microsoft\.NETFramework\v4.0.30319 registry key is set to 0x1. To enable local port reuse on HTTP connections, set the

ServicePointManager.ReusePort property to true . This causes all outgoing TCP socket connections from HttpClient and
HttpWebRequest to use a new Windows 10 socket option, SO_REUSE_UNICASTPORT, that enables local port reuse.

Developers writing a sockets-only application can specify the System.Net.Sockets.SocketOptionName option when calling a method such
as Socket.SetSocketOption so that outbound sockets reuse local ports during binding.

Support for international domain names and PunyCode

A new property, IdnHost, has been added to the Uri class to better support international domain names and PunyCode.

Resizing in Windows Forms controls.

This feature has been expanded in .NET Framework 4.6 to include the DomainUpDown, NumericUpDown, DataGridViewComboBoxColumn,
DataGridViewColumn and ToolStripSplitButton types and the rectangle specified by the Bounds property used when drawing a UITypeEditor.

This is an opt-in feature. To enable it, set the EnableWindowsFormsHighDpiAutoResizing element to true in the application configuration
(app.config) file:

https://docs.microsoft.com/dotnet/api/system.transactions.transactionexception
https://docs.microsoft.com/dotnet/api/system.net.sockets.socketoptionname
https://docs.microsoft.com/dotnet/api/system.net.servicepointmanager.reuseport
https://docs.microsoft.com/dotnet/api/system.net.servicepointmanager.reuseport
https://docs.microsoft.com/dotnet/api/system.net.servicepointmanager.reuseport
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://msdn.microsoft.com/library/windows/desktop/ms740532.aspx
https://docs.microsoft.com/dotnet/api/system.net.sockets.socketoptionname
https://docs.microsoft.com/dotnet/api/system.net.sockets.socket.setsocketoption
https://docs.microsoft.com/dotnet/api/system.uri.idnhost
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/dotnet/api/system.windows.forms.domainupdown
https://docs.microsoft.com/dotnet/api/system.windows.forms.numericupdown
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridviewcomboboxcolumn
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridviewcolumn
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolstripsplitbutton
https://docs.microsoft.com/dotnet/api/system.drawing.design.paintvalueeventargs.bounds
https://docs.microsoft.com/dotnet/api/system.drawing.design.uitypeeditor

What's new in the .NET Framework 4.5.2

<appSettings>
 <add key="EnableWindowsFormsHighDpiAutoResizing" value="true" />
</appSettings>

Support for code page encodings

.NET Core primarily supports the Unicode encodings and by default provides limited support for code page encodings. You can add support for
code page encodings available in the .NET Framework but unsupported in .NET Core by registering code page encodings with the
Encoding.RegisterProvider method. For more information, see System.Text.CodePagesEncodingProvider.

.NET Native

Windows apps for Windows 10 that target .NET Core and are written in C# or Visual Basic can take advantage of a new technology that
compiles apps to native code rather than IL. They produce apps characterized by faster startup and execution times. For more information, see
Compiling Apps with .NET Native. For an overview of .NET Native that examines how it differs from both JIT compilation and NGEN and what
that means for your code, see .NET Native and Compilation.

Your apps are compiled to native code by default when you compile them with Visual Studio 2015. For more information, see Getting Started
with .NET Native.

To support debugging .NET Native apps, a number of new interfaces and enumerations have been added to the unmanaged debugging API. For
more information, see the Debugging (Unmanaged API Reference) topic.

Open-source .NET Framework packages

.NET Core packages such as the immutable collections, S IMD APIs, and networking APIs such as those found in the System.Net.Http namespace
are now available as open source packages on GitHub. To access the code, see CoreFx on GitHub. For more information and how to contribute to
these packages, see .NET Core and Open-Source, .NET Home Page on GitHub.

Back to top

<appSettings>
 <add key="EnableWindowsFormsHighDpiAutoResizing" value="true" />
</appSettings>

New APIs for ASP.NET apps. The new HttpResponse.AddOnSendingHeaders and HttpResponseBase.AddOnSendingHeaders methods let you
inspect and modify response headers and status code as the response is being flushed to the client app. Consider using these methods instead of
the PreSendRequestHeaders and PreSendRequestContent events; they are more efficient and reliable.

The HostingEnvironment.QueueBackgroundWorkItem method lets you schedule small background work items. ASP.NET tracks these items and
prevents IIS from abruptly terminating the worker process until all background work items have completed. This method can't be called outside
an ASP.NET managed app domain.

The new HttpResponse.HeadersWritten and HttpResponseBase.HeadersWritten properties return Boolean values that indicate whether the
response headers have been written. You can use these properties to make sure that calls to APIs such as HttpResponse.StatusCode (which
throw exceptions if the headers have been written) will succeed.

Resizing in Windows Forms controls. This feature has been expanded. You can now use the system DPI setting to resize components of the
following additional controls (for example, the drop-down arrow in combo boxes):

ComboBox ToolStripComboBox ToolStripMenuItem Cursor DataGridView DataGridViewComboBoxColumn

This is an opt-in feature. To enable it, set the EnableWindowsFormsHighDpiAutoResizing element to true in the application configuration
(app.config) file:

New workflow feature. A resource manager that's using the EnlistPromotableSinglePhase method (and therefore implementing the
IPromotableSinglePhaseNotification interface) can use the new Transaction.PromoteAndEnlistDurable method to request the following:

Promote the transaction to a Microsoft Distributed Transaction Coordinator (MSDTC) transaction.

Replace IPromotableSinglePhaseNotification with an ISinglePhaseNotification, which is a durable enlistment that supports single phase
commits.

This can be done within the same app domain, and doesn't require any extra unmanaged code to interact with MSDTC to perform the promotion.
The new method can be called only when there's an outstanding call from System.Transactions to the IPromotableSinglePhaseNotification
Promote method that's implemented by the promotable enlistment.

Profiling improvements. The following new unmanaged profiling APIs provide more robust profiling:

COR_PRF_ASSEMBLY_REFERENCE_INFO Structure COR_PRF_HIGH_MONITOR Enumeration GetAssemblyReferences Method
GetEventMask2 Method SetEventMask2 Method AddAssemblyReference Method

Previous ICorProfiler implementations supported lazy loading of dependent assemblies. The new profiling APIs require dependent assemblies
that are injected by the profiler to be loadable immediately, instead of being loaded after the app is fully initialized. This change doesn't affect

https://docs.microsoft.com/dotnet/api/system.text.encoding.registerprovider
https://docs.microsoft.com/dotnet/api/system.text.codepagesencodingprovider
https://docs.microsoft.com/en-us/dotnet/framework/net-native/net-native-and-compilation
https://docs.microsoft.com/en-us/dotnet/framework/net-native/getting-started-with-net-native
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/index
http://go.microsoft.com/fwlink/?LinkID=518639
https://docs.microsoft.com/dotnet/api/system.net.http
https://github.com/
https://github.com/dotnet/corefx
https://docs.microsoft.com/en-us/dotnet/framework/get-started/net-core-and-open-source
https://github.com/dotnet/home
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.addonsendingheaders
https://docs.microsoft.com/dotnet/api/system.web.httpresponsebase.addonsendingheaders
https://docs.microsoft.com/dotnet/api/system.web.httpapplication.presendrequestheaders
https://docs.microsoft.com/dotnet/api/system.web.httpapplication.presendrequestcontent
https://docs.microsoft.com/dotnet/api/system.web.hosting.hostingenvironment.queuebackgroundworkitem
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.headerswritten#System_Web_HttpResponse_HeadersWritten
https://docs.microsoft.com/dotnet/api/system.web.httpresponsebase.headerswritten#System_Web_HttpResponseBase_HeadersWritten
https://docs.microsoft.com/dotnet/api/system.web.httpresponse.statuscode
https://docs.microsoft.com/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolstripcombobox
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolstripmenuitem
https://docs.microsoft.com/dotnet/api/system.windows.forms.cursor
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridviewcomboboxcolumn
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistpromotablesinglephase
https://docs.microsoft.com/dotnet/api/system.transactions.ipromotablesinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.promoteandenlistdurable
https://docs.microsoft.com/dotnet/api/system.transactions.ipromotablesinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions.isinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions
https://docs.microsoft.com/dotnet/api/system.transactions.ipromotablesinglephasenotification
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/cor-prf-assembly-reference-info-structure
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/cor-prf-high-monitor-enumeration
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilercallback6-getassemblyreferences-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo5-geteventmask2-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerinfo5-seteventmask2-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/icorprofilerassemblyreferenceprovider-addassemblyreference-method

What's new in the .NET Framework 4.5.1

[System.Security.Permissions.PermissionSetAttribute(System.Security.Permissions.SecurityAction.LinkDemand, Name = "FullTrust")]
public Enlistment PromoteAndEnlistDurable(Guid resourceManagerIdentifier,
 IPromotableSinglePhaseNotification promotableNotification,
 ISinglePhaseNotification enlistmentNotification,
 EnlistmentOptions enlistmentOptions)

users of the existing ICorProfiler APIs.

Debugging improvements. The following new unmanaged debugging APIs provide better integration with a profiler. You can now access
metadata inserted by the profiler as well as local variables and code produced by compiler ReJIT requests when dump debugging.

SetWriteableMetadataUpdateMode Method EnumerateLocalVariablesEx Method GetLocalVariableEx Method GetCodeEx Method
GetActiveReJitRequestILCode Method GetInstrumentedILMap Method

Event tracing changes. The .NET Framework 4.5.2 enables out-of-process, Event Tracing for Windows (ETW)-based activity tracing for a larger
surface area. This enables Advanced Power Management (APM) vendors to provide lightweight tools that accurately track the costs of individual
requests and activities that cross threads. These events are raised only when ETW controllers enable them; therefore, the changes don't affect
previously written ETW code or code that runs with ETW disabled.

Promoting a transaction and converting it to a durable enlistment

Transaction.PromoteAndEnlistDurable is a new API added to the .NET Framework 4.5.2 and 4.6:

The method may be used by an enlistment that was previously created by Transaction.EnlistPromotableSinglePhase in response to the
ITransactionPromoter.Promote method. It asks System.Transactions to promote the transaction to an MSDTC transaction and to "convert" the
promotable enlistment to a durable enlistment. After this method completes successfully, the IPromotableSinglePhaseNotification interface will
no longer be referenced by System.Transactions , and any future notifications will arrive on the provided ISinglePhaseNotification interface. The
enlistment in question must act as a durable enlistment, supporting transaction logging and recovery. Refer to Transaction.EnlistDurable for
details. In addition, the enlistment must support ISinglePhaseNotification. This method can only be called while processing an
ITransactionPromoter.Promote call. If that is not the case, a TransactionException exception is thrown.

Back to top

April 2014 updates:

Visual Studio 2013 Update 2 includes updates to the Portable Class Library templates to support these scenarios:

You can use Windows Runtime APIs in portable libraries that target Windows 8.1, Windows Phone 8.1, and Windows Phone Silverlight
8.1.

You can include XAML (Windows.UI.XAML types) in portable libraries when you target Windows 8.1 or Windows Phone 8.1. The
following XAML templates are supported: Blank Page, Resource Dictionary, Templated Control, and User Control.

You can create a portable Windows Runtime component (.winmd file) for use in Store apps that target Windows 8.1 and Windows Phone
8.1.

You can retarget a Windows Store or Windows Phone Store class library like a Portable Class Library.

For more information about these changes, see Portable Class Library.

The .NET Framework content set now includes documentation for .NET Native, which is a precompilation technology for building and deploying
Windows apps. .NET Native compiles your apps directly to native code, rather than to intermediate language (IL), for better performance. For
details, see Compiling Apps with .NET Native.

The .NET Framework Reference Source provides a new browsing experience and enhanced functionality. You can now browse through the .NET
Framework source code online, download the reference for offline viewing, and step through the sources (including patches and updates) during
debugging. For more information, see the blog entry A new look for .NET Reference Source.

Core new features and enhancements in the .NET Framework 4.5.1 include:

Automatic binding redirection for assemblies. Starting with Visual Studio 2013, when you compile an app that targets the .NET Framework 4.5.1,
binding redirects may be added to the app configuration file if your app or its components reference multiple versions of the same assembly. You
can also enable this feature for projects that target older versions of the .NET Framework. For more information, see How to: Enable and Disable
Automatic Binding Redirection.

Ability to collect diagnostics information to help developers improve the performance of server and cloud applications. For more information,
see the WriteEventWithRelatedActivityId and WriteEventWithRelatedActivityIdCore methods in the EventSource class.

Ability to explicitly compact the large object heap (LOH) during garbage collection. For more information, see the
GCSettings.LargeObjectHeapCompactionMode property.

Additional performance improvements such as ASP.NET app suspension, multi-core JIT improvements, and faster app startup after a .NET
Framework update. For details, see the .NET Framework 4.5.1 announcement and the ASP.NET app suspend blog post.

Improvements to Windows Forms include:

https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugprocess7-setwriteablemetadataupdatemode-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugilframe4-enumeratelocalvariablesex-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugilframe4-getlocalvariableex-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugilframe4-getcodeex-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugfunction3-getactiverejitrequestilcode-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/icordebugilcode2-getinstrumentedilmap-method
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.promoteandenlistdurable
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistpromotablesinglephase
https://docs.microsoft.com/dotnet/api/system.transactions.itransactionpromoter.promote
https://docs.microsoft.com/dotnet/api/system.transactions.ipromotablesinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions.isinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions.transaction.enlistdurable
https://docs.microsoft.com/dotnet/api/system.transactions.isinglephasenotification
https://docs.microsoft.com/dotnet/api/system.transactions.itransactionpromoter.promote
https://docs.microsoft.com/dotnet/api/system.transactions.transactionexception
http://go.microsoft.com/fwlink/p/?LinkId=393658
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/cross-platform-development-with-the-portable-class-library
http://referencesource.microsoft.com/
http://referencesource.microsoft.com/download.html
https://blogs.msdn.microsoft.com/dotnet/2014/02/24/a-new-look-for-net-reference-source/
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-enable-and-disable-automatic-binding-redirection
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource.writeeventwithrelatedactivityid
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource.writeeventwithrelatedactivityidcore
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracing.eventsource
https://docs.microsoft.com/dotnet/api/system.runtime.gcsettings.largeobjectheapcompactionmode
https://blogs.msdn.microsoft.com/dotnet/2013/06/26/announcing-the-net-framework-4-5-1-preview/
https://blogs.msdn.microsoft.com/dotnet/2013/10/09/asp-net-app-suspend-responsive-shared-net-web-hosting/

What's new in the .NET Framework 4.5
Core new features and improvementsCore new features and improvements

<appSettings>
 <add key="EnableWindowsFormsHighDpiAutoResizing" value="true" />
</appSettings>

Resizing in Windows Forms controls. You can use the system DPI setting to resize components of controls (for example, the icons that appear in
a property grid) by opting in with an entry in the application configuration file (app.config) for your app. This feature is currently supported in the
following Windows Forms controls:

PropertyGrid TreeView Some aspects of the DataGridView (see new features in 4.5.2 for additional controls supported)

To enable this feature, add a new <appSettings> element to the configuration file (app.config) and set the EnableWindowsFormsHighDpiAutoResizing

element to true :

Improvements when debugging your .NET Framework apps in Visual Studio 2013 include:

Return values in the Visual Studio debugger. When you debug a managed app in Visual Studio 2013, the Autos window displays return types
and values for methods. This information is available for desktop, Windows Store, and Windows Phone apps. For more information, see Examine
return values of method calls in the MSDN Library.

Edit and Continue for 64-bit apps. Visual Studio 2013 supports the Edit and Continue feature for 64-bit managed apps for desktop, Windows
Store, and Windows Phone. The existing limitations remain in effect for both 32-bit and 64-bit apps (see the last section of the Supported Code
Changes (C#) article).

Async-aware debugging. To make it easier to debug asynchronous apps in Visual Studio 2013, the call stack hides the infrastructure code
provided by compilers to support asynchronous programming, and also chains in logical parent frames so you can follow logical program
execution more clearly. A Tasks window replaces the Parallel Tasks window and displays tasks that relate to a particular breakpoint, and also
displays any other tasks that are currently active or scheduled in the app. You can read about this feature in the "Async-aware debugging" section
of the .NET Framework 4.5.1 announcement.

Better exception support for Windows Runtime components. In Windows 8.1, exceptions that arise from Windows Store apps preserve
information about the error that caused the exception, even across language boundaries. You can read about this feature in the "Windows Store
app development" section of the .NET Framework 4.5.1 announcement.

Starting with Visual Studio 2013, you can use the Managed Profile Guided Optimization Tool (Mpgo.exe) to optimize Windows 8.x Store apps as well as
desktop apps.

For new features in ASP.NET 4.5.1, see ASP.NET 4.5.1 and Visual Studio 2013 on the ASP.NET site.

Back to top

Ability to reduce system restarts by detecting and closing .NET Framework 4 applications during deployment. See Reducing System Restarts
During .NET Framework 4.5 Installations.

Support for arrays that are larger than 2 gigabytes (GB) on 64-bit platforms. This feature can be enabled in the application configuration file. See
the <gcAllowVeryLargeObjects> element, which also lists other restrictions on object size and array size.

Better performance through background garbage collection for servers. When you use server garbage collection in the .NET Framework 4.5,
background garbage collection is automatically enabled. See the Background Server Garbage Collection section of the Fundamentals of Garbage
Collection topic.

Background just-in-time (JIT) compilation, which is optionally available on multi-core processors to improve application performance. See
ProfileOptimization.

Ability to limit how long the regular expression engine will attempt to resolve a regular expression before it times out. See the
Regex.MatchTimeout property.

Ability to define the default culture for an application domain. See the CultureInfo class.

Console support for Unicode (UTF-16) encoding. See the Console class.

Support for versioning of cultural string ordering and comparison data. See the SortVersion class.

Better performance when retrieving resources. See Packaging and Deploying Resources.

Zip compression improvements to reduce the size of a compressed file. See the System.IO.Compression namespace.

Ability to customize a reflection context to override default reflection behavior through the CustomReflectionContext class.

Support for the 2008 version of the Internationalized Domain Names in Applications (IDNA) standard when the
System.Globalization.IdnMapping class is used on Windows 8.

Delegation of string comparison to the operating system, which implements Unicode 6.0, when the .NET Framework is used on Windows 8.
When running on other platforms, the .NET Framework includes its own string comparison data, which implements Unicode 5.x. See the String
class and the Remarks section of the SortVersion class.

https://docs.microsoft.com/dotnet/api/system.windows.forms.propertygrid
https://docs.microsoft.com/dotnet/api/system.windows.forms.treeview
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
http://msdn.microsoft.com/library/e3245b37-8e2e-4200-ba84-133726e95f1f(v=vs.120).aspx
https://docs.microsoft.com/visualstudio/debugger/supported-code-changes-csharp
https://blogs.msdn.microsoft.com/dotnet/2013/06/26/announcing-the-net-framework-4-5-1-preview/
https://blogs.msdn.microsoft.com/dotnet/2013/06/26/announcing-the-net-framework-4-5-1-preview/
https://docs.microsoft.com/en-us/dotnet/framework/tools/mpgo-exe-managed-profile-guided-optimization-tool
http://go.microsoft.com/fwlink/?LinkID=309094
https://docs.microsoft.com/en-us/dotnet/framework/deployment/reducing-system-restarts
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/gcallowverylargeobjects-element
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/dotnet/api/system.runtime.profileoptimization
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex.matchtimeout
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.console
https://docs.microsoft.com/dotnet/api/system.globalization.sortversion
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/dotnet/api/system.io.compression
https://docs.microsoft.com/dotnet/api/system.reflection.context.customreflectioncontext
https://docs.microsoft.com/dotnet/api/system.globalization.idnmapping
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.globalization.sortversion

Managed Extensibility Framework (MEF)Managed Extensibility Framework (MEF)

Asynchronous file operationsAsynchronous file operations

ToolsTools

Parallel computingParallel computing

WebWeb

NetworkingNetworking

Windows Presentation Foundation (WPF)Windows Presentation Foundation (WPF)

Ability to compute the hash codes for strings on a per application domain basis. See <UseRandomizedStringHashAlgorithm> Element.

Type reflection support split between Type and TypeInfo classes. See Reflection in the .NET Framework for Windows Store Apps.

In the .NET Framework 4.5, the Managed Extensibility Framework (MEF) provides the following new features:

Support for generic types.

Convention-based programming model that enables you to create parts based on naming conventions rather than attributes.

Multiple scopes.

A subset of MEF that you can use when you create Windows 8.x Store apps. This subset is available as a downloadable package from the NuGet
Gallery. To install the package, open your project in Visual Studio, choose Manage NuGet Packages from the Project menu, and search online
for the Microsoft.Composition package.

For more information, see Managed Extensibility Framework (MEF).

In the .NET Framework 4.5, new asynchronous features were added to the C# and Visual Basic languages. These features add a task-based model for
performing asynchronous operations. To use this new model, use the asynchronous methods in the I/O classes. See Asynchronous File I/O.

In the .NET Framework 4.5, Resource File Generator (Resgen.exe) enables you to create a .resw file for use in Windows 8.x Store apps from a .resources
file embedded in a .NET Framework assembly. For more information, see Resgen.exe (Resource File Generator).

Managed Profile Guided Optimization (Mpgo.exe) enables you to improve application startup time, memory utilization (working set size), and
throughput by optimizing native image assemblies. The command-line tool generates profile data for native image application assemblies. See
Mpgo.exe (Managed Profile Guided Optimization Tool). Starting with Visual Studio 2013, you can use Mpgo.exe to optimize Windows 8.x Store apps as
well as desktop apps.

The .NET Framework 4.5 provides several new features and improvements for parallel computing. These include improved performance, increased
control, improved support for asynchronous programming, a new dataflow library, and improved support for parallel debugging and performance
analysis. See the entry What’s New for Parallelism in .NET 4.5 in the Parallel Programming with .NET blog.

ASP.NET 4.5 and 4.5.1 add model binding for Web Forms, WebSocket support, asynchronous handlers, performance enhancements, and many other
features. For more information, see the following resources:

ASP.NET 4.5 and Visual Studio 2012 in the MSDN Library.

ASP.NET 4.5.1 and Visual Studio 2013 on the ASP.NET site.

The .NET Framework 4.5 provides a new programming interface for HTTP applications. For more information, see the new System.Net.Http and
System.Net.Http.Headers namespaces.

Support is also included for a new programming interface for accepting and interacting with a WebSocket connection by using the existing HttpListener
and related classes. For more information, see the new System.Net.WebSockets namespace and the HttpListener class.

In addition, the .NET Framework 4.5 includes the following networking improvements:

RFC-compliant URI support. For more information, see Uri and related classes.

Support for Internationalized Domain Name (IDN) parsing. For more information, see Uri and related classes.

Support for Email Address Internationalization (EAI). For more information, see the System.Net.Mail namespace.

Improved IPv6 support. For more information, see the System.Net.NetworkInformation namespace.

Dual-mode socket support. For more information, see the Socket and TcpListener classes.

In the .NET Framework 4.5, Windows Presentation Foundation (WPF) contains changes and improvements in the following areas:

The new Ribbon control, which enables you to implement a ribbon user interface that hosts a Quick Access Toolbar, Application Menu, and tabs.

The new INotifyDataErrorInfo interface, which supports synchronous and asynchronous data validation.

New features for the VirtualizingPanel and Dispatcher classes.

Improved performance when displaying large sets of grouped data, and by accessing collections on non-UI threads.

Data binding to static properties, data binding to custom types that implement the ICustomTypeProvider interface, and retrieval of data binding
information from a binding expression.

Repositioning of data as the values change (live shaping).

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/userandomizedstringhashalgorithm-element
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.reflection.typeinfo
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection-for-windows-store-apps
http://go.microsoft.com/fwlink/?LinkId=256238
https://docs.microsoft.com/en-us/dotnet/standard/io/asynchronous-file-i-o
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/mpgo-exe-managed-profile-guided-optimization-tool
http://go.microsoft.com/fwlink/?LinkId=235061
http://msdn.microsoft.com/library/ac9bb7f6-f094-4af7-bad0-acf49a5dbc55
http://go.microsoft.com/fwlink/?LinkID=309094
https://docs.microsoft.com/dotnet/api/system.net.http
https://docs.microsoft.com/dotnet/api/system.net.http.headers
https://docs.microsoft.com/dotnet/api/system.net.httplistener
https://docs.microsoft.com/dotnet/api/system.net.websockets
https://docs.microsoft.com/dotnet/api/system.net.httplistener
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/dotnet/api/system.net.mail
https://docs.microsoft.com/dotnet/api/system.net.networkinformation
https://docs.microsoft.com/dotnet/api/system.net.sockets.socket
https://docs.microsoft.com/dotnet/api/system.net.sockets.tcplistener
https://docs.microsoft.com/dotnet/api/system.windows.controls.ribbon.ribbon
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifydataerrorinfo
https://docs.microsoft.com/dotnet/api/system.windows.controls.virtualizingpanel
https://docs.microsoft.com/dotnet/api/system.windows.threading.dispatcher
https://docs.microsoft.com/dotnet/api/system.reflection.icustomtypeprovider

Windows Communication Foundation (WCF)Windows Communication Foundation (WCF)

Windows Workflow Foundation (WF)Windows Workflow Foundation (WF)

Ability to check whether the data context for an item container is disconnected.

Ability to set the amount of time that should elapse between property changes and data source updates.

Improved support for implementing weak event patterns. Also, events can now accept markup extensions.

In the .NET Framework 4.5, the following features have been added to make it simpler to write and maintain Windows Communication Foundation
(WCF) applications:

Simplification of generated configuration files.

Support for contract-first development.

Ability to configure ASP.NET compatibility mode more easily.

Changes in default transport property values to reduce the likelihood that you will have to set them.

Updates to the XmlDictionaryReaderQuotas class to reduce the likelihood that you will have to manually configure quotas for XML dictionary
readers.

Validation of WCF configuration files by Visual Studio as part of the build process, so you can detect configuration errors before you run your
application.

New asynchronous streaming support.

New HTTPS protocol mapping to make it easier to expose an endpoint over HTTPS with Internet Information Services (IIS).

Ability to generate metadata in a single WSDL document by appending ?singleWSDL to the service URL.

Websockets support to enable true bidirectional communication over ports 80 and 443 with performance characteristics similar to the TCP
transport.

Support for configuring services in code.

XML Editor tooltips.

ChannelFactory caching support.

Binary encoder compression support.

Support for a UDP transport that enables developers to write services that use "fire and forget" messaging. A client sends a message to a service
and expects no response from the service.

Ability to support multiple authentication modes on a single WCF endpoint when using the HTTP transport and transport security.

Support for WCF services that use internationalized domain names (IDNs).

For more information, see What's New in Windows Communication Foundation.

In the .NET Framework 4.5, several new features were added to Windows Workflow Foundation (WF), including:

State machine workflows, which were first introduced as part of the .NET Framework 4.0.1 (.NET Framework 4 Platform Update 1). This update
included several new classes and activities that enabled developers to create state machine workflows. These classes and activities were updated
for the .NET Framework 4.5 to include:

The ability to set breakpoints on states.

The ability to copy and paste transitions in the workflow designer.

Designer support for shared trigger transition creation.

Activities for creating state machine workflows, including: StateMachine, State, and Transition.

Enhanced Workflow Designer features such as the following:

Enhanced workflow search capabilities in Visual Studio, including Quick Find and Find in Files.

Ability to automatically create a Sequence activity when a second child activity is added to a container activity, and to include both
activities in the Sequence activity.

Panning support, which enables the visible portion of a workflow to be changed without using the scroll bars.

A new Document Outline view that shows the components of a workflow in a tree-style outline view and lets you select a component in
the Document Outline view.

Ability to add annotations to activities.

Ability to define and consume activity delegates by using the workflow designer.

Auto-connect and auto-insert for activities and transitions in state machine and flowchart workflows.

https://docs.microsoft.com/dotnet/api/system.xml.xmldictionaryreaderquotas
https://docs.microsoft.com/dotnet/api/system.servicemodel.channelfactory
http://go.microsoft.com/fwlink/?LinkId=228173
http://go.microsoft.com/fwlink/?LinkID=215092
https://docs.microsoft.com/dotnet/api/system.activities.statements.statemachine
https://docs.microsoft.com/dotnet/api/system.activities.statements.state
https://docs.microsoft.com/dotnet/api/system.activities.statements.transition

.NET for Windows 8.x Store apps.NET for Windows 8.x Store apps

Portable Class LibrariesPortable Class Libraries

See Also

Storage of the view state information for a workflow in a single element in the XAML file, so you can easily locate and edit the view state
information.

A NoPersistScope container activity to prevent child activities from persisting.

Support for C# expressions:

Workflow projects that use Visual Basic will use Visual Basic expressions, and C# workflow projects will use C# expressions.

C# workflow projects that were created in Visual Studio 2010 and that have Visual Basic expressions are compatible with C# workflow
projects that use C# expressions.

Versioning enhancements:

The new WorkflowIdentity class, which provides a mapping between a persisted workflow instance and its workflow definition.

Side-by-side execution of multiple workflow versions in the same host, including WorkflowServiceHost.

In Dynamic Update, the ability to modify the definition of a persisted workflow instance.

Contract-first workflow service development, which provides support for automatically generating activities to match an existing service contract.

For more information, see What's New in Windows Workflow Foundation.

Windows 8.x Store apps are designed for specific form factors and leverage the power of the Windows operating system. A subset of the .NET
Framework 4.5 or 4.5.1 is available for building Windows 8.x Store apps for Windows by using C# or Visual Basic. This subset is called .NET for
Windows 8.x Store apps and is discussed in an overview in the Windows Dev Center.

The Portable Class Library project in Visual Studio 2012 (and later versions) enables you to write and build managed assemblies that work on multiple
.NET Framework platforms. Using a Portable Class Library project, you choose the platforms (such as Windows Phone and .NET for Windows 8.x Store
apps) to target. The available types and members in your project are automatically restricted to the common types and members across these platforms.
For more information, see Portable Class Library.

The .NET Framework and Out-of-Band Releases
What's new in accessibility in the .NET Framework
What's New in Visual Studio 2017
ASP.NET
What’s New in Visual C++

https://docs.microsoft.com/dotnet/api/system.activities.workflowidentity
https://docs.microsoft.com/dotnet/api/system.servicemodel.activities.workflowservicehost
http://go.microsoft.com/fwlink/?LinkId=228176
http://go.microsoft.com/fwlink/?LinkId=228491
https://docs.microsoft.com/en-us/dotnet/standard/cross-platform/cross-platform-development-with-the-portable-class-library
https://docs.microsoft.com/en-us/dotnet/framework/get-started/the-net-framework-and-out-of-band-releases
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/whats-new-in-accessibility
https://docs.microsoft.com/visualstudio/ide/whats-new-in-visual-studio
https://docs.microsoft.com/aspnet
https://docs.microsoft.com/cpp/what-s-new-for-visual-cpp-in-visual-studio

Get started with the .NET Framework
6/22/2018 • 6 minutes to read • Edit Online

NOTENOTE

What is the .NET Framework?

The .NET Framework for users

The .NET Framework is a runtime execution environment that manages apps that target the .NET Framework. It consists of the common language
runtime, which provides memory management and other system services, and an extensive class library, which enables programmers to take advantage
of robust, reliable code for all major areas of app development.

The .NET Framework is available on Windows systems only. You can use .NET Core to run apps on Windows, MacOS, and Linux.

The .NET Framework is a managed execution environment for Windows that provides a variety of services to its running apps. It consists of two major
components: the common language runtime (CLR), which is the execution engine that handles running apps, and the .NET Framework Class Library,
which provides a library of tested, reusable code that developers can call from their own apps. The services that the .NET Framework provides to
running apps include the following:

Memory management. In many programming languages, programmers are responsible for allocating and releasing memory and for handling
object lifetimes. In .NET Framework apps, the CLR provides these services on behalf of the app.

A common type system. In traditional programming languages, basic types are defined by the compiler, which complicates cross-language
interoperability. In the .NET Framework, basic types are defined by the .NET Framework type system and are common to all languages that
target the .NET Framework.

An extensive class library. Instead of having to write vast amounts of code to handle common low-level programming operations, programmers
use a readily accessible library of types and their members from the .NET Framework Class Library.

Development frameworks and technologies. The .NET Framework includes libraries for specific areas of app development, such as ASP.NET for
web apps, ADO.NET for data access, Windows Communication Foundation for service-oriented apps, and Windows Presentation Foundation for
Windows desktop apps.

Language interoperability. Language compilers that target the .NET Framework emit an intermediate code named Common Intermediate
Language (CIL), which, in turn, is compiled at runtime by the common language runtime. With this feature, routines written in one language are
accessible to other languages, and programmers focus on creating apps in their preferred languages.

Version compatibility. With rare exceptions, apps that are developed by using a particular version of the .NET Framework run without
modification on a later version.

Side-by-side execution. The .NET Framework helps resolve version conflicts by allowing multiple versions of the common language runtime to
exist on the same computer. This means that multiple versions of apps can coexist and that an app can run on the version of the .NET Framework
with which it was built. Side-by-side execution applies to the .NET Framework version groups 1.0/1.1, 2.0/3.0/3.5, and 4/4.5.x/4.6.x/4.7.x.

Multitargeting. By targeting .NET Standard, developers create class libraries that work on multiple .NET Framework platforms supported by that
version of the standard. For example, libraries that target the .NET Standard 2.0 can be used by apps that target the .NET Framework 4.6.1, .NET
Core 2.0, and UWP 10.0.16299.

If you don't develop .NET Framework apps, but you use them, you aren't required to have specific knowledge about the .NET Framework or its
operation. For the most part, the .NET Framework is completely transparent to users.

If you're using the Windows operating system, the .NET Framework may already be installed on your computer. In addition, if you install an app that
requires the .NET Framework, the app's setup program might install a specific version of the .NET Framework on your computer. In some cases, you
may see a dialog box that asks you to install the .NET Framework. If you've just tried to run an app when this dialog box appears and if your computer
has Internet access, you can go to a webpage that lets you install the missing version of the .NET Framework. For more information, see the Installation
guide.

In general, you shouldn't uninstall versions of the .NET Framework that are installed on your computer. There are two reasons for this:

If an app that you use depends on a specific version of the .NET Framework, that app may break if that version is removed.

Some versions of the .NET Framework are in-place updates to earlier versions. For example, the .NET Framework 3.5 is an in-place update to
version 2.0, and the .NET Framework 4.7.2 is an in-place update to versions 4 through 4.7.1. For more information, see .NET Framework
Versions and Dependencies.

On Windows versions before Windows 8, if you do choose to remove the .NET Framework, always use Programs and Features from Control Panel to
uninstall it. Never remove a version of the .NET Framework manually. On Windows 8 and above, the .NET Framework is an operating system
component and cannot be independently uninstalled.

https://github.com/dotnet/docs/blob/master/docs/framework/get-started/index.md
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies

The .NET Framework for developers

Related topics
TITLE DESCRIPTION

Overview Provides detailed information for developers who build apps that target the .NET
Framework.

Installation guide Provides information about installing the .NET Framework.

The .NET Framework and Out-of-Band Releases Describes the .NET Framework out of band releases and how to use them in your
app.

System Requirements Lists the hardware and software requirements for running the .NET Framework.

.NET Core and Open-Source Describes .NET Core in relation to the .NET Framework and how to access the
open-source .NET Core projects.

.NET Core documentation Provides the conceptual and API reference documentation for .NET Core.

.NET Standard Discusses .NET Standard, a versioned specification that individual .NET
implementations support to guarantee that a consistent set of APIs are available
on multiple platforms.

See also

Note that multiple versions of the .NET Framework can coexist on a single computer at the same time. This means that you don't have to uninstall
previous versions in order to install a later version.

If you're a developer, choose any programming language that supports the .NET Framework to create your apps. Because the .NET Framework provides
language independence and interoperability, you interact with other .NET Framework apps and components regardless of the language with which they
were developed.

To develop .NET Framework apps or components, do the following:

1. If it's not preinstalled on your operating system, install the version of the .NET Framework that your app will target. The most recent production
version is the .NET Framework 4.7.2, which is preinstalled on Windows 10 April 2018 Update and is available for download on earlier versions of
the Windows operating system. For .NET Framework system requirements, see System Requirements. For information on installing other
versions of the .NET Framework, see Installation Guide. Additional .NET Framework packages are released out of band, which means that they're
released on a rolling basis outside of any regular or scheduled release cycle. For information about these packages, see The .NET Framework and
Out-of-Band Releases.

2. Select the language or languages supported by the .NET Framework that you intend to use to develop your apps. A number of languages are
available, including Visual Basic, C#, F#, and C++/CLI from Microsoft. (A programming language that allows you to develop apps for the .NET
Framework adheres to the Common Language Infrastructure (CLI) specification.)

3. Select and install the development environment to use to create your apps and that supports your selected programming language or languages.
The Microsoft integrated development environment (IDE) for .NET Framework apps is Visual Studio. It's available in a number of editions.

For more information on developing apps that target the .NET Framework, see the Development Guide.

.NET Framework Guide
What's New
.NET API Browser
Development Guide

https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/get-started/the-net-framework-and-out-of-band-releases
http://go.microsoft.com/fwlink/?LinkId=199862
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/the-net-framework-and-out-of-band-releases
https://docs.microsoft.com/en-us/dotnet/framework/get-started/system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/get-started/net-core-and-open-source
https://docs.microsoft.com/dotnet/
https://docs.microsoft.com/dotnet/api/

Installation guide
5/4/2018 • 2 minutes to read • Edit Online

Supported Windows versions

Unsupported Windows versions

See also

You can install .NET Framework on various Windows versions.

Windows 10 and Windows Server 2016
Windows 8.1 and Windows Server 2012 R2
Windows 8 and Windows Server 2012
Windows 7 and Windows Server 2008 R2
Windows Vista and Windows Server 2008

Windows XP and Windows Server 2003

Download the .NET Framework
Troubleshoot blocked .NET Framework installations and uninstallations
Install the .NET Framework for developers
Deploy the .NET Framework for developers

https://github.com/dotnet/docs/blob/master/docs/framework/install/index.md
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-10
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-8-1
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-8
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-7
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-vista
https://docs.microsoft.com/en-us/dotnet/framework/install/on-windows-xp
https://www.microsoft.com/net/download/framework?utm_source=ms-docs&utm_medium=referral
https://docs.microsoft.com/en-us/dotnet/framework/install/troubleshoot-blocked-installations-and-uninstallations
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers

Migration Guide to the .NET Framework 4.7, 4.6, and 4.5
5/4/2018 • 2 minutes to read • Edit Online

Migration resources

See Also

If you created your app using an earlier version of the .NET Framework, you can generally upgrade it to the .NET Framework 4.5 and its point releases
(4.5.1 and 4.5.2), the .NET Framework 4.6 and its point releases (4.6.1 and 4.6.2), or the .NET Framework 4.7 and its point releases (4.7.1 and 4.7.2)
easily. Open your project in Visual Studio. If your project was created in an earlier version of Visual Studio, the Project Compatibility dialog box
automatically opens. For more information about upgrading a project in Visual Studio, see Port, Migrate, and Upgrade Visual Studio Projects and Visual
Studio 2017 Platform Targeting and Compatibility.

However, some changes in the .NET Framework require changes to your code. You may also want to take advantage of functionality that is new in the
.NET Framework 4.5 and its point releases, in the .NET Framework 4.6 and its point releases, or in the .NET Framework 4.7 and its point releases.
Making these types of changes to your app for a new version of the .NET Framework is typically referred to as migration. If your app doesn't have to be
migrated, you can run it in the .NET Framework 4.5 or a later version without recompiling it.

Review the following documents before you migrate your app from earlier versions of the .NET Framework to version 4.5, 4.5.1, 4.5.2, 4.6, 4.6.1, 4.6.2,
4.7, 4.7.1, or 4.7.2:

See Versions and Dependencies to understand the CLR version underlying each version of the .NET Framework and to review guidelines for
targeting your apps successfully.

Review Application Compatibility to find out about runtime and retargeting changes that might affect your app and how to handle them.

Review What's Obsolete in the Class Library to determine any types or members in your code that have been made obsolete, and the
recommended alternatives.

See What's New for descriptions of new features that you may want to add to your app.

Application Compatibility
Migrating from the .NET Framework 1.1
Version Compatibility
Versions and Dependencies
How to: Configure an App to Support .NET Framework 4 or 4.5
What's New
What's Obsolete in the Class Library
.NET Framework Version and Assembly Information
Microsoft .NET Framework Support Lifecycle Policy .NET Framework 4 migration issues

https://github.com/dotnet/docs/blob/master/docs/framework/migration-guide/index.md
https://docs.microsoft.com/visualstudio/porting/port-migrate-and-upgrade-visual-studio-projects
https://docs.microsoft.com/visualstudio/productinfo/vs2017-compatibility-vs
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/application-compatibility
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/whats-obsolete
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/application-compatibility
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/migrating-from-the-net-framework-1-1
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/version-compatibility
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/versions-and-dependencies
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-configure-an-app-to-support-net-framework-4-or-4-5
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/whats-obsolete
http://go.microsoft.com/fwlink/?LinkId=201701
http://go.microsoft.com/fwlink/?LinkId=196607
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/net-framework-4-migration-issues

Deploying .NET Framework applications with Docker
5/4/2018 • 2 minutes to read • Edit Online

You can deploy .NET Framework applicaton with Docker, using Windows Containers. You can learn the requirements for using Windows Containers
and how to Get Started with Docker for Windows.

You can begin by running a console application with Docker. For running web applications in Docker, you can read ASP.NET MVC applications in
Docker.

https://github.com/dotnet/docs/blob/master/docs/framework/docker/index.md
https://msdn.microsoft.com/virtualization/windowscontainers/about/about_overview
https://docs.docker.com/docker-for-windows/
https://docs.microsoft.com/aspnet/mvc/overview/deployment/docker-aspnetmvc

Running console applications in Windows containers
5/4/2018 • 5 minutes to read • Edit Online

Prerequisites

NOTENOTE

Building the application

Console applications are used for many purposes; from simple querying of a status to long running document image processing tasks. In any case, the
ability to start up and scale these applications are met with limitations of hardware acquisitions, startup times or running multiple instances.

Moving your console applications to use Docker and Windows Server containers allows for starting these applications from a clean state, enabling
them to perform the operation and then shutdown cleanly. This topic will show the steps needed to move a console application to a Windows based
container and start it using a PowerShell script.

The sample console application is a simple example which takes an argument, a question in this case, and returns a random answer. This could take a
customer_id and process their taxes, or create a thumbnail for an image_url argument.

In addition to the answer, the Environment.MachineName has been added to the response to show the difference between running the application locally
and in a Windows container. When running the application locally, your local machine name should be returned and when running in a Windows
Container ; the container session id is returned.

The complete example is available in the dotnet/samples repository on GitHub. For download instructions, see Samples and Tutorials.

You need to be familiar with some Docker terms before you begin working on moving your application to a container.

A Docker image is a read-only template that defines the environment for a running container, including the operating system (OS), system
components, and application(s).

One important feature of Docker images is that images are composed from a base image. Each new image adds a small set of features to an existing
image.

A Docker container is a running instance of an image.

You scale an application by running the same image in many containers. Conceptually, this is similar to running the same application in multiple hosts.

You can learn more about the Docker architecture by reading the Docker Overview on the Docker site.

Moving your console application is a matter of a few steps.

1. Build the application
2. Creating a Dockerfile for the image
3. Process to build and run the Docker container

Windows containers are supported on Windows 10 Anniversary Update or Windows Server 2016.

If you are using Windows Server 2016, you must enable containers manually since the Docker for Windows installer will not enable the feature. Make sure all updates
have run for the OS and then follow the instructions from the Container Host Deployment article to install the containers and Docker features.

You need to have Docker for Windows, version 1.12 Beta 26 or higher to support Windows containers. By default, Docker enables Linux based
containers; switch to Windows containers by right clicking the Docker icon in the system tray and select Switch to Windows containers. Docker will
run the process to change and a restart may be required.

Typically console applications are distributed through an installer, FTP, or File Share deployment. When deploying to a container, the assets need to be

https://github.com/dotnet/docs/blob/master/docs/framework/docker/console.md
https://github.com/dotnet/samples/tree/master/framework/docker/ConsoleRandomAnswerGenerator
https://docs.docker.com/engine/understanding-docker/
https://www.microsoft.com/en-us/software-download/windows10/
https://www.microsoft.com/en-us/cloud-platform/windows-server
https://msdn.microsoft.com/virtualization/windowscontainers/deployment/deployment

function Invoke-MSBuild ([string]$MSBuildPath, [string]$MSBuildParameters) {
 Invoke-Expression "$MSBuildPath $MSBuildParameters"
}

Invoke-MSBuild -MSBuildPath "MSBuild.exe" -MSBuildParameters ".\ConsoleRandomAnswerGenerator.csproj /p:OutputPath=.\publish
/p:Configuration=Release"

Creating the Dockerfile

FROM microsoft/windowsservercore
ADD publish/ /
ENTRYPOINT ConsoleRandomAnswerGenerator.exe

Creating the image

$ImageName="console-random-answer-generator"

function Invoke-Docker-Build ([string]$ImageName, [string]$ImagePath, [string]$DockerBuildArgs = "") {
 echo "docker build -t $ImageName $ImagePath $DockerBuildArgs"
 Invoke-Expression "docker build -t $ImageName $ImagePath $DockerBuildArgs"
}

Invoke-Docker-Build -ImageName $ImageName -ImagePath "."

REPOSITORY TAG IMAGE ID CREATED SIZE
console-random-answer-generator latest 8f7c807db1b5 8 seconds ago 7.33 GB

Running the container

docker run console-random-answer-generator "Are you a square container?"

The answer to your question: 'Are you a square container?' is Concentrate and ask again on (70C3D48F4343)

CONTAINER ID IMAGE COMMAND CREATED STATUS
70c3d48f4343 console-random-answer-generator "cmd /S /C ConsoleRan" 2 minutes ago Exited (0) About a minute ago

compiled and staged to a location that can be used when the Docker image is created.

In build.ps1, the script uses MSBuild to compile the application to complete the task of building the assets. There are a few parameters passed to
MSBuild to finalize the needed assets. The name of the project file or solution to be compiled, the location for the output and finally the configuration
(Release or Debug).

In the call to Invoke-MSBuild the OutputPath is set to publish and Configuration set to Release.

The base image used for a console .NET Framework application is microsoft/windowsservercore , publicly available on Docker Hub. The base image
contains a minimal installation of Windows Server 2016, .NET Framework 4.6.2 and serves as the base OS image for Windows Containers.

The first line in the Dockerfile designates the base image using the FROM instruction. Next, ADD in the file copies the application assets from the
publish folder to root folder of the container and last; setting the ENTRYPOINT of the image states that this is the command or application that will run
when the container starts.

In order to create the Docker image, the following code is added to the build.ps1 script. When the script is run, the console-random-answer-generator

image is created using the assets compiled from MSBuild defined in the Building the application section.

Run the script using .\build.ps1 from the PowerShell command prompt.

When the build is complete, using the docker images command from a command line or PowerShell prompt; you'll see that the image is created and
ready to be run.

You can start the container from the command line using the Docker commands.

The output is

If you run the docker ps -a command from PowerShell, you can see that the container still exists.

The STATUS column shows at "About a minute ago", the application was complete and could be shut down. If the command was run a hundred times,
there would be a hundred containers left static with no work to do. In the beginning scenario the ideal operation was to do the work and shutdown or
cleanup. To accomplish that workflow, adding the --rm option to the docker run command will remove the container as soon as the Exited signal is
received.

https://docs.microsoft.com/visualstudio/msbuild/msbuild
https://hub.docker.com/r/microsoft/windowsservercore/
https://docs.docker.com/engine/reference/builder/#/from
https://docs.docker.com/engine/reference/builder/#/add
https://docs.docker.com/engine/reference/builder/#/entrypoint

docker run --rm console-random-answer-generator "Are you a square container?"

Running the container using PowerShellRunning the container using PowerShell

.\run.ps1 "Is this easy or what?"

Summary

Running the command with this option and then looking at the output of docker ps -a command; notice that the container id (the
Environment.MachineName) is not in the list.

In the sample project files there is also a run.ps1 which is an example of how to use PowerShell to run the application accepting the arguments.

To run, open PowerShell and use the following command:

Just by adding a Dockerfile and publishing the application, you can containerize your .NET Framework console applications and now take the advantage
of running multiple instances, clean start and stop and more Windows Server 2016 capabilities without making any changes to the application code at
all.

.NET Framework Development Guide
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

This section explains how to create, configure, debug, secure, and deploy your .NET Framework apps. The section also provides information about
technology areas such as dynamic programming, interoperability, extensibility, memory management, and threading.

Application Essentials
Provides information about basic app development tasks, such as programming with app domains and assemblies, using attributes, formatting and
parsing base types, using collections, handling events and exceptions, using files and data streams, and using generics.

Data and Modeling
Provides information about how to access data using ADO.NET, Language Integrated Query (L INQ), WCF Data Services, and XML.

Client Applications
Explains how to create Windows-based apps by using Windows Presentation Foundation (WPF) or Windows Forms.

Web Applications with ASP.NET
Provides links to information about using ASP.NET to build enterprise-class web apps with a minimum of coding.

Service-Oriented Applications with WCF
Describes how to use Windows Communication Foundation (WCF) to build service-oriented apps that are secure and reliable.

Building workflows with Windows Workflow Foundation
Provides information about the programming model, samples, and tools for using Windows Workflow Foundation (WF).

Windows Service Applications
Explains how you can use Visual Studio and the .NET Framework to create an app that is installed as a service, and start, stop, and otherwise control its
behavior.

Parallel Processing, Concurrency, and Async Programming in .NET
Provides information about managed threading, parallel programming, and asynchronous programming design patterns.

Network Programming in the .NET Framework
Describes the layered, extensible, and managed implementation of Internet services that you can quickly and easily integrate into your apps.

Configuring .NET Framework Apps
Explains how you can use configuration files to change settings without having to recompile your .NET Framework apps.

Compiling Apps with .NET Native
Explains how you can use the .NET Native precompilation technology to build and deploy Windows Store apps. .NET Native compiles apps that are
written in managed code (C#) and that target the .NET Framework to native code.

Security
Provides information about the classes and services in the .NET Framework that facilitate secure app development.

Debugging, Tracing, and Profiling
Explains how to test, optimize, and profile .NET Framework apps and the app environment. This section includes information for administrators as well
as developers.

Developing for Multiple Platforms
Provides information about how you can use the .NET Framework to build assemblies that can be shared across multiple platforms and multiple
devices such as phones, desktop, and web.

Deployment
Explains how to package and distribute your .NET Framework app, and includes deployment guides for both developers and administrators.

Performance
Provides information about caching, lazy initialization, reliability, and ETW events.

.NET Framework Class Library
Supplies syntax, code examples, and usage information for each class that is contained in the .NET Framework namespaces.

Getting Started
Provides a comprehensive overview of the .NET Framework and links to additional resources.

What's New

https://github.com/dotnet/docs/blob/master/docs/framework/development-guide.md
https://docs.microsoft.com/dotnet/api/?view=netframework-4.7

Describes key new features and changes in the latest version of the .NET Framework. Includes lists of new and obsolete types and members, and
provides a guide for migrating your apps from the previous version of the .NET Framework.

Tools
Describes the tools that help you develop, configure, and deploy apps by using .NET Framework technologies.

.NET Framework Samples
Provides links to the MSDN Code Samples Gallery for sample apps that demonstrate .NET Framework technologies.

http://msdn.microsoft.com/library/177055f8-4a1f-43e7-aee6-995c196079b1

Programming with Application Domains and Assemblies
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

Hosts such as Microsoft Internet Explorer, ASP.NET, and the Windows shell load the common language runtime into a process, create an application
domain in that process, and then load and execute user code in that application domain when running a .NET Framework application. In most cases, you
do not have to worry about creating application domains and loading assemblies into them because the runtime host performs those tasks.

However, if you are creating an application that will host the common language runtime, creating tools or code you want to unload programmatically, or
creating pluggable components that can be unloaded and reloaded on the fly, you will be creating your own application domains. Even if you are not
creating a runtime host, this section provides important information on how to work with application domains and assemblies loaded in these
application domains.

Application Domains and Assemblies How-to Topics
Provides links to all How-to topics found in the conceptual documentation for programming with application domains and assemblies.

Using Application Domains
Provides examples of creating, configuring, and using application domains.

Programming with Assemblies
Describes how to create, sign, and set attributes on assemblies.

Emitting Dynamic Methods and Assemblies
Describes how to create dynamic assemblies.

Assemblies in the Common Language Runtime
Provides a conceptual overview of assemblies.

Application Domains
Provides a conceptual overview of application domains.

Reflection Overview
Describes how to use the Reflection class to obtain information about an assembly.

https://github.com/dotnet/docs/blob/master/docs/framework/app-domains/index.md
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains-and-assemblies-how-to-topics
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/use
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/programming-with-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/emitting-dynamic-methods-and-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

Resources in Desktop Apps
5/4/2018 • 4 minutes to read • Edit Online

Creating and Localizing Resources

Packaging and Deploying Resources

Retrieving Resources

Nearly every production-quality app has to use resources. A resource is any nonexecutable data that is logically deployed with an app. A resource might
be displayed in an app as error messages or as part of the user interface. Resources can contain data in a number of forms, including strings, images,
and persisted objects. (To write persisted objects to a resource file, the objects must be serializable.) Storing your data in a resource file enables you to
change the data without recompiling your entire app. It also enables you to store data in a single location, and eliminates the need to rely on hard-coded
data that is stored in multiple locations.

The .NET Framework provides comprehensive support for the creation and localization of resources in desktop apps. In addition, the .NET Framework
supports a simple model for packaging and deploying these localized resources in desktop apps.

For information about resources in ASP.NET, see ASP.NET Web Page Resources Overview in the Internet Explorer Developer Center.

Windows 8.x Store apps use a different resource model from desktop apps and store their resources in a single package resource index (PRI) file. For
information about resources in Windows 8.x Store apps, see Creating and retrieving resources in Windows Store apps in the Windows Dev Center.

In a non-localized app, you can use resource files as a repository for app data, particularly for strings that might otherwise be hard-coded in multiple
locations in source code. Most commonly, you create resources as either text (.txt) or XML (.resx) files, and use Resgen.exe (Resource File Generator) to
compile them into binary .resources files. These files can then be embedded in the app's executable file by a language compiler. For more information
about creating resources, see Creating Resource Files.

You can also localize your app's resources for specific cultures. This enables you to build localized (translated) versions of your apps. When you develop
an app that uses localized resources, you designate a culture that serves as the neutral or fallback culture whose resources are used if no suitable
resources are available. Typically, the resources of the neutral culture are stored in the app's executable. The remaining resources for individual localized
cultures are stored in standalone satellite assemblies. For more information, see Creating Satellite Assemblies.

You deploy localized app resources in satellite assemblies. A satellite assembly contains the resources of a single culture; it does not contain any app
code. In the satellite assembly deployment model, you create an app with one default assembly (which is typically the main assembly) and one satellite
assembly for each culture that the app supports. Because the satellite assemblies are not part of the main assembly, you can easily replace or update
resources corresponding to a specific culture without replacing the app's main assembly.

Carefully determine which resources will make up your app's default resource assembly. Because it is a part of the main assembly, any changes to it will
require you to replace the main assembly. If you do not provide a default resource, an exception will be thrown when the resource fallback process
attempts to find it. In a well-designed app, using resources should never throw an exception.

For more information, see the Packaging and Deploying Resources article.

At run time, an app loads the appropriate localized resources on a per-thread basis, based on the culture specified by the CultureInfo.CurrentUICulture
property. This property value is derived as follows:

By directly assigning a CultureInfo object that represents the localized culture to the Thread.CurrentUICulture property.

If a culture is not explicitly assigned, by retrieving the default thread UI culture from the CultureInfo.DefaultThreadCurrentUICulture property.

If a default thread UI culture is not explicitly assigned, by retrieving the culture for the current user on the local computer by calling the Windows
GetUserDefaultUILanguage function.

For more information about how the current UI culture is set, see the CultureInfo and CultureInfo.CurrentUICulture reference pages.

You can then retrieve resources for the current UI culture or for a specific culture by using the System.Resources.ResourceManager class. Although the
ResourceManager class is most commonly used for retrieving resources in desktop apps, the System.Resources namespace contains additional types
that you can use to retrieve resources. These include:

The ResourceReader class, which enables you to enumerate resources embedded in an assembly or stored in a standalone binary .resources file.
It is useful when you don't know the precise names of the resources that are available at run time.

The ResXResourceReader class, which enables you to retrieve resources from an XML (.resx) file.

The ResourceSet class, which enables you to retrieve the resources of a specific culture without observing fallback rules. The resources can be
stored in an assembly or a standalone binary .resources file. You can also develop an IResourceReader implementation that enables you to use
the ResourceSet class to retrieve resources from some other source.

The ResXResourceSet class, which enables you to retrieve all the items in an XML resource file into memory.

https://github.com/dotnet/docs/blob/master/docs/framework/resources/index.md
http://msdn.microsoft.com/library/0936b3b2-9e6e-4abe-9c06-364efef9dbbd
http://go.microsoft.com/fwlink/p/?LinkId=241674
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-satellite-assemblies-for-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.currentuiculture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentuiculture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.defaultthreadcurrentuiculture
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.currentuiculture
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.resources
https://docs.microsoft.com/dotnet/api/system.resources.resourcereader
https://docs.microsoft.com/dotnet/api/system.resources.resxresourcereader
https://docs.microsoft.com/dotnet/api/system.resources.resourceset
https://docs.microsoft.com/dotnet/api/system.resources.iresourcereader
https://docs.microsoft.com/dotnet/api/system.resources.resourceset
https://docs.microsoft.com/dotnet/api/system.resources.resxresourceset

See Also
CultureInfo
CultureInfo.CurrentUICulture
Application Essentials
Creating Resource Files
Packaging and Deploying Resources
Creating Satellite Assemblies
Retrieving Resources

https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.currentuiculture
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-resource-files-for-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/creating-satellite-assemblies-for-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/resources/retrieving-resources-in-desktop-apps

Accessibility
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

Related Sections

This documentation is intended for .NET Framework developers who want to use the managed UI Automation classes defined in the System.Windows.Automation
namespace. For the latest information about UI Automation, see Windows Automation API: UI Automation.

Microsoft UI Automation is the new accessibility framework for Microsoft Windows. It addresses the needs of assistive technology products and
automated test frameworks by providing programmatic access to information about the user interface (UI). In addition, UI Automation enables control
and application developers to make their products accessible.

This documentation describes the UI Automation API for managed code. For information on programming for UI Automation in C++, see UI
Automation for Win32 Applications.

Accessibility Best Practices
UI Automation Fundamentals
UI Automation Providers for Managed Code
UI Automation Clients for Managed Code
UI Automation Control Patterns
UI Automation Text Pattern
UI Automation Control Types
UI Automation Specification and Community Promise

Accessibility Samples

https://github.com/dotnet/docs/blob/master/docs/framework/ui-automation/index.md
https://docs.microsoft.com/dotnet/api/system.windows.automation
http://go.microsoft.com/fwlink/?LinkID=156746
https://msdn.microsoft.com/library/ms726294.aspx
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/accessibility-best-practices
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-providers-for-managed-code
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-clients-for-managed-code
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-control-patterns
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-text-pattern
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-control-types
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/ui-automation-specification-and-community-promise
https://msdn.microsoft.com/library/ms771315.aspx

Data and Modeling in the .NET Framework
5/2/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section provides information on how to access data using ADO.NET, Language Integrated Query (L INQ), WCF Data Services, and XML.

ADO.NET
Describes the ADO.NET architecture and how to use the ADO.NET classes to manage application data and interact with data sources, including
Microsoft SQL Server, OLE DB data sources, and XML.

LINQ Portal
Provides links to relevant documentation for Language Integrated Query (L INQ).

Transaction Processing
Discusses the .NET Framework support for transactions.

WCF Data Services 4.5
Provides information about how to use WCF Data Services to deploy data services on the Web or an intranet.

XML Documents and Data
Provides an overview to a comprehensive and integrated set of classes that work with XML documents and data in the .NET Framework.

XML Standards Reference
Provides reference information on XML standards that Microsoft supports.

Microsoft SQL Server Modeling Technologies
Describes a set of technologies that enable rapid and customized data-based application design and development.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application, and information about dynamic programming, interoperability, extensibility, memory management, and threading.

Security
Provides links to more information on the classes and services in the common language runtime and the .NET Framework that facilitate secure
application development.

https://github.com/dotnet/docs/blob/master/docs/framework/data/index.md
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/index
http://msdn.microsoft.com/library/6eb15c76-4ee6-4146-981e-b3429a945e6f
https://docs.microsoft.com/en-us/dotnet/framework/data/transactions/index
https://docs.microsoft.com/en-us/dotnet/framework/data/wcf/index
http://msdn.microsoft.com/library/79c78508-c9d0-423a-a00f-672e855de401
http://go.microsoft.com/fwlink/?LinkId=193039

Developing client applications with the .NET Framework
5/2/2018 • 2 minutes to read • Edit Online

In this section

Related sections

See also

There are several ways to develop Windows-based applications with the .NET Framework. You can use any of these tools and frameworks:

Universal Windows Platform (UWP)
Windows Presentation Foundation (WPF)
Windows Forms

This section contains topics that describe how to create Windows-based applications by using Windows Presentation Foundation or by using Windows
Forms. However, you can also create web applications using the .NET Framework, and client applications for computers or devices that you make
available through the Microsoft Store.

Windows Presentation Foundation
Provides information about developing applications by using WPF.

Windows Forms
Provides information about developing applications by using Windows Forms.

Common Client Technologies
Provides information about additional technologies that can be used when developing client applications.

Universal Windows Platform
Describes how to create applications for Windows 10 that you can make available to users through the Windows Store.

.NET for UWP apps
Describes the .NET Framework support for Store apps, which can be deployed to Windows computers and devices.

.NET API for Windows Phone Silverlight
Lists the .NET Framework APIs you can use for building apps with Windows Phone Silverlight.

Developing for Multiple Platforms
Describes the different methods you can use the .NET Framework to target multiple client app types.

Get Started with ASP.NET Web Sites
Describes the ways you can develop web apps using ASP.NET.

.NET Standard
Overview
Development Guide
Windows Service Applications

https://github.com/dotnet/docs/blob/master/docs/framework/develop-client-apps.md
https://developer.microsoft.com/windows/apps
https://developer.microsoft.com/windows/apps
https://msdn.microsoft.com/library/windows/apps/mt185501.aspx
https://docs.microsoft.com/en-us/previous-versions/windows/apps/jj207211(v=vs.105)
http://www.asp.net/get-started/websites
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview

Common Client Technologies in the .NET Framework
5/2/2018 • 2 minutes to read • Edit Online

In This Section

This section describes different technologies that you can use in your client applications.

Manipulations and Inertia
Describes how to use manipulations and inertia processor classes in different UI frameworks, such as Microsoft Windows Presentation Foundation
(WPF) or Microsoft XNA.

Client Application Services
Describes how to use use the Microsoft Ajax login, roles, and profile application services included in the Microsoft ASP.NET 2.0 AJAX Extensions in
your Windows-based applications.

https://github.com/dotnet/docs/blob/master/docs/framework/common-client-technologies/index.md
https://docs.microsoft.com/en-us/dotnet/framework/common-client-technologies/manipulations-and-inertia
https://docs.microsoft.com/en-us/dotnet/framework/common-client-technologies/client-application-services

Windows Presentation Foundation
5/4/2018 • 2 minutes to read • Edit Online

Windows Presentation Foundation (WPF) in Visual Studio provides developers with a unified programming model for building line-of-business
desktop applications on Windows.

Create Desktop Applications with Windows Presentation Foundation

Designing XAML in Visual Studio and Blend for Visual Studio

Get Visual Studio

https://github.com/dotnet/docs/blob/master/docs/framework/wpf/index.md
https://docs.microsoft.com/visualstudio/designers/create-modern-desktop-applications-with-windows-presentation-foundation
https://docs.microsoft.com/visualstudio/designers/designing-xaml-in-visual-studio
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs

Windows Forms
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

As forms are the base unit of your application, it is essential that you give some thought to their function and design. A form is ultimately a blank slate
that you, as a developer, enhance with controls to create a user interface and with code to manipulate data. To that end, Visual Studio provides you with
an integrated development environment (IDE) to aid in writing code, as well as a rich control set written with the .NET Framework. By complementing
the functionality of these controls with your code, you can easily and quickly develop the solutions you need.

Getting Started with Windows Forms
Provides links to topics about how to harness the power of Windows Forms to display data, handle user input, and deploy your applications easily and
with more robust security.

Enhancing Windows Forms Applications
Provides links to topics about how to enhance your Windows Forms with a variety of features.

Windows Forms Controls
Contains links to topics that describe Windows Forms controls and show how to implement them.

Windows Forms Data Binding
Contains links to topics that describe the Windows Forms data-binding architecture.

Graphics Overview
Discusses how to create graphics, draw text, and manipulate graphical images as objects using the advanced implementation of the Windows graphics
design interface.

ClickOnce Security and Deployment
Discusses the principles of ClickOnce deployment.

Windows Forms/MFC Programming Differences
Discusses the differences between MFC applications and Windows Forms.

Accessing data in Visual Studio
Discusses incorporating data access functionality into your applications.

Windows Forms Applications
Discusses the process of debugging applications created with the Windows Application project template, as well as how to change the Debug and
Release configurations.

Deploying Applications, Services, and Components
Describes the process by which you distribute a finished application or component to be installed on other computers.

Building Console Applications
Describes the basics of creating a console application using the Console class.

https://github.com/dotnet/docs/blob/master/docs/framework/winforms/index.md
https://docs.microsoft.com/en-us/dotnet/framework/winforms/getting-started-with-windows-forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/index
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/index
https://docs.microsoft.com/en-us/dotnet/framework/winforms/windows-forms-data-binding
https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/graphics-overview-windows-forms
https://docs.microsoft.com/visualstudio/deployment/clickonce-security-and-deployment
https://docs.microsoft.com/cpp/dotnet/windows-forms-mfc-programming-differences
https://docs.microsoft.com/visualstudio/data-tools/accessing-data-in-visual-studio
https://docs.microsoft.com/visualstudio/debugger/debugging-preparation-windows-forms-applications
https://msdn.microsoft.com/library/wtzawcsz
https://docs.microsoft.com/dotnet/api/system.console

Developing Service-Oriented Applications with WCF
5/5/2018 • 2 minutes to read • Edit Online

In this section

This section of the documentation provides information about Windows Communication Foundation (WCF), which is a unified programming model for
building service-oriented applications. It enables developers to build secure, reliable, transacted solutions that integrate across platforms and
interoperate with existing investments.

What's New in Windows Communication Foundation 4.5
Discusses features new to Windows Communication Foundation.

WCF Simplification Features
Discusses new features that make writing WCF applications simpler.

Guide to the Documentation
A description of the WCF documentation

Conceptual Overview
Summarizes information about the Windows Communication Foundation (WCF) messaging system and the classes that support its use.

Getting Started Tutorial
A step by step tutorial to create a WCF service and client

Basic WCF Programming
Describes the fundamentals for creating Windows Communication Foundation applications.

WCF Feature Details
Shows topics that let you choose which WCF feature or features you need to employ.

Extending WCF
Describes how to modify and extend WCF runtime components

Guidelines and Best Practices
Provides guidelines for creating Windows Communication Foundation (WCF) applications.

Administration and Diagnostics
Describes the diagnostic features of WCF

System Requirements
Describes system requirements needed to run WCF

Operating System Resources Required by WCF
Describes operating system resources required by WCF

Troubleshooting Setup Issues
Provides guidance for fixing WCF setup issues

Migrating from .NET Remoting to WCF
Compares .NET Remoting to WCF and provides migration guidance for common scenarios.

Using the WCF Development Tools
Describes the Visual Studio Windows Communication Foundation development tools that can assist you in developing your WCFservice.

Windows Communication Foundation Tools
Describes WCF tools designed to make it easier to create, deploy, and manage WCF applications

Windows Communication Foundation Samples
Samples that provide instruction on various aspects of Windows Communication Foundation

Windows Communication Foundation Glossary
Shows a list of terms specific to WCF

General Reference
The section describes the elements that are used to configure Windows Communication Foundation clients and services.

Feedback and Community
Information about how to provide feedback about Windows Communication Foundation

Privacy Information
Information regarding WCF and Privacy

https://github.com/dotnet/docs/blob/master/docs/framework/wcf/index.md
https://docs.microsoft.com/en-us/dotnet/framework/wcf/whats-new
https://docs.microsoft.com/en-us/dotnet/framework/wcf/wcf-simplification-features
https://docs.microsoft.com/en-us/dotnet/framework/wcf/guide-to-the-documentation
https://docs.microsoft.com/en-us/dotnet/framework/wcf/conceptual-overview
https://docs.microsoft.com/en-us/dotnet/framework/wcf/getting-started-tutorial
https://docs.microsoft.com/en-us/dotnet/framework/wcf/basic-wcf-programming
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/extending/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/guidelines-and-best-practices
https://docs.microsoft.com/en-us/dotnet/framework/wcf/diagnostics/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/wcf-system-requirements
https://docs.microsoft.com/en-us/dotnet/framework/wcf/operating-system-resources-required-by-wcf
https://docs.microsoft.com/en-us/dotnet/framework/wcf/troubleshooting-setup-issues
https://docs.microsoft.com/en-us/dotnet/framework/wcf/migrating-from-net-remoting-to-wcf
https://docs.microsoft.com/en-us/dotnet/framework/wcf/using-the-wcf-development-tools
https://docs.microsoft.com/en-us/dotnet/framework/wcf/tools
https://docs.microsoft.com/en-us/dotnet/framework/wcf/samples/index
https://docs.microsoft.com/en-us/dotnet/framework/wcf/glossary
https://docs.microsoft.com/en-us/dotnet/framework/wcf/general-reference
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feedback-and-community
https://docs.microsoft.com/en-us/dotnet/framework/wcf/privacy-information

Windows Workflow Foundation
5/4/2018 • 2 minutes to read • Edit Online

In This Section

This section describes the programming model, samples, and tools of the Windows Workflow Foundation (WF).

Guide to the Windows Workflow Documentation
A set of suggested topics to read, depending upon your familiarity (novice to well-acquainted), and requirements.

What's New in Windows Workflow Foundation
Discusses the changes in several development paradigms from previous versions.

What's New in Windows Workflow Foundation in .NET 4.5
Describes the new features in Windows Workflow Foundation in .NET Framework 4.6.1.

Windows Workflow Foundation Feature Specifics
Describes the new features in Windows Workflow Foundation in .NET Framework 4

Windows Workflow Conceptual Overview
A set of topics that discusses the larger concepts behind Windows Workflow Foundation.

Getting Started Tutorial
A set of walkthrough topics that introduce you to programming Windows Workflow Foundation applications.

Windows Workflow Foundation Programming
A set of primer topics that you should understand to become a proficient WF programmer.

Extending Windows Workflow Foundation
A set of topics that discusses how to extend or customize Windows Workflow Foundation to suit your needs.

Windows Workflow Foundation Glossary for .NET Framework 4.5
Defines a list of terms that are specific to WF.

Windows Workflow Samples
Contains sample applications that demonstrate WF features and scenarios.

https://github.com/dotnet/docs/blob/master/docs/framework/windows-workflow-foundation/index.md
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/guide-to-the-documentation
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/whats-new
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/whats-new-in-wf-in-dotnet
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/feature-specifics
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/conceptual-overview
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/getting-started-tutorial
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/programming
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/extend
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/glossary
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/samples/index

Developing Windows Service Applications
5/4/2018 • 2 minutes to read • Edit Online

WARNINGWARNING

In This Section

Related Sections

Using Microsoft Visual Studio or the Microsoft .NET Framework SDK, you can easily create services by creating an application that is installed as a
service. This type of application is called a Windows service. With framework features, you can create services, install them, and start, stop, and
otherwise control their behavior.

The Windows service template for C++ was not included in Visual Studio 2010. To create a Windows service, you can either create a service in managed code in Visual
C# or Visual Basic, which could interoperate with existing C++ code if required, or you can create a Windows service in native C++ by using the ATL Project Wizard.

Introduction to Windows Service Applications
Provides an overview of Windows service applications, the lifetime of a service, and how service applications differ from other common project types.

Walkthrough: Creating a Windows Service Application in the Component Designer
Provides an example of creating a service in Visual Basic and Visual C#.

Service Application Programming Architecture
Explains the language elements used in service programming.

How to: Create Windows Services
Describes the process of creating and configuring Windows services using the Windows service project template.

ServiceBase
Describes the major features of the ServiceBase class, which is used to create services.

ServiceProcessInstaller
Describes the features of the ServiceProcessInstaller class, which is used along with the ServiceInstaller class to install and uninstall your services.

ServiceInstaller
Describes the features of the ServiceInstaller class, which is used along with the ServiceProcessInstaller class to install and uninstall your service.

NIB Creating Projects from Templates
Describes the projects types used in this chapter and how to choose between them.

https://github.com/dotnet/docs/blob/master/docs/framework/windows-services/index.md
https://docs.microsoft.com/cpp/atl/reference/atl-project-wizard
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/walkthrough-creating-a-windows-service-application-in-the-component-designer
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/service-application-programming-architecture
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/how-to-create-windows-services
https://docs.microsoft.com/dotnet/api/system.serviceprocess.servicebase
https://docs.microsoft.com/dotnet/api/system.serviceprocess.servicebase
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceprocessinstaller
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceinstaller
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceinstaller
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceinstaller
https://docs.microsoft.com/dotnet/api/system.serviceprocess.serviceprocessinstaller
http://msdn.microsoft.com/library/7c36d86a-6b79-4480-8228-0f925f1204b2

64-bit Applications
5/2/2018 • 3 minutes to read • Edit Online

Running 32-bit vs. 64-bit Applications on Windows

NOTENOTE

General 64-Bit Programming Information

Compiler Support for Creating 64-Bit Applications

COMPILER COMPILER OPTION

Visual Basic /platform (Visual Basic)

Visual C# /platform (C# Compiler Options)

Visual C++ You can create platform-agnostic, Microsoft intermediate language (MSIL)
applications by using /clr:safe. For more information, see /clr (Common Language
Runtime Compilation).

Visual C++ includes a separate compiler for each 64-bit operating system. For
more information about how to use Visual C++ to create native applications that
run on a 64-bit Windows operating system, see 64-bit Programming.

When you compile an application, you can specify that it should run on a Windows 64-bit operating system either as a native application or under
WOW64 (Windows 32-bit on Windows 64-bit). WOW64 is a compatibility environment that enables a 32-bit application to run on a 64-bit system.
WOW64 is included in all 64-bit versions of the Windows operating system.

All applications that are built on the .NET Framework 1.0 or 1.1 are treated as 32-bit applications on a 64-bit operating system and are always executed
under WOW64 and the 32-bit common language runtime (CLR). 32-bit applications that are built on the .NET Framework 4 or later versions also run
under WOW64 on 64-bit systems.

Visual Studio installs the 32-bit version of the CLR on an x86 computer, and both the 32-bit version and the appropriate 64-bit version of the CLR on a
64-bit Windows computer. (Because Visual Studio is a 32-bit application, when it is installed on a 64-bit system, it runs under WOW64.)

Because of the design of x86 emulation and the WOW64 subsystem for the Itanium processor family, applications are restricted to execution on one processor. These
factors reduce the performance and scalability of 32-bit .NET Framework applications that run on Itanium-based systems. We recommend that you use the .NET
Framework 4, which includes native 64-bit support for Itanium-based systems, for increased performance and scalability.

By default, when you run a 64-bit managed application on a 64-bit Windows operating system, you can create an object of no more than 2 gigabytes
(GB). However, in the .NET Framework 4.5, you can increase this limit. For more information, see the <gcAllowVeryLargeObjects> element.

Many assemblies run identically on both the 32-bit CLR and the 64-bit CLR. However, some programs may behave differently, depending on the CLR, if
they contain one or more of the following:

Structures that contain members that change size depending on the platform (for example, any pointer type).

Pointer arithmetic that includes constant sizes.

Incorrect platform invoke or COM declarations that use Int32 for handles instead of IntPtr .

Code that casts IntPtr to Int32 .

For more information about how to port a 32-bit application to run on the 64-bit CLR, see Migrating 32-bit Managed Code to 64-bit.

For general information about 64-bit programming, see the following documents:

For more information about the 64-bit version of the CLR on a 64-bit Windows computer, see the .NET Framework Developer Center on the
MSDN website.

In the Windows SDK documentation, see Programming Guide for 64-bit Windows.

For information about how to download a 64-bit version of the CLR, see .NET Framework Developer Center Downloads on the MSDN website.

For information about Visual Studio support for creating 64-bit applications, see Visual Studio IDE 64-Bit Support.

By default, when you use the .NET Framework to build an application on either a 32-bit or a 64-bit computer, the application will run on a 64-bit
computer as a native application (that is, not under WOW64). The following table lists documents that explain how to use Visual Studio compilers to
create 64-bit applications that will run as native, under WOW64, or both.

https://github.com/dotnet/docs/blob/master/docs/framework/64-bit-apps.md
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/gcallowverylargeobjects-element
https://msdn.microsoft.com/library/ms973190.aspx
http://go.microsoft.com/fwlink/?LinkId=37079
http://go.microsoft.com/fwlink/p/?LinkId=253512
http://go.microsoft.com/fwlink/?LinkId=50953
http://msdn.microsoft.com/library/b08ff3ad-c6fd-468f-94d5-01a61aab6833
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/platform-compiler-option
https://docs.microsoft.com/cpp/build/reference/clr-common-language-runtime-compilation
http://msdn.microsoft.com/library/h2k70f3s(v=vs.80)

Determining the Status of an .exe File or .dll File
To determine whether an .exe file or .dll file is meant to run only on a specific platform or under WOW64, use CorFlags.exe (CorFlags Conversion Tool)
with no options. You can also use CorFlags.exe to change the platform status of an .exe file or .dll file. The CLR header of a Visual Studio assembly has
the major runtime version number set to 2 and the minor runtime version number set to 5. Applications that have the minor runtime version set to 0
are treated as legacy applications and are always executed under WOW64.

To programmatically query an .exe or .dll to see whether it is meant to run only on a specific platform or under WOW64, use the Module.GetPEKind
method.

https://docs.microsoft.com/en-us/dotnet/framework/tools/corflags-exe-corflags-conversion-tool
https://docs.microsoft.com/dotnet/api/system.reflection.module.getpekind

Developing Web Applications with ASP.NET
5/2/2018 • 2 minutes to read • Edit Online

See also

ASP.NET is a .NET Framework technology for creating web apps. The following links are provided for your convenience:

ASP.NET Core Documentation
ASP.NET documentation
ASP.NET MVC
ASP.NET Web Pages
ASP.NET Web API

Development Guide

https://github.com/dotnet/docs/blob/master/docs/framework/develop-web-apps-with-aspnet.md
https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/aspnet/overview
http://go.microsoft.com/fwlink/p/?LinkID=227227
http://go.microsoft.com/fwlink/p/?LinkId=251040
http://go.microsoft.com/fwlink/p/?LinkId=251041

Network Programming in the .NET Framework
5/4/2018 • 4 minutes to read • Edit Online

In This Section

The Microsoft .NET Framework provides a layered, extensible, and managed implementation of Internet services that can be quickly and easily
integrated into your applications. Your network applications can build on pluggable protocols to automatically take advantage of new Internet protocols,
or they can use a managed implementation of the Windows socket interface to work with the network on the socket level.

Introducing Pluggable Protocols
Describes how to access an Internet resource without regard to the access protocol that it requires.

Requesting Data
Explains how to use pluggable protocols to upload and download data from Internet resources.

Programming Pluggable Protocols
Explains how to derive protocol-specific classes to implement pluggable protocols.

Using Application Protocols
Describes programming applications that take advantage of network protocols such as TCP, UDP, and HTTP.

Internet Protocol Version 6
Describes the advantages of Internet Protocol version 6 (IPv6) over the current version of the Internet Protocol suite (IPv4), describes IPv6 addressing,
routing and auto-configuration, and how to enable and disable IPv6.

Configuring Internet Applications
Explains how to use the .NET Framework configuration files to configure Internet applications.

Network Tracing in the .NET Framework
Explains how to use network tracing to get information about method invocations and network traffic generated by a managed application.

Cache Management for Network Applications
Describes how to use caching for applications that use the System.Net.WebClient, System.Net.WebRequest, and System.Net.HttpWebRequest classes.

Security in Network Programming
Describes how to use standard Internet security and authentication techniques.

Best Practices for System.Net Classes
Provides tips and tricks for getting the most out of your Internet applications.

Accessing the Internet Through a Proxy
Describes how to configure proxies.

NetworkInformation
Describes how to gather information about network events, changes, statistics, and properties and also explains how to determine whether a remote
host is reachable by using the System.Net.NetworkInformation.Ping class.

Changes to the System.Uri namespace in Version 2.0
Describes several changes made to the System.Uri class in Version 2.0 to fixed incorrect behavior, enhance usability, and enhance security.

International Resource Identifier Support in System.Uri
Describes enhancements to the System.Uri class in Version 3.5, 3.0 SP1, and 2.0 SP1 for International Resource Identifier (IRI) and Internationalized
Domain Name (IDN) support.

Socket Performance Enhancements in Version 3.5
Describes a set of enhancements to the System.Net.Sockets.Socket class in Version 3.5, 3.0 SP1, and 2.0 SP1 that provide an alternative asynchronous
pattern that can be used by specialized high-performance socket applications.

Peer Name Resolution Protocol
Describes support added in Version 3.5 to support the Peer Name Resolution Protocol (PNRP), a serverless and dynamic name registration and name
resolution protocol. These new features are supported by the System.Net.PeerToPeer namespace.

Peer-to-Peer Collaboration
Describes support added in Version 3.5 to support the Peer-to-Peer Collaboration that builds on PNRP. These new features are supported by the
System.Net.PeerToPeer.Collaboration namespace.

Changes to NTLM authentication for HttpWebRequest in Version 3.5 SP1
Describes security changes made in Version 3.5 SP1 that affect how integrated Windows authentication is handled by the System.Net.HttpWebRequest,
System.Net.HttpListener, System.Net.Security.NegotiateStream, and related classes in the System.Net namespace.

Integrated Windows Authentication with Extended Protection
Describes enhancements for extended protection that affect how integrated Windows authentication is handled by the System.Net.HttpWebRequest,

https://github.com/dotnet/docs/blob/master/docs/framework/network-programming/index.md
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/introducing-pluggable-protocols
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/requesting-data
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/programming-pluggable-protocols
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-application-protocols
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/internet-protocol-version-6
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/configuring-internet-applications
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/network-tracing
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/cache-management-for-network-applications
https://docs.microsoft.com/dotnet/api/system.net.webclient
https://docs.microsoft.com/dotnet/api/system.net.webrequest
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/security-in-network-programming
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/best-practices-for-system-net-classes
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/accessing-the-internet-through-a-proxy
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/networkinformation
https://docs.microsoft.com/dotnet/api/system.net.networkinformation.ping
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/changes-to-the-system-uri-namespace-in-version-2-0
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/international-resource-identifier-support-in-system-uri
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/socket-performance-enhancements-in-version-3-5
https://docs.microsoft.com/dotnet/api/system.net.sockets.socket
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/peer-name-resolution-protocol
https://docs.microsoft.com/dotnet/api/system.net.peertopeer
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/peer-to-peer-collaboration
https://docs.microsoft.com/dotnet/api/system.net.peertopeer.collaboration
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/changes-to-ntlm-authentication-for-httpwebrequest-in-version-3-5-sp1
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/dotnet/api/system.net.httplistener
https://docs.microsoft.com/dotnet/api/system.net.security.negotiatestream
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/integrated-windows-authentication-with-extended-protection
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest

Reference

See Also

System.Net.HttpListener, System.Net.Mail.SmtpClient, System.Net.Security.SslStream, System.Net.Security.NegotiateStream, and related classes in the
System.Net and related namespaces.

NAT Traversal using IPv6 and Teredo
Describes enhancements added to the System.Net, System.Net.NetworkInformation, and System.Net.Sockets namespaces to support NAT traversal
using IPv6 and Teredo.

Network Isolation for Windows Store Apps
Describes the impact of network isolation when classes in the System.Net, System.Net.Http, and System.Net.Http.Headers namespaces are used in
Windows 8.x Store apps.

Network Programming Samples
Links to downloadable network programming samples that use classes in the System.Net, System.Net.Cache, System.Net.Configuration,
System.Net.Mail, System.Net.Mime, System.Net.NetworkInformation, System.Net.PeerToPeer, System.Net.Security, System.Net.Sockets namespaces.

System.Net
Provides a simple programming interface for many of the protocols used on networks today. The System.Net.WebRequest and
System.Net.WebResponse classes in this namespace are the basis for pluggable protocols.

System.Net.Cache
Defines the types and enumerations used to define cache policies for resources obtained using the System.Net.WebRequest and
System.Net.HttpWebRequest classes.

System.Net.Configuration
Classes that applications use to programmatically access and update configuration settings for the System.Net namespaces.

System.Net.Http
Classes that provides a programming interface for modern HTTP applications.

System.Net.Http.Headers
Provides support for collections of HTTP headers used by the System.Net.Http namespace

System.Net.Mail
Classes to compose and send mail using the SMTP protocol.

System.Net.Mime
Defines types that are used to represent Multipurpose Internet Mail Exchange (MIME) headers used by classes in the System.Net.Mail namespace.

System.Net.NetworkInformation
Classes to programmatically gather information about network events, changes, statistics, and properties.

System.Net.PeerToPeer
Provides a managed implementation of the Peer Name Resolution Protocol (PNRP) for developers.

System.Net.PeerToPeer.Collaboration
Provides a managed implementation of the Peer-to-Peer Collaboration interface for developers.

System.Net.Security
Classes to provide network streams for secure communications between hosts.

System.Net.Sockets
Provides a managed implementation of the Windows Sockets (Winsock) interface for developers who need to help control access to the network.

System.Net.WebSockets
Provides a managed implementation of the WebSocket interface for developers.

System.Uri
Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.

System.Security.Authentication.ExtendedProtection
Provides support for authentication using extended protection for applications.

System.Security.Authentication.ExtendedProtection.Configuration
Provides support for configuration of authentication using extended protection for applications.

Transport Layer Security (TLS) best practices with .NET Framework
Network Programming How-to Topics
Network Programming Samples
Networking Samples for .NET on MSDN Code Gallery
HttpClient Sample

https://docs.microsoft.com/dotnet/api/system.net.httplistener
https://docs.microsoft.com/dotnet/api/system.net.mail.smtpclient
https://docs.microsoft.com/dotnet/api/system.net.security.sslstream
https://docs.microsoft.com/dotnet/api/system.net.security.negotiatestream
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/nat-traversal-using-ipv6-and-teredo
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/dotnet/api/system.net.networkinformation
https://docs.microsoft.com/dotnet/api/system.net.sockets
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/network-isolation-for-windows-store-apps
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/dotnet/api/system.net.http
https://docs.microsoft.com/dotnet/api/system.net.http.headers
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/network-programming-samples
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/dotnet/api/system.net.cache
https://docs.microsoft.com/dotnet/api/system.net.configuration
https://docs.microsoft.com/dotnet/api/system.net.mail
https://docs.microsoft.com/dotnet/api/system.net.mime
https://docs.microsoft.com/dotnet/api/system.net.networkinformation
https://docs.microsoft.com/dotnet/api/system.net.peertopeer
https://docs.microsoft.com/dotnet/api/system.net.security
https://docs.microsoft.com/dotnet/api/system.net.sockets
https://docs.microsoft.com/dotnet/api/system.net
https://docs.microsoft.com/dotnet/api/system.net.webrequest
https://docs.microsoft.com/dotnet/api/system.net.webresponse
https://docs.microsoft.com/dotnet/api/system.net.cache
https://docs.microsoft.com/dotnet/api/system.net.webrequest
https://docs.microsoft.com/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/dotnet/api/system.net.configuration
https://docs.microsoft.com/dotnet/api/system.net.http
https://docs.microsoft.com/dotnet/api/system.net.http.headers
https://docs.microsoft.com/dotnet/api/system.net.http
https://docs.microsoft.com/dotnet/api/system.net.mail
https://docs.microsoft.com/dotnet/api/system.net.mime
https://docs.microsoft.com/dotnet/api/system.net.mail
https://docs.microsoft.com/dotnet/api/system.net.networkinformation
https://docs.microsoft.com/dotnet/api/system.net.peertopeer
https://docs.microsoft.com/dotnet/api/system.net.peertopeer.collaboration
https://docs.microsoft.com/dotnet/api/system.net.security
https://docs.microsoft.com/dotnet/api/system.net.sockets
https://docs.microsoft.com/dotnet/api/system.net.websockets
https://docs.microsoft.com/dotnet/api/system.uri
https://docs.microsoft.com/dotnet/api/system.security.authentication.extendedprotection
https://docs.microsoft.com/dotnet/api/system.security.authentication.extendedprotection.configuration
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/network-programming-how-to-topics
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/network-programming-samples
http://code.msdn.microsoft.com/Wiki/View.aspx?ProjectName=nclsamples
http://go.microsoft.com/fwlink/?LinkId=242550

Configuring Apps by using Configuration Files
5/2/2018 • 5 minutes to read • Edit Online

NOTENOTE

Configuration File Format

<codeBase version="2.0.0.0"
 href="http://www.litwareinc.com/myAssembly.dll"/>

Machine Configuration Files

NOTENOTE

Application Configuration Files

The .NET Framework, through configuration files, gives developers and administrators control and flexibility over the way applications run.
Configuration files are XML files that can be changed as needed. An administrator can control which protected resources an application can access,
which versions of assemblies an application will use, and where remote applications and objects are located. Developers can put settings in
configuration files, eliminating the need to recompile an application every time a setting changes. This section describes what can be configured and
why configuring an application might be useful.

Managed code can use the classes in the System.Configuration namespace to read settings from the configuration files, but not to write settings to those files.

This topic describes the syntax of configuration files and provides information about the three types of configuration files: machine, application, and
security.

Configuration files contain elements, which are logical data structures that set configuration information. Within a configuration file, you use tags to
mark the beginning and end of an element. For example, the <runtime> element consists of <runtime> child elements </runtime> . An empty element
would be written as <runtime/> or <runtime></runtime> .

As with all XML files, the syntax in configuration files is case-sensitive.

You specify configuration settings using predefined attributes, which are name/value pairs inside an element's start tag. The following example specifies
two attributes (version and href) for the <codeBase> element, which specifies where the runtime can locate an assembly (for more information, see
Specifying an Assembly's Location).

The machine configuration file, Machine.config, contains settings that apply to an entire computer. This file is located in the %runtime install
path%\Config directory. Machine.config contains configuration settings for machine-wide assembly binding, built-in remoting channels, and ASP.NET.

The configuration system first looks in the machine configuration file for the <appSettings> element and other configuration sections that a developer
might define. It then looks in the application configuration file. To keep the machine configuration file manageable, it is best to put these settings in the
application configuration file. However, putting the settings in the machine configuration file can make your system more maintainable. For example, if
you have a third-party component that both your client and server application uses, it is easier to put the settings for that component in one place. In
this case, the machine configuration file is the appropriate place for the settings, so you don't have the same settings in two different files.

Deploying an application using XCOPY will not copy the settings in the machine configuration file.

For more information about how the common language runtime uses the machine configuration file for assembly binding, see How the Runtime
Locates Assemblies.

An application configuration file contains settings that are specific to an app. This file includes configuration settings that the common language runtime
reads (such as assembly binding policy, remoting objects, and so on), and settings that the app can read.

The name and location of the application configuration file depend on the app's host, which can be one of the following:

Executable–hosted app.

These apps have two configuration files: a source configuration file, which is modified by the developer during development, and an output file
that is distributed with the app.

When you develop in Visual Studio, place the source configuration file for your app in the project directory and set its Copy To Output
Directory property to Copy always or Copy if newer. The name of the configuration file is the name of the app with a .config extension. For
example, an app called myApp.exe should have a source configuration file called myApp.exe.config.

Visual Studio automatically copies the source configuration file to the directory where the compiled assembly is placed to create the output
configuration file, which is deployed with the app. In some cases, Visual Studio may modify the output configuration file; for more information,

https://github.com/dotnet/docs/blob/master/docs/framework/configure-apps/index.md
https://docs.microsoft.com/dotnet/api/system.configuration
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/specify-assembly-location
http://msdn.microsoft.com/library/6e9b60e0-9bc0-47b4-a8ef-3b78585f9a18
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/index
https://docs.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies

Security Configuration Files

NOTENOTE

In This Section

See Also

see the Redirecting assembly versions at the app level section of the Redirecting Assembly Versions article.

ASP.NET-hosted app.

For more information about ASP.NET configuration files, see ASP.NET Configuration Settings

Internet Explorer-hosted app.

If an app hosted in Internet Explorer has a configuration file, the location of this file is specified in a <link> tag with the following syntax:

<link rel="ConfigurationFileName" href="location">

In this tag, location is a URL to the configuration file. This sets the app base. The configuration file must be located on the same website as the
app.

Security configuration files contain information about the code group hierarchy and permission sets associated with a policy level. We strongly
recommend that you use the Code Access Security Policy tool (Caspol.exe) to modify security policy to ensure that policy changes do not corrupt the
security configuration files.

Starting with the .NET Framework 4, the security configuration files are present only if security policy has been changed.

The security configuration files are in the following locations:

Enterprise policy configuration file: %runtime-install-path%\Config\Enterprisesec.config

Machine policy configuration file: %runtime-install-path%\Config\Security.config

User policy configuration file: %USERPROFILE%\Application data\Microsoft\CLR security config\vxx.xx\Security.config

How to: Locate Assemblies by Using DEVPATH
Describes how to direct the runtime to use the DEVPATH environment variable when searching for assemblies.

Redirecting Assembly Versions
Describes how to specify the location of an assembly and which version of an assembly to use.

Specifying an Assembly's Location
Describes how to specify where the runtime should search for an assembly.

Configuring Cryptography Classes
Describes how to map an algorithm name to a cryptography class and an object identifier to a cryptography algorithm.

How to: Create a Publisher Policy
Describes when and how you should add a publisher policy file to specify assembly redirection and code base settings.

Configuration File Schema
Describes the schema hierarchy for startup, runtime, network, and other types of configuration settings.

Configuration File Schema
Specifying an Assembly's Location
Redirecting Assembly Versions
Registering Remote Objects Using Configuration Files
ASP.NET Web Site Administration
NIB: Security Policy Management
Caspol.exe (Code Access Security Policy Tool)
Assemblies in the Common Language Runtime
Remote Objects

https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/redirect-assembly-versions
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/redirect-assembly-versions
https://msdn.microsoft.com/library/116608f3-c03d-4413-9fc7-978703e18b0f(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/framework/tools/caspol-exe-code-access-security-policy-tool
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-locate-assemblies-by-using-devpath
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/redirect-assembly-versions
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/specify-assembly-location
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/configure-cryptography-classes
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/how-to-create-a-publisher-policy
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/index
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/index
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/specify-assembly-location
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/redirect-assembly-versions
http://msdn.microsoft.com/library/bc503ee1-c811-4f82-9525-470343326adc
http://msdn.microsoft.com/library/1298034b-5f7d-464d-abd1-ad9e6b3eeb7e
http://msdn.microsoft.com/library/d754e05d-29dc-4d3a-a2c2-95eaaf1b82b9
https://docs.microsoft.com/en-us/dotnet/framework/tools/caspol-exe-code-access-security-policy-tool
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime
http://msdn.microsoft.com/library/515686e6-0a8d-42f7-8188-73abede57c58

Compiling Apps with .NET Native
5/22/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

.NET NATIVE C++

Libraries The .NET Framework + Windows Runtime Win32 + Windows Runtime

Compiler UTC optimizing compiler UTC optimizing compiler

Deployed Ready-to-run binaries Ready-to-run binaries (ASM)

Runtime MRT.dll (Minimal CLR Runtime) CRT.dll (C Runtime)

In This Section

.NET Native is a precompilation technology for building and deploying Windows apps that is included with Visual Studio 2015 and later versions. It
automatically compiles the release version of apps that are written in managed code (C# or Visual Basic) and that target the .NET Framework and
Windows 10 to native code.

Typically, apps that target the .NET Framework are compiled to intermediate language (IL). At run time, the just-in-time (JIT) compiler translates the IL
to native code. In contrast, .NET Native compiles Windows apps directly to native code. For developers, this means:

Your apps feature the performance of native code. Usually, performance will be superior to code that is first compiled to IL and then compiled to
native code by the JIT compiler.

You can continue to program in C# or Visual Basic.

You can continue to take advantage of the resources provided by the .NET Framework, including its class library, automatic memory
management and garbage collection, and exception handling.

For users of your apps, .NET Native offers these advantages:

Faster execution times for the majority of apps and scenarios.

Faster startup times for the majority of apps and scenarios.

Low deployment and update costs.

Optimized app memory usage.

For the vast majority of apps and scenarios, .NET Native offers significantly faster startup times and superior performance when compared to an app compiled to IL or
to an NGEN image. However, your results may vary. To ensure that your app has benefited from the performance enhancements of .NET Native, you should compare
its performance with that of the non-.NET Native version of your app. For more information, see Performance Session Overview.

But .NET Native involves more than a compilation to native code. It transforms the way that .NET Framework apps are built and executed. In particular :

During precompilation, required portions of the .NET Framework are statically linked into your app. This allows the app to run with app-local
libraries of the .NET Framework, and the compiler to perform global analysis to deliver performance wins. As a result, apps launch consistently
faster even after .NET Framework updates.

The .NET Native runtime is optimized for static precompilation and in the vast majority of cases offers superior performance. At the same time, it
retains the core reflection features that developers find so productive.

.NET Native uses the same back end as the C++ compiler, which is optimized for static precompilation scenarios.

.NET Native is able to bring the performance benefits of C++ to managed code developers because it uses the same or similar tools as C++ under the
hood, as shown in this table.

For Windows apps for Windows 10, you upload .NET Native Code Compilation binaries in app packages (.appx files) to the Windows Store.

For more information about developing apps with .NET Native Code Compilation, see these topics:

Getting Started with .NET Native Code Compilation: The Developer Experience Walkthrough

.NET Native and Compilation: How .NET Native compiles your project to native code.

Reflection and .NET Native

APIs That Rely on Reflection

Reflection API Reference

https://github.com/dotnet/docs/blob/master/docs/framework/net-native/index.md
https://docs.microsoft.com/visualstudio/profiling/performance-session-overview
https://docs.microsoft.com/en-us/dotnet/framework/net-native/getting-started-with-net-native
https://docs.microsoft.com/en-us/dotnet/framework/net-native/net-native-and-compilation
https://docs.microsoft.com/en-us/dotnet/framework/net-native/reflection-and-net-native
https://docs.microsoft.com/en-us/dotnet/framework/net-native/apis-that-rely-on-reflection
https://docs.microsoft.com/en-us/dotnet/framework/net-native/net-native-reflection-api-reference

Runtime Directives (rd.xml) Configuration File Reference

Serialization and Metadata

Migrating Your Windows Store App to .NET Native

.NET Native General Troubleshooting

https://docs.microsoft.com/en-us/dotnet/framework/net-native/runtime-directives-rd-xml-configuration-file-reference
https://docs.microsoft.com/en-us/dotnet/framework/net-native/serialization-and-metadata
https://docs.microsoft.com/en-us/dotnet/framework/net-native/migrating-your-windows-store-app-to-net-native
https://docs.microsoft.com/en-us/dotnet/framework/net-native/net-native-general-troubleshooting

Windows Identity Foundation
5/4/2018 • 2 minutes to read • Edit Online

What's New in Windows Identity Foundation 4.5

Windows Identity Foundation 4.5 Overview

Claims-Based Identity Model

Claims Based Authorization Using WIF

WIF Claims Programming Model

Getting Started With WIF

Building My First Claims-Aware ASP.NET Web Application

Building My First Claims-Aware WCF Service

WIF Features

Identity and Access Tool for Visual Studio 2012

WIF Session Management

WIF and Web Farms

WSFederation Authentication Module Overview

WSTrustChannelFactory and WSTrustChannel

WIF How-To's Index

How To: Build Claims-Aware ASP.NET MVC Web Application Using WIF

How To: Build Claims-Aware ASP.NET Web Forms Application Using WIF

How To: Build Claims-Aware ASP.NET Application Using Forms-Based Authentication

How To: Build Claims-Aware ASP.NET Application Using Windows Authentication

How To: Debug Claims-Aware Applications And Services Using WIF Tracing

How To: Display Signed In Status Using WIF

How To: Enable Token Replay Detection

How To: Enable WIF Tracing

How To: Enable WIF for a WCF Web Service Application

How To: Transform Incoming Claims

WIF Guidelines

Guidelines for Migrating an Application Built Using WIF 3.5 to WIF 4.5

Namespace Mapping between WIF 3.5 and WIF 4.5

WIF Code Sample Index

WIF Extensions

WIF API Reference

WIF Configuration Reference

WIF Configuration Schema Conventions

https://github.com/dotnet/docs/blob/master/docs/framework/security/index.md
https://docs.microsoft.com/en-us/dotnet/framework/security/whats-new-in-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-overview
https://docs.microsoft.com/en-us/dotnet/framework/security/claims-based-identity-model
https://docs.microsoft.com/en-us/dotnet/framework/security/claims-based-authorization-using-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-claims-programming-model
https://docs.microsoft.com/en-us/dotnet/framework/security/getting-started-with-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/building-my-first-claims-aware-aspnet-web-app
https://docs.microsoft.com/en-us/dotnet/framework/security/building-my-first-claims-aware-wcf-service
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-features
https://docs.microsoft.com/en-us/dotnet/framework/security/identity-and-access-tool-for-vs
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-session-management
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-and-web-farms
https://docs.microsoft.com/en-us/dotnet/framework/security/wsfederation-authentication-module-overview
https://docs.microsoft.com/en-us/dotnet/framework/security/wstrustchannelfactory-and-wstrustchannel
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-how-tos-index
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-build-claims-aware-aspnet-mvc-web-app-using-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-build-claims-aware-aspnet-web-forms-app-using-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/claims-aware-aspnet-app-forms-authentication
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-build-claims-aware-aspnet-app-using-windows-authentication
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-debug-claims-aware-applications-and-services-using-wif-tracing
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-display-signed-in-status-using-wif
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-enable-token-replay-detection
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-enable-wif-tracing
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-enable-wif-for-a-wcf-web-service-application
https://docs.microsoft.com/en-us/dotnet/framework/security/how-to-transform-incoming-claims
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-guidelines
https://docs.microsoft.com/en-us/dotnet/framework/security/guidelines-for-migrating-an-application-built-using-wif-3-5-to-wif-4-5
https://docs.microsoft.com/en-us/dotnet/framework/security/namespace-mapping-between-wif-3-5-and-wif-4-5
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-code-sample-index
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-extensions
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-api-reference
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-configuration-reference
https://docs.microsoft.com/en-us/dotnet/framework/security/wif-configuration-schema-conventions

Debugging, Tracing, and Profiling
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

To debug a .NET Framework application, the compiler and runtime environment must be configured to enable a debugger to attach to the application
and to produce both symbols and line maps, if possible, for the application and its corresponding Microsoft intermediate language (MSIL). After a
managed application has been debugged, it can be profiled to boost performance. Profiling evaluates and describes the lines of source code that
generate the most frequently executed code, and how much time it takes to execute them.

.NET Framework applications are easily debugged by using Visual Studio, which handles many of the configuration details. If Visual Studio is not
installed, you can examine and improve the performance of .NET Framework applications by using the debugging classes in the .NET Framework
System.Diagnostics namespace. This namespace includes the Trace, Debug, and TraceSource classes for tracing execution flow, and the Process,
EventLog, and PerformanceCounter classes for profiling code.

Enabling JIT-Attach Debugging
Shows how to configure the registry to JIT-attach a debug engine to a .NET Framework application.

Making an Image Easier to Debug
Shows how to turn JIT tracking on and optimization off to make an assembly easier to debug.

Tracing and Instrumenting Applications
Describes how to monitor the execution of your application while it is running, and how to instrument it to display how well it is performing or whether
something has gone wrong.

Diagnosing Errors with Managed Debugging Assistants
Describes managed debugging assistants (MDAs), which are debugging aids that work in conjunction with the common language runtime (CLR) to
provide information on runtime state.

Enhancing Debugging with the Debugger Display Attributes
Describes how the developer of a type can specify what that type will look like when it is displayed in a debugger.

Performance Counters
Describes the counters that you can use to track the performance of an application.

Debugging ASP.NET and AJAX Applications
Provides prerequisites and instructions for how to debug an ASP.NET application during development or after deployment.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application, and information about dynamic programming, interoperability, extensibility, memory management, and threading.

https://github.com/dotnet/docs/blob/master/docs/framework/debug-trace-profile/index.md
https://docs.microsoft.com/dotnet/api/system.diagnostics
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/dotnet/api/system.diagnostics.tracesource
https://docs.microsoft.com/dotnet/api/system.diagnostics.process
https://docs.microsoft.com/dotnet/api/system.diagnostics.eventlog
https://docs.microsoft.com/dotnet/api/system.diagnostics.performancecounter
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/enabling-jit-attach-debugging
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/making-an-image-easier-to-debug
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/tracing-and-instrumenting-applications
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/diagnosing-errors-with-managed-debugging-assistants
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/enhancing-debugging-with-the-debugger-display-attributes
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/performance-counters
http://msdn.microsoft.com/library/9d531913-541b-47b8-864d-138021fca0c6

Deploying the .NET Framework and Applications
5/4/2018 • 5 minutes to read • Edit Online

Key Deployment Resources

Features That Simplify Deployment

This article helps you get started deploying the .NET Framework with your application. Most of the information is intended for developers, OEMs, and
enterprise administrators. Users who want to install the .NET Framework on their computers should read Installing the .NET Framework.

Use the following links to other MSDN topics for specific information about deploying and servicing the .NET Framework.

Setup and deployment

General installer and deployment information:

Installer options:

Web installer

Offline installer

Installation modes:

Silent installation

Displaying a UI

Reducing system restarts during .NET Framework 4.5 installations

Troubleshoot blocked .NET Framework installations and uninstallations

Deploying the .NET Framework with a client application (for developers):

Using InstallShield in a setup and deployment project

Using a Visual Studio ClickOnce application

Creating a WiX installation package

Using a custom installer

Additional information for developers

Deploying the .NET Framework (for OEMs and administrators):

Windows Assessment and Deployment Kit (ADK)

Administrator's guide

Servicing

For general information, see the .NET Framework blog

Detecting versions

Detecting service packs and updates

The .NET Framework provides a number of basic features that make it easier to deploy your applications:

No-impact applications.

This feature provides application isolation and eliminates DLL conflicts. By default, components do not affect other applications.

Private components by default.

By default, components are deployed to the application directory and are visible only to the containing application.

Controlled code sharing.

Code sharing requires you to explicitly make code available for sharing instead of being the default behavior.

Side-by-side versioning.

Multiple versions of a component or application can coexist, you can choose which versions to use, and the common language runtime enforces
versioning policy.

XCOPY deployment and replication.

https://github.com/dotnet/docs/blob/master/docs/framework/deployment/index.md
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/install/guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/reducing-system-restarts
https://docs.microsoft.com/en-us/dotnet/framework/install/troubleshoot-blocked-installations-and-uninstallations
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
http://go.microsoft.com/fwlink/p/?LinkId=254976
https://docs.microsoft.com/en-us/dotnet/framework/deployment/guide-for-administrators
http://go.microsoft.com/fwlink/p/?LinkId=254977
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed
https://docs.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-net-framework-updates-are-installed

Packaging and Distributing .NET Framework Applications

PackagingPackaging

DistributionDistribution

Installation LocationInstallation Location

Related Topics
TITLE DESCRIPTION

How the Runtime Locates Assemblies Describes how the common language runtime determines which assembly to use
to fulfill a binding request.

Best Practices for Assembly Loading Discusses ways to avoid problems of type identity that can lead to
InvalidCastException, MissingMethodException, and other errors.

Self-described and self-contained components and applications can be deployed without registry entries or dependencies.

On-the-fly updates.

Administrators can use hosts, such as ASP.NET, to update program DLLs, even on remote computers.

Integration with the Windows Installer.

Advertisement, publishing, repair, and install-on-demand are all available when deploying your application.

Enterprise deployment.

This feature provides easy software distribution, including using Active Directory.

Downloading and caching.

Incremental downloads keep downloads smaller, and components can be isolated for use only by the application for low-impact deployment.

Partially trusted code.

Identity is based on the code instead of the user, and no certificate dialog boxes appear.

Some of the packaging and deployment information for the .NET Framework is described in other sections of the documentation. Those sections
provide information about the self-describing units called assemblies, which require no registry entries, strong-named assemblies, which ensure name
uniqueness and prevent name spoofing, and assembly versioning, which addresses many of the problems associated with DLL conflicts. The following
sections provide information about packaging and distributing .NET Framework applications.

The .NET Framework provides the following options for packaging applications:

As a single assembly or as a collection of assemblies.

With this option, you simply use the .dll or .exe files as they were built.

As cabinet (CAB) files.

With this option, you compress files into .cab files to make distribution or download less time consuming.

As a Windows Installer package or in other installer formats.

With this option, you create .msi files for use with the Windows Installer, or you package your application for use with some other installer.

The .NET Framework provides the following options for distributing applications:

Use XCOPY or FTP.

Because common language runtime applications are self-describing and require no registry entries, you can use XCOPY or FTP to simply copy
the application to an appropriate directory. The application can then be run from that directory.

Use code download.

If you are distributing your application over the Internet or through a corporate intranet, you can simply download the code to a computer and
run the application there.

Use an installer program such as Windows Installer 2.0.

Windows Installer 2.0 can install, repair, or remove .NET Framework assemblies in the global assembly cache and in private directories.

To determine where to deploy your application's assemblies so they can be found by the runtime, see How the Runtime Locates Assemblies.

Security considerations can also affect how you deploy your application. Security permissions are granted to managed code according to where the
code is located. Deploying an application or component to a location where it receives little trust, such as the Internet, limits what the application or
component can do. For more information about deployment and security considerations, see Code Access Security Basics.

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/strong-named-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assembly-versioning
https://docs.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/misc/code-access-security-basics
https://docs.microsoft.com/en-us/dotnet/framework/deployment/how-the-runtime-locates-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/deployment/best-practices-for-assembly-loading
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.missingmethodexception

Reducing System Restarts During .NET Framework 4.5 Installations Describes the Restart Manager, which prevents reboots whenever possible, and
explains how applications that install the .NET Framework can take advantage of it.

Deployment Guide for Administrators Explains how a system administrator can deploy the .NET Framework and its
system dependencies across a network by using System Center Configuration
Manager (SCCM).

Deployment Guide for Developers Explains how developers can install .NET Framework on their users' computers with
their applications.

Deploying Applications, Services, and Components Discusses deployment options in Visual Studio, including instructions for publishing
an application using the ClickOnce and Windows Installer technologies.

Publishing ClickOnce Applications Describes how to package a Windows Forms application and deploy it with
ClickOnce to client computers on a network.

Packaging and Deploying Resources Describes the hub and spoke model that the .NET Framework uses to package and
deploy resources; covers resource naming conventions, fallback process, and
packaging alternatives.

Deploying an Interop Application Explains how to ship and install interop applications, which typically include a .NET
Framework client assembly, one or more interop assemblies representing distinct
COM type libraries, and one or more registered COM components.

How to: Get Progress from the .NET Framework 4.5 Installer Describes how to silently launch and track the .NET Framework setup process while
showing your own view of the setup progress.

TITLE DESCRIPTION

See Also
Development Guide

https://docs.microsoft.com/en-us/dotnet/framework/deployment/reducing-system-restarts
https://docs.microsoft.com/en-us/dotnet/framework/deployment/guide-for-administrators
https://docs.microsoft.com/en-us/dotnet/framework/deployment/deployment-guide-for-developers
https://docs.microsoft.com/visualstudio/deployment/deploying-applications-services-and-components
https://docs.microsoft.com/visualstudio/deployment/publishing-clickonce-applications
https://docs.microsoft.com/en-us/dotnet/framework/resources/packaging-and-deploying-resources-in-desktop-apps
https://docs.microsoft.com/en-us/dotnet/framework/interop/deploying-an-interop-application
https://docs.microsoft.com/en-us/dotnet/framework/deployment/how-to-get-progress-from-the-dotnet-installer

.NET Framework Performance
5/4/2018 • 5 minutes to read • Edit Online

Designing and planning for performance

Analyzing performance

Performance toolsPerformance tools

TOOL DESCRIPTION

Visual Studio Performance Analysis Use to analyze the CPU usage of your .NET Framework apps that will be deployed
to computers that are running the Windows operating system.

This tool is available from the Debug menu in Visual Studio after you open a
project. For more information, see Performance Explorer. Note: Use Windows
Phone Application Analysis (see next row) when targeting Windows Phone.

Windows Phone Application Analysis Use to analyze the CPU and memory, network data transfer rate, app
responsiveness, and battery consumption in your Windows Phone apps.

This tool is available from the Debug menu for a Windows Phone project in Visual
Studio after you install the Windows Phone SDK. For more information, see App
profiling for Windows Phone.

PerfView Use to identify CPU and memory-related performance issues. This tool uses event
tracing for Windows (ETW) and CLR profiling APIs to provide advanced memory
and CPU investigations as well as information about garbage collection and JIT
compilation. For more information about how to use PerfView, see the tutorial and
help files that are included with the app, Channel 9 video tutorials, and blog posts.

For memory-specific issues, see Using PerfView for Memory Investigations.

Windows Performance Analyzer Use to determine overall system performance such as your app's memory and
storage use when multiple apps are running on the same computer. This tool is
available from the download center as part of the Windows Assessment and
Deployment Kit (ADK) for Windows 8. For more information, see Windows
Performance Analyzer.

Event tracing for Windows (ETW)Event tracing for Windows (ETW)

If you want to create apps with great performance, you should design and plan for performance just as you would design any other feature of your app.
You can use the tools provided by Microsoft to measure your app's performance, and, if needed, make improvements to memory use, code throughput,
and responsiveness. This topic lists the performance analysis tools that Microsoft provides, and provides links to other topics that cover performance for
specific areas of app development.

If you want a great performing app, you must design performance into your app just as you would design any other feature. You should determine the
performance-critical scenarios in your app, set performance goals, and measure performance for these app scenarios early and often. Because each app
is different and has different performance-critical execution paths, determining those paths early and focusing your efforts enable you to maximize your
productivity.

You don’t have to be completely familiar with your target platform to create a high-performance app. However, you should develop an understanding of
which parts of your target platform are costly in terms of performance. You can do this by measuring performance early in your development process.

To determine the areas that are crucial to performance and to establish your performance goals, always consider the user experience. Startup time and
responsiveness are two key areas that will affect the user ’s perception of your app. If your app uses a lot of memory, it may appear sluggish to the user
or affect other apps running on the system, or, in some cases, it could fail the Windows Store or Windows Phone Store submission process. Also, if you
determine which parts of your code execute more frequently, you can make sure that these portions of your code are well optimized.

As part of your overall development plan, set points during development where you will measure the performance of your app and compare the results
with the goals you set previously. Measure your app in the environment and hardware that you expect your users to have. By analyzing your app’s
performance early and often you can change architectural decisions that would be costly and expensive to fix later in the development cycle. The
following sections describe performance tools you can use to analyze your apps and discuss event tracing, which is used by these tools.

Here are some of the performance tools you can use with your .NET Framework apps.

ETW is a technique that lets you obtain diagnostic information about running code and is essential for many of the performance tools mentioned
previously. ETW creates logs when particular events are raised by .NET Framework apps and Windows. With ETW, you can enable and disable logging
dynamically, so that you can perform detailed tracing in a production environment without restarting your app. The .NET Framework offers support for
ETW events, and ETW is used by many profiling and performance tools to generate performance data. These tools often enable and disable ETW
events, so familiarity with them is helpful. You can use specific ETW events to collect performance information about particular components of your app.
For more information about ETW support in the .NET Framework, see ETW Events in the Common Language Runtime and ETW Events in Task Parallel

https://github.com/dotnet/docs/blob/master/docs/framework/performance/index.md
https://docs.microsoft.com/visualstudio/profiling/performance-explorer
http://go.microsoft.com/fwlink/?LinkId=265773
http://msdn.microsoft.com/library/windowsphone/develop/jj215908(v=vs.105).aspx
http://www.microsoft.com/download/details.aspx?id=28567
http://channel9.msdn.com/Series/PerfView-Tutorial
http://blogs.msdn.com/b/vancem/archive/tags/perfview/
http://channel9.msdn.com/Series/PerfView-Tutorial/PerfView-Tutorial-9-NET-Memory-Investigation-Basics-of-GC-Heap-Snapshots
http://www.microsoft.com/download/details.aspx?id=30652
http://msdn.microsoft.com/library/windows/desktop/hh448170.aspx
https://docs.microsoft.com/en-us/dotnet/framework/performance/etw-events-in-the-common-language-runtime
https://docs.microsoft.com/en-us/dotnet/framework/performance/etw-events-in-task-parallel-library-and-plinq

Performance by app type

APP TYPE SEE

.NET Framework apps for all platforms Garbage Collection and Performance

Performance Tips

Windows 8.x Store apps written in C++, C#, and Visual Basic Performance best practices for Windows Store apps using C++, C#, and Visual Basic

Windows Phone App performance considerations for Windows Phone

Windows Phone Application Analysis

Get Your Windows Phone Applications in the Marketplace Faster

Windows Presentation Foundation (WPF) WPF Performance Suite

Silverlight Performance tips

ASP.NET ASP.NET Performance Overview

Windows Forms Practical Tips for Boosting the Performance of Windows Forms Apps

Related Topics
TITLE DESCRIPTION

Caching in .NET Framework Applications Describes techniques for caching data to improve performance in your app.

Lazy Initialization Describes how to initialize objects as-needed to improve performance, particularly
at app startup.

Reliability Provides information about preventing asynchronous exceptions in a server
environment.

Writing Large, Responsive .NET Framework Apps Provides performance tips gathered from rewriting the C# and Visual Basic
compilers in managed code, and includes several real examples from the C#
compiler.

Library and PLINQ.

Each type of .NET Framework app has its own best practices, considerations, and tools for evaluating performance. The following table links to
performance topics for specific .NET Framework app types.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/performance
https://docs.microsoft.com/en-us/dotnet/framework/performance/performance-tips
http://msdn.microsoft.com/library/windows/apps/hh750313.aspx
http://msdn.microsoft.com/library/windowsphone/develop/ff967560(v=vs.105).aspx
http://msdn.microsoft.com/library/windowsphone/develop/hh202934(v=vs.105).aspx
http://msdn.microsoft.com/magazine/hh781024.aspx
http://msdn.microsoft.com/library/67cafaad-57ad-4ecb-9c08-57fac144393e
http://msdn.microsoft.com/library/cc189071(v=vs.95).aspx
http://msdn.microsoft.com/library/f882bf1b-a009-4312-ac06-74370ffabc0b
http://msdn.microsoft.com/magazine/cc163630.aspx
https://docs.microsoft.com/en-us/dotnet/framework/performance/caching-in-net-framework-applications
https://docs.microsoft.com/en-us/dotnet/framework/performance/lazy-initialization
https://docs.microsoft.com/en-us/dotnet/framework/performance/reliability
https://docs.microsoft.com/en-us/dotnet/framework/performance/writing-large-responsive-apps

Dynamic Programming in the .NET Framework
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section of the documentation provides information about dynamic programming in the .NET Framework.

Reflection
Describes how to use reflection to work with objects at run time.

Emitting Dynamic Methods and Assemblies
Describes how to create methods and assemblies at run time by using Reflection.Emit.

Dynamic Language Runtime Overview
Describes the features of the dynamic language runtime.

Dynamic Source Code Generation and Compilation
Describes how to generate and compile dynamic source code.

Development Guide

Advanced Reading for the .NET Framework

https://github.com/dotnet/docs/blob/master/docs/framework/reflection-and-codedom/index.md
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/emitting-dynamic-methods-and-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-source-code-generation-and-compilation
http://msdn.microsoft.com/library/faae8083-fecb-4514-b133-b0a5a32a7c3c

Managed Extensibility Framework (MEF)
5/4/2018 • 16 minutes to read • Edit Online

What is MEF?

The Problem of Extensibility

What MEF Provides

Where Is MEF Available?

MEF and MAF

SimpleCalculator: An Example Application

This topic provides an overview of the Managed Extensibility Framework introduced in the .NET Framework 4.

The Managed Extensibility Framework or MEF is a library for creating lightweight, extensible applications. It allows application developers to discover
and use extensions with no configuration required. It also lets extension developers easily encapsulate code and avoid fragile hard dependencies. MEF
not only allows extensions to be reused within applications, but across applications as well.

Imagine that you are the architect of a large application that must provide support for extensibility. Your application has to include a potentially large
number of smaller components, and is responsible for creating and running them.

The simplest approach to the problem is to include the components as source code in your application, and call them directly from your code. This has a
number of obvious drawbacks. Most importantly, you cannot add new components without modifying the source code, a restriction that might be
acceptable in, for example, a Web application, but is unworkable in a client application. Equally problematic, you may not have access to the source code
for the components, because they might be developed by third parties, and for the same reason you cannot allow them to access yours.

A slightly more sophisticated approach would be to provide an extension point or interface, to permit decoupling between the application and its
components. Under this model, you might provide an interface that a component can implement, and an API to enable it to interact with your
application. This solves the problem of requiring source code access, but it still has its own difficulties.

Because the application lacks any capacity for discovering components on its own, it must still be explicitly told which components are available and
should be loaded. This is typically accomplished by explicitly registering the available components in a configuration file. This means that assuring that
the components are correct becomes a maintenance issue, particularly if it is the end user and not the developer who is expected to do the updating.

In addition, components are incapable of communicating with one another, except through the rigidly defined channels of the application itself. If the
application architect has not anticipated the need for a particular communication, it is usually impossible.

Finally, the component developers must accept a hard dependency on what assembly contains the interface they implement. This makes it difficult for a
component to be used in more than one application, and can also create problems when you create a test framework for components.

Instead of this explicit registration of available components, MEF provides a way to discover them implicitly, via composition. A MEF component, called
a part, declaratively specifies both its dependencies (known as imports) and what capabilities (known as exports) it makes available. When a part is
created, the MEF composition engine satisfies its imports with what is available from other parts.

This approach solves the problems discussed in the previous section. Because MEF parts declaratively specify their capabilities, they are discoverable at
runtime, which means an application can make use of parts without either hard-coded references or fragile configuration files. MEF allows applications
to discover and examine parts by their metadata, without instantiating them or even loading their assemblies. As a result, there is no need to carefully
specify when and how extensions should be loaded.

In addition to its provided exports, a part can specify its imports, which will be filled by other parts. This makes communication among parts not only
possible, but easy, and allows for good factoring of code. For example, services common to many components can be factored into a separate part and
easily modified or replaced.

Because the MEF model requires no hard dependency on a particular application assembly, it allows extensions to be reused from application to
application. This also makes it easy to develop a test harness, independent of the application, to test extension components.

An extensible application written by using MEF declares an import that can be filled by extension components, and may also declare exports in order to
expose application services to extensions. Each extension component declares an export, and may also declare imports. In this way, extension
components themselves are automatically extensible.

MEF is an integral part of the .NET Framework 4, and is available wherever the .NET Framework is used. You can use MEF in your client applications,
whether they use Windows Forms, WPF, or any other technology, or in server applications that use ASP.NET.

Previous versions of the .NET Framework introduced the Managed Add-in Framework (MAF), designed to allow applications to isolate and manage
extensions. The focus of MAF is slightly higher-level than MEF, concentrating on extension isolation and assembly loading and unloading, while MEF's
focus is on discoverability, extensibility, and portability. The two frameworks interoperate smoothly, and a single application can take advantage of both.

https://github.com/dotnet/docs/blob/master/docs/framework/mef/index.md

NOTENOTE

Composition Container and Catalogs

Dim _container As CompositionContainer

private CompositionContainer _container;

Public Sub New()
 'An aggregate catalog that combines multiple catalogs
 Dim catalog = New AggregateCatalog()

 'Adds all the parts found in the same assembly as the Program class
 catalog.Catalogs.Add(New AssemblyCatalog(GetType(Program).Assembly))

 'Create the CompositionContainer with the parts in the catalog
 _container = New CompositionContainer(catalog)

 'Fill the imports of this object
 Try
 _container.ComposeParts(Me)
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 End Try
End Sub

private Program()
{
 //An aggregate catalog that combines multiple catalogs
 var catalog = new AggregateCatalog();
 //Adds all the parts found in the same assembly as the Program class
 catalog.Catalogs.Add(new AssemblyCatalog(typeof(Program).Assembly));

 //Create the CompositionContainer with the parts in the catalog
 _container = new CompositionContainer(catalog);

 //Fill the imports of this object
 try
 {
 this._container.ComposeParts(this);
 }
 catch (CompositionException compositionException)
 {
 Console.WriteLine(compositionException.ToString());
 }
}

The simplest way to see what MEF can do is to build a simple MEF application. In this example, you build a very simple calculator named
SimpleCalculator. The goal of SimpleCalculator is to create a console application that accepts basic arithmetic commands, in the form "5+3" or "6-2",
and returns the correct answers. Using MEF, you will be able to add new operators without changing the application code.

To download the complete code for this example, see the SimpleCalculator sample.

The purpose of SimpleCalculator is to demonstrate the concepts and syntax of MEF, rather than to necessarily provide a realistic scenario for its use. Many of the
applications that would benefit most from the power of MEF are more complex than SimpleCalculator. For more extensive examples, see the Managed Extensibility
Framework on GitHub.

To start, in Visual Studio 2010, create a new Console Application project named SimpleCalculator . Add a reference to the
System.ComponentModel.Composition assembly, where MEF resides. Open Module1.vb or Program.cs and add Imports or using statements for
System.ComponentModel.Composition and System.ComponentModel.Composition.Hosting. These two namespaces contain MEF types you will need
to develop an extensible application. In Visual Basic, add the Public keyword to the line that declares the Module1 module.

The core of the MEF composition model is the composition container, which contains all the parts available and performs composition. (That is, the
matching up of imports to exports.) The most common type of composition container is CompositionContainer, and you will use this for
SimpleCalculator.

In Visual Basic, in Module1.vb, add a public class named Program . Then add the following line to the Program class in Module1.vb or Program.cs:

In order to discover the parts available to it, the composition containers makes use of a catalog. A catalog is an object that makes available parts
discovered from some source. MEF provides catalogs to discover parts from a provided type, an assembly, or a directory. Application developers can
easily create new catalogs to discover parts from other sources, such as a Web service.

Add the following constructor to the Program class:

The call to ComposeParts tells the composition container to compose a specific set of parts, in this case the current instance of Program . At this point,

http://code.msdn.microsoft.com/windowsdesktop/Simple-Calculator-MEF-1152654e
https://github.com/MicrosoftArchive/mef
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.hosting.compositioncontainer
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.attributedmodelservices.composeparts

Imports and Exports with Attributes

<Import(GetType(ICalculator))>
Public Property calculator As ICalculator

[Import(typeof(ICalculator))]
public ICalculator calculator;

Public Interface ICalculator
 Function Calculate(ByVal input As String) As String
End Interface

public interface ICalculator
{
 String Calculate(String input);
}

<Export(GetType(ICalculator))>
Public Class MySimpleCalculator
 Implements ICalculator

End Class

[Export(typeof(ICalculator))]
class MySimpleCalculator : ICalculator
{

}

Sub Main()
 Dim p As New Program()
 Dim s As String
 Console.WriteLine("Enter Command:")
 While (True)
 s = Console.ReadLine()
 Console.WriteLine(p.calculator.Calculate(s))
 End While
End Sub

however, nothing will happen, since Program has no imports to fill.

First, you have Program import a calculator. This allows the separation of user interface concerns, such as the console input and output that will go into
Program , from the logic of the calculator.

Add the following code to the Program class:

Notice that the declaration of the calculator object is not unusual, but that it is decorated with the ImportAttribute attribute. This attribute declares
something to be an import; that is, it will be filled by the composition engine when the object is composed.

Every import has a contract, which determines what exports it will be matched with. The contract can be an explicitly specified string, or it can be
automatically generated by MEF from a given type, in this case the interface ICalculator . Any export declared with a matching contract will fulfill this
import. Note that while the type of the calculator object is in fact ICalculator , this is not required. The contract is independent from the type of the
importing object. (In this case, you could leave out the typeof(ICalculator) . MEF will automatically assume the contract to be based on the type of the
import unless you specify it explicitly.)

Add this very simple interface to the module or SimpleCalculator namespace:

Now that you have defined ICalculator , you need a class that implements it. Add the following class to the module or SimpleCalculator namespace:

Here is the export that will match the import in Program . In order for the export to match the import, the export must have the same contract. Exporting
under a contract based on typeof(MySimpleCalculator) would produce a mismatch, and the import would not be filled; the contract needs to match
exactly.

Since the composition container will be populated with all the parts available in this assembly, the MySimpleCalculator part will be available. When the
constructor for Program performs composition on the Program object, its import will be filled with a MySimpleCalculator object, which will be created
for that purpose.

The user interface layer (Program) does not need to know anything else. You can therefore fill in the rest of the user interface logic in the Main method.

Add the following code to the Main method:

https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.importattribute

static void Main(string[] args)
{
 Program p = new Program(); //Composition is performed in the constructor
 String s;
 Console.WriteLine("Enter Command:");
 while (true)
 {
 s = Console.ReadLine();
 Console.WriteLine(p.calculator.Calculate(s));
 }
}

Further Imports and ImportMany

<ImportMany()>
Public Property operations As IEnumerable(Of Lazy(Of IOperation, IOperationData))

[ImportMany]
IEnumerable<Lazy<IOperation, IOperationData>> operations;

Public Interface IOperation
 Function Operate(ByVal left As Integer, ByVal right As Integer) As Integer
End Interface

Public Interface IOperationData
 ReadOnly Property Symbol As Char
End Interface

public interface IOperation
{
 int Operate(int left, int right);
}

public interface IOperationData
{
 Char Symbol { get; }
}

<Export(GetType(IOperation))>
<ExportMetadata("Symbol", "+"c)>
Public Class Add
 Implements IOperation

 Public Function Operate(ByVal left As Integer, ByVal right As Integer) As Integer Implements IOperation.Operate
 Return left + right
 End Function
End Class

This code simply reads a line of input and calls the Calculate function of ICalculator on the result, which it writes back to the console. That is all the
code you need in Program . All the rest of the work will happen in the parts.

In order for SimpleCalculator to be extensible, it needs to import a list of operations. An ordinary ImportAttribute attribute is filled by one and only one
ExportAttribute. If more than one is available, the composition engine produces an error. To create an import that can be filled by any number of
exports, you can use the ImportManyAttribute attribute.

Add the following operations property to the MySimpleCalculator class:

Lazy<T,TMetadata> is a type provided by MEF to hold indirect references to exports. Here, in addition to the exported object itself, you also get export
metadata, or information that describes the exported object. Each Lazy<T,TMetadata> contains an IOperation object, representing an actual operation,
and an IOperationData object, representing its metadata.

Add the following simple interfaces to the module or SimpleCalculator namespace:

In this case, the metadata for each operation is the symbol that represents that operation, such as +, -, *, and so on. To make the addition operation
available, add the following class to the module or SimpleCalculator namespace:

https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.importattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.exportattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.importmanyattribute
https://docs.microsoft.com/dotnet/api/system.lazy-2
https://docs.microsoft.com/dotnet/api/system.lazy-2

[Export(typeof(IOperation))]
[ExportMetadata("Symbol", '+')]
class Add: IOperation
{
 public int Operate(int left, int right)
 {
 return left + right;
 }
}

Calculator Logic

Public Function Calculate(ByVal input As String) As String Implements ICalculator.Calculate
 Dim left, right As Integer
 Dim operation As Char
 Dim fn = FindFirstNonDigit(input) 'Finds the operator
 If fn < 0 Then
 Return "Could not parse command."
 End If
 operation = input(fn)
 Try
 left = Integer.Parse(input.Substring(0, fn))
 right = Integer.Parse(input.Substring(fn + 1))
 Catch ex As Exception
 Return "Could not parse command."
 End Try
 For Each i As Lazy(Of IOperation, IOperationData) In operations
 If i.Metadata.symbol = operation Then
 Return i.Value.Operate(left, right).ToString()
 End If
 Next
 Return "Operation not found!"
End Function

public String Calculate(String input)
{
 int left;
 int right;
 Char operation;
 int fn = FindFirstNonDigit(input); //finds the operator
 if (fn < 0) return "Could not parse command.";

 try
 {
 //separate out the operands
 left = int.Parse(input.Substring(0, fn));
 right = int.Parse(input.Substring(fn + 1));
 }
 catch
 {
 return "Could not parse command.";
 }

 operation = input[fn];

 foreach (Lazy<IOperation, IOperationData> i in operations)
 {
 if (i.Metadata.Symbol.Equals(operation)) return i.Value.Operate(left, right).ToString();
 }
 return "Operation Not Found!";
}

The ExportAttribute attribute functions as it did before. The ExportMetadataAttribute attribute attaches metadata, in the form of a name-value pair, to
that export. While the Add class implements IOperation , a class that implements IOperationData is not explicitly defined. Instead, a class is implicitly
created by MEF with properties based on the names of the metadata provided. (This is one of several ways to access metadata in MEF.)

Composition in MEF is recursive. You explicitly composed the Program object, which imported an ICalculator that turned out to be of type
MySimpleCalculator . MySimpleCalculator , in turn, imports a collection of IOperation objects, and that import will be filled when MySimpleCalculator is

created, at the same time as the imports of Program . If the Add class declared a further import, that too would have to be filled, and so on. Any import
left unfilled results in a composition error. (It is possible, however, to declare imports to be optional or to assign them default values.)

With these parts in place, all that remains is the calculator logic itself. Add the following code in the MySimpleCalculator class to implement the
Calculate method:

The initial steps parse the input string into left and right operands and an operator character. In the foreach loop, every member of the operations

collection is examined. These objects are of type Lazy<T,TMetadata>, and their metadata values and exported object can be accessed with the Metadata
property and the Value property respectively. In this case, if the Symbol property of the IOperationData object is discovered to be a match, the
calculator calls the Operate method of the IOperation object and returns the result.

To complete the calculator, you also need a helper method that returns the position of the first non-digit character in a string. Add the following helper

https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.exportattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.exportmetadataattribute
https://docs.microsoft.com/dotnet/api/system.lazy-2
https://docs.microsoft.com/dotnet/api/system.lazy-2.metadata
https://docs.microsoft.com/dotnet/api/system.lazy-1.value

Private Function FindFirstNonDigit(ByVal s As String) As Integer
 For i = 0 To s.Length
 If (Not (Char.IsDigit(s(i)))) Then Return i
 Next
 Return -1
End Function

private int FindFirstNonDigit(String s)
{
 for (int i = 0; i < s.Length; i++)
 {
 if (!(Char.IsDigit(s[i]))) return i;
 }
 return -1;
}

Extending SimpleCalculator Using A New Class

<Export(GetType(IOperation))>
<ExportMetadata("Symbol", "-"c)>
Public Class Subtract
 Implements IOperation

 Public Function Operate(ByVal left As Integer, ByVal right As Integer) As Integer Implements IOperation.Operate
 Return left - right
 End Function
End Class

[Export(typeof(IOperation))]
[ExportMetadata("Symbol", '-')]
class Subtract : IOperation
{
 public int Operate(int left, int right)
 {
 return left - right;
 }
}

Extending SimpleCalculator Using A New Assembly

catalog.Catalogs.Add(New DirectoryCatalog("C:\SimpleCalculator\SimpleCalculator\Extensions"))

catalog.Catalogs.Add(new DirectoryCatalog("C:\\SimpleCalculator\\SimpleCalculator\\Extensions"));

method to the MySimpleCalculator class:

You should now be able to compile and run the project. In Visual Basic, make sure that you added the Public keyword to Module1 . In the console
window, type an addition operation, such as "5+3", and the calculator will return the results. Any other operator will result in the "Operation Not
Found!" message.

Now that the calculator works, adding a new operation is easy. Add the following class to the module or SimpleCalculator namespace:

Compile and run the project. Type a subtraction operation, such as "5-3". The calculator now supports subtraction as well as addition.

Adding classes to the source code is simple enough, but MEF provides the ability to look outside an application’s own source for parts. To demonstrate
this, you will need to modify SimpleCalculator to search a directory, as well as its own assembly, for parts, by adding a DirectoryCatalog.

Add a new directory named Extensions to the SimpleCalculator project. Make sure to add it at the project level, and not at the solution level. Then add
a new Class Library project to the solution, named ExtendedOperations . The new project will compile into a separate assembly.

Open the Project Properties Designer for the ExtendedOperations project and click the Compile or Build tab. Change the Build output path or
Output path to point to the Extensions directory in the SimpleCalculator project directory (..\SimpleCalculator\Extensions\).

In Module1.vb or Program.cs, add the following line to the Program constructor :

Replace the example path with the path to your Extensions directory. (This absolute path is for debugging purposes only. In a production application,
you would use a relative path.) The DirectoryCatalog will now add any parts found in any assemblies in the Extensions directory to the composition
container.

In the ExtendedOperations project, add references to SimpleCalculator and System.ComponentModel.Composition. In the ExtendedOperations class
file, add an Imports or a using statement for System.ComponentModel.Composition. In Visual Basic, also add an Imports statement for
SimpleCalculator. Then add the following class to the ExtendedOperations class file:

https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.hosting.directorycatalog
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.hosting.directorycatalog

<Export(GetType(SimpleCalculator.IOperation))>
<ExportMetadata("Symbol", "%"c)>
Public Class Modulo
 Implements IOperation

 Public Function Operate(ByVal left As Integer, ByVal right As Integer) As Integer Implements IOperation.Operate
 Return left Mod right
 End Function
End Class

[Export(typeof(SimpleCalculator.IOperation))]
[ExportMetadata("Symbol", '%')]
public class Mod : SimpleCalculator.IOperation
{
 public int Operate(int left, int right)
 {
 return left % right;
 }
}

Conclusion

Where Do I Go Now?

Note that in order for the contract to match, the ExportAttribute attribute must have the same type as the ImportAttribute.

Compile and run the project. Test the new Mod (%) operator.

This topic covered the basic concepts of MEF.

Parts, catalogs, and the composition container

Parts and the composition container are the basic building blocks of a MEF application. A part is any object that imports or exports a value, up to
and including itself. A catalog provides a collection of parts from a particular source. The composition container uses the parts provided by a
catalog to perform composition, the binding of imports to exports.

Imports and exports

Imports and exports are the way by which components communicate. With an import, the component specifies a need for a particular value or
object, and with an export it specifies the availability of a value. Each import is matched with a list of exports by way of its contract.

To download the complete code for this example, see the SimpleCalculator sample.

For more information and code examples, see Managed Extensibility Framework. For a list of the MEF types, see the
System.ComponentModel.Composition namespace.

https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.exportattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition.importattribute
http://code.msdn.microsoft.com/windowsdesktop/Simple-Calculator-MEF-1152654e
http://go.microsoft.com/fwlink/?LinkId=144282
https://docs.microsoft.com/dotnet/api/system.componentmodel.composition

Add-ins and Extensibility
5/2/2018 • 4 minutes to read • Edit Online

NOTENOTE

Add-in Model

Independent VersioningIndependent Versioning

Discovery and ActivationDiscovery and Activation

 Add-ins provide extended features or services for a host application. The .NET Framework provides a programming model that developers can use to
develop add-ins and activate them in their host application. The model achieves this by constructing a communication pipeline between the host and the
add-in. The model is implemented by using the types in the System.AddIn, System.AddIn.Hosting, System.AddIn.Pipeline, and System.AddIn.Contract
namespaces.

This overview contains the following sections:

Add-in Model

Distinguishing Between Add-ins and Hosts

Related Topics

Reference

You can find additional sample code, and customer technology previews of tools for building add-in pipelines, at the Managed Extensibility and Add-In Framework site
on CodePlex.

The add-in model consists of a series of segments that make up the add-in pipeline (also known as the communication pipeline), that is responsible for
all communication between the add-in and the host. The pipeline is a symmetrical communication model of segments that exchange data between an
add-in and its host. Developing these segments between the host and the add-in provides the required layers of abstraction that support versioning and
isolation of the add-in.

The following illustration shows the pipeline.

Add-in pipeline

The assemblies for these segments are not required to be in the same application domain. You can load an add-in into its own new application domain,
into an existing application domain, or even into the host's application domain. You can load multiple add-ins into the same application domain, which
enables the add-ins to share resources and security contexts.

The add-in model supports, and recommends, an optional boundary between the host and the add-in, which is called the isolation boundary (also
known as a remoting boundary). This boundary can be an application domain or process boundary.

The contract segment in the middle of the pipeline is loaded into both the host's application domain and the add-in's application domain. The contract
defines the virtual methods that the host and the add-in use to exchange types with each other.

To pass through the isolation boundary, types must be either contracts or serializable types. Types that are not contracts or serializable types must be
converted to contracts by the adapter segments in the pipeline.

The view segments of the pipeline are abstract base classes or interfaces that provide the host and the add-in with a view of the methods that they
share, as defined by the contract.

For more information about developing pipeline segments, see Pipeline Development.

The sections that follow describe the features of the add-in model.

The add-in model allows hosts and add-ins to version independently. As a result, the add-in model enables the following scenarios:

Creating an adapter that enables a host to use an add-in built for a previous version of the host.

Creating an adapter that enables a host to use an add-in built for a later version of the host.

Creating an adapter that enables a host to use add-ins built for a different host.

You can activate an add-in by using a token from a collection that represents the add-ins found from an information store. Add-ins are found by
searching for the type that defines the host's view of the add-in. You can also find a specific add-in by the type that defines the add-in. The information
store consists of two cache files: the pipeline store and the add-in store.

https://github.com/dotnet/docs/blob/master/docs/framework/add-ins/index.md
https://docs.microsoft.com/dotnet/api/system.addin
https://docs.microsoft.com/dotnet/api/system.addin.hosting
https://docs.microsoft.com/dotnet/api/system.addin.pipeline
https://docs.microsoft.com/dotnet/api/system.addin.contract
http://go.microsoft.com/fwlink/?LinkId=121190
https://docs.microsoft.com/en-us/dotnet/framework/add-ins/pipeline-development

Isolation Levels and External ProcessesIsolation Levels and External Processes

Lifetime ManagementLifetime Management

Distinguishing Between Add-ins and Hosts

Related Topics
TITLE DESCRIPTION

Pipeline Development Describes the communication pipeline of segments from the host application to the
add-in. Provides code examples in walkthrough topics that describe how to
construct the pipeline and how to deploy segments to the pipeline in Visual Studio.

Application Domains and Assemblies Describes the relationship between application domains, which provide an isolation
boundary for security, reliability, and versioning, and assemblies.

Reference

For information about updating and rebuilding the information store, see Add-in Discovery. For information about activating add-ins, see Add-in
Activation and How to: Activate Add-ins with Different Isolation and Security.

The add-in model supports several levels of isolation between an add-in and its host or between add-ins. Starting from the least isolated, these levels
are as follows:

The add-in runs in the same application domain as the host. This is not recommended because you lose the isolation and unloading capabilities
that you get when you use different application domains.

Multiple add-ins are loaded into the same application domain that is different from the application domain used by the host.

Each add-in is loaded exclusively into its own application domain. This is the most common level of isolation.

Multiple add-ins are loaded into the same application domain in an external process.

Each add-in is loaded exclusively into its own application domain in an external process. This is the most isolated scenario.

For more information about using external processes, see How to: Activate Add-ins with Different Isolation and Security.

Because the add-in model spans application domain and process boundaries, garbage collection by itself is not sufficient to release and reclaim objects.
The add-in model provides a lifetime management mechanism that uses tokens and reference counting, and usually does not require additional
programming. For more information, see Lifetime Management.

Back to top

The difference between an add-in and a host is merely that the host is the one that activates the add-in. The host can be the larger of the two, such as a
word processing application and its spell checkers; or the host can be the smaller of the two, such as an instant messaging client that embeds a media
player. The add-in model supports add-ins in both client and server scenarios. Examples of server add-ins include add-ins that provide mail servers with
virus scanning, spam filters, and IP protection. Client add-in examples include reference add-ins for word processors, specialized features for graphics
programs and games, and virus scanning for local email clients.

Back to top

Back to top

System.AddIn

System.AddIn.Contract

System.AddIn.Hosting

System.AddIn.Pipeline

Back to top

http://msdn.microsoft.com/library/5d268dde-11df-4c4d-a022-f58d88bbc421
http://msdn.microsoft.com/library/bedcbcdf-5964-4215-b5f3-3299798b2b3f
http://msdn.microsoft.com/library/7afe7ec8-5158-4350-9119-5df0ecab8aa5
http://msdn.microsoft.com/library/7afe7ec8-5158-4350-9119-5df0ecab8aa5
http://msdn.microsoft.com/library/57a9c87e-394c-4fef-89f2-aa4223a2aeb5
https://docs.microsoft.com/en-us/dotnet/framework/add-ins/pipeline-development
http://msdn.microsoft.com/library/433b04ae-4ba8-4849-9dbd-79194f240346
https://docs.microsoft.com/dotnet/api/system.addin
https://docs.microsoft.com/dotnet/api/system.addin.contract
https://docs.microsoft.com/dotnet/api/system.addin.hosting
https://docs.microsoft.com/dotnet/api/system.addin.pipeline

Interoperating with unmanaged code
5/4/2018 • 2 minutes to read • Edit Online

In this section

The .NET Framework promotes interaction with COM components, COM+ services, external type libraries, and many operating system services. Data
types, method signatures, and error-handling mechanisms vary between managed and unmanaged object models. To simplify interoperation between
.NET Framework components and unmanaged code and to ease the migration path, the common language runtime conceals from both clients and
servers the differences in these object models.

Code that executes under the control of the runtime is called managed code. Conversely, code that runs outside the runtime is called unmanaged code.
COM components, ActiveX interfaces, and Win32 API functions are examples of unmanaged code.

Exposing COM Components to the .NET Framework
Describes how to use COM components from .NET Framework applications.

Exposing .NET Framework Components to COM
Describes how to use .NET Framework components from COM applications.

Consuming Unmanaged DLL Functions
Describes how to call unmanaged DLL functions using platform invoke.

Interop Marshaling
Describes marshaling for COM interop and platform invoke.

How to: Map HRESULTs and Exceptions
Describes the mapping between exceptions and HRESULTs.

COM Wrappers
Describes the wrappers provided by COM interop.

Type Equivalence and Embedded Interop Types
Describes how type information for COM types is embedded in assemblies, and how the common language runtime determines the equivalence of
embedded COM types.

How to: Generate Primary Interop Assemblies Using Tlbimp.exe
Describes how to produce primary interop assemblies using Tlbimp.exe (Type Library Importer).

How to: Register Primary Interop Assemblies
Describes how to register the primary interop assemblies before you can reference them in your projects.

Registration-Free COM Interop
Describes how COM interop can activate components without using the Windows registry.

How to: Configure .NET Framework-Based COM Components for Registration-Free Activation
Describes how to create an application manifest and how to create and embed a component manifest.

https://github.com/dotnet/docs/blob/master/docs/framework/interop/index.md
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-com-components
https://docs.microsoft.com/en-us/dotnet/framework/interop/exposing-dotnet-components-to-com
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling
https://docs.microsoft.com/en-us/dotnet/framework/interop/how-to-map-hresults-and-exceptions
https://docs.microsoft.com/en-us/dotnet/framework/interop/com-wrappers
https://docs.microsoft.com/en-us/dotnet/framework/interop/type-equivalence-and-embedded-interop-types
https://docs.microsoft.com/en-us/dotnet/framework/interop/how-to-generate-primary-interop-assemblies-using-tlbimp-exe
https://docs.microsoft.com/en-us/dotnet/framework/interop/how-to-register-primary-interop-assemblies
https://docs.microsoft.com/en-us/dotnet/framework/interop/registration-free-com-interop
https://docs.microsoft.com/en-us/dotnet/framework/interop/configure-net-framework-based-com-components-for-reg

Unmanaged API Reference
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section includes information on unmanaged APIs that can be used by managed-code-related applications, such as runtime hosts, compilers,
disassemblers, obfuscators, debuggers, and profilers.

Common Data Types
Lists the common data types that are used, particularly in the unmanaged profiling and debugging APIs.

ALink
Describes the ALink API, which supports the creation of .NET Framework assemblies and unbound modules.

Authenticode
Supports the Authenticode XrML license creation and verification module.

Constants
Describes the constants that are defined in CorSym.idl.

Custom Interface Attributes
Describes component object model (COM) custom interface attributes.

Debugging
Describes the debugging API, which enables a debugger to debug code that runs in the common language runtime (CLR) environment.

Diagnostics Symbol Store
Describes the diagnostics symbol store API, which enables a compiler to generate symbol information for use by a debugger.

Fusion
Describes the fusion API, which enables a runtime host to access the properties of an application's resources in order to locate the correct versions of
those resources for the application.

Hosting
Describes the hosting API, which enables unmanaged hosts to integrate the CLR into their applications.

Metadata
Describes the metadata API, which enables a client such as a compiler to generate or access a component's metadata without the types being loaded by
the CLR.

Profiling
Describes the profiling API, which enables a profiler to monitor a program's execution by the CLR.

Strong Naming
Describes the strong naming API, which enables a client to administer strong name signing for assemblies.

WMI and Performance Counters
Describes the APIs that wrap calls to Windows Management Instrumentation (WMI) libraries.

Tlbexp Helper Functions
Describes the two helper functions and interface used by the Type Library Exporter (Tlbexp.exe) during the assembly-to-type-library conversion
process.

Development Guide

Advanced Reading for the .NET Framework

https://github.com/dotnet/docs/blob/master/docs/framework/unmanaged-api/index.md
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/common-data-types-unmanaged-api-reference
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/alink/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/authenticode/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/constants-unmanaged-api-reference
http://msdn.microsoft.com/library/940952f9-46ad-4a1a-920f-118dc0bdcd9f
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/debugging/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/diagnostics/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/fusion/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/metadata/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/profiling/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/strong-naming/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/wmi/index
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/tlbexp/index
https://docs.microsoft.com/en-us/dotnet/framework/development-guide
http://msdn.microsoft.com/library/faae8083-fecb-4514-b133-b0a5a32a7c3c

XAML Services
5/4/2018 • 8 minutes to read • Edit Online

About This Documentation

.NET Framework XAML Services and System.Xaml in the .NET Architecture

XAML Node Streams, XAML Readers, and XAML Writers

This topic describes the capabilities of a technology set known as .NET Framework XAML Services. The majority of the services and APIs described are
located in the assembly System.Xaml, which is an assembly introduced with the .NET Framework 4 set of .NET core assemblies. Services include
readers and writers, schema classes and schema support, factories, attributing of classes, XAML language intrinsic support, and other XAML language
features.

Conceptual documentation for .NET Framework XAML Services assumes that you have previous experience with the XAML language and how it might
apply to a specific framework, for example Windows Presentation Foundation (WPF) or Windows Workflow Foundation, or a specific technology
feature area, for example the build customization features in Microsoft.Build.Framework.XamlTypes. This documentation does not attempt to explain
the basics of XAML as a markup language, XAML syntax terminology, or other introductory material. Instead, this documentation focuses on specifically
using the .NET Framework XAML Services that are enabled in the System.Xaml assembly library. Most of these APIs are for scenarios of XAML
language integration and extensibility. This might include any of the following:

Extending the capabilities of the base XAML readers or XAML writers (processing the XAML node stream directly; deriving your own XAML
reader or XAML writer).

Defining XAML-usable custom types that do not have specific framework dependencies, and attributing the types to convey their XAML type
system characteristics to .NET Framework XAML Services.

Hosting XAML readers or XAML writers as a component of an application, such as a visual designer or interactive editor for XAML markup
sources.

Writing XAML value converters (markup extensions; type converters for custom types).

Defining a custom XAML schema context (using alternate assembly-loading techniques for backing type sources; using known-types lookup
techniques instead of always reflecting assemblies; using loaded assembly concepts that do not use the CLR AppDomain and its associated
security model).

Extending the base XAML type system.

Using the Lookup or Invoker techniques to influence the XAML type system and how type backings are evaluated.

If you are looking for introductory material on XAML as a language, you might try XAML Overview (WPF). That topic discusses XAML for an audience
that is new both to Windows Presentation Foundation (WPF) and also to using XAML markup and XAML language features. Another useful document
is the introductory material in the XAML language specification.

In previous versions of Microsoft .NET Framework, support for XAML language features was implemented by frameworks that built on Microsoft .NET
Framework (Windows Presentation Foundation (WPF), Windows Workflow Foundation and Windows Communication Foundation (WCF)), and
therefore varied in its behavior and the API used depending on which specific framework you were using. This included the XAML parser and its object
graph creation mechanism, XAML language intrinsics, serialization support, and so on.

In .NET Framework 4, .NET Framework XAML Services and the System.Xaml assembly define much of what is needed for supporting XAML language
features. This includes base classes for XAML readers and XAML writers. The most important feature added to .NET Framework XAML Services that
was not present in any of the framework-specific XAML implementations is a type system representation for XAML. The type system representation
presents XAML in an object-oriented way that centers on XAML capabilities without taking dependencies on specific capabilities of frameworks.

The XAML type system is not limited by the markup form or run-time specifics of the XAML origin; nor is it limited by any specific backing type system.
The XAML type system includes object representations for types, members, XAML schema contexts, XML-level concepts, and other XAML language
concepts or XAML intrinsics. Using or extending the XAML type system makes it possible to derive from classes like XAML readers and XAML writers,
and extend the functionality of XAML representations into specific features enabled by a framework, a technology, or an application that consumes or
emits XAML. The concept of a XAML schema context enables practical object graph write operations from the combination of a XAML object writer
implementation, a technology's backing type system as communicated through assembly information in the context, and the XAML node source. For
more information on the XAML schema concept. see Default XAML Schema Context and WPF XAML Schema Context.

To understand the role that .NET Framework XAML Services plays in the relationship between the XAML language and specific technologies that use
XAML as a language, it is helpful to understand the concept of a XAML node stream and how that concept shapes the API and terminology. The XAML
node stream is a conceptual intermediate between a XAML language representation and the object graph that the XAML represents or defines.

A XAML reader is an entity that processes XAML in some form, and produces a XAML node stream. In the API, a XAML reader is represented by
the base class XamlReader.

A XAML writer is an entity that processes a XAML node stream and produces something else. In the API, a XAML writer is represented by the

https://github.com/dotnet/docs/blob/master/docs/framework/xaml-services/index.md
https://docs.microsoft.com/dotnet/api/microsoft.build.framework.xamltypes
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/xaml-overview-wpf
http://go.microsoft.com/fwlink/?LinkId=114525
https://docs.microsoft.com/en-us/dotnet/framework/xaml-services/default-xaml-schema-context-and-wpf-xaml-schema-context
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader

The XamlServices ClassThe XamlServices Class

XAML Type System

Reference for XAML Language Features

base class XamlWriter.

The two most common scenarios involving XAML are loading XAML to instantiate an object graph, and saving an object graph from an application or
tool and producing a XAML representation (typically in markup form saved as text file). Loading XAML and creating an object graph is often referred to
in this documentation as the load path. Saving or serializing an existing object graph to XAML is often referred to in this documentation as the save
path.

The most common type of load path can be described as follows:

Start with a XAML representation, in UTF-encoded XML format and saved as a text file.

Load that XAML into XamlXmlReader. XamlXmlReader is a XamlReader subclass.

The result is a XAML node stream. You can access individual nodes of the XAML node stream using XamlXmlReader / XamlReader API. The
most typical operation here is to advance through the XAML node stream, processing each node using a "current record" metaphor.

Pass the resulting nodes from the XAML node stream to a XamlObjectWriter API. XamlObjectWriter is a XamlWriter subclass.

The XamlObjectWriter writes an object graph, one object at a time, in accordance to progress through the source XAML node stream. This is
done with the assistance of a XAML schema context and an implementation that can access the assemblies and types of a backing type system
and framework.

Call Result at the end of the XAML node stream to obtain the root object of the object graph.

The most common type of save path can be described as follows:

Start with the object graph of an entire application run time, the UI content and state of a run time, or a smaller segment of an overall
application's object representation at run time.

From a logical start object, such as an application root or document root, load the objects into XamlObjectReader. XamlObjectReader is a
XamlReader subclass.

The result is a XAML node stream. You can access individual nodes of the XAML node stream using XamlObjectReader and XamlReader API.
The most typical operation here is to advance through the XAML node stream, processing each node using a "current record" metaphor.

Pass the resulting nodes from the XAML node stream to a XamlXmlWriter API. XamlXmlWriter is a XamlWriter subclass.

The XamlXmlWriter writes XAML in an XML UTF encoding. You can save this as a text file, as a stream, or in other forms.

Call Flush to obtain the final output.

For more information about XAML node stream concepts, see Understanding XAML Node Stream Structures and Concepts.

It is not always necessary to deal with a XAML node stream. If you want a basic load path or a basic save path, you can use APIs in the XamlServices
class.

Various signatures of Load implement a load path. You can either load a file or stream, or can load an XmlReader, TextReader or XamlReader that
wrap your XAML input by loading with that reader's APIs.

Various signatures of Save save an object graph and produce output as a stream, file, or XmlWriter/TextWriter instance.

Transform converts XAML by linking a load path and a save path as a single operation. A different schema context or different backing type
system could be used for XamlReader and XamlWriter, which is what influences how the resulting XAML is transformed.

For more information about how to use XamlServices, see XAMLServices Class and Basic XAML Reading or Writing.

The XAML type system provides the APIs that are required to work with a given individual node of a XAML node stream.

XamlType is the representation for an object - what you are processing between a start object node and end object node.

XamlMember is the representation for a member of an object - what you are processing between a start member node and end member node.

APIs such as GetAllMembers and GetMember and DeclaringType report the relationships between a XamlType and XamlMember.

The default behavior of the XAML type system as implemented by .NET Framework XAML Services is based on the common language runtime (CLR),
and static analysis of CLR types in assemblies by using reflection. Therefore, for a specific CLR type, the default implementation of the XAML type
system can expose the XAML schema of that type and its members and report it in terms of the XAML type system. In the default XAML type system,
the concept of assignability of types is mapped onto CLR inheritance, and the concepts of instances, value types and so on are also mapped to the
supporting behaviors and features of the CLR.

To support XAML, .NET Framework XAML Services provides specific implementation of XAML language concepts as defined for the XAML language
XAML namespace. These are documented as specific reference pages. The language features are documented from the perspective of how these
language features behave when they are processed by a XAML reader or XAML writer that is defined by .NET Framework XAML Services. For more
information, see XAML Namespace (x:) Language Features.

https://docs.microsoft.com/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectwriter.result
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlobjectreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlxmlwriter.flush
https://docs.microsoft.com/en-us/dotnet/framework/xaml-services/understanding-xaml-node-stream-structures-and-concepts
https://docs.microsoft.com/dotnet/api/system.xaml.xamlservices
https://docs.microsoft.com/dotnet/api/system.xaml.xamlservices.load
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/dotnet/api/system.io.textreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlservices.save
https://docs.microsoft.com/dotnet/api/system.xml.xmlwriter
https://docs.microsoft.com/dotnet/api/system.io.textwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlservices.transform
https://docs.microsoft.com/dotnet/api/system.xaml.xamlreader
https://docs.microsoft.com/dotnet/api/system.xaml.xamlwriter
https://docs.microsoft.com/dotnet/api/system.xaml.xamlservices
https://docs.microsoft.com/en-us/dotnet/framework/xaml-services/xamlservices-class-and-basic-xaml-reading-or-writing
https://docs.microsoft.com/dotnet/api/system.xaml.xamltype
https://docs.microsoft.com/dotnet/api/system.xaml.xamlmember
https://docs.microsoft.com/dotnet/api/system.xaml.xamltype.getallmembers
https://docs.microsoft.com/dotnet/api/system.xaml.xamltype.getmember
https://docs.microsoft.com/dotnet/api/system.xaml.xamlmember.declaringtype
https://docs.microsoft.com/dotnet/api/system.xaml.xamltype
https://docs.microsoft.com/dotnet/api/system.xaml.xamlmember
https://docs.microsoft.com/en-us/dotnet/framework/xaml-services/xaml-namespace-x-language-features

.NET Framework Tools
6/22/2018 • 5 minutes to read • Edit Online

NOTENOTE

In This Section

The .NET Framework tools make it easier for you to create, deploy, and manage applications and components that target the .NET Framework.

Most of the .NET Framework tools described in this section are automatically installed with Visual Studio. To download Visual Studio, visit the Visual
Studio Downloads page.

You can run all the tools from the command line with the exception of the Assembly Cache Viewer (Shfusion.dll). You must access Shfusion.dll from File
Explorer.

The best way to run the command-line tools is by using the Developer Command Prompt for Visual Studio. These utilities enable you to run the tools
easily, without navigating to the installation folder. For more information, see Command Prompts.

Some tools are specific to either 32-bit computers or 64-bit computers. Be sure to run the appropriate version of the tool for your computer.

Al.exe (Assembly Linker)
Generates a file that has an assembly manifest from modules or resource files.

Aximp.exe (Windows Forms ActiveX Control Importer)
Converts type definitions in a COM type library for an ActiveX control into a Windows Forms control.

Caspol.exe (Code Access Security Policy Tool)
Enables you to view and configure security policy for the machine policy level, the user policy level, and the enterprise policy level. In the .NET
Framework 4 and later, this tool does not affect code access security (CAS) policy unless the <legacyCasPolicy> element is set to true . For more
information, see Security Changes.

Cert2spc.exe (Software Publisher Certificate Test Tool)
Creates a Software Publisher's Certificate (SPC) from one or more X.509 certificates. This tool is for testing purposes only.

Certmgr.exe (Certificate Manager Tool)
Manages certificates, certificate trust lists (CTLs), and certificate revocation lists (CRLs).

Clrver.exe (CLR Version Tool)
reports all the installed versions of the common language runtime (CLR) on the computer.

CorFlags.exe (CorFlags Conversion Tool)
Lets you configure the CorFlags section of the header of a portable executable (PE) image.

Fuslogvw.exe (Assembly Binding Log Viewer)
Displays information about assembly binds to help you diagnose why the .NET Framework cannot locate an assembly at run time.

Gacutil.exe (Global Assembly Cache Tool)
Lets you view and manipulate the contents of the global assembly cache and download cache.

Ilasm.exe (IL Assembler)
Generates a portable executable (PE) file from intermediate language (IL). You can run the resulting executable to determine whether the IL performs as
expected.

Ildasm.exe (IL Disassembler)
Takes a portable executable (PE) file that contains intermediate language (IL) code and creates a text file that can be input to the IL Assembler
(Ilasm.exe).

Installutil.exe (Installer Tool)
Enables you to install and uninstall server resources by executing the installer components in a specified assembly. (Works with classes in the
System.Configuration.Install namespace.) Enables you to install and uninstall server resources by executing the installer components in a specified
assembly. (Works with classes in the System.Configuration.Install namespace.)

Lc.exe (License Compiler)
Reads text files that contain licensing information and produces a .licenses file that can be embedded in a common language runtime executable as a
resource. Reads text files that contain licensing information and produces a .licenses file that can be embedded in a common language runtime
executable as a resource.

Mage.exe (Manifest Generation and Editing Tool)
Lets you create, edit, and sign application and deployment manifests. As a command-line tool, Mage.exe can be run from both batch scripts and other
Windows-based applications, including ASP.NET applications.

MageUI.exe (Manifest Generation and Editing Tool, Graphical Client)

https://github.com/dotnet/docs/blob/master/docs/framework/tools/index.md
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://docs.microsoft.com/en-us/dotnet/framework/tools/developer-command-prompt-for-vs
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/aximp-exe-windows-forms-activex-control-importer
https://docs.microsoft.com/en-us/dotnet/framework/tools/caspol-exe-code-access-security-policy-tool
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/runtime/netfx40-legacysecuritypolicy-element
https://docs.microsoft.com/en-us/dotnet/framework/security/security-changes
https://docs.microsoft.com/en-us/dotnet/framework/tools/cert2spc-exe-software-publisher-certificate-test-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/certmgr-exe-certificate-manager-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/clrver-exe-clr-version-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/corflags-exe-corflags-conversion-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/fuslogvw-exe-assembly-binding-log-viewer
https://docs.microsoft.com/en-us/dotnet/framework/tools/gacutil-exe-gac-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disassembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool
https://docs.microsoft.com/dotnet/api/system.configuration.install
https://docs.microsoft.com/dotnet/api/system.configuration.install
https://docs.microsoft.com/en-us/dotnet/framework/tools/lc-exe-license-compiler
https://docs.microsoft.com/en-us/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/mageui-exe-manifest-generation-and-editing-tool-graphical-client

Related Sections

Supports the same functionality as the command-line tool Mage.exe, but uses a Windows-based user interface (UI). Supports the same functionality as
the command-line tool Mage.exe, but uses a Windows-based user interface (UI).

MDbg.exe (.NET Framework Command-Line Debugger)
Helps tools vendors and application developers find and fix bugs in programs that target the .NET Framework common language runtime. This tool
uses the runtime debugging API to provide debugging services.

Mgmtclassgen.exe (Management Strongly Typed Class Generator)
Enables you to generate an early-bound managed class for a specified Windows Management Instrumentation (WMI) class.

Mpgo.exe (Managed Profile Guided Optimization Tool)
Enables you to tune native image assemblies using common end-user scenarios. Mpgo.exe allows the generation and consumption of profile data for
native image application assemblies (not the .NET Framework assemblies) using training scenarios selected by the application developer.

Ngen.exe (Native Image Generator)
Improves the performance of managed applications through the use of native images (files containing compiled processor-specific machine code). The
runtime can use native images from the cache instead of using the just-in-time (JIT) compiler to compile the original assembly.

Peverify.exe (PEVerify Tool)
Helps you verify whether your Microsoft intermediate language (MSIL) code and associated metadata meet type safety requirements. Helps you verify
whether your Microsoft intermediate language (MSIL) code and associated metadata meet type safety requirements.

Regasm.exe (Assembly Registration Tool)
Reads the metadata within an assembly and adds the necessary entries to the registry. This enables COM clients to appear as .NET Framework classes.

Regsvcs.exe (.NET Services Installation Tool)
Loads and registers an assembly, generates and installs a type library into a specified COM+ version 1.0 application, and configures services that you
have added programmatically to a class.

Resgen.exe (Resource File Generator)
Converts text (.txt or .restext) files and XML-based resource format (.resx) files to common language runtime binary (.resources) files that can be
embedded in a runtime binary executable or compiled into satellite assemblies.

SecAnnotate.exe (.NET Security Annotator Tool)
Identifies the SecurityCritical and SecuritySafeCritical portions of an assembly. Identifies the SecurityCritical and SecuritySafeCritical portions of
an assembly.

SignTool.exe (Sign Tool)
Digitally signs files, verifies signatures in files, and time-stamps files.

Sn.exe (Strong Name Tool)
Helps create assemblies with strong names. This tool provides options for key management, signature generation, and signature verification.

SOS.dll (SOS Debugging Extension)
Helps you debug managed programs in the WinDbg.exe debugger and in Visual Studio by providing information about the internal common language
runtime environment.

SqlMetal.exe (Code Generation Tool)
Generates code and mapping for the L INQ to SQL component of the .NET Framework.

Storeadm.exe (Isolated Storage Tool)
Manages isolated storage; provides options for listing the user's stores and deleting them.

Tlbexp.exe (Type Library Exporter)
Generates a type library that describes the types that are defined in a common language runtime assembly.

Tlbimp.exe (Type Library Importer)
Converts the type definitions found in a COM type library into equivalent definitions in a common language runtime assembly.

Winmdexp.exe (Windows Runtime Metadata Export Tool)
Exports a .NET Framework assembly that is compiled as a .winmdobj file into a Windows Runtime component, which is packaged as a .winmd file that
contains both Windows Runtime metadata and implementation information.

Winres.exe (Windows Forms Resource Editor)
Helps you localize user interface (UI) resources (.resx or .resources files) that are used by Windows Forms. You can translate strings, and then size,
move, and hide controls to accommodate the localized strings.

Tools
Includes tools such as the isXPS Conformance tool (isXPS.exe) and performance profiling tools.

Windows Communication Foundation Tools
Includes tools that make it easier for you to create, deploy, and manage Windows Communication Foundation (WCF) applications.

https://docs.microsoft.com/en-us/dotnet/framework/tools/mdbg-exe
https://docs.microsoft.com/en-us/dotnet/framework/tools/mgmtclassgen-exe
https://docs.microsoft.com/en-us/dotnet/framework/tools/mpgo-exe-managed-profile-guided-optimization-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/ngen-exe-native-image-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/peverify-exe-peverify-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/regasm-exe-assembly-registration-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/regsvcs-exe-net-services-installation-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/secannotate-exe-net-security-annotator-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/signtool-exe
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sos-dll-sos-debugging-extension
https://docs.microsoft.com/en-us/dotnet/framework/tools/sqlmetal-exe-code-generation-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/storeadm-exe-isolated-storage-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbexp-exe-type-library-exporter
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer
https://docs.microsoft.com/en-us/dotnet/framework/tools/winmdexp-exe-windows-runtime-metadata-export-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/winres-exe-windows-forms-resource-editor
http://msdn.microsoft.com/library/f533241c-317c-445e-88ca-c80c8d078fca
https://docs.microsoft.com/en-us/dotnet/framework/wcf/tools

Additional class libraries and APIs
5/2/2018 • 2 minutes to read • Edit Online

OOB projects
PROJECT DESCRIPTION

System.Collections.Immutable Provides collections that are thread safe and guaranteed to never change their
contents.

WinHttpHandler Provides a message handler for HttpClient based on the WinHTTP interface of
Windows.

System.Numerics.Vectors Provides a library of vector types that can take advantage of SIMD hardware-based
acceleration.

System.Threading.Tasks.Dataflow The TPL Dataflow Library provides dataflow components to help increase the
robustness of concurrency-enabled applications.

Platform-specific libraries
PROJECT DESCRIPTION

CodePagesEncodingProvider Extends the EncodingProvider class to make code page encodings available to apps
that target the Universal Windows Platform.

Private APIs

API NAME

System.Net.Connection Class

System.Net.Connection.m_WriteList Field

System.Net.ConnectionGroup Class

System.Net.ConnectionGroup.m_ConnectionList Field

System.Net.CoreResponseData Class

System.Net.CoreResponseData.m_ResponseHeaders Field

System.Net.CoreResponseData.m_StatusCode Field

System.Net.HttpWebRequest._AutoRedirects Field

System.Net.HttpWebRequest._CoreResponse Field

System.Net.HttpWebRequest._HttpResponse Field

System.Net.ServicePoint.m_ConnectionGroupList Field

System.Net.ServicePointManager.s_ServicePointTable Field

System.Windows.Diagnostics.VisualDiagnostics.s_isDebuggerCheckDisabledForTestPurposes Field

System.Windows.Forms.Design.DataMemberFieldEditor Class

The .NET Framework is constantly evolving and in order to improve cross-platform development or to introduce new functionality early to our
customers, we release new features out of band (OOB). This topic lists the OOB projects that we provide documentation for.

In addition, some libraries target specific platforms or implementations of the .NET Framework. For example, the CodePagesEncodingProvider class
makes code page encodings available to UWP apps developed using the .NET Framework. This topic lists these libraries as well.

These APIs support the product infrastructure and are not intended/supported to be used directly from your code.

https://github.com/dotnet/docs/blob/master/docs/framework/additional-apis/index.md
https://docs.microsoft.com/dotnet/api/system.text.codepagesencodingprovider
https://docs.microsoft.com/dotnet/api/system.collections.immutable
https://docs.microsoft.com/dotnet/api/system.net.http.winhttphandler
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://msdn.microsoft.com/library/mt452176.aspx
https://docs.microsoft.com/dotnet/api/system.threading.tasks.dataflow
https://docs.microsoft.com/dotnet/api/system.text.codepagesencodingprovider
https://docs.microsoft.com/dotnet/api/system.text.encodingprovider
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/connection
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/m_writelist
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/connectiongroup
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/m_connectionlist
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/coreresponsedata
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/coreresponsedata_m_responseheaders
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/coreresponsedata_m_statuscode
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/_autoredirects
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/httpwebrequest__coreresponse
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/_httpresponse
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/m_connectiongrouplist
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/s_servicepointtable
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/s-isdebuggercheckdisabledfortestpurposes-field
https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/datamemberfieldeditor-class

System.Windows.Forms.Design.DataMemberListEditor Class

API NAME

See also
The .NET Framework and Out-of-Band Releases

https://docs.microsoft.com/en-us/dotnet/framework/additional-apis/datamemberlisteditor-class
https://docs.microsoft.com/en-us/dotnet/framework/get-started/the-net-framework-and-out-of-band-releases

C# Guide
5/24/2018 • 3 minutes to read • Edit Online

How the C# guide is organized

See also

The C# guide provides many resources about the C# language. This site has many different audiences. Depending on your experience with
programming, or with the C# language and .NET, you may wish to explore different sections of this guide.

For brand-new developers:

Start with the Quickstarts section. These quickstarts let you explore the C# language interactively in your browser. From there, you can move
on to the tutorials section. These tutorials show you how to create C# programs from scratch. The tutorials provide a step-by-step process to
create programs. They show the language concepts, and how to build C# programs on your own. If you prefer reading overview information
first, try the tour of the C# language. It explains the concepts of the C# language. After reading this, you'll have a basic understanding of the
language, and be ready to try the tutorials, or build something on your own.

For developers new to C#:

If you've done development before, but are new to C#, read the tour of the C# language. It covers the basic syntax and structure for the
language, and you can use the language tour to contrast C# with other languages you've used. You can also browse the tutorials to try basic
C# programs.

Experienced C# developers:

If you've used C# before, you should start by reading what's in the latest version of the language. Check out What's new in C# for the new
features in the current version.

There are several sections in the C# Guide. You can read them in order, or jump directly to what interests you the most. Some of the sections are heavily
focused on the language. Others provide end-to-end scenarios that demonstrate a few of the types of programs you can create using C# and the .NET
Framework.

Get Started

This section covers what you need to install for a C# development environment on your preferred platform. The different topics under this
section explain how to create your first C# program in different supported environments.

C# Quickstarts:

C# Quickstarts presents interactive tutorials for brand-new developers to explore and learn the C# language in the browser using a Read-
Eval-Print Loop (REPL) interface. After you finish the interactive lessons, you can improve your coding skills by practicing the same lessons on
your machine.

Tutorials

This section provides a variety of end-to-end scenarios, including descriptions and code. It shows why certain idioms are preferred, what C#
features work best in different situations, and reference implementations for common tasks. If you learn best by seeing code, start in this
section. You can also download all the code and experiment in your own environment.

Tour of C#

This section provides an overview of the language. It covers the elements that make up C# programs and the capabilities of the language. It
shows small samples of all the syntax elements of C# and discussions of the major C# language topics.

What's new in C#

Provides overviews of new features added in the latest language releases and of the history of the C# language.

C# Programming Guide

Provides information and practical examples about how to use C# language constructs.
Walkthroughs

Provides links to programming walkthroughs that use C# and a brief description of each walkthrough.
Language Reference

This section contains the reference material on the C# language. This material helps you understand the syntax and semantics of C#. It also
includes reference material on types, operators, attributes, preprocessor directives, compiler switches, compiler errors, and compiler warnings.

C# Language Specification

Links to the latest versions of the C# language specification.

Getting Started with Visual C# and Visual Basic
.NET Development
C# Samples

https://github.com/dotnet/docs/blob/master/docs/csharp/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/visualstudio/ide/getting-started-with-visual-csharp-and-visual-basic
https://msdn.microsoft.com/library/ff361664
http://code.msdn.microsoft.com/site/search?f%5B0%5D.Type=ProgrammingLanguage&f%5B0%5D.Value=C%23&f%5B0%5D.Text=C%23

Get started with C#
5/4/2018 • 2 minutes to read • Edit Online

Related Sections

See also

This section provides short, simple tutorials that let you quickly build an application using C# and .NET Core. There are getting started topics for Visual
Studio 2017 and Visual Studio Code. You can build either a simple Hello World application or, if you have Visual Studio 2017, a simple class library that
can be used by other applications.

The following topics are available:

Introduction to the C# Language and the .NET Framework

Provides an overview of the C# language and .NET.

Building a C# Hello World application with .NET Core in Visual Studio 2017

Visual Studio 2017, the latest release of Visual Studio, lets you code, compile, run, debug, profile, and publish your applications from a integrated
development environment for Windows.

The topic lets you create and run a simple Hello World application and then modify it to run a slightly more interactive Hello World application.
Once you've finished building and running your application, you can also learn how to debug it and how to publish it so that it can be run on any
platform supported by .NET Core.

Building a class library with C# and .NET Core in Visual Studio 2017

A class library lets you define types and type members that can be called from another application. This topic lets you create a class library with a
single method that determines whether a string begins with an uppercase character. Once you've finished building the library, you can develop a
unit test to ensure that it works as expected, and then you can make it available to applications that want to consume it.

Get started with C# and Visual Studio Code

Visual Studio Code is a free code editor optimized for building and debugging modern web and cloud applications. It supports IntelliSense and is
available for Linux, macOS, and Windows.

This topic shows you how to create and run a simple Hello World application with Visual Studio Code and .NET Core.

Using the Visual Studio Development Environment for C#

Provides a guide to using the Visual C# integrated development environment.

C# Programming Guide

Provides information about C# programming concepts, and describes how to perform various tasks in C#.

C# Reference

Provides detailed reference information about C# keywords, operators, preprocessor directives, compiler options, and compiler errors and
warnings.

Visual Studio Samples

Provides information about how you can access online samples.

Walkthroughs

Provides links to programming walkthroughs that use C# and a brief description of each walkthrough.

Getting Started with Visual C# and Visual Basic using Visual Studio

https://github.com/dotnet/docs/blob/master/docs/csharp/getting-started/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/core/tutorials/debugging-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/publishing-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/testing-library-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/core/tutorials/consuming-library-with-visual-studio
https://docs.microsoft.com/visualstudio/csharp-ide/using-the-visual-studio-development-environment-for-csharp
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/visualstudio/ide/visual-studio-samples
https://docs.microsoft.com/en-us/dotnet/csharp/walkthroughs
https://docs.microsoft.com/visualstudio/ide/getting-started-with-visual-csharp-and-visual-basic

C# Quickstarts
5/4/2018 • 2 minutes to read • Edit Online

Hello world

Numbers in C#

Branches and loops

String interpolation

List collection

Introduction to classes

Welcome to the C# Quickstarts. These start with interactive lessons that you can run in your browser.

The first lessons explain C# concepts using small snippets of code. You'll learn the basics of C# syntax and how to work with data types like strings,
numbers, and booleans. It's all interactive, and you'll be writing and running code within minutes. These first lessons assume no prior knowledge of
programming or the C# language.

All the quickstarts following the Hello World lesson are available using the online browser experience or in your own local development environment.
At the end of each quickstart, you decide if you want to continue with the next quickstart online or on your own machine. There are links to help you
setup your environment and continue with the next quickstart on your machine.

In the Hello world quickstart, you'll create the most basic C# program. You'll explore the string type and how to work with text.

In the Numbers in C# quickstart, you'll learn how computers store numbers and how to perform calculations with different numeric types. You'll learn
the basics of rounding, and how to perform mathematical calculations using C#. This quickstart is also available to run locally on your machine.

This quickstart assumes that you have finished the Hello world lesson.

The Branches and loops quickstart teaches the basics of selecting different paths of code execution based on the values stored in variables. You'll learn
the basics of control flow, which is the basis of how programs make decisions and choose different actions. This quickstart is also available to run locally
on your machine.

This quickstart assumes that you have finished the Hello world and Numbers in C# lessons.

The String interpolation quickstart shows you how to insert values into a string. You'll learn how to create an interpolated string with embedded C#
expressions and how to control the text appearance of the expression results in the result string. This quickstart is also available to run locally on your
machine.

This quickstart assumes that you have finished the Hello world, Numbers in C#, and Branches and loops lessons.

The List collection lesson gives you a tour of the List collection type that stores sequences of data. You'll learn how to add and remove items, search for
items, and sort the lists. You'll explore different kinds of lists. This quickstart is also available to run locally on your machine.

This quickstart assumes that you have finished the lessons listed above.

This final quickstart is only available to run on your machine, using your own local development environment and .NET Core. You'll build a console
application and see the basic object-oriented features that are part of the C# language.

This quickstart assumes you've finished the online quickstarts, and you've installed .NET Core SDK and Visual Studio Code.

https://github.com/dotnet/docs/blob/master/docs/csharp/quick-starts/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/local-environment
file:///T:/phwm/hello-world.yml
file:///T:/phwm/hello-world.yml
file:///T:/phwm/numbers-in-csharp.yml
file:///T:/phwm/numbers-in-csharp.yml
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/numbers-in-csharp-local
file:///T:/phwm/hello-world.yml
file:///T:/phwm/branches-and-loops.yml
file:///T:/phwm/branches-and-loops.yml
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/branches-and-loops-local
file:///T:/phwm/hello-world.yml
file:///T:/phwm/numbers-in-csharp.yml
file:///T:/phwm/interpolated-strings.yml
file:///T:/phwm/interpolated-strings.yml
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/interpolated-strings-local
file:///T:/phwm/hello-world.yml
file:///T:/phwm/numbers-in-csharp.yml
file:///T:/phwm/branches-and-loops.yml
file:///T:/phwm/list-collection.yml
file:///T:/phwm/list-collection.yml
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/arrays-and-collections
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/introduction-to-classes
http://dot.net/core
https://code.visualstudio.com/

C# Tutorials
5/10/2018 • 2 minutes to read • Edit Online

The following tutorials enable you to build C# programs using .NET Core:

Console Application: demonstrates Console I/O, the structure of a Console application, and the basics of the task-based asynchronous
programming model.

REST Client: demonstrates web communications, JSON serialization, and object-oriented features in the C# language.

Inheritance in C# and .NET: demonstrates inheritance in C#, including the use of inheritance to define base classes, abstract base classes, and
derived classes.

Working with L INQ: demonstrates many of the features of L INQ and the language elements that support it.

Microservices hosted in Docker: demonstrates building an ASP.NET Core microservice and hosting it in Docker.

String Interpolation: demonstrates how to use string interpolation to create formatted strings in C#.

Using Attributes: demonstrates how to create and use attributes in C#.

https://github.com/dotnet/docs/blob/master/docs/csharp/tutorials/index.md
https://docs.microsoft.com/en-us/dotnet/core/index
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-teleprompter
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-webapiclient
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/working-with-linq
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/microservices
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/string-interpolation
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/attributes

A Tour of the C# Language
5/4/2018 • 4 minutes to read • Edit Online

Hello world

using System;
class Hello
{
 static void Main()
 {
 Console.WriteLine("Hello, World");
 }
}

csc hello.cs

Hello, World

IMPORTANTIMPORTANT

C# (pronounced "See Sharp") is a simple, modern, object-oriented, and type-safe programming language. C# has its roots in the C family of languages
and will be immediately familiar to C, C++, Java, and JavaScript programmers.

C# is an object-oriented language, but C# further includes support for component-oriented programming. Contemporary software design increasingly
relies on software components in the form of self-contained and self-describing packages of functionality. Key to such components is that they present a
programming model with properties, methods, and events; they have attributes that provide declarative information about the component; and they
incorporate their own documentation. C# provides language constructs to support directly these concepts, making C# a very natural language in which
to create and use software components.

Several C# features aid in the construction of robust and durable applications: Garbage collection automatically reclaims memory occupied by
unreachable unused objects; exception handling provides a structured and extensible approach to error detection and recovery; and the type-safe
design of the language makes it impossible to read from uninitialized variables, to index arrays beyond their bounds, or to perform unchecked type
casts.

C# has a unified type system. All C# types, including primitive types such as int and double , inherit from a single root object type. Thus, all types
share a set of common operations, and values of any type can be stored, transported, and operated upon in a consistent manner. Furthermore, C#
supports both user-defined reference types and value types, allowing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner, much emphasis has been placed on versioning in C#’s design.
Many programming languages pay little attention to this issue, and, as a result, programs written in those languages break more often than necessary
when newer versions of dependent libraries are introduced. Aspects of C#’s design that were directly influenced by versioning considerations include
the separate virtual and override modifiers, the rules for method overload resolution, and support for explicit interface member declarations.

The "Hello, World" program is traditionally used to introduce a programming language. Here it is in C#:

C# source files typically have the file extension .cs . Assuming that the "Hello, World" program is stored in the file hello.cs , the program might be
compiled using the command line:

which produces an executable assembly named hello.exe. The output produced by this application when it is run is:

The csc command compiles for the full framework, and may not be available on all platforms.

The "Hello, World" program starts with a using directive that references the System namespace. Namespaces provide a hierarchical means of
organizing C# programs and libraries. Namespaces contain types and other namespaces—for example, the System namespace contains a number of
types, such as the Console class referenced in the program, and a number of other namespaces, such as IO and Collections . A using directive that
references a given namespace enables unqualified use of the types that are members of that namespace. Because of the using directive, the program
can use Console.WriteLine as shorthand for System.Console.WriteLine .

The Hello class declared by the "Hello, World" program has a single member, the method named Main . The Main method is declared with the static
modifier. While instance methods can reference a particular enclosing object instance using the keyword this , static methods operate without
reference to a particular object. By convention, a static method named Main serves as the entry point of a program.

The output of the program is produced by the WriteLine method of the Console class in the System namespace. This class is provided by the standard
class libraries, which, by default, are automatically referenced by the compiler.

There's a lot more to learn about C#. The following topics provide an overview of the elements of the C# language. These overviews will provide basic
information about all elements of the language and give you the information necessary to dive deeper into elements of the C# language:

https://github.com/dotnet/docs/blob/master/docs/csharp/tour-of-csharp/index.md

Program Structure

Types and Variables

Expressions

Statements

Classes and objects

Structs

Arrays

Interfaces

Enums

Delegates

Attributes

Learn the key organizational concepts in the C# language: programs, namespaces, types, members, and assemblies.

Learn about value types, reference types, and variables in the C# language.

Expressions are constructed from operands and operators. Expressions produce a value.

You use statements to express the actions of a program.

Classes are the most fundamental of C#'s types. Objects are instances of a class. Classes are built using members, which are also covered in
this topic.

Structs are data structures that, unlike classes, are value types.

An array is a data structure that contains a number of variables that are accessed through computed indices.

An interface defines a contract that can be implemented by classes and structs. An interface can contain methods, properties, events, and
indexers. An interface does not provide implementations of the members it defines—it merely specifies the members that must be supplied
by classes or structs that implement the interface.

An enum type is a distinct value type with a set of named constants.

A delegate type represents references to methods with a particular parameter list and return type. Delegates make it possible to treat
methods as entities that can be assigned to variables and passed as parameters. Delegates are similar to the concept of function pointers
found in some other languages, but unlike function pointers, delegates are object-oriented and type-safe.

Attributes enable programs to specify additional declarative information about types, members, and other entities.

N E X T

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/program-structure
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/types-and-variables
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/expressions
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/statements
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/classes-and-objects
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/structs
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/arrays
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/enums
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/delegates
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/attributes
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/program-structure

What's new in C#
6/22/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Previous Versions

This page provides a roadmap of new features in each major release of the C# language. The following links provide detailed information on the major
features added in each release.

The C# language relies on types and methods in a standard library for some of the features. One example is exception processing. Every throw statement or
expression is checked to ensure the object being thrown is derived from Exception. Similarly, every catch is checked to ensure that the type being caught is derived
from Exception. Each version may add new requirements. To use the latest language features in older environments, you may need to install specific libraries. These
dependencies are documented in the page for each specific version. You can learn more about the relationships between language and library for background on this
dependency.

To use the latest features in a point release, you need to configure the compiler language version and select the version.

C# 7.3:

C# 7.2:

C# 7.1:

C# 7.0:

C# 6:

Cross Platform Support:

.NET Compiler Platform SDK:

This page describes the latest features in the C# language. C# 7.3 is currently available in Visual Studio 2017 version 15.7, and in the .NET
Core 2.1 SDK 2.1.300 RC1.

This page describes the features added in the C# language. C# 7.2 is currently available in Visual Studio 2017 version 15.5, and in the .NET
Core 2.0 SDK.

This page describes the features added in C# 7.1. These features were added in Visual Studio 2017 version 15.3, and in the .NET Core 2.0
SDK.

This page describes the features added in C# 7.0. These features were added in Visual Studio 2017 and .NET Core 1.0 and later

This page describes the features that were added in C# 6. These features are available in Visual Studio 2015 for Windows developers, and on
.NET Core 1.0 for developers exploring C# on macOS and Linux.

C#, through .NET Core support, runs on multiple platforms. If you are interested in trying C# on macOS, or on one of the many supported
Linux distributions, learn more about .NET Core.

The .NET Compiler Platform SDK enables you to write code that performs static analysis on C# code. You can use these APIs to find potential
errors, or bad practices, suggest fixes, and even implement those fixes.

The following lists key features that were introduced in previous versions of the C# language and Visual Studio .NET.

Visual Studio .NET 2013:

C# 5, Visual Studio .NET 2012:

C# 4, Visual Studio .NET 2010:

C# 3, Visual Studio .NET 2008:

C# 2, Visual Studio .NET 2005:

C# 1.1, Visual Studio .NET 2003:

C# 1, Visual Studio .NET 2002:

This version of Visual Studio included bug fixes, performance improvements, and technology previews of .NET Compiler Platform ("Roslyn")
which became the .NET Compiler Platform SDK.

Async / await , and caller information attributes.

Dynamic , named arguments, optional parameters, and generic covariance and contra variance.

Object and collection initializers, lambda expressions, extension methods, anonymous types, automatic properties, local var type inference,
and Language Integrated Query (L INQ).

Anonymous methods, generics, nullable types, iterators/yield, static classes, and covariance and contra variance for delegates.

#line pragma and xml doc comments.

The first release of C#.

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/index.md
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://visualstudio.microsoft.com/vs/whatsnew/
https://visualstudio.microsoft.com/vs/whatsnew/
https://visualstudio.microsoft.com/vs/whatsnew/
https://visualstudio.microsoft.com/vs/whatsnew/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/caller-information
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/csharp

What's new in C# 7.3
7/20/2018 • 6 minutes to read • Edit Online

Enabling more performant safe code

Indexing Indexing fixed fields does not require pinning fields does not require pinning

unsafe struct S
{
 public fixed int myFixedField[10];
}

class C
{
 static S s = new S();

 unsafe public void M()
 {
 int p = s.myFixedField[5];
 }
}

There are two main themes to the C# 7.3 release. One theme provides features that enable safe code to be as performant as unsafe code. The second
theme provides incremental improvements to existing features. In addition, new compiler options were added in this release.

The following new features support the theme of better performance for safe code:

You can access fixed fields without pinning.
You can reassign ref local variables.
You can use initializers on stackalloc arrays.
You can use fixed statements with any type that supports a pattern.
You can use additional generic constraints.

The following enhancements were made to existing features:

You can test == and != with tuple types.
You can use expression variables in more locations.
You may attach attributes to the backing field of auto-implemented properties.
Method resolution when arguments differ by in has been improved.
Overload resolution now has fewer ambiguous cases.

The new compiler options are:

-publicsign to enable Open Source Software (OSS) signing of assemblies.
-pathmap to provide a mapping for source directories.

The remainder of this article provides details and links to learn more about each of the improvements.

You should be able to write C# code safely that performs as well as unsafe code. Safe code avoids classes of errors, such as buffer overruns, stray
pointers, and other memory access errors. These new features expand the capabilities of verifiable safe code. Strive to write more of your code using
safe constructs. These features make that easier.

Consider this struct:

In earlier versions of C#, you needed to pin a variable to access one of the integers that are part of myFixedField . Now, the following code compiles in a
safe context:

The variable p accesses one element in myFixedField . You don't need to declare a separate int* variable. Note that you still need an unsafe context.
In earlier versions of C#, you need to declare a second fixed pointer :

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-7-3.md

class C
{
 static S s = new S();

 unsafe public void M()
 {
 fixed (int* ptr = s.myFixedField)
 {
 int p = ptr[5];
 }
 }
}

ref local variables may be reassigned local variables may be reassigned

ref VeryLargeStruct refLocal = ref veryLargeStruct; // initialization
refLocal = ref anotherVeryLargeStruct; // reassigned, refLocal refers to different storage.

stackalloc arrays support initializers arrays support initializers

var arr = new int[3] {1, 2, 3};
var arr2 = new int[] {1, 2, 3};

int* pArr = stackalloc int[3] {1, 2, 3};
int* pArr2 = stackalloc int[] {1, 2, 3};
Span<int> arr = stackalloc [] {1, 2, 3};

More types support the More types support the fixed statement statement

Enhanced generic constraintsEnhanced generic constraints

Make existing features better

Tuples support Tuples support == and and !=

Attach attributes to the backing fields for auto-implemented propertiesAttach attributes to the backing fields for auto-implemented properties

[field: SomeThingAboutFieldAttribute]
public int SomeProperty { get; set; }

in method overload resolution tiebreaker method overload resolution tiebreaker

Fore more information, see the article on the fixed statement.

Now, ref locals may be reassigned to refer to different instances after being initialized. The following code now compiles:

For more information, see the article on ref returns and ref locals, and the article on foreach .

You've been able to specify the values for elements in an array when you initialize it:

Now, that same syntax can be applied to arrays that are declared with stackalloc :

For more information, see the stackalloc statement article in the language reference.

The fixed statement supported a limited set of types. Starting with C# 7.3, any type that contains a GetPinnableReference() method that returns a
ref T or ref readonly T may be fixed . Adding this feature means that fixed can be used with System.Span<T> and related types.

For more information, see the fixed statement article in the language reference.

You can now specify the type System.Enum or System.Delegate as base class constraints for a type parameter.

You can also use the new unmanaged constraint, to specify that a type parameter must be an unmanaged type. An unmanaged type is a type that isn't
a reference type and doesn't contain any reference type at any level of nesting.

For more information, see the articles on where generic constraints and constraints on type parameters.

The second theme provides improvements to features in the language. These features improve productivity when writing C#.

The C# tuple types now support == and != . Fore more information, see the section covering equality in the article on tuples.

This syntax is now supported:

The attribute SomeThingAboutFieldAttribute is applied to the compiler generated backing field for SomeProperty . For more information, see attributes in
the C# programming guide.

When the in argument modifier was added, these two methods would cause an ambiguity:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/ref-returns
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/foreach-in
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/stackalloc
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/where-generic-type-constraint
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/index

static void M(S arg);
static void M(in S arg);

NOTENOTE

Extend expression variables in initializersExtend expression variables in initializers

public class B
{
 public B(int i, out int j)
 {
 j = i;
 }
}

public class D : B
{
 public D(int i) : base(i, out var j)
 {
 Console.WriteLine($"The value of 'j' is {j}");
 }
}

Improved overload candidatesImproved overload candidates

New compiler options

Public or Open Source signingPublic or Open Source signing

pathmappathmap

Now, the by value (first in the preceding example) overload is better than the by readonly reference version. To call the version with the readonly
reference argument, you must include the in modifier when calling the method.

This was implemented as a bug fix. This no longer is ambiguous even with the language version set to "7.2".

For more information, see the article on the in parameter modifier.

The syntax added in C# 7.0 to allow out variable declarations has been extended to include field initializers, property initializers, constructor initializers,
and query clauses. It enables code such as the following example:

In every release, the overload resolution rules get updated to address situations where ambiguous method invocations have an "obvious" choice. This
release adds three new rules to help the compiler pick the obvious choice:

1. When a method group contains both instance and static members, the compiler discards the instance members if the method was invoked without
an instance receiver or context. The compiler discards the static members if the method was invoked with an instance receiver. When there is no
receiver, the compiler includes only static members in a static context, otherwise both static and instance members. When the receiver is
ambiguously an instance or type, the compiler includes both. A static context, where an implicit this instance receiver cannot be used, includes the
body of members where no this is defined, such as static members, as well as places where this cannot be used, such as field initializers and
constructor-initializers.

2. When a method group contains some generic methods whose type arguments do not satisfy their constraints, these members are removed from the
candidate set.

3. For a method group conversion, candidate methods whose return type doesn't match up with the delegate's return type are removed from the set.

You'll only notice this change because you'll find fewer compiler errors for ambiguous method overloads when you are sure which method is better.

New compiler options support new build and DevOps scenarios for C# programs.

The -publicsign compiler option instructs the compiler to sign the assembly using a public key. The assembly is marked as signed, but the signature is
taken from the public key. This option enables you to build signed assemblies from open-source projects using a public key.

For more information, see the -publicsign compiler option article.

The -pathmap compiler option instructs the compiler to replace source paths from the build environment with mapped source paths. The -pathmap

option controls the source path written by the compiler to PDB files or for the CallerFilePathAttribute.

For more information, see the -pathmap compiler option article.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/publicsign-compiler-option
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/pathmap-compiler-option

What's new in C# 7.2
5/30/2018 • 2 minutes to read • Edit Online

Reference semantics with value types

Non-trailing named arguments

Leading underscores in numeric literals

int binaryValue = 0b_0101_0101;

private protected access modifier

C# 7.2 is another point release that adds a number of useful features. One theme for this release is working more efficiently with value types by
avoiding unnecessary copies or allocations.

The remaining features are small, nice-to-have features.

C# 7.2 uses the language version selection configuration element to select the compiler language version.

The new language features in this release are:

Reference semantics with value types

Non-trailing named arguments

Leading underscores in numeric literals

private protected access modifier

A combination of syntax improvements that enable working with value types using reference semantics.

Named arguments can be followed by positional arguments.

Numeric literals can now have leading underscores before any printed digits.

The private protected access modifier enables access for derived classes in the same assembly.

Language features introduced in 7.2 let you work with value types while using reference semantics. They are designed to increase performance by
minimizing copying value types without incurring the memory allocations associated with using reference types. The features include:

The in modifier on parameters, to specify that an argument is passed by reference but not modified by the called method.
The ref readonly modifier on method returns, to indicate that a method returns its value by reference but doesn't allow writes to that object.
The readonly struct declaration, to indicate that a struct is immutable and should be passed as an in parameter to its member methods.
The ref struct declaration, to indicate that a struct type accesses managed memory directly and must always be stack allocated.

You can read more about all these changes in Using value types with reference semantics.

Method calls may now use named arguments that precede positional arguments when those named arguments are in the correct positions. For more
information see Named and optional arguments.

The implementation of support for digit separators in C# 7.0 didn't allow the _ to be the first character of the literal value. Hex and binary numeric
literals may now begin with an _ .

For example:

Finally, a new compound access modifier : private protected indicates that a member may be accessed by containing class or derived classes that are
declared in the same assembly. While protected internal allows access by derived classes or classes that are in the same assembly, private protected

limits access to derived types declared in the same assembly.

For more information see access modifiers in the language reference.

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-7-2.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers

What's new in C# 7.1
6/2/2018 • 2 minutes to read • Edit Online

Async main

static int Main()
{
 return DoAsyncWork().GetAwaiter().GetResult();
}

static async Task<int> Main()
{
 // This could also be replaced with the body
 // DoAsyncWork, including its await expressions:
 return await DoAsyncWork();
}

static async Task Main()
{
 await SomeAsyncMethod();
}

Default literal expressions

Func<string, bool> whereClause = default(Func<string, bool>);

Func<string, bool> whereClause = default;

Inferred tuple element names

C# 7.1 is the first point release to the C# language. It marks an increased release cadence for the language. You can use the new features sooner, ideally
when each new feature is ready. C# 7.1 adds the ability to configure the compiler to match a specified version of the language. That enables you to
separate the decision to upgrade tools from the decision to upgrade language versions.

C# 7.1 adds the language version selection configuration element, three new language features and new compiler behavior.

The new language features in this release are:

async Main method

default literal expressions

Inferred tuple element names

The entry point for an application can have the async modifier.

You can use default literal expressions in default value expressions when the target type can be inferred.

The names of tuple elements can be inferred from tuple initialization in many cases.

Finally, the compiler has two options /refout and /refonly that control reference assembly generation.

To use the latest features in a point release, you need to configure the compiler language version and select the version.

An async main method enables you to use await in your Main method. Previously you would need to write:

You can now write:

If your program doesn't return an exit code, you can declare a Main method that returns a Task:

You can read more about the details in the async main topic in the programming guide.

Default literal expressions are an enhancement to default value expressions. These expressions initialize a variable to the default value. Where you
previously would write:

You can now omit the type on the right-hand side of the initialization:

You can learn more about this enhancement in the C# Programming Guide topic on default value expressions.

This enhancement also changes some of the parsing rules for the default keyword.

This feature is a small enhancement to the tuples feature introduced in C# 7.0. Many times when you initialize a tuple, the variables used for the right

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-7-1.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/default-value-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/default

int count = 5;
string label = "Colors used in the map";
var pair = (count: count, label: label);

int count = 5;
string label = "Colors used in the map";
var pair = (count, label); // element names are "count" and "label"

Reference assembly generation

side of the assignment are the same as the names you'd like for the tuple elements:

The names of tuple elements can be inferred from the variables used to initialize the tuple in C# 7.1:

You can learn more about this feature in the Tuples topic.

There are two new compiler options that generate reference-only assemblies: /refout and /refonly. The linked topics explain these options and reference
assemblies in more detail.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/refout-compiler-option
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/refonly-compiler-option

What's new in C# 7.0
5/10/2018 • 25 minutes to read • Edit Online

out variables

int numericResult;
if (int.TryParse(input, out numericResult))
 WriteLine(numericResult);
else
 WriteLine("Could not parse input");

if (int.TryParse(input, out int result))
 WriteLine(result);
else
 WriteLine("Could not parse input");

if (int.TryParse(input, out var answer))
 WriteLine(answer);
else
 WriteLine("Could not parse input");

C# 7.0 adds a number of new features to the C# language:

out variables

Tuples

Discards

Pattern Matching

ref locals and returns

Local Functions

More expression-bodied members

throw Expressions

Generalized async return types

Numeric literal syntax improvements

You can declare out values inline as arguments to the method where they are used.

You can create lightweight, unnamed types that contain multiple public fields. Compilers and IDE tools understand the semantics of these
types.

Discards are temporary, write-only variables used in assignments when you don't care about the value assigned. They are particularly useful
when deconstructing tuples and user-defined types, as well as when calling methods with out parameters.

You can create branching logic based on arbitrary types and values of the members of those types.

Method arguments and local variables can be references to other storage.

You can nest functions inside other functions to limit their scope and visibility.

The list of members that can be authored using expressions has grown.

You can throw exceptions in code constructs that previously were not allowed because throw was a statement.

Methods declared with the async modifier can return other types in addition to Task and Task<T> .

New tokens improve readability for numeric constants.

The remainder of this topic discusses each of the features. For each feature, you'll learn the reasoning behind it. You'll learn the syntax. You'll see some
sample scenarios where using the new feature will make you more productive as a developer.

The existing syntax that supports out parameters has been improved in this version.

Previously, you would need to separate the declaration of the out variable and its initialization into two different statements:

You can now declare out variables in the argument list of a method call, rather than writing a separate declaration statement:

You may want to specify the type of the out variable for clarity, as shown above. However, the language does support using an implicitly typed local
variable:

The code is easier to read.

No need to assign an initial value.
You declare the out variable where you use it, not on another line above.

By declaring the out variable where it is used in a method call, you can't accidentally use it before it is assigned.

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-7.md

if (!int.TryParse(input, out int result))
{
 return null;
}

return result;

Tuples

NOTENOTE

NOTENOTE

var letters = ("a", "b");

(string Alpha, string Beta) namedLetters = ("a", "b");

var alphabetStart = (Alpha: "a", Beta: "b");

(string First, string Second) firstLetters = (Alpha: "a", Beta: "b");

The most common use for this feature will be the Try pattern. In this pattern, a method returns a bool indicating success or failure and an out

variable that provides the result if the method succeeds.

When using the out variable declaration, the declared variable "leaks" into the outer scope of the if statement. This allows you to use the variable
afterwards:

The new tuples features require the ValueTuple types. You must add the NuGet package System.ValueTuple in order to use it on platforms that do not include the
types.

This is similar to other language features that rely on types delivered in the framework. Example include async and await relying on the INotifyCompletion

interface, and LINQ relying on IEnumerable<T> . However, the delivery mechanism is changing as .NET is becoming more platform independent. The .NET Framework
may not always ship on the same cadence as the language compiler. When new language features rely on new types, those types will be available as NuGet packages
when the language features ship. As these new types get added to the .NET Standard API and delivered as part of the framework, the NuGet package requirement will
be removed.

C# provides a rich syntax for classes and structs that is used to explain your design intent. But sometimes that rich syntax requires extra work with
minimal benefit. You may often write methods that need a simple structure containing more than one data element. To support these scenarios tuples
were added to C#. Tuples are lightweight data structures that contain multiple fields to represent the data members. The fields are not validated, and
you cannot define your own methods

Tuples were available before C# 7.0, but they were inefficient and had no language support. This meant that tuple elements could only be referenced as Item1 ,
Item2 and so on. C# 7.0 introduces language support for tuples, which enables semantic names for the fields of a tuple using new, more efficient tuple types.

You can create a tuple by assigning a value to each member:

That assignment creates a tuple whose members are Item1 and Item2 , which you can use in the same way as Tuple You can change the syntax to
create a tuple that provides semantic names to each of the members of the tuple:

The namedLetters tuple contains fields referred to as Alpha and Beta . Those names exist only at compile time and are not preserved for example
when inspecting the tuple using reflection at runtime.

In a tuple assignment, you can also specify the names of the fields on the right-hand side of the assignment:

You can specify names for the fields on both the left and right-hand side of the assignment:

The line above generates a warning, CS8123 , telling you that the names on the right side of the assignment, Alpha and Beta are ignored because they
conflict with the names on the left side, First and Second .

The examples above show the basic syntax to declare tuples. Tuples are most useful as return types for private and internal methods. Tuples provide
a simple syntax for those methods to return multiple discrete values: You save the work of authoring a class or a struct that defines the type
returned. There is no need for creating a new type.

Creating a tuple is more efficient and more productive. It is a simpler, lightweight syntax to define a data structure that carries more than one value. The
example method below returns the minimum and maximum values found in a sequence of integers:

https://docs.microsoft.com/dotnet/api/system.valuetuple
https://www.nuget.org/packages/System.ValueTuple/
https://docs.microsoft.com/dotnet/api/system.tuple

private static (int Max, int Min) Range(IEnumerable<int> numbers)
{
 int min = int.MaxValue;
 int max = int.MinValue;
 foreach(var n in numbers)
 {
 min = (n < min) ? n : min;
 max = (n > max) ? n : max;
 }
 return (max, min);
}

var range = Range(numbers);

(int max, int min) = Range(numbers);

public class Point
{
 public Point(double x, double y)
 {
 this.X = x;
 this.Y = y;
 }

 public double X { get; }
 public double Y { get; }

 public void Deconstruct(out double x, out double y)
 {
 x = this.X;
 y = this.Y;
 }
}

var p = new Point(3.14, 2.71);
(double X, double Y) = p;

(double horizontalDistance, double verticalDistance) = p;

Discards

Using tuples in this way offers several advantages:

You save the work of authoring a class or a struct that defines the type returned.
You do not need to create new type.
The language enhancements removes the need to call the Create<T1>(T1) methods.

The declaration for the method provides the names for the fields of the tuple that is returned. When you call the method, the return value is a tuple
whose fields are Max and Min :

There may be times when you want to unpackage the members of a tuple that were returned from a method. You can do that by declaring separate
variables for each of the values in the tuple. This is called deconstructing the tuple:

You can also provide a similar deconstruction for any type in .NET. This is done by writing a Deconstruct method as a member of the class. That
Deconstruct method provides a set of out arguments for each of the properties you want to extract. Consider this Point class that provides a

deconstructor method that extracts the X and Y coordinates:

You can extract the individual fields by assigning a Point to a tuple:

You are not bound by the names defined in the Deconstruct method. You can rename the extract variables as part of the assignment:

You can learn more in depth about tuples in the tuples topic.

Often when deconstructing a tuple or calling a method with out parameters, you're forced to define a variable whose value you don't care about and
don't intend to use. C# adds support for discards to handle this scenario. A discard is a write-only variable whose name is _ (the underscore character);
you can assign all of the values that you intend to discard to the single variable. A discard is like an unassigned variable; apart from the assignment
statement, the discard can't be used in code.

Discards are supported in the following scenarios:

When deconstructing tuples or user-defined types.

When calling methods with out parameters.

https://docs.microsoft.com/dotnet/api/system.tuple.create#System_Tuple_Create__1___0_
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier

using System;
using System.Collections.Generic;

public class Example
{
 public static void Main()
 {
 var (_, _, _, pop1, _, pop2) = QueryCityDataForYears("New York City", 1960, 2010);

 Console.WriteLine($"Population change, 1960 to 2010: {pop2 - pop1:N0}");
 }

 private static (string, double, int, int, int, int) QueryCityDataForYears(string name, int year1, int year2)
 {
 int population1 = 0, population2 = 0;
 double area = 0;

 if (name == "New York City") {
 area = 468.48;
 if (year1 == 1960) {
 population1 = 7781984;
 }
 if (year2 == 2010) {
 population2 = 8175133;
 }
 return (name, area, year1, population1, year2, population2);
 }

 return ("", 0, 0, 0, 0, 0);
 }
}
// The example displays the following output:
// Population change, 1960 to 2010: 393,149

Pattern matching

is expression expression

public static int DiceSum(IEnumerable<int> values)
{
 return values.Sum();
}

In a pattern matching operation with the is and switch statements.

As a standalone identifier when you want to explicitly identify the value of an assignment as a discard.

The following example defines a QueryCityDataForYears method that returns a 6-tuple that contains a data for a city for two different years. The method
call in the example is concerned only with the two population values returned by the method and so treats the remaining values in the tuple as discards
when it deconstructs the tuple.

For more information, see Discards.

Pattern matching is a feature that allows you to implement method dispatch on properties other than the type of an object. You're probably already
familiar with method dispatch based on the type of an object. In Object Oriented programming, virtual and override methods provide language syntax
to implement method dispatching based on an object's type. Base and Derived classes provide different implementations. Pattern matching expressions
extend this concept so that you can easily implement similar dispatch patterns for types and data elements that are not related through an inheritance
hierarchy.

Pattern matching supports is expressions and switch expressions. Each enables inspecting an object and its properties to determine if that object
satisfies the sought pattern. You use the when keyword to specify additional rules to the pattern.

The is pattern expression extends the familiar is operator to query an object beyond its type.

Let's start with a simple scenario. We'll add capabilities to this scenario that demonstrate how pattern matching expressions make algorithms that work
with unrelated types easy. We'll start with a method that computes the sum of a number of die rolls:

You might quickly find that you need to find the sum of die rolls where some of the rolls are made with multiple dice (dice is the plural of die). Part of
the input sequence may be multiple results instead of a single number:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch

public static int DiceSum2(IEnumerable<object> values)
{
 var sum = 0;
 foreach(var item in values)
 {
 if (item is int val)
 sum += val;
 else if (item is IEnumerable<object> subList)
 sum += DiceSum2(subList);
 }
 return sum;
}

switch statement updates statement updates

public static int DiceSum3(IEnumerable<object> values)
{
 var sum = 0;
 foreach (var item in values)
 {
 switch (item)
 {
 case int val:
 sum += val;
 break;
 case IEnumerable<object> subList:
 sum += DiceSum3(subList);
 break;
 }
 }
 return sum;
}

public static int DiceSum4(IEnumerable<object> values)
{
 var sum = 0;
 foreach (var item in values)
 {
 switch (item)
 {
 case 0:
 break;
 case int val:
 sum += val;
 break;
 case IEnumerable<object> subList when subList.Any():
 sum += DiceSum4(subList);
 break;
 case IEnumerable<object> subList:
 break;
 case null:
 break;
 default:
 throw new InvalidOperationException("unknown item type");
 }
 }
 return sum;
}

The is pattern expression works quite well in this scenario. As part of checking the type, you write a variable initialization. This creates a new variable
of the validated runtime type.

As you keep extending these scenarios, you may find that you build more if and else if statements. Once that becomes unwieldy, you'll likely want
to switch to switch pattern expressions.

The match expression has a familiar syntax, based on the switch statement already part of the C# language. Let's translate the existing code to use a
match expression before adding new cases:

The match expressions have a slightly different syntax than the is expressions, where you declare the type and variable at the beginning of the case

expression.

The match expressions also support constants. This can save time by factoring out simple cases:

The code above adds cases for 0 as a special case of int , and null as a special case when there is no input. This demonstrates one important new
feature in switch pattern expressions: the order of the case expressions now matters. The 0 case must appear before the general int case.
Otherwise, the first pattern to match would be the int case, even when the value is 0 . If you accidentally order match expressions such that a later
case has already been handled, the compiler will flag that and generate an error.

This same behavior enables the special case for an empty input sequence. You can see that the case for an IEnumerable item that has elements must
appear before the general IEnumerable case.

NOTENOTE

public struct PercentileDice
{
 public int OnesDigit { get; }
 public int TensDigit { get; }

 public PercentileDice(int tensDigit, int onesDigit)
 {
 this.OnesDigit = onesDigit;
 this.TensDigit = tensDigit;
 }
}

public static int DiceSum5(IEnumerable<object> values)
{
 var sum = 0;
 foreach (var item in values)
 {
 switch (item)
 {
 case 0:
 break;
 case int val:
 sum += val;
 break;
 case PercentileDice dice:
 sum += dice.TensDigit + dice.OnesDigit;
 break;
 case IEnumerable<object> subList when subList.Any():
 sum += DiceSum5(subList);
 break;
 case IEnumerable<object> subList:
 break;
 case null:
 break;
 default:
 throw new InvalidOperationException("unknown item type");
 }
 }
 return sum;
}

Ref locals and returns

public static (int i, int j) Find(int[,] matrix, Func<int, bool> predicate)
{
 for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 if (predicate(matrix[i, j]))
 return (i, j);
 return (-1, -1); // Not found
}

This version has also added a default case. The default case is always evaluated last, regardless of the order it appears in the source. For that reason,
convention is to put the default case last.

Finally, let's add one last case for a new style of die. Some games use percentile dice to represent larger ranges of numbers.

Two 10-sided percentile dice can represent every number from 0 through 99. One die has sides labelled 00 , 10 , 20 , ... 90 . The other die has sides labeled 0 , 1 ,
2 , ... 9 . Add the two die values together and you can get every number from 0 through 99.

To add this kind of die to your collection, first define a type to represent the percentile dice. The TensDigit property stores values 0 , 10 , 20 , up to
90 :

Then, add a case match expression for the new type:

The new syntax for pattern matching expressions makes it easier to create dispatch algorithms based on an object's type, or other properties, using a
clear and concise syntax. Pattern matching expressions enable these constructs on data types that are unrelated by inheritance.

You can learn more about pattern matching in the topic dedicated to pattern matching in C#.

This feature enables algorithms that use and return references to variables defined elsewhere. One example is working with large matrices, and finding
a single location with certain characteristics. One method would return the two indices for a single location in the matrix:

There are many issues with this code. First of all, it's a public method that's returning a tuple. The language supports this, but user defined types (either
classes or structs) are preferred for public APIs.

var indices = MatrixSearch.Find(matrix, (val) => val == 42);
Console.WriteLine(indices);
matrix[indices.i, indices.j] = 24;

// Note that this won't compile.
// Method declaration indicates ref return,
// but return statement specifies a value return.
public static ref int Find2(int[,] matrix, Func<int, bool> predicate)
{
 for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 if (predicate(matrix[i, j]))
 return matrix[i, j];
 throw new InvalidOperationException("Not found");
}

public static ref int Find3(int[,] matrix, Func<int, bool> predicate)
{
 for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 if (predicate(matrix[i, j]))
 return ref matrix[i, j];
 throw new InvalidOperationException("Not found");
}

var valItem = MatrixSearch.Find3(matrix, (val) => val == 42);
Console.WriteLine(valItem);
valItem = 24;
Console.WriteLine(matrix[4, 2]);

ref var item = ref MatrixSearch.Find3(matrix, (val) => val == 42);
Console.WriteLine(item);
item = 24;
Console.WriteLine(matrix[4, 2]);

Second, this method is returning the indices to the item in the matrix. That leads callers to write code that uses those indices to dereference the matrix
and modify a single element:

You'd rather write a method that returns a reference to the element of the matrix that you want to change. You could only accomplish this by using
unsafe code and returning a pointer to an int in previous versions.

Let's walk through a series of changes to demonstrate the ref local feature and show how to create a method that returns a reference to internal storage.
Along the way, you'll learn the rules of the ref return and ref local feature that protects you from accidentally misusing it.

Start by modifying the Find method declaration so that it returns a ref int instead of a tuple. Then, modify the return statement so it returns the
value stored in the matrix instead of the two indices:

When you declare that a method returns a ref variable, you must also add the ref keyword to each return statement. That indicates return by
reference, and helps developers reading the code later remember that the method returns by reference:

Now that the method returns a reference to the integer value in the matrix, you need to modify where it's called. The var declaration means that
valItem is now an int rather than a tuple:

The second WriteLine statement in the example above prints out the value 42 , not 24 . The variable valItem is an int , not a ref int . The var

keyword enables the compiler to specify the type, but will not implicitly add the ref modifier. Instead, the value referred to by the ref return is copied

to the variable on the left-hand side of the assignment. The variable is not a ref local.

In order to get the result you want, you need to add the ref modifier to the local variable declaration to make the variable a reference when the return
value is a reference:

Now, the second WriteLine statement in the example above will print out the value 24 , indicating that the storage in the matrix has been modified. The
local variable has been declared with the ref modifier, and it will take a ref return. You must initialize a ref variable when it is declared, you cannot
split the declaration and the initialization.

The C# language has three other rules that protect you from misusing the ref locals and returns:

You cannot assign a standard method return value to a ref local variable.

You cannot return a ref to a variable whose lifetime does not extend beyond the execution of the method.

ref locals and returns can't be used with async methods.

That disallows statements like ref int i = sequence.Count();

That means you cannot return a reference to a local variable or a variable with a similar scope.

The compiler can't know if the referenced variable has been set to its final value when the async method returns.

 Local functions

public static IEnumerable<char> AlphabetSubset(char start, char end)
{
 if (start < 'a' || start > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(start), message: "start must be a letter");
 if (end < 'a' || end > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(end), message: "end must be a letter");

 if (end <= start)
 throw new ArgumentException($"{nameof(end)} must be greater than {nameof(start)}");
 for (var c = start; c < end; c++)
 yield return c;
}

var resultSet = Iterator.AlphabetSubset('f', 'a');
Console.WriteLine("iterator created");
foreach (var thing in resultSet)
 Console.Write($"{thing}, ");

public static IEnumerable<char> AlphabetSubset2(char start, char end)
{
 if (start < 'a' || start > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(start), message: "start must be a letter");
 if (end < 'a' || end > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(end), message: "end must be a letter");

 if (end <= start)
 throw new ArgumentException($"{nameof(end)} must be greater than {nameof(start)}");
 return alphabetSubsetImplementation(start, end);
}

private static IEnumerable<char> alphabetSubsetImplementation(char start, char end)
{
 for (var c = start; c < end; c++)
 yield return c;
}

The addition of ref locals and ref returns enable algorithms that are more efficient by avoiding copying values, or performing dereferencing operations
multiple times.

Many designs for classes include methods that are called from only one location. These additional private methods keep each method small and
focused. However, they can make it harder to understand a class when reading it the first time. These methods must be understood outside of the
context of the single calling location.

For those designs, local functions enable you to declare methods inside the context of another method. This makes it easier for readers of the class to
see that the local method is only called from the context in which is it declared.

There are two very common use cases for local functions: public iterator methods and public async methods. Both types of methods generate code that
reports errors later than programmers might expect. In the case of iterator methods, any exceptions are observed only when calling code that
enumerates the returned sequence. In the case of async methods, any exceptions are only observed when the returned Task is awaited.

Let's start with an iterator method:

Examine the code below that calls the iterator method incorrectly:

The exception is thrown when resultSet is iterated, not when resultSet is created. In this contained example, most developers could quickly diagnose
the problem. However, in larger codebases, the code that creates an iterator often isn't as close to the code that enumerates the result. You can refactor
the code so that the public method validates all arguments, and a private method generates the enumeration:

This refactored version will throw exceptions immediately because the public method is not an iterator method; only the private method uses the
yield return syntax. However, there are potential problems with this refactoring. The private method should only be called from the public interface

method, because otherwise all argument validation is skipped. Readers of the class must discover this fact by reading the entire class and searching for
any other references to the alphabetSubsetImplementation method.

You can make that design intent more clear by declaring the alphabetSubsetImplementation as a local function inside the public API method:

public static IEnumerable<char> AlphabetSubset3(char start, char end)
{
 if (start < 'a' || start > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(start), message: "start must be a letter");
 if (end < 'a' || end > 'z')
 throw new ArgumentOutOfRangeException(paramName: nameof(end), message: "end must be a letter");

 if (end <= start)
 throw new ArgumentException($"{nameof(end)} must be greater than {nameof(start)}");

 return alphabetSubsetImplementation();

 IEnumerable<char> alphabetSubsetImplementation()
 {
 for (var c = start; c < end; c++)
 yield return c;
 }
}

public Task<string> PerformLongRunningWork(string address, int index, string name)
{
 if (string.IsNullOrWhiteSpace(address))
 throw new ArgumentException(message: "An address is required", paramName: nameof(address));
 if (index < 0)
 throw new ArgumentOutOfRangeException(paramName: nameof(index), message: "The index must be non-negative");
 if (string.IsNullOrWhiteSpace(name))
 throw new ArgumentException(message: "You must supply a name", paramName: nameof(name));

 return longRunningWorkImplementation();

 async Task<string> longRunningWorkImplementation()
 {
 var interimResult = await FirstWork(address);
 var secondResult = await SecondStep(index, name);
 return $"The results are {interimResult} and {secondResult}. Enjoy.";
 }
}

NOTENOTE

More expression-bodied members

// Expression-bodied constructor
public ExpressionMembersExample(string label) => this.Label = label;

// Expression-bodied finalizer
~ExpressionMembersExample() => Console.Error.WriteLine("Finalized!");

private string label;

// Expression-bodied get / set accessors.
public string Label
{
 get => label;
 set => this.label = value ?? "Default label";
}

NOTENOTE

The version above makes it clear that the local method is referenced only in the context of the outer method. The rules for local functions also ensure
that a developer can't accidentally call the local function from another location in the class and bypass the argument validation.

The same technique can be employed with async methods to ensure that exceptions arising from argument validation are thrown before the
asynchronous work begins:

Some of the designs that are supported by local functions could also be accomplished using lambda expressions. Those interested can read more about the differences

C# 6 introduced expression-bodied members for member functions, and read-only properties. C# 7.0 expands the allowed members that can be
implemented as expressions. In C# 7.0, you can implement constructors, finalizers, and get and set accessors on properties and indexers. The
following code shows examples of each:

This example does not need a finalizer, but it is shown to demonstrate the syntax. You should not implement a finalizer in your class unless it is necessary to release
unmanaged resources. You should also consider using the SafeHandle class instead of managing unmanaged resources directly.

These new locations for expression-bodied members represent an important milestone for the C# language: These features were implemented by
community members working on the open-source Roslyn project.

https://docs.microsoft.com/en-us/dotnet/csharp/local-functions-vs-lambdas
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.safehandle
https://github.com/dotnet/Roslyn

Throw expressions

public string Name
{
 get => name;
 set => name = value ??
 throw new ArgumentNullException(paramName: nameof(value), message: "New name must not be null");
}

private ConfigResource loadedConfig = LoadConfigResourceOrDefault() ??
 throw new InvalidOperationException("Could not load config");

public ApplicationOptions()
{
 loadedConfig = LoadConfigResourceOrDefault();
 if (loadedConfig == null)
 throw new InvalidOperationException("Could not load config");

}

NOTENOTE

Generalized async return types

public async ValueTask<int> Func()
{
 await Task.Delay(100);
 return 5;
}

NOTENOTE

In C#, throw has always been a statement. Because throw is a statement, not an expression, there were C# constructs where you could not use it.
These included conditional expressions, null coalescing expressions, and some lambda expressions. The addition of expression-bodied members adds
more locations where throw expressions would be useful. So that you can write any of these constructs, C# 7.0 introduces throw expressions.

The syntax is the same as you've always used for throw statements. The only difference is that now you can place them in new locations, such as in a
conditional expression:

This features enables using throw expressions in initialization expressions:

Previously, those initializations would need to be in a constructor, with the throw statements in the body of the constructor :

Both of the preceding constructs will cause exceptions to be thrown during the construction of an object. Those are often difficult to recover from. For that reason,
designs that throw exceptions during construction are discouraged.

Returning a Task object from async methods can introduce performance bottlenecks in certain paths. Task is a reference type, so using it means
allocating an object. In cases where a method declared with the async modifier returns a cached result, or completes synchronously, the extra
allocations can become a significant time cost in performance critical sections of code. It can become very costly if those allocations occur in tight loops.

The new language feature means that async methods may return other types in addition to Task , Task<T> and void . The returned type must still
satisfy the async pattern, meaning a GetAwaiter method must be accessible. As one concrete example, the ValueTask type has been added to the .NET
framework to make use of this new language feature:

You need to add the NuGet package System.Threading.Tasks.Extensions in order to use the ValueTask<TResult> type.

A simple optimization would be to use ValueTask in places where Task would be used before. However, if you want to perform extra optimizations by
hand, you can cache results from async work and reuse the result in subsequent calls. The ValueTask struct has a constructor with a Task parameter so
that you can construct a ValueTask from the return value of any existing async method:

https://www.nuget.org/packages/System.Threading.Tasks.Extensions/
https://docs.microsoft.com/dotnet/api/system.threading.tasks.valuetask-1

public ValueTask<int> CachedFunc()
{
 return (cache) ? new ValueTask<int>(cacheResult) : new ValueTask<int>(LoadCache());
}
private bool cache = false;
private int cacheResult;
private async Task<int> LoadCache()
{
 // simulate async work:
 await Task.Delay(100);
 cacheResult = 100;
 cache = true;
 return cacheResult;
}

Numeric literal syntax improvements

public const int One = 0b0001;
public const int Two = 0b0010;
public const int Four = 0b0100;
public const int Eight = 0b1000;

public const int Sixteen = 0b0001_0000;
public const int ThirtyTwo = 0b0010_0000;
public const int SixtyFour = 0b0100_0000;
public const int OneHundredTwentyEight = 0b1000_0000;

public const long BillionsAndBillions = 100_000_000_000;

public const double AvogadroConstant = 6.022_140_857_747_474e23;
public const decimal GoldenRatio = 1.618_033_988_749_894_848_204_586_834_365_638_117_720_309_179M;

As with all performance recommendations, you should benchmark both versions before making large scale changes to your code.

Misreading numeric constants can make it harder to understand code when reading it for the first time. This often occurs when those numbers are used
as bit masks or other symbolic rather than numeric values. C# 7.0 includes two new features to make it easier to write numbers in the most readable
fashion for the intended use: binary literals, and digit separators.

For those times when you are creating bit masks, or whenever a binary representation of a number makes the most readable code, write that number in
binary:

The 0b at the beginning of the constant indicates that the number is written as a binary number.

Binary numbers can get very long, so it's often easier to see the bit patterns by introducing the _ as a digit separator :

The digit separator can appear anywhere in the constant. For base 10 numbers, it would be common to use it as a thousands separator :

The digit separator can be used with decimal , float and double types as well:

Taken together, you can declare numeric constants with much more readability.

What's New in C# 6
5/30/2018 • 20 minutes to read • Edit Online

Auto-Property enhancements

public string FirstName { get; set; }
public string LastName { get; set; }

Read-only auto-propertiesRead-only auto-properties

public string FirstName { get; private set; }
public string LastName { get; private set; }

The 6.0 release of C# contained many features that improve productivity for developers. Features in this release include:

Read-only Auto-properties:

Auto-Property Initializers:

Expression-bodied function members:

using static:

Null - conditional operators:

String Interpolation:

Exception filters:

nameof Expressions:

await in catch and finally blocks:

index initializers:

Extension methods for collection initializers:

Improved overload resolution:

deterministic compiler option:

You can create read-only auto-properties that can be set only in constructors.

You can write initialization expressions to set the initial value of an auto-property.

You can author one-line methods using lambda expressions.

You can import all the methods of a single class into the current namespace.

You can concisely and safely access members of an object while still checking for null with the null conditional operator.

You can write string formatting expressions using inline expressions instead of positional arguments.

You can catch expressions based on properties of the exception or other program state.

You can let the compiler generate string representations of symbols.

You can use await expressions in locations that previously disallowed them.

You can author initialization expressions for associative containers as well as sequence containers.

Collection initializers can rely on accessible extension methods, in addition to member methods.

Some constructs that previously generated ambiguous method calls now resolve correctly.

The deterministic compiler option ensures that subsequent compilations of the same source generate the same binary output.

The overall effect of these features is that you write more concise code that is also more readable. The syntax contains less ceremony for many common
practices. It's easier to see the design intent with less ceremony. Learn these features well, and you'll be more productive, write more readable code, and
concentrate more on your core features than on the constructs of the language.

The remainder of this topic provides details on each of these features.

The syntax for automatically implemented properties (usually referred to as 'auto-properties') made it very easy to create properties that had simple get
and set accessors:

However, this simple syntax limited the kinds of designs you could support using auto-properties. C# 6 improves the auto-properties capabilities so that
you can use them in more scenarios. You won't need to fall back on the more verbose syntax of declaring and manipulating the backing field by hand so
often.

The new syntax addresses scenarios for read-only properties, and for initializing the variable storage behind an auto-property.

Read-only auto-properties provide a more concise syntax to create immutable types. The closest you could get to immutable types in earlier versions of
C# was to declare private setters:

Using this syntax, the compiler doesn't ensure that the type really is immutable. It only enforces that the FirstName and LastName properties are not
modified from any code outside the class.

Read-only auto-properties enable true read-only behavior. You declare the auto-property with only a get accessor :

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-6.md

public string FirstName { get; }
public string LastName { get; }

public Student(string firstName, string lastName)
{
 if (IsNullOrWhiteSpace(lastName))
 throw new ArgumentException(message: "Cannot be blank", paramName: nameof(lastName));
 FirstName = firstName;
 LastName = lastName;
}

public class Student
{
 public string LastName { get; }

 public void ChangeName(string newLastName)
 {
 // Generates CS0200: Property or indexer cannot be assigned to -- it is read only
 LastName = newLastName;
 }
}

Auto-Property InitializersAuto-Property Initializers

public Student(string firstName, string lastName)
{
 FirstName = firstName;
 LastName = lastName;
}

public ICollection<double> Grades { get; } = new List<double>();

public Standing YearInSchool { get; set; } = Standing.Freshman;

Expression-bodied function members

public override string ToString() => $"{LastName}, {FirstName}";

public string FullName => $"{FirstName} {LastName}";

using static

The FirstName and LastName properties can be set only in the body of a constructor :

Trying to set LastName in another method generates a CS0200 compilation error :

This feature enables true language support for creating immutable types and using the more concise and convenient auto-property syntax.

Auto-Property Initializers let you declare the initial value for an auto-property as part of the property declaration. In earlier versions, these properties
would need to have setters and you would need to use that setter to initialize the data storage used by the backing field. Consider this class for a student
that contains the name and a list of the student's grades:

As this class grows, you may include other constructors. Each constructor needs to initialize this field, or you'll introduce errors.

C# 6 enables you to assign an initial value for the storage used by an auto-property in the auto-property declaration:

The Grades member is initialized where it is declared. That makes it easier to perform the initialization exactly once. The initialization is part of the
property declaration, making it easier to equate the storage allocation with public interface for Student objects.

Property Initializers can be used with read/write properties as well as read-only properties, as shown here.

The body of a lot of members that we write consist of only one statement that can be represented as an expression. You can reduce that syntax by
writing an expression-bodied member instead. It works for methods and read-only properties. For example, an override of ToString() is often a great
candidate:

You can also use expression-bodied members in read-only properties as well:

The using static enhancement enables you to import the static methods of a single class. Previously, the using statement imported all types in a
namespace.

Often we use a class' static methods throughout our code. Repeatedly typing the class name can obscure the meaning of your code. A common example

using static System.Math;

using static System.String;

NOTENOTE

if (IsNullOrWhiteSpace(lastName))
 throw new ArgumentException(message: "Cannot be blank", paramName: nameof(lastName));

using static System.Linq.Enumerable;

public bool MakesDeansList()
{
 return Grades.All(g => g > 3.5) && Grades.Any();
 // Code below generates CS0103:
 // The name 'All' does not exist in the current context.
 //return All(Grades, g => g > 3.5) && Grades.Any();
}

Null-conditional operators

var first = person?.FirstName;

first = person?.FirstName ?? "Unspecified";

is when you write classes that perform many numeric calculations. Your code will be littered with Sin, Sqrt and other calls to different methods in the
Math class. The new using static syntax can make these classes much cleaner to read. You specify the class you're using:

And now, you can use any static method in the Math class without qualifying the Math class. The Math class is a great use case for this feature because
it does not contain any instance methods. You can also use using static to import a class' static methods for a class that has both static and instance
methods. One of the most useful examples is String:

You must use the fully qualified class name, System.String in a static using statement. You cannot use the string keyword instead.

You can now call static methods defined in the String class without qualifying those methods as members of that class:

The static using feature and extension methods interact in interesting ways, and the language design included some rules that specifically address
those interactions. The goal is to minimize any chances of breaking changes in existing codebases, including yours.

Extension methods are only in scope when called using the extension method invocation syntax, not when called as a static method. You'll often see this
in L INQ queries. You can import the L INQ pattern by importing Enumerable.

This imports all the methods in the Enumerable class. However, the extension methods are only in scope when called as extension methods. They are
not in scope if they are called using the static method syntax:

This decision is because extension methods are typically called using extension method invocation expressions. In the rare case where they are called
using the static method call syntax it is to resolve ambiguity. Requiring the class name as part of the invocation seems wise.

There's one last feature of static using . The static using directive also imports any nested types. That enables you to reference any nested types
without qualification.

Null values complicate code. You need to check every access of variables to ensure you are not dereferencing null . The null conditional operator

makes those checks much easier and fluid.

Simply replace the member access . with ?. :

In the preceding example, the variable first is assigned null if the person object is null . Otherwise, it gets assigned the value of the FirstName

property. Most importantly, the ?. means that this line of code does not generate a NullReferenceException when the person variable is null .
Instead, it short-circuits and produces null .

Also, note that this expression returns a string , regardless of the value of person . In the case of short circuiting, the null value returned is typed to
match the full expression.

You can often use this construct with the null coalescing operator to assign default values when one of the properties are null :

The right hand side operand of the ?. operator is not limited to properties or fields. You can also use it to conditionally invoke methods. The most
common use of member functions with the null conditional operator is to safely invoke delegates (or event handlers) that may be null . You'll do this
by calling the delegate's Invoke method using the ?. operator to access the member. You can see an example in the

https://docs.microsoft.com/dotnet/api/system.math.sin
https://docs.microsoft.com/dotnet/api/system.math.sqrt
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.linq.enumerable
https://docs.microsoft.com/dotnet/api/system.linq.enumerable

var handler = this.SomethingHappened;
if (handler != null)
 handler(this, eventArgs);

// Not recommended
if (this.SomethingHappened != null)
 this.SomethingHappened(this, eventArgs);

IMPORTANTIMPORTANT

// preferred in C# 6:
this.SomethingHappened?.Invoke(this, eventArgs);

String Interpolation

public string FullName
{
 get
 {
 return string.Format("{0} {1}", FirstName, LastName);
 }
}

public string FullName => $"{FirstName} {LastName}";

public string GetFormattedGradePoint() =>
 $"Name: {LastName}, {FirstName}. G.P.A: {Grades.Average()}";

public string GetGradePointPercentage() =>
 $"Name: {LastName}, {FirstName}. G.P.A: {Grades.Average():F2}";

delegate patterns topic.

The rules of the ?. operator ensure that the left-hand side of the operator is evaluated only once. This is important and enables many idioms, including
the example using event handlers. Let's start with the event handler usage. In previous versions of C#, you were encouraged to write code like this:

This was preferred over a simpler syntax:

The preceding example introduces a race condition. The SomethingHappened event may have subscribers when checked against null , and those subscribers may
have been removed before the event is raised. That would cause a NullReferenceException to be thrown.

In this second version, the SomethingHappened event handler might be non-null when tested, but if other code removes a handler, it could still be null
when the event handler was called.

The compiler generates code for the ?. operator that ensures the left side (this.SomethingHappened) of the ?. expression is evaluated once, and the
result is cached:

Ensuring that the left side is evaluated only once also enables you to use any expression, including method calls, on the left side of the ?. Even if these
have side-effects, they are evaluated once, so the side effects occur only once. You can see an example in our content on events.

C# 6 contains new syntax for composing strings from a format string and expressions that are evaluated to produce other string values.

Traditionally, you needed to use positional parameters in a method like string.Format :

With C# 6, the new string interpolation feature enables you to embed the expressions in the format string. Simply preface the string with $:

This initial example uses property expressions for the substituted expressions. You can expand on this syntax to use any expression. For example, you
could compute a student's grade point average as part of the interpolation:

Running the preceding example, you would find that the output for Grades.Average() might have more decimal places than you would like. The string
interpolation syntax supports all the format strings available using earlier formatting methods. You add the format strings inside the braces. Add a :

following the expression to format:

The preceding line of code formats the value for Grades.Average() as a floating-point number with two decimal places.

The : is always interpreted as the separator between the expression being formatted and the format string. This can introduce problems when your
expression uses a : in another way, such as a conditional operator :

https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

public string GetGradePointPercentages() =>
 $"Name: {LastName}, {FirstName}. G.P.A: {Grades.Any() ? Grades.Average() : double.NaN:F2}";

public string GetGradePointPercentages() =>
 $"Name: {LastName}, {FirstName}. G.P.A: {(Grades.Any() ? Grades.Average() : double.NaN):F2}";

public string GetAllGrades() =>
 $@"All Grades: {Grades.OrderByDescending(g => g)
 .Select(s => s.ToString("F2")).Aggregate((partial, element) => $"{partial}, {element}")}";

String interpolation and specific culturesString interpolation and specific cultures

FormattableString str = $"Average grade is {s.Grades.Average()}";
var gradeStr = str.ToString(new System.Globalization.CultureInfo("de-DE"));

Exception Filters

public static async Task<string> MakeRequest()
{
 WebRequestHandler webRequestHandler = new WebRequestHandler();
 webRequestHandler.AllowAutoRedirect = false;
 using (HttpClient client = new HttpClient(webRequestHandler))
 {
 var stringTask = client.GetStringAsync("https://docs.microsoft.com/en-us/dotnet/about/");
 try
 {
 var responseText = await stringTask;
 return responseText;
 }
 catch (System.Net.Http.HttpRequestException e) when (e.Message.Contains("301"))
 {
 return "Site Moved";
 }
 }
}

In the preceding example, the : is parsed as the beginning of the format string, not part of the conditional operator. In all cases where this happens,
you can surround the expression with parentheses to force the compiler to interpret the expression as you intend:

There aren't any limitations on the expressions you can place between the braces. You can execute a complex L INQ query inside an interpolated string
to perform computations and display the result:

You can see from this sample that you can even nest a string interpolation expression inside another string interpolation expression. This example is
very likely more complex than you would want in production code. Rather, it is illustrative of the breadth of the feature. Any C# expression can be placed
between the curly braces of an interpolated string.

All the examples shown in the preceding section format the strings using the current culture and language on the machine where the code executes.
Often you may need to format the string produced using a specific culture. To do that use the fact that the object produced by a string interpolation can
be implicitly converted to FormattableString.

The FormattableString instance contains the format string, and the results of evaluating the expressions before converting them to strings. You can use
public methods of FormattableString to specify the culture when formatting a string. For example, the following example produces a string using
German culture. (It uses the ',' character for the decimal separator, and the '.' character as the thousands separator.)

For more information, see the String interpolation topic.

Another new feature in C# 6 is exception filters. Exception Filters are clauses that determine when a given catch clause should be applied. If the
expression used for an exception filter evaluates to true , the catch clause performs its normal processing on an exception. If the expression evaluates to
false , then the catch clause is skipped.

One use is to examine information about an exception to determine if a catch clause can process the exception:

The code generated by exception filters provides better information about an exception that is thrown and not processed. Before exception filters were
added to the language, you would need to create code like the following:

https://docs.microsoft.com/dotnet/api/system.formattablestring
https://docs.microsoft.com/dotnet/api/system.formattablestring
https://docs.microsoft.com/dotnet/api/system.formattablestring
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

public static async Task<string> MakeRequest()
{
 var client = new System.Net.Http.HttpClient();
 var streamTask = client.GetStringAsync("https://localHost:10000");
 try {
 var responseText = await streamTask;
 return responseText;
 } catch (System.Net.Http.HttpRequestException e)
 {
 if (e.Message.Contains("301"))
 return "Site Moved";
 else
 throw;
 }
}

public static bool LogException(this Exception e)
{
 Console.Error.WriteLine($"Exceptions happen: {e}");
 return false;
}

public void MethodThatFailsSometimes()
{
 try {
 PerformFailingOperation();
 } catch (Exception e) when (e.LogException())
 {
 // This is never reached!
 }
}

public void MethodThatFailsButHasRecoveryPath()
{
 try {
 PerformFailingOperation();
 } catch (Exception e) when (e.LogException())
 {
 // This is never reached!
 }
 catch (RecoverableException ex)
 {
 Console.WriteLine(ex.ToString());
 // This can still catch the more specific
 // exception because the exception filter
 // above always returns false.
 // Perform recovery here
 }
}

The point where the exception is thrown changes between these two examples. In the previous code, where a throw clause is used, any stack trace
analysis or examination of crash dumps will show that the exception was thrown from the throw statement in your catch clause. The actual exception
object will contain the original call stack, but all other information about any variables in the call stack between this throw point and the location of the
original throw point has been lost.

Contrast that with how the code using an exception filter is processed: the exception filter expression evaluates to false . Therefore, execution never
enters the catch clause. Because the catch clause does not execute, no stack unwinding takes place. That means the original throw location is
preserved for any debugging activities that would take place later.

Whenever you need to evaluate fields or properties of an exception, instead of relying solely on the exception type, use an exception filter to preserve
more debugging information.

Another recommended pattern with exception filters is to use them for logging routines. This usage also leverages the manner in which the exception
throw point is preserved when an exception filter evaluates to false .

A logging method would be a method whose argument is the exception that unconditionally returns false :

Whenever you want to log an exception, you can add a catch clause, and use this method as the exception filter :

The exceptions are never caught, because the LogException method always returns false . That always false exception filter means that you can place
this logging handler before any other exception handlers:

The preceding example highlights a very important facet of exception filters. The exception filters enable scenarios where a more general exception
catch clause may appear before a more specific one. It's also possible to have the same exception type appear in multiple catch clauses:

public static async Task<string> MakeRequestWithNotModifiedSupport()
{
 var client = new System.Net.Http.HttpClient();
 var streamTask = client.GetStringAsync("https://localHost:10000");
 try {
 var responseText = await streamTask;
 return responseText;
 } catch (System.Net.Http.HttpRequestException e) when (e.Message.Contains("301"))
 {
 return "Site Moved";
 } catch (System.Net.Http.HttpRequestException e) when (e.Message.Contains("304"))
 {
 return "Use the Cache";
 }
}

public void MethodThatFailsWhenDebuggerIsNotAttached()
{
 try {
 PerformFailingOperation();
 } catch (Exception e) when (e.LogException())
 {
 // This is never reached!
 }
 catch (RecoverableException ex) when (!System.Diagnostics.Debugger.IsAttached)
 {
 Console.WriteLine(ex.ToString());
 // Only catch exceptions when a debugger is not attached.
 // Otherwise, this should stop in the debugger.
 }
}

nameof Expressions

if (IsNullOrWhiteSpace(lastName))
 throw new ArgumentException(message: "Cannot be blank", paramName: nameof(lastName));

public string LastName
{
 get { return lastName; }
 set
 {
 if (value != lastName)
 {
 lastName = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(LastName)));
 }
 }
}
private string lastName;

Another recommended pattern helps prevent catch clauses from processing exceptions when a debugger is attached. This technique enables you to run
an application with the debugger, and stop execution when an exception is thrown.

In your code, add an exception filter so that any recovery code executes only when a debugger is not attached:

After adding this in code, you set your debugger to break on all unhandled exceptions. Run the program under the debugger, and the debugger breaks
whenever PerformFailingOperation() throws a RecoverableException . The debugger breaks your program, because the catch clause won't be executed
due to the false-returning exception filter.

The nameof expression evaluates to the name of a symbol. It's a great way to get tools working whenever you need the name of a variable, a property,
or a member field.

One of the most common uses for nameof is to provide the name of a symbol that caused an exception:

Another use is with XAML based applications that implement the INotifyPropertyChanged interface:

The advantage of using the nameof operator over a constant string is that tools can understand the symbol. If you use refactoring tools to rename the
symbol, it will rename it in the nameof expression. Constant strings don't have that advantage. Try it yourself in your favorite editor : rename a variable,
and any nameof expressions will update as well.

The nameof expression produces the unqualified name of its argument (LastName in the previous examples) even if you use the fully qualified name for
the argument:

public string FirstName
{
 get { return firstName; }
 set
 {
 if (value != firstName)
 {
 firstName = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(UXComponents.ViewModel.FirstName)));
 }
 }
}
private string firstName;

Await in Catch and Finally blocks

public static async Task<string> MakeRequestAndLogFailures()
{
 await logMethodEntrance();
 var client = new System.Net.Http.HttpClient();
 var streamTask = client.GetStringAsync("https://localHost:10000");
 try {
 var responseText = await streamTask;
 return responseText;
 } catch (System.Net.Http.HttpRequestException e) when (e.Message.Contains("301"))
 {
 await logError("Recovered from redirect", e);
 return "Site Moved";
 }
 finally
 {
 await logMethodExit();
 client.Dispose();
 }
}

NOTENOTE

Index Initializers

private List<string> messages = new List<string>
{
 "Page not Found",
 "Page moved, but left a forwarding address.",
 "The web server can't come out to play today."
};

This nameof expression produces FirstName , not UXComponents.ViewModel.FirstName .

C# 5 had several limitations around where you could place await expressions. One of those has been removed in C# 6. You can now use await in
catch or finally expressions.

The addition of await expressions in catch and finally blocks may appear to complicate how those are processed. Let's add an example to discuss how
this appears. In any async method, you can use an await expression in a finally clause.

With C# 6, you can also await in catch expressions. This is most often used with logging scenarios:

The implementation details for adding await support inside catch and finally clauses ensures that the behavior is consistent with the behavior for
synchronous code. When code executed in a catch or finally clause throws, execution looks for a suitable catch clause in the next surrounding
block. If there was a current exception, that exception is lost. The same happens with awaited expressions in catch and finally clauses: a suitable
catch is searched for, and the current exception, if any, is lost.

This behavior is the reason it's recommended to write catch and finally clauses carefully, to avoid introducing new exceptions.

Index Initializers is one of two features that make collection initializers more consistent with index usage. In earlier releases of C#, you could use
collection initializers only with sequence style collections, including Dictionary<TKey,TValue> by adding braces around key and value pairs:

Now, you can use them with Dictionary<TKey,TValue> collections and similar types. The new syntax supports assignment using an index into the
collection:

https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2

private Dictionary<int, string> webErrors = new Dictionary<int, string>
{
 [404] = "Page not Found",
 [302] = "Page moved, but left a forwarding address.",
 [500] = "The web server can't come out to play today."
};

Extension Add methods in collection initializers

public class Enrollment : IEnumerable<Student>
{
 private List<Student> allStudents = new List<Student>();

 public void Enroll(Student s)
 {
 allStudents.Add(s);
 }

 public IEnumerator<Student> GetEnumerator()
 {
 return ((IEnumerable<Student>)allStudents).GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return ((IEnumerable<Student>)allStudents).GetEnumerator();
 }
}

var classList = new Enrollment()
{
 new Student("Lessie", "Crosby"),
 new Student("Vicki", "Petty"),
 new Student("Ofelia", "Hobbs"),
 new Student("Leah", "Kinney"),
 new Student("Alton", "Stoker"),
 new Student("Luella", "Ferrell"),
 new Student("Marcy", "Riggs"),
 new Student("Ida", "Bean"),
 new Student("Ollie", "Cottle"),
 new Student("Tommy", "Broadnax"),
 new Student("Jody", "Yates"),
 new Student("Marguerite", "Dawson"),
 new Student("Francisca", "Barnett"),
 new Student("Arlene", "Velasquez"),
 new Student("Jodi", "Green"),
 new Student("Fran", "Mosley"),
 new Student("Taylor", "Nesmith"),
 new Student("Ernesto", "Greathouse"),
 new Student("Margret", "Albert"),
 new Student("Pansy", "House"),
 new Student("Sharon", "Byrd"),
 new Student("Keith", "Roldan"),
 new Student("Martha", "Miranda"),
 new Student("Kari", "Campos"),
 new Student("Muriel", "Middleton"),
 new Student("Georgette", "Jarvis"),
 new Student("Pam", "Boyle"),
 new Student("Deena", "Travis"),
 new Student("Cary", "Totten"),
 new Student("Althea", "Goodwin")
};

This feature means that associative containers can be initialized using syntax similar to what's been in place for sequence containers for several versions.

Another feature that makes collection initialization easier is the ability to use an extension method for the Add method. This feature was added for
parity with Visual Basic.

The feature is most useful when you have a custom collection class that has a method with a different name to semantically add new items.

For example, consider a collection of students like this:

The Enroll method adds a student. But it doesn't follow the Add pattern. In previous versions of C#, you could not use collection initializers with an
Enrollment object:

Now you can, but only if you create an extension method that maps Add to Enroll :

public static class StudentExtensions
{
 public static void Add(this Enrollment e, Student s) => e.Enroll(s);
}

Improved overload resolution

static Task DoThings()
{
 return Task.FromResult(0);
}

Task.Run(DoThings);

Task.Run(() => DoThings());

Deterministic compiler outputDeterministic compiler output

What you are doing with this feature is to map whatever method adds items to a collection to a method named Add by creating an extension method.

This last feature is one you probably won't notice. There were constructs where the previous version of the C# compiler may have found some method
calls involving lambda expressions ambiguous. Consider this method:

In earlier versions of C#, calling that method using the method group syntax would fail:

The earlier compiler could not distinguish correctly between Task.Run(Action) and Task.Run(Func<Task>()) . In previous versions, you'd need to use a
lambda expression as an argument:

The C# 6 compiler correctly determines that Task.Run(Func<Task>()) is a better choice.

The -deterministic option instructs the compiler to produce a byte-for-byte identical output assembly for successive compilations of the same source
files.

By default, every compilation produces unique output on each compilation. The compiler adds a timestamp, and a GUID generated from random
numbers. You use this option if you want to compare the byte-for-byte output to ensure consistency across builds.

For more information, see the -deterministic compiler option article.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/deterministic-compiler-option

The history of C#
7/3/2018 • 6 minutes to read • Edit Online

C# version 1.0

C# version 2.0

C# version 3.0

What did the language look like in its earliest incarnations? And how has it evolved in the years since?

When you go back and look, C# version 1.0 looked a lot like Java. As part of its stated design goals for ECMA, it sought to be a "simple, modern,
general-purpose object-oriented language." At the time, looking like Java meant it achieved those early design goals.

But if you look back on C# 1.0 now, you'd find yourself a little dizzy. It lacked the built-in async capabilities and some of the slick functionality around
generics you take for granted. As a matter of fact, it lacked generics altogether. And LINQ? Not available yet. Those additions would take some years to
come out.

C# version 1.0 looked stripped of features, compared to today. You'd find yourself writing some verbose code. But yet, you have to start somewhere. C#
version 1.0 was a viable alternative to Java on the Windows platform.

The major features of C# 1.0 included:

Classes
Structs
Interfaces
Events
Properties
Delegates
Expressions
Statements
Attributes
Literals

Now things start to get interesting. Let's take a look at some major features of C# 2.0, released in 2005, along with Visual Studio 2005:

Generics
Partial types
Anonymous methods
Nullable types
Iterators
Covariance and contravariance

Other C# 2.0 features added capabilities to existing features:

Getter/setter separate accessibility
Method group conversions (delegates)
Static classes
Delegate inference

While C# may have started as a generic Object-Oriented (OO) language, C# version 2.0 changed that in a hurry. Once they had their feet under them,
they went after some serious developer pain points. And they went after them in a significant way.

With generics, types and methods can operate on an arbitrary type while still retaining type safety. For instance, having a List<T> lets you have
List<string> or List<int> and perform type-safe operations on those strings or integers while you iterate through them. Using generics is better than

create ListInt that derives from ArrayList or casting from Object for every operation.

C# version 2.0 brought iterators. To put it succinctly, iterators let you examine all the items in a List (or other Enumerable types) with a foreach loop.
Having iterators as a first-class part of the language dramatically enhanced readability of the language and people's ability to reason about the code.

And yet, C# continued to play a bit of catch-up with Java. Java had already released versions that included generics and iterators. But that would soon
change as the languages continued to evolve apart.

C# version 3.0 came in late 2007, along with Visual Studio 2008, though the full boat of language features would actually come with .NET Framework
version 3.5. This version marked a major change in the growth of C#. It established C# as a truly formidable programming language. Let's take a look at
some major features in this version:

Auto implemented properties

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/csharp-version-history.md
http://feeldotneteasy.blogspot.com/2011/01/c-design-goals.html
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/structs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties

C# version 4.0

C# version 5.0

C# version 6.0

Anonymous types
Query expressions
Lambda expression
Expression trees
Extension methods
Implicitly typed local variables
Partial methods
Object and collection initializers

In retrospect, many of these features seem both inevitable and inseparable. They all fit together strategically. It's generally thought that C# version's
killer feature was the query expression, also known as Language-Integrated Query (L INQ).

A more nuanced view examines expression trees, lambda expressions, and anonymous types as the foundation upon which LINQ is constructed. But, in
either case, C# 3.0 presented a revolutionary concept. C# 3.0 had begun to lay the groundwork for turning C# into a hybrid Object-Oriented /
Functional language.

Specifically, you could now write SQL-style, declarative queries to perform operations on collections, among other things. Instead of writing a for loop
to compute the average of a list of integers, you could now do that as simply as list.Average() . The combination of query expressions and extension
methods made it look as though that list of integers had gotten a whole lot smarter.

It took time for people to really grasp and integrate the concept, but they gradually did. And now, years later, code is much more concise, simple, and
functional.

C# version 4.0 would have had a difficult time living up to the groundbreaking status of version 3.0. With version 3.0, C# had moved the language
firmly out from the shadow of Java and into prominence. The language was quickly becoming elegant.

The next version did introduce some interesting new features:

Dynamic binding
Named/optional arguments
Generic covariant and contravariant
Embedded interop types

Embedded interop types alleviated a deployment pain. Generic covariance and contravariance give you more power to use generics, but they're a bit
academic and probably most appreciated by framework and library authors. Named and optional parameters let you eliminate many method overloads
and provide convenience. But none of those features are exactly paradigm altering.

The major feature was the introduction of the dynamic keyword. The dynamic keyword introduced into C# version 4.0 the ability to override the
compiler on compile-time typing. By using the dynamic keyword, you can create constructs similar to dynamically typed languages like JavaScript. You
can create a dynamic x = "a string" and then add six to it, leaving it up to the runtime to sort out what should happen next.

Dynamic binding gives you the potential for errors but also great power within the language.

C# version 5.0 was a focused version of the language. Nearly all of the effort for that version went into another groundbreaking language concept: the
async and await model for asynchronous programming . Here is the major features list:

Asynchronous members
Caller info attributes

The caller info attribute lets you easily retrieve information about the context in which you're running without resorting to a ton of boilerplate reflection
code. It has many uses in diagnostics and logging tasks.

But async and await are the real stars of this release. When these features came out in 2012, C# changed the game again by baking asynchrony into
the language as a first-class participant. If you've ever dealt with long running operations and the implementation of webs of callbacks, you probably
loved this language feature.

With versions 3.0 and 5.0, C# had added major new features in an object-oriented language. With version 6.0, it would go away from doing a dominant
killer feature and instead release many smaller features that made C# programming more productive. Here are some of them:

Static imports
Exception filters
Property initializers
Expression bodied members
Null propagator
String interpolation
nameof operator

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics
https://www.daedtech.com/introduction-to-c-lambda-expressions/
https://blogs.msdn.microsoft.com/charlie/2008/01/31/expression-tree-basics/
https://www.codeproject.com/Tips/709310/Extension-Method-In-Csharp
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/partial-method
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/named-and-optional-arguments
https://docs.microsoft.com/en-us/dotnet/standard/generics/covariance-and-contravariance
https://stackoverflow.com/questions/20514240/whats-the-difference-setting-embed-interop-types-true-and-false-in-visual-studi
https://www.codeproject.com/Tips/606379/Caller-Info-Attributes-in-Csharp
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-static
https://www.thomaslevesque.com/2015/06/21/exception-filters-in-c-6/
http://geekswithblogs.net/WinAZ/archive/2015/06/30/whatrsquos-new-in-c-6.0-auto-property-initializers.aspx
https://lostechies.com/jimmybogard/2015/12/17/c-6-feature-review-expression-bodied-function-members/
https://davefancher.com/2014/08/14/c-6-0-null-propagation-operator/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://stackoverflow.com/questions/31695900/what-is-the-purpose-of-nameof

C# version 7.0

Index initializers

Other new features include:

Await in catch/finally blocks
Default values for getter-only properties

Each of these features is interesting in its own right. But if you look at them altogether, you see an interesting pattern. In this version, C# eliminated
language boilerplate to make code more terse and readable. So for fans of clean, simple code, this language version was a huge win.

They did one other thing along with this version, though it's not a traditional language feature in itself. They released Roslyn the compiler as a service.
The C# compiler is now written in C#, and you can use the compiler as part of your programming efforts.

The most recent major version is C# version 7.0. This version has some evolutionary and cool stuff in the vein of C# 6.0, but without the compiler as a
service. Here are some of the new features:

Out variables
Tuples and deconstruction
Pattern matching
Local functions
Expanded expression bodied members
Ref locals and returns

Other features included:

Discards
Binary Literals
Digit Separators
Ref returns and locals
Throw expressions

All of these features offer cool new capabilities for developers and the opportunity to write even cleaner code than ever. A highlight is condensing the
declaration of variables to use with the out keyword and by allowing multiple return values via tuple.

But C# is being put to ever broader use. .NET Core now targets any operating system and has its eyes firmly on the cloud and on portability. These new
capabilities certainly occupy the language designers' thoughts and time, in addition to coming up with new features.

Article originally published on the NDepend blog, courtesy of Erik Dietrich and Patrick Smacchia.

https://github.com/dotnet/roslyn
http://www.c-sharpcorner.com/article/out-variables-in-c-sharp-7-0/
https://www.thomaslevesque.com/2016/08/23/tuple-deconstruction-in-c-7/
http://www.infoworld.com/article/3182416/application-development/c-7-in-depth-exploring-local-functions.html
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/digit-separators.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/throw-expression.md
https://blog.ndepend.com/c-versions-look-language-history/

Relationships between language features and library types
5/4/2018 • 2 minutes to read • Edit Online

Managing your dependencies

The C# language definition requires a standard library to have certain types and certain accessible members on those types. The compiler generates
code that uses these required types and members for many different language features. When necessary, there are NuGet packages that contain types
needed for newer versions of the language when writing code for environments where those types or members have not been deployed yet.

This dependency on standard library functionality has been part of the C# language since its first version. In that version, examples included:

Exception - used for all compiler generated exceptions.
String - the C# string type is a synonym for String.
Int32 - synonym of int .

That first version was simple: the compiler and the standard library shipped together, and there was only one version of each.

Subsequent versions of C# have occasionally added new types or members to the dependencies. Examples include: INotifyCompletion,
CallerFilePathAttribute and CallerMemberNameAttribute. C# 7.0 continues this by adding a dependency on ValueTuple to implement the tuples
language feature.

The language design team works to minimize the surface area of the types and members required in a compliant standard library. That goal is balanced
against a clean design where new library features are incorporated seamlessly into the language. There will be new features in future versions of C#
that require new types and members in a standard library. It's important to understand how to manage those dependencies in your work.

C# compiler tools are now decoupled from the release cycle of the .NET libraries on supported platforms. In fact, different .NET libraries have different
release cycles: the .NET Framework on Windows is released as a Windows Update, .NET Core ships on a separate schedule, and the Xamarin versions
of library updates ship with the Xamarin tools for each target platform.

The majority of time, you won't notice these changes. However, when you are working with a newer version of the language that requires features not
yet in the .NET libraries on that platform, you'll reference the NuGet packages to provide those new types. As the platforms your app supports are
updated with new framework installations, you can remove the extra reference.

This separation means you can use new language features even when you are targeting machines that may not have the corresponding framework.

https://github.com/dotnet/docs/blob/master/docs/csharp/whats-new/relationships-between-language-and-library.md
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.inotifycompletion
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://docs.microsoft.com/dotnet/api/system.valuetuple

Types (C# Programming Guide)
5/4/2018 • 11 minutes to read • Edit Online

Types, Variables, and Values

int a = 5;
int b = a + 2; //OK

bool test = true;

// Error. Operator '+' cannot be applied to operands of type 'int' and 'bool'.
int c = a + test;

NOTENOTE

Specifying Types in Variable DeclarationsSpecifying Types in Variable Declarations

// Declaration only:
float temperature;
string name;
MyClass myClass;

// Declaration with initializers (four examples):
char firstLetter = 'C';
var limit = 3;
int[] source = { 0, 1, 2, 3, 4, 5 };
var query = from item in source
 where item <= limit
 select item;

public string GetName(int ID)
{
 if (ID < names.Length)
 return names[ID];
 else
 return String.Empty;
}
private string[] names = { "Spencer", "Sally", "Doug" };

C# is a strongly-typed language. Every variable and constant has a type, as does every expression that evaluates to a value. Every method signature
specifies a type for each input parameter and for the return value. The .NET class library defines a set of built-in numeric types as well as more complex
types that represent a wide variety of logical constructs, such as the file system, network connections, collections and arrays of objects, and dates. A
typical C# program uses types from the class library as well as user-defined types that model the concepts that are specific to the program's problem
domain.

The information stored in a type can include the following:

The storage space that a variable of the type requires.

The maximum and minimum values that it can represent.

The members (methods, fields, events, and so on) that it contains.

The base type it inherits from.

The location where the memory for variables will be allocated at run time.

The kinds of operations that are permitted.

The compiler uses type information to make sure that all operations that are performed in your code are type safe. For example, if you declare a variable
of type int, the compiler allows you to use the variable in addition and subtraction operations. If you try to perform those same operations on a variable
of type bool, the compiler generates an error, as shown in the following example:

C and C++ developers, notice that in C#, bool is not convertible to int.

The compiler embeds the type information into the executable file as metadata. The common language runtime (CLR) uses that metadata at run time to
further guarantee type safety when it allocates and reclaims memory.

When you declare a variable or constant in a program, you must either specify its type or use the var keyword to let the compiler infer the type. The
following example shows some variable declarations that use both built-in numeric types and complex user-defined types:

The types of method parameters and return values are specified in the method signature. The following signature shows a method that requires an int
as an input argument and returns a string:

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/types/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int

Built-in Types

Custom Types

The Common Type System

NOTENOTE

Value TypesValue Types

After a variable is declared, it cannot be re-declared with a new type, and it cannot be assigned a value that is not compatible with its declared type. For
example, you cannot declare an int and then assign it a Boolean value of true. However, values can be converted to other types, for example when they
are assigned to new variables or passed as method arguments. A type conversion that does not cause data loss is performed automatically by the
compiler. A conversion that might cause data loss requires a cast in the source code.

For more information, see Casting and Type Conversions.

C# provides a standard set of built-in numeric types to represent integers, floating point values, Boolean expressions, text characters, decimal values,
and other types of data. There are also built-in string and object types. These are available for you to use in any C# program. For more information
about the built-in types, see Reference Tables for Types.

You use the struct, class, interface, and enum constructs to create your own custom types. The .NET class library itself is a collection of custom types
provided by Microsoft that you can use in your own applications. By default, the most frequently used types in the class library are available in any C#
program. Others become available only when you explicitly add a project reference to the assembly in which they are defined. After the compiler has a
reference to the assembly, you can declare variables (and constants) of the types declared in that assembly in source code. For more information, see
.NET Class Library.

It is important to understand two fundamental points about the type system in .NET:

It supports the principle of inheritance. Types can derive from other types, called base types. The derived type inherits (with some restrictions) the
methods, properties, and other members of the base type. The base type can in turn derive from some other type, in which case the derived type
inherits the members of both base types in its inheritance hierarchy. All types, including built-in numeric types such as System.Int32 (C#
keyword: int), derive ultimately from a single base type, which is System.Object (C# keyword: object). This unified type hierarchy is called the
Common Type System (CTS). For more information about inheritance in C#, see Inheritance.

Each type in the CTS is defined as either a value type or a reference type. This includes all custom types in the .NET class library and also your
own user-defined types. Types that you define by using the struct keyword are value types; all the built-in numeric types are structs . Types that
you define by using the class keyword are reference types. Reference types and value types have different compile-time rules, and different run-
time behavior.

The following illustration shows the relationship between value types and reference types in the CTS.

Value types and reference types in the CTS

You can see that the most commonly used types are all organized in the System namespace. However, the namespace in which a type is contained has no relation to
whether it is a value type or reference type.

Value types derive from System.ValueType, which derives from System.Object. Types that derive from System.ValueType have special behavior in the
CLR. Value type variables directly contain their values, which means that the memory is allocated inline in whatever context the variable is declared.
There is no separate heap allocation or garbage collection overhead for value-type variables.

There are two categories of value types: struct and enum.

The built-in numeric types are structs, and they have properties and methods that you can access:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/true-literal
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-tables-for-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/en-us/dotnet/standard/class-library-overview
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/standard/base-types/common-type-system
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum

// Static method on type Byte.
byte b = Byte.MaxValue;

byte num = 0xA;
int i = 5;
char c = 'Z';

public struct CoOrds
{
 public int x, y;

 public CoOrds(int p1, int p2)
 {
 x = p1;
 y = p2;
 }
}

public enum FileMode
{
 CreateNew = 1,
 Create = 2,
 Open = 3,
 OpenOrCreate = 4,
 Truncate = 5,
 Append = 6,
}

Reference TypesReference Types

MyClass mc = new MyClass();
MyClass mc2 = mc;

IMyInterface iface = new MyClass();

But you declare and assign values to them as if they were simple non-aggregate types:

Value types are sealed, which means, for example, that you cannot derive a type from System.Int32, and you cannot define a struct to inherit from any
user-defined class or struct because a struct can only inherit from System.ValueType. However, a struct can implement one or more interfaces. You can
cast a struct type to an interface type; this causes a boxing operation to wrap the struct inside a reference type object on the managed heap. Boxing
operations occur when you pass a value type to a method that takes a System.Object as an input parameter. For more information, see Boxing and
Unboxing.

You use the struct keyword to create your own custom value types. Typically, a struct is used as a container for a small set of related variables, as shown
in the following example:

For more information about structs, see Structs. For more information about value types in .NET, see Value Types.

The other category of value types is enum. An enum defines a set of named integral constants. For example, the System.IO.FileMode enumeration in
the .NET class library contains a set of named constant integers that specify how a file should be opened. It is defined as shown in the following
example:

The System.IO.FileMode.Create constant has a value of 2. However, the name is much more meaningful for humans reading the source code, and for
that reason it is better to use enumerations instead of constant literal numbers. For more information, see System.IO.FileMode.

All enums inherit from System.Enum, which inherits from System.ValueType. All the rules that apply to structs also apply to enums. For more
information about enums, see Enumeration Types.

A type that is defined as a class, delegate, array, or interface is a reference type. At run time, when you declare a variable of a reference type, the variable
contains the value null until you explicitly create an object by using the new operator, or assign it an object that has been created elsewhere by using
new , as shown in the following example:

An interface must be initialized together with a class object that implements it. If MyClass implements IMyInterface , you create an instance of
IMyInterface as shown in the following example:

When the object is created, the memory is allocated on the managed heap, and the variable holds only a reference to the location of the object. Types on
the managed heap require overhead both when they are allocated and when they are reclaimed by the automatic memory management functionality of
the CLR, which is known as garbage collection. However, garbage collection is also highly optimized, and in most scenarios it does not create a
performance issue. For more information about garbage collection, see Automatic Memory Management.

All arrays are reference types, even if their elements are value types. Arrays implicitly derive from the System.Array class, but you declare and use them
with the simplified syntax that is provided by C#, as shown in the following example:

https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/structs
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/dotnet/api/system.io.filemode
https://docs.microsoft.com/dotnet/api/system.io.filemode
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/enumeration-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/delegate
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/new
https://docs.microsoft.com/en-us/dotnet/standard/automatic-memory-management
https://docs.microsoft.com/dotnet/api/system.array

// Declare and initialize an array of integers.
int[] nums = { 1, 2, 3, 4, 5 };

// Access an instance property of System.Array.
int len = nums.Length;

Types of Literal Values

string s = "The answer is " + 5.ToString();
// Outputs: "The answer is 5"
Console.WriteLine(s);

Type type = 12345.GetType();
// Outputs: "System.Int32"
Console.WriteLine(type);

Generic Types

List<string> stringList = new List<string>();
stringList.Add("String example");
// compile time error adding a type other than a string:
stringList.Add(4);

Implicit Types, Anonymous Types, and Nullable Types

Related Sections

Reference types fully support inheritance. When you create a class, you can inherit from any other interface or class that is not defined as sealed, and
other classes can inherit from your class and override your virtual methods. For more information about how to create your own classes, see Classes
and Structs. For more information about inheritance and virtual methods, see Inheritance.

In C#, literal values receive a type from the compiler. You can specify how a numeric literal should be typed by appending a letter to the end of the
number. For example, to specify that the value 4.56 should be treated as a float, append an "f" or "F" after the number: 4.56f . If no letter is appended,
the compiler will infer a type for the literal. For more information about which types can be specified with letter suffixes, see the reference pages for
individual types in Value Types.

Because literals are typed, and all types derive ultimately from System.Object, you can write and compile code such as the following:

A type can be declared with one or more type parameters that serve as a placeholder for the actual type (the concrete type) that client code will provide
when it creates an instance of the type. Such types are called generic types. For example, the .NET type System.Collections.Generic.List<T> has one type
parameter that by convention is given the name T. When you create an instance of the type, you specify the type of the objects that the list will contain,
for example, string:

The use of the type parameter makes it possible to reuse the same class to hold any type of element, without having to convert each element to object.
Generic collection classes are called strongly-typed collections because the compiler knows the specific type of the collection's elements and can raise an
error at compile-time if, for example, you try to add an integer to the stringList object in the previous example. For more information, see Generics.

As stated previously, you can implicitly type a local variable (but not class members) by using the var keyword. The variable still receives a type at
compile time, but the type is provided by the compiler. For more information, see Implicitly Typed Local Variables.

In some cases, it is inconvenient to create a named type for simple sets of related values that you do not intend to store or pass outside method
boundaries. You can create anonymous types for this purpose. For more information, see Anonymous Types.

Ordinary value types cannot have a value of null. However, you can create nullable value types by affixing a ? after the type. For example, int? is an
int type that can also have the value null. In the CTS, nullable types are instances of the generic struct type System.Nullable<T>. Nullable types are

especially useful when you are passing data to and from databases in which numeric values might be null. For more information, see Nullable Types.

For more information, see the following topics:

Casting and Type Conversions

Boxing and Unboxing

Using Type dynamic

Value Types

Reference Types

Classes and Structs

Anonymous Types

Generics

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/implicitly-typed-local-variables
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/index

C# Language Specification

See Also

For more information, see the C# Language Specification. The language specification is the definitive source for C# syntax and usage.

C# Reference
C# Programming Guide
Conversion of XML Data Types
Integral Types Table

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/standard/data/xml/conversion-of-xml-data-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/integral-types-table

Namespaces (C# Programming Guide)
5/4/2018 • 2 minutes to read • Edit Online

System.Console.WriteLine("Hello World!");

using System;

Console.WriteLine("Hello");
Console.WriteLine("World!");

namespace SampleNamespace
{
 class SampleClass
 {
 public void SampleMethod()
 {
 System.Console.WriteLine(
 "SampleMethod inside SampleNamespace");
 }
 }
}

Namespaces Overview

Related Sections

C# Language Specification

See Also

Namespaces are heavily used in C# programming in two ways. First, the .NET Framework uses namespaces to organize its many classes, as follows:

System is a namespace and Console is a class in that namespace. The using keyword can be used so that the complete name is not required, as in the
following example:

For more information, see using Directive.

Second, declaring your own namespaces can help you control the scope of class and method names in larger programming projects. Use the
namespace keyword to declare a namespace, as in the following example:

Namespaces have the following properties:

They organize large code projects.

They are delimited by using the . operator.

The using directive obviates the requirement to specify the name of the namespace for every class.

The global namespace is the "root" namespace: global::System will always refer to the .NET Framework namespace System .

See the following topics for more information about namespaces:

Using Namespaces

How to: Use the Global Namespace Alias

How to: Use the My Namespace

For more information, see the C# Language Specification. The language specification is the definitive source for C# syntax and usage.

C# Programming Guide
Namespace Keywords
using Directive
:: Operator
. Operator

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/namespaces/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/using-namespaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-global-namespace-alias
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-my-namespace
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/namespace-keywords
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-directive
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/namespace-alias-qualifer
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operator

Types, variables, and values
5/4/2018 • 6 minutes to read • Edit Online

int a = 5;
int b = a + 2; //OK

bool test = true;

// Error. Operator '+' cannot be applied to operands of type 'int' and 'bool'.
int c = a + test;

NOTENOTE

Specifying types in variable declarations

// Declaration only:
float temperature;
string name;
MyClass myClass;

// Declaration with initializers (four examples):
char firstLetter = 'C';
var limit = 3;
int[] source = { 0, 1, 2, 3, 4, 5 };
var query = from item in source
 where item <= limit
 select item;

public string GetName(int ID)
{
 if (ID < names.Length)
 return names[ID];
 else
 return String.Empty;
}
private string[] names = { "Spencer", "Sally", "Doug" };

C# is a strongly-typed language. Every variable and constant has a type, as does every expression that evaluates to a value. Every method signature
specifies a type for each input parameter and for the return value. The .NET Framework class library defines a set of built-in numeric types as well as
more complex types that represent a wide variety of logical constructs, such as the file system, network connections, collections and arrays of objects,
and dates. A typical C# program uses types from the class library as well as user-defined types that model the concepts that are specific to the
program's problem domain.

The information stored in a type can include the following:

The storage space that a variable of the type requires.

The maximum and minimum values that it can represent.

The members (methods, fields, events, and so on) that it contains.

The base type it inherits from.

The location where the memory for variables will be allocated at run time.

The kinds of operations that are permitted.

The compiler uses type information to make sure that all operations that are performed in your code are type safe. For example, if you declare a variable
of type int, the compiler allows you to use the variable in addition and subtraction operations. If you try to perform those same operations on a variable
of type bool, the compiler generates an error, as shown in the following example:

C and C++ developers, notice that in C#, bool is not convertible to int.

The compiler embeds the type information into the executable file as metadata. The common language runtime (CLR) uses that metadata at run time to
further guarantee type safety when it allocates and reclaims memory.

When you declare a variable or constant in a program, you must either specify its type or use the var keyword to let the compiler infer the type. The
following example shows some variable declarations that use both built-in numeric types and complex user-defined types:

The types of method parameters and return values are specified in the method signature. The following signature shows a method that requires an int
as an input argument and returns a string:

https://github.com/dotnet/docs/blob/master/docs/csharp/basic-types.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/bool
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int

Built-in types

Custom types

Generic types

List<string> strings = new List<string>();

Implicit types, anonymous types, and tuple types

The Common type system

See also

After a variable is declared, it cannot be re-declared with a new type, and it cannot be assigned a value that is not compatible with its declared type. For
example, you cannot declare an int and then assign it a Boolean value of true. However, values can be converted to other types, for example when they
are assigned to new variables or passed as method arguments. A type conversion that does not cause data loss is performed automatically by the
compiler. A conversion that might cause data loss requires a cast in the source code.

For more information, see Casting and type conversions.

C# provides a standard set of built-in numeric types to represent integers, floating point values, Boolean expressions, text characters, decimal values,
and other types of data. There are also built-in string and object types. These are available for you to use in any C# program. For a more information
about the built-in types, see Reference table for types.

You use the struct, class, interface, and enum constructs to create your own custom types. The .NET Framework class library itself is a collection of
custom types provided by Microsoft that you can use in your own applications. By default, the most frequently used types in the class library are
available in any C# program. Others become available only when you explicitly add a project reference to the assembly in which they are defined. After
the compiler has a reference to the assembly, you can declare variables (and constants) of the types declared in that assembly in source code.

A type can be declared with one or more type parameters that serve as a placeholder for the actual type (the concrete type) that client code will provide
when it creates an instance of the type. Such types are called generic types. For example, the .NET Framework type List<T> has one type parameter that
by convention is given the name T. When you create an instance of the type, you specify the type of the objects that the list will contain, for example,
string:

The use of the type parameter makes it possible to reuse the same class to hold any type of element, without having to convert each element to object.
Generic collection classes are called strongly-typed collections because the compiler knows the specific type of the collection's elements and can raise an
error at compile-time if, for example, you try to add an integer to the strings object in the previous example. For more information, see Generics.

As stated previously, you can implicitly type a local variable (but not class members) by using the var keyword. The variable still receives a type at
compile time, but the type is provided by the compiler. For more information, see Implicitly typed local variables.

In some cases, it is inconvenient to create a named type for simple sets of related values that you do not intend to store or pass outside method
boundaries. You can create anonymous types for this purpose. For more information, see Anonymous types.

It's common to want to return more than one value from a method. You can create tuple types that return multiple values in a single method call. For
more information, see Tuples

It is important to understand two fundamental points about the type system in the .NET Framework:

It supports the principle of inheritance. Types can derive from other types, called base types. The derived type inherits (with some restrictions) the
methods, properties, and other members of the base type. The base type can in turn derive from some other type, in which case the derived type
inherits the members of both base types in its inheritance hierarchy. All types, including built-in numeric types such as Int32 (C# keyword: int),
derive ultimately from a single base type, which is Object (C# keyword: object). This unified type hierarchy is called the Common type system
(CTS). For more information about inheritance in C#, see Inheritance.

Each type in the CTS is defined as either a value type or a reference type. This includes all custom types in the .NET Framework class library and
also your own user-defined types. Types that you define by using the struct keyword are value types; all the built-in numeric types are structs. For
more information about value types, see Structs. Types that you define by using the class keyword are reference types. For more information
about reference types, see Classes. Reference types and value types have different compile-time rules, and different run-time behavior.

Structs Classes

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/int
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/true
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/casting-and-type-conversions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-tables-for-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/var
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/implicitly-typed-local-variables
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/anonymous-types
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/classes
https://docs.microsoft.com/en-us/dotnet/csharp/classes

Classes (C# Programming Guide)
5/19/2018 • 5 minutes to read • Edit Online

Reference types

MyClass mc = new MyClass();
MyClass mc2 = mc;

Declaring Classes

public class Customer
{
 // Fields, properties, methods and events go here...
}

Creating Objects

Customer object1 = new Customer();

Customer object2;

Customer object3 = new Customer();
Customer object4 = object3;

Class Inheritance

A class is a construct that enables you to create your own custom types by grouping together variables of other types, methods and events. A class is
like a blueprint. It defines the data and behavior of a type. If the class is not declared as static, client code can create instances of it. These instances are
objects which are assigned to a variable. The instance of a class remains in memory until all references to it go out of scope. At that time, the CLR marks
it as eligible for garbage collection. If the class is declared as static, you cannot create instances, and client code can only access it through the class itself.
For more information, see Static Classes and Static Class Members.

A type that is defined as a class is a reference type. At run time, when you declare a variable of a reference type, the variable contains the value null until
you explicitly create an instance of the class by using the new operator, or assign it an object that has been created elsewhere, as shown in the following
example:

When the object is created, the memory is allocated on the managed heap, and the variable holds only a reference to the location of the object. Types on
the managed heap require overhead both when they are allocated and when they are reclaimed by the automatic memory management functionality of
the CLR, which is known as garbage collection. However, garbage collection is also highly optimized, and in most scenarios, it does not create a
performance issue. For more information about garbage collection, see Automatic memory management and garbage collection.

Classes are declared by using the class keyword, as shown in the following example:

The class keyword is preceded by the access level. Because public is used in this case, anyone can create instances of this class. The name of the class
follows the class keyword. The remainder of the definition is the class body, where the behavior and data are defined. Fields, properties, methods, and
events on a class are collectively referred to as class members.

Although they are sometimes used interchangeably, a class and an object are different things. A class defines a type of object, but it is not an object itself.
An object is a concrete entity based on a class, and is sometimes referred to as an instance of a class.

Objects can be created by using the new keyword followed by the name of the class that the object will be based on, like this:

When an instance of a class is created, a reference to the object is passed back to the programmer. In the previous example, object1 is a reference to an
object that is based on Customer . This reference refers to the new object but does not contain the object data itself. In fact, you can create an object
reference without creating an object at all:

We don't recommend creating object references such as this one that don't refer to an object because trying to access an object through such a
reference will fail at run time. However, such a reference can be made to refer to an object, either by creating a new object, or by assigning it to an
existing object, such as this:

This code creates two object references that both refer to the same object. Therefore, any changes to the object made through object3 are reflected in
subsequent uses of object4 . Because objects that are based on classes are referred to by reference, classes are known as reference types.

Classes fully support inheritance, a fundamental characteristic of object-oriented programming. When you create a class, you can inherit from any other
interface or class that is not defined as sealed, and other classes can inherit from your class and override class virtual methods.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/classes-and-structs/classes.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/new
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/gc
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/public
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/new
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed

public class Manager : Employee
{
 // Employee fields, properties, methods and events are inherited
 // New Manager fields, properties, methods and events go here...
}

Example

using System;

public class Person
{
 // Constructor that takes no arguments:
 public Person()
 {
 Name = "unknown";
 }

 // Constructor that takes one argument:
 public Person(string name)
 {
 Name = name;
 }

 // Auto-implemented readonly property:
 public string Name { get; }

 // Method that overrides the base class (System.Object) implementation.
 public override string ToString()
 {
 return Name;
 }
}
class TestPerson
{
 static void Main()
 {
 // Call the constructor that has no parameters.
 var person1 = new Person();
 Console.WriteLine(person1.Name);

 // Call the constructor that has one parameter.
 var person2 = new Person("Sarah Jones");
 Console.WriteLine(person2.Name);
 // Get the string representation of the person2 instance.
 Console.WriteLine(person2);

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
}
// Output:
// unknown
// Sarah Jones
// Sarah Jones

C# Language Specification

See Also

Inheritance is accomplished by using a derivation, which means a class is declared by using a base class from which it inherits data and behavior. A base
class is specified by appending a colon and the name of the base class following the derived class name, like this:

When a class declares a base class, it inherits all the members of the base class except the constructors. For more information, see Inheritance.

Unlike C++, a class in C# can only directly inherit from one base class. However, because a base class may itself inherit from another class, a class may
indirectly inherit multiple base classes. Furthermore, a class can directly implement more than one interface. For more information, see Interfaces.

A class can be declared abstract. An abstract class contains abstract methods that have a signature definition but no implementation. Abstract classes
cannot be instantiated. They can only be used through derived classes that implement the abstract methods. By contrast, a sealed class does not allow
other classes to derive from it. For more information, see Abstract and Sealed Classes and Class Members.

Class definitions can be split between different source files. For more information, see Partial Classes and Methods.

The following example defines a public class that contains an auto-implemented property, a method, and a special method called a constructor. For
more information, see Properties, Methods, and Constructors topics. The instances of the class are then instantiated with the new keyword.

For more information, see the C# Language Specification. The language specification is the definitive source for C# syntax and usage.

C# Programming Guide

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/sealed
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index

Object-Oriented Programming
Polymorphism
Members
Methods
Constructors
Finalizers
Objects

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/object-oriented-programming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/constructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/objects

Structs
5/4/2018 • 4 minutes to read • Edit Online

// Static method on type Byte.
byte b = Byte.MaxValue;

byte num = 0xA;
int i = 5;
char c = 'Z';

public struct CoOrds
{
 public int x, y;

 public CoOrds(int p1, int p2)
 {
 x = p1;
 y = p2;
 }
}

Literal values

A struct is a value type. When a struct is created, the variable to which the struct is assigned holds the struct's actual data. When the struct is assigned to
a new variable, it is copied. The new variable and the original variable therefore contain two separate copies of the same data. Changes made to one
copy do not affect the other copy.

Value type variables directly contain their values, which means that the memory is allocated inline in whatever context the variable is declared. There is
no separate heap allocation or garbage collection overhead for value-type variables.

There are two categories of value types: struct and enum.

The built-in numeric types are structs, and they have properties and methods that you can access:

But you declare and assign values to them as if they were simple non-aggregate types:

Value types are sealed, which means, for example, that you cannot derive a type from Int32, and you cannot define a struct to inherit from any user-
defined class or struct because a struct can only inherit from ValueType. However, a struct can implement one or more interfaces. You can cast a struct
type to an interface type; this causes a boxing operation to wrap the struct inside a reference type object on the managed heap. Boxing operations occur
when you pass a value type to a method that takes an Object as an input parameter. For more information, see Boxing and Unboxing.

You use the struct keyword to create your own custom value types. Typically, a struct is used as a container for a small set of related variables, as shown
in the following example:

For more information about value types in the .NET Framework, see Common Type System.

Structs share most of the same syntax as classes, although structs are more limited than classes:

Within a struct declaration, fields cannot be initialized unless they are declared as const or static .

A struct cannot declare a default constructor (a constructor without parameters) or a finalizer.

Structs are copied on assignment. When a struct is assigned to a new variable, all the data is copied, and any modification to the new copy does
not change the data for the original copy. This is important to remember when working with collections of value types such as Dictionary<string,
myStruct>.

Structs are value types and classes are reference types.

Unlike classes, structs can be instantiated without using a new operator.

Structs can declare constructors that have parameters.

A struct cannot inherit from another struct or class, and it cannot be the base of a class. All structs inherit directly from ValueType, which inherits
from Object.

A struct can implement interfaces.

In C#, literal values receive a type from the compiler. You can specify how a numeric literal should be typed by appending a letter to the end of the
number. For example, to specify that the value 4.56 should be treated as a float, append an "f" or "F" after the number: 4.56f . If no letter is appended,
the compiler will infer the double type for the literal. For more information about which types can be specified with letter suffixes, see the reference
pages for individual types in Value Types.

https://github.com/dotnet/docs/blob/master/docs/csharp/structs.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types

string s = "The answer is " + 5.ToString();
// Outputs: "The answer is 5"
Console.WriteLine(s);

Type type = 12345.GetType();
// Outputs: "System.Int32"
Console.WriteLine(type);

var x = 123_456;
string s2 = "I can use an underscore as a digit separator: " + x;
// Outputs: "I can use an underscore as a digit separator:
Console.WriteLine(s2);

var b = 0b1010_1011_1100_1110_1111;
string s3 = "I can specify bit patterns: " + b.ToString();
// Outputs: "I can specify bit patterns: 703727
Console.WriteLine(s3);

Nullable types

See also

Because literals are typed, and all types derive ultimately from Object, you can write and compile code such as the following:

The last two examples demonstrate language features introduced in C# 7.0. The first allows you to use an underscore character as a digit separator
inside numeric literals. You can put them wherever you want between digits to improve readability. They have no effect on the value.

The second demonstrates binary literals, which allow you to specify bit patterns directly instead of using hexadecimal notation.

Ordinary value types cannot have a value of null. However, you can create nullable value types by affixing a ? after the type. For example, int? is an int
type that can also have the value null. In the CTS, nullable types are instances of the generic struct type Nullable<T>. Nullable types are especially
useful when you are passing data to and from databases in which numeric values might be null. For more information, see Nullable Types (C#
Programming Guide).

Classes

Basic Types

https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/classes

C# tuple types
6/12/2018 • 20 minutes to read • Edit Online

NOTENOTE

Named and unnamed tuples

var unnamed = ("one", "two");

var named = (first: "one", second: "two");

C# tuples are types that you define using a lightweight syntax. The advantages include a simpler syntax, rules for conversions based on number
(referred to as cardinality) and types of elements, and consistent rules for copies, equality tests, and assignments. As a tradeoff, tuples do not support
some of the object-oriented idioms associated with inheritance. You can get an overview in the section on tuples in the What's new in C# 7.0 article.

In this article, you'll learn the language rules governing tuples in C# 7.0 and later versions, different ways to use them, and initial guidance on working
with tuples.

The new tuples features require the ValueTuple types. You must add the NuGet package System.ValueTuple in order to use it on platforms that do not include the
types.

This is similar to other language features that rely on types delivered in the framework. Examples include async and await relying on the INotifyCompletion

interface, and LINQ relying on IEnumerable<T> . However, the delivery mechanism is changing as .NET is becoming more platform independent. The .NET Framework
may not always ship on the same cadence as the language compiler. When new language features rely on new types, those types will be available as NuGet packages
when the language features ship. As these new types get added to the .NET Standard API and delivered as part of the framework, the NuGet package requirement will
be removed.

Let's start with the reasons for adding new tuple support. Methods return a single object. Tuples enable you to package multiple values in that single
object more easily.

The .NET Framework already has generic Tuple classes. These classes, however, had two major limitations. For one, the Tuple classes named their
properties Item1 , Item2 , and so on. Those names carry no semantic information. Using these Tuple types does not enable communicating the
meaning of each of the properties. The new language features enable you to declare and use semantically meaningful names for the elements in a tuple.

The Tuple classes cause more performance concerns because they are reference types. Using one of the Tuple types means allocating objects. On hot
paths, allocating many small objects can have a measurable impact on your application's performance. Therefore, the language support for tuples
leverages the new ValueTuple structs.

To avoid those deficiencies, you could create a class or a struct to carry multiple elements. Unfortunately, that's more work for you, and it obscures
your design intent. Making a struct or class implies that you are defining a type with both data and behavior. Many times, you simply want to store
multiple values in a single object.

The language features and the ValueTuple generic structs enforce the rule that you cannot add any behavior (methods) to these tuple types. All the
ValueTuple types are mutable structs. Each member field is a public field. That makes them very lightweight. However, that means tuples should not be

used where immutability is important.

Tuples are both simpler and more flexible data containers than class and struct types. Let's explore those differences.

The ValueTuple struct has fields named Item1 , Item2 , Item3 , and so on, similar to the properties defined in the existing Tuple types. These names
are the only names you can use for unnamed tuples. When you do not provide any alternative field names to a tuple, you've created an unnamed tuple:

The tuple in the previous example was initialized using literal constants and won't have element names created using tuple field name projections in C#
7.1.

However, when you initialize a tuple, you can use new language features that give better names to each field. Doing so creates a named tuple. Named
tuples still have elements named Item1 , Item2 , Item3 and so on. But they also have synonyms for any of those elements that you have named. You
create a named tuple by specifying the names for each element. One way is to specify the names as part of the tuple initialization:

These synonyms are handled by the compiler and the language so that you can use named tuples effectively. IDEs and editors can read these semantic
names using the Roslyn APIs. You can reference the elements of a named tuple by those semantic names anywhere in the same assembly. The compiler
replaces the names you've defined with Item* equivalents when generating the compiled output. The compiled Microsoft Intermediate Language
(MSIL) does not include the names you've given these elements.

Beginning with C# 7.1, the field names for a tuple may be provided from the variables used to initialize the tuple. This is referred to as tuple projection
initializers. The following code creates a tuple named accumulation with elements count (an integer), and sum (a double).

https://github.com/dotnet/docs/blob/master/docs/csharp/tuples.md
https://docs.microsoft.com/dotnet/api/system.valuetuple
https://www.nuget.org/packages/System.ValueTuple/

var sum = 12.5;
var count = 5;
var accumulation = (count, sum);

NOTENOTE

Tuple projection initializers

var localVariableOne = 5;
var localVariableTwo = "some text";

var tuple = (explicitFieldOne: localVariableOne, explicitFieldTwo: localVariableTwo);

var stringContent = "The answer to everything";
var mixedTuple = (42, stringContent);

var ToString = "This is some text";
var one = 1;
var Item1 = 5;
var projections = (ToString, one, Item1);
// Accessing the first field:
Console.WriteLine(projections.Item1);
// There is no semantic name 'ToString'
// Accessing the second field:
Console.WriteLine(projections.one);
Console.WriteLine(projections.Item2);
// Accessing the third field:
Console.WriteLine(projections.Item3);
// There is no semantic name 'Item1`.

var pt1 = (X: 3, Y: 0);
var pt2 = (X: 3, Y: 4);

var xCoords = (pt1.X, pt2.X);
// There are no semantic names for the fields
// of xCoords.

// Accessing the first field:
Console.WriteLine(xCoords.Item1);
// Accessing the second field:
Console.WriteLine(xCoords.Item2);

Equality and tuples

The compiler must communicate those names you created for tuples that are returned from public methods or properties. In those cases, the compiler
adds a TupleElementNamesAttribute attribute on the method. This attribute contains a TransformNames list property that contains the names given to
each of the elements in the tuple.

Development Tools, such as Visual Studio, also read that metadata, and provide IntelliSense and other features using the metadata field names.

It is important to understand these underlying fundamentals of the new tuples and the ValueTuple type in order to understand the rules for assigning
named tuples to each other.

In general, tuple projection initializers work by using the variable or field names from the right-hand side of a tuple initialization statement. If an explicit
name is given, that takes precedence over any projected name. For example, in the following initializer, the elements are explicitFieldOne and
explicitFieldTwo , not localVariableOne and localVariableTwo :

For any field where an explicit name is not provided, an applicable implicit name is projected. There is no requirement to provide semantic names, either
explicitly or implicitly. The following initializer has field names Item1 , whose value is 42 and StringContent , whose value is "The answer to
everything":

There are two conditions where candidate field names are not projected onto the tuple field:

1. When the candidate name is a reserved tuple name. Examples include Item3 , ToString . or Rest .
2. When the candidate name is a duplicate of another tuple field name, either explicit or implicit.

These conditions avoid ambiguity. These names would cause an ambiguity if they were used as the field names for a field in a tuple. Neither of these
conditions cause compile-time errors. Instead, the elements without projected names do not have semantic names projected for them. The following
examples demonstrate these conditions:

These situations do not cause compiler errors because that would be a breaking change for code written with C# 7.0, when tuple field name projections
were not available.

Beginning with C# 7.3, tuple types support the == and != operators. These operators work by comparing each member of the left argument to each

https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.tupleelementnamesattribute
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.tupleelementnamesattribute.transformnames#System_Runtime_CompilerServices_TupleElementNamesAttribute_TransformNames

var left = (a: 5, b: 10);
var right = (a: 5, b: 10);
Console.WriteLine(left == right); // displays 'true'

var left = (a: 5, b: 10);
var right = (a: 5, b: 10);
(int a, int b)? nullableTuple = right;
Console.WriteLine(left == nullableTuple); // Also true

// lifted conversions
var left = (a: 5, b: 10);
(int? a, int? b) nullableMembers = (5, 10);
Console.WriteLine(left == nullableMembers); // Also true

// converted type of left is (long, long)
(long a, long b) longTuple = (5, 10);
Console.WriteLine(left == longTuple); // Also true

// comparisons performed on (long, long) tuples
(long a, int b) longFirst = (5, 10);
(int a, long b) longSecond = (5, 10);
Console.WriteLine(longFirst == longSecond); // Also true

(int a, string b) pair = (1, "Hello");
(int z, string y) another = (1, "Hello");
Console.WriteLine(pair == another); // true. Member names don't participate.
Console.WriteLine(pair == (z: 1, y: "Hello")); // warning: literal contains different member names

(int, (int, int)) nestedTuple = (1, (2, 3));
Console.WriteLine(nestedTuple == (1, (2, 3)));

Assignment and tuples

// The 'arity' and 'shape' of all these tuples are compatible.
// The only difference is the field names being used.
var unnamed = (42, "The meaning of life");
var anonymous = (16, "a perfect square");
var named = (Answer: 42, Message: "The meaning of life");
var differentNamed = (SecretConstant: 42, Label: "The meaning of life");

member of the right argument in order. These comparisons short-circuit. The == operator stops evaluating members as soon as one pair is not equal.
The != operator stops evaluating members as soon as one pair is equal. The following code examples use == , but the comparison rules all apply to
!= . The following code example shows an equality comparison for two pairs of integers:

There are several rules that make tuple equality tests more convenient. Tuple equality performs lifted conversions if one of the tuples is a nullable tuple,
as shown in the following code:

Tuple equality also performs implicit conversions on each member of both tuples. These include lifted conversions, widening conversions, or other
implicit conversions. The following examples show that an integer 2-tuple can be compared to a long 2-tuple because of the implicit conversion from
integer to long:

The names of the tuple members do not participate in tests for equality. However, if one of the operands is a tuple literal with explicit names, the
compiler generates warning CS8383 if those names do not match the names of the other operand. In the case where both operands are tuple literals,
the warning is on the right operand as shown in the following example:

Finally, tuples may contain nested tuples. Tuple equality compares the "shape" of each operand through nested tuples as shown in the following
example:

The language supports assignment between tuple types that have the same number of elements, where each right-hand side element can be implicitly
converted to its corresponding left-hand side element. Other conversions are not considered for assignments. Let's look at the kinds of assignments that
are allowed between tuple types.

Consider these variables used in the following examples:

The first two variables, unnamed and anonymous do not have semantic names provided for the elements. The field names are Item1 and Item2 . The last
two variables, named and differentName have semantic names given for the elements. These two tuples have different names for the elements.

All four of these tuples have the same number of elements (referred to as 'cardinality') and the types of those elements are identical. Therefore, all of
these assignments work:

https://docs.microsoft.com/dotnet/csharp/language-reference/language-specification/conversions#lifted-conversion-operators

unnamed = named;

named = unnamed;
// 'named' still has fields that can be referred to
// as 'answer', and 'message':
Console.WriteLine($"{named.Answer}, {named.Message}");

// unnamed to unnamed:
anonymous = unnamed;

// named tuples.
named = differentNamed;
// The field names are not assigned. 'named' still has
// fields that can be referred to as 'answer' and 'message':
Console.WriteLine($"{named.Answer}, {named.Message}");

// With implicit conversions:
// int can be implicitly converted to long
(long, string) conversion = named;

// Does not compile.
// CS0029: Cannot assign Tuple(int,int,int) to Tuple(int, string)
var differentShape = (1, 2, 3);
named = differentShape;

Tuples as method return values

public static double StandardDeviation(IEnumerable<double> sequence)
{
 // Step 1: Compute the Mean:
 var mean = sequence.Average();

 // Step 2: Compute the square of the differences between each number
 // and the mean:
 var squaredMeanDifferences = from n in sequence
 select (n - mean) * (n - mean);
 // Step 3: Find the mean of those squared differences:
 var meanOfSquaredDifferences = squaredMeanDifferences.Average();

 // Step 4: Standard Deviation is the square root of that mean:
 var standardDeviation = Math.Sqrt(meanOfSquaredDifferences);
 return standardDeviation;
}

NOTENOTE

Notice that the names of the tuples are not assigned. The values of the elements are assigned following the order of the elements in the tuple.

Tuples of different types or numbers of elements are not assignable:

One of the most common uses for tuples is as a method return value. Let's walk through one example. Consider this method that computes the
standard deviation for a sequence of numbers:

These examples compute the uncorrected sample standard deviation. The corrected sample standard deviation formula would divide the sum of the squared
differences from the mean by (N-1) instead of N, as the Average extension method does. Consult a statistics text for more details on the differences between these
formulas for standard deviation.

The preceding code follows the textbook formula for the standard deviation. It produces the correct answer, but it's an inefficient implementation. This
method enumerates the sequence twice: Once to produce the average, and once to produce the average of the square of the difference of the average.
(Remember that L INQ queries are evaluated lazily, so the computation of the differences from the mean and the average of those differences makes
only one enumeration.)

There is an alternative formula that computes standard deviation using only one enumeration of the sequence. This computation produces two values
as it enumerates the sequence: the sum of all items in the sequence, and the sum of the each value squared:

public static double StandardDeviation(IEnumerable<double> sequence)
{
 double sum = 0;
 double sumOfSquares = 0;
 double count = 0;

 foreach (var item in sequence)
 {
 count++;
 sum += item;
 sumOfSquares += item * item;
 }

 var variance = sumOfSquares - sum * sum / count;
 return Math.Sqrt(variance / count);
}

public static double StandardDeviation(IEnumerable<double> sequence)
{
 var computation = (Count: 0, Sum: 0.0, SumOfSquares: 0.0);

 foreach (var item in sequence)
 {
 computation.Count++;
 computation.Sum += item;
 computation.SumOfSquares += item * item;
 }

 var variance = computation.SumOfSquares - computation.Sum * computation.Sum / computation.Count;
 return Math.Sqrt(variance / computation.Count);
}

public static double StandardDeviation(IEnumerable<double> sequence)
{
 (int Count, double Sum, double SumOfSquares) computation = ComputeSumsAnSumOfSquares(sequence);

 var variance = computation.SumOfSquares - computation.Sum * computation.Sum / computation.Count;
 return Math.Sqrt(variance / computation.Count);
}

private static (int Count, double Sum, double SumOfSquares) ComputeSumsAnSumOfSquares(IEnumerable<double> sequence)
{
 var computation = (count: 0, sum: 0.0, sumOfSquares: 0.0);

 foreach (var item in sequence)
 {
 computation.count++;
 computation.sum += item;
 computation.sumOfSquares += item * item;
 }

 return computation;
}

This version enumerates the sequence exactly once. But it's not reusable code. As you keep working, you'll find that many different statistical
computations use the number of items in the sequence, the sum of the sequence, and the sum of the squares of the sequence. Let's refactor this method
and write a utility method that produces all three of those values. All three values can be returned as a tuple.

Let's update this method so the three values computed during the enumeration are stored in a tuple. That creates this version:

Visual Studio's Refactoring support makes it easy to extract the functionality for the core statistics into a private method. That gives you a
private static method that returns the tuple type with the three values of Sum , SumOfSquares , and Count :

The language enables a couple more options that you can use, if you want to make a few quick edits by hand. First, you can use the var declaration to
initialize the tuple result from the ComputeSumAndSumOfSquares method call. You can also create three discrete variables inside the
ComputeSumAndSumOfSquares method. The final version is shown in the following code:

public static double StandardDeviation(IEnumerable<double> sequence)
{
 var computation = ComputeSumAndSumOfSquares(sequence);

 var variance = computation.SumOfSquares - computation.Sum * computation.Sum / computation.Count;
 return Math.Sqrt(variance / computation.Count);
}

private static (int Count, double Sum, double SumOfSquares) ComputeSumAndSumOfSquares(IEnumerable<double> sequence)
{
 double sum = 0;
 double sumOfSquares = 0;
 int count = 0;

 foreach (var item in sequence)
 {
 count++;
 sum += item;
 sumOfSquares += item * item;
 }

 return (count, sum, sumOfSquares);
}

private static (double, double, int) ComputeSumAndSumOfSquares(IEnumerable<double> sequence)
{
 double sum = 0;
 double sumOfSquares = 0;
 int count = 0;

 foreach (var item in sequence)
 {
 count++;
 sum += item;
 sumOfSquares += item * item;
 }

 return (sum, sumOfSquares, count);
}

public class ToDoItem
{
 public int ID { get; set; }
 public bool IsDone { get; set; }
 public DateTime DueDate { get; set; }
 public string Title { get; set; }
 public string Notes { get; set; }
}

internal IEnumerable<(int ID, string Title)> GetCurrentItemsMobileList()
{
 return from item in AllItems
 where !item.IsDone
 orderby item.DueDate
 select (item.ID, item.Title);
}

This final version can be used for any method that needs those three values, or any subset of them.

The language supports other options in managing the names of the elements in these tuple-returning methods.

You can remove the field names from the return value declaration and return an unnamed tuple:

The fields of this tuple are named Item1 , Item2 , and Item3 . It's recommended that you provide semantic names to the elements of tuples returned
from methods.

Another idiom where tuples can be useful is when you are authoring LINQ queries. The final projected result often contains some, but not all, of the
properties of the objects being selected.

You would traditionally project the results of the query into a sequence of objects that were an anonymous type. That presented many limitations,
primarily because anonymous types could not conveniently be named in the return type for a method. Alternatives using object or dynamic as the
type of the result came with significant performance costs.

Returning a sequence of a tuple type is easy, and the names and types of the elements are available at compile time and through IDE tools. For example,
consider a ToDo application. You might define a class similar to the following to represent a single entry in the ToDo list:

Your mobile applications may support a compact form of the current ToDo items that only displays the title. That L INQ query would make a projection
that includes only the ID and the title. A method that returns a sequence of tuples expresses that design well:

NOTENOTE

Deconstruction

public static double StandardDeviation(IEnumerable<double> sequence)
{
 (int count, double sum, double sumOfSquares) = ComputeSumAndSumOfSquares(sequence);

 var variance = sumOfSquares - sum * sum / count;
 return Math.Sqrt(variance / count);
}

public static double StandardDeviation(IEnumerable<double> sequence)
{
 var (sum, sumOfSquares, count) = ComputeSumAndSumOfSquares(sequence);

 var variance = sumOfSquares - sum * sum / count;
 return Math.Sqrt(variance / count);
}

(double sum, var sumOfSquares, var count) = ComputeSumAndSumOfSquares(sequence);

public class Point
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int x, int y) => (X, Y) = (x, y);
}

WARNINGWARNING

Deconstructing user-defined typesDeconstructing user-defined types

In C# 7.1, tuple projections enable you to create named tuples using elements, in a manner similar to the property naming in anonymous types. In the above code, the
select statement in the query projection creates a tuple that has elements ID and Title .

The named tuple can be part of the signature. It lets the compiler and IDE tools provide static checking that you are using the result correctly. The
named tuple also carries the static type information so there is no need to use expensive run time features like reflection or dynamic binding to work
with the results.

You can unpackage all the items in a tuple by deconstructing the tuple returned by a method. There are three different approaches to deconstructing
tuples. First, you can explicitly declare the type of each field inside parentheses to create discrete variables for each of the elements in the tuple:

You can also declare implicitly typed variables for each field in a tuple by using the var keyword outside the parentheses:

It is also legal to use the var keyword with any, or all of the variable declarations inside the parentheses.

You cannot use a specific type outside the parentheses, even if every field in the tuple has the same type.

You can deconstruct tuples with existing declarations as well:

You cannot mix existing declarations with declarations inside the parentheses. For instance, the following is not allowed: (var x, y) = MyMethod(); . This produces
error CS8184 because x is declared inside the parentheses and y is previously declared elsewhere.

Any tuple type can be deconstructed as shown above. It's also easy to enable deconstruction on any user-defined type (classes, structs, or even
interfaces).

The type author can define one or more Deconstruct methods that assign values to any number of out variables representing the data elements that
make up the type. For example, the following Person type defines a Deconstruct method that deconstructs a person object into the elements
representing the first name and last name:

public class Person
{
 public string FirstName { get; }
 public string LastName { get; }

 public Person(string first, string last)
 {
 FirstName = first;
 LastName = last;
 }

 public void Deconstruct(out string firstName, out string lastName)
 {
 firstName = FirstName;
 lastName = LastName;
 }
}

var p = new Person("Althea", "Goodwin");
var (first, last) = p;

public class Student : Person
{
 public double GPA { get; }
 public Student(string first, string last, double gpa) :
 base(first, last)
 {
 GPA = gpa;
 }
}

public static class Extensions
{
 public static void Deconstruct(this Student s, out string first, out string last, out double gpa)
 {
 first = s.FirstName;
 last = s.LastName;
 gpa = s.GPA;
 }
}

var s1 = new Student("Cary", "Totten", 4.5);
var (fName, lName, gpa) = s1;

Person p = new Person("Althea", "Goodwin");
if (("Althea", "Goodwin") == p)
 Console.WriteLine(p);

Conclusion

The deconstruct method enables assignment from a Person to two strings, representing the FirstName and LastName properties:

You can enable deconstruction even for types you did not author. The Deconstruct method can be an extension method that unpackages the accessible
data members of an object. The example below shows a Student type, derived from the Person type, and an extension method that deconstructs a
Student into three variables, representing the FirstName , the LastName , and the GPA :

A Student object now has two accessible Deconstruct methods: the extension method declared for Student types, and the member of the Person

type. Both are in scope, and that enables a Student to be deconstructed into either two variables or three. If you assign a student to three variables, the
first name, last name, and GPA are all returned. If you assign a student to two variables, only the first name and the last name are returned.

You should be careful defining multiple Deconstruct methods in a class or a class hierarchy. Multiple Deconstruct methods that have the same number
of out parameters can quickly cause ambiguities. Callers may not be able to easily call the desired Deconstruct method.

In this example, there is minimal chance for an ambiguous call because the Deconstruct method for Person has two output parameters, and the
Deconstruct method for Student has three.

Deconstruction operators do not participate in testing equality. The following example generates compiler error CS0019:

The Deconstruct method could convert the Person object p to a tuple containing two strings, but it is not applicable in the context of equality tests.

The new language and library support for named tuples makes it much easier to work with designs that use data structures that store multiple elements
but do not define behavior, as classes and structs do. It's easy and concise to use tuples for those types. You get all the benefits of static type checking,
without needing to author types using the more verbose class or struct syntax. Even so, they are most useful for utility methods that are private , or
internal . Create user-defined types, either class or struct types when your public methods return a value that has multiple elements.

Deconstructing tuples and other types
5/4/2018 • 10 minutes to read • Edit Online

using System;

public class Example
{
 public static void Main()
 {
 var result = QueryCityData("New York City");

 var city = result.Item1;
 var pop = result.Item2;
 var size = result.Item3;

 // Do something with the data.
 }

 private static (string, int, double) QueryCityData(string name)
 {
 if (name == "New York City")
 return (name, 8175133, 468.48);

 return ("", 0, 0);
 }
}

Deconstructing a tuple

var (name, address, city, zip) = contact.GetAddressInfo();

A tuple provides a light-weight way to retrieve multiple values from a method call. But once you retrieve the tuple, you have to handle its individual
elements. Doing this on an element-by-element basis is cumbersome, as the following example shows. The QueryCityData method returns a 3-tuple,
and each of its elements is assigned to a variable in a separate operation.

Retrieving multiple field and property values from an object can be equally cumbersome: you have to assign a field or property value to a variable on a
member-by-member basis.

Starting with C# 7.0, you can retrieve multiple elements from a tuple or retrieve multiple field, property, and computed values from an object in a single
deconstruct operation. When you deconstruct a tuple, you assign its elements to individual variables. When you deconstruct an object, you assign
selected values to individual variables.

C# features built-in support for deconstructing tuples, which lets you unpackage all the items in a tuple in a single operation. The general syntax for
deconstructing a tuple is similar to the syntax for defining one: you enclose the variables to which each element is to be assigned in parentheses in the
left side of an assignment statement. For example, the following statement assigns the elements of a 4-tuple to four separate variables:

There are three ways to deconstruct a tuple:

public static void Main()
{
 (string city, int population, double area) = QueryCityData("New York City");

 // Do something with the data.
}

public static void Main()
{
 var (city, population, area) = QueryCityData("New York City");

 // Do something with the data.
}

You can explicitly declare the type of each field inside parentheses. The following example uses this approach to deconstruct the 3-tuple returned
by the QueryCityData method.

You can use the var keyword so that C# infers the type of each variable. You place the var keyword outside of the parentheses. The following
example uses type inference when deconstructing the 3-tuple returned by the QueryCityData method.

You can also use the var keyword individually with any or all of the variable declarations inside the parentheses.

https://github.com/dotnet/docs/blob/master/docs/csharp/deconstruct.md

 Deconstructing tuple elements with discards

using System;
using System.Collections.Generic;

public class Example
{
 public static void Main()
 {
 var (_, _, _, pop1, _, pop2) = QueryCityDataForYears("New York City", 1960, 2010);

 Console.WriteLine($"Population change, 1960 to 2010: {pop2 - pop1:N0}");
 }

 private static (string, double, int, int, int, int) QueryCityDataForYears(string name, int year1, int year2)
 {
 int population1 = 0, population2 = 0;
 double area = 0;

 if (name == "New York City") {
 area = 468.48;
 if (year1 == 1960) {
 population1 = 7781984;
 }
 if (year2 == 2010) {
 population2 = 8175133;
 }
 return (name, area, year1, population1, year2, population2);
 }

 return ("", 0, 0, 0, 0, 0);
 }
}
// The example displays the following output:
// Population change, 1960 to 2010: 393,149

Deconstructing user-defined typesDeconstructing user-defined types

public static void Main()
{
 (string city, var population, var area) = QueryCityData("New York City");

 // Do something with the data.
}

public static void Main()
{
 string city = "Raleigh";
 int population = 458880;
 double area = 144.8;

 (city, population, area) = QueryCityData("New York City");

 // Do something with the data.
}

This is cumbersome and is not recommended.

Lastly, you may deconstruct the tuple into variables that have already been declared.

Note that you cannot specify a specific type outside the parentheses even if every field in the tuple has the same type. This generates compiler error
CS8136, "Deconstruction 'var (...)' form disallows a specific type for 'var'.".

Note that you must also assign each element of the tuple to a variable. If you omit any elements, the compiler generates error CS8132, "Cannot
deconstruct a tuple of 'x' elements into 'y' variables."

Note that you cannot mix declarations and assignments to existing variables on the left-hand side of a deconstruction. The compiler generates error
CS8184, "a deconstruction cannot mix declarations and expressions on the left-hand-side." when the members include newly declared and existing
variables.

Often when deconstructing a tuple, you're interested in the values of only some elements. Starting with C# 7.0, you can take advantage of C#'s support
for discards, which are write-only variables whose values you've chosen to ignore. A discard is designated by an underscore character ("_") in an
assignment. You can discard as many values as you like; all are represented by the single discard, _ .

The following example illustrates the use of tuples with discards. The QueryCityDataForYears method returns a 6-tuple with the name of a city, its area, a
year, the city's population for that year, a second year, and the city's population for that second year. The example shows the change in population
between those two years. Of the data available from the tuple, we're unconcerned with the city area, and we know the city name and the two dates at
design-time. As a result, we're only interested in the two population values stored in the tuple, and can handle its remaining values as discards.

Non-tuple types do not offer built-in support for discards. However, as the author of a class, a struct, or an interface, you can allow instances of the type

public void Deconstruct(out string fname, out string mname, out string lname)

var (fName, mName, lName) = p;

using System;

public class Person
{
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public Person(string fname, string mname, string lname,
 string cityName, string stateName)
 {
 FirstName = fname;
 MiddleName = mname;
 LastName = lname;
 City = cityName;
 State = stateName;
 }

 // Return the first and last name.
 public void Deconstruct(out string fname, out string lname)
 {
 fname = FirstName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string mname, out string lname)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string lname,
 out string city, out string state)
 {
 fname = FirstName;
 lname = LastName;
 city = City;
 state = State;
 }
}

public class Example
{
 public static void Main()
 {
 Person p = new Person("John", "Quincy", "Adams", "Boston", "MA");

 // Deconstruct the person object.
 var (fName, lName, city, state) = p;
 Console.WriteLine($"Hello {fName} {lName} of {city}, {state}!");
 }
}
// The example displays the following output:
// Hello John Adams of Boston, MA!

to be deconstructed by implementing one or more Deconstruct methods. The method returns void, and each value to be deconstructed is indicated by
an out parameter in the method signature. For example, the following Deconstruct method of a Person class returns the first, middle, and last name:

You can then deconstruct an instance of the Person class named p with an assignment like the following:

The following example overloads the Deconstruct method to return various combinations of properties of a Person object. Individual overloads return:

A first and last name.
A first, last, and middle name.
A first name, a last name, a city name, and a state name.

Because you can overload the Deconstruct method to reflect groups of data that are commonly extracted from an object, you should be careful to
define Deconstruct methods with signatures that are distinctive and unambiguous. Multiple Deconstruct methods that have the same number of out

parameters or the same number and type of out parameters in a different order can cause confusion.

The overloaded Deconstruct method in the following example illustrates one possible source of confusion. The first overload returns the first name,
middle name, last name, and age of a Person object, in that order. The second overload returns name information only along with annual income, but
the first, middle, and last name are in a different order. This makes it easy to confuse the order of arguments when deconstructing a Person instance.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier

using System;

public class Person
{
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public DateTime DateOfBirth { get; set; }
 public Decimal AnnualIncome { get; set; }

 public void Deconstruct(out string fname, out string mname, out string lname, out int age)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 age = DateTime.Now.Year - DateOfBirth.Year;

 if (DateTime.Now.DayOfYear - (new DateTime(DateTime.Now.Year, DateOfBirth.Month, DateOfBirth.Day)).DayOfYear < 0)
 age--;
 }

 public void Deconstruct(out string lname, out string fname, out string mname, out decimal income)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 income = AnnualIncome;
 }
}

Deconstructing a user-defined type with discards

// Deconstruct the person object.
var (fName, _, city, _) = p;
Console.WriteLine($"Hello {fName} of {city}!");
// The example displays the following output:
// Hello John of Boston!

Deconstructing a user-defined type with an extension method

using System;
using System.Collections.Generic;
using System.Reflection;

public static class ReflectionExtensions
{
 public static void Deconstruct(this PropertyInfo p, out bool isStatic,
 out bool isReadOnly, out bool isIndexed,
 out Type propertyType)
 {
 var getter = p.GetMethod;

 // Is the property read-only?
 isReadOnly = ! p.CanWrite;

 // Is the property instance or static?
 isStatic = getter.IsStatic;

 // Is the property indexed?
 isIndexed = p.GetIndexParameters().Length > 0;

 // Get the property type.
 propertyType = p.PropertyType;

Just as you do with tuples, you can use discards to ignore selected items returned by a Deconstruct method. Each discard is defined by a variable
named "_", and a single deconstruction operation can include multiple discards.

The following example deconstructs a Person object into four strings (the first and last names, the city, and the state) but discards the last name and the
state.

If you didn't author a class, struct, or interface, you can still deconstruct objects of that type by implementing one or more Deconstruct extension
methods to return the values in which you're interested.

The following example defines two Deconstruct extension methods for the System.Reflection.PropertyInfo class. The first returns a set of values that
indicate the characteristics of the property, including its type, whether it's static or instance, whether it's read-only, and whether it's indexed. The second
indicates the property's accessibility. Because the accessibility of get and set accessors can differ, Boolean values indicate whether the property has
separate get and set accessors and, if it does, whether they have the same accessibility. If there is only one accessor or both the get and the set accessor
have the same accessibility, the access variable indicates the accessibility of the property as a whole. Otherwise, the accessibility of the get and set
accessors are indicated by the accessaccessibility is indicated by the getAccess and setAccess variables.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/dotnet/api/system.reflection.propertyinfo

 propertyType = p.PropertyType;
 }

 public static void Deconstruct(this PropertyInfo p, out bool hasGetAndSet,
 out bool sameAccess, out string access,
 out string getAccess, out string setAccess)
 {
 hasGetAndSet = sameAccess = false;
 string getAccessTemp = null;
 string setAccessTemp = null;

 MethodInfo getter = null;
 if (p.CanRead)
 getter = p.GetMethod;

 MethodInfo setter = null;
 if (p.CanWrite)
 setter = p.SetMethod;

 if (setter != null && getter != null)
 hasGetAndSet = true;

 if (getter != null) {
 if (getter.IsPublic)
 getAccessTemp = "public";
 else if (getter.IsPrivate)
 getAccessTemp = "private";
 else if (getter.IsAssembly)
 getAccessTemp = "internal";
 else if (getter.IsFamily)
 getAccessTemp = "protected";
 else if (getter.IsFamilyOrAssembly)
 getAccessTemp = "protected internal";
 }

 if (setter != null) {
 if (setter.IsPublic)
 setAccessTemp = "public";
 else if (setter.IsPrivate)
 setAccessTemp = "private";
 else if (setter.IsAssembly)
 setAccessTemp = "internal";
 else if (setter.IsFamily)
 setAccessTemp = "protected";
 else if (setter.IsFamilyOrAssembly)
 setAccessTemp = "protected internal";
 }

 // Are the accessibility of the getter and setter the same?
 if (setAccessTemp == getAccessTemp) {
 sameAccess = true;
 access = getAccessTemp;
 getAccess = setAccess = String.Empty;
 }
 else {
 access = null;
 getAccess = getAccessTemp;
 setAccess = setAccessTemp;
 }
 }
}

public class Example
{
 public static void Main()
 {
 Type dateType = typeof(DateTime);
 PropertyInfo prop = dateType.GetProperty("Now");
 var (isStatic, isRO, isIndexed, propType) = prop;
 Console.WriteLine($"\nThe {dateType.FullName}.{prop.Name} property:");
 Console.WriteLine($" PropertyType: {propType.Name}");
 Console.WriteLine($" Static: {isStatic}");
 Console.WriteLine($" Read-only: {isRO}");
 Console.WriteLine($" Indexed: {isIndexed}");

 Type listType = typeof(List<>);
 prop = listType.GetProperty("Item",
 BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.Static);
 var (hasGetAndSet, sameAccess, accessibility, getAccessibility, setAccessibility) = prop;
 Console.Write($"\nAccessibility of the {listType.FullName}.{prop.Name} property: ");

 if (!hasGetAndSet | sameAccess) {
 Console.WriteLine(accessibility);
 }
 else {
 Console.WriteLine($"\n The get accessor: {getAccessibility}");
 Console.WriteLine($" The set accessor: {setAccessibility}");
 }
 }
}

// The example displays the following output:
// The System.DateTime.Now property:
// PropertyType: DateTime
// Static: True
// Read-only: True
// Indexed: False
//
// Accessibility of the System.Collections.Generic.List`1.Item property: public

See also
Discards
Tuples

Interfaces (C# Programming Guide)
5/4/2018 • 4 minutes to read • Edit Online

interface IEquatable<T>
{
 bool Equals(T obj);
}

public class Car : IEquatable<Car>
{
 public string Make {get; set;}
 public string Model { get; set; }
 public string Year { get; set; }

 // Implementation of IEquatable<T> interface
 public bool Equals(Car car)
 {
 return this.Make == car.Make &&
 this.Model == car.Model &&
 this.Year == car.Year;
 }
}

Interfaces Summary

An interface contains definitions for a group of related functionalities that a class or a struct can implement.

By using interfaces, you can, for example, include behavior from multiple sources in a class. That capability is important in C# because the language
doesn't support multiple inheritance of classes. In addition, you must use an interface if you want to simulate inheritance for structs, because they can't
actually inherit from another struct or class.

You define an interface by using the interface keyword, as the following example shows.

Any class or struct that implements the IEquatable<T> interface must contain a definition for an Equals method that matches the signature that the
interface specifies. As a result, you can count on a class that implements IEquatable<T> to contain an Equals method with which an instance of the
class can determine whether it's equal to another instance of the same class.

The definition of IEquatable<T> doesn’t provide an implementation for Equals . The interface defines only the signature. In that way, an interface in C#
is similar to an abstract class in which all the methods are abstract. However, a class or struct can implement multiple interfaces, but a class can inherit
only a single class, abstract or not. Therefore, by using interfaces, you can include behavior from multiple sources in a class.

For more information about abstract classes, see Abstract and Sealed Classes and Class Members.

Interfaces can contain methods, properties, events, indexers, or any combination of those four member types. For links to examples, see Related
Sections. An interface can't contain constants, fields, operators, instance constructors, finalizers, or types. Interface members are automatically public,
and they can't include any access modifiers. Members also can't be static.

To implement an interface member, the corresponding member of the implementing class must be public, non-static, and have the same name and
signature as the interface member.

When a class or struct implements an interface, the class or struct must provide an implementation for all of the members that the interface defines. The
interface itself provides no functionality that a class or struct can inherit in the way that it can inherit base class functionality. However, if a base class
implements an interface, any class that's derived from the base class inherits that implementation.

The following example shows an implementation of the IEquatable<T> interface. The implementing class, Car , must provide an implementation of the
Equals method.

Properties and indexers of a class can define extra accessors for a property or indexer that's defined in an interface. For example, an interface might
declare a property that has a get accessor. The class that implements the interface can declare the same property with both a get and set accessor.
However, if the property or indexer uses explicit implementation, the accessors must match. For more information about explicit implementation, see
Explicit Interface Implementation and Interface Properties.

Interfaces can implement other interfaces. A class might include an interface multiple times through base classes that it inherits or through interfaces
that other interfaces implement. However, the class can provide an implementation of an interface only one time and only if the class declares the
interface as part of the definition of the class (class ClassName : InterfaceName). If the interface is inherited because you inherited a base class that
implements the interface, the base class provides the implementation of the members of the interface. However, the derived class can reimplement the
interface members instead of using the inherited implementation.

A base class can also implement interface members by using virtual members. In that case, a derived class can change the interface behavior by
overriding the virtual members. For more information about virtual members, see Polymorphism.

An interface has the following properties:

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/interfaces/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/interface
https://docs.microsoft.com/dotnet/api/system.iequatable-1
https://docs.microsoft.com/dotnet/api/system.iequatable-1.equals
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/static
https://docs.microsoft.com/dotnet/api/system.iequatable-1.equals
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/get
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/interface-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism

In This Section

Related Sections

Featured Book Chapter

See Also

An interface is like an abstract base class. Any class or struct that implements the interface must implement all its members.

An interface can't be instantiated directly. Its members are implemented by any class or struct that implements the interface.

Interfaces can contain events, indexers, methods, and properties.

Interfaces contain no implementation of methods.

A class or struct can implement multiple interfaces. A class can inherit a base class and also implement one or more interfaces.

Explicit Interface Implementation
Explains how to create a class member that’s specific to an interface.

How to: Explicitly Implement Interface Members
Provides an example of how to explicitly implement members of interfaces.

How to: Explicitly Implement Members of Two Interfaces
Provides an example of how to explicitly implement members of interfaces with inheritance.

Interface Properties

Indexers in Interfaces

How to: Implement Interface Events

Classes and Structs

Inheritance

Methods

Polymorphism

Abstract and Sealed Classes and Class Members

Properties

Events

Indexers

Interfaces in Learning C# 3.0: Master the Fundamentals of C# 3.0

C# Programming Guide
Inheritance

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/explicit-interface-implementation
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-interface-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-members-of-two-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/interface-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/indexers-in-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/index
http://msdn.microsoft.com/library/orm-9780596521066-01-13.aspx
http://msdn.microsoft.com/library/orm-9780596521066-01.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance

Methods
5/22/2018 • 21 minutes to read • Edit Online

NOTENOTE

Method signatures

NOTENOTE

using System;

abstract class Motorcycle
{
 // Anyone can call this.
 public void StartEngine() {/* Method statements here */ }

 // Only derived classes can call this.
 protected void AddGas(int gallons) { /* Method statements here */ }

 // Derived classes can override the base class implementation.
 public virtual int Drive(int miles, int speed) { /* Method statements here */ return 1; }

 // Derived classes can override the base class implementation.
 public virtual int Drive(TimeSpan time, int speed) { /* Method statements here */ return 0; }

 // Derived classes must implement this.
 public abstract double GetTopSpeed();
}

A method is a code block that contains a series of statements. A program causes the statements to be executed by calling the method and specifying any
required method arguments. In C#, every executed instruction is performed in the context of a method. The Main method is the entry point for every
C# application and it is called by the common language runtime (CLR) when the program is started.

This topic discusses named methods. For information about anonymous functions, see Anonymous Functions.

This topic contains the following sections:

Method signatures
Method invocation
Inherited and overridden methods
Passing parameters

Optional parameters and arguments
Return values
Extension methods
Async Methods
Expression-bodied members
Iterators

Passing parameters by value
Passing parameters by reference
Parameter arrays

Methods are declared in a class or struct by specifying:

An optional access level, such as public or private . The default is private .
Optional modifiers such as abstract or sealed .
The return value, or void if the method has none.
The method name.
Any method parameters. Method parameters are enclosed in parentheses and are separated by commas. Empty parentheses indicate that the
method requires no parameters.

These parts together form the method signature.

A return type of a method is not part of the signature of the method for the purposes of method overloading. However, it is part of the signature of the method when
determining the compatibility between a delegate and the method that it points to.

The following example defines a class named Motorcycle that contains five methods:

https://github.com/dotnet/docs/blob/master/docs/csharp/methods.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-functions

Method invocation

public class Example
{
 public static void Main()
 {
 // Call with an int variable.
 int num = 4;
 int productA = Square(num);

 // Call with an integer literal.
 int productB = Square(12);

 // Call with an expression that evaulates to int.
 int productC = Square(productA * 3);
 }

 static int Square(int i)
 {
 // Store input argument in a local variable.
 int input = i;
 return input * input;
 }
}

class TestMotorcycle : Motorcycle
{
 public override double GetTopSpeed()
 {
 return 108.4;
 }

 static void Main()
 {

 TestMotorcycle moto = new TestMotorcycle();

 moto.StartEngine();
 moto.AddGas(15);
 moto.Drive(5, 20);
 double speed = moto.GetTopSpeed();
 Console.WriteLine("My top speed is {0}", speed);
 }
}

Note that the Motorcycle class includes an overloaded method, Drive . Two methods have the same name, but must be differentiated by their
parameter types.

Methods can be either instance or static. Invoking an instance method requires that you instantiate an object and call the method on that object; an
instance method operates on that instance and its data. You invoke a static method by referencing the name of the type to which the method belongs;
static methods operate do not operate on instance data. Attempting to call a static method through an object instance generates a compiler error.

Calling a method is like accessing a field. After the object name (if you are calling an instance method) or the type name (if you are calling a static

method), add a period, the name of the method, and parentheses. Arguments are listed within the parentheses, and are separated by commas.

The method definition specifies the names and types of any parameters that are required. When a caller invokes the method, it provides concrete values,
called arguments, for each parameter. The arguments must be compatible with the parameter type, but the argument name, if one is used in the calling
code, does not have to be the same as the parameter named defined in the method. In the following example, the Square method includes a single
parameter of type int named i. The first method call passes the Square method a variable of type int named num; the second, a numeric constant;
and the third, an expression.

The most common form of method invocation used positional arguments; it supplies arguments in the same order as method parameters. The methods
of the Motorcycle class can therefore be called as in the following example. The call to the Drive method, for example, includes two arguments that
correspond to the two parameters in the method's syntax. The first becomes the value of the miles parameter, the second the value of the speed

parameter.

You can also used named arguments instead of positional arguments when invoking a method. When using named arguments, you specify the
parameter name followed by a colon (":") and the argument. Arguments to the method can appear in any order, as long as all required arguments are
present. The following example uses named arguments to invoke the TestMotorcycle.Drive method. In this example, the named arguments are passed
in the opposite order from the method's parameter list.

using System;

class TestMotorcycle : Motorcycle
{
 public override int Drive(int miles, int speed)
 {
 return (int) Math.Round(((double)miles) / speed, 0);
 }

 public override double GetTopSpeed()
 {
 return 108.4;
 }

 static void Main()
 {

 TestMotorcycle moto = new TestMotorcycle();
 moto.StartEngine();
 moto.AddGas(15);
 var travelTime = moto.Drive(speed: 60, miles: 170);
 Console.WriteLine("Travel time: approx. {0} hours", travelTime);
 }
}
// The example displays the following output:
// Travel time: approx. 3 hours

var travelTime = moto.Drive(170, speed: 55);

Inherited and overridden methods

using System;

public class Person
{
 public String FirstName;
}

public class Example
{
 public static void Main()
 {
 var p1 = new Person();
 p1.FirstName = "John";
 var p2 = new Person();
 p2.FirstName = "John";
 Console.WriteLine("p1 = p2: {0}", p1.Equals(p2));
 }
}
// The example displays the following output:
// p1 = p2: False

You can invoke a method using both positional arguments and named arguments. However, a positional argument cannot follow a named argument.
The following example invokes the TestMotorcycle.Drive method from the previous example using one positional argument and one named argument.

In addition to the members that are explicitly defined in a type, a type inherits members defined in its base classes. Since all types in the managed type
system inherit directly or indirectly from the Object class, all types inherit its members, such as Equals(Object), GetType(), and ToString(). The following
example defines a Person class, instantiates two Person objects, and calls the Person.Equals method to determine whether the two objects are equal.
The Equals method, however, is not defined in the Person class; it is inherited from Object.

Types can override inherited members by using the override keyword and providing an implementation for the overridden method. The method
signature must be the same as that of the overridden method. The following example is like the previous one, except that it overrides the Equals(Object)
method. (It also overrides the GetHashCode() method, since the two methods are intended to provide consistent results.)

https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object.equals#System_Object_Equals_System_Object_
https://docs.microsoft.com/dotnet/api/system.object.gettype#System_Object_GetType
https://docs.microsoft.com/dotnet/api/system.object.tostring#System_Object_ToString
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object.equals#System_Object_Equals_System_Object_
https://docs.microsoft.com/dotnet/api/system.object.gethashcode#System_Object_GetHashCode

using System;

public class Person
{
 public String FirstName;

 public override bool Equals(object obj)
 {
 var p2 = obj as Person;
 if (p2 == null)
 return false;
 else
 return FirstName.Equals(p2.FirstName);
 }

 public override int GetHashCode()
 {
 return FirstName.GetHashCode();
 }
}

public class Example
{
 public static void Main()
 {
 var p1 = new Person();
 p1.FirstName = "John";
 var p2 = new Person();
 p2.FirstName = "John";
 Console.WriteLine("p1 = p2: {0}", p1.Equals(p2));
 }
}
// The example displays the following output:
// p1 = p2: True

Passing parameters

Passing parameters by valuePassing parameters by value

using System;

public class Example
{
 public static void Main()
 {
 int value = 20;
 Console.WriteLine("In Main, value = {0}", value);
 ModifyValue(value);
 Console.WriteLine("Back in Main, value = {0}", value);
 }

 static void ModifyValue(int i)
 {
 i = 30;
 Console.WriteLine("In ModifyValue, parameter value = {0}", i);
 return;
 }
}
// The example displays the following output:
// In Main, value = 20
// In ModifyValue, parameter value = 30
// Back in Main, value = 20

Types in C# are either value types or reference types. For a list of built-in value types, see Types and variables. By default, both value types and reference
types are passed to a method by value.

When a value type is passed to a method by value, a copy of the object instead of the object itself is passed to the method. Therefore, changes to the
object in the called method have no effect on the original object when control returns to the caller.

The following example passes a value type to a method by value, and the called method attempts to change the value type's value. It defines a variable
of type int , which is a value type, initializes its value to 20, and passes it to a method named ModifyValue that changes the variable's value to 30.
When the method returns, however, the variable's value remains unchanged.

When an object of a reference type is passed to a method by value, a reference to the object is passed by value. That is, the method receives not the
object itself, but an argument that indicates the location of the object. If you change a member of the object by using this reference, the change is
reflected in the object when control returns to the calling method. However, replacing the object passed to the method has no effect on the original
object when control returns to the caller.

The following example defines a class (which is a reference type) named SampleRefType . It instantiates a SampleRefType object, assigns 44 to its value

field, and passes the object to the ModifyObject method. This example does essentially the same thing as the previous example -- it passes an argument
by value to a method. But because a reference type is used, the result is different. The modification that is made in ModifyObject to the obj.value field

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/types-and-variables

using System;

public class SampleRefType
{
 public int value;
}

public class Example
{
 public static void Main()
 {
 var rt = new SampleRefType();
 rt.value = 44;
 ModifyObject(rt);
 Console.WriteLine(rt.value);
 }

 static void ModifyObject(SampleRefType obj)
 {
 obj.value = 33;
 }
}

Passing parameters by referencePassing parameters by reference

using System;

public class Example
{
 public static void Main()
 {
 int value = 20;
 Console.WriteLine("In Main, value = {0}", value);
 ModifyValue(ref value);
 Console.WriteLine("Back in Main, value = {0}", value);
 }

 static void ModifyValue(ref int i)
 {
 i = 30;
 Console.WriteLine("In ModifyValue, parameter value = {0}", i);
 return;
 }
}
// The example displays the following output:
// In Main, value = 20
// In ModifyValue, parameter value = 30
// Back in Main, value = 30

also changes the value field of the argument, rt , in the Main method to 33, as the output from the example shows.

You pass a parameter by reference when you want to change the value of an argument in a method and want to refect that change when control returns
to the calling method. To pass a parameter by reference, you use the ref or out keyword. You can also pass a value by reference to avoid copying but
still prevent modifications using the in keyword.

The following example is identical to the previous one, except the value is passed by reference to the ModifyValue method. When the value of the
parameter is modified in the ModifyValue method, the change in value is reflected when control returns to the caller.

A common pattern that uses by ref parameters involves swapping the values of variables. You pass two variables to a method by reference, and the
method swaps their contents. The following example swaps integer values.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier

using System;

public class Example
{
 static void Main()
 {
 int i = 2, j = 3;
 System.Console.WriteLine("i = {0} j = {1}" , i, j);

 Swap(ref i, ref j);

 System.Console.WriteLine("i = {0} j = {1}" , i, j);
 }

 static void Swap(ref int x, ref int y)
 {
 int temp = x;
 x = y;
 y = temp;
 }
}
// The example displays the following output:
// i = 2 j = 3
// i = 3 j = 2

Parameter arraysParameter arrays

using System;

class Example
{
 static void Main()
 {
 int[] arr = {1, 4, 5};
 Console.WriteLine("In Main, array has {0} elements and starts with {1}",
 arr.Length, arr[0]);

 Change(ref arr);
 Console.WriteLine("Back in Main, array has {0} elements and starts with {1}",
 arr.Length, arr[0]);
 }

 static void Change(ref int[] arr)
 {
 // Both of the following changes will affect the original variables:
 arr = new int[5] {-9, -7, -5, -3, -1};
 Console.WriteLine("In Change, array has {0} elements and starts with {1}",
 arr.Length, arr[0]);
 }
}
// The example displays the following output:
// In Main, array has 3 elements and starts with 1
// In Change, array has 5 elements and starts with -9
// Back in Main, array has 5 elements and starts with -9

Optional parameters and arguments

Passing a reference-type parameter allows you to change the value of the reference itself, rather than the value of its individual elements or fields.

Sometimes, the requirement that you specify the exact number of arguments to your method is restrictive. By using the params keyword to indicate
that a parameter is a parameter array, you allow your method to be called with a variable number of arguments. The parameter tagged with the params

keyword must must be an array type, and it must be the last parameter in the method's parameter list.

A caller can then invoke the method in either of three ways:

By passing an array of the appropriate type that contains the desired number of elements.
By passing a comma-separated list of individual arguments of the appropriate type to the method.
By not providing an argument to the parameter array.

The following example defines a method named DoStringOperation that performs the string operation specified by its first parameter, a
StringOperation enumeration member. The strings upon which it is to perform the operation are defined by a parameter array. The Main method

illustrates all three ways of invoking the method. Note that the method tagged with the params keyword must be prepared to handle the case in which
no argument is supplied for the parameter array, so that its value is null .

A method definition can specify that its parameters are required or that they are optional. By default, parameters are required. Optional parameters are
specified by including the parameter's default value in the method definition. When the method is called, if no argument is supplied for an optional
parameter, the default value is used instead.

The parameter's default value must be assigned by one of the following kinds of expressions:

A constant, such as a literal string or number.

using System;

public class Options
{
 public void ExampleMethod(int required, int optionalInt = default(int),
 string description = "Optional Description")
 {
 Console.WriteLine("{0}: {1} + {2} = {3}", description, required,
 optionalInt, required + optionalInt);
 }
}

public class Example
{
 public static void Main()
 {
 var opt = new Options();
 opt.ExampleMethod(10);
 opt.ExampleMethod(10, 2);
 opt.ExampleMethod(12, description: "Addition with zero:");
 }
}
// The example displays the following output:
// Optional Description: 10 + 0 = 10
// Optional Description: 10 + 2 = 12
// Addition with zero:: 12 + 0 = 12

Return values

An expression of the form new ValType , where ValType is a value type. Note that this invokes the value type's implicit default constructor, which is
not an actual member of the type.
An expression of the form default(ValType) , where ValType is a value type.

If a method includes both required and optional parameters, optional parameters are defined at the end of the parameter list, after all required
parameters.

The following example defines a method, ExampleMethod , that has one required and two optional parameters.

If a method with multiple optional arguments is invoked using positional arguments, the caller must supply an argument for all optional parameters
from the first one to the last one for which an argument is supplied. In the case of the ExampleMethod method, for example, if the caller supplies an
argument for the description parameter, it must also supply one for the optionalInt parameter. opt.ExampleMethod(2, 2, "Addition of 2 and 2"); is a
valid method call; opt.ExampleMethod(2, , "Addition of 2 and 0); generates an "Argument missing" compiler error.

If a method is called using named arguments or a combination of positional and named arguments, the caller can omit any arguments that follow the
last positional argument in the method call.

The following example calls the ExampleMethod method three times. The first two method calls use positional arguments. The first omits both optional
arguments, while the second omits the last argument. The third method call supplies a positional argument for the required parameter, but uses a
named argument to supply a value to the description parameter while omitting the optionalInt argument.

The use of optional parameters affects overload resolution, or the way in which the C# compiler determines which particular overload should be
invoked by a method call, as follows:

A method, indexer, or constructor is a candidate for execution if each of its parameters either is optional or corresponds, by name or by position, to a
single argument in the calling statement, and that argument can be converted to the type of the parameter.
If more than one candidate is found, overload resolution rules for preferred conversions are applied to the arguments that are explicitly specified.
Omitted arguments for optional parameters are ignored.
If two candidates are judged to be equally good, preference goes to a candidate that does not have optional parameters for which arguments were
omitted in the call. This is a consequence of a general preference in overload resolution for candidates that have fewer parameters.

Methods can return a value to the caller. If the return type (the type listed before the method name) is not void , the method can return the value by
using the return keyword. A statement with the return keyword followed by a variable, constant, or expression that matches the return type will
return that value to the method caller. Methods with a non-void return type are required to use the return keyword to return a value. The return

keyword also stops the execution of the method.

If the return type is void , a return statement without a value is still useful to stop the execution of the method. Without the return keyword, the
method will stop executing when it reaches the end of the code block.

For example, these two methods use the return keyword to return integers:

class SimpleMath
{
 public int AddTwoNumbers(int number1, int number2)
 {
 return number1 + number2;
 }

 public int SquareANumber(int number)
 {
 return number * number;
 }
}

int result = obj.AddTwoNumbers(1, 2);
result = obj.SquareANumber(result);
// The result is 9.
Console.WriteLine(result);

result = obj.SquareANumber(obj.AddTwoNumbers(1, 2));
// The result is 9.
Console.WriteLine(result);

public (string, string, string, int) GetPersonalInfo(string id)
{
 PersonInfo per = PersonInfo.RetrieveInfoById(id);
 if (per != null)
 return (per.FirstName, per.MiddleName, per.LastName, per.Age);
 else
 return null;
}

var person = GetPersonalInfo("111111111")
if (person != null)
 Console.WriteLine("{person.Item1} {person.Item3}: age = {person.Item4}");

public (string FName, string MName, string LName, int Age) GetPersonalInfo(string id)
{
 PersonInfo per = PersonInfo.RetrieveInfoById(id);
 if (per != null)
 return (per.FirstName, per.MiddleName, per.LastName, per.Age);
 else
 return null;
}

var person = GetPersonalInfo("111111111");
if (person != null)
 Console.WriteLine("{person.FName} {person.LName}: age = {person.Age}");

To use a value returned from a method, the calling method can use the method call itself anywhere a value of the same type would be sufficient. You can
also assign the return value to a variable. For example, the following two code examples accomplish the same goal:

Using a local variable, in this case, result , to store a value is optional. It may help the readability of the code, or it may be necessary if you need to store
the original value of the argument for the entire scope of the method.

Sometimes, you want your method to return more than a single value. Starting with C# 7.0, you can do this easily by using tuple types and tuple literals.
The tuple type defines the data types of the tuple's elements. Tuple literals provide the actual values of the returned tuple. In the following example,
(string, string, string, int) defines the tuple type that is returned by the GetPersonalInfo method. The expression
(per.FirstName, per.MiddleName, per.LastName, per.Age) is the tuple literal; the method returns the first, middle, and last name, along with the age, of a
PersonInfo object.

The caller can then consume the returned tuple with code like the following:

Names can also be assigned to the tuple elements in the tuple type definition. The following example shows an alternate version of the GetPersonalInfo

method that uses named elements:

The previous call to the GetPersonInfo method can then be modified as follows:

If a method is passed an array as an argument and modifies the value of individual elements, it is not necessary for the method to return the array,
although you may choose to do so for good style or functional flow of values. This is because C# passes all reference types by value, and the value of an
array reference is the pointer to the array. In the following example, changes to the contents of the values array that are made in the DoubleValues

method are observable by any code that has a reference to the array.

using System;

public class Example
{
 static void Main(string[] args)
 {
 int[] values = { 2, 4, 6, 8 };
 DoubleValues(values);
 foreach (var value in values)
 Console.Write("{0} ", value);
 }

 public static void DoubleValues(int[] arr)
 {
 for (int ctr = 0; ctr <= arr.GetUpperBound(0); ctr++)
 arr[ctr] = arr[ctr] * 2;
 }
}
// The example displays the following output:
// 4 8 12 16

Extension methods

Async Methods

NOTENOTE

Ordinarily, there are two ways to add a method to an existing type:

Modify the source code for that type. You cannot do this, of course, if you do not own the type's source code. And this becomes a breaking change if
you also add any private data fields to support the method.
Define the new method in a derived class. A method cannot be added in this way using inheritance for other types, such as structures and
enumerations. Nor can it be used to "add" a method to a sealed class.

Extension methods let you "add" a method to an existing type without modifying the type itself or implementing the new method in an inherited type.
The extension method also does not have to reside in the same assembly as the type it extends. You call an extension method as if it were a defined
member of a type.

For more information, see Extension Methods.

By using the async feature, you can invoke asynchronous methods without using explicit callbacks or manually splitting your code across multiple
methods or lambda expressions.

If you mark a method with the async modifier, you can use the await operator in the method. When control reaches an await expression in the async
method, control returns to the caller if the awaited task is not completed, and progress in the method with the await keyword is suspended until the
awaited task completes. When the task is complete, execution can resume in the method.

An async method returns to the caller when either it encounters the first awaited object that’s not yet complete or it gets to the end of the async method, whichever
occurs first.

An async method can have a return type of Task<TResult>, Task, or void . The void return type is used primarily to define event handlers, where a
void return type is required. An async method that returns void can't be awaited, and the caller of a void-returning method can't catch exceptions that

the method throws. Starting with C# 7.0, an async method can have any task-like return type.

In the following example, DelayAsync is an async method that has a return statement that returns an integer. Because it is an async method, its method
declaration must have a return type of Task<int> . Because the return type is Task<int> , the evaluation of the await expression in DoSomethingAsync

produces an integer, as the following int result = await delayTask statement demonstrates.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/extension-methods
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

using System;
using System.Diagnostics;
using System.Threading.Tasks;

public class Example
{
 // This Click event is marked with the async modifier.
 public static void Main()
 {
 DoSomethingAsync().Wait();
 }

 private static async Task DoSomethingAsync()
 {
 int result = await DelayAsync();
 Console.WriteLine("Result: " + result);
 }

 private static async Task<int> DelayAsync()
 {
 await Task.Delay(100);
 return 5;
 }

 // Output:
 // Result: 5
}
// The example displays the following output:
// Result: 5

Expression-bodied members

public Point Move(int dx, int dy) => new Point(x + dx, y + dy);
public void Print() => Console.WriteLine(First + " " + Last);
// Works with operators, properties, and indexers too.
public static Complex operator +(Complex a, Complex b) => a.Add(b);
public string Name => First + " " + Last;
public Customer this[long id] => store.LookupCustomer(id);

Iterators

See also

An async method can't declare any in, ref, or out parameters, but it can call methods that have such parameters.

For more information about async methods, see Asynchronous Programming with Async and Await, Control Flow in Async Programs, and Async
Return Types.

It is common to have method definitions that simply return immediately with the result of an expression, or that have a single statement as the body of
the method. There is a syntax shortcut for defining such methods using => :

If the method returns void or is an async method, the body of the method must be a statement expression (same as with lambdas). For properties and
indexers, they must be read-only, and you do not use the get accessor keyword.

An iterator performs a custom iteration over a collection, such as a list or an array. An iterator uses the yield return statement to return each element
one at a time. When a yield return statement is reached, the current location is remembered so that the caller can request the next element in the
sequence.

The return type of an iterator can be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.

For more information, see Iterators.

Access Modifiers
Static Classes and Static Class Members
Inheritance
Abstract and Sealed Classes and Class Members
params
out
ref
in
Passing Parameters

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/control-flow-in-async-programs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/async-return-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/yield
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/static-classes-and-static-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/abstract-and-sealed-classes-and-class-members
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/params
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/out-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/in-parameter-modifier
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/passing-parameters

Lambda expressions
5/4/2018 • 10 minutes to read • Edit Online

using System;

class Example
{
 public static void Main()
 {
 Func<int, int> square = x => x * x;
 Console.WriteLine(square(25));
 }
}
// The example displays the following output:
// 625

using System;

public class Example
{
 static void Main()
 {
 ShowValue(x => x * x);
 }

 private static void ShowValue(Func<int,int> op)
 {
 for (int ctr = 1; ctr <= 5; ctr++)
 Console.WriteLine("{0} x {0} = {1}",
 ctr, op(ctr));
 }
}
// The example displays the following output:
// 1, 1 x 1 = 1
// 2, 2 x 2 = 4
// 3, 3 x 3 = 9
// 4, 4 x 4 = 16
// 5, 5 x 5 = 25

Expression lambdas

(input parameters) => expression

Action line = () => Console.WriteLine();

A lambda expression is a block of code (an expression or a statement block) that is treated as an object. It can be passed as an argument to methods,
and it can also be returned by method calls. Lambda expressions are used extensively for :

Passing the code that is to be executed to asynchronous methods, such as Run(Action).

Writing LINQ query expressions.

Creating expression trees.

Lambda expressions are code that can be represented either as a delegate, or as an expression tree that compiles to a delegate. The specific delegate
type of a lambda expression depends on its parameters and return value. Lambda expressions that don't return a value correspond to a specific Action

delegate, depending on its number of parameters. Lambda expressions that return a value correspond to a specific Func delegate, depending on its
number of parameters. For example, a lambda expression that has two parameters but returns no value corresponds to an Action<T1,T2> delegate. A
lambda expression that has one parameter and returns a value corresponds to Func<T,TResult> delegate.

A lambda expression uses => , the lambda declaration operator, to separate the lambda's parameter list from its executable code. To create a lambda
expression, you specify input parameters (if any) on the left side of the lambda operator, and you put the expression or statement block on the other
side. For example, the single-line lambda expression x => x * x specifies a parameter that’s named x and returns the value of x squared. You can
assign this expression to a delegate type, as the following example shows:

Or you can pass it directly as a method argument:

A lambda expression with an expression on the right side of the => operator is called an expression lambda. Expression lambdas are used extensively in
the construction of expression trees. An expression lambda returns the result of the expression and takes the following basic form:

The parentheses are optional only if the lambda has one input parameter ; otherwise they are required. Specify zero input parameters with empty
parentheses:

https://github.com/dotnet/docs/blob/master/docs/csharp/lambda-expressions.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.run#System_Threading_Tasks_Task_Run_System_Action_
https://docs.microsoft.com/dotnet/api/system.action-2
https://docs.microsoft.com/dotnet/api/system.func-2
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-operator

Func<int,int,bool> testEquality = (x, y) => x == y; // test for equality

Func<int, string, bool> isTooLong = (int x, string s) => s.Length > x;

Statement lambdas

(input parameters) => { statement; }

using System;

public class Example
{
 delegate void TestDelegate(string s);

 public static void Main()
 {
 TestDelegate test = n => { string s = n + " " + "World"; Console.WriteLine(s); };
 test("Hello");
 }
}
// The example displays the following output:
// Hello World

Async lambdas

using System;
using System.Threading.Tasks;

public class Example
{
 public static void Main()
 {
 Begin().Wait();
 }

 private static async Task Begin()
 {
 for (int ctr = 2; ctr <= 5; ctr++) {
 var result = await ShowSquares(ctr);
 Console.WriteLine("{0} * {0} = {1}", ctr, result);
 }
 }

 private static async Task<int> ShowSquares(int number)
 {
 return await Task.Factory.StartNew(x => (int)x * (int)x, number);
 }
}

Lambda expressions and tuples

Two or more input parameters are separated by commas enclosed in parentheses:

Ordinarily, the compiler uses type inference in determining parameter types. However, sometimes it is difficult or impossible for the compiler to infer
the input types. When this occurs, you can specify the types explicitly, as in the following example:

Note in the previous example that the body of an expression lambda can consist of a method call. However, if you are creating expression trees that are
evaluated outside of the .NET Framework, such as in SQL Server or Entity Framework (EF), you should refrain from using method calls in lambda
expressions, since the methods may have no meaning outside the context of the .NET implementation. If you do choose to use method calls in this case,
be sure to test them thoroughly to ensure that the method calls can be successfuly resolved.

A statement lambda resembles an expression lambda except that the statement(s) is enclosed in braces:

The body of a statement lambda can consist of any number of statements; however, in practice there are typically no more than two or three.

Statement lambdas, like anonymous methods, cannot be used to create expression trees.

You can easily create lambda expressions and statements that incorporate asynchronous processing by using the async and await keywords. For
example, the example calls a ShowSquares method that executes asynchronously.

For more information about how to create and use async methods, see Asynchronous programming with async and await.

Starting with C# 7.0, the C# language provides built-in support for tuples. You can provide a tuple as an argument to a lambda expression, and your
lambda expression can also return a tuple. In some cases, the C# compiler uses type inference to determine the types of tuple components.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index

using System;

public class Example
{
 public static void Main()
 {
 var numbers = (2, 3, 4, 5, 6);
 Func<(int, int, int, int, int), (int, int, int, int, int)> doubleThem = (n) => (n.Item1 * 2, n.Item2 * 2, n.Item3 * 2, n.Item4 * 2, n.Item5
* 2);
 var doubledNumbers = doubleThem(numbers);

 Console.WriteLine("The set {0} doubled: {1}", numbers, doubledNumbers);
 Console.ReadLine();
 }
}
// The example displays the following output:
// The set (2, 3, 4, 5, 6) doubled: (4, 6, 8, 10, 12)

using System;

public class Example
{
 public static void Main()
 {
 var numbers = (2, 3, 4, 5, 6);
 Func<(int n1, int n2, int n3, int n4, int n5), (int, int, int, int, int)> doubleThem = (n) => (n.n1 * 2, n2 * 2, n.n3 * 2, n.n4 * 2, n.n5 *
2);
 var doubledNumbers = doubleThem(numbers);

 Console.WriteLine("The set {0} doubled: {1}", numbers, doubledNumbers);
 Console.ReadLine();
 }
}
// The example displays the following output:
// The set (2, 3, 4, 5, 6) doubled: (4, 6, 8, 10, 12)

Lambdas with the standard query operators

public delegate TResult Func<TArg, TResult>(TArg arg);

Func<int, bool> func = (x) => x == 5;

Console.WriteLine(func(4)); // Returns "False".

int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };
int oddNumbers = numbers.Count(n => n % 2 == 1);
Console.WriteLine("There are {0} odd numbers in the set", oddNumbers);
// Output: There are 5 odd numbers in the set

You define a tuple by enclosing a comma-delimited list of its components in parentheses. The following example uses tuple with 5 components to pass a
sequence of numbers to a lambda expression, which doubles each value and returns a tuple with 5 components that contains the result of the
multiplications.

Ordinarily, the fields of a tuple are named Item1 , Item2 , etc. You can, however, define a tuple with named components, as the following example does.

For more information on support for tuples in C#, see C# Tuple types.

L INQ to Objects, among other implementations, have an input parameter whose type is one of the Func<TResult> family of generic delegates. These
delegates use type parameters to define the number and type of input parameters, and the return type of the delegate. Func delegates are very useful
for encapsulating user-defined expressions that are applied to each element in a set of source data. For example, consider the Func<TResult> delegate,
whose syntax is:

The delegate can be instantiated with code like the following

where int is an input parameter, and bool is the return value. The return value is always specified in the last type parameter. When the following
Func delegate is invoked, it returns true or false to indicate whether the input parameter is equal to 5:

You can also supply a lambda expression when the argument type is an Expression<TDelegate>, for example in the standard query operators that are
defined in the Queryable type. When you specify an Expression<TDelegate> argument, the lambda is compiled to an expression tree. The following
example uses the System.Linq.Enumerable.Count standard query operator.

The compiler can infer the type of the input parameter, or you can also specify it explicitly. This particular lambda expression counts those integers (n)
that, when divided by two, have a remainder of 1.

https://docs.microsoft.com/dotnet/api/system.func-1
https://docs.microsoft.com/dotnet/api/system.func-1
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression-1
https://docs.microsoft.com/dotnet/api/system.linq.queryable
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression-1
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.count#System_Linq_Enumerable_Count__1_System_Collections_Generic_IEnumerable___0__

var firstNumbersLessThan6 = numbers.TakeWhile(n => n < 6);
foreach (var number in firstNumbersLessThan6)
 Console.Write("{0} ", number);
// Output: 5 4 1 3

 var firstSmallNumbers = numbers.TakeWhile((n, index) => n >= index);
foreach (var number in firstSmallNumbers)
 Console.Write("{0} ", number);
 // Output: 5 4

Type inference in lambda expressions

customers.Where(c => c.City == "London");

Variable Scope in Lambda Expressions

The following example produces a sequence that contains all elements in the numbers array that precede the 9, because that's the first number in the
sequence that doesn't meet the condition.

The following example specifies multiple input parameters by enclosing them in parentheses. The method returns all the elements in the numbers array
until it encounters a number whose value is less than its ordinal position in the array.

When writing lambdas, you often do not have to specify a type for the input parameters because the compiler can infer the type based on the lambda
body, the parameter types, and other factors, as described in the C# Language Specification. For most of the standard query operators, the first input is
the type of the elements in the source sequence. If you are querying an IEnumerable<Customer> , then the input variable is inferred to be a Customer

object, which means you have access to its methods and properties:

The general rules for type inference for lambdas are:

The lambda must contain the same number of parameters as the delegate type.

Each input argument in the lambda must be implicitly convertible to its corresponding delegate parameter.

The return value of the lambda (if any) must be implicitly convertible to the delegate's return type.

Note that lambda expressions in themselves do not have a type because the common type system has no intrinsic concept of "lambda expression."
However, it is sometimes convenient to speak informally of the "type" of a lambda expression. In these cases the type refers to the delegate type or
Expression type to which the lambda expression is converted.

Lambdas can refer to outer variables (see Anonymous methods) that are in scope in the method that defines the lambda function, or in scope in the
type that contains the lambda expression. Variables that are captured in this manner are stored for use in the lambda expression even if the variables
would otherwise go out of scope and be garbage collected. An outer variable must be definitely assigned before it can be consumed in a lambda
expression. The following example demonstrates these rules.

https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-methods

using System;

delegate bool D();
delegate bool D2(int i);

class Test
{
 D del;
 D2 del2;
 public void TestMethod(int input)
 {
 int j = 0;
 // Initialize the delegates with lambda expressions.
 // Note access to 2 outer variables.
 // del will be invoked within this method.
 del = () => { j = 10; return j > input; };

 // del2 will be invoked after TestMethod goes out of scope.
 del2 = (x) => {return x == j; };

 // Demonstrate value of j:
 // Output: j = 0
 // The delegate has not been invoked yet.
 Console.WriteLine("j = {0}", j); // Invoke the delegate.
 bool boolResult = del();

 // Output: j = 10 b = True
 Console.WriteLine("j = {0}. b = {1}", j, boolResult);
 }

 static void Main()
 {
 Test test = new Test();
 test.TestMethod(5);

 // Prove that del2 still has a copy of
 // local variable j from TestMethod.
 bool result = test.del2(10);

 // Output: True
 Console.WriteLine(result);
 }
}
// The example displays the following output:
// j = 0
// j = 10. b = True
// True

See also

The following rules apply to variable scope in lambda expressions:

A variable that is captured will not be garbage-collected until the delegate that references it becomes eligible for garbage collection.

Variables introduced within a lambda expression are not visible in the outer method.

A lambda expression cannot directly capture an in , ref , or out parameter from an enclosing method.

A return statement in a lambda expression does not cause the enclosing method to return.

A lambda expression cannot contain a goto statement, break statement, or continue statement that is inside the lambda function if the jump
statement’s target is outside the block. It is also an error to have a jump statement outside the lambda function block if the target is inside the
block.

L INQ (Language-Integrated Query)
Anonymous methods
Expression trees

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/anonymous-methods

Properties
5/10/2018 • 9 minutes to read • Edit Online

Property syntax

public class Person
{
 public string FirstName;
 // remaining implementation removed from listing
}

public class Person
{
 public string FirstName { get; set; }

 // remaining implementation removed from listing
}

public class Person
{
 public string FirstName { get; set; } = string.Empty;

 // remaining implementation removed from listing
}

public class Person
{
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }
 private string firstName;
 // remaining implementation removed from listing
}

public class Person
{
 public string FirstName
 {
 get => firstName;
 set => firstName = value;
 }
 private string firstName;
 // remaining implementation removed from listing
}

Properties are first class citizens in C#. The language defines syntax that enables developers to write code that accurately expresses their design intent.

Properties behave like fields when they are accessed. However, unlike fields, properties are implemented with accessors that define the statements
executed when a property is accessed or assigned.

The syntax for properties is a natural extension to fields. A field defines a storage location:

A property definition contains declarations for a get and set accessor that retrieves and assigns the value of that property:

The syntax shown above is the auto property syntax. The compiler generates the storage location for the field that backs up the property. The compiler
also implements the body of the get and set accessors.

Sometimes, you need to initialize a property to a value other than the default for its type. C# enables that by setting a value after the closing brace for
the property. You may prefer the initial value for the FirstName property to be the empty string rather than null . You would specify that as shown
below:

Specific initialization is most useful for read-only properties, as you'll see later in this article.

You can also define the storage yourself, as shown below:

When a property implementation is a single expression, you can use expression-bodied members for the getter or setter :

This simplified syntax will be used where applicable throughout this article.

The property definition shown above is a read-write property. Notice the keyword value in the set accessor. The set accessor always has a single

https://github.com/dotnet/docs/blob/master/docs/csharp/properties.md

Scenarios

ValidationValidation

public class Person
{
 public string FirstName
 {
 get => firstName;
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 firstName = value;
 }
 }
 private string firstName;
 // remaining implementation removed from listing
}

public class Person
{
 public string FirstName
 {
 get => firstName;
 set => firstName = (!string.IsNullOrWhiteSpace(value)) ? value : throw new ArgumentException("First name must not be blank");
 }
 private string firstName;
 // remaining implementation removed from listing
}

hero.FirstName = "";

Read-onlyRead-only

public class Person
{
 public string FirstName { get; private set; }

 // remaining implementation removed from listing
}

parameter named value . The get accessor must return a value that is convertible to the type of the property (string in this example).

That's the basics of the syntax. There are many different variations that support a variety of different design idioms. Let's explore, and learn the syntax
options for each.

The examples above showed one of the simplest cases of property definition: a read-write property with no validation. By writing the code you want in
the get and set accessors, you can create many different scenarios.

You can write code in the set accessor to ensure that the values represented by a property are always valid. For example, suppose one rule for the
Person class is that the name cannot be blank or white space. You would write that as follows:

The preceding example can be simplified by using a throw expression as part of the property setter validation:

The example above enforces the rule that the first name must not be blank or white space. If a developer writes

That assignment throws an ArgumentException . Because a property set accessor must have a void return type, you report errors in the set accessor by
throwing an exception.

You can extend this same syntax to anything needed in your scenario. You can check the relationships between different properties, or validate against
any external conditions. Any valid C# statements are valid in a property accessor.

Up to this point, all the property definitions you have seen are read/write properties with public accessors. That's not the only valid accessibility for
properties. You can create read-only properties, or give different accessibility to the set and get accessors. Suppose that your Person class should only
enable changing the value of the FirstName property from other methods in that class. You could give the set accessor private accessibility instead of
public :

Now, the FirstName property can be accessed from any code, but it can only be assigned from other code in the Person class.

You can add any restrictive access modifier to either the set or get accessors. Any access modifier you place on the individual accessor must be more
limited than the access modifier on the property definition. The above is legal because the FirstName property is public , but the set accessor is
private . You could not declare a private property with a public accessor. Property declarations can also be declared protected , internal ,
protected internal , or, even private .

It is also legal to place the more restrictive modifier on the get accessor. For example, you could have a public property, but restrict the get accessor
to private . That scenario is rarely done in practice.

public class Person
{
 public Person(string firstName) => this.FirstName = firstName;

 public string FirstName { get; }

 // remaining implementation removed from listing
}

public class Measurements
{
 public ICollection<DataPoint> points { get; } = new List<DataPoint>();
}

Computed propertiesComputed properties

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName { get { return $"{FirstName} {LastName}"; } }
}

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName => $"{FirstName} {LastName}";
}

Cached evaluated propertiesCached evaluated properties

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

You can also restrict modifications to a property so that it can only be set in a constructor or a property initializer. You can modify the Person class so as
follows:

This feature is most commonly used for initializing collections that are exposed as read-only properties:

A property does not need to simply return the value of a member field. You can create properties that return a computed value. Let's expand the
Person object to return the full name, computed by concatenating the first and last names:

The example above uses the string interpolation feature to create the formatted string for the full name.

You can also use an expression-bodied member, which provides a more succinct way to create the computed FullName property:

Expression-bodied members use the lambda expression syntax to define methods that contain a single expression. Here, that expression returns the full
name for the person object.

You can mix the concept of a computed property with storage and create a cached evaluated property. For example, you could update the FullName

property so that the string formatting only happened the first time it was accessed:

The above code contains a bug though. If code updates the value of either the FirstName or LastName property, the previously evaluated fullName

field is invalid. You modify the set accessors of the FirstName and LastName property so that the fullName field is calculated again:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated

public class Person
{
 private string firstName;
 public string FirstName
 {
 get => firstName;
 set
 {
 firstName = value;
 fullName = null;
 }
 }

 private string lastName;
 public string LastName
 {
 get => lastName;
 set
 {
 lastName = value;
 fullName = null;
 }
 }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

Attaching attributes to auto-implemented propertiesAttaching attributes to auto-implemented properties

public class Person
{
 public string FirstName { get; set; }

 public string LastName { get; set; }

 [field:NonSerialized]
 public int Id { get; set; }

 public string FullName => $"{FirstName} {LastName}";
}

Implementing INotifyPropertyChangedImplementing INotifyPropertyChanged

This final version evaluates the FullName property only when needed. If the previously calculated version is valid, it's used. If another state change
invalidates the previously calculated version, it will be recalculated. Developers that use this class do not need to know the details of the implementation.
None of these internal changes affect the use of the Person object. That's the key reason for using Properties to expose data members of an object.

Beginning with C# 7.3, field attributes can be attached to the compiler generated backing field in auto-implemented properties. For example, consider a
revision to the Person class that adds a unique integer Id property. You write the Id property using an auto-implemented property, but your design
does not call for persisting the Id property. The NonSerializedAttribute can only be attached to fields, not properties. You can attach the
NonSerializedAttribute to the backing field for the Id property by using the field: specifier on the attribute, as shown in the following example:

This technique works for any attribute you attach to the backing field on the auto-implemented property.

A final scenario where you need to write code in a property accessor is to support the INotifyPropertyChanged interface used to notify data binding
clients that a value has changed. When the value of a property changes, the object raises the INotifyPropertyChanged.PropertyChanged event to
indicate the change. The data binding libraries, in turn, update display elements based on that change. The code below shows how you would
implement INotifyPropertyChanged for the FirstName property of this person class.

https://docs.microsoft.com/dotnet/api/system.nonserializedattribute
https://docs.microsoft.com/dotnet/api/system.nonserializedattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged.propertychanged

public class Person : INotifyPropertyChanged
{
 public string FirstName
 {
 get => firstName;
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 if (value != firstName)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(FirstName)));
 }
 firstName = value;
 }
 }
 private string firstName;

 public event PropertyChangedEventHandler PropertyChanged;
 // remaining implementation removed from listing
}

Summing up

The ?. operator is called the null conditional operator. It checks for a null reference before evaluating the right side of the operator. The end result is
that if there are no subscribers to the PropertyChanged event, the code to raise the event doesn't execute. It would throw a NullReferenceException

without this check in that case. For more information, see events . This example also uses the new nameof operator to convert from the property name
symbol to its text representation. Using nameof can reduce errors where you have mistyped the name of the property.

Again, implementing INotifyPropertyChanged is an example of a case where you can write code in your accessors to support the scenarios you need.

Properties are a form of smart fields in a class or object. From outside the object, they appear like fields in the object. However, properties can be
implemented using the full palette of C# functionality. You can provide validation, different accessibility, lazy evaluation, or any requirements your
scenarios need.

https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged

Indexers
6/19/2018 • 9 minutes to read • Edit Online

Indexer Syntax

var item = someObject["key"];
someObject["AnotherKey"] = item;

public int this[string key]
{
 get { return storage.Find(key); }
 set { storage.SetAt(key, value); }
}

Scenarios

Arrays and VectorsArrays and Vectors

public class DataSamples
{
 private class Page
 {
 private readonly List<Measurements> pageData = new List<Measurements>();
 private readonly int startingIndex;
 private readonly int length;
 private bool dirty;
 private DateTime lastAccess;

 public Page(int startingIndex, int length)
 {
 this.startingIndex = startingIndex;
 this.length = length;
 lastAccess = DateTime.Now;

 // This stays as random stuff:
 var generator = new Random();
 for(int i=0; i < length; i++)
 {

Indexers are similar to properties. In many ways indexers build on the same language features as properties. Indexers enable indexed properties:
properties referenced using one or more arguments. Those arguments provide an index into some collection of values.

You access an indexer through a variable name and square brackets . You place the indexer arguments inside the brackets:

You declare indexers using the this keyword as the property name, and declaring the arguments within square brackets. This declaration would match
the usage shown in the previous paragraph:

From this initial example, you can see the relationship between the syntax for properties and for indexers. This analogy carries through most of the
syntax rules for indexers. Indexers can have any valid access modifiers (public, protected internal, protected, internal, private or private protected). They
may be sealed, virtual, or abstract. As with properties, you can specify different access modifiers for the get and set accesssors in an indexer. You may
also specify read-only indexers (by omitting the set accessor), or write-only indexers (by omitting the get accessor).

You can apply almost everything you learn from working with properties to indexers. The only exception to that rule is auto implemented properties.
The compiler cannot always generate the correct storage for an indexer.

The presence of arguments to reference an item in a set of items distinguishes indexers from properties. You may define multiple indexers on a type, as
long as the argument lists for each indexer is unique. Let's explore different scenarios where you might use one or more indexers in a class definition.

You would define indexers in your type when its API models some collection where you define the arguments to that collection. Your indexers may or
may not map directly to the collection types that are part of the .NET core framework. Your type may have other responsibilities in addition to modeling
a collection. Indexers enable you to provide the API that matches your type's abstraction without exposing the inner details of how the values for that
abstraction are stored or computed.

Let's walk through some of the common scenarios for using indexers. You can access the sample folder for indexers. For download instructions, see
Samples and Tutorials.

One of the most common scenarios for creating indexers is when your type models an array, or a vector. You can create an indexer to model an ordered
list of data.

The advantage of creating your own indexer is that you can define the storage for that collection to suit your needs. Imagine a scenario where your type
models historical data that is too large to load into memory at once. You need to load and unload sections of the collection based on usage. The example
following models this behavior. It reports on how many data points exist. It creates pages to hold sections of the data on demand. It removes pages
from memory to make room for pages needed by more recent requests.

https://github.com/dotnet/docs/blob/master/docs/csharp/indexers.md
https://github.com/dotnet/samples/tree/master/csharp/indexers

 var m = new Measurements
 {
 HiTemp = generator.Next(50, 95),
 LoTemp = generator.Next(12, 49),
 AirPressure = 28.0 + generator.NextDouble() * 4
 };
 pageData.Add(m);
 }
 }
 public bool HasItem(int index) =>
 ((index >= startingIndex) &&
 (index < startingIndex + length));

 public Measurements this[int index]
 {
 get
 {
 lastAccess = DateTime.Now;
 return pageData[index - startingIndex];
 }
 set
 {
 pageData[index - startingIndex] = value;
 dirty = true;
 lastAccess = DateTime.Now;
 }
 }

 public bool Dirty => dirty;
 public DateTime LastAccess => lastAccess;
 }

 private readonly int totalSize;
 private readonly List<Page> pagesInMemory = new List<Page>();

 public DataSamples(int totalSize)
 {
 this.totalSize = totalSize;
 }

 public Measurements this[int index]
 {
 get
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than 0");
 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the end of storage");

 var page = updateCachedPagesForAccess(index);
 return page[index];
 }
 set
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than 0");
 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the end of storage");
 var page = updateCachedPagesForAccess(index);

 page[index] = value;
 }
 }

 private Page updateCachedPagesForAccess(int index)
 {
 foreach (var p in pagesInMemory)
 {
 if (p.HasItem(index))
 {
 return p;
 }
 }
 var startingIndex = (index / 1000) * 1000;
 var newPage = new Page(startingIndex, 1000);
 addPageToCache(newPage);
 return newPage;
 }

 private void addPageToCache(Page p)
 {
 if (pagesInMemory.Count > 4)
 {
 // remove oldest non-dirty page:
 var oldest = pagesInMemory
 .Where(page => !page.Dirty)
 .OrderBy(page => page.LastAccess)
 .FirstOrDefault();
 // Note that this may keep more than 5 pages in memory
 // if too much is dirty

 if (oldest != null)
 pagesInMemory.Remove(oldest);
 }
 pagesInMemory.Add(p);
 }
}

DictionariesDictionaries

public class ArgsProcessor
{
 private readonly ArgsActions actions;

 public ArgsProcessor(ArgsActions actions)
 {
 this.actions = actions;
 }

 public void Process(string[] args)
 {
 foreach(var arg in args)
 {
 actions[arg]?.Invoke();
 }
 }

}
public class ArgsActions
{
 readonly private Dictionary<string, Action> argsActions = new Dictionary<string, Action>();

 public Action this[string s]
 {
 get
 {
 Action action;
 Action defaultAction = () => {} ;
 return argsActions.TryGetValue(s, out action) ? action : defaultAction;
 }
 }

 public void SetOption(string s, Action a)
 {
 argsActions[s] = a;
 }
}

Multi-Dimensional MapsMulti-Dimensional Maps

You can follow this design idiom to model any sort of collection where there are good reasons not to load the entire set of data into an in- memory
collection. Notice that the Page class is a private nested class that is not part of the public interface. Those details are hidden from any users of this
class.

Another common scenario is when you need to model a dictionary or a map. This scenario is when your type stores values based on key, typically text
keys. This example creates a dictionary that maps command line arguments to lambda expressions that manage those options. The following example
shows two classes: an ArgsActions class that maps a command line option to an Action delegate, and an ArgsProcessor that uses the ArgsActions to
execute each Action when it encounters that option.

In this example, the ArgsAction collection maps closely to the underlying collection. The get determines if a given option has been configured. If so, it
returns the Action associated with that option. If not, it returns an Action that does nothing. The public accessor does not include a set accessor.
Rather, the design using a public method for setting options.

You can create indexers that use multiple arguments. In addition, those arguments are not constrained to be the same type. Let's look at two examples.

The first example shows a class that generates values for a Mandelbrot set. For more information on the mathematics behind the set, read this article.
The indexer uses two doubles to define a point in the X, Y plane. The get accessor computes the number of iterations until a point is determined to be
not in the set. If the maximum iterations is reached, the point is in the set, and the class's maxIterations value is returned. (The computer generated
images popularized for the Mandelbrot set define colors for the number of iterations necessary to determine that a point is outside the set.

https://en.wikipedia.org/wiki/Mandelbrot_set

public class Mandelbrot
{
 readonly private int maxIterations;

 public Mandelbrot(int maxIterations)
 {
 this.maxIterations = maxIterations;
 }

 public int this [double x, double y]
 {
 get
 {
 var iterations = 0;
 var x0 = x;
 var y0 = y;

 while ((x*x + y * y < 4) &&
 (iterations < maxIterations))
 {
 var newX = x * x - y * y + x0;
 y = 2 * x * y + y0;
 x = newX;
 iterations++;
 }
 return iterations;
 }
 }
}

using DateMeasurements =
 System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements =
 System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>>;

public class HistoricalWeatherData
{
 readonly CityDataMeasurements storage = new CityDataMeasurements();

 public Measurements this[string city, DateTime date]
 {
 get
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 throw new ArgumentOutOfRangeException(nameof(city), "City not found");

 // strip out any time portion:
 var index = date.Date;
 var measure = default(Measurements);
 if (cityData.TryGetValue(index, out measure))
 return measure;
 throw new ArgumentOutOfRangeException(nameof(date), "Date not found");
 }
 set
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 {
 cityData = new DateMeasurements();
 storage.Add(city, cityData);
 }

 // Strip out any time portion:
 var index = date.Date;
 cityData[index] = value;
 }
 }
}

The Mandelbrot Set defines values at every (x,y) coordinate for real number values. That defines a dictionary that could contain an infinite number of
values. Therefore, there is no storage behind the set. Instead, this class computes the value for each point when code calls the get accessor. There's no
underlying storage used.

Let's examine one last use of indexers, where the indexer takes multiple arguments of different types. Consider a program that manages historical
temperature data. This indexer uses a city and a date to set or get the high and low temperatures for that location:

This example creates an indexer that maps weather data on two different arguments: a city (represented by a string) and a date (represented by a
DateTime). The internal storage uses two Dictionary classes to represent the two-dimensional dictionary. The public API no longer represents the

underlying storage. Rather, the language features of indexers enables you to create a public interface that represents your abstraction, even though the
underlying storage must use different core collection types.

using DateMeasurements = System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements = System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime,
IndexersSamples.Common.Measurements>>;

Summing Up

There are two parts of this code that may be unfamiliar to some developers. These two using statements:

create an alias for a constructed generic type. Those statements enable the code later to use the more descriptive DateMeasurements and
CityDateMeasurements names instead of the generic construction of Dictionary<DateTime, Measurements> and
Dictionary<string, Dictionary<DateTime, Measurements> > . This construct does require using the fully qualified type names on the right side of the =

sign.

The second technique is to strip off the time portions of any DateTime object used to index into the collections. The .NET framework does not include a
Date only type. Developers use the DateTime type, but use the Date property to ensure that any DateTime object from that day are equal.

You should create indexers anytime you have a property-like element in your class where that property represents not a single value, but rather a
collection of values where each individual item is identified by a set of arguments. Those arguments can uniquely identify which item in the collection
should be referenced. Indexers extend the concept of properties, where a member is treated like a data item from outside the class, but like a method on
the side. Indexers allow arguments to find a single item in a property that represents a set of items.

Discards - C# Guide
5/4/2018 • 7 minutes to read • Edit Online

(_, _, area) = city.GetCityInformation(cityName);

Tuple and object deconstruction

using System;
using System.Collections.Generic;

public class Example
{
 public static void Main()
 {
 var (_, _, _, pop1, _, pop2) = QueryCityDataForYears("New York City", 1960, 2010);

 Console.WriteLine($"Population change, 1960 to 2010: {pop2 - pop1:N0}");
 }

 private static (string, double, int, int, int, int) QueryCityDataForYears(string name, int year1, int year2)
 {
 int population1 = 0, population2 = 0;
 double area = 0;

 if (name == "New York City") {
 area = 468.48;
 if (year1 == 1960) {
 population1 = 7781984;
 }
 if (year2 == 2010) {
 population2 = 8175133;
 }
 return (name, area, year1, population1, year2, population2);
 }

 return ("", 0, 0, 0, 0, 0);
 }
}
// The example displays the following output:
// Population change, 1960 to 2010: 393,149

Starting with C# 7.0, C# supports discards, which are temporary, dummy variables that are intentionally unused in application code. Discards are
equivalent to unassigned variables; they do not have a value. Because there is only a single discard variable, and that variable may not even be allocated
storage, discards can reduce memory allocations. Because they make the intent of your code clear, they enhance its readability and maintainability.

You indicate that a variable is a discard by assigning it the underscore (_) as its name. For example, the following method call returns a 3-tuple in
which the first and second values are discards and area is a previously declared variable to be set to the corresponding third component returned by
GetCityInformation:

In C# 7.0, discards are supported in assignments in the following contexts:

Tuple and object deconstruction.
Pattern matching with is and switch.
Calls to methods with out parameters.
A standalone _ when no _ is in scope.

When _ is a valid discard, attempting to retrieve its value or use it in an assignment operation generates compiler error CS0301, "The name '_' does
not exist in the current context". This is because _ is not assigned a value, and may not even be assigned a storage location. If it were an actual variable,
you could not discard more than one value, as the previous example did.

Discards are particularly useful in working with tuples when your application code uses some tuple elements but ignores others. For example, the
following QueryCityDataForYears method returns a 6-tuple with the name of a city, its area, a year, the city's population for that year, a second year, and
the city's population for that second year. The example shows the change in population between those two years. Of the data available from the tuple,
we're unconcerned with the city area, and we know the city name and the two dates at design-time. As a result, we're only interested in the two
population values stored in the tuple, and can handle its remaining values as discards.

For more information on deconstructing tuples with discards, see Deconstructing tuples and other types.

The Deconstruct method of a class, structure, or interface also allows you to retrieve and deconstruct a specific set of data from an object. You can use
discards when you are interested in working with only a subset of the deconstructed values. Ihe following example deconstructs a Person object into
four strings (the first and last names, the city, and the state), but discards the last name and the state.

https://github.com/dotnet/docs/blob/master/docs/csharp/discards.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch

using System;

public class Person
{
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public Person(string fname, string mname, string lname,
 string cityName, string stateName)
 {
 FirstName = fname;
 MiddleName = mname;
 LastName = lname;
 City = cityName;
 State = stateName;
 }

 // Return the first and last name.
 public void Deconstruct(out string fname, out string lname)
 {
 fname = FirstName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string mname, out string lname)
 {
 fname = FirstName;
 mname = MiddleName;
 lname = LastName;
 }

 public void Deconstruct(out string fname, out string lname,
 out string city, out string state)
 {
 fname = FirstName;
 lname = LastName;
 city = City;
 state = State;
 }
}

public class Example
{
 public static void Main()
 {
 Person p = new Person("John", "Quincy", "Adams", "Boston", "MA");

 // <Snippet1>
 // Deconstruct the person object.
 var (fName, _, city, _) = p;
 Console.WriteLine($"Hello {fName} of {city}!");
 // The example displays the following output:
 // Hello John of Boston!
 // </Snippet1>
 }
}
// The example displays the following output:
// Hello John Adams of Boston, MA!

Pattern matching with switch and is

For more information on deconstructing user-defined types with discards, see Deconstructing tuples and other types.

The discard pattern can be used in pattern matching with the is and switch keywords. Every expression always matches the discard pattern.

The following example defines a ProvidesFormatInfo method that uses is statements to determine whether an object provides an IFormatProvider
implementation and tests whether the object is null . It also uses the discard pattern to handle non-null objects of any other type.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/dotnet/api/system.iformatprovider

using System;
using System.Globalization;

public class Example
{
 public static void Main()
 {
 object[] objects = { CultureInfo.CurrentCulture,
 CultureInfo.CurrentCulture.DateTimeFormat,
 CultureInfo.CurrentCulture.NumberFormat,
 new ArgumentException(), null };
 foreach (var obj in objects)
 ProvidesFormatInfo(obj);
 }

 private static void ProvidesFormatInfo(object obj)
 {
 if (obj is IFormatProvider fmt)
 Console.WriteLine($"{fmt} object");
 else if (obj is null) {
 Console.Write("A null object reference: ");
 Console.WriteLine("Its use could result in a NullReferenceException");
 }
 else if (obj is var _)
 Console.WriteLine($"Some object type without format information");
 }
}
// The example displays the following output:
// en-US object
// System.Globalization.DateTimeFormatInfo object
// System.Globalization.NumberFormatInfo object
// Some object type without format information
// A null object reference: Its use could result in a NullReferenceException

Calls to methods with out parameters

using System;

public class Example
{
 public static void Main()
 {
 string[] dateStrings = {"05/01/2018 14:57:32.8", "2018-05-01 14:57:32.8",
 "2018-05-01T14:57:32.8375298-04:00", "5/01/2018",
 "5/01/2018 14:57:32.80 -07:00",
 "1 May 2018 2:57:32.8 PM", "16-05-2018 1:00:32 PM",
 "Fri, 15 May 2018 20:10:57 GMT" };
 foreach (string dateString in dateStrings)
 {
 if (DateTime.TryParse(dateString, out _))
 Console.WriteLine($"'{dateString}': valid");
 else
 Console.WriteLine($"'{dateString}': invalid");
 }
 }
}
// The example displays output like the following:
// '05/01/2018 14:57:32.8': valid
// '2018-05-01 14:57:32.8': valid
// '2018-05-01T14:57:32.8375298-04:00': valid
// '5/01/2018': valid
// '5/01/2018 14:57:32.80 -07:00': valid
// '1 May 2018 2:57:32.8 PM': valid
// '16-05-2018 1:00:32 PM': invalid
// 'Fri, 15 May 2018 20:10:57 GMT': invalid

A standalone discard

When calling the Deconstruct method to deconstruct a user-defined type (an instance of a class, structure, or interface), you can discard the values of
individual out arguments. But you can also discard the value of out arguments when calling any method with an out parameter.

The following example calls the DateTime.TryParse(String, out DateTime) method to determine whether the string representation of a date is valid in
the current culture. Because the example is concerned only with validating the date string and not with parsing it to extract the date, the out argument
to the method is a discard.

You can use a standalone discard to indicate any variable that you choose to ignore. The following example uses a standalone discard to ignore the Task
object returned by an asynchronous operation. This has the effect of suppressing the exception that the operation throws as it is about to complete.

https://docs.microsoft.com/dotnet/api/system.datetime.tryparse#System_DateTime_TryParse_System_String_System_DateTime__
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task

using System;
using System.Threading.Tasks;

public class Example
{
 public static void Main()
 {
 ExecuteAsyncMethods().Wait();
 }

 private static async Task ExecuteAsyncMethods()
 {
 Console.WriteLine("About to launch a task...");
 _ = Task.Run(() => { var iterations = 0;
 for (int ctr = 0; ctr < int.MaxValue; ctr++)
 iterations++;
 Console.WriteLine("Completed looping operation...");
 throw new InvalidOperationException();
 });
 await Task.Delay(5000);
 Console.WriteLine("Exiting after 5 second delay");
 }
}
// The example displays output like the following:
// About to launch a task...
// Completed looping operation...
// Exiting after 5 second delay

See also

Note that _ is also a valid identifier. When used outside of a supported context, _ is treated not as a discard but as a valid variable. If an identifier
named _ is already in scope, the use of _ as a standalone discard can result in:

private static void ShowValue(int _)
{
 byte[] arr = { 0, 0, 1, 2 };
 _ = BitConverter.ToInt32(arr, 0);
 Console.WriteLine(_);
}
// The example displays the following output:
// 33619968

private static bool RoundTrips(int _)
{
 string value = _.ToString();
 int newValue = 0;
 _ = Int32.TryParse(value, out newValue);
 return _ == newValue;
}
// The example displays the following compiler error:
// error CS0029: Cannot implicitly convert type 'bool' to 'int'

public void DoSomething(int _)
{
 var _ = GetValue(); // Error: cannot declare local _ when one is already in scope
}
// The example displays the following compiler error:
// error CS0136:
// A local or parameter named '_' cannot be declared in this scope
// because that name is used in an enclosing local scope
// to define a local or parameter

Accidental modification of the value of the in-scope _ variable by assigning it the value of the intended discard. For example:

A compiler error for violating type safety. For example:

Compiler error CS0136, "A local or parameter named '_' cannot be declared in this scope because that name is used in an enclosing local scope
to define a local or parameter." For example:

Deconstructing tuples and other types
is keyword
switch keyword

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch

Generics (C# Programming Guide)
5/4/2018 • 2 minutes to read • Edit Online

// Declare the generic class.
public class GenericList<T>
{
 public void Add(T input) { }
}
class TestGenericList
{
 private class ExampleClass { }
 static void Main()
 {
 // Declare a list of type int.
 GenericList<int> list1 = new GenericList<int>();
 list1.Add(1);

 // Declare a list of type string.
 GenericList<string> list2 = new GenericList<string>();
 list2.Add("");

 // Declare a list of type ExampleClass.
 GenericList<ExampleClass> list3 = new GenericList<ExampleClass>();
 list3.Add(new ExampleClass());
 }
}

Generics Overview

Related Sections

C# Language Specification

Generics were added to version 2.0 of the C# language and the common language runtime (CLR). Generics introduce to the .NET Framework the
concept of type parameters, which make it possible to design classes and methods that defer the specification of one or more types until the class or
method is declared and instantiated by client code. For example, by using a generic type parameter T you can write a single class that other client code
can use without incurring the cost or risk of runtime casts or boxing operations, as shown here:

Use generic types to maximize code reuse, type safety, and performance.

The most common use of generics is to create collection classes.

The .NET Framework class library contains several new generic collection classes in the System.Collections.Generic namespace. These should be
used whenever possible instead of classes such as ArrayList in the System.Collections namespace.

You can create your own generic interfaces, classes, methods, events and delegates.

Generic classes may be constrained to enable access to methods on particular data types.

Information on the types that are used in a generic data type may be obtained at run-time by using reflection.

For more information:

Introduction to Generics

Benefits of Generics

Generic Type Parameters

Constraints on Type Parameters

Generic Classes

Generic Interfaces

Generic Methods

Generic Delegates

Differences Between C++ Templates and C# Generics

Generics and Reflection

Generics in the Run Time

For more information, see the C# Language Specification.

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/generics/index.md
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/dotnet/api/system.collections.arraylist
https://docs.microsoft.com/dotnet/api/system.collections
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/introduction-to-generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/benefits-of-generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generic-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/differences-between-cpp-templates-and-csharp-generics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-and-reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-in-the-run-time
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index

See Also
System.Collections.Generic
C# Programming Guide
Types
<typeparam>
<typeparamref>
Generics in .NET

https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/typeparam
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/typeparamref
https://docs.microsoft.com/en-us/dotnet/standard/generics/index

Iterators
5/4/2018 • 5 minutes to read • Edit Online

Iterating with foreach

foreach (var item in collection)
{
 Console.WriteLine(item.ToString());
}

Enumeration sources with iterator methods

public IEnumerable<int> GetSingleDigitNumbers()
{
 yield return 0;
 yield return 1;
 yield return 2;
 yield return 3;
 yield return 4;
 yield return 5;
 yield return 6;
 yield return 7;
 yield return 8;
 yield return 9;
}

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;
}

Almost every program you write will have some need to iterate over a collection. You'll write code that examines every item in a collection.

You'll also create iterator methods which are methods that produces an iterator for the elements of that class. These can be used for :

Performing an action on each item in a collection.
Enumerating a custom collection.
Extending LINQ or other libraries.
Creating a data pipeline where data flows efficiently through iterator methods.

The C# language provides features for both these scenarios. This article provides an overview of those features.

This tutorial has multiple steps. After each step, you can run the application and see the progress. You can also view or download the completed sample
for this topic. For download instructions, see Samples and Tutorials.

Enumerating a collection is simple: The foreach keyword enumerates a collection, executing the embedded statement once for each element in the
collection:

That's all there is to it. To iterate over all the contents of a collection, the foreach statement is all you need. The foreach statement isn't magic, though.
It relies on two generic interfaces defined in the .NET core library in order to generate the code necessary to iterate a collection: IEnumerable<T> and
IEnumerator<T> . This mechanism is explained in more detail below.

Both of these interfaces also have non-generic counterparts: IEnumerable and IEnumerator . The generic versions are preferred for modern code.

Another great feature of the C# language enables you to build methods that create a source for an enumeration. These are referred to as iterator
methods. An iterator method defines how to generate the objects in a sequence when requested. You use the yield return contextual keywords to
define an iterator method.

You could write this method to produce the sequence of integers from 0 through 9:

The code above shows distinct yield return statements to highlight the fact that you can use multiple discrete yield return statements in an iterator
method. You can (and often do) use other language constructs to simplify the code of an iterator method. The method definition below produces the
exact same sequence of numbers:

You don't have to decide one or the other. You can have as many yield return statements as necessary to meet the needs of your method:

https://github.com/dotnet/docs/blob/master/docs/csharp/iterators.md
https://github.com/dotnet/samples/blob/master/csharp/iterators

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 index = 100;
 while (index++ < 110)
 yield return index;
}

public static IEnumerable<T> Sample(this IEnumerable<T> sourceSequence, int interval)
{
 int index = 0;
 foreach (T item in sourceSequence)
 {
 if (index++ % interval == 0)
 yield return item;
 }
}

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 // generates a compile time error:
 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
 return items;
}

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
 foreach (var item in items)
 yield return item;
}

That's the basic syntax. Let's consider a real world example where you would write an iterator method. Imagine you're on an IoT project and the device
sensors generate a very large stream of data. To get a feel for the data, you might write a method that samples every Nth data element. This small
iterator method does the trick:

There is one important restriction on iterator methods: you can't have both a return statement and a yield return statement in the same method. The
following will not compile:

This restriction normally isn't a problem. You have a choice of either using yield return throughout the method, or separating the original method into
multiple methods, some using return , and some using yield return .

You can modify the last method slightly to use yield return everywhere:

Sometimes, the right answer is to split an iterator method into two different methods. One that uses return , and a second that uses yield return .
Consider a situation where you might want to return an empty collection, or the first 5 odd numbers, based on a boolean argument. You could write that
as these two methods:

public IEnumerable<int> GetSingleDigitOddNumbers(bool getCollection)
{
 if (getCollection == false)
 return new int[0];
 else
 return IteratorMethod();
}

private IEnumerable<int> IteratorMethod()
{
 int index = 0;
 while (index++ < 10)
 if (index % 2 == 1)
 yield return index;
}

Deeper Dive into foreach

IEnumerator<int> enumerator = collection.GetEnumerator();
while (enumerator.MoveNext())
{
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
}

// C# versions 1 through 4:
IEnumerator<int> enumerator = collection.GetEnumerator();
int item = default(int);
while (enumerator.MoveNext())
{
 item = enumerator.Current;
 Console.WriteLine(item.ToString());
}

{
 var enumerator = collection.GetEnumerator();
 try
 {
 while (enumerator.MoveNext())
 {
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
 }
 } finally
 {
 // dispose of enumerator.
 }
}

finally
{
 (enumerator as IDisposable)?.Dispose();
}

Look at the methods above. The first uses the standard return statement to return either an empty collection, or the iterator created by the second
method. The second method uses the yield return statement to create the requested sequence.

The foreach statement expands into a standard idiom that uses the IEnumerable<T> and IEnumerator<T> interfaces to iterate across all elements of a
collection. It also minimizes errors developers make by not properly managing resources.

The compiler translates the foreach loop shown in the first example into something similar to this construct:

The construct above represents the code generated by the C# compiler as of version 5 and above. Prior to version 5, the item variable had a different
scope:

This was changed because the earlier behavior could lead to subtle and hard to diagnose bugs involving lambda expressions. See the section on lambda
expressions for more information.

The exact code generated by the compiler is somewhat more complicated, and handles situations where the object returned by GetEnumerator()

implements the IDisposable interface. The full expansion generates code more like this:

The manner in which the enumerator is disposed of depends on the characteristics of the type of enumerator . In the general case, the finally clause
expands to:

However, if the type of enumerator is a sealed type and there is no implicit conversion from the type of enumerator to IDisposable , the finally clause
expands to an empty block:

finally
{
}

finally
{
 ((IDisposable)enumerator).Dispose();
}

If there is an implicit conversion from the type of enumerator to IDisposable , and enumerator is a non-nullable value type, the finally clause expands
to:

Thankfully, you don't need to remember all these details. The foreach statement handles all those nuances for you. The compiler will generate the
correct code for any of these constructs.

Delegates & events
6/7/2018 • 2 minutes to read • Edit Online

This topic will be covered under the following articles:

1. Overview of Delegates

This article covers an overview of delegates.

2. System.Delegate and the delegate keyword

This article covers the classes in the .NET Core Framework that support delegates and how that maps to the delegate keyword.

3. Strongly Typed Delegates

This article covers the types and techniques for using strongly typed delegates.

4. Common Patterns for Delegates

This article covers common practices for delegates.

5. Overview of Events

This article covers an overview of events in .NET.

6. Standard .NET event patterns

This article covers the standard event pattern in .NET.

7. The Updated .NET Event Pattern

This article covers several updates to the .NET event pattern in recent releases.

8. Distinguishing Delegates from Events

This article discusses how you should distinguish between using events and delegates in your designs.

You can download the delegates sample and the events sample from our GitHub samples repository.

https://github.com/dotnet/docs/blob/master/docs/csharp/delegates-events.md
https://github.com/dotnet/samples/tree/master/csharp/delegates-and-events
https://github.com/dotnet/samples/tree/master/csharp/events

Introduction to Delegates
5/4/2018 • 2 minutes to read • Edit Online

Language Design Goals for Delegates

Previous

Delegates provide a late binding mechanism in .NET. Late Binding means that you create an algorithm where the caller also supplies at least one
method that implements part of the algorithm.

For example, consider sorting a list of stars in an astronomy application. You may choose to sort those stars by their distance from the earth, or the
magnitude of the star, or their perceived brightness.

In all those cases, the Sort() method does essentially the same thing: arranges the items in the list based on some comparison. The code that compares
two stars is different for each of the sort orderings.

These kinds of solutions have been used in software for half a century. The C# language delegate concept provides first class language support, and
type safety around the concept.

As you'll see later in this series, the C# code you write for algorithms like this is type safe, and leverages the language and the compiler to ensure that
the types match for arguments and return types.

The language designers enumerated several goals for the feature that eventually became delegates.

The team wanted a common language construct that could be used for any late binding algorithms. That enables developers to learn one concept, and
use that same concept across many different software problems.

Second, the team wanted to support both single and multi-cast method calls. (Multicast delegates are delegates where multiple methods have been
chained together. You'll see examples later in this series.

The team wanted delegates to support the same type safety that developers expect from all C# constructs.

Finally, the team recognized that an event pattern is one specific pattern where delegates, or any late binding algorithm) is very useful. The team wanted
to ensure that the code for delegates could provide the basis for the .NET event pattern.

The result of all that work was the delegate and event support in C# and .NET. The remaining articles in this section will cover the language features, the
library support, and the common idioms that are used when you work with delegates.

You'll learn about the delegate keyword and what code it generates. You'll learn about the features in the System.Delegate class, and how those
features are used. You'll learn how to create type safe delegates, and how to create methods that can be invoked through delegates. You'll also learn how
to work with delegates and events by using Lambda expressions. You'll see where delegates become one of the building blocks for L INQ. You'll learn
how delegates are the basis for the .NET event pattern, and how they are different.

Overall, you'll see how delegates are an integral part of programming in .NET and working with the framework APIs.

Let's get started.

Next

https://github.com/dotnet/docs/blob/master/docs/csharp/delegates-overview.md

System.Delegate and the delegate keyword
6/7/2018 • 6 minutes to read • Edit Online

Defining Delegate Types

// From the .NET Core library

// Define the delegate type:
public delegate int Comparison<in T>(T left, T right);

NOTENOTE

Declaring instances of delegates

// inside a class definition:

// Declare an instance of that type:
public Comparison<T> comparator;

Invoking Delegates

int result = comparator(left, right);

Assigning, Adding and removing Invocation Targets

Previous

This article will cover the classes in the .NET framework that support delegates, and how those map to the delegate keyword.

Let's start with the 'delegate' keyword, because that's primarily what you will use as you work with delegates. The code that the compiler generates
when you use the delegate keyword will map to method calls that invoke members of the Delegate and MulticastDelegate classes.

You define a delegate type using syntax that is similar to defining a method signature. You just add the delegate keyword to the definition.

Let's continue to use the List.Sort() method as our example. The first step is to create a type for the comparison delegate:

The compiler generates a class, derived from System.Delegate that matches the signature used (in this case, a method that returns an integer, and has
two arguments). The type of that delegate is Comparison . The Comparison delegate type is a generic type. For details on generics see here.

Notice that the syntax may appear as though it is declaring a variable, but it is actually declaring a type. You can define delegate types inside classes,
directly inside namespaces, or even in the global namespace.

Declaring delegate types (or other types) directly in the global namespace is not recommended.

The compiler also generates add and remove handlers for this new type so that clients of this class can add and remove methods from an instance's
invocation list. The compiler will enforce that the signature of the method being added or removed matches the signature used when declaring the
method.

After defining the delegate, you can create an instance of that type. Like all variables in C#, you cannot declare delegate instances directly in a
namespace, or in the global namespace.

The type of the variable is Comparison<T> , the delegate type defined earlier. The name of the variable is comparator .

That code snippet above declared a member variable inside a class. You can also declare delegate variables that are local variables, or arguments to
methods.

You invoke the methods that are in the invocation list of a delegate by calling that delegate. Inside the Sort() method, the code will call the comparison
method to determine which order to place objects:

In the line above, the code invokes the method attached to the delegate. You treat the variable as a method name, and invoke it using normal method
call syntax.

That line of code makes an unsafe assumption: There's no guarantee that a target has been added to the delegate. If no targets have been attached, the
line above would cause a NullReferenceException to be thrown. The idioms used to address this problem are more complicated than a simple null-
check, and are covered later in this series.

That's how a delegate type is defined, and how delegate instances are declared and invoked.

https://github.com/dotnet/docs/blob/master/docs/csharp/delegate-class.md
https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/dotnet/api/system.multicastdelegate
https://docs.microsoft.com/en-us/dotnet/csharp/generics

private static int CompareLength(string left, string right) =>
 left.Length.CompareTo(right.Length);

phrases.Sort(CompareLength);

Comparison<string> comparer = CompareLength;
phrases.Sort(comparer);

Comparison<string> comparer = (left, right) => left.Length.CompareTo(right.Length);
phrases.Sort(comparer);

Delegate and MulticastDelegate classes

Developers that want to use the List.Sort() method need to define a method whose signature matches the delegate type definition, and assign it to
the delegate used by the sort method. This assignment adds the method to the invocation list of that delegate object.

Suppose you wanted to sort a list of strings by their length. Your comparison function might be the following:

The method is declared as a private method. That's fine. You may not want this method to be part of your public interface. It can still be used as the
comparison method when attached to a delegate. The calling code will have this method attached to the target list of the delegate object, and can access
it through that delegate.

You create that relationship by passing that method to the List.Sort() method:

Notice that the method name is used, without parentheses. Using the method as an argument tells the compiler to convert the method reference into a
reference that can be used as a delegate invocation target, and attach that method as an invocation target.

You could also have been explicit by declaring a variable of type 'Comparison` and doing an assignment:

In uses where the method being used as a delegate target is a small method, it's common to use Lambda Expression syntax to perform the assignment:

Using Lambda Expressions for delegate targets is covered more in a later section.

The Sort() example typically attaches a single target method to the delegate. However, delegate objects do support invocation lists that have multiple
target methods attached to a delegate object.

The language support described above provides the features and support you'll typically need to work with delegates. These features are built on two
classes in the .NET Core framework: Delegate and MulticastDelegate.

The System.Delegate class, and its single direct sub-class, System.MulticastDelegate , provide the framework support for creating delegates, registering
methods as delegate targets, and invoking all methods that are registered as a delegate target.

Interestingly, the System.Delegate and System.MulticastDelegate classes are not themselves delegate types. They do provide the basis for all specific
delegate types. That same language design process mandated that you cannot declare a class that derives from Delegate or MulticastDelegate . The C#
language rules prohibit it.

Instead, the C# compiler creates instances of a class derived from MulticastDelegate when you use the C# language keyword to declare delegate types.

This design has its roots in the first release of C# and .NET. One goal for the design team was to ensure that the language enforced type safety when
using delegates. That meant ensuring that delegates were invoked with the right type and number of arguments. And, that any return type was correctly
indicated at compile time. Delegates were part of the 1.0 .NET release, which was before generics.

The best way to enforce this type safety was for the compiler to create the concrete delegate classes that represented the method signature being used.

Even though you cannot create derived classes directly, you will use the methods defined on these classes. Let's go through the most common methods
that you will use when you work with delegates.

The first, most important fact to remember is that every delegate you work with is derived from MulticastDelegate . A multicast delegate means that
more than one method target can be invoked when invoking through a delegate. The original design considered making a distinction between delegates
where only one target method could be attached and invoked, and delegates where multiple target methods could be attached and invoked. That
distinction proved to be less useful in practice than originally thought. The two different classes were already created, and have been in the framework
since its initial public release.

The methods that you will use the most with delegates are Invoke() and BeginInvoke() / EndInvoke() . Invoke() will invoke all the methods that have
been attached to a particular delegate instance. As you saw above, you typically invoke delegates using the method call syntax on the delegate variable.
As you'll see later in this series, there are patterns that work directly with these methods.

Now that you've seen the language syntax and the classes that support delegates, let's examine how strongly typed delegates are used, created and
invoked.

Next

https://docs.microsoft.com/dotnet/api/system.delegate
https://docs.microsoft.com/dotnet/api/system.multicastdelegate

Strongly Typed Delegates
5/4/2018 • 2 minutes to read • Edit Online

public delegate void Action();
public delegate void Action<in T>(T arg);
public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);
// Other variations removed for brevity.

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);
// Other variations removed for brevity

public delegate bool Predicate<in T>(T obj);

Func<string, bool> TestForString;
Predicate<string> AnotherTestForString;

Previous

In the previous article, you saw that you create specific delegate types using the delegate keyword.

The abstract Delegate class provide the infrastructure for loose coupling and invocation. Concrete Delegate types become much more useful by
embracing and enforcing type safety for the methods that are added to the invocation list for a delegate object. When you use the delegate keyword
and define a concrete delegate type, the compiler generates those methods.

In practice, this would lead to creating new delegate types whenever you need a different method signature. This work could get tedious after a time.
Every new feature requires new delegate types.

Thankfully, this isn't necessary. The .NET Core framework contains several types that you can reuse whenever you need delegate types. These are
generic definitions so you can declare customizations when you need new method declarations.

The first of these types is the Action type, and several variations:

The in modifier on the generic type argument is covered in the article on covariance.

There are variations of the Action delegate that contain up to 16 arguments such as
Action<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16>. It's important that these definitions use different generic arguments for each of the
delegate arguments: That gives you maximum flexibility. The method arguments need not be, but may be, the same type.

Use one of the Action types for any delegate type that has a void return type.

The framework also includes several generic delegate types that you can use for delegate types that return values:

The out modifier on the result generic type argument is covered in the article on covariance.

There are variations of the Func delegate with up to 16 input arguments such as
Func<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,TResult>. The type of the result is always the last type parameter in all the Func

declarations, by convention.

Use one of the Func types for any delegate type that returns a value.

There's also a specialized Predicate<T> type for a delegate that returns a test on a single value:

You may notice that for any Predicate type, a structurally equivalent Func type exists For example:

You might think these two types are equivalent. They are not. These two variables cannot be used interchangeably. A variable of one type cannot be
assigned the other type. The C# type system uses the names of the defined types, not the structure.

All these delegate type definitions in the .NET Core Library should mean that you do not need to define a new delegate type for any new feature you
create that requires delegates. These generic definitions should provide all the delegate types you need under most situations. You can simply
instantiate one of these types with the required type parameters. In the case of algorithms that can be made generic, these delegates can be used as
generic types.

This should save time, and minimize the number of new types that you need to create in order to work with delegates.

In the next article, you'll see several common patterns for working with delegates in practice.

Next

https://github.com/dotnet/docs/blob/master/docs/csharp/delegates-strongly-typed.md
https://docs.microsoft.com/dotnet/api/system.action
https://docs.microsoft.com/dotnet/api/system.action-16
https://docs.microsoft.com/dotnet/api/system.func-17
https://docs.microsoft.com/dotnet/api/system.predicate-1

Common Patterns for Delegates
6/7/2018 • 8 minutes to read • Edit Online

var smallNumbers = numbers.Where(n => n < 10);

public static IEnumerable<TSource> Where<TSource> (this IEnumerable<TSource> source, Func<TSource, bool> predicate);

Building Your Own Components with Delegates

A First Implementation

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(string msg)
 {
 WriteMessage(msg);
 }
}

public static void LogToConsole(string message)
{
 Console.Error.WriteLine(message);
}

Previous

Delegates provide a mechanism that enables software designs involving minimal coupling between components.

One excellent example for this kind of design is L INQ. The LINQ Query Expression Pattern relies on delegates for all of its features. Consider this
simple example:

This filters the sequence of numbers to only those less than the value 10. The Where method uses a delegate that determines which elements of a
sequence pass the filter. When you create a L INQ query, you supply the implementation of the delegate for this specific purpose.

The prototype for the Where method is:

This example is repeated with all the methods that are part of L INQ. They all rely on delegates for the code that manages the specific query. This API
design pattern is a very powerful one to learn and understand.

This simple example illustrates how delegates require very little coupling between components. You don't need to create a class that derives from a
particular base class. You don't need to implement a specific interface. The only requirement is to provide the implementation of one method that is
fundamental to the task at hand.

Let's build on that example by creating a component using a design that relies on delegates.

Let's define a component that could be used for log messages in a large system. The library components could be used in many different environments,
on multiple different platforms. There are a lot of common features in the component that manages the logs. It will need to accept messages from any
component in the system. Those messages will have different priorities, which the core component can manage. The messages should have timestamps
in their final archived form. For more advanced scenarios, you could filter messages by the source component.

There is one aspect of the feature that will change often: where messages are written. In some environments, they may be written to the error console.
In others, a file. Other possibilities include database storage, OS event logs, or other document storage.

There are also combinations of output that might be used in different scenarios. You may want to write messages to the console and to a file.

A design based on delegates will provide a great deal of flexibility, and make it easy to support storage mechanisms that may be added in the future.

Under this design, the primary log component can be a non-virtual, even sealed class. You can plug in any set of delegates to write the messages to
different storage media. The built in support for multicast delegates makes it easy to support scenarios where messages must be written to multiple
locations (a file, and a console).

Let's start small: the initial implementation will accept new messages, and write them using any attached delegate. You can start with one delegate that
writes messages to the console.

The static class above is the simplest thing that can work. We need to write the single implementation for the method that writes messages to the
console:

Finally, you need to hook up the delegate by attaching it to the WriteMessage delegate declared in the logger :

https://github.com/dotnet/docs/blob/master/docs/csharp/delegates-patterns.md

Logger.WriteMessage += LogToConsole;

Practices

Formatting Output

public enum Severity
{
 Verbose,
 Trace,
 Information,
 Warning,
 Error,
 Critical
}

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(Severity s, string component, string msg)
 {
 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

public static class Logger
{
 public static Action<string> WriteMessage;

 public static Severity LogLevel {get;set;} = Severity.Warning;

 public static void LogMessage(Severity s, string component, string msg)
 {
 if (s < LogLevel)
 return;

 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

Practices

Building a Second Output Engine

Our sample so far is fairly simple, but it still demonstrates some of the important guidelines for designs involving delegates.

Using the delegate types defined in the Core Framework makes it easier for users to work with the delegates. You don't need to define new types, and
developers using your library do not need to learn new, specialized delegate types.

The interfaces used are as minimal and as flexible as possible: To create a new output logger, you must create one method. That method may be a static
method, or an instance method. It may have any access.

Let's make this first version a bit more robust, and then start creating other logging mechanisms.

Next, let's add a few arguments to the LogMessage() method so that your log class creates more structured messages:

Next, let's make use of that Severity argument to filter the messages that are sent to the log's output.

You've added new features to the logging infrastructure. Because the logger component is very loosely coupled to any output mechanism, these new
features can be added with no impact on any of the code implementing the logger delegate.

As you keep building this, you'll see more examples of how this loose coupling enables greater flexibility in updating parts of the site without any
changes to other locations. In fact, in a larger application, the logger output classes might be in a different assembly, and not even need to be rebuilt.

The Log component is coming along well. Let's add one more output engine that logs messages to a file. This will be a slightly more involved output
engine. It will be a class that encapsulates the file operations, and ensures that the file is always closed after each write. That ensures that all the data is
flushed to disk after each message is generated.

Here is that file based logger :

public class FileLogger
{
 private readonly string logPath;
 public FileLogger(string path)
 {
 logPath = path;
 Logger.WriteMessage += LogMessage;
 }

 public void DetachLog() => Logger.WriteMessage -= LogMessage;
 // make sure this can't throw.
 private void LogMessage(string msg)
 {
 try
 {
 using (var log = File.AppendText(logPath))
 {
 log.WriteLine(msg);
 log.Flush();
 }
 }
 catch (Exception)
 {
 // Hmm. We caught an exception while
 // logging. We can't really log the
 // problem (since it's the log that's failing).
 // So, while normally, catching an exception
 // and doing nothing isn't wise, it's really the
 // only reasonable option here.
 }
 }
}

var file = new FileLogger("log.txt");

var fileOutput = new FileLogger("log.txt");
Logger.WriteMessage += LogToConsole;

Logger.WriteMessage -= LogToConsole;

Practices

Handling Null Delegates

public static void LogMessage(string msg)
{
 WriteMessage?.Invoke(msg);
}

Once you've created this class, you can instantiate it and it attaches its LogMessage method to the Logger component:

These two are not mutually exclusive. You could attach both log methods and generate messages to the console and a file:

Later, even in the same application, you can remove one of the delegates without any other issues to the system:

Now, you've added a second output handler for the logging sub-system. This one needs a bit more infrastructure to correctly support the file system.
The delegate is an instance method. It's also a private method. There's no need for greater accessibility because the delegate infrastructure can connect
the delegates.

Second, the delegate-based design enables multiple output methods without any extra code. You don't need to build any additional infrastructure to
support multiple output methods. They simply become another method on the invocation list.

Pay special attention to the code in the file logging output method. It is coded to ensure that it does not throw any exceptions. While this isn't always
strictly necessary, it's often a good practice. If either of the delegate methods throws an exception, the remaining delegates that are on the invocation
won't be invoked.

As a last note, the file logger must manage its resources by opening and closing the file on each log message. You could choose to keep the file open
and implement IDisposable to close the file when you are completed. Either method has its advantages and disadvantages. Both do create a bit more
coupling between the classes.

None of the code in the Logger class would need to be updated in order to support either scenario.

Finally, let's update the LogMessage method so that it is robust for those cases when no output mechanism is selected. The current implementation will
throw a NullReferenceException when the WriteMessage delegate does not have an invocation list attached. You may prefer a design that silently
continues when no methods have been attached. This is easy using the null conditional operator, combined with the Delegate.Invoke() method:

Summary of Practices

The null conditional operator (?.) short-circuits when the left operand (WriteMessage in this case) is null, which means no attempt is made to log a
message.

You won't find the Invoke() method listed in the documentation for System.Delegate or System.MulticastDelegate . The compiler generates a type safe
Invoke method for any delegate type declared. In this example, that means Invoke takes a single string argument, and has a void return type.

You've seen the beginnings of a log component that could be expanded with other writers, and other features. By using delegates in the design these
different components are very loosely coupled. This provides several advantages. It's very easy to create new output mechanisms and attach them to
the system. These other mechanisms only need one method: the method that writes the log message. It's a design that is very resilient when new
features are added. The contract required for any writer is to implement one method. That method could be a static or instance method. It could be
public, private, or any other legal access.

The Logger class can make any number of enhancements or changes without introducing breaking changes. Like any class, you cannot modify the
public API without the risk of breaking changes. But, because the coupling between the logger and any output engines is only through the delegate, no
other types (like interfaces or base classes) are involved. The coupling is as small as possible.

Next

Introduction to Events
5/4/2018 • 3 minutes to read • Edit Online

Design Goals for Event Support

Language Support for Events

public event EventHandler<FileListArgs> Progress;

Progress?.Invoke(this, new FileListArgs(file));

EventHandler<FileListArgs> onProgress = (sender, eventArgs) =>
 Console.WriteLine(eventArgs.FoundFile);
lister.Progress += OnProgress;

lister.Progress -= onProgress;

Previous

Events are, like delegates, a late binding mechanism. In fact, events are built on the language support for delegates.

Events are a way for an object to broadcast (to all interested components in the system) that something has happened. Any other component can
subscribe to the event, and be notified when an event is raised.

You've probably used events in some of your programming. Many graphical systems have an event model to report user interaction. These events
would report mouse movement, button presses and similar interactions. That's one of the most common, but certainly not the only scenario where
events are used.

You can define events that should be raised for your classes. One important consideration when working with events is that there may not be any object
registered for a particular event. You must write your code so that it does not raise events when no listeners are configured.

Subscribing to an event also creates a coupling between two objects (the event source, and the event sink). You need to ensure that the event sink
unsubscribes from the event source when no longer interested in events.

The language design for events targets these goals.

First, enable very minimal coupling between an event source and an event sink. These two components may not be written by the same organization,
and may even be updated on totally different schedules.

Secondly, it should be very simple to subscribe to an event, and to unsubscribe from that same event.

And finally, event sources should support multiple event subscribers. It should also support having no event subscribers attached.

You can see that the goals for events are very similar to the goals for delegates. That's why the event language support is built on the delegate language
support.

The syntax for defining events, and subscribing or unsubscribing from events is an extension of the syntax for delegates.

To define an event you use the event keyword:

The type of the event (EventHandler<FileListArgs> in this example) must be a delegate type. There are a number of conventions that you should follow
when declaring an event. Typically, the event delegate type has a void return. Event declarations should be a verb, or a verb phrase. Use past tense (as in
this example) when the event reports something that has happened. Use a present tense verb (for example, Closing) to report something that is about
to happen. Often, using present tense indicates that your class supports some kind of customization behavior. One of the most common scenarios is to
support cancellation. For example, a Closing event may include an argument that would indicate if the close operation should continue, or not. Other
scenarios may enable callers to modify behavior by updating properties of the event arguments. You may raise an event to indicate a proposed next
action an algorithm will take. The event handler may mandate a different action by modifying properties of the event argument.

When you want to raise the event, you call the event handlers using the delegate invocation syntax:

As discussed in the section on delegates, the ?. operator makes it easy to ensure that you do not attempt to raise the event when there are no
subscribers to that event.

You subscribe to an event by using the += operator :

The handler method typically is the prefix 'On' followed by the event name, as shown above.

You unsubscribe using the -= operator :

https://github.com/dotnet/docs/blob/master/docs/csharp/events-overview.md

It's important to note that I declared a local variable for the expression that represents the event handler. That ensures the unsubscribe removes the
handler. If, instead, you used the body of the lambda expression, you are attempting to remove a handler that has never been attached, which does
nothing.

In the next article, you'll learn more about typical event patterns, and different variations on this example.

Next

Standard .NET event patterns
6/7/2018 • 8 minutes to read • Edit Online

Event Delegate Signatures

void OnEventRaised(object sender, EventArgs args);

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }
 public bool CancelRequested { get; set; }

 public FileFoundArgs(string fileName)
 {
 FoundFile = fileName;
 }
}

public class FileSearcher
{
 public event EventHandler<FileFoundArgs> FileFound;

 public void Search(string directory, string searchPattern)
 {
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 FileFound?.Invoke(this, new FileFoundArgs(file));
 }
 }
}

Definining and Raising Field-Like Events

Previous

.NET events generally follow a few known patterns. Standardizing on these patterns means that developers can leverage knowledge of those standard
patterns, which can be applied to any .NET event program.

Let's go through these standard patterns so you will have all the knowledge you need to create standard event sources, and subscribe and process
standard events in your code.

The standard signature for a .NET event delegate is:

The return type is void. Events are based on delegates and are multicast delegates. That supports multiple subscribers for any event source. The single
return value from a method doesn't scale to multiple event subscribers. Which return value does the event source see after raising an event? Later in
this article you'll see how to create event protocols that support event subscribers that report information to the event source.

The argument list contains two arguments: the sender, and the event arguments. The compile time type of sender is System.Object , even though you
likely know a more derived type that would always be correct. By convention, use object .

The second argument has typically been a type that is derived from System.EventArgs . (You'll see in the next section that this convention is no longer
enforced.) If your event type does not need any additional arguments, you will still provide both arguments. There is a special value, EventArgs.Empty

that you should use to denote that your event does not contain any additional information.

Let's build a class that lists files in a directory, or any of its subdirectories that follow a pattern. This component raises an event for each file found that
matches the pattern.

Using an event model provides some design advantages. You can create multiple event listeners that perform different actions when a sought file is
found. Combining the different listeners can create more robust algorithms.

Here is the initial event argument declaration for finding a sought file:

Even though this type looks like a small, data-only type, you should follow the convention and make it a reference (class) type. That means the
argument object will be passed by reference, and any updates to the data will be viewed by all subscribers. The first version is an immutable object. You
should prefer to make the properties in your event argument type immutable. That way, one subscriber cannot change the values before another
subscriber sees them. (There are exceptions to this, as you'll see below.)

Next, we need to create the event declaration in the FileSearcher class. Leveraging the EventHandler<T> type means that you don't need to create yet
another type definition. You simply use a generic specialization.

Let's fill out the FileSearcher class to search for files that match a pattern, and raise the correct event when a match is discovered.

https://github.com/dotnet/docs/blob/master/docs/csharp/event-pattern.md

public event EventHandler<FileFoundArgs> FileFound;

EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
{
 Console.WriteLine(eventArgs.FoundFile);
 filesFound++;
};

lister.FileFound += onFileFound;

lister.FileFound -= onFileFound;

Returning Values from Event Subscribers

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }
 public bool CancelRequested { get; set;}

 public FileFoundArgs(string fileName)
 {
 FoundFile = fileName;
 }
}

public void List(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 var args = new FileFoundArgs(file);
 FileFound?.Invoke(this, args);
 if (args.CancelRequested)
 break;
 }
}

The simplest way to add an event to your class is to declare that event as a public field, as in the preceding example:

This looks like it's declaring a public field, which would appear to be bad object-oriented practice. You want to protect data access through properties, or
methods. While this make look like a bad practice, the code generated by the compiler does create wrappers so that the event objects can only be
accessed in safe ways. The only operations available on a field-like event are add handler :

and remove handler :

Note that there's a local variable for the handler. If you used the body of the lambda, the remove would not work correctly. It would be a different
instance of the delegate, and silently do nothing.

Code outside the class cannot raise the event, nor can it perform any other operations.

Your simple version is working fine. Let's add another feature: Cancellation.

When you raise the found event, listeners should be able to stop further processing, if this file is that last one sought.

The event handlers do not return a value, so you need to communicate that in another way. The standard event pattern uses the EventArgs object to
include fields that event subscribers can use to communicate cancel.

There are two different patterns that could be used, based on the semantics of the Cancel contract. In both cases, you'll add a boolean field to the
EventArguments for the found file event.

One pattern would allow any one subscriber to cancel the operation. For this pattern, the new field is initialized to false . Any subscriber can change it
to true . After all subscribers have seen the event raised, the FileSearcher component examines the boolean value and takes action.

The second pattern would only cancel the operation if all subscribers wanted the operation cancelled. In this pattern, the new field is initialized to
indicate the operation should cancel, and any subscriber could change it to indicate the operation should continue. After all subscribers have seen the
event raised, the FileSearcher component examines the boolean and takes action. There is one extra step in this pattern: the component needs to know if
any subscribers have seen the event. If there are no subscribers, the field would indicate a cancel incorrectly.

Let's implement the first version for this sample. You need to add a boolean field named CancelRequested to the FileFoundArgs type:

This new Field is automatically initialized to false , the default value for a Boolean field, so you don't cancel accidentally. The only other change to the
component is to check the flag after raising the event to see if any of the subscribers have requested a cancellation:

One advantage of this pattern is that it isn't a breaking change. None of the subscribers requested a cancellation before, and they still are not. None of
the subscriber code needs updating unless they want to support the new cancel protocol. It's very loosely coupled.

EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
{
 Console.WriteLine(eventArgs.FoundFile);
 eventArgs.CancelRequested = true;
};

Adding Another Event Declaration

internal struct SearchDirectoryArgs
{
 internal string CurrentSearchDirectory { get; }
 internal int TotalDirs { get; }
 internal int CompletedDirs { get; }

 internal SearchDirectoryArgs(string dir, int totalDirs, int completedDirs)
 {
 CurrentSearchDirectory = dir;
 TotalDirs = totalDirs;
 CompletedDirs = completedDirs;
 }
}

internal event EventHandler<SearchDirectoryArgs> DirectoryChanged
{
 add { directoryChanged += value; }
 remove { directoryChanged -= value; }
}
private EventHandler<SearchDirectoryArgs> directoryChanged;

Let's update the subscriber so that it requests a cancellation once it finds the first executable:

Let's add one more feature, and demonstrate other language idioms for events. Let's add an overload of the Search() method that traverses all
subdirectories in search of files.

This could get to be a lengthy operation in a directory with many sub-directories. Let's add an event that gets raised when each new directory search
begins. This enables subscribers to track progress, and update the user as to progress. All the samples you've created so far are public. Let's make this
one an internal event. That means you can also make the types used for the arguments internal as well.

You'll start by creating the new EventArgs derived class for reporting the new directory and progress.

Again, you can follow the recommendations to make an immutable reference type for the event arguments.

Next, define the event. This time, you'll use a different syntax. In addition to using the field syntax, you can explicitly create the property, with add and
remove handlers. In this sample, you won't need extra code in those handlers, but this shows how you would create them.

In many ways, the code you write here mirrors the code the compiler generates for the field event definitions you've seen earlier. You create the event
using syntax very similar to that used for properties. Notice that the handlers have different names: add and remove . These are called to subscribe to
the event, or unsubscribe from the event. Notice that you also must declare a private backing field to store the event variable. It is initialized to null.

Next, let's add the overload of the Search() method that traverses subdirectories and raises both events. The easiest way to accomplish this is to use a
default argument to specify that you want to search all directories:

public void Search(string directory, string searchPattern, bool searchSubDirs = false)
{
 if (searchSubDirs)
 {
 var allDirectories = Directory.GetDirectories(directory, "*.*", SearchOption.AllDirectories);
 var completedDirs = 0;
 var totalDirs = allDirectories.Length + 1;
 foreach (var dir in allDirectories)
 {
 directoryChanged?.Invoke(this,
 new SearchDirectoryArgs(dir, totalDirs, completedDirs++));
 // Recursively search this child directory:
 SearchDirectory(dir, searchPattern);
 }
 // Include the Current Directory:
 directoryChanged?.Invoke(this,
 new SearchDirectoryArgs(directory, totalDirs, completedDirs++));
 SearchDirectory(directory, searchPattern);
 }
 else
 {
 SearchDirectory(directory, searchPattern);
 }
}

private void SearchDirectory(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 var args = new FileFoundArgs(file);
 FileFound?.Invoke(this, args);
 if (args.CancelRequested)
 break;
 }
}

lister.DirectoryChanged += (sender, eventArgs) =>
{
 Console.Write($"Entering '{eventArgs.CurrentSearchDirectory}'.");
 Console.WriteLine($" {eventArgs.CompletedDirs} of {eventArgs.TotalDirs} completed...");
};

At this point, you can run the application calling the overload for searching all sub-directories. There are no subscribers on the new ChangeDirectory

event, but using the ?.Invoke() idiom ensures that this works correctly.

Let's add a handler to write a line that shows the progress in the console window.

You've seen patterns that are followed throughout the .NET ecosystem. By learning these patterns and conventions, you'll be writing idiomatic C# and
.NET quickly.

Next, you'll see some changes in these patterns in the most recent release of .NET.

Next

The Updated .NET Core Event Pattern
6/7/2018 • 3 minutes to read • Edit Online

internal event EventHandler<SearchDirectoryArgs> DirectoryChanged
{
 add { directoryChanged += value; }
 remove { directoryChanged -= value; }
}
private EventHandler<SearchDirectoryArgs> directoryChanged;

Events with Async subscribers

worker.StartWorking += async (sender, eventArgs) =>
{
 try
 {
 await DoWorkAsync();
 }
 catch (Exception e)
 {
 //Some form of logging.
 Console.WriteLine($"Async task failure: {e.ToString()}");
 // Consider gracefully, and quickly exiting.
 }
};

Previous

The previous article discussed the most common event patterns. .NET Core has a more relaxed pattern. In this version, the EventHandler<TEventArgs>

definition no longer has the constraint that TEventArgs must be a class derived from System.EventArgs .

This increases flexibility for you, and is backwards compatible. Let's start with the flexibility. The class System.EventArgs introduces one method:
MemberwiseClone() , which creates a shallow copy of the object. That method must use reflection in order to implement its functionality for any class

derived from EventArgs . That functionality is easier to create in a specific derived class. That effectively means that deriving from System.EventArgs is a
constraint that limits your designs, but does not provide any additional benefit. In fact, you can changes the definitions of FileFoundArgs and
SearchDirectoryArgs so that they do not derive from EventArgs . The program will work exactly the same.

You could also change the SearchDirectoryArgs to a struct, if you make one more change:

The additional change is to call the default constructor before entering the constructor that initializes all the fields. Without that addition, the rules of C#
would report that the properties are being accessed before they have been assigned.

You should not change the FileFoundArgs from a class (reference type) to a struct (value type). That's because the protocol for handling cancel requires
that the event arguments are passed by reference. If you made the same change, the file search class could never observe any changes made by any of
the event subscribers. A new copy of the structure would be used for each subscriber, and that copy would be a different copy than the one seen by the
file search object.

Next, let's consider how this change can be backwards compatible. The removal of the constraint does not affect any existing code. Any existing event
argument types do still derive from System.EventArgs . Backwards compatibility is one major reason why they will continue to derive from
System.EventArgs . Any existing event subscribers will be subscribers to an event that followed the classic pattern.

Following similar logic, any event argument type created now would not have any subscribers in any existing codebases. New event types that do not
derive from System.EventArgs will not break those codebases.

You have one final pattern to learn: How to correctly write event subscribers that call async code. The challenge is described in the article on async and
await. Async methods can have a void return type, but that is strongly discouraged. When your event subscriber code calls an async method, you have
no choice but to create an async void method. The event handler signature requires it.

You need to reconcile this opposing guidance. Somehow, you must create a safe async void method. The basics of the pattern you need to implement
are below:

First, notice that the handler is marked as an async handler. Because it is being assigned to an event handler delegate type, it will have a void return type.
That means you must follow the pattern shown in the handler, and not allow any exceptions to be thrown out of the context of the async handler.
Because it does not return a task, there is no task that can report the error by entering the faulted state. Because the method is async, the method can't
simply throw the exception. (The calling method has continued execution because it is async .) The actual runtime behavior will be defined differently
for different environments. It may terminate the thread, it may terminate the program, or it may leave the program in an undetermined state. None of
those are good outcomes.

That's why you should wrap the await statement for the async Task in your own try block. If it does cause a faulted task, you can log the error. If it is an
error from which your application cannot recover, you can exit the program quickly and gracefully

https://github.com/dotnet/docs/blob/master/docs/csharp/modern-events.md

Those are the major updates to the .NET event pattern. You will see many examples of the earlier versions in the libraries you work with. However, you
should understand what the latest patterns are as well.

The next article in this series helps you distinguish between using delegates and events in your designs. They are similar concepts, and that article will
help you make the best decision for your programs.

Next

Distinguishing Delegates and Events
5/4/2018 • 2 minutes to read • Edit Online

Listening to Events is Optional

Return Values Require Delegates

Event Listeners Often Have Longer Lifetimes

Evaluate Carefully

Previous

Developers that are new to the .NET Core platform often struggle when deciding between a design based on delegates and a design based on events .
This is a difficult concept, because the two language features are very similar. Events are even built using the language support for delegates.

They both offer a late binding scenario: they enable scenarios where a component communicates by calling a method that is only known at runtime.
They both support single and multiple subscriber methods. You may find this referred to as singlecast and multicast support. They both support similar
syntax for adding and removing handlers. Finally, raising an event and calling a delegate use exactly the same method call syntax. They even both
support the same Invoke() method syntax for use with the ?. operator.

With all those similarities, it is easy to have trouble determining when to use which.

The most important consideration in determining which language feature to use is whether or not there must be an attached subscriber. If your code
must call the code supplied by the subscriber, you should use a design based on delegates. If your code can complete all its work without calling any
subscribers, you should use a design based on events.

Consider the examples built during this section. The code you built using List.Sort() must be given a comparer function in order to properly sort the
elements. L INQ queries must be supplied with delegates in order to determine what elements to return. Both used a design built with delegates.

Consider the Progress event. It reports progress on a task. The task continues to proceed whether or not there are any listeners. The FileSearcher is
another example. It would still search and find all the files that were sought, even with no event subscribers attached. UX controls still work correctly,
even when there are no subscribers listening to the events. They both use designs based on events.

Another consideration is the method prototype you would want for your delegate method. As you've seen, the delegates used for events all have a void
return type. You've also seen that there are idioms to create event handlers that do pass information back to event sources through modifying
properties of the event argument object. While these idioms do work, they are not as natural as returning a value from a method.

Notice that these two heuristics may often both be present: If your delegate method returns a value, it will likely impact the algorithm in some way.

This is a slightly weaker justification. However, you may find that event-based designs are more natural when the event source will be raising events
over a long period of time. You can see examples of this for UX controls on many systems. Once you subscribe to an event, the event source may raise
events throughout the lifetime of the program. (You can unsubscribe from events when you no longer need them.)

Contrast that with many delegate-based designs, where a delegate is used as an argument to a method, and the delegate is not used after that method
returns.

The above considerations are not hard and fast rules. Instead, they represent guidance that can help you decide which choice is best for your particular
usage. Because they are similar, you can even prototype both, and consider which would be more natural to work with. They both handle late binding
scenarios well. Use the one that communicates your design the best.

https://github.com/dotnet/docs/blob/master/docs/csharp/distinguish-delegates-events.md

Language Integrated Query (LINQ)
7/3/2018 • 3 minutes to read • Edit Online

class LINQQueryExpressions
{
 static void Main()
 {

 // Specify the data source.
 int[] scores = new int[] { 97, 92, 81, 60 };

 // Define the query expression.
 IEnumerable<int> scoreQuery =
 from score in scores
 where score > 80
 select score;

 // Execute the query.
 foreach (int i in scoreQuery)
 {
 Console.Write(i + " ");
 }
 }
}
// Output: 97 92 81

Query expression overview

Next steps

Language-Integrated Query (L INQ) is the name for a set of technologies based on the integration of query capabilities directly into the C# language.
Traditionally, queries against data are expressed as simple strings without type checking at compile time or IntelliSense support. Furthermore, you have
to learn a different query language for each type of data source: SQL databases, XML documents, various Web services, and so on. With L INQ, a query
is a first-class language construct, just like classes, methods, events.

For a developer who writes queries, the most visible "language-integrated" part of L INQ is the query expression. Query expressions are written in a
declarative query syntax. By using query syntax, you can perform filtering, ordering, and grouping operations on data sources with a minimum of code.
You use the same basic query expression patterns to query and transform data in SQL databases, ADO .NET Datasets, XML documents and streams,
and .NET collections.

The following example shows the complete query operation. The complete operation includes creating a data source, defining the query expression, and
executing the query in a foreach statement.

Query expressions can be used to query and to transform data from any LINQ-enabled data source. For example, a single query can retrieve
data from a SQL database, and produce an XML stream as output.

Query expressions are easy to master because they use many familiar C# language constructs.

The variables in a query expression are all strongly typed, although in many cases you do not have to provide the type explicitly because the
compiler can infer it. For more information, see Type relationships in L INQ query operations.

A query is not executed until you iterate over the query variable, for example, in a foreach statement. For more information, see Introduction to
LINQ queries.

At compile time, query expressions are converted to Standard Query Operator method calls according to the rules set forth in the C#
specification. Any query that can be expressed by using query syntax can also be expressed by using method syntax. However, in most cases
query syntax is more readable and concise. For more information, see C# language specification and Standard query operators overview.

As a rule when you write L INQ queries, we recommend that you use query syntax whenever possible and method syntax whenever necessary.
There is no semantic or performance difference between the two different forms. Query expressions are often more readable than equivalent
expressions written in method syntax.

Some query operations, such as Count or Max, have no equivalent query expression clause and must therefore be expressed as a method call.
Method syntax can be combined with query syntax in various ways. For more information, see Query syntax and method syntax in L INQ.

Query expressions can be compiled to expression trees or to delegates, depending on the type that the query is applied to. IEnumerable<T>
queries are compiled to delegates. IQueryable and IQueryable<T> queries are compiled to expression trees. For more information, see
Expression trees.

To learn more details about L INQ, start by becoming familiar with some basic concepts in Query expression basics, and then read the documentation
for the L INQ technology in which you are interested:

XML documents: L INQ to XML

https://github.com/dotnet/docs/blob/master/docs/csharp/linq/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/type-relationships-in-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/introduction-to-linq-queries
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/standard-query-operators-overview
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.count
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.max
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/query-syntax-and-method-syntax-in-linq
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable-1
https://docs.microsoft.com/en-us/dotnet/csharp/expression-trees
https://docs.microsoft.com/en-us/dotnet/csharp/linq/query-expression-basics
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-to-xml

ADO.NET Entity Framework: L INQ to entities

.NET collections, files, strings and so on: L INQ to objects

To gain a deeper understanding of L INQ in general, see L INQ in C#.

To start working with L INQ in C#, see the tutorial Working with L INQ.

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/linq-to-entities
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-to-objects
https://docs.microsoft.com/en-us/dotnet/csharp/linq/linq-in-csharp
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/working-with-linq

Asynchronous programming
5/19/2018 • 10 minutes to read • Edit Online

Basic Overview of the Asynchronous Model

I/O-Bound Example: Downloading data from a web serviceI/O-Bound Example: Downloading data from a web service

private readonly HttpClient _httpClient = new HttpClient();

downloadButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI as the request
 // from the web service is happening.
 //
 // The UI thread is now free to perform other work.
 var stringData = await _httpClient.GetStringAsync(URL);
 DoSomethingWithData(stringData);
};

CPU-bound Example: Performing a Calculation for a GameCPU-bound Example: Performing a Calculation for a Game

private DamageResult CalculateDamageDone()
{
 // Code omitted:
 //
 // Does an expensive calculation and returns
 // the result of that calculation.
}

calculateButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI while CalculateDamageDone()
 // performs its work. The UI thread is free to perform other work.
 var damageResult = await Task.Run(() => CalculateDamageDone());
 DisplayDamage(damageResult);
};

What happens under the coversWhat happens under the covers

If you have any I/O-bound needs (such as requesting data from a network or accessing a database), you'll want to utilize asynchronous programming.
You could also have CPU-bound code, such as performing an expensive calculation, which is also a good scenario for writing async code.

C# has a language-level asynchronous programming model which allows for easily writing asynchronous code without having to juggle callbacks or
conform to a library which supports asynchrony. It follows what is known as the Task-based Asynchronous Pattern (TAP).

The core of async programming are the Task and Task<T> objects, which model asynchronous operations. They are supported by the async and
await keywords. The model is fairly simple in most cases:

For I/O-bound code, you await an operation which returns a Task or Task<T> inside of an async method.

For CPU-bound code, you await an operation which is started on a background thread with the Task.Run method.

The await keyword is where the magic happens. It yields control to the caller of the method that performed await , and it ultimately allows a UI to be
responsive or a service to be elastic.

There are other ways to approach async code than async and await outlined in the TAP article linked above, but this document will focus on the
language-level constructs from this point forward.

You may need to download some data from a web service when a button is pressed, but don’t want to block the UI thread. It can be accomplished
simply like this:

And that’s it! The code expresses the intent (downloading some data asynchronously) without getting bogged down in interacting with Task objects.

Say you're writing a mobile game where pressing a button can inflict damage on many enemies on the screen. Performing the damage calculation can
be expensive, and doing it on the UI thread would make the game appear to pause as the calculation is performed!

The best way to handle this is to start a background thread which does the work using Task.Run , and await its result. This will allow the UI to feel
smooth as the work is being done.

And that's it! This code cleanly expresses the intent of the button's click event, it doesn't require managing a background thread manually, and it does so
in a non-blocking way.

There's a lot of moving pieces where asynchronous operations are concerned. If you're curious about what's happening underneath the covers of Task

and Task<T> , checkout the Async in-depth article for more information.

https://github.com/dotnet/docs/blob/master/docs/csharp/async.md
https://msdn.microsoft.com/library/hh873175.aspx

Key Pieces to Understand

Recognize CPU-Bound and I/O-Bound Work

More Examples

Extracting Data from a NetworkExtracting Data from a Network

NOTENOTE

private readonly HttpClient _httpClient = new HttpClient();

[HttpGet]
[Route("DotNetCount")]
public async Task<int> GetDotNetCountAsync()
{
 // Suspends GetDotNetCountAsync() to allow the caller (the web server)
 // to accept another request, rather than blocking on this one.
 var html = await _httpClient.GetStringAsync("http://dotnetfoundation.org");

 return Regex.Matches(html, @"\.NET").Count;
}

On the C# side of things, the compiler transforms your code into a state machine which keeps track of things like yielding execution when an await is
reached and resuming execution when a background job has finished.

For the theoretically-inclined, this is an implementation of the Promise Model of asynchrony.

Async code can be used for both I/O-bound and CPU-bound code, but differently for each scenario.
Async code uses Task<T> and Task , which are constructs used to model work being done in the background.
The async keyword turns a method into an async method, which allows you to use the await keyword in its body.
When the await keyword is applied, it suspends the calling method and yields control back to its caller until the awaited task is complete.
await can only be used inside an async method.

The first two examples of this guide showed how you can use async and await for I/O-bound and CPU-bound work. It's key that you can identify
when a job you need to do is I/O-bound or CPU-bound, because it can greatly affect the performance of your code and could potentially lead to
misusing certain constructs.

Here are two questions you should ask before you write any code:

1. Will your code be "waiting" for something, such as data from a database?

If your answer is "yes", then your work is I/O-bound.

2. Will your code be performing a very expensive computation?

If you answered "yes", then your work is CPU-bound.

If the work you have is I/O-bound, use async and await without Task.Run . You should not use the Task Parallel Library. The reason for this is
outlined in the Async in Depth article.

If the work you have is CPU-bound and you care about responsiveness, use async and await but spawn the work off on another thread with
Task.Run . If the work is appropriate for concurrency and parallelism, you should also consider using the Task Parallel Library.

Additionally, you should always measure the execution of your code. For example, you may find yourself in a situation where your CPU-bound work is
not costly enough compared with the overhead of context switches when multithreading. Every choice has its tradeoff, and you should pick the correct
tradeoff for your situation.

The following examples demonstrate various ways you can write async code in C#. They cover a few different scenarios you may come across.

This snippet downloads the HTML from www.dotnetfoundation.org and counts the number of times the string ".NET" occurs in the HTML. It uses
ASP.NET MVC to define a web controller method which performs this task, returning the number.

If you plan on doing HTML parsing in production code, don't use regular expressions. Use a parsing library instead.

Here's the same scenario written for a Universal Windows App, which performs the same task when a Button is pressed:

https://en.wikipedia.org/wiki/Futures_and_promises

private readonly HttpClient _httpClient = new HttpClient();

private async void SeeTheDotNets_Click(object sender, RoutedEventArgs e)
{
 // Capture the task handle here so we can await the background task later.
 var getDotNetFoundationHtmlTask = _httpClient.GetStringAsync("http://www.dotnetfoundation.org");

 // Any other work on the UI thread can be done here, such as enabling a Progress Bar.
 // This is important to do here, before the "await" call, so that the user
 // sees the progress bar before execution of this method is yielded.
 NetworkProgressBar.IsEnabled = true;
 NetworkProgressBar.Visibility = Visibility.Visible;

 // The await operator suspends SeeTheDotNets_Click, returning control to its caller.
 // This is what allows the app to be responsive and not hang on the UI thread.
 var html = await getDotNetFoundationHtmlTask;
 int count = Regex.Matches(html, @"\.NET").Count;

 DotNetCountLabel.Text = $"Number of .NETs on dotnetfoundation.org: {count}";

 NetworkProgressBar.IsEnabled = false;
 NetworkProgressBar.Visibility = Visibility.Collapsed;
}

Waiting for Multiple Tasks to CompleteWaiting for Multiple Tasks to Complete

public async Task<User> GetUserAsync(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static async Task<IEnumerable<User>> GetUsersAsync(IEnumerable<int> userIds)
{
 var getUserTasks = new List<Task<User>>();

 foreach (int userId in userIds)
 {
 getUserTasks.Add(GetUserAsync(userId));
 }

 return await Task.WhenAll(getUserTasks);
}

public async Task<User> GetUserAsync(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static async Task<User[]> GetUsersAsync(IEnumerable<int> userIds)
{
 var getUserTasks = userIds.Select(id => GetUserAsync(id));
 return await Task.WhenAll(getUserTasks);
}

Important Info and Advice

You may find yourself in a situation where you need to retrieve multiple pieces of data concurrently. The Task API contains two methods, Task.WhenAll

and Task.WhenAny which allow you to write asynchronous code which performs a non-blocking wait on multiple background jobs.

This example shows how you might grab User data for a set of userId s.

Here's another way to write this a bit more succinctly, using LINQ:

Although it's less code, take care when mixing LINQ with asynchronous code. Because LINQ uses deferred (lazy) execution, async calls won't happen
immediately as they do in a foreach() loop unless you force the generated sequence to iterate with a call to .ToList() or .ToArray() .

Although async programming is relatively straightforward, there are some details to keep in mind which can prevent unexpected behavior.

async methods need to have an await keyword in their body or they will never yield!

This is important to keep in mind. If await is not used in the body of an async method, the C# compiler will generate a warning, but the code will
compile and run as if it were a normal method. Note that this would also be incredibly inefficient, as the state machine generated by the C# compiler for
the async method would not be accomplishing anything.

You should add "Async" as the suffix of every async method name you write.

USE THIS... INSTEAD OF THIS... WHEN WISHING TO DO THIS

await Task.Wait or Task.Result Retrieving the result of a background task

await Task.WhenAny Task.WaitAny Waiting for any task to complete

await Task.WhenAll Task.WaitAll Waiting for all tasks to complete

await Task.Delay Thread.Sleep Waiting for a period of time

Other Resources

This is the convention used in .NET to more-easily differentiate synchronous and asynchronous methods. Note that certain methods which aren’t
explicitly called by your code (such as event handlers or web controller methods) don’t necessarily apply. Because these are not explicitly called by your
code, being explicit about their naming isn’t as important.

async void should only be used for event handlers.

async void is the only way to allow asynchronous event handlers to work because events do not have return types (thus cannot make use of Task and
Task<T>). Any other use of async void does not follow the TAP model and can be challenging to use, such as:

Exceptions thrown in an async void method can’t be caught outside of that method.
async void methods are very difficult to test.
async void methods can cause bad side effects if the caller isn’t expecting them to be async.

Tread carefully when using async lambdas in LINQ expressions

Lambda expressions in L INQ use deferred execution, meaning code could end up executing at a time when you’re not expecting it to. The introduction
of blocking tasks into this can easily result in a deadlock if not written correctly. Additionally, the nesting of asynchronous code like this can also make it
more difficult to reason about the execution of the code. Async and LINQ are powerful, but should be used together as carefully and clearly as possible.

Write code that awaits Tasks in a non-blocking manner

Blocking the current thread as a means to wait for a Task to complete can result in deadlocks and blocked context threads, and can require significantly
more complex error-handling. The following table provides guidance on how to deal with waiting for Tasks in a non-blocking way:

Write less stateful code

Don’t depend on the state of global objects or the execution of certain methods. Instead, depend only on the return values of methods. Why?

Code will be easier to reason about.
Code will be easier to test.
Mixing async and synchronous code is far simpler.
Race conditions can typically be avoided altogether.
Depending on return values makes coordinating async code simple.
(Bonus) it works really well with dependency injection.

A recommended goal is to achieve complete or near-complete Referential Transparency in your code. Doing so will result in an extremely predictable,
testable, and maintainable codebase.

Async in-depth provides more information about how Tasks work.
Asynchronous programming with async and await (C#)
Lucian Wischik's Six Essential Tips for Async are a wonderful resource for async programming

https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://channel9.msdn.com/Series/Three-Essential-Tips-for-Async

Pattern Matching
7/12/2018 • 13 minutes to read • Edit Online

public class Square
{
 public double Side { get; }

 public Square(double side)
 {
 Side = side;
 }
}
public class Circle
{
 public double Radius { get; }

 public Circle(double radius)
 {
 Radius = radius;
 }
}
public class Rectangle
{
 public double Length { get; }
 public double Height { get; }

 public Rectangle(double length, double height)
 {
 Length = length;
 Height = height;
 }
}
public class Triangle
{
 public double Base { get; }
 public double Height { get; }

 public Triangle(double @base, double height)
 {
 Base = @base;
 Height = height;
 }
}

The is type pattern expression

Patterns test that a value has a certain shape, and can extract information from the value when it has the matching shape. Pattern matching provides
more concise syntax for algorithms you already use today. You already create pattern matching algorithms using existing syntax. You write if or
switch statements that test values. Then, when those statements match, you extract and use information from that value. The new syntax elements are

extensions to statements you are already familiar with: is and switch . These new extensions combine testing a value and extracting that information.

In this topic, we'll look at the new syntax to show you how it enables readable, concise code. Pattern matching enables idioms where data and the code
are separated, unlike object oriented designs where data and the methods that manipulate them are tightly coupled.

To illustrate these new idioms, let's work with structures that represent geometric shapes using pattern matching statements. You are probably familiar
with building class hierarchies and creating virtual methods and overridden methods to customize object behavior based on the runtime type of the
object.

Those techniques aren't possible for data that isn't structured in a class hierarchy. When data and methods are separate, you need other tools. The new
pattern matching constructs enable cleaner syntax to examine data and manipulate control flow based on any condition of that data. You already write
if statements and switch that test a variable's value. You write is statements that test a variable's type. Pattern matching adds new capabilities to

those statements.

In this topic, you'll build a method that computes the area of different geometric shapes. But, you'll do it without resorting to object oriented techniques
and building a class hierarchy for the different shapes. You'll use pattern matching instead. As you go through this sample, contrast this code with how it
would be structured as an object hierarchy. When the data you must query and manipulate is not a class hierarchy, pattern matching enables very
elegant designs.

Rather than starting with an abstract shape definition and adding different specific shape classes, let's start instead with simple data only definitions for
each of the geometric shapes:

From these structures, let's write a method that computes the area of some shape.

Before C# 7.0, you'd need to test each type in a series of if and is statements:

https://github.com/dotnet/docs/blob/master/docs/csharp/pattern-matching.md

public static double ComputeArea(object shape)
{
 if (shape is Square)
 {
 var s = (Square)shape;
 return s.Side * s.Side;
 }
 else if (shape is Circle)
 {
 var c = (Circle)shape;
 return c.Radius * c.Radius * Math.PI;
 }
 // elided
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
}

public static double ComputeAreaModernIs(object shape)
{
 if (shape is Square s)
 return s.Side * s.Side;
 else if (shape is Circle c)
 return c.Radius * c.Radius * Math.PI;
 else if (shape is Rectangle r)
 return r.Height * r.Length;
 // elided
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
}

TIPTIP

Using pattern matching switch statements

That code above is a classic expression of the type pattern: You're testing a variable to determine its type and taking a different action based on that type.

This code becomes simpler using extensions to the is expression to assign a variable if the test succeeds:

In this updated version, the is expression both tests the variable and assigns it to a new variable of the proper type. Also, notice that this version
includes the Rectangle type, which is a struct . The new is expression works with value types as well as reference types.

Language rules for pattern matching expressions help you avoid misusing the results of a match expression. In the example above, the variables s , c ,
and r are only in scope and definitely assigned when the respective pattern match expressions have true results. If you try to use either variable in
another location, your code generates compiler errors.

Let's examine both of those rules in detail, beginning with scope. The variable c is in scope only in the else branch of the first if statement. The
variable s is in scope in the method ComputeAreaModernIs . That's because each branch of an if statement establishes a separate scope for variables.
However, the if statement itself does not. That means variables declared in the if statement are in the same scope as the if statement (the method
in this case.) This behavior is not specific to pattern matching, but is the defined behavior for variable scopes and if and else statements.

The variables c and s are assigned when the respective if statements are true because of the definitely assigned when true mechanism.

The samples in this topic use the recommended construct where a pattern match is expression definitely assigns the match variable in the true branch of the if

statement. You could reverse the logic by saying if (!(shape is Square s)) and the variable s would be definitely assigned only in the false branch. While this
is valid C#, it is not recommended because it is more confusing to follow the logic.

These rules mean that you are unlikely to accidentally access the result of a pattern match expression when that pattern was not met.

As time goes on, you may need to support other shape types. As the number of conditions you are testing grows, you'll find that using the is pattern
matching expressions can become cumbersome. In addition to requiring if statements on each type you want to check, the is expressions are
limited to testing if the input matches a single type. In this case, you'll find that the switch pattern matching expressions becomes a better choice.

The traditional switch statement was a pattern expression: it supported the constant pattern. You could compare a variable to any constant used in a
case statement:

public static string GenerateMessage(params string[] parts)
{
 switch (parts.Length)
 {
 case 0:
 return "No elements to the input";
 case 1:
 return $"One element: {parts[0]}";
 case 2:
 return $"Two elements: {parts[0]}, {parts[1]}";
 default:
 return $"Many elements. Too many to write";
 }
}

public static double ComputeAreaModernSwitch(object shape)
{
 switch (shape)
 {
 case Square s:
 return s.Side * s.Side;
 case Circle c:
 return c.Radius * c.Radius * Math.PI;
 case Rectangle r:
 return r.Height * r.Length;
 default:
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
 }
}

NOTENOTE

when clauses in case expressions

The only pattern supported by the switch statement was the constant pattern. It was further limited to numeric types and the string type. Those
restrictions have been removed, and you can now write a switch statement using the type pattern:

The pattern matching switch statement uses familiar syntax to developers who have used the traditional C-style switch statement. Each case is
evaluated and the code beneath the condition that matches the input variable is executed. Code execution cannot "fall through" from one case
expression to the next; the syntax of the case statement requires that each case end with a break , return , or goto .

The goto statements to jump to another label are valid only for the constant pattern (the classic switch statement).

There are important new rules governing the switch statement. The restrictions on the type of the variable in the switch expression have been
removed. Any type, such as object in this example, may be used. The case expressions are no longer limited to constant values. Removing that
limitation means that reordering switch sections may change a program's behavior.

When limited to constant values, no more than one case label could match the value of the switch expression. Combine that with the rule that every
switch section must not fall through to the next section, and it followed that the switch sections could be rearranged in any order without affecting

behavior. Now, with more generalized switch expressions, the order of each section matters. The switch expressions are evaluated in textual order.
Execution transfers to the first switch label that matches the switch expression.
Note that the default case will only be executed if no other case labels match. The default case is evaluated last, regardless of its textual order. If there
is no default case, and none of the other case statements match, execution continues at the statement following the switch statement. None of the
case labels code is executed.

You can make special cases for those shapes that have 0 area by using a when clause on the case label. A square with a side length of 0, or a circle with
a radius of 0 has a 0 area. You specify that condition using a when clause on the case label:

public static double ComputeArea_Version3(object shape)
{
 switch (shape)
 {
 case Square s when s.Side == 0:
 case Circle c when c.Radius == 0:
 return 0;

 case Square s:
 return s.Side * s.Side;
 case Circle c:
 return c.Radius * c.Radius * Math.PI;
 default:
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
 }
}

public static double ComputeArea_Version4(object shape)
{
 switch (shape)
 {
 case Square s when s.Side == 0:
 case Circle c when c.Radius == 0:
 case Triangle t when t.Base == 0 || t.Height == 0:
 case Rectangle r when r.Length == 0 || r.Height == 0:
 return 0;

 case Square s:
 return s.Side * s.Side;
 case Circle c:
 return c.Radius * c.Radius * Math.PI;
 case Triangle t:
 return t.Base * t.Height / 2;
 case Rectangle r:
 return r.Length * r.Height;
 default:
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
 }
}

This change demonstrates a few important points about the new syntax. First, multiple case labels can be applied to one switch section. The
statement block is executed when any of those labels is true . In this instance, if the switch expression is either a circle or a square with 0 area, the
method returns the constant 0.

This example introduces two different variables in the two case labels for the first switch block. Notice that the statements in this switch block do
not use either the variables c (for the circle) or s (for the square). Neither of those variables is definitely assigned in this switch block. If either of
these cases match, clearly one of the variables has been assigned. However, it is impossible to tell which has been assigned at compile-time, because
either case could match at runtime. For that reason, most times when you use multiple case labels for the same block, you won't introduce a new
variable in the case statement, or you will only use the variable in the when clause.

Having added those shapes with 0 area, let's add a couple more shape types: a rectangle and a triangle:

This set of changes adds case labels for the degenerate case, and labels and blocks for each of the new shapes.

Finally, you can add a null case to ensure the argument is not null :

public static double ComputeArea_Version5(object shape)
{
 switch (shape)
 {
 case Square s when s.Side == 0:
 case Circle c when c.Radius == 0:
 case Triangle t when t.Base == 0 || t.Height == 0:
 case Rectangle r when r.Length == 0 || r.Height == 0:
 return 0;

 case Square s:
 return s.Side * s.Side;
 case Circle c:
 return c.Radius * c.Radius * Math.PI;
 case Triangle t:
 return t.Base * t.Height / 2;
 case Rectangle r:
 return r.Length * r.Height;
 case null:
 throw new ArgumentNullException(paramName: nameof(shape), message: "Shape must not be null");
 default:
 throw new ArgumentException(
 message: "shape is not a recognized shape",
 paramName: nameof(shape));
 }
}

var declarations in case expressions

NOTENOTE

static object CreateShape(string shapeDescription)
{
 switch (shapeDescription)
 {
 case "circle":
 return new Circle(2);

 case "square":
 return new Square(4);

 case "large-circle":
 return new Circle(12);

 case var o when (o?.Trim()?.Length ?? 0) == 0:
 // white space
 return null;
 default:
 return "invalid shape description";
 }
}

The special behavior for the null pattern is interesting because the constant null in the pattern does not have a type but can be converted to any
reference type or nullable type. Rather than convert a null to any type, the language defines that a null value will not match any type pattern,
regardless of the compile-time type of the variable. This behavior makes the new switch based type pattern consistent with the is statement: is

statements always return false when the value being checked is null . It's also simpler : once you have checked the type, you don't need an additional
null check. You can see that from the fact that there are no null checks in any of the case blocks of the samples above: they are not necessary, since
matching the type pattern guarantees a non-null value.

The introduction of var as one of the match expressions introduces new rules to the pattern match.

The first rule is that the var declaration follows the normal type inference rules: The type is inferred to be the static type of the switch expression. From
that rule, the type always matches.

The second rule is that a var declaration does not have the null check that other type pattern expressions include. That means the variable may be null,
and a null check is necessary in that case.

Those two rules mean that in many instances, a var declaration in a case expression matches the same conditions as a default expression. Because
any non-default case is preferred to the default case, the default case will never execute.

The compiler does not emit a warning in those cases where a default case has been written but will never execute. This is consistent with current switch statement
behavior where all possible cases have been listed.

The third rule introduces uses where a var case may be useful. Imagine that you are doing a pattern match where the input is a string and you are
searching for known command values. You might write something like:

The var case matches null , the empty string, or any string that contains only white space. Notice that the preceding code uses the ?. operator to
ensure that it does not accidentally throw a NullReferenceException. The default case handles any other string values that are not understood by this

https://docs.microsoft.com/dotnet/api/system.nullreferenceexception

Conclusions

command parser.

This is one example where you may want to consider a var case expression that is distinct from a default expression.

Pattern Matching constructs enable you to easily manage control flow among different variables and types that are not related by an inheritance
hierarchy. You can also control logic to use any condition you test on the variable. It enables patterns and idioms that you'll need more often as you
build more distributed applications, where data and the methods that manipulate that data are separate. You'll notice that the shape structs used in this
sample do not contain any methods, just read-only properties. Pattern Matching works with any data type. You write expressions that examine the
object, and make control flow decisions based on those conditions.

Compare the code from this sample with the design that would follow from creating a class hierarchy for an abstract Shape and specific derived shapes
each with their own implementation of a virtual method to calculate the area. You'll often find that pattern matching expressions can be a very useful
tool when you are working with data and want to separate the data storage concerns from the behavior concerns.

Reference semantics with value types
7/20/2018 • 10 minutes to read • Edit Online

Passing arguments by readonly reference

private static double CalculateDistance(in Point3D point1, in Point3D point2)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference + zDifference * zDifference);
}

var distance = CalculateDistance(pt1, pt2);
var fromOrigin = CalculateDistance(pt1, new Point3D());

An advantage to using value types is that they often avoid heap allocations. The disadvantage is that they are copied by value. This tradeoff makes it
harder to optimize algorithms that operate on large amounts of data. New language features in C# 7.2 provide mechanisms that enable pass-by-
reference semantics with value types. Use these features wisely to minimize both allocations and copy operations. This article explores those new
features.

Much of the sample code in this article demonstrates features added in C# 7.2. In order to use those features, you must configure your project to use C#
7.2 or later. For more information on setting the language version see configure the language version.

C# 7.2 adds the in keyword to complement the existing ref and out keywords to pass arguments by reference. The in keyword specifies passing
the argument by reference, but the called method does not modify the value.

This addition provides a full vocabulary to express your design intent. Value types are copied when passed to a called method when you don't specify
any of the following modifiers in the method signature. Each of these modifiers specifies that a value type is passed by reference, avoiding the copy.
Each modifier expresses a different intent:

out : This method sets the value of the argument used as this parameter.
ref : This method may set the value of the argument used as this parameter.
in : This method does not modify the value of the argument used as this parameter.

Add the in modifier to pass an argument by reference and declare your design intent to pass arguments by reference to avoid unnecessary copying.
You do not intend to modify the object used as that argument. The following code shows an example of a method that calculates the distance between
two points in 3D space.

The arguments are two structures that each contain three doubles. A double is 8 bytes, so each argument is 24 bytes. By specifying the in modifier,
you pass a 4-byte or 8-byte reference to those arguments, depending on the architecture of the machine. The difference in size is small, but it can
quickly add up when your application calls this method in a tight loop using many different values.

The in modifier complements out and ref in other ways as well. You cannot create overloads of a method that differ only in the presence of in ,
out , or ref . These new rules extend the same behavior that had always been defined for out and ref parameters.

The in modifier may be applied to any member that takes parameters: methods, delegates, lambdas, local functions, indexers, operators.

Unlike ref and out arguments, you may use literal values or constants for the argument to an in parameter. Also, unlike a ref or out parameter,
you don't need to apply the in modifier at the call site. The following code shows you two examples of calling the CalculateDistance method. The first
uses two local variables passed by reference. The second includes a temporary variable created as part of the method call.

There are several ways in which the compiler ensures that the read-only nature of an in argument is enforced. First of all, the called method can't
directly assign to an in parameter. It can't directly assign to any field of an in parameter when that value is a struct type. In addition, you cannot
pass an in parameter to any method using the ref or out modifier. These rules apply to any field of an in parameter, provided the field is a struct

type and the parameter is also a struct type. In fact, these rules apply for multiple layers of member access provided the types at all levels of member
access are structs . The compiler enforces that struct types passed as in arguments and their struct members are read-only variables when used
as arguments to other methods.

The use of in parameters avoids the potential performance costs of making copies. It does not change the semantics of any method call. Therefore,
you do not need to specify the in modifier at the call site. However, omitting the in modifier at the call site informs the compiler that it is allowed to
make a copy of the argument for the following reasons:

There is an implicit conversion but not an identity conversion from the argument type to the parameter type.
The argument is an expression but does not have a known storage variable.
An overload exists that differs by the presence or absence of in . In that case, the by value overload is a better match.

These rules are useful as you update existing code to use read-only reference arguments. Inside the called method, you can call any instance method

https://github.com/dotnet/docs/blob/master/docs/csharp/reference-semantics-with-value-types.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

private static double CalculateDistance2(in Point3D point1, in Point3D point2 = default)
{
 double xDifference = point1.X - point2.X;
 double yDifference = point1.Y - point2.Y;
 double zDifference = point1.Z - point2.Z;

 return Math.Sqrt(xDifference * xDifference + yDifference * yDifference + zDifference * zDifference);
}

distance = CalculateDistance(in pt1, in pt2);
distance = CalculateDistance(in pt1, new Point3D());
distance = CalculateDistance(pt1, in Point3D.Origin);

ref readonly returns

private static Point3D origin = new Point3D();
public static ref readonly Point3D Origin => ref origin;

var originValue = Point3D.Origin;
ref readonly var originReference = ref Point3D.Origin;

readonly struct type

that uses by value parameters. In those instances, a copy of the in parameter is created. Because the compiler can create a temporary variable for any
in parameter, you can also specify default values for any in parameter. The following code specifies the origin (point 0,0) as the default value for the

second point:

To force the compiler to pass read only arguments by reference, specify the in modifer on the arguments at the call site, as shown in the following
code:

This behavior makes it easier to adopt in parameters over time in large codebases where performance gains are possible. You add the in modifier to
method signatures first. Then, you can add the in modifier at callsites and create readonly struct types to enable the compiler to avoid creating
defensive copies of in parameters in more locations.

The in parameter designation can also be used with reference types or numeric values. However, the benefits in both cases are minimal, if any.

You may also want to return a value type by reference, but disallow the caller from modifying that value. Use the ref readonly modifier to express that
design intent. It notifies readers that you are returning a reference to existing data, but not allowing modification.

The compiler enforces that the caller cannot modify the reference. Attempts to assign the value directly generate a compile-time error. However, the
compiler cannot know if any member method modifies the state of the struct. To ensure that the object is not modified, the compiler creates a copy and
calls member references using that copy. Any modifications are to that defensive copy.

It's likely that the library using Point3D would often use the origin throughout the code. Every instance creates a new object on the stack. It may be
advantageous to create a constant and return it by reference. But, if you return a reference to internal storage, you may want to enforce that the caller
cannot modify the referenced storage. The following code defines a read-only property that returns a readonly ref to a Point3D that specifies the
origin.

Creating a copy of a ref readonly return is easy: Just assign it to a variable not declared with the ref readonly modifier. The compiler generates code to
copy the object as part of the assignment.

When you assign a variable to a ref readonly return , you can specify either a ref readonly variable, or a by-value copy of the read-only reference:

The first assignment in the preceding code makes a copy of the Origin constant and assigns that copy. The second assigns a reference. Notice that the
readonly modifier must be part of the declaration of the variable. The reference to which it refers can't be modified. Attempts to do so result in a

compile-time error.

Applying ref readonly to high-traffic uses of a struct may be sufficient. Other times, you may want to create an immutable struct. Then you can always
pass by read-only reference. That practice removes the defensive copies that take place when you access methods of a struct used as an in parameter.

You can do that by creating a readonly struct type. You can add the readonly modifier to a struct declaration. The compiler enforces that all instance
members of the struct are readonly ; the struct must be immutable.

There are other optimizations for a readonly struct . You can use the in modifier at every location where a readonly struct is an argument. In
addition, you can return a readonly struct as a ref return when you are returning an object whose lifetime extends beyond the scope of the method
returning the object.

Finally, the compiler generates more efficient code when you call members of a readonly struct : The this reference, instead of a copy of the receiver,
is always an in parameter passed by reference to the member method. This optimization saves more copying when you use a readonly struct . The
Point3D is a great candidate for this change. The following code shows an updated ReadonlyPoint3D structure:

readonly public struct ReadonlyPoint3D
{
 public ReadonlyPoint3D(double x, double y, double z)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 }

 public double X { get; }
 public double Y { get; }
 public double Z { get; }

 private static readonly ReadonlyPoint3D origin = new ReadonlyPoint3D();
 public static ref readonly ReadonlyPoint3D Origin => ref origin;
}

ref struct type

readonly ref struct type

readonly ref struct ReadOnlyRefPoint2D
{
 public int X { get; }
 public int Y { get; }

 public ReadOnlyRefPoint2D(int x, int y) => (X, Y) = (x, y);
}

Conclusions

Another related language feature is the ability to declare a value type that must be stack allocated. In other words, these types can never be created on
the heap as a member of another class. The primary motivation for this feature was Span<T> and related structures. Span<T> may contain a managed
pointer as one of its members, the other being the length of the span. It's implemented a bit differently because C# doesn't support pointers to
managed memory outside of an unsafe context. Any write that changes the pointer and the length is not atomic. That means a Span<T> would be
subject to out of range errors or other type safety violations were it not constrained to a single stack frame. In addition, putting a managed pointer on
the GC heap typically crashes at JIT time.

You may have similar requirements working with memory created using stackalloc or when using memory from interop APIs. You can define your
own ref struct types for those needs. In this article, you see examples using Span<T> for simplicity.

The ref struct declaration declares a struct of this type must be on the stack. The language rules ensure the safe use of these types. Other types
declared as ref struct include ReadOnlySpan<T>.

The goal of keeping a ref struct type as a stack-allocated variable introduces several rules that the compiler enforces for all ref struct types.

You can't box a ref struct . You cannot assign a ref struct type to a variable of type object , dynamic , or any interface type.
You can't declare a ref struct as a member of a class or a normal struct.
You cannot declare local variables that are ref struct types in async methods. You can declare them in synchronous methods that return Task ,
Task<T> or Task-like types.

You cannot declare ref struct local variables in iterators.
You cannot capture ref struct variables in lambda expressions or local functions.

These restrictions ensure you do not accidentally use a ref struct in a manner that could promote it to the managed heap.

Declaring a struct as readonly ref combines the benefits and restrictions of ref struct and readonly struct declarations.

The following example demonstrates the declaration of readonly ref struct .

These enhancements to the C# language are designed for performance critical algorithms where memory allocations can be critical to achieving the
necessary performance. You may find that you don't often use these features in the code you write. However, these enhancements have been adopted in
many locations in the .NET Framework. As more and more APIs make use of these features, you'll see the performance of your own applications
improve.

https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/dotnet/api/system.span-1
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/stackalloc
https://docs.microsoft.com/dotnet/api/system.readonlyspan-1

Expression Trees
5/4/2018 • 2 minutes to read • Edit Online

If you have used LINQ, you have experience with a rich library where the Func types are part of the API set. (If you are not familiar with L INQ, you
probably want to read the LINQ tutorial and the tutorial on lambda expressions before this one.) Expression Trees provide richer interaction with the
arguments that are functions.

You write function arguments, typically using Lambda Expressions, when you create L INQ queries. In a typical L INQ query, those function arguments
are transformed into a delegate the compiler creates.

When you want to have a richer interaction, you need to use Expression Trees. Expression Trees represent code as a structure that you can examine,
modify, or execute. These tools give you the power to manipulate code during run time. You can write code that examines running algorithms, or injects
new capabilities. In more advanced scenarios, you can modify running algorithms, and even translate C# expressions into another form for execution in
another environment.

You've likely already written code that uses Expression Trees. Entity Framework's L INQ APIs accept Expression Trees as the arguments for the L INQ
Query Expression Pattern. That enables Entity Framework to translate the query you wrote in C# into SQL that executes in the database engine.
Another example is Moq, which is a popular mocking framework for .NET.

The remaining sections of this tutorial will explore what Expression Trees are, examine the framework classes that support expression trees, and show
you how to work with expression trees. You'll learn how to read expression trees, how to create expression trees, how to create modified expression
trees, and how to execute the code represented by expression trees. After reading, you will be ready to use these structures to create rich adaptive
algorithms.

1. Expression Trees Explained

Understand the structure and concepts behind Expression Trees.

2. Framework Types Supporting Expression Trees

Learn about the structures and classes that define and manipulate expression trees.

3. Executing Expressions

Learn how to convert an expression tree represented as a Lambda Expression into a delegate and execute the resulting delegate.

4. Interpreting Expressions

Learn how to traverse and examine expression trees to understand what code the expression tree represents.

5. Building Expressions

Learn how to construct the nodes for an expression tree and build expression trees.

6. Translating Expressions

Learn how to build a modified copy of an expression tree, or translate an expression tree into a different format.

7. Summing up

Review the information on expression trees.

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees.md
http://docs.efproject.net/en/latest/
https://github.com/Moq/moq

Expression Trees Explained
5/4/2018 • 4 minutes to read • Edit Online

var sum = 1 + 2;

var finalAnswer = this.SecretSauceFunction(
 currentState.createInterimResult(), currentState.createSecondValue(1, 2),
 decisionServer.considerFinalOptions("hello")) +
 MoreSecretSauce('A', DateTime.Now, true);

Previous -- Overview

An Expression Tree is a data structure that defines code. They are based on the same structures that a compiler uses to analyze code and generate the
compiled output. As you read through this tutorial, you will notice quite a bit of similarity between Expression Trees and the types used in the Roslyn
APIs to build Analyzers and CodeFixes. (Analyzers and CodeFixes are NuGet packages that perform static analysis on code and can suggest potential
fixes for a developer.) The concepts are similar, and the end result is a data structure that allows examination of the source code in a meaningful way.
However, Expression Trees are based on a totally different set of classes and APIs than the Roslyn APIs.

Let's look at a simple example. Here's a line of code:

If you were to analyze this as an expression tree, the tree contains several nodes. The outermost node is a variable declaration statement with
assignment (var sum = 1 + 2;) That outermost node contains several child nodes: a variable declaration, an assignment operator, and an expression
representing the right hand side of the equals sign. That expression is further subdivided into expressions that represent the addition operation, and left
and right operands of the addition.

Let's drill down a bit more into the expressions that make up the right side of the equals sign. The expression is 1 + 2 . That's a binary expression. More
specifically, it's a binary addition expression. A binary addition expression has two children, representing the left and right nodes of the addition
expression. Here, both nodes are constant expressions: The left operand is the value 1 , and the right operand is the value 2 .

Visually, the entire statement is a tree: You could start at the root node, and travel to each node in the tree to see the code that makes up the statement:

Variable declaration statement with assignment (var sum = 1 + 2;)
Implicit variable type declaration (var sum)

Assignment operator (=)
Binary addition expression (1 + 2)

Implicit var keyword (var)
Variable name declaration (sum)

Left operand (1)
Addition operator (+)
Right operand (2)

This may look complicated, but it is very powerful. Following the same process, you can decompose much more complicated expressions. Consider this
expression:

The expression above is also a variable declaration with an assignment. In this instance, the right hand side of the assignment is a much more
complicated tree. I'm not going to decompose this expression, but consider what the different nodes might be. There are method calls using the current
object as a receiver, one that has an explicit this receiver, one that does not. There are method calls using other receiver objects, there are constant
arguments of different types. And finally, there is a binary addition operator. Depending on the return type of SecretSauceFunction() or
MoreSecretSauce() , that binary addition operator may be a method call to an overridden addition operator, resolving to a static method call to the

binary addition operator defined for a class.

Despite this perceived complexity, the expression above creates a tree structure that can be navigated as easily as the first sample. You can keep
traversing child nodes to find leaf nodes in the expression. Parent nodes will have references to their children, and each node has a property that
describes what kind of node it is.

The structure of an expression tree is very consistent. Once you've learned the basics, you can understand even the most complex code when it is
represented as an expression tree. The elegance in the data structure explains how the C# compiler can analyze the most complex C# programs and
create proper output from that complicated source code.

Once you become familiar with the structure of expression trees, you will find that knowledge you've gained quickly enables you to work with many
more and more advanced scenarios. There is incredible power to expression trees.

In addition to translating algorithms to execute in other environments, expression trees can be used to make it easier to write algorithms that inspect
code before executing it. You can write a method whose arguments are expressions and then examine those expressions before executing the code. The
Expression Tree is a full representation of the code: you can see values of any sub-expression. You can see method and property names. You can see the
value of any constant expressions. You can also convert an expression tree into an executable delegate, and execute the code.

The APIs for Expression Trees enable you to create trees that represent almost any valid code construct. However, to keep things as simple as possible,

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-explained.md
https://github.com/dotnet/roslyn-analyzers

some C# idioms cannot be created in an expression tree. One example is asynchronous expressions (using the async and await keywords). If your
needs require asynchronous algorithms, you would need to manipulate the Task objects directly, rather than rely on the compiler support. Another is
in creating loops. Typically, you create these by using for , foreach , while or do loops. As you'll see later in this series, the APIs for expression trees
support a single loop expression, with break and continue expressions that control repeating the loop.

The one thing you can't do is modify an expression tree. Expression Trees are immutable data structures. If you want to mutate (change) an expression
tree, you must create a new tree that is a copy of the original, but with your desired changes.

Next -- Framework Types Supporting Expression Trees

Framework Types Supporting Expression Trees
7/23/2018 • 3 minutes to read • Edit Online

It all starts with System.Linq.Expression

Expression<Func<int, int>> addFive = (num) => num + 5;

if (addFive.NodeType == ExpressionType.Lambda)
{
 var lambdaExp = (LambdaExpression)addFive;

 var parameter = lambdaExp.Parameters.First();

 Console.WriteLine(parameter.Name);
 Console.WriteLine(parameter.Type);
}

Creating Expression Trees

// Addition is an add expression for "1 + 2"
var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);

Navigating the APIs

Previous -- Expression Trees Explained

There is a large list of classes in the .NET Core framework that work with Expression Trees. You can see the full list here. Rather than run through the full
list, let's understand how the framework classes have been designed.

In language design, an expression is a body of code that evaluates and returns a value. Expressions may be very simple: the constant expression 1

returns the constant value of 1. They may be more complicated: The expression (-B + Math.Sqrt(B*B - 4 * A * C)) / (2 * A) returns one root for a
quadratic equation (in the case where the equation has a solution).

One of the complexities of working with expression trees is that many different kinds of expressions are valid in many places in programs. Consider an
assignment expression. The right hand side of an assignment could be a constant value, a variable, a method call expression, or others. That language
flexibility means that you may encounter many different expression types anywhere in the nodes of a tree when you traverse an expression tree.
Therefore, when you can work with the base expression type, that's the simplest way to work. However, sometimes you need to know more. The base
Expression class contains a NodeType property for this purpose. It returns an ExpressionType which is an enumeration of possible expression types.
Once you know the type of the node, you can cast it to that type, and perform specific actions knowing the type of the expression node. You can search
for certain node types, and then work with the specific properties of that kind of expression.

For example, this code will print the name of a variable for a variable access expression. I've followed the practice of checking the node type, then
casting to a variable access expression and then checking the properties of the specific expression type:

The System.Linq.Expression class also contains many static methods to create expressions. These methods create an expression node using the
arguments supplied for its children. In this way, you build an expression up from its leaf nodes. For example, this code builds an Add expression:

You can see from this simple example that many types are involved in creating and working with expression trees. That complexity is necessary to
provide the capabilities of the rich vocabulary provided by the C# language.

There are Expression node types that map to almost all of the syntax elements of the C# language. Each type has specific methods for that type of
language element. It's a lot to keep in your head at one time. Rather than try to memorize everything, here are the techniques I use to work with
Expression trees:

1. Look at the members of the ExpressionType enum to determine possible nodes you should be examining. This really helps when you want to
traverse and understand an expression tree.

2. Look at the static members of the Expression class to build an expression. Those methods can build any expression type from a set of its child
nodes.

3. Look at the ExpressionVisitor class to build a modified expression tree.

You'll find more as you look at each of those three areas. Invariably, you will find what you need when you start with one of those three steps.

Next -- Executing Expression Trees

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-classes.md
https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions

Executing Expression Trees
6/19/2018 • 6 minutes to read • Edit Online

Lambda Expressions to Functions

Expression<Func<int>> add = () => 1 + 2;
var func = add.Compile(); // Create Delegate
var answer = func(); // Invoke Delegate
Console.WriteLine(answer);

Execution and Lifetimes

Caveats

Previous -- Framework Types Supporting Expression Trees

An expression tree is a data structure that represents some code. It is not compiled and executable code. If you want to execute the .NET code that is
represented by an expression tree, you must convert it into executable IL instructions.

You can convert any LambdaExpression, or any type derived from LambdaExpression into executable IL. Other expression types cannot be directly
converted into code. This restriction has little effect in practice. Lambda expressions are the only types of expressions that you would want to execute by
converting to executable intermediate language (IL). (Think about what it would mean to directly execute a ConstantExpression . Would it mean
anything useful?) Any expression tree that is a LambdaExpression , or a type derived from LambdaExpression can be converted to IL. The expression type
Expression<TDelegate> is the only concrete example in the .NET Core libraries. It's used to represent an expression that maps to any delegate type.

Because this type maps to a delegate type, .NET can examine the expression, and generate IL for an appropriate delegate that matches the signature of
the lambda expression.

In most cases, this creates a simple mapping between an expression, and its corresponding delegate. For example, an expression tree that is represented
by Expression<Func<int>> would be converted to a delegate of the type Func<int> . For a lambda expression with any return type and argument list,
there exists a delegate type that is the target type for the executable code represented by that lambda expression.

The LambdaExpression type contains Compile and CompileToMethod members that you would use to convert an expression tree to executable code. The
Compile method creates a delegate. The CompileToMethod method updates a MethodBuilder object with the IL that represents the compiled output of

the expression tree. Note that CompileToMethod is only available in the full desktop framework, not in the .NET Core.

Optionally, you can also provide a DebugInfoGenerator that will receive the symbol debugging information for the generated delegate object. This
enables you to convert the expression tree into a delegate object, and have full debugging information about the generated delegate.

You would convert an expression into a delegate using the following code:

Notice that the delegate type is based on the expression type. You must know the return type and the argument list if you want to use the delegate
object in a strongly typed manner. The LambdaExpression.Compile() method returns the Delegate type. You will have to cast it to the correct delegate
type to have any compile-time tools check the argument list or return type.

You execute the code by invoking the delegate created when you called LambdaExpression.Compile() . You can see this above where add.Compile()

returns a delegate. Invoking that delegate, by calling func() executes the code.

That delegate represents the code in the expression tree. You can retain the handle to that delegate and invoke it later. You don't need to compile the
expression tree each time you want to execute the code it represents. (Remember that expression trees are immutable, and compiling the same
expression tree later will create a delegate that executes the same code.)

I will caution you against trying to create any more sophisticated caching mechanisms to increase performance by avoiding unnecessary compile calls.
Comparing two arbitrary expression trees to determine if they represent the same algorithm will also be time consuming to execute. You'll likely find
that the compute time you save avoiding any extra calls to LambdaExpression.Compile() will be more than consumed by the time executing code that
determines of two different expression trees result in the same executable code.

Compiling a lambda expression to a delegate and invoking that delegate is one of the simplest operations you can perform with an expression tree.
However, even with this simple operation, there are caveats you must be aware of.

Lambda Expressions create closures over any local variables that are referenced in the expression. You must guarantee that any variables that would be
part of the delegate are usable at the location where you call Compile , and when you execute the resulting delegate.

In general, the compiler will ensure that this is true. However, if your expression accesses a variable that implements IDisposable , it's possible that your
code might dispose of the object while it is still held by the expression tree.

For example, this code works fine, because int does not implement IDisposable :

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-execution.md

private static Func<int, int> CreateBoundFunc()
{
 var constant = 5; // constant is captured by the expression tree
 Expression<Func<int, int>> expression = (b) => constant + b;
 var rVal = expression.Compile();
 return rVal;
}

public class Resource : IDisposable
{
 private bool isDisposed = false;
 public int Argument
 {
 get
 {
 if (!isDisposed)
 return 5;
 else throw new ObjectDisposedException("Resource");
 }
 }

 public void Dispose()
 {
 isDisposed = true;
 }
}

private static Func<int, int> CreateBoundResource()
{
 using (var constant = new Resource()) // constant is captured by the expression tree
 {
 Expression<Func<int, int>> expression = (b) => constant.Argument + b;
 var rVal = expression.Compile();
 return rVal;
 }
}

Summary

The delegate has captured a reference to the local variable constant . That variable is accessed at any time later, when the function returned by
CreateBoundFunc executes.

However, consider this (rather contrived) class that implements IDisposable :

If you use it in an expression as shown below, you'll get an ObjectDisposedException when you execute the code referenced by the Resource.Argument

property:

The delegate returned from this method has closed over the constant object, which has been disposed of. (It's been disposed, because it was declared
in a using statement.)

Now, when you execute the delegate returned from this method, you'll have a ObjecctDisposedException thrown at the point of execution.

It does seem strange to have a runtime error representing a compile-time construct, but that's the world we enter when we work with expression trees.

There are a lot of permutations of this problem, so it's hard to offer general guidance to avoid it. Be careful about accessing local variables when
defining expressions, and be careful about accessing state in the current object (represented by this) when creating an expression tree that can be
returned by a public API.

The code in your expression may reference methods or properties in other assemblies. That assembly must be accessible when the expression is
defined, and when it is compiled, and when the resulting delegate is invoked. You'll be met with a ReferencedAssemblyNotFoundException in cases where it
is not present.

Expression Trees that represent lambda expressions can be compiled to create a delegate that you can execute. This provides one mechanism to execute
the code represented by an expression tree.

The Expression Tree does represent the code that would execute for any given construct you create. As long as the environment where you compile and
execute the code matches the environment where you create the expression, everything works as expected. When that doesn't happen, the errors are
very predictable, and they will be caught in your first tests of any code using the expression trees.

Next -- Interpreting Expressions

Interpreting Expressions
5/4/2018 • 14 minutes to read • Edit Online

Examining an Expression with No Children

var constant = Expression.Constant(24, typeof(int));

Console.WriteLine($"This is a/an {constant.NodeType} expression type");
Console.WriteLine($"The type of the constant value is {constant.Type}");
Console.WriteLine($"The value of the constant value is {constant.Value}");

This is an Constant expression type
The type of the constant value is System.Int32
The value of the constant value is 24

Examining a simple Addition Expression

Expression<Func<int>> sum = () => 1 + 2;

Expression<Func<int, int, int>> addition = (a, b) => a + b;

Console.WriteLine($"This expression is a {addition.NodeType} expression type");
Console.WriteLine($"The name of the lambda is {((addition.Name == null) ? "<null>" : addition.Name)}");
Console.WriteLine($"The return type is {addition.ReturnType.ToString()}");
Console.WriteLine($"The expression has {addition.Parameters.Count} arguments. They are:");
foreach(var argumentExpression in addition.Parameters)
{
 Console.WriteLine($"\tParameter Type: {argumentExpression.Type.ToString()}, Name: {argumentExpression.Name}");
}

var additionBody = (BinaryExpression)addition.Body;
Console.WriteLine($"The body is a {additionBody.NodeType} expression");
Console.WriteLine($"The left side is a {additionBody.Left.NodeType} expression");
var left = (ParameterExpression)additionBody.Left;
Console.WriteLine($"\tParameter Type: {left.Type.ToString()}, Name: {left.Name}");
Console.WriteLine($"The right side is a {additionBody.Right.NodeType} expression");
var right= (ParameterExpression)additionBody.Right;
Console.WriteLine($"\tParameter Type: {right.Type.ToString()}, Name: {right.Name}");

Previous -- Executing Expressions

Now, let's write some code to examine the structure of an expression tree. Every node in an expression tree will be an object of a class that is derived
from Expression .

That design makes visiting all the nodes in an expression tree a relatively straight forward recursive operation. The general strategy is to start at the root
node and determine what kind of node it is.

If the node type has children, recursively visit the children. At each child node, repeat the process used at the root node: determine the type, and if the
type has children, visit each of the children.

Let's start by visiting each node in a very simple expression tree. Here's the code that creates a constant expression and then examines its properties:

This will print the following:

Now, let's write the code that would examine this expression and write out some important properties about it. Here's that code:

Let's start with the addition sample from the introduction to this section.

I'm not using var to declare this expression tree, as it is not possible because the right-hand side of the assignment is implicitly typed. To
understand this more deeply, read here.

The root node is a LambdaExpression . In order to get the interesting code on the right hand side of the => operator, you need to find one of the children
of the LambdaExpression . We'll do that with all the expressions in this section. The parent node does help us find the return type of the LambdaExpression

.

To examine each node in this expression, we'll need to recursively visit a number of nodes. Here's a simple first implementation:

This sample prints the following output:

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-interpreting.md
https://docs.microsoft.com/en-us/dotnet/csharp/implicitly-typed-lambda-expressions

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 arguments. They are:
 Parameter Type: System.Int32, Name: a
 Parameter Type: System.Int32, Name: b
The body is a/an Add expression
The left side is a Parameter expression
 Parameter Type: System.Int32, Name: a
The right side is a Parameter expression
 Parameter Type: System.Int32, Name: b

// Base Visitor class:
public abstract class Visitor
{
 private readonly Expression node;

 protected Visitor(Expression node)
 {
 this.node = node;
 }

 public abstract void Visit(string prefix);

 public ExpressionType NodeType => this.node.NodeType;
 public static Visitor CreateFromExpression(Expression node)
 {
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:
 return new BinaryVisitor((BinaryExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
 return default(Visitor);
 }
 }
}

// Lambda Visitor
public class LambdaVisitor : Visitor
{
 private readonly LambdaExpression node;
 public LambdaVisitor(LambdaExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression type");
 Console.WriteLine($"{prefix}The name of the lambda is {((node.Name == null) ? "<null>" : node.Name)}");
 Console.WriteLine($"{prefix}The return type is {node.ReturnType.ToString()}");
 Console.WriteLine($"{prefix}The expression has {node.Parameters.Count} argument(s). They are:");
 // Visit each parameter:
 foreach (var argumentExpression in node.Parameters)
 {
 var argumentVisitor = Visitor.CreateFromExpression(argumentExpression);
 argumentVisitor.Visit(prefix + "\t");
 }
 Console.WriteLine($"{prefix}The expression body is:");
 // Visit the body:
 var bodyVisitor = Visitor.CreateFromExpression(node.Body);
 bodyVisitor.Visit(prefix + "\t");
 }
}

// Binary Expression Visitor:
public class BinaryVisitor : Visitor
{
 private readonly BinaryExpression node;
 public BinaryVisitor(BinaryExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {

You'll notice a lot of repetition in the code sample above. Let's clean that up and build a more general purpose expression node visitor. That's going to
require us to write a recursive algorithm. Any node could be of a type that might have children. Any node that has children requires us to visit those
children and determine what that node is. Here's the cleaned up version that utilizes recursion to visit the addition operations:

 {
 Console.WriteLine($"{prefix}This binary expression is a {NodeType} expression");
 var left = Visitor.CreateFromExpression(node.Left);
 Console.WriteLine($"{prefix}The Left argument is:");
 left.Visit(prefix + "\t");
 var right = Visitor.CreateFromExpression(node.Right);
 Console.WriteLine($"{prefix}The Right argument is:");
 right.Visit(prefix + "\t");
 }
}

// Parameter visitor:
public class ParameterVisitor : Visitor
{
 private readonly ParameterExpression node;
 public ParameterVisitor(ParameterExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This is an {NodeType} expression type");
 Console.WriteLine($"{prefix}Type: {node.Type.ToString()}, Name: {node.Name}, ByRef: {node.IsByRef}");
 }
}

// Constant visitor:
public class ConstantVisitor : Visitor
{
 private readonly ConstantExpression node;
 public ConstantVisitor(ConstantExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This is an {NodeType} expression type");
 Console.WriteLine($"{prefix}The type of the constant value is {node.Type}");
 Console.WriteLine($"{prefix}The value of the constant value is {node.Value}");
 }
}

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Examining an Addition Expression with Many Levels

Expression<Func<int>> sum = () => 1 + 2 + 3 + 4;

This algorithm is the basis of an algorithm that can visit any arbitrary LambdaExpression . There are a lot of holes, namely that the code I created only
looks for a very small sample of the possible sets of expression tree nodes that it may encounter. However, you can still learn quite a bit from what it
produces. (The default case in the Visitor.CreateFromExpression method prints a message to the error console when a new node type is encountered.
That way, you know to add a new expression type.)

When you run this visitor on the addition expression shown above, you get the following output:

Now that you've built a more general visitor implementation, you can visit and process many more different types of expressions.

Let's try a more complicated example, yet still limit the node types to addition only:

Before you run this on the visitor algorithm, try a thought exercise to work out what the output might be. Remember that the + operator is a binary

operator: it must have two children, representing the left and right operands. There are several possible ways to construct a tree that could be correct:

Expression<Func<int>> sum1 = () => 1 + (2 + (3 + 4));
Expression<Func<int>> sum2 = () => ((1 + 2) + 3) + 4;

Expression<Func<int>> sum3 = () => (1 + 2) + (3 + 4);
Expression<Func<int>> sum4 = () => 1 + ((2 + 3) + 4);
Expression<Func<int>> sum5 = () => (1 + (2 + 3)) + 4;

Expression<Func<int, int>> sum = (a) => 1 + a + 3 + 4;

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 4

Expression<Func<int, int, int>> sum3 = (a, b) => (1 + a) + (3 + b);

You can see the separation into two possible answers to highlight the most promising. The first represents right associative expressions. The second
represent left associative expressions. The advantage of both of those two formats is that the format scales to any arbitrary number of addition
expressions.

If you do run this expression through the visitor, you will see this this output, verifying that the simple addition expression is left associative.

In order to run this sample, and see the full expression tree, I had to make one change to the source expression tree. When the expression tree contains
all constants, the resulting tree simply contains the constant value of 10 . The compiler performs all the addition and reduces the expression to its
simplest form. Simply adding one variable in the expression is sufficient to see the original tree:

Create a visitor for this sum and run the visitor you'll see this output:

You can also run any of the other samples through the visitor code and see what tree it represents. Here's an example of the sum3 expression above
(with an additional parameter to prevent the compiler from computing the constant):

Here's the output from the visitor :

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Extending from this sample

Expression<Func<int, int>> factorial = (n) =>
 n == 0 ?
 1 :
 Enumerable.Range(1, n).Aggregate((product, factor) => product * factor);

Notice that the parentheses are not part of the output. There are no nodes in the expression tree that represent the parentheses in the input expression.
The structure of the expression tree contains all the information necessary to communicate the precedence.

The sample deals with only the most rudimentary expression trees. The code you've seen in this section only handles constant integers and the binary
+ operator. As a final sample, let's update the visitor to handle a more complicated expression. Let's make it work for this:

This code represents one possible implementation for the mathematical factorial function. The way I've written this code highlights two limitiations of
building expression trees by assigning lambda expressions to Expressions. First, statement lambdas are not allowed. That means I can't use loops,
blocks, if / else statements, and other control structures common in C#. I'm limited to using expressions. Second, I can't recursively call the same
expression. I could if it were already a delegate, but I can't call it in its expression tree form. In the section on building expression trees you'll learn
techniques to overcome these limitations.

In this expression, you'll encounter nodes of all these types:

1. Equal (binary expression)
2. Multiply (binary expression)
3. Conditional (the ? : expression)
4. Method Call Expression (calling Range() and Aggregate())

One way to modify the visitor algorithm is to keep executing it, and write the node type every time you reach your default clause. After a few
iterations, you'll have seen each of the potential nodes. Then, you have all you need. The result would be something like this:

public static Visitor CreateFromExpression(Expression node)
{
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:
 case ExpressionType.Equal:
 case ExpressionType.Multiply:
 return new BinaryVisitor((BinaryExpression)node);
 case ExpressionType.Conditional:
 return new ConditionalVisitor((ConditionalExpression)node);
 case ExpressionType.Call:
 return new MethodCallVisitor((MethodCallExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
 return default(Visitor);
 }
}

public class ConditionalVisitor : Visitor
{
 private readonly ConditionalExpression node;
 public ConditionalVisitor(ConditionalExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
 var testVisitor = Visitor.CreateFromExpression(node.Test);
 Console.WriteLine($"{prefix}The Test for this expression is:");
 testVisitor.Visit(prefix + "\t");
 var trueVisitor = Visitor.CreateFromExpression(node.IfTrue);
 Console.WriteLine($"{prefix}The True clause for this expression is:");
 trueVisitor.Visit(prefix + "\t");
 var falseVisitor = Visitor.CreateFromExpression(node.IfFalse);
 Console.WriteLine($"{prefix}The False clause for this expression is:");
 falseVisitor.Visit(prefix + "\t");
 }
}

public class MethodCallVisitor : Visitor
{
 private readonly MethodCallExpression node;
 public MethodCallVisitor(MethodCallExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
 if (node.Object == null)
 Console.WriteLine($"{prefix}This is a static method call");
 else
 {
 Console.WriteLine($"{prefix}The receiver (this) is:");
 var receiverVisitor = Visitor.CreateFromExpression(node.Object);
 receiverVisitor.Visit(prefix + "\t");
 }

 var methodInfo = node.Method;
 Console.WriteLine($"{prefix}The method name is {methodInfo.DeclaringType}.{methodInfo.Name}");
 // There is more here, like generic arguments, and so on.
 Console.WriteLine($"{prefix}The Arguments are:");
 foreach(var arg in node.Arguments)
 {
 var argVisitor = Visitor.CreateFromExpression(arg);
 argVisitor.Visit(prefix + "\t");
 }
 }
}

The ConditionalVisitor and MethodCallVisitor process those two nodes:

And the output for the expression tree would be:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
The expression body is:
 This expression is a Conditional expression
 The Test for this expression is:
 This binary expression is a Equal expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 0
 The True clause for this expression is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The False clause for this expression is:
 This expression is a Call expression
 This is a static method call
 The method name is System.Linq.Enumerable.Aggregate
 The Arguments are:
 This expression is a Call expression
 This is a static method call
 The method name is System.Linq.Enumerable.Range
 The Arguments are:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 This expression is a Lambda expression type
 The name of the lambda is <null>
 The return type is System.Int32
 The expression has 2 arguments. They are:
 This is an Parameter expression type
 Type: System.Int32, Name: product, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: factor, ByRef: False
 The expression body is:
 This binary expression is a Multiply expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: product, ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: factor, ByRef: False

Extending the Sample Library
The samples in this section show the core techniques to visit and examine nodes in an expression tree. I glossed over many actions you might need in
order to concentrate on the core tasks of visiting and accessing nodes in an expression tree.

First, the visitors only handle constants that are integers. Constant values could be any other numeric type, and the C# language supports conversions
and promotions between those types. A more robust version of this code would mirror all those capabilities.

Even the last example recognizes a subset of the possible node types. You can still feed it many expressions that will cause it to fail. A full
implementation is included in the .NET Standard under the name ExpressionVisitor and can handle all the possible node types.

Finally, the library I used in this article was built for demonstration and learning. It's not optimized. I wrote it to make the structures used very clear, and
to highlight the techniques used to visit the nodes and analyze what's there. A production implementation would pay more attention to performance
than I have.

Even with those limitations, you should be well on your way to writing algorithms that read and understand expression trees.

Next -- Building Expressions

https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions.ExpressionVisitor

Building Expression Trees
6/19/2018 • 5 minutes to read • Edit Online

Creating Nodes

Expression<Func<int>> sum = () => 1 + 2;

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));

var addition = Expression.Add(one, two);

var lambda = Expression.Lambda(addition);

var lambda = Expression.Lambda(
 Expression.Add(
 Expression.Constant(1, typeof(int)),
 Expression.Constant(2, typeof(int))
)
);

Building a Tree

Expression<Func<double, double, double>> distanceCalc =
 (x, y) => Math.Sqrt(x * x + y * y);

var xParameter = Expression.Parameter(typeof(double), "x");
var yParameter = Expression.Parameter(typeof(double), "y");

Previous -- Interpreting Expressions

All the expression trees you've seen so far have been created by the C# compiler. All you had to do was create a lambda expression that was assigned to
a variable typed as an Expression<Func<T>> or some similar type. That's not the only way to create an expression tree. For many scenarios you may find
that you need to build an expression in memory at runtime.

Building Expression Trees is complicated by the fact that those expression trees are immutable. Being immutable means that you must build the tree
from the leaves up to the root. The APIs you'll use to build expression trees reflect this fact: The methods you'll use to build a node take all its children as
arguments. Let's walk through a few examples to show you the techniques.

Let's start relatively simply again. We'll use the addition expression I've been working with throughout these sections:

To construct that expression tree, you must construct the leaf nodes. The leaf nodes are constants, so you can use the Expression.Constant method to
create the nodes:

Next, you'll build the addition expression:

Once you've got the addition expression, you can create the lambda expression:

This is a very simple lambda expression, because it contains no arguments. Later in this section, you'll see how to map arguments to parameters and
build more complicated expressions.

For expressions that are as simple as this one, you may combine all the calls into a single statement:

That's the basics of building an expression tree in memory. More complex trees generally mean more node types, and more nodes in the tree. Let's run
through one more example and show two more node types that you will typically build when you create expression trees: the argument nodes, and
method call nodes.

Let's build an expression tree to create this expression:

You'll start by creating parameter expressions for x and y :

Creating the multiplication and addition expressions follows the pattern you've already seen:

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-building.md

var xSquared = Expression.Multiply(xParameter, xParameter);
var ySquared = Expression.Multiply(yParameter, yParameter);
var sum = Expression.Add(xSquared, ySquared);

var sqrtMethod = typeof(Math).GetMethod("Sqrt", new[] { typeof(double) });
var distance = Expression.Call(sqrtMethod, sum);

var distanceLambda = Expression.Lambda(
 distance,
 xParameter,
 yParameter);

Building Code In Depth

Func<int, int> factorialFunc = (n) =>
{
 var res = 1;
 while (n > 1)
 {
 res = res * n;
 n--;
 }
 return res;
};

var nArgument = Expression.Parameter(typeof(int), "n");
var result = Expression.Variable(typeof(int), "result");

// Creating a label that represents the return value
LabelTarget label = Expression.Label(typeof(int));

var initializeResult = Expression.Assign(result, Expression.Constant(1));

// This is the inner block that performs the multiplication,
// and decrements the value of 'n'
var block = Expression.Block(
 Expression.Assign(result,
 Expression.Multiply(result, nArgument)),
 Expression.PostDecrementAssign(nArgument)
);

// Creating a method body.
BlockExpression body = Expression.Block(
 new[] { result },
 initializeResult,
 Expression.Loop(
 Expression.IfThenElse(
 Expression.GreaterThan(nArgument, Expression.Constant(1)),
 block,
 Expression.Break(label, result)
),
 label
)
);

Next, you need to create a method call expression for the call to Math.Sqrt .

And then finally, you put the method call into a lambda expression, and make sure to define the arguments to the lambda expression:

In this more complicated example, you see a couple more techniques that you will often need to create expression trees.

First, you need to create the objects that represent parameters or local variables before you use them. Once you've created those objects, you can use
them in your expression tree wherever you need.

Second, you need to use a subset of the Reflection APIs to create a MethodInfo object so that you can create an expression tree to access that method.
You must limit yourself to the subset of the Reflection APIs that are available on the .NET Core platform. Again, these techniques will extend to other
expression trees.

You aren't limited in what you can build using these APIs. However, the more complicated expression tree that you want to build, the more difficult the
code is to manage and to read.

Let's build an expression tree that is the equivalent of this code:

Notice above that I did not build the expression tree, but simply the delegate. Using the Expression class, you can't build statement lambdas. Here's the
code that is required to build the same functionality. It's complicated by the fact that there isn't an API to build a while loop, instead you need to build a
loop that contains a conditional test, and a label target to break out of the loop.

Examining the APIs

The code to build the expression tree for the factorial function is quite a bit longer, more complicated, and it's riddled with labels and break statements
and other elements we'd like to avoid in our everyday coding tasks.

For this section, I've also updated the visitor code to visit every node in this expression tree and write out information about the nodes that are created
in this sample. You can view or download the sample code at the dotnet/docs GitHub repository. Experiment for yourself by building and running the
samples. For download instructions, see Samples and Tutorials.

The expression tree APIs are some of the more difficult to navigate in .NET Core, but that's fine. Their purpose is a rather complex undertaking: writing
code that generates code at runtime. They are necessarily complicated to provide a balance between supporting all the control structures available in
the C# language and keeping the surface area of the APIs as small as reasonable. This balance means that many control structures are represented not
by their C# constructs, but by constructs that represent the underlying logic that the compiler generates from these higher level constructs.

Also, at this time, there are C# expressions that cannot be built directly using Expression class methods. In general, these will be the newest operators
and expressions added in C# 5 and C# 6. (For example, async expressions cannot be built, and the new ?. operator cannot be directly created.)

Next -- Translating Expressions

https://github.com/dotnet/samples/tree/master/csharp/expression-trees

Translating Expression Trees
5/4/2018 • 6 minutes to read • Edit Online

Translating is Visiting

private static Expression ReplaceNodes(Expression original)
{
 if (original.NodeType == ExpressionType.Constant)
 {
 return Expression.Multiply(original, Expression.Constant(10));
 }
 else if (original.NodeType == ExpressionType.Add)
 {
 var binaryExpression = (BinaryExpression)original;
 return Expression.Add(
 ReplaceNodes(binaryExpression.Left),
 ReplaceNodes(binaryExpression.Right));
 }
 return original;
}

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);
var sum = ReplaceNodes(addition);
var executableFunc = Expression.Lambda(sum);

var func = (Func<int>)executableFunc.Compile();
var answer = func();
Console.WriteLine(answer);

Traversing and Executing an Addition

Previous -- Building Expressions

In this final section, you'll learn how to visit each node in an expression tree while building a modified copy of that expression tree. These are the
techniques that you will use in two important scenarios. The first is to understand the algorithms expressed by an expression tree so that it can be
translated into another environment. The second is when you want to change the algorithm that has been created. This might be to add logging,
intercept method calls and track them, or other purposes.

The code you build to translate an expression tree is an extension of what you've already seen to visit all the nodes in a tree. When you translate an
expression tree, you visit all the nodes, and while visiting them, build the new tree. The new tree may contain references to the original nodes, or new
nodes that you have placed in the tree.

Let's see this in action by visiting an expression tree, and creating a new tree with some replacement nodes. In this example, let's replace any constant
with a constant that is ten times larger. Otherwise, we'll leave the expression tree intact. Rather than reading the value of the constant, and replacing it
with a new constant, we'll make this replacement by replacing the constant node with a new node that performs the multiplication.

Here, once you find a constant node, you create a new multiplication node whose children are the original constant, and the constant 10 :

By replacing the original node with the substitute, a new tree is formed that contains our modifications. We can verify that by compiling and executing
the replaced tree.

Building a new tree is a combination of visiting the nodes in the existing tree, and creating new nodes and inserting them into the tree.

This example shows the importance of expression trees being immutable. Notice that the new tree created above contains a mixture of newly created
nodes, and nodes from the existing tree. That's safe, because the nodes in the existing tree cannot be modified. This can result in significant memory
efficiencies. The same nodes can be used throughout a tree, or in multiple expression trees. Since nodes can't be modified, the same node can be reused
whenever its needed.

Let's verify this by building a second visitor that walks the tree of addition nodes and computes the result. You can do this by making a couple
modifications to the vistor that you've seen so far. In this new version, the visitor will return the partial sum of the addition operation up to this point.
For a constant expression, that is simply the value of the constant expression. For an addition expression, the result is the sum of the left and right
operands, once those trees have been traversed.

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-translating.md

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var three= Expression.Constant(3, typeof(int));
var four = Expression.Constant(4, typeof(int));
var addition = Expression.Add(one, two);
var add2 = Expression.Add(three, four);
var sum = Expression.Add(addition, add2);

// Declare the delegate, so we can call it
// from itself recursively:
Func<Expression, int> aggregate = null;
// Aggregate, return constants, or the sum of the left and right operand.
// Major simplification: Assume every binary expression is an addition.
aggregate = (exp) =>
 exp.NodeType == ExpressionType.Constant ?
 (int)((ConstantExpression)exp).Value :
 aggregate(((BinaryExpression)exp).Left) + aggregate(((BinaryExpression)exp).Right);

var theSum = aggregate(sum);
Console.WriteLine(theSum);

private static int Aggregate(Expression exp)
{
 if (exp.NodeType == ExpressionType.Constant)
 {
 var constantExp = (ConstantExpression)exp;
 Console.Error.WriteLine($"Found Constant: {constantExp.Value}");
 return (int)constantExp.Value;
 }
 else if (exp.NodeType == ExpressionType.Add)
 {
 var addExp = (BinaryExpression)exp;
 Console.Error.WriteLine("Found Addition Expression");
 Console.Error.WriteLine("Computing Left node");
 var leftOperand = Aggregate(addExp.Left);
 Console.Error.WriteLine($"Left is: {leftOperand}");
 Console.Error.WriteLine("Computing Right node");
 var rightOperand = Aggregate(addExp.Right);
 Console.Error.WriteLine($"Right is: {rightOperand}");
 var sum = leftOperand + rightOperand;
 Console.Error.WriteLine($"Computed sum: {sum}");
 return sum;
 }
 else throw new NotSupportedException("Haven't written this yet");
}

10
Found Addition Expression
Computing Left node
Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Constant: 2
Right is: 2
Computed sum: 3
Left is: 3
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 10
10

There's quite a bit of code here, but the concepts are very approachable. This code visits children in a depth first search. When it encounters a constant
node, the visitor returns the value of the constant. After the visitor has visited both children, those children will have computed the sum computed for
that sub-tree. The addition node can now compute its sum. Once all the nodes in the expression tree have been visited, the sum will have been
computed. You can trace the execution by running the sample in the debugger and tracing the execution.

Let's make it easier to trace how the nodes are analyzed and how the sum is computed by travsersing the tree. Here's an updated version of the
Aggregate method that includes quite a bit of tracing information:

Running it on the same expression yields the following output:

Trace the output and follow along in the code above. You should be able to work out how the code visits each node and computes the sum as it goes

Expression<Func<int> sum1 = () => 1 + (2 + (3 + 4));

Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 2
Left is: 2
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 9
Right is: 9
Computed sum: 10
10

Learning More

through the tree and finds the sum.

Now, let's look at a different run, with the expression given by sum1 :

Here's the output from examining this expression:

While the final answer is the same, the tree traversal is completely different. The nodes are traveled in a different order, because the tree was
constructed with different operations occurring first.

This sample shows a small subset of the code you would build to traverse and interpret the algorithms represented by an expression tree. For a
complete discussion of all the work necessary to build a general purpose library that translates expression trees into another language, please read this
series by Matt Warren. It goes into great detail on how to translate any of the code you might find in an expression tree.

I hope you've now seen the true power of expression trees. You can examine a set of code, make any changes you'd like to that code, and execute the
changed version. Because the expression trees are immutable, you can create new trees by using the components of existing trees. This minimizes the
amount of memory needed to create modified expression trees.

Next -- Summing up

http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx

Expression Trees Summary
5/4/2018 • 2 minutes to read • Edit Online

Limitations

Previous -- Translating Expressions

In this series, you've seen how you can use expression trees to create dynamic programs that interpret code as data and build new functionality based on
that code.

You can examine expression trees to understand the intent of an algorithm. You can not only examine that code. You can build new expression trees that
represent modified versions of the original code.

You can also use expression trees to look at an algorithm, and translate that algorithm into another language or environment.

There are some newer C# language elements that don't translate well into expression trees. Expression trees cannot contain await expressions, or
async lambda expressions. Many of the features added in the C# 6 release don't appear exactly as written in expression trees. Instead, newer features

will be exposed in expressions trees in the equivalent, earlier syntax. This may not be as much of a limitation as you might think. In fact, it means that
your code that interprets expression trees will likely still work the same when new language features are introduced.

Even with these limitations, expression trees do enable you to create dynamic algorithms that rely on interpreting and modifying code that is
represented as a data structure. It's a powerful tool, and it's one of the features of the .NET ecosystem that enables rich libraries such as Entity
Framework to accomplish what they do.

https://github.com/dotnet/docs/blob/master/docs/csharp/expression-trees-summary.md

Interoperability (C# Programming Guide)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

C# Language Specification

See Also

Interoperability enables you to preserve and take advantage of existing investments in unmanaged code. Code that runs under the control of the
common language runtime (CLR) is called managed code, and code that runs outside the CLR is called unmanaged code. COM, COM+, C++
components, ActiveX components, and Microsoft Win32 API are examples of unmanaged code.

The .NET Framework enables interoperability with unmanaged code through platform invoke services, the System.Runtime.InteropServices
namespace, C++ interoperability, and COM interoperability (COM interop).

Interoperability Overview
Describes methods to interoperate between C# managed code and unmanaged code.

How to: Access Office Interop Objects by Using Visual C# Features
Describes features that are introduced in Visual C# to facilitate Office programming.

How to: Use Indexed Properties in COM Interop Programming
Describes how to use indexed properties to access COM properties that have parameters.

How to: Use Platform Invoke to Play a Wave File
Describes how to use platform invoke services to play a .wav sound file on the Windows operating system.

Walkthrough: Office Programming
Shows how to create an Excel workbook and a Word document that contains a link to the workbook.

Example COM Class
Demonstrates how to expose a C# class as a COM object.

For more information, see the C# Language Specification. The language specification is the definitive source for C# syntax and usage.

Marshal.ReleaseComObject
C# Programming Guide
Interoperating with Unmanaged Code
Walkthrough: Office Programming

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/interop/index.md
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/interoperability-overview
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-access-office-onterop-objects
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-use-indexed-properties-in-com-interop-rogramming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/how-to-use-platform-invoke-to-play-a-wave-file
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/walkthrough-office-programming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/example-com-class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshal.releasecomobject
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/framework/interop/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/walkthrough-office-programming

Documenting your code with XML comments
5/4/2018 • 28 minutes to read • Edit Online

/// <summary>
/// This class does something.
/// </summary>
public class SomeClass
{

}

Walkthrough

XML documentation comments are a special kind of comment, added above the definition of any user-defined type or member. They are special
because they can be processed by the compiler to generate an XML documentation file at compile time. The compiler generated XML file can be
distributed alongside your .NET assembly so that Visual Studio and other IDEs can use IntelliSense to show quick information about types or members.
Additionally, the XML file can be run through tools like DocFX and Sandcastle to generate API reference websites.

XML documentation comments, like all other comments, are ignored by the compiler.

You can generate the XML file at compile time by doing one of the following:

<DocumentationFile>bin\$(Configuration)\$(TargetFramework)\$(AssemblyName).xml</DocumentationFile>

<DocumentationFile>bin\Debug\netcoreapp1.0\App.xml</DocumentationFile>

If you are developing an application with .NET Core from the command line, you can add a DocumentationFile element to the <PropertyGroup>

section of your .csproj project file. The following example generates an XML file in the project directory with the same root filename as the
assembly:

You can also specify the exact absolute or relative path and name of the XML file. The following example generates the XML file in the same
directory as the debug version of an application:

If you are developing an application using Visual Studio, right-click on the project and select Properties. In the properties dialog, select the Build
tab, and check XML documentation file. You can also change the location to which the compiler writes the file.

If you are compiling a .NET Framework application from the command line, add the /doc compiler option when compiling.

XML documentation comments use triple forward slashes (///) and an XML formatted comment body. For example:

Let's walk through documenting a very basic math library to make it easy for new developers to understand/contribute and for third party developers
to use.

Here's code for the simple math library:

https://github.com/dotnet/docs/blob/master/docs/csharp/codedoc.md
https://dotnet.github.io/docfx/
https://github.com/EWSoftware/SHFB
http://docs.microsoft.com/visualstudio/msbuild/common-msbuild-project-properties
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/doc-compiler-option

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
public class Math
{
 // Adds two integers and returns the result
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Adds two doubles and returns the result
 public static double Add(double a, double b)
 {
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Subtracts an integer from another and returns the result
 public static int Subtract(int a, int b)
 {
 return a - b;
 }

 // Subtracts a double from another and returns the result
 public static double Subtract(double a, double b)
 {
 return a - b;
 }

 // Multiplies two intergers and returns the result
 public static int Multiply(int a, int b)
 {
 return a * b;
 }

 // Multiplies two doubles and returns the result
 public static double Multiply(double a, double b)
 {
 return a * b;
 }

 // Divides an integer by another and returns the result
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 // Divides a double by another and returns the result
 public static double Divide(double a, double b)
 {
 return a / b;
 }
}

<summary><summary>

The sample library supports four major arithmetic operations add , subtract , multiply and divide on int and double data types.

Now you want to be able to create an API reference document from your code for third party developers who use your library but don't have access to
the source code. As mentioned earlier XML documentation tags can be used to achieve this, You will now be introduced to the standard XML tags the
C# compiler supports.

The <summary> tag adds brief information about a type or member. I'll demonstrate its use by adding it to the Math class definition and the first Add

method. Feel free to apply it to the rest of your code.

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 // Adds two integers and returns the result
 /// <summary>
 /// Adds two integers and returns the result.
 /// </summary>
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }
}

<remarks><remarks>

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// This class can add, subtract, multiply and divide.
/// </remarks>
public class Math
{

}

<returns><returns>

// Adds two integers and returns the result
/// <summary>
/// Adds two integers and returns the result.
/// </summary>
/// <returns>
/// The sum of two integers.
/// </returns>
public static int Add(int a, int b)
{
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
}

<value><value>

The <summary> tag is very important, and we recommend that you include it because its content is the primary source of type or member information
in IntelliSense or an API reference document.

The <remarks> tag supplements the information about types or members that the <summary> tag provides. In this example, you'll just add it to the class.

The <returns> tag describes the return value of a method declaration. As before, the following example illustrates the <returns> tag on the first Add

method. You can do the same on other methods.

The <value> tag is similar to the <returns> tag, except that you use it for properties. Assuming your Math library had a static property called PI ,
here's how you'd use this tag:

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// This class can add, subtract, multiply and divide.
/// These operations can be performed on both integers and doubles
/// </remarks>
public class Math
{
 /// <value>Gets the value of PI.</value>
 public static double PI { get; }
}

<example><example>

// Adds two integers and returns the result
/// <summary>
/// Adds two integers and returns the result.
/// </summary>
/// <returns>
/// The sum of two integers.
/// </returns>
/// <example>
/// <code>
/// int c = Math.Add(4, 5);
/// if (c > 10)
/// {
/// Console.WriteLine(c);
/// }
/// </code>
/// </example>
public static int Add(int a, int b)
{
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
}

<para><para>

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// <para>This class can add, subtract, multiply and divide.</para>
/// <para>These operations can be performed on both integers and doubles.</para>
/// </remarks>
public class Math
{

}

<c><c>

You use the <example> tag to include an example in your XML documentation. This involves using the child <code> tag.

The code tag preserves line breaks and indentation for longer examples.

You use the <para> tag to format the content within its parent tag. <para> is usually used inside a tag, such as <remarks> or <returns> , to divide text
into paragraphs. You can format the contents of the <remarks> tag for your class definition.

Still on the topic of formatting, you use the <c> tag for marking part of text as code. It's like the <code> tag but inline. It's useful when you want to
show a quick code example as part of a tag's content. Let's update the documentation for the Math class.

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{

}

<exception><exception>
By using the <exception> tag, you let your developers know that a method can throw specific exceptions. Looking at your Math library, you can see
that both Add methods throw an exception if a certain condition is met. Not so obvious, though, is that integer Divide method throws as well if the b

parameter is zero. Now add exception documentation to this method.

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Adds two integers and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than 0.</exception>
 public static int Add(int a, int b)
 {
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 /// <summary>
 /// Adds two doubles and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than zero.</exception>
 public static double Add(double a, double b)
 {
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 /// <summary>
 /// Divides an integer by another and returns the result.
 /// </summary>
 /// <returns>
 /// The division of two integers.
 /// </returns>
 /// <exception cref="System.DivideByZeroException">Thrown when a division by zero occurs.</exception>
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 /// <summary>
 /// Divides a double by another and returns the result.
 /// </summary>
 /// <returns>
 /// The division of two doubles.
 /// </returns>
 /// <exception cref="System.DivideByZeroException">Thrown when a division by zero occurs.</exception>
 public static double Divide(double a, double b)
 {
 return a / b;
 }
}

<see><see>

The cref attribute represents a reference to an exception that is available from the current compilation environment. This can be any type defined in
the project or a referenced assembly. The compiler will issue a warning if its value cannot be resolved.

The <see> tag lets you create a clickable link to a documentation page for another code element. In our next example, we'll create a clickable link
between the two Add methods.

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Adds two integers and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than 0.</exception>
 /// See <see cref="Math.Add(double, double)"/> to add doubles.
 public static int Add(int a, int b)
 {
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 /// <summary>
 /// Adds two doubles and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than zero.</exception>
 /// See <see cref="Math.Add(int, int)"/> to add integers.
 public static double Add(double a, double b)
 {
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }
}

<seealso><seealso>

The cref is a required attribute that represents a reference to a type or its member that is available from the current compilation environment. This
can be any type defined in the project or a referenced assembly.

You use the <seealso> tag in the same way you do the <see> tag. The only difference is that its content is typically placed in a "See Also" section. Here
we'll add a seealso tag on the integer Add method to reference other methods in the class that accept integer parameters:

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Adds two integers and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than 0.</exception>
 /// See <see cref="Math.Add(double, double)"/> to add doubles.
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 public static int Add(int a, int b)
 {
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }
}

<param><param>

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Adds two doubles and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than zero.</exception>
 /// See <see cref="Math.Add(int, int)"/> to add integers.
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Add(double a, double b)
 {
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }
}

<typeparam><typeparam>

The cref attribute represents a reference to a type or its member that is available from the current compilation environment. This can be any type
defined in the project or a referenced assembly.

You use the <param> tag to describe a method's parameters. Here's an example on the double Add method: The parameter the tag describes is
specified in the required name attribute.

You use <typeparam> tag just like the <param> tag but for generic type or method declarations to describe a generic parameter. Add a quick generic
method to your Math class to check if one quantity is greater than another.

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Checks if an IComparable is greater than another.
 /// </summary>
 /// <typeparam name="T">A type that inherits from the IComparable interface.</typeparam>
 public static bool GreaterThan<T>(T a, T b) where T : IComparable
 {
 return a.CompareTo(b) > 0;
 }
}

<paramref><paramref>

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than zero.</exception>
 /// See <see cref="Math.Add(int, int)"/> to add integers.
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Add(double a, double b)
 {
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }
}

<typeparamref><typeparamref>

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
 /// <summary>
 /// Checks if an IComparable <typeparamref name="T"/> is greater than another.
 /// </summary>
 /// <typeparam name="T">A type that inherits from the IComparable interface.</typeparam>
 public static bool GreaterThan<T>(T a, T b) where T : IComparable
 {
 return a.CompareTo(b) > 0;
 }
}

<list><list>

Sometimes you might be in the middle of describing what a method does in what could be a <summary> tag, and you might want to make a reference to
a parameter. The <paramref> tag is great for just this. Let's update the summary of our double based Add method. Like the <param> tag the parameter
name is specified in the required name attribute.

You use <typeparamref> tag just like the <paramref> tag but for generic type or method declarations to describe a generic parameter. You can use the
same generic method you previously created.

You use the <list> tag to format documentation information as an ordered list, unordered list or table. Make an unordered list of every math

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// <list type="bullet">
/// <item>
/// <term>Add</term>
/// <description>Addition Operation</description>
/// </item>
/// <item>
/// <term>Subtract</term>
/// <description>Subtraction Operation</description>
/// </item>
/// <item>
/// <term>Multiply</term>
/// <description>Multiplication Operation</description>
/// </item>
/// <item>
/// <term>Divide</term>
/// <description>Division Operation</description>
/// </item>
/// </list>
/// </summary>
public class Math
{

}

Putting it all togetherPutting it all together

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// <list type="bullet">
/// <item>
/// <term>Add</term>
/// <description>Addition Operation</description>
/// </item>
/// <item>
/// <term>Subtract</term>
/// <description>Subtraction Operation</description>
/// </item>
/// <item>
/// <term>Multiply</term>
/// <description>Multiplication Operation</description>
/// </item>
/// <item>
/// <term>Divide</term>
/// <description>Division Operation</description>
/// </item>
/// </list>
/// </summary>
/// <remarks>
/// <para>This class can add, subtract, multiply and divide.</para>
/// <para>These operations can be performed on both integers and doubles.</para>
/// </remarks>
public class Math
{
 // Adds two integers and returns the result
 /// <summary>
 /// Adds two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Add(4, 5);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max

operation your Math library supports.

You can make an ordered list or table by changing the type attribute to number or table , respectively.

If you've followed this tutorial and applied the tags to your code where necessary, your code should now look similar to the following:

 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than 0.</exception>
 /// See <see cref="Math.Add(double, double)"/> to add doubles.
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Adds two doubles and returns the result
 /// <summary>
 /// Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The sum of two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Add(4.5, 5.4);
 /// if (c > 10)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.OverflowException">Thrown when one parameter is max
 /// and the other is greater than 0.</exception>
 /// See <see cref="Math.Add(int, int)"/> to add integers.
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>
 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Add(double a, double b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Subtracts an integer from another and returns the result
 /// <summary>
 /// Subtracts <paramref name="b"/> from <paramref name="a"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The difference between two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Subtract(4, 5);
 /// if (c > 1)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Subtract(double, double)"/> to subtract doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Subtract(int a, int b)
 {
 return a - b;
 }

 // Subtracts a double from another and returns the result
 /// <summary>
 /// Subtracts a double <paramref name="b"/> from another double <paramref name="a"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The difference between two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Subtract(4.5, 5.4);
 /// if (c > 1)
 /// {

 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Subtract(int, int)"/> to subtract integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>
 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Subtract(double a, double b)
 {
 return a - b;
 }

 // Multiplies two intergers and returns the result
 /// <summary>
 /// Multiplies two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The product of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Multiply(4, 5);
 /// if (c > 100)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Multiply(double, double)"/> to multiply doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Subtract(int, int)"/>
 /// <seealso cref="Math.Divide(int, int)"/>
 /// <param name="a">An integer.</param>
 /// <param name="b">An integer.</param>
 public static int Multiply(int a, int b)
 {
 return a * b;
 }

 // Multiplies two doubles and returns the result
 /// <summary>
 /// Multiplies two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The product of two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Multiply(4.5, 5.4);
 /// if (c > 100.0)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// See <see cref="Math.Multiply(int, int)"/> to multiply integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Divide(double, double)"/>
 /// <param name="a">A double precision number.</param>
 /// <param name="b">A double precision number.</param>
 public static double Multiply(double a, double b)
 {
 return a * b;
 }

 // Divides an integer by another and returns the result
 /// <summary>
 /// Divides an integer <paramref name="a"/> by another integer <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The quotient of two integers.
 /// </returns>
 /// <example>
 /// <code>
 /// int c = Math.Divide(4, 5);
 /// if (c > 1)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
 /// See <see cref="Math.Divide(double, double)"/> to divide doubles.
 /// <seealso cref="Math.Add(int, int)"/>
 /// <seealso cref="Math.Subtract(int, int)"/>

 /// <seealso cref="Math.Multiply(int, int)"/>
 /// <param name="a">An integer dividend.</param>
 /// <param name="b">An integer divisor.</param>
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 // Divides a double by another and returns the result
 /// <summary>
 /// Divides a double <paramref name="a"/> by another double <paramref name="b"/> and returns the result.
 /// </summary>
 /// <returns>
 /// The quotient of two doubles.
 /// </returns>
 /// <example>
 /// <code>
 /// double c = Math.Divide(4.5, 5.4);
 /// if (c > 1.0)
 /// {
 /// Console.WriteLine(c);
 /// }
 /// </code>
 /// </example>
 /// <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
 /// See <see cref="Math.Divide(int, int)"/> to divide integers.
 /// <seealso cref="Math.Add(double, double)"/>
 /// <seealso cref="Math.Subtract(double, double)"/>
 /// <seealso cref="Math.Multiply(double, double)"/>
 /// <param name="a">A double precision dividend.</param>
 /// <param name="b">A double precision divisor.</param>
 public static double Divide(double a, double b)
 {
 return a / b;
 }
}

<include><include>

<docs>
 <members name="math">
 <Math>
 <summary>
 The main <c>Math</c> class.
 Contains all methods for performing basic math functions.
 </summary>
 <remarks>
 <para>This class can add, subtract, multiply and divide.</para>
 <para>These operations can be performed on both integers and doubles.</para>
 </remarks>
 </Math>
 <AddInt>
 <summary>
 Adds two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The sum of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Add(4, 5);
 if (c > 10)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.OverflowException">Thrown when one parameter is max
 and the other is greater than 0.</exception>
 See <see cref="Math.Add(double, double)"/> to add doubles.
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>
 </AddInt>
 <AddDouble>
 <summary>
 Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.

From your code, you can generate a detailed documentation website complete with clickable cross-references. But you're faced with another problem:
your code has become hard to read. There's so much information to sift through that this is going to be a nightmare for any developer who wants to
contribute to this code. Thankfully there's an XML tag that can help you deal with this:

The <include> tag lets you refer to comments in a separate XML file that describe the types and members in your source code, as opposed to placing
documentation comments directly in your source code file.

Now you're going to move all your XML tags into a separate XML file named docs.xml . Feel free to name the file whatever you want.

 Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The sum of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Add(4.5, 5.4);
 if (c > 10)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.OverflowException">Thrown when one parameter is max
 and the other is greater than 0.</exception>
 See <see cref="Math.Add(int, int)"/> to add integers.
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </AddDouble>
 <SubtractInt>
 <summary>
 Subtracts <paramref name="b"/> from <paramref name="a"/> and returns the result.
 </summary>
 <returns>
 The difference between two integers.
 </returns>
 <example>
 <code>
 int c = Math.Subtract(4, 5);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Subtract(double, double)"/> to subtract doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>
 </SubtractInt>
 <SubtractDouble>
 <summary>
 Subtracts a double <paramref name="b"/> from another double <paramref name="a"/> and returns the result.
 </summary>
 <returns>
 The difference between two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Subtract(4.5, 5.4);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Subtract(int, int)"/> to subtract integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </SubtractDouble>
 <MultiplyInt>
 <summary>
 Multiplies two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The product of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Multiply(4, 5);
 if (c > 100)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Multiply(double, double)"/> to multiply doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Divide(int, int)"/>
 <param name="a">An integer.</param>
 <param name="b">An integer.</param>

 <param name="b">An integer.</param>
 </MultiplyInt>
 <MultiplyDouble>
 <summary>
 Multiplies two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The product of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Multiply(4.5, 5.4);
 if (c > 100.0)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 See <see cref="Math.Multiply(int, int)"/> to multiply integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Divide(double, double)"/>
 <param name="a">A double precision number.</param>
 <param name="b">A double precision number.</param>
 </MultiplyDouble>
 <DivideInt>
 <summary>
 Divides an integer <paramref name="a"/> by another integer <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The quotient of two integers.
 </returns>
 <example>
 <code>
 int c = Math.Divide(4, 5);
 if (c > 1)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
 See <see cref="Math.Divide(double, double)"/> to divide doubles.
 <seealso cref="Math.Add(int, int)"/>
 <seealso cref="Math.Subtract(int, int)"/>
 <seealso cref="Math.Multiply(int, int)"/>
 <param name="a">An integer dividend.</param>
 <param name="b">An integer divisor.</param>
 </DivideInt>
 <DivideDouble>
 <summary>
 Divides a double <paramref name="a"/> by another double <paramref name="b"/> and returns the result.
 </summary>
 <returns>
 The quotient of two doubles.
 </returns>
 <example>
 <code>
 double c = Math.Divide(4.5, 5.4);
 if (c > 1.0)
 {
 Console.WriteLine(c);
 }
 </code>
 </example>
 <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
 See <see cref="Math.Divide(int, int)"/> to divide integers.
 <seealso cref="Math.Add(double, double)"/>
 <seealso cref="Math.Subtract(double, double)"/>
 <seealso cref="Math.Multiply(double, double)"/>
 <param name="a">A double precision dividend.</param>
 <param name="b">A double precision divisor.</param>
 </DivideDouble>
 </members>
</docs>

In the above XML, each member's documentation comments appear directly inside a tag named after what they do. You can choose your own strategy.
Now that you have your XML comments in a separate file, let's see how your code can be made more readable by using the <include> tag:

/*
 The main Math class
 Contains all methods for performing basic math functions
*/
/// <include file='docs.xml' path='docs/members[@name="math"]/Math/*'/>
public class Math
{
 // Adds two integers and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/AddInt/*'/>
 public static int Add(int a, int b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Adds two doubles and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/AddDouble/*'/>
 public static double Add(double a, double b)
 {
 // If any parameter is equal to the max value of an integer
 // and the other is greater than zero
 if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
 throw new System.OverflowException();

 return a + b;
 }

 // Subtracts an integer from another and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/SubtractInt/*'/>
 public static int Subtract(int a, int b)
 {
 return a - b;
 }

 // Subtracts a double from another and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/SubtractDouble/*'/>
 public static double Subtract(double a, double b)
 {
 return a - b;
 }

 // Multiplies two intergers and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/MultiplyInt/*'/>
 public static int Multiply(int a, int b)
 {
 return a * b;
 }

 // Multiplies two doubles and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/MultiplyDouble/*'/>
 public static double Multiply(double a, double b)
 {
 return a * b;
 }

 // Divides an integer by another and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/DivideInt/*'/>
 public static int Divide(int a, int b)
 {
 return a / b;
 }

 // Divides a double by another and returns the result
 /// <include file='docs.xml' path='docs/members[@name="math"]/DivideDouble/*'/>
 public static double Divide(double a, double b)
 {
 return a / b;
 }
}

User Defined TagsUser Defined Tags

And there you have it: our code is back to being readable, and no documentation information has been lost.

The filename attribute represents the name of the XML file containing the documentation.

The path attribute represents an XPath query to the tag name present in the specified filename .

The name attribute represents the name specifier in the tag that precedes the comments.

The id attribute which can be used in place of name represents the ID for the tag that precedes the comments.

All the tags outlined above represent those that are recognized by the C# compiler. However, a user is free to define their own tags. Tools like Sandcastle

https://msdn.microsoft.com/library/ms256115.aspx

Recommendations

See also

bring support for extra tags like <event> , <note> and even support documenting namespaces. Custom or in-house documentation generation tools
can also be used with the standard tags and multiple output formats from HTML to PDF can be supported.

Documenting code is recommended for many reasons. What follows are some best practices, general use case scenarios, and things that you should
know when using XML documentation tags in your C# code.

For the sake of consistency, all publicly visible types and their members should be documented. If you must do it, do it all.
Private members can also be documented using XML comments. However, this exposes the inner (potentially confidential) workings of your library.
At a bare minimum, types and their members should have a <summary> tag because its content is needed for IntelliSense.
Documentation text should be written using complete sentences ending with full stops.
Partial classes are fully supported, and documentation information will be concatenated into a single entry for that type.
The compiler verifies the syntax of the <exception> , <include> , <param> , <see> , <seealso> and <typeparam> tags.
The compiler validates the parameters that contain file paths and references to other parts of the code.

XML Documentation Comments (C# Programming Guide)

Recommended Tags for Documentation Comments (C# Programming Guide)

http://ewsoftware.github.io/XMLCommentsGuide/html/81bf7ad3-45dc-452f-90d5-87ce2494a182.htm
http://ewsoftware.github.io/XMLCommentsGuide/html/4302a60f-e4f4-4b8d-a451-5f453c4ebd46.htm
http://ewsoftware.github.io/XMLCommentsGuide/html/BD91FAD4-188D-4697-A654-7C07FD47EF31.htm
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/recommended-tags-for-documentation-comments

Versioning in C#
5/4/2018 • 5 minutes to read • Edit Online

Authoring Libraries

Semantic VersioningSemantic Versioning

Backwards CompatibilityBackwards Compatibility

NOTENOTE

Application Configuration FileApplication Configuration File

Consuming Libraries

Assembly Binding RedirectionAssembly Binding Redirection

In this tutorial you'll learn what versioning means in .NET. You'll also learn the factors to consider when versioning your library as well as upgrading to a
new version of the a library.

As a developer who has created .NET libraries for public use, you've most likely been in situations where you have to roll out new updates. How you go
about this process matters a lot as you need to ensure that there's a seamless transition of existing code to the new version of your library. Here are
several things to consider when creating a new release:

Semantic versioning (SemVer for short) is a naming convention applied to versions of your library to signify specific milestone events. Ideally, the
version information you give your library should help developers determine the compatibility with their projects that make use of older versions of that
same library.

The most basic approach to SemVer is the 3 component format MAJOR.MINOR.PATCH , where:

MAJOR is incremented when you make incompatible API changes
MINOR is incremented when you add functionality in a backwards-compatible manner
PATCH is incremented when you make backwards-compatible bug fixes

There are also ways to specify other scenarios like pre-release versions etc. when applying version information to your .NET library.

As you release new versions of your library, backwards compatibility with previous versions will most likely be one of your major concerns. A new
version of your library is source compatible with a previous version if code that depends on the previous version can, when recompiled, work with the
new version. A new version of your library is binary compatible if an application that depended on the old version can, without recompilation, work with
the new version.

Here are some things to consider when trying to maintain backwards compatibility with older versions of your library:

Virtual methods: When you make a virtual method non-virtual in your new version it means that projects that override that method will have to be
updated. This is a huge breaking change and is strongly discouraged.
Method signatures: When updating a method behaviour requires you to change its signature as well, you should instead create an overload so that
code calling into that method will still work. You can always manipulate the old method signature to call into the new method signature so that
implementation remains consistent.
Obsolete attribute: You can use this attribute in your code to specify classes or class members that are deprecated and likely to be removed in future
versions. This ensures developers utilizing your library are better prepared for breaking changes.
Optional Method Arguments: When you make previously optional method arguments compulsory or change their default value then all code that
does not supply those arguments will need to be updated.

Making compulsory arguments optional should have very little effect especially if it doesn't change the method's behaviour.

The easier you make it for your users to upgrade to the new version of your library, the more likely that they will upgrade sooner.

As a .NET developer there's a very high chance you've encountered the app.config file present in most project types. This simple configuration file can
go a long way into improving the rollout of new updates. You should generally design your libraries in such a way that information that is likely to
change regularly is stored in the app.config file, this way when such information is updated the config file of older versions just needs to be replaced
with the new one without the need for recompilation of the library.

As a developer that consumes .NET libraries built by other developers you're most likely aware that a new version of a library might not be fully
compatible with your project and you might often find yourself having to update your code to work with those changes.

Lucky for you C# and the .NET ecosystem comes with features and techniques that allow us to easily update our app to work with new versions of
libraries that might introduce breaking changes.

You can use the app.config file to update the version of a library your app uses. By adding what is called a binding redirect your can use the new
library version without having to recompile your app. The following example shows how you would update your app's app.config file to use the 1.0.1

patch version of ReferencedLibrary instead of the 1.0.0 version it was originally compiled with.

https://github.com/dotnet/docs/blob/master/docs/csharp/versioning.md
http://semver.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/common-attributes
https://msdn.microsoft.com/library/1fk1t1t0(v=vs.110).aspx
https://msdn.microsoft.com/library/7wd6ex19(v=vs.110).aspx

<dependentAssembly>
 <assemblyIdentity name="ReferencedLibrary" publicKeyToken="32ab4ba45e0a69a1" culture="en-us" />
 <bindingRedirect oldVersion="1.0.0" newVersion="1.0.1" />
</dependentAssembly>

NOTENOTE

newnew

public class BaseClass
{
 public void MyMethod()
 {
 Console.WriteLine("A base method");
 }
}

public class DerivedClass : BaseClass
{
 public new void MyMethod()
 {
 Console.WriteLine("A derived method");
 }
}

public static void Main()
{
 BaseClass b = new BaseClass();
 DerivedClass d = new DerivedClass();

 b.MyMethod();
 d.MyMethod();
}

A base method
A derived method

overrideoverride

This approach will only work if the new version of ReferencedLibrary is binary compatible with your app. See the Backwards Compatibility section above for changes
to look out for when determining compatibility.

You use the new modifier to hide inherited members of a base class. This is one way derived classes can respond to updates in base classes.

Take the following example:

Output

From the example above you can see how DerivedClass hides the MyMethod method present in BaseClass . This means that when a base class in the
new version of a library adds a member that already exists in your derived class, you can simply use the new modifier on your derived class member to
hide the base class member.

When no new modifier is specified, a derived class will by default hide conflicting members in a base class, although a compiler warning will be
generated the code will still compile. This means that simply adding new members to an existing class makes that new version of your library both
source and binary compatible with code that depends on it.

The override modifier means a derived implementation extends the implementation of a base class member rather than hides it. The base class
member needs to have the virtual modifier applied to it.

public class MyBaseClass
{
 public virtual string MethodOne()
 {
 return "Method One";
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override string MethodOne()
 {
 return "Derived Method One";
 }
}

public static void Main()
{
 MyBaseClass b = new MyBaseClass();
 MyDerivedClass d = new MyDerivedClass();

 Console.WriteLine("Base Method One: {0}", b.MethodOne());
 Console.WriteLine("Derived Method One: {0}", d.MethodOne());
}

Base Method One: Method One
Derived Method One: Derived Method One

Output

The override modifier is evaluated at compile time and the compiler will throw an error if it doesn't find a virtual member to override.

Your knowledge of the discussed techniques as well as your understanding of what situations to use them will go a long way to boost the ease of
transition between versions of a library.

How to (C#)
5/25/2018 • 3 minutes to read • Edit Online

General C# concepts

Class and struct membersClass and struct members

Working with collectionsWorking with collections

Working with strings

Convert between types

Equality and ordering comparisons

In the How to section of the C# Guide you can find quick answers to common questions. In some cases, articles may be listed in multiple sections. We
wanted to make them easy to find for multiple search paths.

There are several tips and tricks that are common C# developer practices.

Initialize objects using an object initializer.
Learn the differences between passing a struct and a class to a method.
How to use lambda expressions.
Resolve type name conflicts by using the global namespace alias.
Use operator overloading.
Implement and call a custom extension method.
Even C# programmers may want to use the My namespace from VB.
Create a new method for an enum type using extension methods.

You create classes and structs to implement your program. These techniques are commonly used when writing classes or structs.

Declare auto implemented properties.
Declare and use read/write properties.
Define constants.
Override the ToString method to provide string output.
Define abstract properties.
Use the xml documentation features to document your code.
Explicitly implement interface members to keep your public interface concise.
Explicitly implement members of two interfaces.

These articles help you work with collections of data.

Initialize a dictionary with a collection initializer.

Strings are the fundamental data type used to display or manipulate text. These articles demonstrate common practices with strings.

Compare strings.
Modify the contents of a string.
Determine if a string represents a number.
Use String.Split to separate strings.
Combine multiple strings into one.
Search for text in a string.

You may need to convert an object to a different type.

Determine if a string represents a number.
Convert between strings that represent hexadecimal numbers and the number.
Convert a string to a DateTime .
Convert a byte array to an int.
Convert a string to a number.
Use as and is to safely cast to a different type.
Define conversion operators for struct types.
Determine if a type is a nullable value type.
Convert between nullable and non-nullable value types.

You may create types that define their own rules for equality or define a natural ordering among objects of that type.

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-initialize-objects-by-using-an-object-initializer
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-know-the-difference-passing-a-struct-and-passing-a-class-to-a-method
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-use-lambda-expressions-outside-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-global-namespace-alias
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-use-operator-overloading-to-create-a-complex-number-class
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-implement-and-call-a-custom-extension-method
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/namespaces/how-to-use-the-my-namespace
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-create-a-new-method-for-an-enumeration
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-implement-a-lightweight-class-with-auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-declare-and-use-read-write-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-define-constants
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-override-the-tostring-method
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-define-abstract-properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/how-to-use-the-xml-documentation-features
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-interface-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/how-to-explicitly-implement-members-of-two-interfaces
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-initialize-a-dictionary-with-a-collection-initializer
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-determine-whether-a-string-represents-a-numeric-value
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/how-to-determine-whether-a-string-represents-a-numeric-value
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/how-to-convert-between-hexadecimal-strings-and-numeric-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/how-to-convert-a-byte-array-to-an-int
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/how-to-convert-a-string-to-a-number
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/how-to-safely-cast-by-using-as-and-is-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-implement-user-defined-conversions-between-structs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/how-to-identify-a-nullable-type
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/how-to-safely-cast-from-bool-to-bool

Exception handling

Delegates and events

LINQ practices

Multiple threads and async processing

Command line args to your program

Test for reference-based equality.
Define value-based equality for a type.

.NET programs report that methods did not successfully complete their work by throwing exceptions. In these articles you'll learn to work with
exceptions.

Handle exceptions using try and catch .
Cleanup resources using finally clauses.
Recover from non-CLS (Common Language Specification) exceptions.

Delegates and events provide a capability for strategies that involve loosely coupled blocks of code.

Declare, instantiate, and use delegates.
Combine multicast delegates.

Events provide a mechanism to publish or subscribe to notifications.

Subscribe and unsubscribe from events.
Implement events declared in interfaces.
Conform to .NET Framework guidelines when your code publishes events.
Raise events defined in base classes from derived classes.
Store event instances in a dictionary.
Implement custom event accessors.

L INQ enables you to write code to query any data source that supports the L INQ query expression pattern. These articles help you understand the
pattern and work with different data sources.

Query a collection.
Use lambda expressions in a query.
Use var in query expressions.
Return subsets of element properties from a query.
Write queries with complex filtering.
Sort elements of a data source.
Sort elements on multiple keys.
Control the type of a projection.
Count occurences of a value in a source sequence.
Calculate intermediate values.
Merge data from multiple sources.
Find the set difference between two sequences.
Debug empty query results.
Add custom methods to L INQ queries.

Modern programs often use asynchronous operations. These articles will help you learn to use these techniques.

Improve async performance using System.Threading.Tasks.Task.WhenAll .
Make multiple web requests in parallel using async and await .
Use a thread pool.

Typically, C# programs have command line arguments. These articles teach you to access and process those command line arguments.

Retrieve all command line arguments with for .
Retrieve all command line arguments with foreach .

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-test-for-reference-equality-identity
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-define-value-equality-for-a-type
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/how-to-handle-an-exception-using-try-catch
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/how-to-execute-cleanup-code-using-finally
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/how-to-catch-a-non-cls-exception
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-combine-delegates-multicast-delegates
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-subscribe-to-and-unsubscribe-from-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-interface-events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-publish-events-that-conform-to-net-framework-guidelines
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-raise-base-class-events-in-derived-classes
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-use-a-dictionary-to-store-event-instances
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/how-to-implement-custom-event-accessors
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-query-an-arraylist-with-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/how-to-use-lambda-expressions-in-a-query
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-use-implicitly-typed-local-variables-and-arrays-in-a-query-expression
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/how-to-return-subsets-of-element-properties-in-a-query
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-write-queries-with-complex-filtering
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-sort-elements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-sort-elements-on-multiple-keys
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-control-the-type-of-a-projection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-count-occurrences-of-a-word-in-a-string-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-calculate-intermediate-values
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-populate-object-collections-from-multiple-sources-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-find-the-set-difference-between-two-lists-linq
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-debug-empty-query-results-sets
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/how-to-add-custom-methods-for-linq-queries
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/how-to-extend-the-async-walkthrough-by-using-task-whenall
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/how-to-make-multiple-web-requests-in-parallel-by-using-async-and-await
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/threading/how-to-use-a-thread-pool
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/how-to-display-command-line-arguments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/how-to-access-command-line-arguments-using-foreach

How to: Parse Strings Using String.Split (C# Guide)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

string phrase = "The quick brown fox jumps over the lazy dog.";
string[] words = phrase.Split(' ');

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

string phrase = "The quick brown fox jumps over the lazy dog.";
string[] words = phrase.Split(' ');

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

char[] delimiterChars = { ' ', ',', '.', ':', '\t' };

string text = "one\ttwo three:four,five six seven";
System.Console.WriteLine($"Original text: '{text}'");

string[] words = text.Split(delimiterChars);
System.Console.WriteLine($"{words.Length} words in text:");

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

char[] delimiterChars = { ' ', ',', '.', ':', '\t' };

string text = "one\ttwo :,five six seven";
System.Console.WriteLine($"Original text: '{text}'");

string[] words = text.Split(delimiterChars);
System.Console.WriteLine($"{words.Length} words in text:");

foreach (var word in words)
{
 System.Console.WriteLine($"<{word}>");
}

The String.Split method creates an array of substrings by splitting the input string based on one or more delimiters. It is often the easiest way to
separate a string on word boundaries. It is also used to split strings on other specific characters or strings.

The C# examples in this article run in the Try.NET inline code runner and playground. Select the Run button to run an example in an interactive window. Once you
execute the code, you can modify it and run the modified code by selecting Run again. The modified code either runs in the interactive window or, if compilation fails,
the interactive window displays all C# compiler error messages.

The following code splits a common phrase into an array of strings for each word.

Every instance of a separator character produces a value in the returned array. Consecutive separator characters produce the empty string as a value in
the returned array. You can see this in the following example, which uses space as a separator :

This behavior makes it easier for formats like comma separated values (CSV) files representing tabular data. Consecutive commas represent a blank
column.

You can pass an optional StringSplitOptions.RemoveEmptyEntries parameter to exclude any empty strings in the returned array. For more complicated
processing of the returned collection, you can use L INQ to manipulate the result sequence.

String.Split can use multiple separator characters. The following example uses spaces, commas, periods, colons, and tabs, all passed in an array
containing these separating characters, to Split. The loop at the bottom of the code displays each of the words in the returned array.

Consecutive instances of any separator produce the empty string in the output array:

String.Split can take an array of strings (character sequences that act as separators for parsing the target string, instead of single characters).

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/parse-strings-using-split.md
https://docs.microsoft.com/dotnet/api/system.string.split
https://try.dot.net
https://docs.microsoft.com/dotnet/api/system.stringsplitoptions#System_StringSplitOptions_RemoveEmptyEntries
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/dotnet/api/system.string.split
https://docs.microsoft.com/dotnet/api/system.string.split
https://docs.microsoft.com/dotnet/api/system.string.split

string[] separatingChars = { "<<", "..." };

string text = "one<<two......three<four";
System.Console.WriteLine("Original text: '{0}'", text);

string[] words = text.Split(separatingChars, System.StringSplitOptions.RemoveEmptyEntries);
System.Console.WriteLine("{0} substrings in text:", words.Length);

foreach (var word in words)
{
 System.Console.WriteLine(word);
}

See Also

You can try these samples by looking at the code in our GitHub repository. Or you can download the samples as a zip file.

C# Programming Guide
Strings
.NET Regular Expressions

https://github.com/dotnet/samples/tree/master/snippets/csharp/how-to/strings
https://github.com/dotnet/samples/raw/master/snippets/csharp/how-to/strings.zip
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

How to: Concatenate Multiple Strings (C# Guide)
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

// Concatenation of literals is performed at compile time, not run time.
string text = "Historically, the world of data and the world of objects " +
"have not been well integrated. Programmers work in C# or Visual Basic " +
"and also in SQL or XQuery. On the one side are concepts such as classes, " +
"objects, fields, inheritance, and .NET Framework APIs. On the other side " +
"are tables, columns, rows, nodes, and separate languages for dealing with " +
"them. Data types often require translation between the two worlds; there are " +
"different standard functions. Because the object world has no notion of query, a " +
"query can only be represented as a string without compile-time type checking or " +
"IntelliSense support in the IDE. Transferring data from SQL tables or XML trees to " +
"objects in memory is often tedious and error-prone.";

System.Console.WriteLine(text);

string userName = "<Type your name here>";
string dateString = DateTime.Today.ToShortDateString();

// Use the + and += operators for one-time concatenations.
string str = "Hello " + userName + ". Today is " + dateString + ".";
System.Console.WriteLine(str);

str += " How are you today?";
System.Console.WriteLine(str);

string userName = "<Type your name here>";
string date = DateTime.Today.ToShortDateString();

// Use string interpolation to concatenate strings.
string str = $"Hello {userName}. Today is {date}.";
System.Console.WriteLine(str);

str = $"{str} How are you today?";
System.Console.WriteLine(str);

NOTENOTE

Concatenation is the process of appending one string to the end of another string. You concatenate strings by using the + operator. For string literals
and string constants, concatenation occurs at compile time; no run-time concatenation occurs. For string variables, concatenation occurs only at run
time.

The C# examples in this article run in the Try.NET inline code runner and playground. Select the Run button to run an example in an interactive window. Once you
execute the code, you can modify it and run the modified code by selecting Run again. The modified code either runs in the interactive window or, if compilation fails,
the interactive window displays all C# compiler error messages.

The following example uses concatenation to split a long string literal into smaller strings in order to improve readability in the source code. These parts
are concatenated into a single string at compile time. There is no run-time performance cost regardless of the number of strings involved.

To concatenate string variables, you can use the + or += operators, string interpolation or the String.Format, String.Concat, String.Join or
StringBuilder.Append methods. The + operator is easy to use and makes for intuitive code. Even if you use several + operators in one statement, the
string content is copied only once. The following code shows examples of using the + and += operators to concatenate strings:

In some expressions, it's easier to concatenate strings using string interpolation, as the following code shows:

In string concatenation operations, the C# compiler treats a null string the same as an empty string.

Other method to concatenate strings is String.Format. This method works well when you are building a string from a small number of component
strings.

In other cases you may be combining strings in a loop, where you don't know how many source strings you are combining, and the actual number of
source strings may be quite large. The StringBuilder class was designed for these scenarios. The following code uses the Append method of the
StringBuilder class to concatenate strings.

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/concatenate-multiple-strings.md
https://try.dot.net
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/interpolated
https://docs.microsoft.com/dotnet/api/system.string.format
https://docs.microsoft.com/dotnet/api/system.string.concat
https://docs.microsoft.com/dotnet/api/system.string.join
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder.append
https://docs.microsoft.com/dotnet/api/system.string.format
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder.append
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder

// Use StringBuilder for concatenation in tight loops.
var sb = new System.Text.StringBuilder();
for (int i = 0; i < 20; i++)
{
 sb.AppendLine(i.ToString());
}
System.Console.WriteLine(sb.ToString());

string[] words = { "The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog." };

var unreadablePhrase = string.Concat(words);
System.Console.WriteLine(unreadablePhrase);

var readablePhrase = string.Join(" ", words);
System.Console.WriteLine(readablePhrase);

string[] words = { "The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog." };

var phrase = words.Aggregate((partialPhrase, word) =>$"{partialPhrase} {word}");
System.Console.WriteLine(phrase);

See Also

You can read more about the reasons to choose string concatenation or the StringBuilder class

Another option to join strings from a collection is to use String.Concat method. Use String.Join method if source strings should be separated by a
delimeter. The following code combines an array of words using both methods:

At last, you can use L INQ and the Enumerable.Aggregate method to join strings from a collection. This method combines the source strings using a
lambda expression. The lambda expression does the work to add each string to the existing accumulation. The following example combines an array of
words by adding a space between each word in the array:

You can try these samples by looking at the code in our GitHub repository. Or you can download the samples as a zip file.

String
StringBuilder
C# Programming Guide
Strings

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder#StringAndSB
https://docs.microsoft.com/dotnet/api/system.string.concat
https://docs.microsoft.com/dotnet/api/system.string.join
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.aggregate
https://github.com/dotnet/samples/tree/master/snippets/csharp/how-to/strings
https://github.com/dotnet/samples/raw/master/snippets/csharp/how-to/strings.zip
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index

Parsing Date and Time Strings in .NET
5/2/2018 • 6 minutes to read • Edit Online

Parse

TIPTIP

NOTENOTE

string dateInput = "Jan 1, 2009";
DateTime parsedDate = DateTime.Parse(dateInput);
Console.WriteLine(parsedDate);
// Displays the following output on a system whose culture is en-US:
// 1/1/2009 12:00:00 AM

Parsing strings to convert them to DateTime objects requires you to specify information about how the dates and times are represented as text.
Different cultures use different orders for day, month, and year. Some time representations use a 24-hour clock, others specify "AM" and "PM." Some
applications need only the date. Others need only the time. Still others need to specify both the date and the time. The methods that convert strings to
DateTime objects enable you to provide detailed information about the formats you expect and the elements of a date and time your application needs.
There are three subtasks to correctly converting text into a DateTime:

1. You must specify the expected format of the text representing a date and time.
2. You may specify the culture for the format of a date time.
3. You may specify how missing components in the text representation are set in the date and time.

The Parse and TryParse methods convert many common representations of a date and time. The ParseExact and TryParseExact methods convert a
string representation that conforms to the pattern specified by a date and time format string. (See the articles on standard date and time format strings
and custom date and time format strings for details.)

The current DateTimeFormatInfo object provides more control over how text should be interpreted as a date and time. Properties of a
DateTimeFormatInfo describe the date and time separators, and the names of months, days, and eras, and the format for the "AM" and "PM"
designations. The current thread culture provides a DateTimeFormatInfo that represents the current culture. If you want a specific culture or custom
settings, you specify the IFormatProvider parameter of a parsing method. For the IFormatProvider parameter, specify a CultureInfo object, which
represents a culture, or a DateTimeFormatInfo object.

The text representing a date or time may be missing some information. For example, most people would assume the date "March 12" represents the
current year. Similarly, "March 2018" represents the month of March in the year 2018. Text representing time often does only includes hours, minutes,
and an AM/PM designation. Parsing methods handle this missing information by using reasonable defaults:

When only the time is present, the date portion uses the current date.
When only the date is present, the time portion is midnight.
When the year isn't specified in a date, the current year is used.
When the day of the month isn't specified, the first of the month is used.

If the date is present in the string, it must include the month and one of the day or year. If the time is present, it must include the hour, and either the
minutes or the AM/PM designator.

You can specify the NoCurrentDateDefault constant to override these defaults. When you use that constant, any missing year, month, or day properties
are set to the value 1 . The last example using Parse demonstrates this behavior.

In addition to a date and a time component, the string representation of a date and time can include an offset that indicates how much the time differs
from Coordinated Universal Time (UTC). For example, the string "2/14/2007 5:32:00 -7:00" defines a time that is seven hours earlier than UTC. If an
offset is omitted from the string representation of a time, parsing returns a DateTime object with its Kind property set to DateTimeKind.Unspecified. If
an offset is specified, parsing returns a DateTime object with its Kind property set to DateTimeKind.Local and its value adjusted to the local time zone of
your machine. You can modify this behavior by using a DateTimeStyles value with the parsing method.

The format provider is also used to interpret an ambiguous numeric date. It is not clear which components of the date represented by the string
"02/03/04" are the month, day, and year. The components are interpreted according to the order of similar date formats in the format provider.

The following example illustrates the use of the DateTime.Parse method to convert a string into a DateTime. This example uses the culture associated
with the current thread. If the CultureInfo associated with the current culture cannot parse the input string, a FormatException is thrown.

All the C# samples in this article run in your browser. Press the Run button to see the output. You can also edit them to experiment yourself.

These examples are available in the GitHub docs repo for both C# and VB. Or you can download the project as a zipfile for C# or VB.

https://github.com/dotnet/docs/blob/master/docs/standard/base-types/parsing-datetime.md
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime.parse
https://docs.microsoft.com/dotnet/api/system.datetime.tryparse
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/dotnet/api/system.datetime.tryparseexact
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.iformatprovider
https://docs.microsoft.com/dotnet/api/system.iformatprovider
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.globalization.datetimestyles#System_Globalization_DateTimeStyles_NoCurrentDateDefault
https://docs.microsoft.com/dotnet/api/system.datetime.parse
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime.kind
https://docs.microsoft.com/dotnet/api/system.datetimekind#System_DateTimeKind_Unspecified
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime.kind
https://docs.microsoft.com/dotnet/api/system.datetimekind#System_DateTimeKind_Local
https://docs.microsoft.com/dotnet/api/system.globalization.datetimestyles
https://docs.microsoft.com/dotnet/api/system.datetime.parse
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.formatexception
https://github.com/dotnet/samples/tree/master/snippets/csharp/how-to/conversions
https://github.com/dotnet/samples/tree/master/snippets/visualbasic/how-to/conversions
https://github.com/dotnet/samples/raw/master/snippets/csharp/how-to/conversions.zip
https://github.com/dotnet/samples/raw/master/snippets/visualbasic/how-to/conversions.zip

Dim MyString As String = "Jan 1, 2009"
Dim MyDateTime As DateTime = DateTime.Parse(MyString)
Console.WriteLine(MyDateTime)
' Displays the following output on a system whose culture is en-US:
' 1/1/2009 12:00:00 AM

CultureInfo MyCultureInfo = new CultureInfo("de-DE");
string MyString = "12 Juni 2008";
DateTime MyDateTime = DateTime.Parse(MyString, MyCultureInfo);
Console.WriteLine(MyDateTime);
// The example displays the following output:
// 6/12/2008 12:00:00 AM

Dim MyCultureInfo As CultureInfo = New CultureInfo("de-DE")
Dim MyString As String = "12 Juni 2008"
Dim MyDateTime As DateTime = DateTime.Parse(MyString, MyCultureInfo)
Console.WriteLine(MyDateTime)
' The example displays the following output:
' 6/12/2008 12:00:00 AM

CultureInfo MyCultureInfo = new CultureInfo("de-DE");
string MyString = "12 Juni 2008";
DateTime MyDateTime = DateTime.Parse(MyString, MyCultureInfo,
 DateTimeStyles.NoCurrentDateDefault);
Console.WriteLine(MyDateTime);
// The example displays the following output if the current culture is en-US:
// 6/12/2008 12:00:00 AM

Dim MyCultureInfo As CultureInfo = New CultureInfo("de-DE")
Dim MyString As String = "12 Juni 2008"
Dim MyDateTime As DateTime = DateTime.Parse(MyString, MyCultureInfo,
 DateTimeStyles.NoCurrentDateDefault)
Console.WriteLine(MyDateTime)
' The example displays the following output if the current culture is en-US:
' 6/12/2008 12:00:00 AM

ParseExact

CultureInfo MyCultureInfo = new CultureInfo("en-US");
string[] MyString = { " Friday, April 10, 2009", "Friday, April 10, 2009" };
foreach (string dateString in MyString)
{
 try
 {
 DateTime MyDateTime = DateTime.ParseExact(dateString, "D", MyCultureInfo);
 Console.WriteLine(MyDateTime);
 }
 catch (FormatException)
 {
 Console.WriteLine("Unable to parse '{0}'", dateString);
 }
}
// The example displays the following output:
// Unable to parse ' Friday, April 10, 2009'
// 4/10/2009 12:00:00 AM

You can also explicitly define the culture whose formatting conventions are used when you parse a string. You specify one of the standard
DateTimeFormatInfo objects returned by the CultureInfo.DateTimeFormat property. The following example uses a format provider to parse a German
string into a DateTime. It creates a CultureInfo representing the de-DE culture. That CultureInfo object ensures successful parsing of this particular
string. This precludes whatever setting is in the CurrentCulture of the CurrentThread.

However, although you can use overloads of the Parse method to specify custom format providers, the method does not support parsing non-standard
formats. To parse a date and time expressed in a non-standard format, use the ParseExact method instead.

 The following example uses the DateTimeStyles enumeration to specify that the current date and time information should not be added to the
DateTime for unspecified fields.

The DateTime.ParseExact method converts a string to a DateTime object if it conforms to one of the specified string patterns. When a string that is not
one of the forms specified is passed to this method, a FormatException is thrown. You can specify one of the standard date and time format specifiers or
a combination of the custom format specifiers. Using the custom format specifiers, it is possible for you to construct a custom recognition string. For an
explanation of the specifiers, see the topics on standard date and time format strings and custom date and time format strings.

In the following example, the DateTime.ParseExact method is passed a string object to parse, followed by a format specifier, followed by a CultureInfo
object. This ParseExact method can only parse strings that follow the long date pattern in the en-US culture.

https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.datetimeformat
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentculture#System_Threading_Thread_CurrentCulture
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentthread#System_Threading_Thread_CurrentThread
https://docs.microsoft.com/dotnet/api/system.datetime.parse
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/dotnet/api/system.globalization.datetimestyles
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.formatexception
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact

Dim MyCultureInfo As CultureInfo = New CultureInfo("en-US")
Dim MyString() As String = {" Friday, April 10, 2009", "Friday, April 10, 2009"}
For Each dateString As String In MyString
 Try
 Dim MyDateTime As DateTime = DateTime.ParseExact(dateString, "D",
 MyCultureInfo)
 Console.WriteLine(MyDateTime)
 Catch e As FormatException
 Console.WriteLine("Unable to parse '{0}'", dateString)
 End Try
Next
' The example displays the following output:
' Unable to parse ' Friday, April 10, 2009'
' 4/10/2009 12:00:00 AM

See Also

Each overload of the Parse and ParseExact methods also has an IFormatProvider parameter that provides culture-specific information about the
formatting of the string. This IFormatProvider object is a CultureInfo object that represents a standard culture or a DateTimeFormatInfo object that is
returned by the CultureInfo.DateTimeFormat property. ParseExact also uses an additional string or string array argument that defines one or more
custom date and time formats.

Parsing Strings
Formatting Types
Type Conversion in .NET
Standard date and time formats
Custom date and time format strings

https://docs.microsoft.com/dotnet/api/system.datetime.parse
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/dotnet/api/system.iformatprovider
https://docs.microsoft.com/dotnet/api/system.iformatprovider
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.globalization.datetimeformatinfo
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo.datetimeformat
https://docs.microsoft.com/dotnet/api/system.datetime.parseexact
https://docs.microsoft.com/en-us/dotnet/standard/base-types/parsing-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/formatting-types
https://docs.microsoft.com/en-us/dotnet/standard/base-types/type-conversion
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

How to: search strings
5/4/2018 • 4 minutes to read • Edit Online

NOTENOTE

Does a string contain text?

string factMessage = "Extension methods have all the capabilities of regular static methods.";

// Write the string and include the quotation marks.
Console.WriteLine($"\"{factMessage}\"");

// Simple comparisons are always case sensitive!
bool containsSearchResult = factMessage.Contains("extension");
Console.WriteLine($"Starts with \"extension\"? {containsSearchResult}");

// For user input and strings that will be displayed to the end user,
// use the StringComparison parameter on methods that have it to specify how to match strings.
bool ignoreCaseSearchResult = factMessage.StartsWith("extension", System.StringComparison.CurrentCultureIgnoreCase);
Console.WriteLine($"Starts with \"extension\"? {ignoreCaseSearchResult} (ignoring case)");

bool endsWithSearchResult = factMessage.EndsWith(".", System.StringComparison.CurrentCultureIgnoreCase);
Console.WriteLine($"Ends with '.'? {endsWithSearchResult}");

Where does the sought text occur in a string?

string factMessage = "Extension methods have all the capabilities of regular static methods.";

// Write the string and include the quotation marks.
Console.WriteLine($"\"{factMessage}\"");

// This search returns the substring between two strings, so
// the first index is moved to the character just after the first string.
int first = factMessage.IndexOf("methods") + "methods".Length;
int last = factMessage.LastIndexOf("methods");
string str2 = factMessage.Substring(first, last - first);
Console.WriteLine($"Substring between \"methods\" and \"methods\": '{str2}'");

Finding specific text using regular expressions

You can use two main strategies to search for text in strings. Methods of the String class search for specific text. Regular expressions search for patterns
in text.

The C# examples in this article run in the Try.NET inline code runner and playground. Select the Run button to run an example in an interactive window. Once you
execute the code, you can modify it and run the modified code by selecting Run again. The modified code either runs in the interactive window or, if compilation fails,
the interactive window displays all C# compiler error messages.

The string type, which is an alias for the System.String class, provides a number of useful methods for searching the contents of a string. Among them
are Contains, StartsWith, EndsWith, IndexOf, LastIndexOf. The System.Text.RegularExpressions.Regex class provides a rich vocabulary to search for
patterns in text. In this article, you learn these techniques and how to choose the best method for your needs.

The String.Contains, String.StartsWith and String.EndsWith methods search a string for specific text. The following example shows each of these
methods and a variation that uses a case insensitive search:

The preceding example demonstrates an important point for using these methods. Searches are case-sensitive by default. You use the
StringComparison.CurrentCultureIgnoreCase enum value to specify a case insensitive search.

The IndexOf and LastIndexOf methods also search for text in strings. These methods return the location of the text being sought. If the text isn't found,
they return -1 . The following example shows a search for the first and last occurrence of the word "methods" and displays the text in between.

The System.Text.RegularExpressions.Regex class can be used to search strings. These searches can range in complexity from simple to complicated text
patterns.

The following code example searches for the word "the" or "their" in a sentence, ignoring case. The static method Regex.IsMatch performs the search.
You give it the string to search and a search pattern. In this case, a third argument specifies case-insensitive search. For more information, see
System.Text.RegularExpressions.RegexOptions.

The search pattern describes the text you search for. The following table describes each element of the search pattern. (The table below uses the single
\ which must be escaped as \\ in a C# string).

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/search-strings.md
https://docs.microsoft.com/dotnet/api/system.string
https://try.dot.net
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/string
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.string.contains
https://docs.microsoft.com/dotnet/api/system.string.startswith
https://docs.microsoft.com/dotnet/api/system.string.endswith
https://docs.microsoft.com/dotnet/api/system.string.indexof
https://docs.microsoft.com/dotnet/api/system.string.lastindexof
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/dotnet/api/system.string.contains
https://docs.microsoft.com/dotnet/api/system.string.startswith
https://docs.microsoft.com/dotnet/api/system.string.endswith
https://docs.microsoft.com/dotnet/api/system.stringcomparison#System_StringComparison_CurrentCultureIgnoreCase
https://docs.microsoft.com/dotnet/api/system.string.indexof
https://docs.microsoft.com/dotnet/api/system.string.lastindexof
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex.ismatch
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regexoptions

PATTERN MEANING

the match the text "the"

(eir)? match 0 or 1 occurence of "eir"

\s match a white-space character

string[] sentences =
{
 "Put the water over there.",
 "They're quite thirsty.",
 "Their water bottles broke."
};

string sPattern = "the(ir)?\\s";

foreach (string s in sentences)
{
 Console.Write($"{s,24}");

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern, System.Text.RegularExpressions.RegexOptions.IgnoreCase))
 {
 Console.WriteLine($" (match for '{sPattern}' found)");
 }
 else
 {
 Console.WriteLine();
 }
}

TIPTIP

Does a string follow a pattern?

PATTERN MEANING

^ matches the beginning of the string

\d{3} matches exactly 3 digit characters

- matches the '-' character

\d{3} matches exactly 3 digit characters

- matches the '-' character

\d{4} matches exactly 4 digit characters

$ matches the end of the string

The string methods are usually better choices when you are searching for an exact string. Regular expressions are better when you are searching for some pattern is
a source string.

The following code uses regular expressions to validate the format of each string in an array. The validation requires that each string have the form of a
telephone number in which three groups of digits are separated by dashes, the first two groups contain three digits, and the third group contains four
digits. The search pattern uses the regular expression ^\\d{3}-\\d{3}-\\d{4}$. For more information, see Regular Expression Language - Quick
Reference.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

string[] numbers =
{
 "123-555-0190",
 "444-234-22450",
 "690-555-0178",
 "146-893-232",
 "146-555-0122",
 "4007-555-0111",
 "407-555-0111",
 "407-2-5555",
 "407-555-8974",
 "407-2ab-5555",
 "690-555-8148",
 "146-893-232-"
};

string sPattern = "^\\d{3}-\\d{3}-\\d{4}$";

foreach (string s in numbers)
{
 Console.Write($"{s,14}");

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern))
 {
 Console.WriteLine(" - valid");
 }
 else
 {
 Console.WriteLine(" - invalid");
 }
}

See Also

This single search pattern matches many valid strings. Regular expressions are better to search for or validate against a pattern, rather than a single text
string.

You can try these samples by looking at the code in our GitHub repository. Or you can download the samples as a zip file.

C# Programming Guide
Strings
LINQ and Strings
System.Text.RegularExpressions.Regex
.NET Framework Regular Expressions
Regular Expression Language - Quick Reference
Best practices for using strings in .NET

https://github.com/dotnet/samples/tree/master/snippets/csharp/how-to/strings
https://github.com/dotnet/samples/raw/master/snippets/csharp/how-to/strings.zip
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/linq-and-strings
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings

How to: Modify string contents in C#
5/4/2018 • 5 minutes to read • Edit Online

NOTENOTE

Replace text

string source = "The mountains are behind the clouds today.";

// Replace one substring with another with String.Replace.
// Only exact matches are supported.
var replacement = source.Replace("mountains", "peaks");
Console.WriteLine($"The source string is <{source}>");
Console.WriteLine($"The updated string is <{replacement}>");

string source = "The mountains are behind the clouds today.";

// Replace all occurrences of one char with another.
var replacement = source.Replace(' ', '_');
Console.WriteLine(source);
Console.WriteLine(replacement);

Trim white space

// Remove trailing and leading white space.
string source = " I'm wider than I need to be. ";
// Store the results in a new string variable.
var trimmedResult = source.Trim();
var trimLeading = source.TrimStart();
var trimTrailing = source.TrimEnd();
Console.WriteLine($"<{source}>");
Console.WriteLine($"<{trimmedResult}>");
Console.WriteLine($"<{trimLeading}>");
Console.WriteLine($"<{trimTrailing}>");

Remove text

This article demonstrates several techniques to produce a string by modifying an existing string . All the techniques demonstrated return the result
of the modifications as a new string object. To clearly demonstrate this, the examples all store the result in a new variable. You can then examine both
the original string and the string resulting from the modification when you run each example.

The C# examples in this article run in the Try.NET inline code runner and playground. Select the Run button to run an example in an interactive window. Once you
execute the code, you can modify it and run the modified code by selecting Run again. The modified code either runs in the interactive window or, if compilation fails,
the interactive window displays all C# compiler error messages.

There are several techniques demonstrated in this article. You can replace existing text. You can search for patterns and replace matching text with other
text. You can treat a string as a sequence of characters. You can also use convenience methods that remove white space. You should choose the
techniques that most closely match your scenario.

The following code creates a new string by replacing existing text with a substitute.

The preceding code demonstrates this immutable property of strings. You can see in the preceding example that the original string, source , is not
modified. The String.Replace method creates a new string containing the modifications.

The Replace method can replace either strings or single characters. In both cases, every occurrence of the sought text is replaced. The following example
replaces all ' ' characters with '_':

The source string is unchanged, and a new string is returned with the replacement.

You can use the String.Trim, String.TrimStart, and String.TrimEnd methods to remove any leading or trailing white space. The following code shows an
example of each. The source string does not change; these methods return a new string with the modified contents.

You can remove text from a string using the String.Remove method. This method removes a number of characters starting at a specific index. The
following example shows how to use String.IndexOf followed by Remove to remove text from a string:

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/modify-string-contents.md
https://try.dot.net
https://docs.microsoft.com/dotnet/api/system.string.replace
https://docs.microsoft.com/dotnet/api/system.string.replace
https://docs.microsoft.com/dotnet/api/system.string.trim
https://docs.microsoft.com/dotnet/api/system.string.trimstart
https://docs.microsoft.com/dotnet/api/system.string.trimend
https://docs.microsoft.com/dotnet/api/system.string.remove
https://docs.microsoft.com/dotnet/api/system.string.indexof
https://docs.microsoft.com/dotnet/api/system.string.remove

string source = "Many mountains are behind many clouds today.";
// Remove a substring from the middle of the string.
string toRemove = "many ";
string result = string.Empty;
int i = source.IndexOf(toRemove);
if (i >= 0)
{
 result= source.Remove(i, toRemove.Length);
}
Console.WriteLine(source);
Console.WriteLine(result);

Replace matching patterns

string source = "The mountains are still there behind the clouds today.";

// Use Regex.Replace for more flexibility.
// Replace "the" or "The" with "many" or "Many".
// using System.Text.RegularExpressions
string replaceWith = "many ";
source = System.Text.RegularExpressions.Regex.Replace(source, "the\\s", LocalReplaceMatchCase,
 System.Text.RegularExpressions.RegexOptions.IgnoreCase);
Console.WriteLine(source);

string LocalReplaceMatchCase(System.Text.RegularExpressions.Match matchExpression)
{
 // Test whether the match is capitalized
 if (Char.IsUpper(matchExpression.Value[0]))
 {
 // Capitalize the replacement string
 System.Text.StringBuilder replacementBuilder = new System.Text.StringBuilder(replaceWith);
 replacementBuilder[0] = Char.ToUpper(replacementBuilder[0]);
 return replacementBuilder.ToString();
 }
 else
 {
 return replaceWith;
 }
}

Modifying individual characters

string phrase = "The quick brown fox jumps over the fence";
Console.WriteLine(phrase);

char[] phraseAsChars = phrase.ToCharArray();
int animalIndex = phrase.IndexOf("fox");
if (animalIndex != -1)
{
 phraseAsChars[animalIndex++] = 'c';
 phraseAsChars[animalIndex++] = 'a';
 phraseAsChars[animalIndex] = 't';
}

string updatedPhrase = new string(phraseAsChars);
Console.WriteLine(updatedPhrase);

Unsafe modifications to string

You can use regular expressions to replace text matching patterns with new text, possibly defined by a pattern. The following example uses the
System.Text.RegularExpressions.Regex class to find a pattern in a source string and replace it with proper capitalization. The Regex.Replace(String,
String, MatchEvaluator, RegexOptions) method takes a function that provides the logic of the replacement as one of its arguments. In this example, that
function, LocalReplaceMatchCase is a local function declared inside the sample method. LocalReplaceMatchCase uses the System.Text.StringBuilder class
to build the replacement string with proper capitalization.

Regular expressions are most useful for searching and replacing text that follows a pattern, rather than known text. See How to: search strings for more
details. The search pattern, "the\s" searches for the word "the" followed by a white-space character. That part of the pattern ensures that it doesn't match
"there" in the source string. For more information on regular expression language elements, see Regular Expression Language - Quick Reference.

The StringBuilder.ToString method returns an immutable string with the contents in the StringBuilder object.

You can produce a character array from a string, modify the contents of the array, and then create a new string from the modified contents of the array.

The following example shows how to replace a set of characters in a string. First, it uses the ToCharArray() method to create an array of characters. It
uses the IndexOf method to find the starting index of the word "fox." The next three characters are replaced with a different word. Finally, a new string is
constructed from the updated character array.

Using unsafe code, you can modify a string "in place" after it has been created. Unsafe code bypasses many of the features of .NET designed to

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex.replace#System_Text_RegularExpressions_Regex_Replace_System_String_System_String_System_Text_RegularExpressions_MatchEvaluator_System_Text_RegularExpressions_RegexOptions_
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder.tostring
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.string.tochararray#System_String_ToCharArray
https://docs.microsoft.com/dotnet/api/system.string.indexof

unsafe
{
 // Compiler will store (intern)
 // these strings in same location.
 string helloOne = "Hello";
 string helloTwo = "Hello";

 // Change one string using unsafe code.
 fixed (char* p = helloOne)
 {
 p[0] = 'C';
 }

 // Both strings have changed.
 Console.WriteLine(helloOne);
 Console.WriteLine(helloTwo);
}

See also

minimize certain types of bugs in code. You need to use unsafe code to modify a string in place because the string class is designed as an immutable
type. Once it has been created, its value does not change. Unsafe code circumvents this property by accessing and modifying the memory used by a
string without using normal string methods. The following example is provided for those rare situations where you want to modify a string in-place

using unsafe code. The example shows how to use the fixed keyword. The fixed keyword prevents the garbage collector (GC) from moving the
string object in memory while code accesses the memory using the unsafe pointer. It also demonstrates one possible side effect of unsafe operations on
strings that results from the way that the C# compiler stores (interns) strings internally. In general, you shouldn't use this technique unless it is
absolutely necessary. You can learn more in the articles on unsafe and fixed. The API reference for Intern includes inforamtion on string interning.

You can try these samples by looking at the code in our GitHub repository. Or you can download the samples as a zip file.

.NET Framework Regular Expressions
Regular Expression Language - Quick Reference

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/fixed-statement
https://docs.microsoft.com/dotnet/api/system.string.intern
https://github.com/dotnet/samples/tree/master/snippets/csharp/how-to/strings
https://github.com/dotnet/samples/raw/master/snippets/csharp/how-to/strings.zip
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

How to compare strings in C#
5/4/2018 • 10 minutes to read • Edit Online

NOTENOTE

Default ordinal comparisons

string root = @"C:\users";
string root2 = @"C:\Users";

bool result = root.Equals(root2);
int comparison = root.CompareTo(root2);
Console.WriteLine($"Ordinal comparison: <{root}> and <{root2}> are {(result ? "equal." : "not equal.")}");
if (comparison < 0)
 Console.WriteLine($"<{root}> is less than <{root2}>");
else if (comparison > 0)
 Console.WriteLine($"<{root}> is greater than <{root2}>");
else
 Console.WriteLine($"<{root}> and <{root2}> are equivalent in order");

result = root.Equals(root2, StringComparison.Ordinal);
Console.WriteLine($"Ordinal comparison: <{root}> and <{root2}> are {(result ? "equal." : "not equal.")}");

Console.WriteLine($"Using == says that <{root}> and <{root2}> are {(root == root2 ? "equal" : "not equal")}");

Case-insensitive ordinal comparisons

You compare strings to answer one of two questions: "Are these two strings equal?" or "In what order should these strings be placed when sorting
them?"

Those two questions are complicated by factors that affect string comparisons:

You can choose an ordinal or linguistic comparison.
You can choose if case matters.
You can choose culture specific comparisons.
Linguistic comparisions are culture and platform dependent.

The C# examples in this article run in the Try.NET inline code runner and playground. Select the Run button to run an example in an interactive window. Once you
execute the code, you can modify it and run the modified code by selecting Run again. The modified code either runs in the interactive window or, if compilation fails,
the interactive window displays all C# compiler error messages.

When you compare strings, you define an order among them. Comparisons are used to sort a sequence of strings. Once the sequence is in a known
order, it is easier to search, both for software and for humans. Other comparisons may check if strings are the same. These sameness checks are similar
to equality, but some differences, such as case differences, may be ignored.

The most common operations, String.CompareTo and String.Equals or String.Equality use an ordinal comparison, a case-sensitive comparison, and use
the current culture. The results are shown in the following example.

Ordinal comparisons do not take linguistic rules into account when comparing strings. They will compare the strings character by character. Case-
sensitive comparisons use capitalization in their comparisons. The most important point about these default comparison methods is that because they
use the current culture, the results depend on the locale and language settings of the machine where they run. These comparisons are unsuitable for
comparisons where order should be consistent across machines or locations.

The String.Equals method enables you to specify a StringComparison value of StringComparison.OrdinalIgnoreCase to specify a case-insensitive
comparison. There is also a static Compare method that includes a boolean argument to specify case-insensitive comparisons. These are shown in the
following code:

https://github.com/dotnet/docs/blob/master/docs/csharp/how-to/compare-strings.md
https://try.dot.net
https://docs.microsoft.com/dotnet/api/system.string.compareto
https://docs.microsoft.com/dotnet/api/system.string.equals
https://docs.microsoft.com/dotnet/api/system.string.op_equality
https://docs.microsoft.com/dotnet/api/system.string.equals
https://docs.microsoft.com/dotnet/api/system.stringcomparison
https://docs.microsoft.com/dotnet/api/system.stringcomparison#System_StringComparison_OrdinalIgnoreCase
https://docs.microsoft.com/dotnet/api/system.string.compare

string root = @"C:\users";
string root2 = @"C:\Users";

bool result = root.Equals(root2, StringComparison.OrdinalIgnoreCase);
bool areEqual = String.Equals(root, root2, StringComparison.OrdinalIgnoreCase);
int comparison = String.Compare(root, root2, ignoreCase: true);

Console.WriteLine($"Ordinal ignore case: <{root}> and <{root2}> are {(result ? "equal." : "not equal.")}");
Console.WriteLine($"Ordinal static ignore case: <{root}> and <{root2}> are {(areEqual ? "equal." : "not equal.")}");
if (comparison < 0)
 Console.WriteLine($"<{root}> is less than <{root2}>");
else if (comparison > 0)
 Console.WriteLine($"<{root}> is greater than <{root2}>");
else
 Console.WriteLine($"<{root}> and <{root2}> are equivalent in order");

Linguistic comparisons

string first = "Sie tanzen auf der Straße.";
string second = "Sie tanzen auf der Strasse.";

Console.WriteLine($"First sentence is <{first}>");
Console.WriteLine($"Second sentence is <{second}>");

bool equal = String.Equals(first, second, StringComparison.InvariantCulture);
Console.WriteLine($"The two strings {(equal == true ? "are" : "are not")} equal.");
showComparison(first, second);

string word = "coop";
string words = "co-op";
string other = "cop";

showComparison(word, words);
showComparison(word, other);
showComparison(words, other);
void showComparison(string one, string two)
{
 int compareLinguistic = String.Compare(one, two, StringComparison.InvariantCulture);
 int compareOrdinal = String.Compare(one, two, StringComparison.Ordinal);
 if (compareLinguistic < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using invariant culture");
 else if (compareLinguistic > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using invariant culture");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order using invariant culture");
 if (compareOrdinal < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using ordinal comparison");
 else if (compareOrdinal > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using ordinal comparison");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order using ordinal comparison");
}

<coop> is less than <co-op> using invariant culture
<coop> is greater than <co-op> using ordinal comparison
<coop> is less than <cop> using invariant culture
<coop> is less than <cop> using ordinal comparison
<co-op> is less than <cop> using invariant culture
<co-op> is less than <cop> using ordinal comparison

Comparisons using specific cultures

Strings can also be ordered using linguistic rules for the current culture. This is sometimes referred to as "word sort order." When you perform a
linguistic comparision, some nonalphanumeric Unicode characters might have special weights assigned. For example, the hyphen "-" may have a very
small weight assigned to it so that "co-op" and "coop" appear next to each other in sort order. In addition, some Unicode characters may be equivalent
to a sequence of alphanumeric characterss. The following example uses the phrase "They dance in the street." in German with the "ss" and 'ß'.
Linguistically (in Windows), "ss" is equal to the German Essetz: 'ß' character in both "en-US" and "de-DE" cultures.

This sample demonstrates the operating system dependent nature of linguistic comparisons. The host for the interactive window is a Linux host. The
linguistic and ordinal comparisons produce the same results. If you ran this same sample on a Windows host, you would see the following output:

On Windows, the sort order of "cop", "coop", and "co-op" change when you change from a linguistic comparison to an ordinal comparison. The two
German sentences also compare differently using the different comparison types.

This sample stores CultureInfo for the current culture. The original culture can be set and retrieved on the current thread object. The comparisons are
performed using the CurrentCulture value to ensure a culture-specific comparison.

The culture used affects linguistic comparisons. The following example shows the results of comparing the two German sentences using the "en-US"
culture and the "de-DE" culture:

https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.stringcomparison#System_StringComparison_CurrentCulture

string first = "Sie tanzen auf der Straße.";
string second = "Sie tanzen auf der Strasse.";

Console.WriteLine($"First sentence is <{first}>");
Console.WriteLine($"Second sentence is <{second}>");

var en = new System.Globalization.CultureInfo("en-US");

// For culture-sensitive comparisons, use the String.Compare
// overload that takes a StringComparison value.
int i = String.Compare(first, second, en, System.Globalization.CompareOptions.IgnoreNonSpace);
Console.WriteLine($"Comparing in {en.Name} returns {i}.");

var de = new System.Globalization.CultureInfo("de-DE");
i = String.Compare(first, second, de, System.Globalization.CompareOptions.IgnoreNonSpace);
Console.WriteLine($"Comparing in {de.Name} returns {i}.");

bool b = String.Equals(first, second, StringComparison.CurrentCulture);
Console.WriteLine($"The two strings {(b == true ? "are" : "are not")} equal.");

string word = "coop";
string words = "co-op";
string other = "cop";

showComparison(word, words, en);
showComparison(word, other, en);
showComparison(words, other, en);
void showComparison(string one, string two, System.Globalization.CultureInfo culture)
{
 int compareLinguistic = String.Compare(one, two, en, System.Globalization.CompareOptions.IgnoreNonSpace);
 int compareOrdinal = String.Compare(one, two, StringComparison.Ordinal);
 if (compareLinguistic < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using en-US culture");
 else if (compareLinguistic > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using en-US culture");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order using en-US culture");
 if (compareOrdinal < 0)
 Console.WriteLine($"<{one}> is less than <{two}> using ordinal comparison");
 else if (compareOrdinal > 0)
 Console.WriteLine($"<{one}> is greater than <{two}> using ordinal comparison");
 else
 Console.WriteLine($"<{one}> and <{two}> are equivalent in order using ordinal comparison");
}

<coop> is less than <co-op> using en-US culture
<coop> is greater than <co-op> using ordinal comparison
<coop> is less than <cop> using en-US culture
<coop> is less than <cop> using ordinal comparison
<co-op> is less than <cop> using en-US culture
<co-op> is less than <cop> using ordinal comparison

Linguistic sorting and searching strings in arrays

Culture-sensitive comparisons are typically used to compare and sort strings input by users with other strings input by users. The characters and
sorting conventions of these strings might vary depending on the locale of the user's computer. Even strings that contain identical characters might sort
differently depending on the culture of the current thread. In addition, try this sample code locally on a Windows machine, and you will the following
results:

Linguistic comparisions are dependent on the current culture, and are OS dependent. You must take that into account when you work with string
comparisons.

The following examples show how to sort and search for strings in an array using a linguistic comparison dependent on the current culture. You use the
static Array methods that take a System.StringComparer parameter.

This example shows how to sort an array of strings using the current culture:

https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.stringcomparer

string[] lines = new string[]
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};

Console.WriteLine("Non-sorted order:");
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

Console.WriteLine("\n\rSorted order:");

// Specify Ordinal to demonstrate the different behavior.
Array.Sort(lines, StringComparer.CurrentCulture);

foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

string[] lines = new string[]
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};
Array.Sort(lines, StringComparer.CurrentCulture);

string searchString = @"c:\public\TEXTFILE.TXT";
Console.WriteLine($"Binary search for <{searchString}>");
int result = Array.BinarySearch(lines, searchString, StringComparer.CurrentCulture);
ShowWhere<string>(lines, result);

Console.WriteLine($"{(result > 0 ? "Found" : "Did not find")} {searchString}");

void ShowWhere<T>(T[] array, int index)
{
 if (index < 0)
 {
 index = ~index;

 Console.Write("Not found. Sorts between: ");

 if (index == 0)
 Console.Write("beginning of sequence and ");
 else
 Console.Write($"{array[index - 1]} and ");

 if (index == array.Length)
 Console.WriteLine("end of sequence.");
 else
 Console.WriteLine($"{array[index]}.");
 }
 else
 {
 Console.WriteLine($"Found at index {index}.");
 }
}

Ordinal sorting and searching in collections

Once the array is sorted, you can search for entries using a binary search. A binary search starts in the middle of the collection to determine which half
of the collection would contain the sought string. Each subsequent comparison subdivides the remaining part of the collection in half. The array is
sorted using StringComparer.CurrentCulture. The local function ShowWhere displays information about where the string was found. If the string was not
found, the returned value indicates where it would be if it were found.

The following code uses the System.Collections.Generic.List<T> collection class to store strings. The strings are sorted using the List<T>.Sort method.
This method needs a delegate that compares and orders two strings. The String.CompareTo method provides that comparison function. Run the sample
and observe the order. This sort operation uses an ordinal case sensitive sort. You would use the static String.Compare methods to specify different
comparison rules.

https://docs.microsoft.com/dotnet/api/system.stringcomparer.currentculture#System_StringComparer_CurrentCulture
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.sort
https://docs.microsoft.com/dotnet/api/system.string.compareto
https://docs.microsoft.com/dotnet/api/system.string.compare

List<string> lines = new List<string>
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};

Console.WriteLine("Non-sorted order:");
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

Console.WriteLine("\n\rSorted order:");

lines.Sort((left, right) => left.CompareTo(right));
foreach (string s in lines)
{
 Console.WriteLine($" {s}");
}

List<string> lines = new List<string>
{
 @"c:\public\textfile.txt",
 @"c:\public\textFile.TXT",
 @"c:\public\Text.txt",
 @"c:\public\testfile2.txt"
};
lines.Sort((left, right) => left.CompareTo(right));

string searchString = @"c:\public\TEXTFILE.TXT";
Console.WriteLine($"Binary search for <{searchString}>");
int result = lines.BinarySearch(searchString);
ShowWhere<string>(lines, result);

Console.WriteLine($"{(result > 0 ? "Found" : "Did not find")} {searchString}");

void ShowWhere<T>(IList<T> collection, int index)
{
 if (index < 0)
 {
 index = ~index;

 Console.Write("Not found. Sorts between: ");

 if (index == 0)
 Console.Write("beginning of sequence and ");
 else
 Console.Write($"{collection[index - 1]} and ");

 if (index == collection.Count)
 Console.WriteLine("end of sequence.");
 else
 Console.WriteLine($"{collection[index]}.");
 }
 else
 {
 Console.WriteLine($"Found at index {index}.");
 }
}

Reference equality and string interning

Once sorted, the list of strings can be searched using a binary search. The following sample shows how to search the sorted listed using the same
comparison function. The local function ShowWhere shows where the sought text is or would be:

Always make sure to use the same type of comparison for sorting and searching. Using different comparison types for sorting and searching produces
unexpected results.

Collection classes such as System.Collections.Hashtable, System.Collections.Generic.Dictionary<TKey,TValue>, and System.Collections.Generic.List<T>
have constructors that take a System.StringComparer parameter when the type of the elements or keys is string . In general, you should use these
constructors whenever possible, and specify either StringComparer.Ordinal or StringComparer.OrdinalIgnoreCase.

None of the samples have used ReferenceEquals. This method determines if two strings are the same object. This can lead to inconsistent results in
string comparisons. The following example demonstrates the string interning feature of C#. When a program declares two or more identical string
variables, the compiler stores them all in the same location. By calling the ReferenceEquals method, you can see that the two strings actually refer to the
same object in memory. Use the String.Copy method to avoid interning. After the copy has been made, the two strings have different storage locations,
even though they have the same value. Run the following sample to show that strings a and b are interned meaning they share the same storage.
The strings a and c are not.

https://docs.microsoft.com/dotnet/api/system.collections.hashtable
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.stringcomparer
https://docs.microsoft.com/dotnet/api/system.stringcomparer.ordinal#System_StringComparer_Ordinal
https://docs.microsoft.com/dotnet/api/system.stringcomparer.ordinalignorecase#System_StringComparer_OrdinalIgnoreCase
https://docs.microsoft.com/dotnet/api/system.object.referenceequals
https://docs.microsoft.com/dotnet/api/system.object.referenceequals
https://docs.microsoft.com/dotnet/api/system.string.copy

string a = "The computer ate my source code.";
string b = "The computer ate my source code.";

if (String.ReferenceEquals(a, b))
 Console.WriteLine("a and b are interned.");
else
 Console.WriteLine("a and b are not interned.");

string c = String.Copy(a);

if (String.ReferenceEquals(a, c))
 Console.WriteLine("a and c are interned.");
else
 Console.WriteLine("a and c are not interned.");

NOTENOTE

See also

When you test for equality of strings, you should use the methods that explicitly specify what kind of comparison you intend to perform. Your code is much more
maintainable and readable. Use the overloads of the methods of the System.String and System.Array classes that take a StringComparison enumeration parameter. You
specify which type of comparison to perform. Avoid using the == and != operators when you test for equality. The String.CompareTo instance methods always
perform an ordinal case-sensitive comparison. They are primarily suited for ordering strings alphabetically.

System.Globalization.CultureInfo
System.StringComparer
Strings
Comparing Strings
Globalizing and Localizing Applications

https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.stringcomparison
https://docs.microsoft.com/dotnet/api/system.string.compareto
https://docs.microsoft.com/dotnet/api/system.globalization.cultureinfo
https://docs.microsoft.com/dotnet/api/system.stringcomparer
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index
https://docs.microsoft.com/en-us/dotnet/standard/base-types/comparing
https://docs.microsoft.com/visualstudio/ide/globalizing-and-localizing-applications

The .NET Compiler Platform SDK
7/18/2018 • 6 minutes to read • Edit Online

.NET Compiler Platform SDK concepts

Enforce team coding standards

Provide guidance with library packages

Provide general guidance

Compilers build a detailed model of application code as they validate the syntax and semantics of that code. They use this model to build the executable
output from the source code. The .NET Compiler Platform SDK provides access to this model. Increasingly, we rely on integrated development
environment (IDE) features such as IntelliSense, refactoring, intelligent rename, "Find all references," and "Go to definition" to increase our productivity.
We rely on code analysis tools to improve our code quality, and code generators to aid in application construction. As these tools get smarter, they need
access to more and more of the model that only compilers create as they process application code. This is the core mission of the Roslyn APIs: opening
up the black boxes and allowing tools and end users to share in the wealth of information compilers have about our code. Instead of being opaque
source-code-in and object-code-out translators, through Roslyn, compilers become platforms: APIs that you can use for code-related tasks in your tools
and applications.

The .NET Compiler Platform SDK dramatically lowers the barrier to entry for creating code focused tools and applications. It creates many
opportunities for innovation in areas such as meta-programming, code generation and transformation, interactive use of the C# and VB languages, and
embedding of C# and VB in domain specific languages.

The .NET Compiler Platform SDK enables you to build analyzers and code fixes that find and correct coding mistakes. Analyzers understand the
syntax and structure of code and detect practices that should be corrected. Code fixes provide one or more suggested fixes for addressing coding
mistakes found by analyzers. Typically, an analyzer and the associated code fixes are packaged together in a single project.

Analyzers and code fixes use static analysis to understand code. They do not run the code or provide other testing benefits. They can, however, point out
practices that often lead to bugs, unmaintainable code, or standard guideline validation.

The .NET Compiler Platform SDK provides a single set of APIs that enable you to examine and understand a C# or Visual Basic codebase. Because you
can use this single codebase, you can write analyzers and code fixes more easily by leveraging the syntactic and semantic analysis APIs provided by the
.NET Compiler Platform SDK. Freed from the large task of replicating the analysis done by the compiler, you can concentrate on the more focused task
of finding and fixing common coding errors for your project or library.

A smaller benefit is that your analyzers and code fixes are smaller and use much less memory when loaded in Visual Studio than they would if you
wrote your own codebase to understand the code in a project. By leveraging the same classes used by the compiler and Visual Studio, you can create
your own static analysis tools. This means your team can use analyzers and code fixes without a noticeable impact on the IDE's performance.

There are three main scenarios for writing analyzers and code fixes:

1. Enforce team coding standards

2. Provide guidance with library packages

3. Provide general coding guidance

Many teams have coding standards that are enforced through code reviews with other team members. Analyzers and code fixes can make this process
much more efficient. Code reviews happen when a developer shares their work with others on the team. The developer will have invested all the time
needed to complete a new feature before getting any comments. Weeks may go by while the developer reinforces habits that don't match the team's
practices.

Analyzers run as a developer writes code. The developer gets immediate feedback that encourages following the guidance immediately. The developer
builds habits to write compliant code as soon as they begin prototyping. When the feature is ready for humans to review, all the standard guidance has
been enforced.

Teams can build analyzers and code fixes that look for the most common practices that violate team coding practices. These can be installed on each
developer's machine to enforce the standards.

There are a wealth of libraries available for .NET developers on NuGet. Some of these come from Microsoft, some from third-party companies, and
others from community members and volunteers. These libraries get more adoption and higher reviews when developers can succeed with those
libraries.

In addition to providing documentation, you can provide analyzers and code fixes that find and correct common mis-uses of your library. These
immediate corrections will help developers succeed more quickly.

You can package analyzers and code fixes with your library on NuGet. In that scenario, every developer who installs your NuGet package will also install
the analyzer package. All developers using your library will immediately get guidance from your team in the form of immediate feedback on mistakes
and suggested corrections.

https://github.com/dotnet/docs/blob/master/docs/csharp/roslyn-sdk/index.md

Next steps

Installation instructions

Install using the Workloads viewInstall using the Workloads view

Install using the Individual components tabInstall using the Individual components tab

The .NET developer community has discovered through experience patterns that work well and patterns that are best avoided. Several community
members have created analyzers that enforce those recommended patterns. As we learn more, there is always room for new ideas.

These analyzers can be uploaded to the Visual Studio Marketplace and downloaded by developers using Visual Studio. Newcomers to the language and
the platform learn accepted practices quickly and become productive earlier in their .NET journey. As these become more widely used, the community
adopts these practices.

The .NET Compiler Platform SDK includes the latest language object models for code generation, analysis, and refactoring. This section provides a
conceptual overview of the .NET Compiler Platform SDK. Further details can be found in the quickstarts, samples and tutorials sections.

You can learn more about the concepts in the .NET Compiler Platform SDK in these four topics:

Explore code with the syntax visualizer
Understand the compiler API model
Work with syntax
Work with semantics
Work with a workspace

To get started, you'll need to install the .NET Compiler Platform SDK:

There are two different ways to find the .NET Compiler Platform SDK in the Visual Studio Installer:

The .NET Compiler Platform SDK is not automatically selected as part of the Visual Studio extension development workload. You must select it as an
optional component.

1. Run Visual Studio Installer
2. Select Modify
3. Check the Visual Studio extension development workload.
4. Open the Visual Studio extension development node in the summary tree.
5. Check the box for .NET Compiler Platform SDK. You'll find it last under the optional components.

Optionally, you'll also want the DGML editor to display graphs in the visualizer :

1. Open the Individual components node in the summary tree.
2. Check the box for DGML editor

1. Run Visual Studio Installer
2. Select Modify
3. Select the Individual components tab
4. Check the box for .NET Compiler Platform SDK. You'll find it at the top under the Compilers, build tools, and runtimes section.

Optionally, you'll also want the DGML editor to display graphs in the visualizer :

1. Check the box for DGML editor. You'll find it under the Code tools section.

https://marketplace.visualstudio.com/vs
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/syntax-visualizer
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/work-with-syntax
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/work-with-semantics
https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/work-with-workspace

C# programming guide
6/19/2018 • 2 minutes to read • Edit Online

Program sections

Language Sections

Platform Sections

See Also

This section provides detailed information on key C# language features and features accessible to C# through the .NET Framework.

Most of this section assumes that you already know something about C# and general programming concepts. If you are a complete beginner with
programming or with C#, you might want to visit the C# Quickstarts or Getting Started with C# interactive tutorial, where no prior programming
knowledge is required.

For information about specific keywords, operators and preprocessor directives, see C# Reference. For information about the C# Language
Specification, see C# Language Specification.

Inside a C# Program

Main() and Command-Line Arguments

Statements, Expressions, and Operators

Types

Classes and Structs

Interfaces

Enumeration Types

Delegates

Arrays

Strings

Properties

Indexers

Events

Generics

Iterators

LINQ Query Expressions

Lambda Expressions

Namespaces

Nullable Types

Unsafe Code and Pointers

XML Documentation Comments

Application Domains (C# and Visual Basic)

Assemblies and the Global Assembly Cache

Attributes

Collections

Exceptions and Exception Handling

File System and the Registry (C# Programming Guide)

Interoperability

Reflection

https://github.com/dotnet/docs/blob/master/docs/csharp/programming-guide/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/quick-starts/index
https://www.microsoft.com/net/tutorials/csharp/getting-started
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/enumeration-types
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/strings/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/properties
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/indexers/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/iterators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/linq-query-expressions/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/nullable-types/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/unsafe-code-pointers/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
http://msdn.microsoft.com/library/1bc2939a-79db-4a4a-a677-4a2ce6de2b1e
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/assemblies-gac/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/file-system/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection

C# Reference
C#

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/index
https://docs.microsoft.com/en-us/dotnet/csharp/index

C# Reference
5/24/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section provides reference material about C# keywords, operators, special characters, preprocessor directives, compiler options, and compiler
errors and warnings.

C# Keywords
Provides links to information about C# keywords and syntax.

C# Operators
Provides links to information about C# operators and syntax.

C# Special Characters
Provides links to information about special contextual characters in C# and their usage.

C# Preprocessor Directives
Provides links to information about compiler commands for embedding in C# source code.

C# Compiler Options
Includes information about compiler options and how to use them.

C# Compiler Errors
Includes code snippets that demonstrate the cause and correction of C# compiler errors and warnings.

C# Language Specification
Provides links to the latest versions of the C# language specification.

C# Guide
Provides a portal to Visual C# documentation.

Using the Visual Studio Development Environment for C#
Provides links to conceptual and task topics that describe the IDE and Editor.

C# Programming Guide
Includes information about how to use the C# programming language.

https://github.com/dotnet/docs/blob/master/docs/csharp/language-reference/index.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/tokens/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/index
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/index
https://docs.microsoft.com/en-us/dotnet/csharp/index
https://docs.microsoft.com/visualstudio/csharp-ide/using-the-visual-studio-development-environment-for-csharp
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/index

C# Walkthroughs
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

See Also

Walkthroughs give step-by-step instructions for common scenarios, which makes them a good place to start learning about the product or a particular
feature area.

This section contains links to C# programming walkthroughs.

Accessing the Web by Using Async and Await
Shows how to create an asynchronous solution by using async and await.

Creating a Windows Runtime Component in C# or Visual Basic and Calling it from JavaScript
Shows how to create a Windows Runtime type, package it in a Windows Runtime component, and then call the component from a Windows 8.x Store
app that's built for Windows by using JavaScript.

Office Programming (C# and Visual Basic)
Shows how to create an Excel workbook and a Word document by using C# and Visual Basic.

Creating and Using Dynamic Objects (C# and Visual Basic)
Shows how to create a custom object that dynamically exposes the contents of a text file, and how to create a project that uses the IronPython library.

Authoring a Composite Control with Visual C#
Demonstrates creating a simple composite control and extending its functionality through inheritance.

Creating a Windows Forms Control that Takes Advantage of Visual Studio Design-Time Features
Illustrates how to create a custom designer for a custom control.

Inheriting from a Windows Forms Control with Visual C#
Demonstrates creating a simple inherited button control. This button inherits functionality from the standard Windows Forms button and exposes a
custom member.

Debugging Custom Windows Forms Controls at Design Time
Describes how to debug the design-time behavior of your custom control.

Performing Common Tasks Using Smart Tags on Windows Forms Controls
Demonstrates some of the commonly performed tasks such as adding or removing a tab on a TabControl , docking a control to its parent, and changing
the orientation of a SplitContainer control.

Writing Queries in C# (L INQ)
Demonstrates the C# language features that are used to write L INQ query expressions.

Manipulating Data (C#) (L INQ to SQL)
Describes a L INQ to SQL scenario for adding, modifying, and deleting data in a database.

Simple Object Model and Query (C#) (L INQ to SQL)
Demonstrates how to create an entity class and a simple query to filter the entity class.

Using Only Stored Procedures (C#) (L INQ to SQL)
Demonstrates how to use L INQ to SQL to access data by executing only stored procedures.

Querying Across Relationships (C#) (L INQ to SQL)
Demonstrates the use of L INQ to SQL associations to represent foreign-key relationships in a database.

Writing a Visualizer in C#
Shows how to write a simple visualizer by using C#.

Deployment Samples and Walkthroughs
Provides step-by-step examples of common deployment scenarios.

C# Programming Guide
Visual Studio Samples

https://github.com/dotnet/docs/blob/master/docs/csharp/walkthroughs.md
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/async
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/await
https://msdn.microsoft.com/library/windows/apps/hh779077.aspx
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interop/walkthrough-office-programming
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/walkthrough-creating-and-using-dynamic-objects
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/walkthrough-authoring-a-composite-control-with-visual-csharp
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/creating-a-wf-control-design-time-features
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/walkthrough-inheriting-from-a-windows-forms-control-with-visual-csharp
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/walkthrough-debugging-custom-windows-forms-controls-at-design-time
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/performing-common-tasks-using-smart-tags-on-wf-controls
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/walkthrough-writing-queries-linq
https://msdn.microsoft.com/library/bb386927.aspx
https://msdn.microsoft.com/library/bb386940.aspx
https://msdn.microsoft.com/library/bb399407.aspx
https://msdn.microsoft.com/library/bb386951.aspx
https://docs.microsoft.com/visualstudio/debugger/walkthrough-writing-a-visualizer-in-csharp
https://docs.microsoft.com/visualstudio/deployment/clickonce-deployment-samples-and-walkthroughs
https://docs.microsoft.com/visualstudio/ide/visual-studio-samples

F# Guide
7/17/2018 • 3 minutes to read • Edit Online

open System // Get access to functionality in System namespace.

// Function: takes a name and produces a greeting.
let getGreeting name =
 sprintf "Hello, %s! Isn't F# great?" name

// Use the EntryPoint attribute to run the program.
[<EntryPoint>]
let main args =
 // Define a list of names
 let names = ["Don"; "Julia"; "Xi"]

 // Print a fun greeting for each name!
 names
 |> List.map getGreeting
 |> List.iter (fun greeting -> printfn "%s" greeting)

 0

Learning F#

References

Additional guides

Learn F# through videos

Other useful resources

F# is a functional programming language that runs on .NET. It also has full support for objects, letting you blend functional and object programming for
pragmatic solutions to any problem.

F# is about productivity at its heart. The tooling support for F# is ubiquitous and full of advanced features.

Tour of F# gives an overview of major language features with lots of code samples. This is recommended if you are new to F# and want to get a feel for
how the language works.

Get started with F# in Visual Studio if you're on Windows and want the full Visual Studio IDE (Integraded Development Environment) experience.

Get started with F# in Visual Studio for Mac if you're on macOS and want to use a Visual Studio IDE.

Get Started with F# in Visual Studio Code if you want a lightweight, cross-platform, and feature-packed IDE experience.

Get started with F# with the .NET Core CLI if you want to use command-line tools.

Get started with F# and Xamarin for mobile programming with F#.

F# for Azure Notebooks is a tutorial for learning F# in a free, hosted Jupyter Notebook.

F# Language Reference is the official, comprehensive reference for all F# language features. Each article explains the syntax and shows code samples.
You can use the filter bar in the table of contents to find specific articles.

F# Core Library Reference is the API reference for the F# Core Library.

F# for Fun and Profit is a comprehensive and very detailed book on learning F#. Its contents and author are beloved by the F# community. The target
audience is primarily developers with an object oriented programming background.

F# Programming Wikibook is a wikibook about learning F#. It is also a product of the F# community. The target audience is people who are new to F#,
with a little bit of object oriented programming background.

F# tutorial on YouTube is a great introduction to F# using Visual Studio, showing lots of great examples over the course of 1.5 hours. The target
audience is Visual Studio developers who are new to F#.

Introduction to Programming with F# is a great video series that uses Visual Studio Code as the main editor. The video series starts from nothing and
ends with building a text-based RPG video game. The target audience is developers who prefer Visual Studio Code (or a lightweight IDE) and are new
to F#.

What's New in Visual Studio 2017 for F# For Developers is a video course that shows some of the newer features for F# in Visual Studio 2017. The
target audience is Visual Studio developers who are new to F#.

https://github.com/dotnet/docs/blob/master/docs/fsharp/index.md
https://docs.microsoft.com/xamarin/cross-platform/platform/fsharp/
https://notebooks.azure.com/Microsoft/libraries/samples/html/FSharp for Azure Notebooks.ipynb
https://msdn.microsoft.com/visualfsharpdocs/conceptual/fsharp-core-library-reference
https://swlaschin.gitbooks.io/fsharpforfunandprofit/content/
https://en.wikibooks.org/wiki/F_Sharp_Programming
https://www.youtube.com/watch?v=c7eNDJN758U
https://www.youtube.com/watch?v=Teak30_pXHk&list=PLEoMzSkcN8oNiJ67Hd7oRGgD1d4YBxYGC
https://www.linkedin.com/learning/what-s-new-in-visual-studio-2017-for-f-sharp-for-developers

The F# Software Foundation

The F# Snippets Website contains a massive set of code snippets showing how to do just about anything in F#, ranging from absolute beginner to
highly advanced snippets.

The F# Software Foundation Slack is a great place for beginners and experts alike, is highly active, and has some of world's best F# programmers
available for a chat. We highly recommend joining.

Although Microsoft is the primary developer of the F# language and its tools in Visual Studio, F# is also backed by an independent foundation, the F#
Software Foundation (FSSF).

The mission of the F# Software Foundation is to promote, protect, and advance the F# programming language, and to support and facilitate the growth
of a diverse and international community of F# programmers.

To learn more and get involved, check out fsharp.org. It's free to join, and the network of F# developers in the foundation is something you don't want to
miss out on!

http://www.fssnip.net
http://fsharp.org/guides/slack/
http://fsharp.org

Tour of F#
6/4/2018 • 30 minutes to read • Edit Online

Functions and Modules

module BasicFunctions =

 /// You use 'let' to define a function. This one accepts an integer argument and returns an integer.
 /// Parentheses are optional for function arguments, except for when you use an explicit type annotation.
 let sampleFunction1 x = x*x + 3

 /// Apply the function, naming the function return result using 'let'.
 /// The variable type is inferred from the function return type.
 let result1 = sampleFunction1 4573

 // This line uses '%d' to print the result as an integer. This is type-safe.
 // If 'result1' were not of type 'int', then the line would fail to compile.
 printfn "The result of squaring the integer 4573 and adding 3 is %d" result1

 /// When needed, annotate the type of a parameter name using '(argument:type)'. Parentheses are required.
 let sampleFunction2 (x:int) = 2*x*x - x/5 + 3

 let result2 = sampleFunction2 (7 + 4)
 printfn "The result of applying the 2nd sample function to (7 + 4) is %d" result2

 /// Conditionals use if/then/elif/else.
 ///
 /// Note that F# uses white space indentation-aware syntax, similar to languages like Python.
 let sampleFunction3 x =
 if x < 100.0 then
 2.0*x*x - x/5.0 + 3.0
 else
 2.0*x*x + x/5.0 - 37.0

 let result3 = sampleFunction3 (6.5 + 4.5)

 // This line uses '%f' to print the result as a float. As with '%d' above, this is type-safe.
 printfn "The result of applying the 2nd sample function to (6.5 + 4.5) is %f" result3

module Immutability =

 /// Binding a value to a name via 'let' makes it immutable.
 ///
 /// The second line of code fails to compile because 'number' is immutable and bound.
 /// Re-defining 'number' to be a different value is not allowed in F#.
 let number = 2
 // let number = 3

 /// A mutable binding. This is required to be able to mutate the value of 'otherNumber'.
 let mutable otherNumber = 2

 printfn "'otherNumber' is %d" otherNumber

 // When mutating a value, use '<-' to assign a new value.
 //
 // Note that '=' is not the same as this. '=' is used to test equality.
 otherNumber <- otherNumber + 1

 printfn "'otherNumber' changed to be %d" otherNumber

Numbers, Booleans, and Strings

The best way to learn about F# is to read and write F# code. This article will act as a tour through some of the key features of the F# language and give
you some code snippets that you can execute on your machine. To learn about setting up a development environment, check out Getting Started.

There are two primary concepts in F#: functions and types. This tour will emphasize features of the language which fall into these two concepts.

The most fundamental pieces of any F# program are functions organized into modules. Functions perform work on inputs to produce outputs, and
they are organized under Modules, which are the primary way you group things in F#. They are defined using the let binding, which give the function
a name and define its arguments.

let bindings are also how you bind a value to a name, similar to a variable in other languages. let bindings are immutable by default, which means
that once a value or function is bound to a name, it cannot be changed in-place. This is in contrast to variables in other languages, which are mutable,
meaning their values can be changed at any point in time. If you require a mutable binding, you can use let mutable ... syntax.

As a .NET language, F# supports the same underlying primitive types that exist in .NET.

https://github.com/dotnet/docs/blob/master/docs/fsharp/tour.md
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/getting-started/index
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

module IntegersAndNumbers =

 /// This is a sample integer.
 let sampleInteger = 176

 /// This is a sample floating point number.
 let sampleDouble = 4.1

 /// This computed a new number by some arithmetic. Numeric types are converted using
 /// functions 'int', 'double' and so on.
 let sampleInteger2 = (sampleInteger/4 + 5 - 7) * 4 + int sampleDouble

 /// This is a list of the numbers from 0 to 99.
 let sampleNumbers = [0 .. 99]

 /// This is a list of all tuples containing all the numbers from 0 to 99 and their squares.
 let sampleTableOfSquares = [for i in 0 .. 99 -> (i, i*i)]

 // The next line prints a list that includes tuples, using '%A' for generic printing.
 printfn "The table of squares from 0 to 99 is:\n%A" sampleTableOfSquares

module Booleans =

 /// Booleans values are 'true' and 'false'.
 let boolean1 = true
 let boolean2 = false

 /// Operators on booleans are 'not', '&&' and '||'.
 let boolean3 = not boolean1 && (boolean2 || false)

 // This line uses '%b'to print a boolean value. This is type-safe.
 printfn "The expression 'not boolean1 && (boolean2 || false)' is %b" boolean3

module StringManipulation =

 /// Strings use double quotes.
 let string1 = "Hello"
 let string2 = "world"

 /// Strings can also use @ to create a verbatim string literal.
 /// This will ignore escape characters such as '\', '\n', '\t', etc.
 let string3 = @"C:\Program Files\"

 /// String literals can also use triple-quotes.
 let string4 = """The computer said "hello world" when I told it to!"""

 /// String concatenation is normally done with the '+' operator.
 let helloWorld = string1 + " " + string2

 // This line uses '%s' to print a string value. This is type-safe.
 printfn "%s" helloWorld

 /// Substrings use the indexer notation. This line extracts the first 7 characters as a substring.
 /// Note that like many languages, Strings are zero-indexed in F#.
 let substring = helloWorld.[0..6]
 printfn "%s" substring

Tuples

Here is how various numeric types are represented in F#:

Here's what Boolean values and performing basic conditional logic looks like:

And here's what basic string manipulation looks like:

Tuples are a big deal in F#. They are a grouping of unnamed, but ordered values, that can be treated as values themselves. Think of them as values
which are aggregated from other values. They have many uses, such as conveniently returning multiple values from a function, or grouping values for
some ad-hoc convenience.

module Tuples =

 /// A simple tuple of integers.
 let tuple1 = (1, 2, 3)

 /// A function that swaps the order of two values in a tuple.
 ///
 /// F# Type Inference will automatically generalize the function to have a generic type,
 /// meaning that it will work with any type.
 let swapElems (a, b) = (b, a)

 printfn "The result of swapping (1, 2) is %A" (swapElems (1,2))

 /// A tuple consisting of an integer, a string,
 /// and a double-precision floating point number.
 let tuple2 = (1, "fred", 3.1415)

 printfn "tuple1: %A\ttuple2: %A" tuple1 tuple2

/// Tuples are normally objects, but they can also be represented as structs.
///
/// These interoperate completely with structs in C# and Visual Basic.NET; however,
/// struct tuples are not implicitly convertible with object tuples (often called reference tuples).
///
/// The second line below will fail to compile because of this. Uncomment it to see what happens.
let sampleStructTuple = struct (1, 2)
//let thisWillNotCompile: (int*int) = struct (1, 2)

// Although you can
let convertFromStructTuple (struct(a, b)) = (a, b)
let convertToStructTuple (a, b) = struct(a, b)

printfn "Struct Tuple: %A\nReference tuple made from the Struct Tuple: %A" sampleStructTuple (sampleStructTuple |> convertFromStructTuple)

Pipelines and Composition

As of F# 4.1, you can also create struct tuples. These also interoperate fully with C#7/Visual Basic 15 tuples, which are also struct tuples:

It's important to note that because struct tuples are value types, they cannot be implicitly converted to reference tuples, or vice versa. You must
explicitly convert between a reference and struct tuple.

Pipe operators such as |> are used extensively when processing data in F#. These operators are functions that allow you to establish "pipelines" of
functions in a flexible manner. The following example walks through how you can take advantage of these operators to build a simple functional
pipeline:

module PipelinesAndComposition =

 /// Squares a value.
 let square x = x * x

 /// Adds 1 to a value.
 let addOne x = x + 1

 /// Tests if an integer value is odd via modulo.
 let isOdd x = x % 2 <> 0

 /// A list of 5 numbers. More on lists later.
 let numbers = [1; 2; 3; 4; 5]

 /// Given a list of integers, it filters out the even numbers,
 /// squares the resulting odds, and adds 1 to the squared odds.
 let squareOddValuesAndAddOne values =
 let odds = List.filter isOdd values
 let squares = List.map square odds
 let result = List.map addOne squares
 result

 printfn "processing %A through 'squareOddValuesAndAddOne' produces: %A" numbers (squareOddValuesAndAddOne numbers)

 /// A shorter way to write 'squareOddValuesAndAddOne' is to nest each
 /// sub-result into the function calls themselves.
 ///
 /// This makes the function much shorter, but it's difficult to see the
 /// order in which the data is processed.
 let squareOddValuesAndAddOneNested values =
 List.map addOne (List.map square (List.filter isOdd values))

 printfn "processing %A through 'squareOddValuesAndAddOneNested' produces: %A" numbers (squareOddValuesAndAddOneNested numbers)

 /// A preferred way to write 'squareOddValuesAndAddOne' is to use F# pipe operators.
 /// This allows you to avoid creating intermediate results, but is much more readable
 /// than nesting function calls like 'squareOddValuesAndAddOneNested'
 let squareOddValuesAndAddOnePipeline values =
 values
 |> List.filter isOdd
 |> List.map square
 |> List.map addOne

 printfn "processing %A through 'squareOddValuesAndAddOnePipeline' produces: %A" numbers (squareOddValuesAndAddOnePipeline numbers)

 /// You can shorten 'squareOddValuesAndAddOnePipeline' by moving the second `List.map` call
 /// into the first, using a Lambda Function.
 ///
 /// Note that pipelines are also being used inside the lambda function. F# pipe operators
 /// can be used for single values as well. This makes them very powerful for processing data.
 let squareOddValuesAndAddOneShorterPipeline values =
 values
 |> List.filter isOdd
 |> List.map(fun x -> x |> square |> addOne)

 printfn "processing %A through 'squareOddValuesAndAddOneShorterPipeline' produces: %A" numbers (squareOddValuesAndAddOneShorterPipeline
numbers)

Lists, Arrays, and Sequences

The previous sample made use of many features of F#, including list processing functions, first-class functions, and partial application. Although a deep
understanding of each of those concepts can become somewhat advanced, it should be clear how easily functions can be used to process data when
building pipelines.

Lists, Arrays, and Sequences are three primary collection types in the F# core library.

Lists are ordered, immutable collections of elements of the same type. They are singly-linked lists, which means they are meant for enumeration, but a
poor choice for random access and concatenation if they're large. This in contrast to Lists in other popular languages, which typically do not use a
singly-linked list to represent Lists.

module Lists =

 /// Lists are defined using [...]. This is an empty list.
 let list1 = []

 /// This is a list with 3 elements. ';' is used to separate elements on the same line.
 let list2 = [1; 2; 3]

 /// You can also separate elements by placing them on their own lines.
 let list3 = [
 1
 2
 3
]

 /// This is a list of integers from 1 to 1000
 let numberList = [1 .. 1000]

 /// Lists can also be generated by computations. This is a list containing
 /// all the days of the year.
 let daysList =
 [for month in 1 .. 12 do
 for day in 1 .. System.DateTime.DaysInMonth(2017, month) do
 yield System.DateTime(2017, month, day)]

 // Print the first 5 elements of 'daysList' using 'List.take'.
 printfn "The first 5 days of 2017 are: %A" (daysList |> List.take 5)

 /// Computations can include conditionals. This is a list containing the tuples
 /// which are the coordinates of the black squares on a chess board.
 let blackSquares =
 [for i in 0 .. 7 do
 for j in 0 .. 7 do
 if (i+j) % 2 = 1 then
 yield (i, j)]

 /// Lists can be transformed using 'List.map' and other functional programming combinators.
 /// This definition produces a new list by squaring the numbers in numberList, using the pipeline
 /// operator to pass an argument to List.map.
 let squares =
 numberList
 |> List.map (fun x -> x*x)

 /// There are many other list combinations. The following computes the sum of the squares of the
 /// numbers divisible by 3.
 let sumOfSquares =
 numberList
 |> List.filter (fun x -> x % 3 = 0)
 |> List.sumBy (fun x -> x * x)

 printfn "The sum of the squares of numbers up to 1000 that are divisible by 3 is: %d" sumOfSquares

Arrays are fixed-size, mutable collections of elements of the same type. They support fast random access of elements, and are faster than F# lists
because they are just contiguous blocks of memory.

module Arrays =

 /// This is The empty array. Note that the syntax is similar to that of Lists, but uses `[| ... |]` instead.
 let array1 = [| |]

 /// Arrays are specified using the same range of constructs as lists.
 let array2 = [| "hello"; "world"; "and"; "hello"; "world"; "again" |]

 /// This is an array of numbers from 1 to 1000.
 let array3 = [| 1 .. 1000 |]

 /// This is an array containing only the words "hello" and "world".
 let array4 =
 [| for word in array2 do
 if word.Contains("l") then
 yield word |]

 /// This is an array initialized by index and containing the even numbers from 0 to 2000.
 let evenNumbers = Array.init 1001 (fun n -> n * 2)

 /// Sub-arrays are extracted using slicing notation.
 let evenNumbersSlice = evenNumbers.[0..500]

 /// You can loop over arrays and lists using 'for' loops.
 for word in array4 do
 printfn "word: %s" word

 // You can modify the contents of an array element by using the left arrow assignment operator.
 //
 // To learn more about this operator, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/values/index#mutable-variables
 array2.[1] <- "WORLD!"

 /// You can transform arrays using 'Array.map' and other functional programming operations.
 /// The following calculates the sum of the lengths of the words that start with 'h'.
 let sumOfLengthsOfWords =
 array2
 |> Array.filter (fun x -> x.StartsWith "h")
 |> Array.sumBy (fun x -> x.Length)

 printfn "The sum of the lengths of the words in Array 2 is: %d" sumOfLengthsOfWords

module Sequences =

 /// This is the empty sequence.
 let seq1 = Seq.empty

 /// This a sequence of values.
 let seq2 = seq { yield "hello"; yield "world"; yield "and"; yield "hello"; yield "world"; yield "again" }

 /// This is an on-demand sequence from 1 to 1000.
 let numbersSeq = seq { 1 .. 1000 }

 /// This is a sequence producing the words "hello" and "world"
 let seq3 =
 seq { for word in seq2 do
 if word.Contains("l") then
 yield word }

 /// This sequence producing the even numbers up to 2000.
 let evenNumbers = Seq.init 1001 (fun n -> n * 2)

 let rnd = System.Random()

 /// This is an infinite sequence which is a random walk.
 /// This example uses yield! to return each element of a subsequence.
 let rec randomWalk x =
 seq { yield x
 yield! randomWalk (x + rnd.NextDouble() - 0.5) }

 /// This example shows the first 100 elements of the random walk.
 let first100ValuesOfRandomWalk =
 randomWalk 5.0
 |> Seq.truncate 100
 |> Seq.toList

 printfn "First 100 elements of a random walk: %A" first100ValuesOfRandomWalk

Recursive Functions

Sequences are a logical series of elements, all of the same type. These are a more general type than Lists and Arrays, capable of being your "view" into
any logical series of elements. They also stand out because they can be lazy, which means that elements can be computed only when they are needed.

Processing collections or sequences of elements is typically done with recursion in F#. Although F# has support for loops and imperative programming,
recursion is preferred because it is easier to guarantee correctness.

NOTENOTE

module RecursiveFunctions =

 /// This example shows a recursive function that computes the factorial of an
 /// integer. It uses 'let rec' to define a recursive function.
 let rec factorial n =
 if n = 0 then 1 else n * factorial (n-1)

 printfn "Factorial of 6 is: %d" (factorial 6)

 /// Computes the greatest common factor of two integers.
 ///
 /// Since all of the recursive calls are tail calls,
 /// the compiler will turn the function into a loop,
 /// which improves performance and reduces memory consumption.
 let rec greatestCommonFactor a b =
 if a = 0 then b
 elif a < b then greatestCommonFactor a (b - a)
 else greatestCommonFactor (a - b) b

 printfn "The Greatest Common Factor of 300 and 620 is %d" (greatestCommonFactor 300 620)

 /// This example computes the sum of a list of integers using recursion.
 let rec sumList xs =
 match xs with
 | [] -> 0
 | y::ys -> y + sumList ys

 /// This makes 'sumList' tail recursive, using a helper function with a result accumulator.
 let rec private sumListTailRecHelper accumulator xs =
 match xs with
 | [] -> accumulator
 | y::ys -> sumListTailRecHelper (accumulator+y) ys

 /// This invokes the tail recursive helper function, providing '0' as a seed accumulator.
 /// An approach like this is common in F#.
 let sumListTailRecursive xs = sumListTailRecHelper 0 xs

 let oneThroughTen = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

 printfn "The sum 1-10 is %d" (sumListTailRecursive oneThroughTen)

Record and Discriminated Union Types

The following example makes use of the pattern matching via the match expression. This fundamental construct is covered later in this article.

F# also has full support for Tail Call Optimization, which is a way to optimize recursive calls so that they are just as fast as a loop construct.

Record and Union types are two fundamental data types used in F# code, and are generally the best way to represent data in an F# program. Although
this makes them similar to classes in other languages, one of their primary differences is that they have structural equality semantics. This means that
they are "natively" comparable and equality is straightforward - just check if one is equal to the other.

Records are an aggregate of named values, with optional members (such as methods). If you're familiar with C# or Java, then these should feel similar
to POCOs or POJOs - just with structural equality and less ceremony.

module RecordTypes =

 /// This example shows how to define a new record type.
 type ContactCard =
 { Name : string
 Phone : string
 Verified : bool }

 /// This example shows how to instantiate a record type.
 let contact1 =
 { Name = "Alf"
 Phone = "(206) 555-0157"
 Verified = false }

 /// You can also do this on the same line with ';' separators.
 let contactOnSameLine = { Name = "Alf"; Phone = "(206) 555-0157"; Verified = false }

 /// This example shows how to use "copy-and-update" on record values. It creates
 /// a new record value that is a copy of contact1, but has different values for
 /// the 'Phone' and 'Verified' fields.
 ///
 /// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/copy-and-update-record-expressions
 let contact2 =
 { contact1 with
 Phone = "(206) 555-0112"
 Verified = true }

 /// This example shows how to write a function that processes a record value.
 /// It converts a 'ContactCard' object to a string.
 let showContactCard (c: ContactCard) =
 c.Name + " Phone: " + c.Phone + (if not c.Verified then " (unverified)" else "")

 printfn "Alf's Contact Card: %s" (showContactCard contact1)

 /// This is an example of a Record with a member.
 type ContactCardAlternate =
 { Name : string
 Phone : string
 Address : string
 Verified : bool }

 /// Members can implement object-oriented members.
 member this.PrintedContactCard =
 this.Name + " Phone: " + this.Phone + (if not this.Verified then " (unverified)" else "") + this.Address

 let contactAlternate =
 { Name = "Alf"
 Phone = "(206) 555-0157"
 Verified = false
 Address = "111 Alf Street" }

 // Members are accessed via the '.' operator on an instantiated type.
 printfn "Alf's alternate contact card is %s" contactAlternate.PrintedContactCard

/// Records can also be represented as structs via the 'Struct' attribute.
/// This is helpful in situations where the performance of structs outweighs
/// the flexibility of reference types.
[<Struct>]
type ContactCardStruct =
 { Name : string
 Phone : string
 Verified : bool }

As of F# 4.1, you can also represent Records as struct s. This is done with the [<Struct>] attribute:

Discriminated Unions (DUs) are values which could be a number of named forms or cases. Data stored in the type can be one of several distinct values.

module DiscriminatedUnions =

 /// The following represents the suit of a playing card.
 type Suit =
 | Hearts
 | Clubs
 | Diamonds
 | Spades

 /// A Discriminated Union can also be used to represent the rank of a playing card.
 type Rank =
 /// Represents the rank of cards 2 .. 10
 | Value of int
 | Ace
 | King
 | Queen
 | Jack

 /// Discriminated Unions can also implement object-oriented members.
 static member GetAllRanks() =
 [yield Ace
 for i in 2 .. 10 do yield Value i
 yield Jack
 yield Queen
 yield King]

 /// This is a record type that combines a Suit and a Rank.
 /// It's common to use both Records and Discriminated Unions when representing data.
 type Card = { Suit: Suit; Rank: Rank }

 /// This computes a list representing all the cards in the deck.
 let fullDeck =
 [for suit in [Hearts; Diamonds; Clubs; Spades] do
 for rank in Rank.GetAllRanks() do
 yield { Suit=suit; Rank=rank }]

 /// This example converts a 'Card' object to a string.
 let showPlayingCard (c: Card) =
 let rankString =
 match c.Rank with
 | Ace -> "Ace"
 | King -> "King"
 | Queen -> "Queen"
 | Jack -> "Jack"
 | Value n -> string n
 let suitString =
 match c.Suit with
 | Clubs -> "clubs"
 | Diamonds -> "diamonds"
 | Spades -> "spades"
 | Hearts -> "hearts"
 rankString + " of " + suitString

 /// This example prints all the cards in a playing deck.
 let printAllCards() =
 for card in fullDeck do
 printfn "%s" (showPlayingCard card)

// Single-case DUs are often used for domain modeling. This can buy you extra type safety
// over primitive types such as strings and ints.
//
// Single-case DUs cannot be implicitly converted to or from the type they wrap.
// For example, a function which takes in an Address cannot accept a string as that input,
// or vice versa.
type Address = Address of string
type Name = Name of string
type SSN = SSN of int

// You can easily instantiate a single-case DU as follows.
let address = Address "111 Alf Way"
let name = Name "Alf"
let ssn = SSN 1234567890

/// When you need the value, you can unwrap the underlying value with a simple function.
let unwrapAddress (Address a) = a
let unwrapName (Name n) = n
let unwrapSSN (SSN s) = s

// Printing single-case DUs is simple with unwrapping functions.
printfn "Address: %s, Name: %s, and SSN: %d" (address |> unwrapAddress) (name |> unwrapName) (ssn |> unwrapSSN)

You can also use DUs as Single-Case Discriminated Unions, to help with domain modeling over primitive types. Often times, strings and other primitive
types are used to represent something, and are thus given a particular meaning. However, using only the primitive representation of the data can result
in mistakenly assigning an incorrect value! Representing each type of information as a distinct single-case union can enforce correctness in this
scenario.

/// Discriminated Unions also support recursive definitions.
///
/// This represents a Binary Search Tree, with one case being the Empty tree,
/// and the other being a Node with a value and two subtrees.
type BST<'T> =
 | Empty
 | Node of value:'T * left: BST<'T> * right: BST<'T>

/// Check if an item exists in the binary search tree.
/// Searches recursively using Pattern Matching. Returns true if it exists; otherwise, false.
let rec exists item bst =
 match bst with
 | Empty -> false
 | Node (x, left, right) ->
 if item = x then true
 elif item < x then (exists item left) // Check the left subtree.
 else (exists item right) // Check the right subtree.

/// Inserts an item in the Binary Search Tree.
/// Finds the place to insert recursively using Pattern Matching, then inserts a new node.
/// If the item is already present, it does not insert anything.
let rec insert item bst =
 match bst with
 | Empty -> Node(item, Empty, Empty)
 | Node(x, left, right) as node ->
 if item = x then node // No need to insert, it already exists; return the node.
 elif item < x then Node(x, insert item left, right) // Call into left subtree.
 else Node(x, left, insert item right) // Call into right subtree.

/// Discriminated Unions can also be represented as structs via the 'Struct' attribute.
/// This is helpful in situations where the performance of structs outweighs
/// the flexibility of reference types.
///
/// However, there are two important things to know when doing this:
/// 1. A struct DU cannot be recursively-defined.
/// 2. A struct DU must have unique names for each of its cases.
[<Struct>]
type Shape =
 | Circle of radius: float
 | Square of side: float
 | Triangle of height: float * width: float

Pattern Matching

As the above sample demonstrates, to get the underlying value in a single-case Discriminated Union, you must explicitly unwrap it.

Additionally, DUs also support recursive definitions, allowing you to easily represent trees and inherently recursive data. For example, here's how you
can represent a Binary Search Tree with exists and insert functions.

Because DUs allow you to represent the recursive structure of the tree in the data type, operating on this recursive structure is straightforward and
guarantees correctness. It is also supported in pattern matching, as shown below.

Additionally, you can represent DUs as struct s with the [<Struct>] attribute:

However, there are two key things to keep in mind when doing so:

1. A struct DU cannot be recursively-defined.
2. A struct DU must have unique names for each of its cases.

Failure to follow the above will result in a compilation error.

Pattern Matching is the F# language feature which enables correctness for operating on F# types. In the above samples, you probably noticed quite a bit
of match x with ... syntax. This construct allows the compiler, which can understand the "shape" of data types, to force you to account for all possible
cases when using a data type through what is known as Exhaustive Pattern Matching. This is incredibly powerful for correctness, and can be cleverly
used to "lift" what would normally be a runtime concern into compile-time.

module PatternMatching =

 /// A record for a person's first and last name
 type Person = {
 First : string
 Last : string
 }

 /// A Discriminated Union of 3 different kinds of employees
 type Employee =
 | Engineer of engineer: Person
 | Manager of manager: Person * reports: List<Employee>
 | Executive of executive: Person * reports: List<Employee> * assistant: Employee

 /// Count everyone underneath the employee in the management hierarchy,
 /// including the employee. The matches bind names to the properties
 /// of the cases so that those names can be used inside the match branches.
 /// Note that the names used for binding do not need to be the same as the
 /// names given in the DU definition above.
 let rec countReports(emp : Employee) =
 1 + match emp with
 | Engineer(person) ->
 0
 | Manager(person, reports) ->
 reports |> List.sumBy countReports
 | Executive(person, reports, assistant) ->
 (reports |> List.sumBy countReports) + countReports assistant

 /// Find all managers/executives named "Dave" who do not have any reports.
 /// This uses the 'function' shorthand to as a lambda expression.
 let rec findDaveWithOpenPosition(emps : List<Employee>) =
 emps
 |> List.filter(function
 | Manager({First = "Dave"}, []) -> true // [] matches an empty list.

 | _ -> false) // '_' is a wildcard pattern that matches anything.
 // This handles the "or else" case.

open System

/// You can also use the shorthand function construct for pattern matching,
/// which is useful when you're writing functions which make use of Partial Application.
let private parseHelper f = f >> function
 | (true, item) -> Some item
 | (false, _) -> None

let parseDateTimeOffset = parseHelper DateTimeOffset.TryParse

let result = parseDateTimeOffset "1970-01-01"
match result with
| Some dto -> printfn "It parsed!"
| None -> printfn "It didn't parse!"

// Define some more functions which parse with the helper function.

You can also use the shorthand function construct for pattern matching, which is useful when you're writing functions which make use of Partial
Application:

Something you may have noticed is the use of the _ pattern. This is known as the Wildcard Pattern, which is a way of saying "I don't care what
something is". Although convenient, you can accidentally bypass Exhaustive Pattern Matching and no longer benefit from compile-time enforcements if
you aren't careful in using _ . It is best used when you don't care about certain pieces of a decomposed type when pattern matching, or the final clause
when you have enumerated all meaningful cases in a pattern matching expression.

Active Patterns are another powerful construct to use with pattern matching. They allow you to partition input data into custom forms, decomposing
them at the pattern match call site. They can also be parameterized, thus allowing to define the partition as a function. Expanding the previous example
to support Active Patterns looks something like this:

let parseDouble = parseHelper Double.TryParse
let parseTimeSpan = parseHelper TimeSpan.TryParse

// Active Patterns are another powerful construct to use with pattern matching.
// They allow you to partition input data into custom forms, decomposing them at the pattern match call site.
//
// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/active-patterns
let (|Int|_|) = parseInt
let (|Double|_|) = parseDouble
let (|Date|_|) = parseDateTimeOffset
let (|TimeSpan|_|) = parseTimeSpan

/// Pattern Matching via 'function' keyword and Active Patterns often looks like this.
let printParseResult = function
 | Int x -> printfn "%d" x
 | Double x -> printfn "%f" x
 | Date d -> printfn "%s" (d.ToString())
 | TimeSpan t -> printfn "%s" (t.ToString())
 | _ -> printfn "Nothing was parse-able!"

// Call the printer with some different values to parse.
printParseResult "12"
printParseResult "12.045"

Optional Types

/// languages would use null references.
///
/// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/options
module OptionValues =

 /// First, define a zip code defined via Single-case Discriminated Union.
 type ZipCode = ZipCode of string

 /// Next, define a type where the ZipCode is optional.
 type Customer = { ZipCode: ZipCode option }

 /// Next, define an interface type the represents an object to compute the shipping zone for the customer's zip code,
 /// given implementations for the 'getState' and 'getShippingZone' abstract methods.
 type IShippingCalculator =
 abstract GetState : ZipCode -> string option
 abstract GetShippingZone : string -> int

 /// Next, calculate a shipping zone for a customer using a calculator instance.
 /// This uses combinators in the Option module to allow a functional pipeline for
 /// transforming data with Optionals.
 let CustomerShippingZone (calculator: IShippingCalculator, customer: Customer) =

Units of Measure

One special case of Discriminated Union types is the Option Type, which is so useful that it's a part of the F# core library.

The Option Type is a type which represents one of two cases: a value, or nothing at all. It is used in any scenario where a value may or may not result
from a particular operation. This then forces you to account for both cases, making it a compile-time concern rather than a runtime concern. These are
often used in APIs where null is used to represent "nothing" instead, thus eliminating the need to worry about NullReferenceException in many
circumstances.

One unique feature of F#'s type system is the ability to provide context for numeric literals through Units of Measure.

Units of Measure allow you to associate a numeric type to a unit, such as Meters, and have functions perform work on units rather than numeric literals.
This enables the compiler to verify that the types of numeric literals passed in make sense under a certain context, thus eliminating runtime errors
associated with that kind of work.

/// You can then perform type-safe arithmetic on these values.
///
/// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/units-of-measure
module UnitsOfMeasure =

 /// First, open a collection of common unit names
 open Microsoft.FSharp.Data.UnitSystems.SI.UnitNames

 /// Define a unitized constant
 let sampleValue1 = 1600.0<meter>

 /// Next, define a new unit type
 [<Measure>]
 type mile =
 /// Conversion factor mile to meter.
 static member asMeter = 1609.34<meter/mile>

 /// Define a unitized constant
 let sampleValue2 = 500.0<mile>

 /// Compute metric-system constant
 let sampleValue3 = sampleValue2 * mile.asMeter

Classes and Interfaces

/// To learn more about Classes, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/classes
///
/// To learn more about Members, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/members
module DefiningClasses =

 /// A simple two-dimensional Vector class.
 ///
 /// The class's constructor is on the first line,
 /// and takes two arguments: dx and dy, both of type 'double'.
 type Vector2D(dx : double, dy : double) =

 /// This internal field stores the length of the vector, computed when the
 /// object is constructed
 let length = sqrt (dx*dx + dy*dy)

 // 'this' specifies a name for the object's self-identifier.
 // In instance methods, it must appear before the member name.
 member this.DX = dx

 member this.DY = dy

 member this.Length = length

 /// This member is a method. The previous members were properties.
 member this.Scale(k) = Vector2D(k * this.DX, k * this.DY)

 /// This is how you instantiate the Vector2D class.
 let vector1 = Vector2D(3.0, 4.0)

 /// Get a new scaled vector object, without modifying the original object.

The F# Core library defines many SI unit types and unit conversions. To learn more, check out the Microsoft.FSharp.Data.UnitSystems.SI Namespace.

F# also has full support for .NET classes, Interfaces, Abstract Classes, Inheritance, and so on.

Classes are types that represent .NET objects, which can have properties, methods, and events as its Members.

Defining generic classes is also very straightforward.

https://msdn.microsoft.com/visualfsharpdocs/conceptual/microsoft.fsharp.data.unitsystems.si-namespace-%5bfsharp%5d

/// In the following, 'T is the type parameter for the class.
///
/// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/generics/
module DefiningGenericClasses =

 type StateTracker<'T>(initialElement: 'T) =

 /// This internal field store the states in a list.
 let mutable states = [initialElement]

 /// Add a new element to the list of states.
 member this.UpdateState newState =
 states <- newState :: states // use the '<-' operator to mutate the value.

 /// Get the entire list of historical states.
 member this.History = states

 /// Get the latest state.
 member this.Current = states.Head

 /// An 'int' instance of the state tracker class. Note that the type parameter is inferred.
 let tracker = StateTracker 10

/// Object types and object expressions can implement interfaces.
///
/// To learn more, see: https://docs.microsoft.com/dotnet/fsharp/language-reference/interfaces
module ImplementingInterfaces =

 /// This is a type that implements IDisposable.
 type ReadFile() =

 let file = new System.IO.StreamReader("readme.txt")

 member this.ReadLine() = file.ReadLine()

 // This is the implementation of IDisposable members.
 interface System.IDisposable with
 member this.Dispose() = file.Close()

 /// This is an object that implements IDisposable via an Object Expression
 /// Unlike other languages such as C# or Java, a new type definition is not needed
 /// to implement an interface.

Which Types to Use

Next Steps

To implement an Interface, you can use either interface ... with syntax or an Object Expression.

The presence of Classes, Records, Discriminated Unions, and Tuples leads to an important question: which should you use? Like most everything in life,
the answer depends on your circumstances.

Tuples are great for returning multiple values from a function, and using an ad-hoc aggregate of values as a value itself.

Records are a "step up" from Tuples, having named labels and support for optional members. They are great for a low-ceremony representation of data
in-transit through your program. Because they have structural equality, they are easy to use with comparison.

Discriminated Unions have many uses, but the core benefit is to be able to utilize them in conjunction with Pattern Matching to account for all possible
"shapes" that a data can have.

Classes are great for a huge number of reasons, such as when you need to represent information and also tie that information to functionality. As a rule
of thumb, when you have functionality which is conceptually tied to some data, using Classes and the principles of Object-Oriented Programming is a
big benefit. Classes are also the preferred data type when interoperating with C# and Visual Basic, as these languages use classes for nearly everything.

Now that you've seen some of the primary features of the language, you should be ready to write your first F# programs! Check out Getting Started to
learn how to set up your development environment and write some code.

The next steps for learning more can be whatever you like, but we recommend Functions as First-Class Values to get comfortable with core Functional
Programming concepts. These will be essential in building robust programs in F#.

Also, check out the F# Language Reference to see a comprehensive collection of conceptual content on F#.

https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/getting-started/index

Getting Started with F#
5/4/2018 • 2 minutes to read • Edit Online

OS PREFER VISUAL STUDIO PREFER VISUAL STUDIO CODE PREFER A COMMAND LINE

Windows Get started with Visual Studio Get started with VSCode and Ionide Get started with the .NET Core CLI

macOS Get started with VS for Mac Get started with VSCode and Ionide Get started with the .NET Core CLI

Linux N/A Get started with VSCode and Ionide Get started with the .NET Core CLI

There are multiple ways to get started with F#. We have multiple articles written to provide a guide for each major way. You can use the following table
to help in making a decision.

In general, there is no specific way to get started which is better than the rest. We recommend trying all ways to use F# on your machine to see what
you like the best!

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/index.md

Install F#
7/6/2018 • 2 minutes to read • Edit Online

Install F# with Visual Studio

Install F# with Visual Studio for Mac

Install F# with Visual Studio Code

brew install mono

You can install F# in multiple ways, depending on your environment.

If you're downloading Visual Studio for the first time, it will first install the Visual Studio installer. Install the appropriate SKU of Visual Studio from the
installer. If you already have it installed, click Modify.

You'll next see a list of Workloads. Select ASP.NET and web development, which will install F# support, .NET Core support, and F# support for
ASP.NET Core projects.

Next, click Modify in the lower right-hand side. This will install everything you have selected. You can then open Visual Studio 2017 with F# language
support by clicking Launch.

F# is installed by default in Visual Studio for Mac, no matter what configuration you choose.

After the install completes, choose "Start Visual Studio". You can also launch it through Finder on macOS.

You must have git installed and available on your PATH to make use of project templates in Ionide. You can verify that it is installed correctly by typing
git --version at a command prompt and pressing Enter.

macOS
Linux
Windows

Ionide uses Mono. The easiest way to install Mono on macOS is via Homebrew. Simply type the following into your terminal:

You must also install the .NET Core SDK.

You will then need Visual Studio Code installed.

Next, click the Extensions icon and search for "Ionide":

The only plugin required for F# support in Visual Studio Code is Ionide-fsharp. However, you can also install Ionide-FAKE to get FAKE support and
Ionide-Paket to get Paket support. FAKE and Paket are additional F# community tools for building projects and managing dependencies, respectively.

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/install-fsharp.md
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/mac/
https://git-scm.com/download
http://www.mono-project.com
https://www.microsoft.com/net/download
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-FAKE
https://fsharp.github.io/FAKE/
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-Paket
https://fsprojects.github.io/Paket/

Get started with F# in Visual Studio
7/11/2018 • 3 minutes to read • Edit Online

Creating a console application

Writing your code

module HelloSquare

let square x = x * x

[<EntryPoint>]
let main argv =
 printfn "%d squared is: %d!" 12 (square 12)
 0 // Return an integer exit code

val square: x:int -> int

Running your code

12 squared is 144!

Next steps

F# and the Visual F# tooling are supported in the Visual Studio IDE.

To begin, ensure that you have Visual Studio installed with F#.

One of the most basic projects in Visual Studio is the Console Application. Here's how to do it. Once Visual Studio is open:

1. On the File menu, point to New, and then choose Project.

2. In the New Project dialog, under Templates, you should see Visual F#. Choose this to show the F# templates.

3. Select either .NET Core Console app or Console app.

4. Choose the Okay button to create the F# project! You should now see an F# project in the Solution Explorer.

Let's get started by writing some code first. Make sure that the Program.fs file is open, and then replace its contents with the following:

In the previous code sample, a function square has been defined which takes an input named x and multiplies it by itself. Because F# uses Type
Inference, the type of x doesn't need to be specified. The F# compiler understands the types where multiplication is valid, and will assign a type to x

based on how square is called. If you hover over square , you should see the following:

This is what is known as the function's type signature. It can be read like this: "Square is a function which takes an integer named x and produces an
integer". Note that the compiler gave square the int type for now - this is because multiplication is not generic across all types, but rather is generic
across a closed set of types. The F# compiler picked int at this point, but it will adjust the type signature if you call square with a different input type,
such as a float .

Another function, main , is defined, which is decorated with the EntryPoint attribute to tell the F# compiler that program execution should start there. It
follows the same convention as other C-style programming languages, where command-line arguments can be passed to this function, and an integer
code is returned (typically 0).

It is in this function that we call the square function with an argument of 12 . The F# compiler then assigns the type of square to be int -> int (that
is, a function which takes an int and produces an int). The call to printfn is a formatted printing function which uses a format string, similar to C-
style programming languages, parameters which correspond to those specified in the format string, and then prints the result and a new line.

You can run the code and see results by pressing Ctrl+F5. This runs the program without debugging and allows you to see the results. Alternatively, you
can choose the Debug top-level menu item in Visual Studio and choose Start Without Debugging.

You should now see the following printed to the console window that Visual Studio popped up:

Congratulations! You've created your first F# project in Visual Studio, written an F# function printed the results of calling that function, and run the
project to see some results.

If you haven't already, check out the Tour of F#, which covers some of the core features of the F# language. It will give you an overview of some of the
capabilities of F#, and provide ample code samples that you can copy into Visual Studio and run. There are also some great external resources you can
use, showcased in the F# Guide.

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/get-started-visual-studio.md
https://en.wikipedia.org/wiki/Entry_point#C_and_C.2B.2B

See also
Tour of F#
F# language reference
Type inference
Symbol and operator reference

Get started with F# in Visual Studio for Mac
7/6/2018 • 5 minutes to read • Edit Online

Creating a console application

Writing your code

module HelloSquare

let square x = x * x

[<EntryPoint>]
let main argv =
 printfn "%d squared is: %d!" 12 (square 12)
 0 // Return an integer exit code

val square: x:int -> int

Running your code

12 squared is 144!

Using F# Interactive

F# and the Visual F# tooling are supported in the Visual Studio for Mac IDE. Ensure that you have Visual Studio for Mac installed.

One of the most basic projects in Visual Studio for Mac is the Console Application. Here's how to do it. Once Visual Studio for Mac is open:

1. On the File menu, point to New Solution.

2. In the New Project dialog, there are 2 different templates for Console Application. There is one under Other -> .NET which targets the .NET
Framework. The other template is under .NET Core -> App which targets .NET Core. Either template should work for the purpose of this article.

3. Under console app, change C# to F# if needed. Choose the Next button to move forward!

4. Give your project a name, and choose the options you want for the app. Notice, the preview pane to the side of the screen that will show the
directory structure that will be created based on the options selected.

5. Click Create. You should now see an F# project in the Solution Explorer.

Let's get started by writing some code first. Make sure that the Program.fs file is open, and then replace its contents with the following:

In the previous code sample, a function square has been defined which takes an input named x and multiplies it by itself. Because F# uses Type
Inference, the type of x doesn't need to be specified. The F# compiler understands the types where multiplication is valid, and will assign a type to x

based on how square is called. If you hover over square , you should see the following:

This is what is known as the function's type signature. It can be read like this: "Square is a function which takes an integer named x and produces an
integer". Note that the compiler gave square the int type for now - this is because multiplication is not generic across all types, but rather is generic
across a closed set of types. The F# compiler picked int at this point, but it will adjust the type signature if you call square with a different input type,
such as a float .

Another function, main , is defined, which is decorated with the EntryPoint attribute to tell the F# compiler that program execution should start there. It
follows the same convention as other C-style programming languages, where command-line arguments can be passed to this function, and an integer
code is returned (typically 0).

It is in this function that we call the square function with an argument of 12 . The F# compiler then assigns the type of square to be int -> int (that
is, a function which takes an int and produces an int). The call to printfn is a formatted printing function which uses a format string, similar to C-
style programming languages, parameters which correspond to those specified in the format string, and then prints the result and a new line.

You can run the code and see results by clicking on Run from the top level menu and then Start Without Debugging. This will run the program
without debugging and allows you to see the results.

You should now see the following printed to the console window that Visual Studio for Mac popped up:

Congratulations! You've created your first F# project in Visual Studio for Mac, written an F# function printed the results of calling that function, and run
the project to see some results.

One of the best features of the Visual F# tooling in Visual Studio for Mac is the F# Interactive Window. It allows you to send code over to a process
where you can call that code and see the result interactively.

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/get-started-with-visual-studio-for-mac.md
https://en.wikipedia.org/wiki/Entry_point#C_and_C.2B.2B

>

val square : x:int -> int

>

> square 12;;
val it : int = 144
>square 13;;
val it : int = 169

> let isOdd x = x % 2 <> 0;;

val isOdd : x:int -> bool

> isOdd 12;;
val it : bool = false

> isOdd (square 15);;
val it : bool = true

> 15 |> square |> isOdd;;
val it : bool = true

Next steps

See also

To begin using it, highlight the square function defined in your code. Next, click on Edit from the top level menu. Next select Send selection to F#
Interactive. This executes the code in the F# Interactive Window. Alternatively, you can right click on the selection and choose Send selection to F#
Interactive. You should see the F# Interactive Window appear with the following in it:

This shows the same function signature for the square function, which you saw earlier when you hovered over the function. Because square is now
defined in the F# Interactive process, you can call it with different values:

This executes the function, binds the result to a new name it , and displays the type and value of it . Note that you must terminate each line with ;; .
This is how F# Interactive knows when your function call is finished. You can also define new functions in F# Interactive:

The above defines a new function, isOdd , which takes an int and checks to see if it's odd! You can call this function to see what it returns with different
inputs. You can call functions within function calls:

You can also use the pipe-forward operator to pipeline the value into the two functions:

The pipe-forward operator, and more, are covered in later tutorials.

This is only a glimpse into what you can do with F# Interactive. To learn more, check out Interactive Programming with F#.

If you haven't already, check out the Tour of F#, which covers some of the core features of the F# language. It will give you an overview of some of the
capabilities of F#, and provide ample code samples that you can copy into Visual Studio for Mac and run. There are also some great external resources
you can use, showcased in the F# Guide.

Visual F#
Tour of F#
F# language reference
Type inference
Symbol and operator reference

Get Started with F# in Visual Studio Code
7/6/2018 • 8 minutes to read • Edit Online

Creating your first project with Ionide

> F# new project

NOTENOTE

Writing some code

let toPigLatin (word: string) =
 let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

 if isVowel word.[0] then
 word + "yay"
 else
 word.[1..] + string(word.[0]) + "ay"

You can write F# in Visual Studio Code with the Ionide plugin to get a great cross-platform, lightweight Integrated Development Environment (IDE)
experience with IntelliSense and basic code refactorings. Visit Ionide.io to learn more about the plugin.

To begin, ensure that you have F# and the Ionide plugin correctly installed.

To create a new F# project, open Visual Studio Code in a new folder (you can name it whatever you like).

Next, open the command pallette (View > Command Pallette) and type the following:

This is powered by the FORGE project.

If you don't see template options, try refreshing templates by running the following command in the Command Palette: >F#: Refresh Project Templates .

Select "F#: New Project" by hitting Enter. This takes you to the next step, which is for selecting a project template.

Pick the classlib template and hit Enter.

Next, pick a directory to create the project in. If you leave it blank, it uses the current directory.

Finally, name your project in the final step. F# uses Pascal case for project names. This article uses ClassLibraryDemo as the name. Once you've entered
the name you want for your project, hit Enter.

If you followed the previous step, you should get the Visual Studio Code Workspace on the left-hand side to appear with the following:

1. The F# project itself, underneath the ClassLibraryDemo folder.
2. The correct directory structure for adding packages via Paket .
3. A cross-platform build script with FAKE .
4. The paket.exe executable that can fetch packages and resolve dependencies for you.
5. A .gitignore file if you wish to add this project to Git-based source control.

Open the ClassLibraryDemo folder. You should see the following files:

1. ClassLibraryDemo.fs , an F# implementation file with a class defined.
2. ClassLibraryDemo.fsproj , an F# project file used to build this project.
3. Script.fsx , an F# script file that loads the source file.
4. paket.references , a Paket file that specifies the project dependencies.

Open Script.fsx , and add the following code at the end of it:

This function converts a word to a form of Pig Latin. The next step is to evaluate it using F# Interactive (FSI).

Highlight the entire function (it should be 11 lines long). Once it is highlighted, hold the Alt key and hit Enter. You'll notice a window pop up below, and
it should show something like this:

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/get-started-vscode.md
https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp
http://ionide.io
https://github.com/fsharp-editing/Forge
http://c2.com/cgi/wiki?PascalCase
https://fsprojects.github.io/Paket/
https://fsharp.github.io/FAKE/
https://en.wikipedia.org/wiki/Pig_Latin

toPigLatin "banana";;

val it : string = "ananabay"

toPigLatin "apple";;

val it : string = "appleyay"

NOTENOTE

Explaining the code

val toPigLatin : word:string -> string

This did three things:

1. It started the FSI process.
2. It sent the code you highlighted over the FSI process.
3. The FSI process evaluated the code you sent over.

Because what you sent over was a function, you can now call that function with FSI! In the interactive window, type the following:

You should see the following result:

Now, let's try with a vowel as the first letter. Enter the following:

You should see the following result:

The function appears to be working as expected. Congratulations, you just wrote your first F# function in Visual Studio Code and evaluated it with FSI!

As you may have noticed, the lines in FSI are terminated with ;; . This is because FSI allows you to enter multiple lines. The ;; at the end lets FSI know when the
code is finished.

If you're not sure about what the code is actually doing, here's a step-by-step.

As you can see, toPigLatin is a function that takes a word as its input and converts it to a Pig-Latin representation of that word. The rules for this are as
follows:

If the first character in a word starts with a vowel, add "yay" to the end of the word. If it doesn't start with a vowel, move that first character to the end of
the word and add "ay" to it.

You may have noticed the following in FSI:

This states that toPigLatin is a function that takes in a string as input (called word), and returns another string . This is known as the type signature
of the function, a fundamental piece of F# that's key to understanding F# code. You'll also notice this if you hover over the function in Visual Studio
Code.

In the body of the function, you'll notice two distinct parts:

https://fsharpforfunandprofit.com/posts/function-signatures/

Moving your script code into the implementation file

namespace ClassLibraryDemo

module PigLatin =
 let toPigLatin (word: string) =
 let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

 if isVowel word.[0] then
 word + "yay"
 else
 word.[1..] + string(word.[0]) + "ay"

#load "ClassLibraryDemo.fs"
open ClassLibraryDemo

> PigLatin.toPigLatin "banana";;
val it : string = "ananabay"
> PigLatin.toPigLatin "apple";;
val it : string = "appleyay"

let isVowel (c: char) =
 match c with
 | 'a' | 'e' | 'i' |'o' |'u'
 | 'A' | 'E' | 'I' | 'O' | 'U' -> true
 |_ -> false

if isVowel word.[0] then
 word + "yay"
else
 word.[1..] + string(word.[0]) + "ay"

1. An inner function, called isVowel , that determines if a given character (c) is a vowel by checking if it matches one of the provided patterns via
Pattern Matching:

2. An if..then..else expression that checks if the first character is a vowel, and constructs a return value out of the input characters based on if the
first character was a vowel or not:

The flow of toPigLatin is thus:

Check if the first character of the input word is a vowel. If it is, attach "yay" to the end of the word. Otherwise, move that first character to the end of the
word and add "ay" to it.

There's one final thing to notice about this: there's no explicit instruction to return from the function, unlike many other languages out there. This is
because F# is Expression-based, and the last expression in the body of a function is the return value. Because if..then..else is itself an expression, the
body of the then block or the body of the else block will be returned depending on the input value.

The previous sections in this article demonstrated a common first step in writing F# code: writing an initial function and executing it interactively with
FSI. This is known as REPL-driven development, where REPL stands for "Read-Evaluate-Print Loop". It's a great way to experiment with functionality
until you have something working.

The next step in REPL-driven development is to move working code into an F# implementation file. It can then be compiled by the F# compiler into an
assembly that can be executed.

To begin, open ClassLibraryDemo.fs . You'll notice that some code is already in there. Go ahead and delete the class definition, but make sure to leave the
namespace declaration at the top.

Next, create a new module called PigLatin and copy the toPigLatin function into it as such:

Next, open the Script.fsx file again, and delete the entire toPigLatin function, but make sure to keep the following two lines in the file:

The first line is needed for FSI scripting to load ClassLibraryDemo.fs . The second line is a convenience: omitting it is optional, but you will need to type
open ClassLibraryDemo in an FSI window if you wish to bring the ToPigLatin module into scope.

Next, in the FSI window, call the function with the PigLatin module that you defined earlier :

Success! You get the same results as before, but now loaded from an F# implementation file. The major difference here is that F# source files are
compiled into assemblies that can be executed anywhere, not just in FSI.

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

Summary

Troubleshooting

Next steps

In this article, you've learned:

1. How to set up Visual Studio Code with Ionide.
2. How to create your first F# project with Ionide.
3. How to use F# Scripting to write your first F# function in Ionide and then execute it in FSI.
4. How to migrate your script code to F# source and then call that code from FSI.

You're now equipped to write much more F# code using Visual Studio Code and Ionide.

Here are a few ways you can troubleshoot certain problems that you might run into:

1. To get the code editing features of Ionide, your F# files need to be saved to disk and inside of a folder that is open in the Visual Studio Code
workspace.

2. If you've made changes to your system or installed Ionide prerequisites with Visual Studio Code open, restart Visual Studio Code.
3. Check that you can use the F# compiler and F# interactive from the command line without a fully-qualified path. You can do so by typing fsc in a

command line for the F# compiler, and fsi or fsharpi for the Visual F# tools on Windows and Mono on Mac/Linux, respectively.
4. If you have invalid characters in your project directories, Ionide might not work. Rename your project directories if this is the case.
5. If none of the Ionide commands are working, check your Visual Studio Code keybindings to see if you're overriding them by accident.
6. If Ionide is broken on your machine and none of the above has fixed your problem, try removing the ionide-fsharp directory on your machine and

reinstall the plugin suite.

Ionide is an open source project built and maintained by members of the F# community. Please report issues and feel free to contribute at the Ionide-
VSCode: FSharp GitHub repository.

If you have an issue to report, please follow the instructions for getting logs to use when reporting an issue.

You can also ask for further help from the Ionide developers and F# community in the Ionide Gitter channel.

To learn more about F# and the features of the language, check out Tour of F#.

https://code.visualstudio.com/docs/customization/keybindings#_customizing-shortcuts
https://github.com/ionide/ionide-vscode-fsharp
https://github.com/ionide/ionide-vscode-fsharp#how-to-get-logs-for-debugging--issue-reporting
https://gitter.im/ionide/ionide-project

Get started with F# with the .NET Core CLI
7/6/2018 • 2 minutes to read • Edit Online

Prerequisites

Build a simple multi-project solution

dotnet new sln -o FSNetCore

FSNetCore
 ├── FSNetCore.sln

Write a class libraryWrite a class library

dotnet new lib -lang F# -o src/Library

└── FSNetCore
 ├── FSNetCore.sln
 └── src
 └── Library
 ├── Library.fs
 └── Library.fsproj

module Library

open Newtonsoft.Json

let getJsonNetJson value =
 sprintf "I used to be %s but now I'm %s thanks to JSON.NET!" value (JsonConvert.SerializeObject(value))

dotnet add src/Library/Library.fsproj package Newtonsoft.Json

dotnet sln add src/Library/Library.fsproj

Write a console application that consumes the class libraryWrite a console application that consumes the class library

dotnet new console -lang F# -o src/App

This article covers how you can get started with F# on any operating system (Windows, macOS, or Linux) with the .NET Core CLI. It goes through
building a multi-project solution with a class library that is called by a console application.

To begin, you must install the latest .NET Core SDK.

This article assumes that you know how to use a command line and have a preferred text editor. If you don't already use it, Visual Studio Code is a great
option as a text editor for F#.

Open a command prompt/terminal and use the dotnet new command to create new solution file called FSNetCore :

The following directory structure is produced after running the previous command:

Change directories to FSNetCore.

Use the dotnet new command, create a class library project in the src folder named Library.

The following directory structure is produced after running the previous command:

Replace the contents of Library.fs with the following code:

Add the Newtonsoft.Json NuGet package to the Library project.

Add the Library project to the FSNetCore solution using the dotnet sln add command:

Run dotnet build to build the project. Unresolved dependencies will be restored when building.

Use the dotnet new command, create a console application in the src folder named App.

The following directory structure is produced after running the previous command:

https://github.com/dotnet/docs/blob/master/docs/fsharp/get-started/get-started-command-line.md
https://www.microsoft.com/net/download/

└── FSNetCore
 ├── FSNetCore.sln
 └── src
 ├── App
 │ ├── App.fsproj
 │ ├── Program.fs
 └── Library
 ├── Library.fs
 └── Library.fsproj

open System
open Library

[<EntryPoint>]
let main argv =
 printfn "Nice command-line arguments! Here's what JSON.NET has to say about them:"

 argv
 |> Array.map getJsonNetJson
 |> Array.iter (printfn "%s")

 0 // return an integer exit code

dotnet add src/App/App.fsproj reference src/Library/Library.fsproj

dotnet sln add src/App/App.fsproj

cd src/App
dotnet run Hello World

Nice command-line arguments! Here's what JSON.NET has to say about them:

I used to be Hello but now I'm ""Hello"" thanks to JSON.NET!
I used to be World but now I'm ""World"" thanks to JSON.NET!

Next steps

Replace the contents of the Program.fs file with the following code:

Add a reference to the Library project using dotnet add reference.

Add the App project to the FSNetCore solution using the dotnet sln add command:

Restore the NuGet dependencies, dotnet restore (see note) and run dotnet build to build the project.

Change directory to the src/App console project and run the project passing Hello World as arguments:

You should see the following results:

Next, check out the Tour of F# to learn more about different F# features.

F# style guide
7/14/2018 • 2 minutes to read • Edit Online

Five principles of good F# code

Next steps

The following articles describe guidelines for formatting F# code and topical guidance for features of the language and how they should be used.

This guidance has been formulated based on the use of F# in large codebases with a diverse group of programmers. This guidance generally leads to
successful use of F# and minimizes frustrations when requirements for programs change over time.

You should keep the following principles in mind any time you write F# code, especially in systems that will change over time. Every piece of guidance
in further articles stems from these five points.

1. Good F# code is succinct and expressive

F# has many features that allow you to express actions in fewer lines of code and reuse generic functionality. The F# core library also contains
many useful types and functions for working with common collections of data. As a general rule, if you can express a solution to a problem in
fewer lines of code, other developers (or your future self) will be appreciative. It is also highly recommended that you use a library such as
FSharp.Core, the vast .NET libraries that F# runs on, or a third-party package on NuGet when you need to do a nontrivial task.

2. Good F# code is interoperable

Interoperation can take multiple forms, including consuming code in different languages. The boundaries of your code that other callers
interoperate with are critical pieces to get right. When writing F#, you should always be thinking about how other code will call into the code you
are writing, including if they do so from another language like C#. The F# Component Design Guidelines describe interoperability in detail.

3. Good F# code makes use of object programming, not object orientation

F# has full support for programming with objects in .NET, including classes, interfaces, access modifiers, abstract classes, and so on. For more
complicated functional code, such as functions that must be context-aware, objects can easily encapsulate contextual information in ways that
functions cannot. Features such as optional parameters and careful use of overloading can make consumption of this functionality easier for
callers.

4. Good F# code performs well without exposing mutation

It's no secret that to write high-performance code, you must use mutation. It's how computers work, after all. Such code is often error-prone and
difficult to get right. Avoid exposing mutation to callers. Instead, build a functional interface that hides a mutation-based implementation when
performance is critical.

5. Good F# code is toolable

Tools are invaluable for working in large codebases, and you can write F# code such that it can be used more effectively with F# language tooling.
One example is making sure you don't overdo it with a point-free style of programming, so that intermediate values can be inspected with a
debugger. Another example is using XML documentation comments describing constructs such that tooltips in editors can display those
comments at the call site. Always think about how your code will be read, navigated, debugged, and manipulated by other programmers with
their tools.

The F# code formatting guidelines provide guidance on how to format code so that it is easy to read.

The F# coding conventions provide guidance for F# programming idioms that will help the long-term maintenance of larger F# codebases.

The F# component design guidelines provide guidance for authoring F# components, such as libraries.

https://github.com/dotnet/docs/blob/master/docs/fsharp/style-guide/index.md
https://docs.microsoft.com/dotnet/api/
https://www.nuget.org/

F# code formatting guidelines
7/12/2018 • 11 minutes to read • Edit Online

General rules for indentation

Using spacesUsing spaces

Formatting blank lines

Formatting comments

// Prefer this style of comments when you want
// to express written ideas on multiple lines.

(*
 ML-style comments are fine, but not a .NET-ism.
 They are useful when needing to modify multi-line comments, though.
*)

let f x = x + 1 // Increment by one.

Naming conventions
Use camelCase for class-bound, expression-bound and pattern-bound values and functionsUse camelCase for class-bound, expression-bound and pattern-bound values and functions

// OK
let addIAndJ i j = i + j

// Bad
let addIAndJ I J = I+J

// Bad
let AddIAndJ i j = i + j

This article offers guidelines for how to format your code so that your F# code is:

Generally viewed as more legible
Is in accordance with conventions applied by formatting tools in Visual Studio and other editors
Similar to other code online

These guidelines are based on A comprehensive guide to F# Formatting Conventions by Anh-Dung Phan.

F# uses significant white space by default. The following guidelines are intended to provide guidance as to how to juggle some challenges this can
impose.

When indentation is required, you must use spaces, not tabs. At least one space is required. Your organization can create coding standards to specify the
number of spaces to use for indentation; two, three or four spaces of indentation at each level where indentation occurs is typical.

We recommend 4 spaces per indentation.

That said, indentation of programs is a subjective matter. Variations are OK, but the first rule you should follow is consistency of indentation. Choose a
generally accepted style of indentation and use it systematically throughout your codebase.

Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank line.
Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be omitted between a bunch of related one-liners
(for example, a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical sections.

Generally prefer multiple double-slash comments over ML-style block comments.

Inline comments should capitalize the first letter.

It is common and accepted F# style to use camelCase for all names bound as local variables or in pattern matches and function definitions.

Locally-bound functions in classes should also use camelCase.

https://github.com/dotnet/docs/blob/master/docs/fsharp/style-guide/formatting.md
https://github.com/dungpa/fantomas/blob/master/docs/FormattingConventions.md
https://github.com/dungpa

type MyClass() =

 let doSomething () =

 let firstResult = ...

 let secondResult = ...

 member x.Result = doSomething()

Use camelCase for module-bound public functionsUse camelCase for module-bound public functions

module MyAPI =
 let publicFunctionOne param1 param2 param2 = ...

 let publicFunctionTwo param1 param2 param3 = ...

Use camelCase for internal and private module-bound values and functionsUse camelCase for internal and private module-bound values and functions

let emailMyBossTheLatestResults =
 ...

Use camelCase for parametersUse camelCase for parameters

module MyModule =
 let myFunction paramOne paramTwo = ...

type MyClass() =
 member this.MyMethod(paramOne, paramTwo) = ...

Use PascalCase for modulesUse PascalCase for modules

module MyTopLevelModule

module Helpers =
 module private SuperHelpers =
 ...

 ...

Use PascalCase for type declarations, members, and labelsUse PascalCase for type declarations, members, and labels

type IMyInterface =
 abstract Something: int

type MyClass() =
 member this.MyMethod(x, y) = x + y

type MyRecord = { IntVal: int; StringVal: string }

type SchoolPerson =
 | Professor
 | Student
 | Advisor
 | Administrator

Use PascalCase for constructs intrinsic to .NETUse PascalCase for constructs intrinsic to .NET

Avoid underscores in namesAvoid underscores in names

When a module-bound function is part of a public API, it should use camelCase:

Use camelCase for private module-bound values, including the following:

Ad hoc functions in scripts

Values making up the internal implementation of a module or type

All parameters should use camelCase in accordance with .NET naming conventions.

All modules (top-level, internal, private, nested) should use PascalCase.

Classes, interfaces, structs, enumerations, delegates, records, and discriminated unions should all be named with PascalCase. Members within types and
labels for records and discriminated unions should also use PascalCase.

Namespaces, exceptions, events, and project/ .dll names should also use PascalCase. Not only does this make consumption from other .NET
languages feel more natural to consumers, it's also consistent with .NET naming conventions that you are likely to encounter.

Historically, some F# libraries have used underscores in names. However, this is no longer widely accepted, partly because it clashes with .NET naming
conventions. That said, some F# programmers use underscores heavily, partly for historical reasons, and tolerance and respect is important. However,

Use standard F# operatorsUse standard F# operators

x |> f // Forward pipeline
f >> g // Forward composition
x |> ignore // Discard away a value
x + y // Overloaded addition (including string concatenation)
x - y // Overloaded subtraction
x * y // Overloaded multiplication
x / y // Overloaded division
x % y // Overloaded modulus
x && y // Lazy/short-cut "and"
x || y // Lazy/short-cut "or"
x <<< y // Bitwise left shift
x >>> y // Bitwise right shift
x ||| y // Bitwise or, also for working with “flags” enumeration
x &&& y // Bitwise and, also for working with “flags” enumeration
x ^^^ y // Bitwise xor, also for working with “flags” enumeration

Use prefix syntax for generics (Use prefix syntax for generics (Foo<T>) in preference to postfix syntax () in preference to postfix syntax (T Foo))

Formatting discriminated union declarations

// OK
type Volume =
 | Liter of float
 | FluidOunce of float
 | ImperialPint of float

// Not OK
type Volume =
| Liter of float
| USPint of float
| ImperialPint of float

let tree1 =
 BinaryNode
 (BinaryNode(BinaryValue 1, BinaryValue 2),
 BinaryNode(BinaryValue 3, BinaryValue 4))

let tree1 =
 BinaryNode(
 BinaryNode(BinaryValue 1, BinaryValue 2),
 BinaryNode(BinaryValue 3, BinaryValue 4)
)

Formatting tuples

be aware that the style is often disliked by others who have a choice about whether to use it.

Some exceptions includes interoperating with native components, where underscores are very common.

The following operators are defined in the F# standard library and should be used instead of defining equivalents. Using these operators is
recommended as it tends to make code more readable and idiomatic. Developers with a background in OCaml or other functional programming
language may be accustomed to different idioms. The following list summarizes the recommended F# operators.

F# inherits both the postfix ML style of naming generic types (for example, int list) as well as the prefix .NET style (for example, list<int>). Prefer
the .NET style, except for four specific types:

1. For F# Lists, use the postfix form: int list rather than list<int> .
2. For F# Options, use the postfix form: int option rather than option<int> .
3. For F# arrays, use the syntactic name int[] rather than int array or array<int> .
4. For Reference Cells, use int ref rather than ref<int> or Ref<int> .

For all other types, use the prefix form.

Indent | in type definition by 4 spaces:

Instantiated Discriminated Unions that split across multiple lines should give contained data a new scope with indentation:

The closing parenthesis can also be on a new line:

A tuple instantiation should be parenthesized, and the delimiting commas within should be followed by a single space, for example: (1, 2) , (x, y, z) .

A commonly accepted exception is to omit parentheses in pattern matching of tuples:

let (x, y) = z // Destructuring

match x, y with
| 1, _ -> 0
| x, 1 -> 0
| x, y -> 1

Formatting records

let point = { X = 1.0; Y = 0.0 }

let rainbow =
 { Boss = "Jeffrey"
 Lackeys = ["Zippy"; "George"; "Bungle"] }

let rainbow = {
 Boss1 = "Jeffrey"
 Boss2 = "Jeffrey"
 Boss3 = "Jeffrey"
 Boss4 = "Jeffrey"
 Boss5 = "Jeffrey"
 Boss6 = "Jeffrey"
 Boss7 = "Jeffrey"
 Boss8 = "Jeffrey"
 Lackeys = ["Zippy"; "George"; "Bungle"]
}

Formatting lists and arrays

// OK
[{ IngredientName = "Green beans"; Quantity = 250 }
 { IngredientName = "Pine nuts"; Quantity = 250 }
 { IngredientName = "Feta cheese"; Quantity = 250 }
 { IngredientName = "Olive oil"; Quantity = 10 }
 { IngredientName = "Lemon"; Quantity = 1 }]

// Not OK
[{ IngredientName = "Green beans"; Quantity = 250 }
 { IngredientName = "Pine nuts"; Quantity = 250 }
 { IngredientName = "Feta cheese"; Quantity = 250 }
 { IngredientName = "Olive oil"; Quantity = 10 }
 { IngredientName = "Lemon"; Quantity = 1 }]

let pascalsTriangle = [|
 [|1|]
 [|1; 1|]
 [|1; 2; 1|]
 [|1; 3; 3; 1|]
 [|1; 4; 6; 4; 1|]
 [|1; 5; 10; 10; 5; 1|]
 [|1; 6; 15; 20; 15; 6; 1|]
 [|1; 7; 21; 35; 35; 21; 7; 1|]
 [|1; 8; 28; 56; 70; 56; 28; 8; 1|]
|]

Formatting if expressions

Short records can be written in one line:

Records that are longer should use new lines for labels:

Placing the opening token on the same line and the closing token on a new line is also fine:

The same rules apply for list and array elements.

Write x :: l with spaces around the :: operator (:: is an infix operator, hence surrounded by spaces) and [1; 2; 3] (; is a delimiter, hence
followed by a space).

Always use at least one space between two distinct brace-like operators. For example, leave a space between a [and a { .

Lists and arrays that split across multiple lines follow a similar rule as records do:

Indentation of conditionals depends on the sizes of the expressions that make them up. If cond , e1 and e2 are small, simply write them on one line:

if cond then e1 else e2

if cond then e1
else
 e2

if cond then
 e1
else e2

if cond then
 e1
else
 e2

if cond1 then e1
elif cond2 then e2
elif cond3 then e3
else e4

Pattern matching constructsPattern matching constructs

// OK
match l with
| { him = x; her = "Posh" } :: tail -> _
| _ :: tail -> findDavid tail
| [] -> failwith "Couldn't find David"

// Not OK
match l with
 | { him = x; her = "Posh" } :: tail -> _
 | _ :: tail -> findDavid tail
 | [] -> failwith "Couldn't find David"

match lam with
| Var v -> 1
| Abs(x, body) ->
 1 + sizeLambda body
| App(lam1, lam2) ->
 sizeLambda lam1 + sizeLambda lam2

lambdaList
|> List.map (function
 | Abs(x, body) -> 1 + sizeLambda 0 body
 | App(lam1, lam2) -> sizeLambda (sizeLambda 0 lam1) lam2
 | Var v -> 1)

let rec sizeLambda acc = function
 | Abs(x, body) -> sizeLambda (succ acc) body
 | App(lam1, lam2) -> sizeLambda (sizeLambda acc lam1) lam2
 | Var v -> succ acc

Formatting try/with expressions

If e1 and cond are small, but e2 is large:

If e1 and cond are large and e2 is small:

If all the expressions are large:

Multiple conditionals with elif and else are indented at the same scope as the if :

Use a | for each clause of a match with no indentation. If the expression is short, you can consider using a single line if each subexpression is also
simple.

If the expression on the right of the pattern matching arrow is too large, move it to the following line, indented one step from the match / | .

Pattern matching of anonymous functions, starting by function , should generally not indent too far. For example, indenting one scope as follows is fine:

Pattern matching in functions defined by let or let rec should be indented 4 spaces after starting of let , even if function keyword is used:

We do not recommend aligning arrows.

try
 if System.DateTime.Now.Second % 3 = 0 then
 raise (new System.Exception())
 else
 raise (new System.ApplicationException())
with
| :? System.ApplicationException ->
 printfn "A second that was not a multiple of 3"
| _ ->
 printfn "A second that was a multiple of 3"

Formatting function parameter application

// OK
sprintf "\t%s - %i\n\r"
 x.IngredientName x.Quantity

// OK
sprintf
 "\t%s - %i\n\r"
 x.IngredientName x.Quantity

// OK
let printVolumes x =
 printf "Volume in liters = %f, in us pints = %f, in imperial = %f"
 (convertVolumeToLiter x)
 (convertVolumeUSPint x)
 (convertVolumeImperialPint x)

let printListWithOffset a list1 =
 List.iter
 (fun elem -> printfn "%d" (a + elem))
 list1

// OK if lambda body is long enough
let printListWithOffset a list1 =
 List.iter
 (fun elem ->
 printfn "%d" (a + elem))
 list1

Formatting infix operatorsFormatting infix operators

acc +
(sprintf "\t%s - %i\n\r"
 x.IngredientName x.Quantity)

let function1 arg1 arg2 arg3 arg4 =
 arg1 + arg2 +
 arg3 + arg4

Formatting pipeline operatorsFormatting pipeline operators

Pattern matching on the exception type should be indented at the same level as with .

In general, most function parameter application is done on the same line.

If you wish to apply parameters to a function on a new line, indent them by one scope.

The same guidelines apply for lambda expressions as function arguments. If the body of a lambda expression, the body can have another line, indented
by one scope

However, if the body of a lambda expression is more than one line, consider factoring it out into a separate function rather than have a multi-line
construct applied as a single argument to a function.

Separate operators by spaces. Obvious exceptions to this rule are the ! and . operators.

Infix expressions are OK to lineup on same column:

Pipeline |> operators should go underneath the expressions they operate on.

// Preferred approach
let methods2 =
 System.AppDomain.CurrentDomain.GetAssemblies()
 |> List.ofArray
 |> List.map (fun assm -> assm.GetTypes())
 |> Array.concat
 |> List.ofArray
 |> List.map (fun t -> t.GetMethods())
 |> Array.concat

// Not OK
let methods2 = System.AppDomain.CurrentDomain.GetAssemblies()
 |> List.ofArray
 |> List.map (fun assm -> assm.GetTypes())
 |> Array.concat
 |> List.ofArray
 |> List.map (fun t -> t.GetMethods())
 |> Array.concat

Formatting modulesFormatting modules

// A is a top-level module.
module A

let function1 a b = a - b * b

// A1 and A2 are local modules.
module A1 =
 let function1 a b = a*a + b*b

module A2 =
 let function2 a b = a*a - b*b

Formatting object expressions and interfacesFormatting object expressions and interfaces

let comparer =
 { new IComparer<string> with
 member x.Compare(s1, s2) =
 let rev (s : String) =
 new String (Array.rev (s.ToCharArray()))
 let reversed = rev s1
 reversed.CompareTo (rev s2) }

Formatting white space in expressionsFormatting white space in expressions

// OK
spam (ham.[1])

// Not OK
spam (ham.[1])

// OK
let makeStreamReader x = new System.IO.StreamReader(path=x)

// Not OK
let makeStreamReader x = new System.IO.StreamReader(path = x)

Code in a local module must be indented relative to the module, but code in a top-level module should not be indented. Namespace elements do not
have to be indented.

Object expressions and interfaces should be aligned in the same way with member being indented after 4 spaces.

Avoid extraneous white space in F# expressions.

Named arguments should also not have space surrounding the = :

F# coding conventions
5/22/2018 • 22 minutes to read • Edit Online

Organizing code

Prefer namespaces at the top levelPrefer namespaces at the top level

// Good!
namespace MyCode

type MyClass() =
 ...

// Bad!
module MyCode

type MyClass() =
 ...

Carefully apply Carefully apply [<AutoOpen>]

module MyAPI =
 [<AutoOpen>]
 module private Helpers =
 let helper1 x y z =
 ...

 let myFunction1 x =
 let y = ...
 let z = ...

 helper1 x y z

Use Use [<RequireQualifiedAccess>] whenever names could conflict or you feel it helps with readability whenever names could conflict or you feel it helps with readability

The following conventions are formulated from experience working with large F# codebases. The Five principles of good F# code are the foundation of
each recommendation. They are related to the F# component design guidelines, but are applicable for any F# code, not just components such as
libraries.

F# features two primary ways to organize code: modules and namespaces. These are similar, but do have the following differences:

Namespaces are compiled as .NET namespaces. Modules are compiled as static classes.
Namespaces are always top level. Modules can be top-level and nested within other modules.
Namespaces can span multiple files. Modules cannot.
Modules can be decorated with [<RequireQualifiedAccess>] and [<AutoOpen>] .

The following guidelines will help you use these to organize your code.

For any publicly consumable code, namespaces are preferential to modules at the top level. Because they are compiled as .NET namespaces, they are
consumable from C# with no issue.

Using a top-level module may not appear different when called only from F#, but for C# consumers, callers may be surprised by having to qualify
MyClass with the MyCode module.

The [<AutoOpen>] construct can pollute the scope of what is available to callers, and the answer to where something comes from is "magic". This is
generally not a good thing. An exception to this rule is the F# Core Library itself (though this fact is also a bit controversial).

However, it is a convenience if you have helper functionality for a public API that you wish to organize separately from that public API.

This lets you cleanly separate implementation details from the public API of a function without having to fully qualify a helper each time you call it.

Additionally, exposing extension methods and expression builders at the namespace level can be neatly expressed with [<AutoOpen>] .

Adding the [<RequireQualifiedAccess>] attribute to a module indicates that the module may not be opened and that references to the elements of the
module require explicit qualified access. For example, the Microsoft.FSharp.Collections.List module has this attribute.

This is useful when functions and values in the module have names that are likely to conflict with names in other modules. Requiring qualified access
can greatly increase the long-term maintainability and evolvability of a library.

https://github.com/dotnet/docs/blob/master/docs/fsharp/style-guide/conventions.md

[<RequireQualifiedAccess>]
module StringTokenization =
 let parse s = ...

...

let s = getAString()
let parsed = StringTokenization.parse s // Must qualify to use 'parse'

Sort Sort open statements topologically statements topologically

namespace Microsoft.FSharp.Compiler.SourceCodeServices

open System
open System.Collections.Generic
open System.Collections.Concurrent
open System.Diagnostics
open System.IO
open System.Reflection
open System.Text

open Microsoft.FSharp.Compiler
open Microsoft.FSharp.Compiler.AbstractIL
open Microsoft.FSharp.Compiler.AbstractIL.Diagnostics
open Microsoft.FSharp.Compiler.AbstractIL.IL
open Microsoft.FSharp.Compiler.AbstractIL.ILBinaryReader
open Microsoft.FSharp.Compiler.AbstractIL.Internal
open Microsoft.FSharp.Compiler.AbstractIL.Internal.Library

open Microsoft.FSharp.Compiler.AccessibilityLogic
open Microsoft.FSharp.Compiler.Ast
open Microsoft.FSharp.Compiler.CompileOps
open Microsoft.FSharp.Compiler.CompileOptions
open Microsoft.FSharp.Compiler.Driver
open Microsoft.FSharp.Compiler.ErrorLogger
open Microsoft.FSharp.Compiler.Infos
open Microsoft.FSharp.Compiler.InfoReader
open Microsoft.FSharp.Compiler.Lexhelp
open Microsoft.FSharp.Compiler.Layout
open Microsoft.FSharp.Compiler.Lib
open Microsoft.FSharp.Compiler.NameResolution
open Microsoft.FSharp.Compiler.PrettyNaming
open Microsoft.FSharp.Compiler.Parser
open Microsoft.FSharp.Compiler.Range
open Microsoft.FSharp.Compiler.Tast
open Microsoft.FSharp.Compiler.Tastops
open Microsoft.FSharp.Compiler.TcGlobals
open Microsoft.FSharp.Compiler.TypeChecker
open Microsoft.FSharp.Compiler.SourceCodeServices.SymbolHelpers

open Internal.Utilities
open Internal.Utilities.Collections

Use classes to contain values that have side effects

In F#, the order of declarations matters, including with open statements. This is unlike C#, where the effect of using and using static is independent
of the ordering of those statements in a file.

In F#, elements opened into a scope can shadow others already present. This means that reordering open statements could alter the meaning of code.
As a result, any arbitrary sorting of all open statements (for example, alphanumerically) is generally not recommended, lest you generate different
behavior that you might expect.

Instead, we recommend that you sort them topologically; that is, order your open statements in the order in which layers of your system are defined.
Doing alphanumeric sorting within different topological layers may also be considered.

As an example, here is the topological sorting for the F# compiler service public API file:

Note that a line break separates topological layers, with each layer being sorted alphanumerically afterwards. This cleanly organizes code without
accidentally shadowing values.

There are many times when initializing a value can have side effects, such as instantiating a context to a database or other remote resource. It is
tempting to initialize such things in a module and use it in subsequent functions:

https://en.wikipedia.org/wiki/Topological_sorting

// This is bad!
module MyApi =
 let dep1 = File.ReadAllText "/Users/{your name}/connectionstring.txt"
 let dep2 = Environment.GetEnvironmentVariable "DEP_2"

 let private r = Random()
 let dep3() = r.Next() // Problematic if multiple threads use this

 let function1 arg = doStuffWith dep1 dep2 dep3 arg
 let function2 arg = doSutffWith dep1 dep2 dep3 arg

type MyParametricApi(dep1, dep2, dep3) =
 member __.Function1 arg1 = doStuffWith dep1 dep2 dep3 arg1
 member __.Function2 arg2 = doStuffWith dep1 dep2 dep3 arg2

Error management

Represent error cases and illegal state in types intrinsic to your domainRepresent error cases and illegal state in types intrinsic to your domain

type MoneyWithdrawalResult =
 | Success of amount:decimal
 | InsufficientFunds of balance:decimal
 | CardExpired of DateTime
 | UndisclosedFailure

let handleWithdrawal amount =
 let w = withdrawMoney amount
 match w with
 | Success am -> printfn "Successfully withdrew %f" am
 | InsufficientFunds balance -> printfn "Failed: balance is %f" balance
 | CardExpired expiredDate -> printfn "Failed: card expired on %O" expiredDate
 | UndisclosedFailure -> printfn "Failed: unknown"

Use exceptions when errors cannot be represented with typesUse exceptions when errors cannot be represented with types

This is frequently a bad idea for a few reasons:

First, application configuration is pushed into the codebase with dep1 and dep2 . This is difficult to maintain in larger codebases.

Second, statically initialized data should not include values that are not thread safe if your component will itself use multiple threads. This is clearly
violated by dep3 .

Finally, module initialization compiles into a static constructor for the entire compilation unit. If any error occurs in let-bound value initialization in that
module, it manifests as a TypeInitializationException that is then cached for the entire lifetime of the application. This can be difficult to diagnose.
There is usually an inner exception that you can attempt to reason about, but if there is not, then there is no telling what the root cause is.

Instead, just use a simple class to hold dependencies:

This enables the following:

1. Pushing any dependent state outside of the API itself.
2. Configuration can now be done outside of the API.
3. Errors in initialization for dependent values are not likely to manifest as a TypeInitializationException .
4. The API is now easier to test.

Error management in large systems is a complex and nuanced endeavor, and there are no silver bullets in ensuring your systems are fault-tolerant and
behave well. The following guidelines should offer guidance in navigating this difficult space.

With Discriminated Unions, F# gives you the ability to represent faulty program state in your type system. For example:

In this case, there are three known ways that withdrawing money from a bank account can fail. Each error case is represented in the type, and can thus
be dealt with safely throughout the program.

In general, if you can model the different ways that something can fail in your domain, then error handling code is no longer treated as something you
must deal with in addition to regular program flow. It is simply a part of normal program flow, and not considered exceptional. There are two primary
benefits to this:

1. It is easier to maintain as your domain changes over time.
2. Error cases are easier to unit test.

Not all errors can be represented in a problem domain. These kinds of faults are exceptional in nature, hence the ability to raise and catch exceptions in
F#.

First, it is recommended that you read the Exception Design Guidelines. These are also applicable to F#.

The main constructs available in F# for the purposes of raising exceptions should be considered in the following order of preference:

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions

FUNCTION SYNTAX PURPOSE

nullArg nullArg "argumentName" Raises a System.ArgumentNullException with the
specified argument name.

invalidArg invalidArg "argumentName" "message" Raises a System.ArgumentException with a specified
argument name and message.

invalidOp invalidOp "message" Raises a System.InvalidOperationException with
the specified message.

raise raise (ExceptionType("message")) General-purpose mechanism for throwing exceptions.

failwith failwith "message" Raises a System.Exception with the specified
message.

failwithf failwithf "format string" argForFormatString Raises a System.Exception with a message
determined by the format string and its inputs.

Using exception-handling syntaxUsing exception-handling syntax

try
 tryGetFileContents()
with
| :? System.IO.FileNotFoundException as e -> // Do something with it here
| :? System.Security.SecurityException as e -> // Do something with it here

Do not use monadic error handling to replace exceptionsDo not use monadic error handling to replace exceptions

Result<Result<MyType, string>, string list>

let result = doStuff()
match result with
| Ok r -> ...
| Error e ->
 if e.Contains "Error string 1" then ...
 elif e.Contains "Error string 2" then ...
 else ... // Who knows?

Use nullArg , invalidArg and invalidOp as the mechanism to throw ArgumentNullException , ArgumentException and InvalidOperationException when
appropriate.

The failwith and failwithf functions should generally be avoided because they raise the base Exception type, not a specific exception. As per the
Exception Design Guidelines, you want to raise more specific exceptions when you can.

F# supports exception patterns via the try...with syntax:

Reconciling functionality to perform in the face of an exception with pattern matching can be a bit tricky if you wish to keep the code clean. One such
way to handle this is to use active patterns as a means to group functionality surrounding an error case with an exception itself. For example, you may
be consuming an API that, when it throws an exception, encloses valuable information in the exception metadata. Unwrapping a useful value in the
body of the captured exception inside the Active Pattern and returning that value can be helpful in some situations.

Exceptions are seen as somewhat taboo in functional programming. Indeed, exceptions violate purity, so it's safe to consider them not-quite functional.
However, this ignores the reality of where code must run, and that runtime errors can occur. In general, write code on the assumption that most things
are neither pure nor total, to minimize unpleasant surprises.

It is important to consider the following core strengths/aspects of Exceptions with respect to their relevance and appropriateness in the .NET runtime
and cross-language ecosystem as a whole:

1. They contain detailed diagnostic information, which is very helpful when debugging an issue.
2. They are well-understood by the runtime and other .NET languages.
3. They can reduce significant boilerplate when compared with code that goes out of its way to avoid exceptions by implementing some subset of their

semantics on an ad-hoc basis.

This third point is critical. For nontrivial complex operations, failing to use exceptions can result in dealing with structures like this:

Which can easily lead to fragile code like pattern matching on "stringly-typed" errors:

Additionally, it can be tempting to swallow any exception in the desire for a "simple" function that returns a "nicer" type:

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions

// This is bad!
let tryReadAllText (path : string) =
 try System.IO.File.ReadAllText path |> Some
 with _ -> None

// This is bad!
let tryReadAllText (path : string) =
 try System.IO.File.ReadAllText path |> Ok
 with e -> Error e.Message

let r = tryReadAllText "path-to-file"
match r with
| Ok text -> ...
| Error e ->
 if e.Contains "uh oh, here we go again..." then ...
 else ...

let tryReadAllTextIfPresent (path : string) =
 try System.IO.File.ReadAllText path |> Some
 with :? FileNotFoundException -> None

Partial application and point-free programming

Do not use partial application and currying in public APIsDo not use partial application and currying in public APIs

Consider the tooling implications for point-free programmingConsider the tooling implications for point-free programming

let func name age =
 printfn "My name is %s and I am %d years old!" name age

let funcWithApplication =
 printfn "My name is %s and I am %d years old!"

val func : name:string -> age:int -> unit

val funcWithApplication : (string -> int -> unit)

Unfortunately, tryReadAllText can throw numerous exceptions based on the myriad of things that can happen on a file system, and this code discards
away any information about what might actually be going wrong in your environment. If you replace this code with a result type, then you're back to
"stringly-typed" error message parsing:

And placing the exception object itself in the Error constructor just forces you to properly deal with the exception type at the call site rather than in the
function. Doing this effectively creates checked exceptions, which are notoriously unfun to deal with as a caller of an API.

A good alternative to the above examples is to catch specific exceptions and return a meaningful value in the context of that exception. If you modify the
tryReadAllText function as follows, None has more meaning:

Instead of functioning as a catch-all, this function will now properly handle the case when a file was not found and assign that meaning to a return. This
return value can map to that error case, while not discarding any contextual information or forcing callers to deal with a case that may not be relevant at
that point in the code.

Types such as Result<'Success, 'Error> are appropriate for basic operations where they aren't nested, and F# optional types are perfect for
representing when something could either return something or nothing. They are not a replacement for exceptions, though, and should not be used in
an attempt to replace exceptions. Rather, they should be applied judiciously to address specific aspects of exception and error management policy in
targeted ways.

F# supports partial application, and thus, various ways to program in a point-free style. This can be beneficial for code reuse within a module or the
implementation of something, but it is generally not something to expose publicly. In general, point-free programming is not a virtue in and of itself, and
can add a significant cognitive barrier for people who are not immersed in the style.

With little exception, the use of partial application in public APIs can be confusing for consumers. Usually, let -bound values in F# code are values, not
function values. Mixing together values and function values can result in saving a small number of lines of code in exchange for quite a bit of cognitive
overhead, especially if combined with operators such as >> to compose functions.

Curried functions do not label their arguments. This has tooling implications. Consider the following two functions:

Both are valid functions, but funcWithApplication is a curried function. When you hover over their types in an editor, you see this:

At the call site, tooltips in tooling such as Visual Studio will not give you meaningful information as to what the string and int input types actually
represent.

If you encounter point-free code like funcWithApplication that is publicly consumable, it is recommended to do a full η-expansion so that tooling can
pick up on meaningful names for arguments.

Consider partial application as a technique to reduce internal boilerplateConsider partial application as a technique to reduce internal boilerplate

MySolution.sln
|_/ImplementationLogic.fsproj
|_/ImplementationLogic.Tests.fsproj
|_/API.fsproj

module Transactions =
 let doTransaction txnContext txnType balance =
 ...

type Transactor(ctx, currentBalance) =
 member __.ExecuteTransaction(txnType) =
 Transactions.doTransaction ctx txtType currentBalance
 ...

namespace TransactionsTestingUtil

open Transactions

module TransactionsTestable =
 let getTestableTransactionRoutine mockContext = Transactions.doTransaction mockContext

namespace TransactionTests

open Xunit
open TransactionTypes
open TransactionsTestingUtil
open TransactionsTestingUtil.TransactionsTestable

let testableContext =
 { new ITransactionContext with
 member __.TheFirstMember() = ...
 member __.TheSecondMember() = ... }

let transactionRoutine = getTestableTransactionRoutine testableContext

[<Fact>]
let ``Test withdrawal transaction with 0.0 for balance``() =
 let expected = ...
 let actual = transactionRoutine TransactionType.Withdraw 0.0
 Assert.Equal(expected, actual)

Access control

Type inference and generics

Furthermore, debugging point-free code can be challenging, if not impossible. Debugging tools rely on values bound to names (for example, let

bindings) so that you can inspect intermediate values midway through execution. When your code has no values to inspect, there is nothing to debug. In
the future, debugging tools may evolve to synthesize these values based on previously executed paths, but it's not a good idea to hedge your bets on
potential debugging functionality.

In contrast to the previous point, partial application is a wonderful tool for reducing boilerplate inside of an application or the deeper internals of an API.
It can be helpful for unit testing the implementation of more complicated APIs, where boilerplate is often a pain to deal with. For example, the following
code shows how you can accomplish what most mocking frameworks give you without taking an external dependency on such a framework and having
to learn a related bespoke API.

For example, consider the following solution topography:

ImplementationLogic.fsproj might expose code such as:

Unit testing Transactions.doTransaction in ImplementationLogic.Tests.fspoj is easy:

Partially applying doTransaction with a mocking context object lets you call the function in all of your unit tests without needing to construct a mocked
context each time:

This technique should not be universally applied to your entire codebase, but it is a good way to reduce boilerplate for complicated internals and unit
testing those internals.

F# has multiple options for Access control, inherited from what is available in the .NET runtime. These are not just usable for types - you can use them
for functions, too.

Prefer non- public types and members until you need them to be publicly consumable. This also minimizes what consumers couple to
Strive to keep all helper functionality private .
Consider the use of [<AutoOpen>] on a private module of helper functions if they become numerous.

Performance

Wrap mutable code in immutable interfacesWrap mutable code in immutable interfaces

[<CompiledName("Contains")>]
let inline contains value (array:'T[]) =
 checkNonNull "array" array
 let mutable state = false
 let mutable i = 0
 while not state && i < array.Length do
 state <- value = array.[i]
 i <- i + 1
 state

Consider encapsulating mutable data in classesConsider encapsulating mutable data in classes

open System.Collections.Generic

let addToClosureTable (key, value) (t: Dictionary<_,_>) =
 if not (t.ContainsKey(key)) then
 t.Add(key, value)
 else
 t.[key] <- value

let closureTableCount (t: Dictionary<_,_>) = t.Count

let closureTableContains (key, value) (t: Dictionary<_, HashSet<_>>) =
 match t.TryGetValue(key) with
 | (true, v) -> v.Equals(value)
 | (false, _) -> false

Type inference can save you from typing a lot of boilerplate. And automatic generalization in the F# compiler can help you write more generic code with
almost no extra effort on your part. However, these features are not universally good.

Consider labeling argument names with explicit types in public APIs and do not rely on type inference for this.

The reason for this is that you should be in control of the shape of your API, not the compiler. Although the compiler can do a fine job at
inferring types for you, it is possible to have the shape of your API change if the internals it relies on have changed types. This may be what you
want, but it will almost certainly result in a breaking API change that downstream consumers will then have to deal with. Instead, if you explicitly
control the shape of your public API, then you can control these breaking changes. In DDD terms, this can be thought of as an Anti-corruption
layer.

Consider giving a meaningful name to your generic arguments.

Unless you are writing truly generic code that is not specific to a particular domain, a meaningful name can help other programmers
understanding the domain they're working in. For example, a type parameter named 'Document in the context of interacting with a document
database makes it clearer that generic document types can be accepted by the function or member you are working with.

Consider naming generic type parameters with PascalCase.

This is the general way to do things in .NET, so it's recommended that you use PascalCase rather than snake_case or camelCase.

Finally, automatic generalization is not always a boon for people who are new to F# or a large codebase. There is cognitive overhead in using
components that are generic. Furthermore, if automatically generalized functions are not used with different input types (let alone if they are intended
to be used as such), then there is no real benefit to them being generic at that point in time. Always consider if the code you are writing will actually
benefit from being generic.

F# values are immutable by default, which allows you to avoid certain classes of bugs (especially those involving concurrency and parallelism). However,
in certain cases, in order to achieve optimal (or even reasonable) efficiency of execution time or memory allocations, a span of work may best be
implemented by using in-place mutation of state. This is possible in an opt-in basis with F# with the mutable keyword.

However, use of mutable in F# may feel at odds with functional purity. This is fine, if you adjust expectations from purity to referential transparency.
Referential transparency - not purity - is the end goal when writing F# functions. This allows you to write a functional interface over a mutation-based
implementation for performance critical code.

With referential transparency as a goal, it is critical to write code that does not expose the mutable underbelly of performance-critical functions. For
example, the following code implements the Array.contains function in the F# core library:

Calling this function multiple times does not change the underlying array, nor does it require you to maintain any mutable state in consuming it. It is
referentially transparent, even though almost every line of code within it uses mutation.

The previous example used a single function to encapsulate operations using mutable data. This is not always sufficient for more complex sets of data.
Consider the following sets of functions:

This code is performant, but it exposes the mutation-based data structure that callers are responsible for maintaining. This can be wrapped inside of a
class with no underlying members that can change:

https://en.wikipedia.org/wiki/Referential_transparency

open System.Collections.Generic

/// The results of computing the LALR(1) closure of an LR(0) kernel
type Closure1Table() =
 let t = Dictionary<Item0, HashSet<TerminalIndex>>()

 member __.Add(key, value) =
 if not (t.ContainsKey(key)) then
 t.Add(key, value)
 else
 t.[key] <- value

 member __.Count = t.Count

 member __.Contains(key, value) =
 match t.TryGetValue(key) with
 | (true, v) -> v.Equals(value)
 | (false, _) -> false

Prefer Prefer let mutable to reference cells to reference cells

let kernels =
 let acc = ref Set.empty

 processWorkList startKernels (fun kernel ->
 if not ((!acc).Contains(kernel)) then
 acc := (!acc).Add(kernel)
 ...)

 !acc |> Seq.toList

let kernels =
 let mutable acc = Set.empty

 processWorkList startKernels (fun kernel ->
 if not (acc.Contains(kernel)) then
 acc <- acc.Add(kernel)
 ...)

 acc |> Seq.toList

Object programming

Closure1Table encapsulates the underlying mutation-based data structure, thereby not forcing callers to maintain the underlying data structure. Classes
are a powerful way to encapsulate data and routines that are mutation-based without exposing the details to callers.

Reference cells are a way to represent the reference to a value rather than the value itself. Although they can be used for performance-critical code, they
are generally not recommended. Consider the following example:

The use of a reference cell now "pollutes" all subsequent code with having to dereference and re-reference the underlying data. Instead, consider
let mutable :

Aside from the single point of mutation in the middle of the lambda expression, all other code that touches acc can do so in a manner that is no
different to the usage of a normal let -bound immutable value. This will make it easier to change over time.

F# has full support for objects and object-oriented (OO) concepts. Although many OO concepts are powerful and useful, not all of them are ideal to use.
The following lists offer guidance on categories of OO features at a high level.

Consider using these features in many situations:

Dot notation (x.Length)
Instance members
Implicit constructors
Static members
Indexer notation (arr.[x])
Named and Optional arguments
Interfaces and interface implementations

Don't reach for these features first, but do judiciously apply them when they are convenient to solve a problem:

Method overloading
Encapsulated mutable data
Operators on types
Auto properties
Implementing IDisposable and IEnumerable

Type extensions

Prefer composition over inheritancePrefer composition over inheritance

Use object expressions to implement interfaces if you don't need a classUse object expressions to implement interfaces if you don't need a class

 let private createProvider () =
 { new CodeActionProvider with
 member this.provideCodeActions(doc, range, context, ct) =
 let diagnostics = context.diagnostics
 let diagnostic = diagnostics |> Seq.tryFind (fun d -> d.message.Contains "Unused open statement")
 let res =
 match diagnostic with
 | None -> [||]
 | Some d ->
 let line = doc.lineAt d.range.start.line
 let cmd = createEmpty<Command>
 cmd.title <- "Remove unused open"
 cmd.command <- "fsharp.unusedOpenFix"
 cmd.arguments <- Some ([| doc |> unbox; line.range |> unbox; |] |> ResizeArray)
 [|cmd |]
 res
 |> ResizeArray
 |> U2.Case1
 }

Type Abbreviations

open CNTK

// DeviceDescriptor, Variable, and Function all come from CNTK
type Computation = DeviceDescriptor -> Variable -> Function

Avoid using Type Abbreviations to represent your domainAvoid using Type Abbreviations to represent your domain

// Does not actually abstract integers.
type BufferSize = int

Events
Structs
Delegates
Enums

Generally avoid these features unless you must use them:

Inheritance-based type hierarchies and implementation inheritance
Nulls and Unchecked.defaultof<_>

Composition over inheritance is a long-standing idiom that good F# code can adhere to. The fundamental principle is that you should not expose a base
class and force callers to inherit from that base class to get functionality.

Object Expressions allow you to implement interfaces on the fly, binding the implemented interface to a value without needing to do so inside of a class.
This is convenient, especially if you only need to implement the interface and have no need for a full class.

For example, here is the code that is run in Ionide to provide a code fix action if you've added a symbol that you don't have an open statement for :

Because there is no need for a class when interacting with the Visual Studio Code API, Object Expressions are an ideal tool for this. They are also
valuable for unit testing, when you want to stub out an interface with test routines in an ad hoc manner.

Type Abbreviations are a convenient way to assign a label to another type, such as a function signature or a more complex type. For example, the
following alias assigns a label to what's needed to define a computation with CNTK, a deep learning library:

The Computation name is a convenient way to denote any function that matches the signature it is aliasing. Using Type Abbreviations like this is
convenient and allows for more succinct code.

Although Type Abbreviations are convenient for giving a name to function signatures, they can be confusing when abbreviating other types. Consider
this abbreviation:

This can be confusing in multiple ways:

BufferSize is not an abstraction; it is just another name for an integer.
If BufferSize is exposed in a public API, it can easily be misinterpreted to mean more than just int . Generally, domain types have multiple
attributes to them and are not primitive types like int . This abbreviation violates that assumption.
The casing of BufferSize (PascalCase) implies that this type holds more data.
This alias does not offer increased clarity compared with providing a named argument to a function.
The abbreviation will not manifest in compiled IL; it is just an integer and this alias is a compile-time construct.

https://en.wikipedia.org/wiki/Composition_over_inheritance
http://ionide.io/
https://www.microsoft.com/cognitive-toolkit/

module Networking =
 ...
 let send data (bufferSize: int) =
 ...

In summary, the pitfall with Type Abbreviations is that they are not abstractions over the types they are abbreviating. In the previous example,
BufferSize is just an int under the covers, with no additional data, nor any benefits from the type system besides what int already has.

F# component design guidelines
5/22/2018 • 28 minutes to read • Edit Online

Overview

General guidelines

Learn the .NET Library Design GuidelinesLearn the .NET Library Design Guidelines

Add XML documentation comments to your codeAdd XML documentation comments to your code

/// A class for representing (x,y) coordinates
type Point =

 /// Computes the distance between this point and another
 member DistanceTo : otherPoint:Point -> float

Consider using explicit signature files (.fsi) for stable library and component APIsConsider using explicit signature files (.fsi) for stable library and component APIs

Always follow best practices for using strings in .NETAlways follow best practices for using strings in .NET

Guidelines for F#-facing libraries

Naming conventionsNaming conventions
Use .NET naming and capitalization conventionsUse .NET naming and capitalization conventions

This document is a set of component design guidelines for F# programming, based on the F# Component Design Guidelines, v14, Microsoft Research,
and another version originally curated and maintained by the F# Software Foundation.

This document assumes you are familiar with F# programming. Many thanks to the F# community for their contributions and helpful feedback on
various versions of this guide.

This document looks at some of the issues related to F# component design and coding. A component can mean any of the following:

A layer in your F# project that has external consumers within that project.
A library intended for consumption by F# code across assembly boundaries.
A library intended for consumption by any .NET language across assembly boundaries.
A library intended for distribution via a package repository, such as NuGet.

Techniques described in this article follow the Five principles of good F# code, and thus utilize both functional and object programming as appropriate.

Regardless of the methodology, the component and library designer faces a number of practical and prosaic issues when trying to craft an API that is
most easily usable by developers. Conscientious application of the .NET Library Design Guidelines will steer you towards creating a consistent set of
APIs that are pleasant to consume.

There are a few universal guidelines that apply to F# libraries, regardless of the intended audience for the library.

Regardless of the kind of F# coding you are doing, it is valuable to have a working knowledge of the .NET Library Design Guidelines. Most other F# and
.NET programmers will be familiar with these guidelines, and expect .NET code to conform to them.

The .NET Library Design Guidelines provide general guidance regarding naming, designing classes and interfaces, member design (properties,
methods, events, etc.) and more, and are a useful first point of reference for a variety of design guidance.

XML documentation on public APIs ensure that users can get great Intellisense and Quickinfo when using these types and members, and enable
building documentation files for the library. See the XML Documentation about various xml tags that can be used for additional markup within xmldoc
comments.

You can use either the short form XML comments (/// comment), or standard XML comments (///<summary>comment</summary>).

Using explicit signatures files in an F# library provides a succinct summary of public API, which both helps to ensure that you know the full public
surface of your library, as well as provides a clean separation between public documentation and internal implementation details. Note that signature
files add friction to changing the public API, by requiring changes to be made in both the implementation and signature files. As a result, signature files
should typically only be introduced when an API has become solidified and is no longer expected to change significantly.

Follow Best Practices for Using Strings in .NET guidance. In particular, always explicitly state cultural intent in the conversion and comparison of strings
(where applicable).

This section presents recommendations for developing public F#-facing libraries; that is, libraries exposing public APIs that are intended to be
consumed by F# developers. There are a variety of library-design recommendations applicable specifically to F#. In the absence of the specific
recommendations that follow, the .NET Library Design Guidelines are the fallback guidance.

The following table follows .NET naming and capitalization conventions. There are small additions to also include F# constructs.

https://github.com/dotnet/docs/blob/master/docs/fsharp/style-guide/component-design-guidelines.md
https://fsharp.org/specs/component-design-guidelines/
https://nuget.org
https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings

CONSTRUCT CASE PART EXAMPLES NOTES

Concrete types PascalCase Noun/ adjective List, Double, Complex Concrete types are structs,
classes, enumerations,
delegates, records, and unions.
Though type names are
traditionally lowercase in
OCaml, F# has adopted the
.NET naming scheme for types.

DLLs PascalCase Fabrikam.Core.dll

Union tags PascalCase Noun Some, Add, Success Do not use a prefix in public
APIs. Optionally use a prefix
when internal, such as ```type
Teams = TAlpha

Event PascalCase Verb ValueChanged /
ValueChanging

Exceptions PascalCase WebException Name should end with
“Exception”.

Field PascalCase Noun CurrentName

Interface types PascalCase Noun/ adjective IDisposable Name should start with “I”.

Method PascalCase Verb ToString

Namespace PascalCase Microsoft.FSharp.Core Generally use
<Organization>.
<Technology>[.
<Subnamespace>]

, though drop the
organization if the technology
is independent of
organization.

Parameters camelCase Noun typeName, transform, range

let values (internal) camelCase or PascalCase Noun/ verb getValue, myTable

let values (external) camelCase or PascalCase Noun/verb List.map, Dates.Today let-bound values are often
public when following
traditional functional design
patterns. However, generally
use PascalCase when the
identifier can be used from
other .NET languages.

Property PascalCase Noun/ adjective IsEndOfFile, BackColor Boolean properties generally
use Is and Can and should be
affirmative, as in IsEndOfFile,
not IsNotEndOfFile.

Avoid abbreviationsAvoid abbreviations

Avoid casing name collisionsAvoid casing name collisions

Use acronyms where appropriateUse acronyms where appropriate

Use PascalCase for generic parameter namesUse PascalCase for generic parameter names

Use either PascalCase or camelCase for public functions and values in F# modulesUse either PascalCase or camelCase for public functions and values in F# modules

The .NET guidelines discourage the use of abbreviations (for example, “use OnButtonClick rather than OnBtnClick ”). Common abbreviations, such as
Async for “Asynchronous”, are tolerated. This guideline is sometimes ignored for functional programming; for example, List.iter uses an

abbreviation for “iterate”. For this reason, using abbreviations tends to be tolerated to a greater degree in F#-to-F# programming, but should still
generally be avoided in public component design.

The .NET guidelines say that casing alone cannot be used to disambiguate name collisions, since some client languages (for example, Visual Basic) are
case-insensitive.

Acronyms such as XML are not abbreviations and are widely used in .NET libraries in uncapitalized form (Xml). Only well-known, widely recognized
acronyms should be used.

Do use PascalCase for generic parameter names in public APIs, including for F#-facing libraries. In particular, use names like T , U , T1 , T2 for
arbitrary generic parameters, and when specific names make sense, then for F#-facing libraries use names like Key , Value , Arg (but not for example,
TKey).

camelCase is used for public functions that are designed to be used unqualified (for example, invalidArg), and for the “standard collection functions”

Object, Type, and Module designObject, Type, and Module design
Use namespaces or modules to contain your types and modulesUse namespaces or modules to contain your types and modules

namespace Fabrikam.BasicOperationsAndTypes

type ObjectType1() =
 ...

type ObjectType2() =
 ...

module CommonOperations =
 ...

module Fabrikam.BasicOperationsAndTypes

type ObjectType1() =
 ...

type ObjectType2() =
 ...

module CommonOperations =
 ...

Use methods and properties for operations intrinsic to object typesUse methods and properties for operations intrinsic to object types

type HardwareDevice() =

 member this.ID = ...

 member this.SupportedProtocols = ...

type HashTable<'Key,'Value>(comparer: IEqualityComparer<'Key>) =

 member this.Add(key, value) = ...

 member this.ContainsKey(key) = ...

 member this.ContainsValue(value) = ...

Use classes to encapsulate mutable stateUse classes to encapsulate mutable state

type Counter() =
 // let-bound values are private in classes.
 let mutable count = 0

 member this.Next() =
 count <- count + 1
 count

Use interfaces to group related operationsUse interfaces to group related operations

(for example, List.map). In both these cases, the function names act much like keywords in the language.

Each F# file in a component should begin with either a namespace declaration or a module declaration.

or

The differences between using modules and namespaces to organize code at the top level are as follows:

Namespaces can span multiple files
Namespaces cannot contain F# functions unless they are within an inner module
The code for any given module must be contained within a single file
Top-level modules can contain F# functions without the need for an inner module

The choice between a top-level namespace or module affects the compiled form of the code, and thus will affect the view from other .NET languages
should your API eventually be consumed outside of F# code.

When working with objects, it is best to ensure that consumable functionality is implemented as methods and properties on that type.

The bulk of functionality for a given member need not necessarily be implemented in that member, but the consumable piece of that functionality
should be.

In F#, this only needs to be done where that state is not already encapsulated by another language construct, such as a closure, sequence expression, or
asynchronous computation.

Use interface types to represent a set of operations. This is preferred to other options, such as tuples of functions or records of functions.

type Serializer =
 abstract Serialize<'T> : preserveRefEq: bool -> value: 'T -> string
 abstract Deserialize<'T> : preserveRefEq: bool -> pickle: string -> 'T

type Serializer<'T> = {
 Serialize : bool -> 'T -> string
 Deserialize : bool -> string -> 'T
}

Use a module to group functions which act on collectionsUse a module to group functions which act on collections

module CollectionType =
 let map f c =
 ...
 let iter f c =
 ...

Use a module to group functions for common, canonical functions, especially in math and DSL librariesUse a module to group functions for common, canonical functions, especially in math and DSL libraries

Consider using RequireQualifiedAccess and carefully apply AutoOpen attributesConsider using RequireQualifiedAccess and carefully apply AutoOpen attributes

Consider defining operator members on classes where using well-known operators is appropriateConsider defining operator members on classes where using well-known operators is appropriate

type Vector(x:float) =

 member v.X = x

 static member (*) (vector:Vector, scalar:float) = Vector(vector.X * scalar)

 static member (+) (vector1:Vector, vector2:Vector) = Vector(vector1.X + vector2.X)

let v = Vector(5.0)

let u = v * 10.0

Consider using CompiledName to provide a .NET-friendly name for other .NET language consumersConsider using CompiledName to provide a .NET-friendly name for other .NET language consumers

In preference to:

Interfaces are first-class concepts in .NET, which you can use to achieve what Functors would normally give you. Additionally, they can be used to
encode existential types into your program, which records of functions cannot.

When you define a collection type, consider providing a standard set of operations like CollectionType.map and CollectionType.iter) for new collection
types.

If you include such a module, follow the standard naming conventions for functions found in FSharp.Core.

For example, Microsoft.FSharp.Core.Operators is an automatically opened collection of top-level functions (like abs and sin) provided by
FSharp.Core.dll.

Likewise, a statistics library might include a module with functions erf and erfc , where this module is designed to be explicitly or automatically
opened.

Adding the [<RequireQualifiedAccess>] attribute to a module indicates that the module may not be opened and that references to the elements of the
module require explicit qualified access. For example, the Microsoft.FSharp.Collections.List module has this attribute.

This is useful when functions and values in the module have names that are likely to conflict with names in other modules. Requiring qualified access
can greatly increase the long-term maintainability and evolvability of a library.

Adding the [<AutoOpen>] attribute to a module means the module will be opened when the containing namespace is opened. The [<AutoOpen>]

attribute may also be applied to an assembly to indicate a module that is automatically opened when the assembly is referenced.

For example, a statistics library MathsHeaven.Statistics might contain a module MathsHeaven.Statistics.Operators containing functions erf and
erfc . It is reasonable to mark this module as [<AutoOpen>] . This means open MathsHeaven.Statistics will also open this module and bring the names
erf and erfc into scope. Another good use of [<AutoOpen>] is for modules containing extension methods.

Overuse of [<AutoOpen>] leads to polluted namespaces, and the attribute should be used with care. For specific libraries in specific domains, judicious
use of [<AutoOpen>] can lead to better usability.

Sometimes classes are used to model mathematical constructs such as Vectors. When the domain being modeled has well-known operators, defining
them as members intrinsic to the class is helpful.

This guidance corresponds to general .NET guidance for these types. However, it can be additionally important in F# coding as this allows these types to
be used in conjunction with F# functions and methods with member constraints, such as List.sumBy.

Sometimes you may wish to name something in one style for F# consumers (such as a static member in lower case so that it appears as if it were a
module-bound function), but have a different style for the name when it is compiled into an assembly. You can use the [<CompiledName>] attribute to
provide a different style for non F# code consuming the assembly.

type Vector(x:float, y:float) =

 member v.X = x
 member v.Y = y

 [<CompiledName("Create")>]
 static member create x y = Vector (x, y)

let v = Vector.create 5.0 3.0

Use method overloading for member functions, if doing so provides a simpler APIUse method overloading for member functions, if doing so provides a simpler API

type Logger() =

 member this.Log(message) =
 ...
 member this.Log(message, retryPolicy) =
 ...

Hide the representations of record and union types if the design of these types is likely to evolveHide the representations of record and union types if the design of these types is likely to evolve

Avoid the use of implementation inheritance for extensibilityAvoid the use of implementation inheritance for extensibility

Function and member signaturesFunction and member signatures
Use tuples for return values when returning a small number of multiple unrelated valuesUse tuples for return values when returning a small number of multiple unrelated values

val divrem : BigInteger -> BigInteger -> BigInteger * BigInteger

Use Use Async<T> for async programming at F# API boundaries for async programming at F# API boundaries

type SomeType =
 member this.Compute(x:int) : int =
 ...
 member this.AsyncCompute(x:int) : Async<int> =
 ...

type System.ServiceModel.Channels.IInputChannel with
 member this.AsyncReceive() =
 ...

ExceptionsExceptions

Follow the .NET guidelines for exceptionsFollow the .NET guidelines for exceptions

By using [<CompiledName>] , you can use .NET naming conventions for non F# consumers of the assembly.

Method overloading is a powerful tool for simplifying an API that may need to perform similar functionality, but with different options or arguments.

In F#, it is more common to overload on number of arguments rather than types of arguments.

Avoid revealing concrete representations of objects. For example, the concrete representation of DateTime values is not revealed by the external, public
API of the .NET library design. At run time, the Common Language Runtime knows the committed implementation that will be used throughout
execution. However, compiled code doesn't itself pick up dependencies on the concrete representation.

In F#, implementation inheritance is rarely used. Furthermore, inheritance hierarchies are often complex and difficult to change when new requirements
arrive. Inheritance implementation still exists in F# for compatibility and rare cases where it is the best solution to a problem, but alternative techniques
should be sought in your F# programs when designing for polymorphism, such as interface implementation.

Here is a good example of using a tuple in a return type:

For return types containing many components, or where the components are related to a single identifiable entity, consider using a named type instead
of a tuple.

If there is a corresponding synchronous operation named Operation that returns a T , then the async operation should be named AsyncOperation if it
returns Async<T> or OperationAsync if it returns Task<T> . For commonly used .NET types that expose Begin/End methods, consider using
Async.FromBeginEnd to write extension methods as a façade to provide the F# async programming model to those .NET APIs.

Exceptions are exceptional in .NET; that is, they should not occur frequently at runtime. When they do, the information they contain is valuable.
Exceptions are a core first class concept of .NET; it hence follows that appropriate application of the Exceptions should be used as part of the design of
the interface of a component.

The .NET Library Design Guidelines give excellent advice on the use of exceptions in the context of all .NET programming. Some of these guidelines are
as follows:

Do not use exceptions for normal flow of control. Although this technique is often used in languages such as OCaml, it is bug-prone and can be
inefficient on .NET. Instead, consider returning a None option value to indicate a failure that is a common or expected occurrence.

Document exceptions thrown by your components when a function is used incorrectly.

Where possible, employ existing exceptions from the System namespaces. Avoid ApplicationException, though.

Do not throw Exception when it will escape to user code. This includes avoiding the use of failwith , failwithf , which are handy functions for

https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/exceptions
https://docs.microsoft.com/dotnet/api/system.applicationexception
https://docs.microsoft.com/dotnet/api/system.exception

Consider using option values for return types when failure is not an exceptional scenarioConsider using option values for return types when failure is not an exceptional scenario

// bad: throws exception if no element meets criteria
member this.FindFirstIndex(pred : 'T -> bool) : int =
 ...

// bad: returns -1 if no element meets criteria
member this.FindFirstIndex(pred : 'T -> bool) : int =
 ...

// good: returns None if no element meets criteria
member this.TryFindFirstIndex(pred : 'T -> bool) : int option =
 ...

Extension MembersExtension Members
Carefully apply F# extension members in F#-to-F# componentsCarefully apply F# extension members in F#-to-F# components

type System.ServiceModel.Channels.IInputChannel with
 member this.AsyncReceive() =
 Async.FromBeginEnd(this.BeginReceive, this.EndReceive)

type System.Collections.Generic.IDictionary<'Key,'Value> with
 member this.TryGet key =
 let ok, v = this.TryGetValue key
 if ok then Some v else None

Union TypesUnion Types
Use discriminated unions instead of class hierarchies for tree-structured dataUse discriminated unions instead of class hierarchies for tree-structured data

type BST<'T> =
 | Empty
 | Node of 'T * BST<'T> * BST<'T>

Use Use [<RequireQualifiedAccess>] on union types whose case names are not sufficiently unique on union types whose case names are not sufficiently unique

Hide the representations of discriminated unions for binary compatible APIs if the design of these types is likely to evolveHide the representations of discriminated unions for binary compatible APIs if the design of these types is likely to evolve

type Union =
 private
 | CaseA of int
 | CaseB of string

Inline Functions and Member ConstraintsInline Functions and Member Constraints
Define generic numeric algorithms using inline functions with implied member constraints and statically resolved generic typesDefine generic numeric algorithms using inline functions with implied member constraints and statically resolved generic types

use in scripting and for code under development, but should be removed from F# library code in favor of throwing a more specific exception
type.

Use nullArg , invalidArg , and invalidOp as the mechanism to throw ArgumentNullException, ArgumentException, and
InvalidOperationException when appropriate.

The .NET approach to exceptions is that they should be “exceptional”; that is, they should occur relatively infrequently. However, some operations (for
example, searching a table) may fail frequently. F# option values are an excellent way to represent the return types of these operations. These operations
conventionally start with the name prefix “try”:

F# extension members should generally only be used for operations that are in the closure of intrinsic operations associated with a type in the majority
of its modes of use. One common use is to provide APIs that are more idiomatic to F# for various .NET types:

Tree-like structures are recursively defined. This is awkward with inheritance, but elegant with Discriminated Unions.

Representing tree-like data with Discriminated Unions also allows you to benefit from exhaustiveness in pattern matching.

You may find yourself in a domain where the same name is the best name for different things, such as Discriminated Union cases. You can use
[<RequireQualifiedAccess>] to disambiguate case names in order to avoid triggering confusing errors due to shadowing dependent on the ordering of
open statements

Unions types rely on F# pattern-matching forms for a succinct programming model. As mentioned previously, you should avoid revealing concrete data
representations if the design of these types is likely to evolve.

For example, the representation of a discriminated union can be hidden using a private or internal declaration, or by using a signature file.

If you reveal discriminated unions indiscriminately, you may find it hard to version your library without breaking user code. Instead, consider revealing
one or more active patterns to permit pattern matching over values of your type.

Active patterns provide an alternate way to provide F# consumers with pattern matching while avoiding exposing F# Union Types directly.

Arithmetic member constraints and F# comparison constraints are a standard for F# programming. For example, consider the following code:

https://docs.microsoft.com/dotnet/api/system.argumentnullexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.invalidoperationexception

let inline highestCommonFactor a b =
 let rec loop a b =
 if a = LanguagePrimitives.GenericZero<_> then b
 elif a < b then loop a (b - a)
 else loop (a - b) b
 loop a b

val inline highestCommonFactor : ^T -> ^T -> ^T
 when ^T : (static member Zero : ^T)
 and ^T : (static member (-) : ^T * ^T -> ^T)
 and ^T : equality
 and ^T : comparison

Avoid using member constraints to simulate type classes and duck typingAvoid using member constraints to simulate type classes and duck typing

Operator DefinitionsOperator Definitions
Avoid defining custom symbolic operatorsAvoid defining custom symbolic operators

Units of MeasureUnits of Measure
Carefully use units of measure for added type safety in F# codeCarefully use units of measure for added type safety in F# code

Type AbbreviationsType Abbreviations
Carefully use type abbreviations to simplify F# codeCarefully use type abbreviations to simplify F# code

Avoid type abbreviations for public types whose members and properties should be intrinsically different to those available on the type being abbreviatedAvoid type abbreviations for public types whose members and properties should be intrinsically different to those available on the type being abbreviated

type MultiMap<'Key,'Value> = Map<'Key,'Value list>

Guidelines for libraries for Use from other .NET Languages

Namespace and Type design (for libraries for use from other .NET Languages)Namespace and Type design (for libraries for use from other .NET Languages)
Apply the .NET naming conventions to the public API of your componentsApply the .NET naming conventions to the public API of your components

type pCoord = ...
 member this.theta = ...

type PolarCoordinate = ...
 member this.Theta = ...

Use namespaces, types, and members as the primary organizational structure for your componentsUse namespaces, types, and members as the primary organizational structure for your components

The type of this function is as follows:

This is a suitable function for a public API in a mathematical library.

It is possible to simulate “duck typing” using F# member constraints. However, members that make use of this should not in general be used in F#-to-F#
library designs. This is because library designs based on unfamiliar or non-standard implicit constraints tend to cause user code to become inflexible
and tied to one particular framework pattern.

Additionally, there is a good chance that heavy use of member constraints in this manner can result in very long compile times.

Custom operators are essential in some situations and are highly useful notational devices within a large body of implementation code. For new users
of a library, named functions are often easier to use. In addition, custom symbolic operators can be hard to document, and users find it more difficult to
look up help on operators, due to existing limitations in IDE and search engines.

As a result, it is best to publish your functionality as named functions and members, and additionally expose operators for this functionality only if the
notational benefits outweigh the documentation and cognitive cost of having them.

Additional typing information for units of measure is erased when viewed by other .NET languages. Be aware that .NET components, tools, and
reflection will see types-sans-units. For example, C# consumers will see float rather than float<kg> .

.NET components, tools, and reflection will not see abbreviated names for types. Significant usage of type abbreviations can also make a domain appear
more complex than it actually is, which could confuse consumers.

In this case, the type being abbreviated reveals too much about the representation of the actual type being defined. Instead, consider wrapping the
abbreviation in a class type or a single-case discriminated union (or, when performance is essential, consider using a struct type to wrap the
abbreviation).

For example, it is tempting to define a multi-map as a special case of an F# map, for example:

However, the logical dot-notation operations on this type are not the same as the operations on a Map – for example, it is reasonable that the lookup
operator map.[key] return the empty list if the key is not in the dictionary, rather than raising an exception.

When designing libraries for use from other .NET languages, it is important to adhere to the .NET Library Design Guidelines. In this document, these
libraries are labeled as vanilla .NET libraries, as opposed to F#-facing libraries that use F# constructs without restriction. Designing vanilla .NET libraries
means providing familiar and idiomatic APIs consistent with the rest of the .NET Framework by minimizing the use of F#-specific constructs in the
public API. The rules are explained in the following sections.

Pay special attention to the use of abbreviated names and the .NET capitalization guidelines.

module Fabrikam

module Utilities =
 let Name = "Bob"
 let Add2 x y = x + y
 let Add3 x y z = x + y + z

namespace Fabrikam

[<AbstractClass; Sealed>]
type Utilities =
 static member Name = "Bob"
 static member Add(x,y) = x + y
 static member Add(x,y,z) = x + y + z

Use F# record types in vanilla .NET APIs if the design of the types won't evolveUse F# record types in vanilla .NET APIs if the design of the types won't evolve

[<NoEquality; NoComparison>]
type MyRecord =
 { FirstThing : int
 SecondThing : string }

public sealed class MyRecord
{
 public MyRecord(int firstThing, string secondThing);
 public int FirstThing { get; }
 public string SecondThing { get; }
}

Hide the representation of F# union types in vanilla .NET APIsHide the representation of F# union types in vanilla .NET APIs

type PropLogic =
 private
 | And of PropLogic * PropLogic
 | Not of PropLogic
 | True

All files containing public functionality should begin with a namespace declaration, and the only public-facing entities in namespaces should be types.
Do not use F# modules.

Use non-public modules to hold implementation code, utility types, and utility functions.

Static types should be preferred over modules, as they allow for future evolution of the API to use overloading and other .NET API design concepts that
may not be used within F# modules.

For example, in place of the following public API:

Consider instead:

F# record types compile to a simple .NET class. These are suitable for some simple, stable types in APIs. You should consider using the [<NoEquality>]

and [<NoComparison>] attributes to suppress the automatic generation of interfaces. Also avoid using mutable record fields in vanilla .NET APIs as these
exposes a public field. Always consider whether a class would provide a more flexible option for future evolution of the API.

For example, the following F# code exposes the public API to a C# consumer:

F#:

C#:

F# union types are not commonly used across component boundaries, even for F#-to-F# coding. They are an excellent implementation device when
used internally within components and libraries.

When designing a vanilla .NET API, consider hiding the representation of a union type by using either a private declaration or a signature file.

You may also augment types that use a union representation internally with members to provide a desired .NET-facing API.

type PropLogic =
 private
 | And of PropLogic * PropLogic
 | Not of PropLogic
 | True

 /// A public member for use from C#
 member x.Evaluate =
 match x with
 | And(a,b) -> a.Evaluate && b.Evaluate
 | Not a -> not a.Evaluate
 | True -> true

 /// A public member for use from C#
 static member CreateAnd(a,b) = And(a,b)

Design GUI and other components using the design patterns of the frameworkDesign GUI and other components using the design patterns of the framework

Object and Member design (for libraries for use from other .NET Languages)Object and Member design (for libraries for use from other .NET Languages)
Use the CLIEvent attribute to expose .NET eventsUse the CLIEvent attribute to expose .NET events

type MyBadType() =
 let myEv = new Event<int>()

 [<CLIEvent>]
 member this.MyEvent = myEv.Publish

type MyEventArgs(x:int) =
 inherit System.EventArgs()
 member this.X = x

 /// A type in a component designed for use from other .NET languages
type MyGoodType() =
 let myEv = new DelegateEvent<EventHandler<MyEventArgs>>()

 [<CLIEvent>]
 member this.MyEvent = myEv.Publish

Expose asynchronous operations as methods which return .NET tasksExpose asynchronous operations as methods which return .NET tasks

/// A type in a component designed for use from other .NET languages
type MyType() =

 let compute (x: int) : Async<int> = async { ... }

 member this.ComputeAsync(x) = compute x |> Async.StartAsTask

/// A type in a component designed for use from other .NET languages
type MyType() =
 let compute(x:int) : Async<int> = async { ... }
 member this.ComputeAsTask(x, cancellationToken) = Async.StartAsTask(compute x, cancellationToken)

Use .NET delegate types instead of F# function typesUse .NET delegate types instead of F# function types

member this.Transform(f:int->int) =
 ...

There are many different frameworks available within .NET, such as WinForms, WPF, and ASP.NET. Naming and design conventions for each should be
used if you are designing components for use in these frameworks. For example, for WPF programming, adopt WPF design patterns for the classes you
are designing. For models in user interface programming, use design patterns such as events and notification-based collections such as those found in
System.Collections.ObjectModel.

Construct a DelegateEvent with a specific .NET delegate type that takes an object and EventArgs (rather than an Event , which just uses the
FSharpHandler type by default) so that the events are published in the familiar way to other .NET languages.

Tasks are used in .NET to represent active asynchronous computations. Tasks are in general less compositional than F# Async<T> objects, since they
represent “already executing” tasks and can’t be composed together in ways that perform parallel composition, or which hide the propagation of
cancellation signals and other contextual parameters.

However, despite this, methods which return Tasks are the standard representation of asynchronous programming on .NET.

You will frequently also want to accept an explicit cancellation token:

Here “F# function types” mean “arrow” types like int -> int .

Instead of this:

Do this:

https://docs.microsoft.com/dotnet/api/system.collections.objectmodel

member this.Transform(f:Func<int,int>) =
 ...

Use the TryGetValue pattern instead of returning F# option values, and prefer method overloading to taking F# option values as argumentsUse the TryGetValue pattern instead of returning F# option values, and prefer method overloading to taking F# option values as arguments

member this.ReturnOption() = Some 3

member this.ReturnBoolAndOut(outVal : byref<int>) =
 outVal <- 3
 true

member this.ParamOption(x : int, y : int option) =
 match y with
 | Some y2 -> x + y2
 | None -> x

member this.ParamOverload(x : int) = x

member this.ParamOverload(x : int, y : int) = x + y

Use the .NET collection interface types IEnumerable<T> and IDictionary<Key,Value> for parameters and return valuesUse the .NET collection interface types IEnumerable<T> and IDictionary<Key,Value> for parameters and return values

member this.PrintNames(names : string list) =
 ...

member this.PrintNames(names : seq<string>) =
 ...

Use the unit type as the only input type of a method to define a zero-argument method, or as the only return type to define a void-returning methodUse the unit type as the only input type of a method to define a zero-argument method, or as the only return type to define a void-returning method

✔ member this.NoArguments() = 3

✔ member this.ReturnVoid(x : int) = ()

member this.WrongUnit(x:unit, z:int) = ((), ())

Check for null values on vanilla .NET API boundariesCheck for null values on vanilla .NET API boundaries

The F# function type appears as class FSharpFunc<T,U> to other .NET languages, and is less suitable for language features and tooling that understand
delegate types. When authoring a higher-order method targeting .NET Framework 3.5 or higher, the System.Func and System.Action delegates are the
right APIs to publish to enable .NET developers to consume these APIs in a low-friction manner. (When targeting .NET Framework 2.0, the system-
defined delegate types are more limited; consider using predefined delegate types such as System.Converter<T,U> or defining a specific delegate type.)

On the flip side, .NET delegates are not natural for F#-facing libraries (see the next Section on F#-facing libraries). As a result, a common
implementation strategy when developing higher-order methods for vanilla .NET libraries is to author all the implementation using F# function types,
and then create the public API using delegates as a thin façade atop the actual F# implementation.

Common patterns of use for the F# option type in APIs are better implemented in vanilla .NET APIs using standard .NET design techniques. Instead of
returning an F# option value, consider using the bool return type plus an out parameter as in the "TryGetValue" pattern. And instead of taking F# option
values as parameters, consider using method overloading or optional arguments.

Avoid the use of concrete collection types such as .NET arrays T[] , F# types list<T> , Map<Key,Value> and Set<T> , and .NET concrete collection types
such as Dictionary<Key,Value> . The .NET Library Design Guidelines have good advice regarding when to use various collection types like
IEnumerable<T> . Some use of arrays (T[]) is acceptable in some circumstances, on performance grounds. Note especially that seq<T> is just the F#

alias for IEnumerable<T> , and thus seq is often an appropriate type for a vanilla .NET API.

Instead of F# lists:

Use F# sequences:

Avoid other uses of the unit type. These are good:

This is bad:

F# implementation code tends to have fewer null values, due to immutable design patterns and restrictions on use of null literals for F# types. Other
.NET languages often use null as a value much more frequently. Because of this, F# code that is exposing a vanilla .NET API should check parameters
for null at the API boundary, and prevent these values from flowing deeper into the F# implementation code. The isNull function or pattern matching
on the null pattern can be used.

let checkNonNull argName (arg: obj) =
 match arg with
 | null -> nullArg argName
 | _ -> ()

let checkNonNull` argName (arg: obj) =
 if isNull arg then nullArg argName
 else ()

Avoid using tuples as return valuesAvoid using tuples as return values

Avoid the use of currying of parametersAvoid the use of currying of parameters

member this.TupledArguments(str, num) = String.replicate num str

Appendix
End-to-end example of designing F# code for use by other .NET languagesEnd-to-end example of designing F# code for use by other .NET languages

open System

type Point1(angle,radius) =
 new() = Point1(angle=0.0, radius=0.0)
 member x.Angle = angle
 member x.Radius = radius
 member x.Stretch(l) = Point1(angle=x.Angle, radius=x.Radius * l)
 member x.Warp(f) = Point1(angle=f(x.Angle), radius=x.Radius)
 static member Circle(n) =
 [for i in 1..n -> Point1(angle=2.0*Math.PI/float(n), radius=1.0)]

type Point1 =
 new : unit -> Point1
 new : angle:double * radius:double -> Point1
 static member Circle : n:int -> Point1 list
 member Stretch : l:double -> Point1
 member Warp : f:(double -> double) -> Point1
 member Angle : double
 member Radius : double

// C# signature for the unadjusted Point1 class
public class Point1
{
 public Point1();

 public Point1(double angle, double radius);

 public static Microsoft.FSharp.Collections.List<Point1> Circle(int count);

 public Point1 Stretch(double factor);

 public Point1 Warp(Microsoft.FSharp.Core.FastFunc<double,double> transform);

 public double Angle { get; }

 public double Radius { get; }
}

Instead, prefer returning a named type holding the aggregate data, or using out parameters to return multiple values. Although tuples and struct tuples
exist in .NET (including C# language support for struct tuples), they will most often not provide the ideal and expected API for .NET developers.

Instead, use .NET calling conventions Method(arg1,arg2,…,argN) .

Tip: If you’re designing libraries for use from any .NET language, then there’s no substitute for actually doing some experimental C# and Visual Basic
programming to ensure that your libraries "feel right" from these languages. You can also use tools such as .NET Reflector and the Visual Studio Object
Browser to ensure that libraries and their documentation appear as expected to developers.

Consider the following class:

The inferred F# type of this class is as follows:

Let’s take a look at how this F# type appears to a programmer using another .NET language. For example, the approximate C# “signature” is as follows:

There are some important points to notice about how F# represents constructs here. For example:

Metadata such as argument names has been preserved.

F# methods that take two arguments become C# methods that take two arguments.

Functions and lists become references to corresponding types in the F# library.

namespace SuperDuperFSharpLibrary.Types

type RadialPoint(angle:double, radius:double) =

 /// Return a point at the origin
 new() = RadialPoint(angle=0.0, radius=0.0)

 /// The angle to the point, from the x-axis
 member x.Angle = angle

 /// The distance to the point, from the origin
 member x.Radius = radius

 /// Return a new point, with radius multiplied by the given factor
 member x.Stretch(factor) =
 RadialPoint(angle=angle, radius=radius * factor)

 /// Return a new point, with angle transformed by the function
 member x.Warp(transform:Func<_,_>) =
 RadialPoint(angle=transform.Invoke angle, radius=radius)

 /// Return a sequence of points describing an approximate circle using
 /// the given count of points
 static member Circle(count) =
 seq { for i in 1..count ->
 RadialPoint(angle=2.0*Math.PI/float(count), radius=1.0) }

type RadialPoint =
 new : unit -> RadialPoint
 new : angle:double * radius:double -> RadialPoint
 static member Circle : count:int -> seq<RadialPoint>
 member Stretch : factor:double -> RadialPoint
 member Warp : transform:System.Func<double,double> -> RadialPoint
 member Angle : double
 member Radius : double

public class RadialPoint
{
 public RadialPoint();

 public RadialPoint(double angle, double radius);

 public static System.Collections.Generic.IEnumerable<RadialPoint> Circle(int count);

 public RadialPoint Stretch(double factor);

 public RadialPoint Warp(System.Func<double,double> transform);

 public double Angle { get; }

 public double Radius { get; }
}

The following code shows how to adjust this code to take these things into account.

The inferred F# type of the code is as follows:

The C# signature is now as follows:

The fixes made to prepare this type for use as part of a vanilla .NET library are as follows:

Adjusted several names: Point1 , n , l , and f became RadialPoint , count , factor , and transform , respectively.

Used a return type of seq<RadialPoint> instead of RadialPoint list by changing a list construction using [...] to a sequence construction
using IEnumerable<RadialPoint> .

Used the .NET delegate type System.Func instead of an F# function type.

This makes it far nicer to consume in C# code.

Interactive Programming with F#
5/4/2018 • 4 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Scripting with F#

Differences Between the Interactive, Scripting and Compiled Environments

DIRECTIVE DESCRIPTION

#help Displays information about available directives.

#I Specifies an assembly search path in quotation marks.

#load Reads a source file, compiles it, and runs it.

#quit Terminates an F# Interactive session.

#r References an assembly.

This article currently describes the experience for Windows only. It will be rewritten.

The API reference link will take you to MSDN. The docs.microsoft.com API reference is not complete.

F# Interactive (fsi.exe) is used to run F# code interactively at the console, or to execute F# scripts. In other words, F# interactive executes a REPL (Read,
Evaluate, Print Loop) for the F# language.

To run F# Interactive from the console, run fsi.exe. You will find fsi.exe in "c:\Program Files (x86)\Microsoft SDKs\F#<version>\Framework<version>".
For information about command line options available, see F# Interactive Options.

To run F# Interactive through Visual Studio, you can click the appropriate toolbar button labeled F# Interactive, or use the keys Ctrl+Alt+F. Doing this
will open the interactive window, a tool window running an F# Interactive session. You can also select some code that you want to run in the interactive
window and hit the key combination ALT+ENTER. F# Interactive starts in a tool window labeled F# Interactive. When you use this key combination,
make sure that the editor window has the focus.

Whether you are using the console or Visual Studio, a command prompt appears and the interpreter awaits your input. You can enter code just as you
would in a code file. To compile and execute the code, enter two semicolons (;;) to terminate a line or several lines of input.

F# Interactive attempts to compile the code and, if successful, it executes the code and prints the signature of the types and values that it compiled. If
errors occur, the interpreter prints the error messages.

Code entered in the same session has access to any constructs entered previously, so you can build up programs. An extensive buffer in the tool window
allows you to copy the code into a file if needed.

When run in Visual Studio, F# Interactive runs independently of your project, so, for example, you cannot use constructs defined in your project in F#
Interactive unless you copy the code for the function into the interactive window.

If you have a project open that references some libraries, you can reference these in F# Interactive through Solution Explorer. To reference a library in
F# Interactive, expand the References node, open the shortcut menu for the library, and choose Send to F# Interactive.

You can control the F# Interactive command line arguments (options) by adjusting the settings. On the Tools menu, select Options..., and then expand
F# Tools. The two settings that you can change are the F# Interactive options and the 64-bit F# Interactive setting, which is relevant only if you are
running F# Interactive on a 64-bit machine. This setting determines whether you want to run the dedicated 64-bit version of fsi.exe or fsianycpu.exe,
which uses the machine architecture to determine whether to run as a 32-bit or 64-bit process.

Scripts use the file extension .fsx or .fsscript. Instead of compiling source code and then later running the compiled assembly, you can just run fsi.exe
and specify the filename of the script of F# source code, and F# interactive reads the code and executes it in real time.

When you are compiling code in F# Interactive, whether you are running interactively or running a script, the symbol INTERACTIVE is defined. When
you are compiling code in the compiler, the symbol COMPILED is defined. Thus, if code needs to be different in compiled and interactive modes, you
can use preprocessor directives for conditional compilation to determine which to use.

Some directives are available when you are executing scripts in F# Interactive that are not available when you are executing the compiler. The following
table summarizes directives that are available when you are using F# Interactive.

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/fsharp-interactive/index.md

#time ["on"|"off"] By itself, #time toggles whether to display performance information. When it is
enabled, F# Interactive measures real time, CPU time, and garbage collection
information for each section of code that is interpreted and executed.

DIRECTIVE DESCRIPTION

// MyAssembly.fs
module MyAssembly
let myFunction x y = x + 2 * y

// file1.fsx
#r "MyAssembly.dll"

printfn "Command line arguments: "

for arg in fsi.CommandLineArgs do
 printfn "%s" arg

printfn "%A" (MyAssembly.myFunction 10 40)

Command line arguments:
file1.fsx
test
90

Related Topics
TITLE DESCRIPTION

F# Interactive Options Describes command-line syntax and options for the F# Interactive, fsi.exe.

F# Interactive Library Reference Describes library functionality available when executing code in F# interactive.

When you specify files or paths in F# Interactive, a string literal is expected. Therefore, files and paths must be in quotation marks, and the usual escape
characters apply. Also, you can use the @ character to cause F# Interactive to interpret a string that contains a path as a verbatim string. This causes F#
Interactive to ignore any escape characters.

One of the differences between compiled and interactive mode is the way you access command line arguments. In compiled mode, use
System.Environment.GetCommandLineArgs. In scripts, use fsi.CommandLineArgs.

The following code illustrates how to create a function that reads the command line arguments in a script and also demonstrates how to reference
another assembly from a script. The first code file, MyAssembly.fs, is the code for the assembly being referenced. Compile this file with the command
line: fsc -a MyAssembly.fs and then execute the second file as a script with the command line: fsi --exec file1.fsx test

The output is as follows:

https://msdn.microsoft.com/visualfsharpdocs/conceptual/fsharp-interactive-library-reference

Type Providers
5/4/2018 • 2 minutes to read • Edit Online

Generative and Erased Type Providers

Commonly used Type Providers

See Also

An F# type provider is a component that provides types, properties, and methods for use in your program. Type Providers generate what are known as
Provided Types, which are generated by the F# compiler and are based on an external data source.

For example, an F# Type Provider for SQL can generate types representing tables and columns in a relational database. In fact, this is what the
SQLProvider Type Provider does.

Provided Types depend on input parameters to a Type Provider. Such input can be a sample data source (such as a JSON schema file), a URL pointing
directly to an external service, or a connection string to a data source. A Type Provider can also ensure that groups of types are only expanded on
demand; that is, they are expanded if the types are actually referenced by your program. This allows for the direct, on-demand integration of large-scale
information spaces such as online data markets in a strongly typed way.

Type Providers come in two forms: Generative and Erased.

Generative Type Providers produce types that can be written as .NET types into the assembly in which they are produced. This allows them to be
consumed from code in other assemblies. This means that the typed representation of the data source must generally be one that is feasible to
represent with .NET types.

Erasing Type Providers produce types that can only be consumed in the assembly or project they are generated from. The types are ephemeral; that is,
they are not written into an assembly and cannot be consumed by code in other assemblies. They can contain delayed members, allowing you to use
provided types from a potentially infinite information space. They are useful for using a small subset of a large and interconnected data source.

The following widely-used libraries contain Type Providers for different uses:

FSharp.Data includes Type Providers for JSON, XML, CSV, and HTML document formats and resources.
SQLProvider provides strongly-typed access to relation databases through object mapping and F# LINQ queries against these data sources.
FSharp.Data.SqlClient has a set of type providers for compile-time checked embedding of T-SQL in F#.
Azure Storage Type provider provides types for Azure Blobs, Tables, and Queues, allowing you to access these resources without needing to specify
resource names as strings throughout your program.
FSharp.Data.GraphQL contains the GraphQLProvider, which provides types based on a GraphQL server specified by URL.

Where necessary, you can create your own custom type providers, or reference type providers that have been created by others. For example, assume
your organization has a data service providing a large and growing number of named data sets, each with its own stable data schema. You may choose
to create a type provider that reads the schemas and presents the latest available data sets to the programmer in a strongly typed way.

Tutorial: Create a Type Provider

F# Language Reference

Visual F#

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/type-providers/index.md
https://fsprojects.github.io/SQLProvider/
https://fsharp.github.io/FSharp.Data/
https://fsprojects.github.io/SQLProvider/
https://fsprojects.github.io/FSharp.Data.SqlClient/
https://fsprojects.github.io/AzureStorageTypeProvider/
https://fsprojects.github.io/FSharp.Data.GraphQL/index.html

Tutorial: Create a Type Provider
5/4/2018 • 36 minutes to read • Edit Online

Before You Start

A Simple Type Provider

The type provider mechanism in F# is a significant part of its support for information rich programming. This tutorial explains how to create your own
type providers by walking you through the development of several simple type providers to illustrate the basic concepts. For more information about
the type provider mechanism in F#, see Type Providers.

The F# ecosystem contains a range of type providers for commonly used Internet and enterprise data services. For example:

FSharp.Data includes type providers for JSON, XML, CSV and HTML document formats.

SQLProvider provides strongly-typed access to SQL databases through a object mapping and F# LINQ queries against these data sources.

FSharp.Data.SqlClient has a set of type providers for compile-time checked embedding of T-SQL in F#.

FSharp.Data.TypeProviders is an older set of type providers for use only with .NET Framework programming for accessing SQL, Entity
Framework, OData and WSDL data services.

Where necessary, you can create custom type providers, or you can reference type providers that others have created. For example, your organization
could have a data service that provides a large and growing number of named data sets, each with its own stable data schema. You can create a type
provider that reads the schemas and presents the current data sets to the programmer in a strongly typed way.

The type provider mechanism is primarily designed for injecting stable data and service information spaces into the F# programming experience.

This mechanism isn’t designed for injecting information spaces whose schema changes during program execution in ways that are relevant to program
logic. Also, the mechanism isn't designed for intra-language meta-programming, even though that domain contains some valid uses. You should use
this mechanism only where necessary and where the development of a type provider yields very high value.

You should avoid writing a type provider where a schema isn't available. Likewise, you should avoid writing a type provider where an ordinary (or even
an existing) .NET library would suffice.

Before you start, you might ask the following questions:

Do you have a schema for your information source? If so, what’s the mapping into the F# and .NET type system?

Can you use an existing (dynamically typed) API as a starting point for your implementation?

Will you and your organization have enough uses of the type provider to make writing it worthwhile? Would a normal .NET library meet your
needs?

How much will your schema change?

Will it change during coding?

Will it change between coding sessions?

Will it change during program execution?

Type providers are best suited to situations where the schema is stable at runtime and during the lifetime of compiled code.

This sample is Samples.HelloWorldTypeProvider, similar to the samples in the examples directory of the F# Type Provider SDK. The provider makes
available a "type space" that contains 100 erased types, as the following code shows by using F# signature syntax and omitting the details for all except
Type1 . For more information about erased types, see Details About Erased Provided Types later in this topic.

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/type-providers/creating-a-type-provider.md
https://fsharp.github.io/FSharp.Data/
https://fsprojects.github.io/SQLProvider/
https://fsprojects.github.io/FSharp.Data.SqlClient/
https://fsprojects.github.io/FSharp.Data.TypeProviders/
https://github.com/fsprojects/FSharp.TypeProviders.SDK/

namespace Samples.HelloWorldTypeProvider

type Type1 =
 /// This is a static property.
 static member StaticProperty : string

 /// This constructor takes no arguments.
 new : unit -> Type1

 /// This constructor takes one argument.
 new : data:string -> Type1

 /// This is an instance property.
 member InstanceProperty : int

 /// This is an instance method.
 member InstanceMethod : x:int -> char

 /// This is an instance property.
 nested type NestedType =
 /// This is StaticProperty1 on NestedType.
 static member StaticProperty1 : string
 …
 /// This is StaticProperty100 on NestedType.
 static member StaticProperty100 : string

type Type2 =
…
…

type Type100 =
…

WARNINGWARNING

namespace Samples.FSharp.HelloWorldTypeProvider

open System
open System.Reflection
open ProviderImplementation.ProvidedTypes
open FSharp.Core.CompilerServices
open FSharp.Quotations

// This type defines the type provider. When compiled to a DLL, it can be added
// as a reference to an F# command-line compilation, script, or project.
[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this =

 // Inheriting from this type provides implementations of ITypeProvider
 // in terms of the provided types below.
 inherit TypeProviderForNamespaces(config)

 let namespaceName = "Samples.HelloWorldTypeProvider"
 let thisAssembly = Assembly.GetExecutingAssembly()

 // Make one provided type, called TypeN.
 let makeOneProvidedType (n:int) =
 …
 // Now generate 100 types
 let types = [for i in 1 .. 100 -> makeOneProvidedType i]

 // And add them to the namespace
 do this.AddNamespace(namespaceName, types)

[<assembly:TypeProviderAssembly>]
do()

Note that the set of types and members provided is statically known. This example doesn't leverage the ability of providers to provide types that depend
on a schema. The implementation of the type provider is outlined in the following code, and the details are covered in later sections of this topic.

There may be differences between this code and the online samples.

To use this provider, open a separate instance of Visual Studio, create an F# script, and then add a reference to the provider from your script by using #r
as the following code shows:

#r @".\bin\Debug\Samples.HelloWorldTypeProvider.dll"

let obj1 = Samples.HelloWorldTypeProvider.Type1("some data")

let obj2 = Samples.HelloWorldTypeProvider.Type1("some other data")

obj1.InstanceProperty
obj2.InstanceProperty

[for index in 0 .. obj1.InstanceProperty-1 -> obj1.InstanceMethod(index)]
[for index in 0 .. obj2.InstanceProperty-1 -> obj2.InstanceMethod(index)]

let data1 = Samples.HelloWorldTypeProvider.Type1.NestedType.StaticProperty35

fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll script.fsx

devenv.exe /debugexe fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll script.fsx

Implementation of the Type ProviderImplementation of the Type Provider

[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this =

inherit TypeProviderForNamespaces(config)

let namespaceName = "Samples.HelloWorldTypeProvider"
let thisAssembly = Assembly.GetExecutingAssembly()

let makeOneProvidedType (n:int) = …

let types = [for i in 1 .. 100 -> makeOneProvidedType i]

Then look for the types under the Samples.HelloWorldTypeProvider namespace that the type provider generated.

Before you recompile the provider, make sure that you have closed all instances of Visual Studio and F# Interactive that are using the provider DLL.
Otherwise, a build error will occur because the output DLL will be locked.

To debug this provider by using print statements, make a script that exposes a problem with the provider, and then use the following code:

To debug this provider by using Visual Studio, open the Visual Studio command prompt with administrative credentials, and run the following
command:

As an alternative, open Visual Studio, open the Debug menu, choose Debug/Attach to process… , and attach to another devenv process where you’re
editing your script. By using this method, you can more easily target particular logic in the type provider by interactively typing expressions into the
second instance (with full IntelliSense and other features).

You can disable Just My Code debugging to better identify errors in generated code. For information about how to enable or disable this feature, see
Navigating through Code with the Debugger. Also, you can also set first-chance exception catching by opening the Debug menu and then choosing
Exceptions or by choosing the Ctrl+Alt+E keys to open the Exceptions dialog box. In that dialog box, under Common Language Runtime Exceptions ,

select the Thrown check box.

This section walks you through the principal sections of the type provider implementation. First, you define the type for the custom type provider itself:

This type must be public, and you must mark it with the TypeProvider attribute so that the compiler will recognize the type provider when a separate F#
project references the assembly that contains the type. The config parameter is optional, and, if present, contains contextual configuration information
for the type provider instance that the F# compiler creates.

Next, you implement the ITypeProvider interface. In this case, you use the TypeProviderForNamespaces type from the ProvidedTypes API as a base type.
This helper type can provide a finite collection of eagerly provided namespaces, each of which directly contains a finite number of fixed, eagerly
provided types. In this context, the provider eagerly generates types even if they aren't needed or used.

Next, define local private values that specify the namespace for the provided types, and find the type provider assembly itself. This assembly is used later
as the logical parent type of the erased types that are provided.

Next, create a function to provide each of the types Type1…Type100. This function is explained in more detail later in this topic.

Next, generate the 100 provided types:

Next, add the types as a provided namespace:

https://docs.microsoft.com/visualstudio/debugger/navigating-through-code-with-the-debugger
https://msdn.microsoft.com/library/bdf7b036-7490-4ace-b79f-c5f1b1b37947
https://msdn.microsoft.com/library/2c2b0571-843d-4a7d-95d4-0a7510ed5e2f

do this.AddNamespace(namespaceName, types)

[<assembly:TypeProviderAssembly>]
do()

Providing One Type And Its MembersProviding One Type And Its Members

let makeOneProvidedType (n:int) =
…

// This is the provided type. It is an erased provided type and, in compiled code,
// will appear as type 'obj'.
let t = ProvidedTypeDefinition(thisAssembly, namespaceName,
 "Type" + string n,
 baseType = Some typeof<obj>)

t.AddXmlDocDelayed (fun () -> sprintf "This provided type %s" ("Type" + string n))

let staticProp = ProvidedProperty(propertyName = "StaticProperty",
 propertyType = typeof<string>,
 isStatic = true,
 getterCode = (fun args -> <@@ "Hello!" @@>))

staticProp.AddXmlDocDelayed(fun () -> "This is a static property")

t.AddMember staticProp

let ctor = ProvidedConstructor(parameters = [],
 invokeCode = (fun args -> <@@ "The object data" :> obj @@>))

new Type10()

Finally, add an assembly attribute that indicates that you are creating a type provider DLL:

The makeOneProvidedType function does the real work of providing one of the types.

This step explains the implementation of this function. First, create the provided type (for example, Type1, when n = 1, or Type57, when n = 57).

You should note the following points:

This provided type is erased. Because you indicate that the base type is obj , instances will appear as values of type obj in compiled code.

When you specify a non-nested type, you must specify the assembly and namespace. For erased types, the assembly should be the type provider
assembly itself.

Next, add XML documentation to the type. This documentation is delayed, that is, computed on-demand if the host compiler needs it.

Next you add a provided static property to the type:

Getting this property will always evaluate to the string "Hello!". The GetterCode for the property uses an F# quotation, which represents the code that
the host compiler generates for getting the property. For more information about quotations, see Code Quotations (F#).

Add XML documentation to the property.

Now attach the provided property to the provided type. You must attach a provided member to one and only one type. Otherwise, the member will
never be accessible.

Now create a provided constructor that takes no parameters.

The InvokeCode for the constructor returns an F# quotation, which represents the code that the host compiler generates when the constructor is called.
For example, you can use the following constructor :

An instance of the provided type will be created with underlying data "The object data". The quoted code includes a conversion to obj because that type
is the erasure of this provided type (as you specified when you declared the provided type).

Add XML documentation to the constructor, and add the provided constructor to the provided type:

https://msdn.microsoft.com/library/dcf2430f-702b-40e5-a0a1-97518bf137f7
https://msdn.microsoft.com/library/6f055397-a1f0-4f9a-927c-f0d7c6951155
https://msdn.microsoft.com/library/dcf2430f-702b-40e5-a0a1-97518bf137f7

ctor.AddXmlDocDelayed(fun () -> "This is a constructor")

t.AddMember ctor

let ctor2 =
ProvidedConstructor(parameters = [ProvidedParameter("data",typeof<string>)],
 invokeCode = (fun args -> <@@ (%%(args.[0]) : string) :> obj @@>))

new Type10("ten")

let instanceProp =
 ProvidedProperty(propertyName = "InstanceProperty",
 propertyType = typeof<int>,
 getterCode= (fun args ->
 <@@ ((%%(args.[0]) : obj) :?> string).Length @@>))
instanceProp.AddXmlDocDelayed(fun () -> "This is an instance property")
t.AddMember instanceProp

let instanceMeth =
 ProvidedMethod(methodName = "InstanceMethod",
 parameters = [ProvidedParameter("x",typeof<int>)],
 returnType = typeof<char>,
 invokeCode = (fun args ->
 <@@ ((%%(args.[0]) : obj) :?> string).Chars(%%(args.[1]) : int) @@>))

instanceMeth.AddXmlDocDelayed(fun () -> "This is an instance method")
// Add the instance method to the type.
t.AddMember instanceMeth

t.AddMembersDelayed(fun () ->
 let nestedType = ProvidedTypeDefinition("NestedType", Some typeof<obj>)

 nestedType.AddMembersDelayed (fun () ->
 let staticPropsInNestedType =
 [for i in 1 .. 100 do
 let valueOfTheProperty = "I am string " + string i

 let p =
 ProvidedProperty(propertyName = "StaticProperty" + string i,
 propertyType = typeof<string>,
 isStatic = true,
 getterCode= (fun args -> <@@ valueOfTheProperty @@>))

 p.AddXmlDocDelayed(fun () ->
 sprintf "This is StaticProperty%d on NestedType" i)

 yield p]

 staticPropsInNestedType)

 [nestedType])

Details about Erased Provided TypesDetails about Erased Provided Types

Create a second provided constructor that takes one parameter :

The InvokeCode for the constructor again returns an F# quotation, which represents the code that the host compiler generated for a call to the method.
For example, you can use the following constructor :

An instance of the provided type is created with underlying data "ten". You may have already noticed that the InvokeCode function returns a quotation.
The input to this function is a list of expressions, one per constructor parameter. In this case, an expression that represents the single parameter value is
available in args.[0] . The code for a call to the constructor coerces the return value to the erased type obj . After you add the second provided
constructor to the type, you create a provided instance property:

Getting this property will return the length of the string, which is the representation object. The GetterCode property returns an F# quotation that
specifies the code that the host compiler generates to get the property. Like InvokeCode , the GetterCode function returns a quotation. The host compiler
calls this function with a list of arguments. In this case, the arguments include just the single expression that represents the instance upon which the
getter is being called, which you can access by using args.[0] .The implementation of GetterCode then splices into the result quotation at the erased
type obj , and a cast is used to satisfy the compiler's mechanism for checking types that the object is a string. The next part of makeOneProvidedType

provides an instance method with one parameter.

Finally, create a nested type that contains 100 nested properties. The creation of this nested type and its properties is delayed, that is, computed on-
demand.

The example in this section provides only erased provided types, which are particularly useful in the following situations:

Choosing Representations for Erased Provided TypesChoosing Representations for Erased Provided Types

ProvidedConstructor(parameters = [],
 invokeCode= (fun args -> <@@ (new Dictionary<string,obj>()) :> obj @@>))

type DataObject() =
 let data = Dictionary<string,obj>()
 member x.RuntimeOperation() = data.Count

ProvidedConstructor(parameters = [],
 invokeCode= (fun args -> <@@ (new DataObject()) :> obj @@>))

ProvidedTypeDefinition(…, baseType = Some typeof<DataObject>)
…
ProvidedConstructor(…, InvokeCode = (fun args -> <@@ new DataObject() @@>), …)

Key LessonsKey Lessons

When you are writing a provider for an information space that contains only data and methods.

When you are writing a provider where accurate runtime-type semantics aren't critical for practical use of the information space.

When you are writing a provider for an information space that is so large and interconnected that it isn’t technically feasible to generate real .NET
types for the information space.

In this example, each provided type is erased to type obj , and all uses of the type will appear as type obj in compiled code. In fact, the underlying
objects in these examples are strings, but the type will appear as System.Object in .NET compiled code. As with all uses of type erasure, you can use
explicit boxing, unboxing, and casting to subvert erased types. In this case, a cast exception that isn’t valid may result when the object is used. A provider
runtime can define its own private representation type to help protect against false representations. You can’t define erased types in F# itself. Only
provided types may be erased. You must understand the ramifications, both practical and semantic, of using either erased types for your type provider
or a provider that provides erased types. An erased type has no real .NET type. Therefore, you cannot do accurate reflection over the type, and you
might subvert erased types if you use runtime casts and other techniques that rely on exact runtime type semantics. Subversion of erased types
frequently results in type cast exceptions at runtime.

For some uses of erased provided types, no representation is required. For example, the erased provided type might contain only static properties and
members and no constructors, and no methods or properties would return an instance of the type. If you can reach instances of an erased provided
type, you must consider the following questions:

What is the erasure of a provided type?

The erasure of a provided type is how the type appears in compiled .NET code.

The erasure of a provided erased class type is always the first non-erased base type in the inheritance chain of the type.

The erasure of a provided erased interface type is always System.Object .

What are the representations of a provided type?

The set of possible objects for an erased provided type are called its representations. In the example in this document, the representations of all the
erased provided types Type1..Type100 are always string objects.

All representations of a provided type must be compatible with the erasure of the provided type. (Otherwise, either the F# compiler will give an error
for a use of the type provider, or unverifiable .NET code that isn't valid will be generated. A type provider isn’t valid if it returns code that gives a
representation that isn't valid.)

You can choose a representation for provided objects by using either of the following approaches, both of which are very common:

If you're simply providing a strongly typed wrapper over an existing .NET type, it often makes sense for your type to erase to that type, use
instances of that type as representations, or both. This approach is appropriate when most of the existing methods on that type still make sense
when using the strongly typed version.

If you want to create an API that differs significantly from any existing .NET API, it makes sense to create runtime types that will be the type
erasure and representations for the provided types.

The example in this document uses strings as representations of provided objects. Frequently, it may be appropriate to use other objects for
representations. For example, you may use a dictionary as a property bag:

As an alternative, you may define a type in your type provider that will be used at runtime to form the representation, along with one or more runtime
operations:

Provided members can then construct instances of this object type:

In this case, you may (optionally) use this type as the type erasure by specifying this type as the baseType when constructing the
ProvidedTypeDefinition :

A Type Provider That Uses Static Parameters

Type Checked Regex ProviderType Checked Regex Provider

type T = RegexTyped< @"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)">
let reg = T()
let result = T.IsMatch("425-555-2345")
let r = reg.Match("425-555-2345").Group_AreaCode.Value //r equals "425"

let reg = new Regex(@"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)")
let result = reg.IsMatch("425-123-2345")
let r = reg.Match("425-123-2345").Groups.["AreaCode"].Value //r equals "425"

The previous section explained how to create a simple erasing type provider that provides a range of types, properties, and methods. This section also
explained the concept of type erasure, including some of the advantages and disadvantages of providing erased types from a type provider, and
discussed representations of erased types.

The ability to parameterize type providers by static data enables many interesting scenarios, even in cases when the provider doesn't need to access any
local or remote data. In this section, you’ll learn some basic techniques for putting together such a provider.

Imagine that you want to implement a type provider for regular expressions that wraps the .NET Regex libraries in an interface that provides the
following compile-time guarantees:

Verifying whether a regular expression is valid.

Providing named properties on matches that are based on any group names in the regular expression.

This section shows you how to use type providers to create a RegexTyped type that the regular expression pattern parameterizes to provide these
benefits. The compiler will report an error if the supplied pattern isn't valid, and the type provider can extract the groups from the pattern so that you
can access them by using named properties on matches. When you design a type provider, you should consider how its exposed API should look to end
users and how this design will translate to .NET code. The following example shows how to use such an API to get the components of the area code:

The following example shows how the type provider translates these calls:

Note the following points:

The standard Regex type represents the parameterized RegexTyped type.

The RegexTyped constructor results in a call to the Regex constructor, passing in the static type argument for the pattern.

The results of the Match method are represented by the standard Match type.

Each named group results in a provided property, and accessing the property results in a use of an indexer on a match’s Groups collection.

The following code is the core of the logic to implement such a provider, and this example omits the addition of all members to the provided type. For
information about each added member, see the appropriate section later in this topic. For the full code, download the sample from the F# 3.0 Sample
Pack on the Codeplex website.

https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regex
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.match
https://fsharp3sample.codeplex.com

namespace Samples.FSharp.RegexTypeProvider

open System.Reflection
open Microsoft.FSharp.Core.CompilerServices
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions

[<TypeProvider>]
type public CheckedRegexProvider() as this =
 inherit TypeProviderForNamespaces()

 // Get the assembly and namespace used to house the provided types
 let thisAssembly = Assembly.GetExecutingAssembly()
 let rootNamespace = "Samples.FSharp.RegexTypeProvider"
 let baseTy = typeof<obj>
 let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)]

 let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, "RegexTyped", Some baseTy)

 do regexTy.DefineStaticParameters(
 parameters=staticParams,
 instantiationFunction=(fun typeName parameterValues ->

 match parameterValues with
 | [| :? string as pattern|] ->

 // Create an instance of the regular expression.
 //
 // This will fail with System.ArgumentException if the regular expression is not valid.
 // The exception will escape the type provider and be reported in client code.
 let r = System.Text.RegularExpressions.Regex(pattern)

 // Declare the typed regex provided type.
 // The type erasure of this type is 'obj', even though the representation will always be a Regex
 // This, combined with hiding the object methods, makes the IntelliSense experience simpler.
 let ty =
 ProvidedTypeDefinition(
 thisAssembly,
 rootNamespace,
 typeName,
 baseType = Some baseTy)

 ...

 ty
 | _ -> failwith "unexpected parameter values"))

 do this.AddNamespace(rootNamespace, [regexTy])

[<TypeProviderAssembly>]
do ()

let isMatch =
 ProvidedMethod(
 methodName = "IsMatch",
 parameters = [ProvidedParameter("input", typeof<string>)],
 returnType = typeof<bool>,
 isStatic = true,
 invokeCode = fun args -> <@@ Regex.IsMatch(%%args.[0], pattern) @@>)

isMatch.AddXmlDoc "Indicates whether the regular expression finds a match in the specified input string."
ty.AddMember isMatch

Note the following points:

The type provider takes two static parameters: the pattern , which is mandatory, and the options , which are optional (because a default value is
provided).

After the static arguments are supplied, you create an instance of the regular expression. This instance will throw an exception if the Regex is
malformed, and this error will be reported to users.

Within the DefineStaticParameters callback, you define the type that will be returned after the arguments are supplied.

This code sets HideObjectMethods to true so that the IntelliSense experience will remain streamlined. This attribute causes the Equals ,
GetHashCode , Finalize , and GetType members to be suppressed from IntelliSense lists for a provided object.

You use obj as the base type of the method, but you’ll use a Regex object as the runtime representation of this type, as the next example shows.

The call to the Regex constructor throws a ArgumentException when a regular expression isn’t valid. The compiler catches this exception and
reports an error message to the user at compile time or in the Visual Studio editor. This exception enables regular expressions to be validated
without running an application.

The type defined above isn't useful yet because it doesn’t contain any meaningful methods or properties. First, add a static IsMatch method:

https://docs.microsoft.com/dotnet/api/system.argumentexception

let matchTy =
 ProvidedTypeDefinition(
 "MatchType",
 baseType = Some baseTy,
 hideObjectMethods = true)

ty.AddMember matchTy

for group in r.GetGroupNames() do
 // Ignore the group named 0, which represents all input.
 if group <> "0" then
 let prop =
 ProvidedProperty(
 propertyName = group,
 propertyType = typeof<Group>,
 getterCode = fun args -> <@@ ((%%args.[0]:obj) :?> Match).Groups.[group] @@>)
 prop.AddXmlDoc(sprintf @"Gets the ""%s"" group from this match" group)
 matchTy.AddMember prop

let matchMethod =
 ProvidedMethod(
 methodName = "Match",
 parameters = [ProvidedParameter("input", typeof<string>)],
 returnType = matchTy,
 invokeCode = fun args -> <@@ ((%%args.[0]:obj) :?> Regex).Match(%%args.[1]) :> obj @@>)

matchMeth.AddXmlDoc "Searches the specified input string for the first ocurrence of this regular expression"

ty.AddMember matchMeth

let ctor =
 ProvidedConstructor(
 parameters = [],
 invokeCode = fun args -> <@@ Regex(pattern, options) :> obj @@>)

ctor.AddXmlDoc("Initializes a regular expression instance.")

ty.AddMember ctor

namespace Samples.FSharp.RegexTypeProvider

open System.Reflection
open Microsoft.FSharp.Core.CompilerServices
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions

[<TypeProvider>]
type public CheckedRegexProvider() as this =
 inherit TypeProviderForNamespaces()

 // Get the assembly and namespace used to house the provided types.
 let thisAssembly = Assembly.GetExecutingAssembly()

The previous code defines a method IsMatch , which takes a string as input and returns a bool . The only tricky part is the use of the args argument
within the InvokeCode definition. In this example, args is a list of quotations that represents the arguments to this method. If the method is an instance
method, the first argument represents the this argument. However, for a static method, the arguments are all just the explicit arguments to the
method. Note that the type of the quoted value should match the specified return type (in this case, bool). Also note that this code uses the AddXmlDoc

method to make sure that the provided method also has useful documentation, which you can supply through IntelliSense.

Next, add an instance Match method. However, this method should return a value of a provided Match type so that the groups can be accessed in a
strongly typed fashion. Thus, you first declare the Match type. Because this type depends on the pattern that was supplied as a static argument, this type
must be nested within the parameterized type definition:

You then add one property to the Match type for each group. At runtime, a match is represented as a Match value, so the quotation that defines the
property must use the Groups indexed property to get the relevant group.

Again, note that you’re adding XML documentation to the provided property. Also note that a property can be read if a GetterCode function is
provided, and the property can be written if a SetterCode function is provided, so the resulting property is read only.

Now you can create an instance method that returns a value of this Match type:

Because you are creating an instance method, args.[0] represents the RegexTyped instance on which the method is being called, and args.[1] is the
input argument.

Finally, provide a constructor so that instances of the provided type can be created.

The constructor merely erases to the creation of a standard .NET Regex instance, which is again boxed to an object because obj is the erasure of the
provided type. With that change, the sample API usage that specified earlier in the topic works as expected. The following code is complete and final:

https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.match
https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.match.groups#System_Text_RegularExpressions_Match_Groups

 let thisAssembly = Assembly.GetExecutingAssembly()
 let rootNamespace = "Samples.FSharp.RegexTypeProvider"
 let baseTy = typeof<obj>
 let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)]

 let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, "RegexTyped", Some baseTy)

 do regexTy.DefineStaticParameters(
 parameters=staticParams,
 instantiationFunction=(fun typeName parameterValues ->

 match parameterValues with
 | [| :? string as pattern|] ->

 // Create an instance of the regular expression.

 let r = System.Text.RegularExpressions.Regex(pattern)

 // Declare the typed regex provided type.

 let ty =
 ProvidedTypeDefinition(
 thisAssembly,
 rootNamespace,
 typeName,
 baseType = Some baseTy)

 ty.AddXmlDoc "A strongly typed interface to the regular expression '%s'"

 // Provide strongly typed version of Regex.IsMatch static method.
 let isMatch =
 ProvidedMethod(
 methodName = "IsMatch",
 parameters = [ProvidedParameter("input", typeof<string>)],
 returnType = typeof<bool>,
 isStatic = true,
 invokeCode = fun args -> <@@ Regex.IsMatch(%%args.[0], pattern) @@>)

 isMatch.AddXmlDoc "Indicates whether the regular expression finds a match in the specified input string"

 ty.AddMember isMatch

 // Provided type for matches
 // Again, erase to obj even though the representation will always be a Match
 let matchTy =
 ProvidedTypeDefinition(
 "MatchType",
 baseType = Some baseTy,
 hideObjectMethods = true)

 // Nest the match type within parameterized Regex type.
 ty.AddMember matchTy

 // Add group properties to match type
 for group in r.GetGroupNames() do
 // Ignore the group named 0, which represents all input.
 if group <> "0" then
 let prop =
 ProvidedProperty(
 propertyName = group,
 propertyType = typeof<Group>,
 getterCode = fun args -> <@@ ((%%args.[0]:obj) :?> Match).Groups.[group] @@>)
 prop.AddXmlDoc(sprintf @"Gets the ""%s"" group from this match" group)
 matchTy.AddMember(prop)

 // Provide strongly typed version of Regex.Match instance method.
 let matchMeth =
 ProvidedMethod(
 methodName = "Match",
 parameters = [ProvidedParameter("input", typeof<string>)],
 returnType = matchTy,
 invokeCode = fun args -> <@@ ((%%args.[0]:obj) :?> Regex).Match(%%args.[1]) :> obj @@>)
 matchMeth.AddXmlDoc "Searches the specified input string for the first occurence of this regular expression"

 ty.AddMember matchMeth

 // Declare a constructor.
 let ctor =
 ProvidedConstructor(
 parameters = [],
 invokeCode = fun args -> <@@ Regex(pattern) :> obj @@>)

 // Add documentation to the constructor.
 ctor.AddXmlDoc "Initializes a regular expression instance"

 ty.AddMember ctor

 ty
 | _ -> failwith "unexpected parameter values"))

 do this.AddNamespace(rootNamespace, [regexTy])

 do this.AddNamespace(rootNamespace, [regexTy])

[<TypeProviderAssembly>]
do ()

Key LessonsKey Lessons

A Type Provider That Is Backed By Local Data

Simple CSV File ProviderSimple CSV File Provider

DISTANCE (METER) TIME (SECOND)

50.0 3.7

100.0 5.2

150.0 6.4

let info = new MiniCsv<"info.csv">()
for row in info.Data do
let time = row.Time
printfn "%f" (float time)

let info = new CsvFile("info.csv")
for row in info.Data do
let (time:float) = row.[1]
printfn "%f" (float time)

// Simple type wrapping CSV data
type CsvFile(filename) =
 // Cache the sequence of all data lines (all lines but the first)
 let data =
 seq { for line in File.ReadAllLines(filename) |> Seq.skip 1 do
 yield line.Split(',') |> Array.map float }
 |> Seq.cache
 member __.Data = data

[<TypeProvider>]
type public MiniCsvProvider(cfg:TypeProviderConfig) as this =
 inherit TypeProviderForNamespaces(cfg)

 // Get the assembly and namespace used to house the provided types.
 let asm = System.Reflection.Assembly.GetExecutingAssembly()
 let ns = "Samples.FSharp.MiniCsvProvider"

This section explained how to create a type provider that operates on its static parameters. The provider checks the static parameter and provides
operations based on its value.

Frequently you might want type providers to present APIs based on not only static parameters but also information from local or remote systems. This
section discusses type providers that are based on local data, such as local data files.

As a simple example, consider a type provider for accessing scientific data in Comma Separated Value (CSV) format. This section assumes that the CSV
files contain a header row followed by floating point data, as the following table illustrates:

This section shows how to provide a type that you can use to get rows with a Distance property of type float<meter> and a Time property of type
float<second> . For simplicity, the following assumptions are made:

Header names are either unit-less or have the form "Name (unit)" and don't contain commas.

Units are all Systeme International (S I) units as the Microsoft.FSharp.Data.UnitSystems.SI.UnitNames Module (F#) module defines.

Units are all simple (for example, meter) rather than compound (for example, meter/second).

All columns contain floating point data.

A more complete provider would loosen these restrictions.

Again the first step is to consider how the API should look. Given an info.csv file with the contents from the previous table (in comma-separated
format), users of the provider should be able to write code that resembles the following example:

In this case, the compiler should convert these calls into something like the following example:

The optimal translation will require the type provider to define a real CsvFile type in the type provider's assembly. Type providers often rely on a few
helper types and methods to wrap important logic. Because measures are erased at runtime, you can use a float[] as the erased type for a row. The
compiler will treat different columns as having different measure types. For example, the first column in our example has type float<meter> , and the
second has float<second> . However, the erased representation can remain quite simple.

The following code shows the core of the implementation.

https://msdn.microsoft.com/library/3cb43485-11f5-4aa7-a779-558f19d4013b

 let ns = "Samples.FSharp.MiniCsvProvider"

 // Create the main provided type.
 let csvTy = ProvidedTypeDefinition(asm, ns, "MiniCsv", Some(typeof<obj>))

 // Parameterize the type by the file to use as a template.
 let filename = ProvidedStaticParameter("filename", typeof<string>)
 do csvTy.DefineStaticParameters([filename], fun tyName [| :? string as filename |] ->

 // Resolve the filename relative to the resolution folder.
 let resolvedFilename = Path.Combine(cfg.ResolutionFolder, filename)

 // Get the first line from the file.
 let headerLine = File.ReadLines(resolvedFilename) |> Seq.head

 // Define a provided type for each row, erasing to a float[].
 let rowTy = ProvidedTypeDefinition("Row", Some(typeof<float[]>))

 // Extract header names from the file, splitting on commas.
 // use Regex matching to get the position in the row at which the field occurs
 let headers = Regex.Matches(headerLine, "[^,]+")

 // Add one property per CSV field.
 for i in 0 .. headers.Count - 1 do
 let headerText = headers.[i].Value

 // Try to decompose this header into a name and unit.
 let fieldName, fieldTy =
 let m = Regex.Match(headerText, @"(?<field>.+) \((?<unit>.+)\)")
 if m.Success then

 let unitName = m.Groups.["unit"].Value
 let units = ProvidedMeasureBuilder.Default.SI unitName
 m.Groups.["field"].Value, ProvidedMeasureBuilder.Default.AnnotateType(typeof<float>,[units])

 else
 // no units, just treat it as a normal float
 headerText, typeof<float>

 let prop =
 ProvidedProperty(fieldName, fieldTy,
 getterCode = fun [row] -> <@@ (%%row:float[]).[i] @@>)

 // Add metadata that defines the property's location in the referenced file.
 prop.AddDefinitionLocation(1, headers.[i].Index + 1, filename)
 rowTy.AddMember(prop)

 // Define the provided type, erasing to CsvFile.
 let ty = ProvidedTypeDefinition(asm, ns, tyName, Some(typeof<CsvFile>))

 // Add a parameterless constructor that loads the file that was used to define the schema.
 let ctor0 =
 ProvidedConstructor([],
 invokeCode = fun [] -> <@@ CsvFile(resolvedFilename) @@>)
 ty.AddMember ctor0

 // Add a constructor that takes the file name to load.
 let ctor1 = ProvidedConstructor([ProvidedParameter("filename", typeof<string>)],
 invokeCode = fun [filename] -> <@@ CsvFile(%%filename) @@>)
 ty.AddMember ctor1

 // Add a more strongly typed Data property, which uses the existing property at runtime.
 let prop =
 ProvidedProperty("Data", typedefof<seq<_>>.MakeGenericType(rowTy),
 getterCode = fun [csvFile] -> <@@ (%%csvFile:CsvFile).Data @@>)
 ty.AddMember prop

 // Add the row type as a nested type.
 ty.AddMember rowTy
 ty)

 // Add the type to the namespace.
 do this.AddNamespace(ns, [csvTy])

Key LessonsKey Lessons

Note the following points about the implementation:

Overloaded constructors allow either the original file or one that has an identical schema to be read. This pattern is common when you write a
type provider for local or remote data sources, and this pattern allows a local file to be used as the template for remote data.

You can use the TypeProviderConfig value that’s passed in to the type provider constructor to resolve relative file names.

You can use the AddDefinitionLocation method to define the location of the provided properties. Therefore, if you use Go To Definition on a
provided property, the CSV file will open in Visual Studio.

You can use the ProvidedMeasureBuilder type to look up the SI units and to generate the relevant float<_> types.

This section explained how to create a type provider for a local data source with a simple schema that's contained in the data source itself.

https://msdn.microsoft.com/library/1cda7b9a-3d07-475d-9315-d65e1c97eb44

Going Further

A Look at the Compiled Code for Erased TypesA Look at the Compiled Code for Erased Types

let function1 () =
 let obj1 = Samples.HelloWorldTypeProvider.Type1("some data")
 obj1.InstanceProperty

.class public abstract auto ansi sealed Module1
extends [mscorlib]System.Object
{
.custom instance void [FSharp.Core]Microsoft.FSharp.Core.CompilationMappingAtt
ribute::.ctor(valuetype [FSharp.Core]Microsoft.FSharp.Core.SourceConstructFlags)
= (01 00 07 00 00 00 00 00)
.method public static int32 function1() cil managed
{
// Code size 24 (0x18)
.maxstack 3
.locals init ([0] object obj1)
IL_0000: nop
IL_0001: ldstr "some data"
IL_0006: unbox.any [mscorlib]System.Object
IL_000b: stloc.0
IL_000c: ldloc.0
IL_000d: call !!0 [FSharp.Core_2]Microsoft.FSharp.Core.LanguagePrimit
ives/IntrinsicFunctions::UnboxGeneric<string>(object)
IL_0012: callvirt instance int32 [mscorlib_3]System.String::get_Length()
IL_0017: ret
} // end of method Module1::function1

} // end of class Module1

Design and Naming Conventions for Type ProvidersDesign and Naming Conventions for Type Providers

 Fabrikam.Management.BasicTypeProviders.dll

 Fabrikam.Management.BasicTypeProviders.WmiConnection<…>
 Fabrikam.Management.BasicTypeProviders.DataProtocolConnection<…>

 #r "Fabrikam.Core.Text.Utilities.dll"

 open Fabrikam.Core.Text.RegexTyped

 let regex = new RegexTyped<"a+b+a+b+">()

#r "Fabrikam.Data.Freebase.dll"

let data = Fabrikam.Data.Freebase.Astronomy.Asteroids

The following sections include suggestions for further study.

To give you some idea of how the use of the type provider corresponds to the code that's emitted, look at the following function by using the
HelloWorldTypeProvider that's used earlier in this topic.

Here’s an image of the resulting code decompiled by using ildasm.exe:

As the example shows, all mentions of the type Type1 and the InstanceProperty property have been erased, leaving only operations on the runtime
types involved.

Observe the following conventions when authoring type providers.

Providers for Connectivity Protocols In general, names of most provider DLLs for data and service connectivity protocols, such as OData or SQL
connections, should end in TypeProvider or TypeProviders . For example, use a DLL name that resembles the following string:

Ensure that your provided types are members of the corresponding namespace, and indicate the connectivity protocol that you implemented:

Utility Providers for General Coding. For a utility type provider such as that for regular expressions, the type provider may be part of a base library,
as the following example shows:

In this case, the provided type would appear at an appropriate point according to normal .NET design conventions:

Singleton Data Sources. Some type providers connect to a single dedicated data source and provide only data. In this case, you should drop the
TypeProvider suffix and use normal conventions for .NET naming:

For more information, see the GetConnection design convention that's described later in this topic.

Design Patterns for Type ProvidersDesign Patterns for Type Providers

The GetConnection Design PatternThe GetConnection Design Pattern

#r "Fabrikam.Data.WebDataStore.dll"

type Service = Fabrikam.Data.WebDataStore<…static connection parameters…>

let connection = Service.GetConnection(…dynamic connection parameters…)

let data = connection.Astronomy.Asteroids

Type Providers Backed By Remote Data and ServicesType Providers Backed By Remote Data and Services

Additional Authoring TechniquesAdditional Authoring Techniques

Creating Types and Members On-DemandCreating Types and Members On-Demand

 type ProvidedType =
 member AddMemberDelayed : (unit -> MemberInfo) -> unit
 member AddMembersDelayed : (unit -> MemberInfo list) -> unit

Providing Array types and Generic Type InstantiationsProviding Array types and Generic Type Instantiations

NOTENOTE

Providing Unit of Measure AnnotationsProviding Unit of Measure Annotations

 let measures = ProvidedMeasureBuilder.Default
 let kg = measures.SI "kilogram"
 let m = measures.SI "meter"
 let float_kg = measures.AnnotateType(typeof<float>,[kg])

 let kgpm2 = measures.Ratio(kg, measures.Square m)
 let dkgpm2 = measures.AnnotateType(typeof<decimal>,[kgpm2])
 let nullableDecimal_kgpm2 = typedefof<System.Nullable<_>>.MakeGenericType [|dkgpm2 |]

Accessing Project-Local or Script-Local ResourcesAccessing Project-Local or Script-Local Resources

InvalidationInvalidation

The following sections describe design patterns you can use when authoring type providers.

Most type providers should be written to use the GetConnection pattern that's used by the type providers in FSharp.Data.TypeProviders.dll, as the
following example shows:

Before you create a type provider that's backed by remote data and services, you must consider a range of issues that are inherent in connected
programming. These issues include the following considerations:

schema mapping

liveness and invalidation in the presence of schema change

schema caching

asynchronous implementations of data access operations

supporting queries, including LINQ queries

credentials and authentication

This topic doesn't explore these issues further.

When you write your own type providers, you might want to use the following additional techniques.

The ProvidedType API has delayed versions of AddMember.

These versions are used to create on-demand spaces of types.

You make provided members (whose signatures include array types, byref types, and instantiations of generic types) by using the normal
MakeArrayType , MakePointerType , and MakeGenericType on any instance of Type, including ProvidedTypeDefinitions .

In some cases you may have to use the helper in ProvidedTypeBuilder.MakeGenericType . See the Type Provider SDK documentation for more details.

The ProvidedTypes API provides helpers for providing measure annotations. For example, to provide the type float<kg> , use the following code:

To provide the type Nullable<decimal<kg/m^2>> , use the following code:

Each instance of a type provider can be given a TypeProviderConfig value during construction. This value contains the "resolution folder" for the
provider (that is, the project folder for the compilation or the directory that contains a script), the list of referenced assemblies, and other information.

Providers can raise invalidation signals to notify the F# language service that the schema assumptions may have changed. When invalidation occurs, a

https://docs.microsoft.com/dotnet/api/system.type
https://github.com/fsprojects/FSharp.TypeProviders.SDK/blob/master/README.md#explicit-construction-of-code-makegenerictype-makegenericmethod-and-uncheckedquotations

Caching Schema InformationCaching Schema Information

Backing AssemblyBacking Assembly

Exceptions and Diagnostics from Type ProvidersExceptions and Diagnostics from Type Providers

Providing Generated TypesProviding Generated Types

open Microsoft.FSharp.TypeProviders

type Service = ODataService<"http://services.odata.org/Northwind/Northwind.svc/">

Rules and Limitations

Provided types must be reachableProvided types must be reachable

Limitations of the Type Provider MechanismLimitations of the Type Provider Mechanism

Development Tips

Run Two Instances of Visual StudioRun Two Instances of Visual Studio

typecheck is redone if the provider is being hosted in Visual Studio. This signal will be ignored when the provider is hosted in F# Interactive or by the F#
Compiler (fsc.exe).

Providers must often cache access to schema information. The cached data should be stored by using a file name that's given as a static parameter or as
user data. An example of schema caching is the LocalSchemaFile parameter in the type providers in the FSharp.Data.TypeProviders assembly. In the
implementation of these providers, this static parameter directs the type provider to use the schema information in the specified local file instead of
accessing the data source over the network. To use cached schema information, you must also set the static parameter ForceUpdate to false . You
could use a similar technique to enable online and offline data access.

When you compile a .dll or .exe file, the backing .dll file for generated types is statically linked into the resulting assembly. This link is created by
copying the Intermediate Language (IL) type definitions and any managed resources from the backing assembly into the final assembly. When you use
F# Interactive, the backing .dll file isn't copied and is instead loaded directly into the F# Interactive process.

All uses of all members from provided types may throw exceptions. In all cases, if a type provider throws an exception, the host compiler attributes the
error to a specific type provider.

Type provider exceptions should never result in internal compiler errors.

Type providers can't report warnings.

When a type provider is hosted in the F# compiler, an F# development environment, or F# Interactive, all exceptions from that provider are
caught. The Message property is always the error text, and no stack trace appears. If you’re going to throw an exception, you can throw the
following examples: System.NotSupportedException , System.IO.IOException , System.Exception .

So far, this document has explained how to provide erased types. You can also use the type provider mechanism in F# to provide generated types, which
are added as real .NET type definitions into the users' program. You must refer to generated provided types by using a type definition.

The ProvidedTypes-0.2 helper code that is part of the F# 3.0 release has only limited support for providing generated types. The following statements
must be true for a generated type definition:

isErased must be set to false .

The generated type must be added to a newly constructed ProvidedAssembly() , which represents a container for generated code fragments.

The provider must have an assembly that has an actual backing .NET .dll file with a matching .dll file on disk.

When you write type providers, keep the following rules and limitations in mind.

All provided types should be reachable from the non-nested types. The non-nested types are given in the call to the TypeProviderForNamespaces

constructor or a call to AddNamespace . For example, if the provider provides a type StaticClass.P : T , you must ensure that T is either a non-nested
type or nested under one.

For example, some providers have a static class such as DataTypes that contain these T1, T2, T3, ... types. Otherwise, the error says that a reference
to type T in assembly A was found, but the type couldn't be found in that assembly. If this error appears, verify that all your subtypes can be reached
from the provider types. Note: These T1, T2, T3... types are referred to as the on-the-fly types. Remember to put them in an accessible namespace or
a parent type.

The type provider mechanism in F# has the following limitations:

The underlying infrastructure for type providers in F# doesn't support provided generic types or provided generic methods.

The mechanism doesn't support nested types with static parameters.

You might find the following tips helpful during the development process.

You can develop the type provider in one instance and test the provider in the other because the test IDE will take a lock on the .dll file that prevents the
type provider from being rebuilt. Thus, you must close the second instance of Visual Studio while the provider is built in the first instance, and then you
must reopen the second instance after the provider is built.

Debug type providers by using invocations of fsc.exeDebug type providers by using invocations of fsc.exe

 devenv /debugexe fsc.exe script.fsx

See Also

You can invoke type providers by using the following tools:

fsc.exe (The F# command line compiler)

fsi.exe (The F# Interactive compiler)

devenv.exe (Visual Studio)

You can often debug type providers most easily by using fsc.exe on a test script file (for example, script.fsx). You can launch a debugger from a command
prompt.

You can use print-to-stdout logging.

Type Providers

The Type Provider SDK

https://github.com/fsprojects/FSharp.TypeProviders.SDK

Type Provider Security
5/4/2018 • 2 minutes to read • Edit Online

Security Warning Dialog

To change the trust settings for type providersTo change the trust settings for type providers

See Also

Type providers are assemblies (DLLs) referenced by your F# project or script that contain code to connect to external data sources and surface this type
information to the F# type environment. Typically, code in referenced assemblies is only run when you compile and then execute the code (or in the case
of a script, send the code to F# Interactive). However, a type provider assembly will run inside Visual Studio when the code is merely browsed in the
editor. This happens because type providers need to run to add extra information to the editor, such as Quick Info tooltips, IntelliSense completions, and
so on. As a result, there are extra security considerations for type provider assemblies, since they run automatically inside the Visual Studio process.

When using a particular type provider assembly for the first time, Visual Studio displays a security dialog that warns you that the type provider is about
to run. Before Visual Studio loads the type provider, it gives you the opportunity to decide if you trust this particular provider. If you trust the source of
the type provider, then select "I trust this type provider." If you do not trust the source of the type provider, then select "I do not trust this type provider."
Trusting the provider enables it to run inside Visual Studio and provide IntelliSense and build features. But if the type provider itself is malicious,
running its code could compromise your machine.

If your project contains code that references type providers that you chose in the dialog not to trust, then at compile time, the compiler will report an
error that indicates that the type provider is untrusted. Any types that are dependent on the untrusted type provider are indicated by red squiggles. It is
safe to browse the code in the editor.

If you decide to change the trust setting directly in Visual Studio, perform the following steps.

1. On the Tools menu, select Options , and expand the F# Tools node.

2. Select Type Providers , and in the list of type providers, select the check box for type providers you trust, and clear the check box for those you
don't trust.

Type Providers

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/type-providers/type-provider-security.md

Troubleshooting Type Providers
5/4/2018 • 2 minutes to read • Edit Online

Possible Problems with Type Providers

PROBLEM SUGGESTED ACTIONS

Schema Changes. Type providers work best when the data source schema is
stable. If you add a data table or column or make another change to that schema,
the type provider doesn’t automatically recognize these changes.

Clean or rebuild the project. To clean the project, choose Build, Clean ProjectName
on the menu bar. To rebuild the project, choose Build, Rebuild ProjectName on
the menu bar. These actions reset all type provider state and force the provider to
reconnect to the data source and obtain updated schema information.

Connection Failure. The URL or connection string is incorrect, the network is
down, or the data source or service is unavailable.

For a web service or OData service, you can try the URL in Internet Explorer to
verify whether the URL is correct and the service is available. For a database
connection string, you can use the data connection tools in Server Explorer to
verify whether the connection string is valid and the database is available. After you
restore your connection, you should then clean or rebuild the project so that the
type provider will reconnect to the network.

Not Valid Credentials. You must have valid permissions for the data source or
web service.

For a SQL connection, the username and the password that are specified in the
connection string or configuration file must be valid for the database. If you are
using Windows Authentication, you must have access to the database. The
database administrator can identify what permissions you need for access to each
database and each element within a database.

For a web service or a data service, you must have appropriate credentials. Most
type providers provide a DataContext object, which contains a Credentials property
that you can set with the appropriate username and access key.

Not Valid Path. A path to a file was not valid. Verify whether the path is correct and the file exists. In addition, you must either
quote any backlashes in the path appropriately or use a verbatim string or triple-
quoted string.

See Also

This topic describes and provides potential solutions for the problems that you are most likely to encounter when you use type providers.

If you encounter a problem when you work with type providers, you can review the following table for the most common solutions.

Type Providers

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/type-providers/troubleshooting-type-providers.md

Functions as First-Class Values
5/4/2018 • 22 minutes to read • Edit Online

Give the Value a Name

// Integer and string.
let num = 10
let str = "F#"

let squareIt = fun n -> n * n

let squareIt2 n = n * n

Store the Value in a Data Structure

A defining characteristic of functional programming languages is the elevation of functions to first-class status. You should be able to do with a function
whatever you can do with values of the other built-in types, and be able to do so with a comparable degree of effort.

Typical measures of first-class status include the following:

Can you bind functions to identifiers? That is, can you give them names?

Can you store functions in data structures, such as in a list?

Can you pass a function as an argument in a function call?

Can you return a function from a function call?

The last two measures define what are known as higher-order operations or higher-order functions. Higher-order functions accept functions as
arguments and return functions as the value of function calls. These operations support such mainstays of functional programming as mapping
functions and composition of functions.

If a function is a first-class value, you must be able to name it, just as you can name integers, strings, and other built-in types. This is referred to in
functional programming literature as binding an identifier to a value. F# uses let bindings to bind names to values: let <identifier> = <value> . The
following code shows two examples.

You can name a function just as easily. The following example defines a function named squareIt by binding the identifier squareIt to the lambda
expression fun n -> n * n . Function squareIt has one parameter, n , and it returns the square of that parameter.

F# provides the following more concise syntax to achieve the same result with less typing.

The examples that follow mostly use the first style, let <function-name> = <lambda-expression> , to emphasize the similarities between the declaration of
functions and the declaration of other types of values. However, all the named functions can also be written with the concise syntax. Some of the
examples are written in both ways.

A first-class value can be stored in a data structure. The following code shows examples that store values in lists and in tuples.

https://github.com/dotnet/docs/blob/master/docs/fsharp/introduction-to-functional-programming/functions-as-first-class-values.md

// Lists.

// Storing integers and strings.
let integerList = [1; 2; 3; 4; 5; 6; 7]
let stringList = ["one"; "two"; "three"]

// You cannot mix types in a list. The following declaration causes a
// type-mismatch compiler error.
//let failedList = [5; "six"]

// In F#, functions can be stored in a list, as long as the functions
// have the same signature.

// Function doubleIt has the same signature as squareIt, declared previously.
//let squareIt = fun n -> n * n
let doubleIt = fun n -> 2 * n

// Functions squareIt and doubleIt can be stored together in a list.
let funList = [squareIt; doubleIt]

// Function squareIt cannot be stored in a list together with a function
// that has a different signature, such as the following body mass
// index (BMI) calculator.
let BMICalculator = fun ht wt ->
 (float wt / float (squareIt ht)) * 703.0

// The following expression causes a type-mismatch compiler error.
//let failedFunList = [squareIt; BMICalculator]

// Tuples.

// Integers and strings.
let integerTuple = (1, -7)
let stringTuple = ("one", "two", "three")

// A tuple does not require its elements to be of the same type.
let mixedTuple = (1, "two", 3.3)

// Similarly, function elements in tuples can have different signatures.
let funTuple = (squareIt, BMICalculator)

// Functions can be mixed with integers, strings, and other types in
// a tuple. Identifier num was declared previously.
//let num = 10
let moreMixedTuple = (num, "two", 3.3, squareIt)

// You can pull a function out of a tuple and apply it. Both squareIt and num
// were defined previously.
let funAndArgTuple = (squareIt, num)

// The following expression applies squareIt to num, returns 100, and
// then displays 100.
System.Console.WriteLine((fst funAndArgTuple)(snd funAndArgTuple))

// Make a tuple of values instead of identifiers.
let funAndArgTuple2 = ((fun n -> n * n), 10)

// The following expression applies a squaring function to 10, returns
// 100, and then displays 100.
System.Console.WriteLine((fst funAndArgTuple2)(snd funAndArgTuple2))

Pass the Value as an Argument

To verify that a function name stored in a tuple does in fact evaluate to a function, the following example uses the fst and snd operators to extract the
first and second elements from tuple funAndArgTuple . The first element in the tuple is squareIt and the second element is num . Identifier num is
bound in a previous example to integer 10, a valid argument for the squareIt function. The second expression applies the first element in the tuple to
the second element in the tuple: squareIt num .

Similarly, just as identifier num and integer 10 can be used interchangeably, so can identifier squareIt and lambda expression fun n -> n * n .

If a value has first-class status in a language, you can pass it as an argument to a function. For example, it is common to pass integers and strings as
arguments. The following code shows integers and strings passed as arguments in F#.

// An integer is passed to squareIt. Both squareIt and num are defined in
// previous examples.
//let num = 10
//let squareIt = fun n -> n * n
System.Console.WriteLine(squareIt num)

// String.
// Function repeatString concatenates a string with itself.
let repeatString = fun s -> s + s

// A string is passed to repeatString. HelloHello is returned and displayed.
let greeting = "Hello"
System.Console.WriteLine(repeatString greeting)

// Define the function, again using lambda expression syntax.
let applyIt = fun op arg -> op arg

// Send squareIt for the function, op, and num for the argument you want to
// apply squareIt to, arg. Both squareIt and num are defined in previous
// examples. The result returned and displayed is 100.
System.Console.WriteLine(applyIt squareIt num)

// The following expression shows the concise syntax for the previous function
// definition.
let applyIt2 op arg = op arg
// The following line also displays 100.
System.Console.WriteLine(applyIt2 squareIt num)

// List integerList was defined previously:
//let integerList = [1; 2; 3; 4; 5; 6; 7]

// You can send the function argument by name, if an appropriate function
// is available. The following expression uses squareIt.
let squareAll = List.map squareIt integerList

// The following line displays [1; 4; 9; 16; 25; 36; 49]
printfn "%A" squareAll

// Or you can define the action to apply to each list element inline.
// For example, no function that tests for even integers has been defined,
// so the following expression defines the appropriate function inline.
// The function returns true if n is even; otherwise it returns false.
let evenOrNot = List.map (fun n -> n % 2 = 0) integerList

// The following line displays [false; true; false; true; false; true; false]
printfn "%A" evenOrNot

Return the Value from a Function Call

If functions have first-class status, you must be able to pass them as arguments in the same way. Remember that this is the first characteristic of higher-
order functions.

In the following example, function applyIt has two parameters, op and arg . If you send in a function that has one parameter for op and an
appropriate argument for the function to arg , the function returns the result of applying op to arg . In the following example, both the function
argument and the integer argument are sent in the same way, by using their names.

The ability to send a function as an argument to another function underlies common abstractions in functional programming languages, such as map or
filter operations. A map operation, for example, is a higher-order function that captures the computation shared by functions that step through a list, do
something to each element, and then return a list of the results. You might want to increment each element in a list of integers, or to square each
element, or to change each element in a list of strings to uppercase. The error-prone part of the computation is the recursive process that steps through
the list and builds a list of the results to return. That part is captured in the mapping function. All you have to write for a particular application is the
function that you want to apply to each list element individually (adding, squaring, changing case). That function is sent as an argument to the mapping
function, just as squareIt is sent to applyIt in the previous example.

F# provides map methods for most collection types, including lists, arrays, and sequences. The following examples use lists. The syntax is
List.map <the function> <the list> .

For more information, see Lists.

Finally, if a function has first-class status in a language, you must be able to return it as the value of a function call, just as you return other types, such as
integers and strings.

The following function calls return integers and display them.

// Function doubleIt is defined in a previous example.
//let doubleIt = fun n -> 2 * n
System.Console.WriteLine(doubleIt 3)
System.Console.WriteLine(squareIt 4)

// str is defined in a previous section.
//let str = "F#"
let lowercase = str.ToLower()

System.Console.WriteLine((fun n -> n % 2 = 1) 15)

let checkFor item =
 let functionToReturn = fun lst ->
 List.exists (fun a -> a = item) lst
 functionToReturn

// integerList and stringList were defined earlier.
//let integerList = [1; 2; 3; 4; 5; 6; 7]
//let stringList = ["one"; "two"; "three"]

// The returned function is given the name checkFor7.
let checkFor7 = checkFor 7

// The result displayed when checkFor7 is applied to integerList is True.
System.Console.WriteLine(checkFor7 integerList)

// The following code repeats the process for "seven" in stringList.
let checkForSeven = checkFor "seven"

// The result displayed is False.
System.Console.WriteLine(checkForSeven stringList)

// Function compose takes two arguments. Each argument is a function
// that takes one argument of the same type. The following declaration
// uses lambda expresson syntax.
let compose =
 fun op1 op2 ->
 fun n ->
 op1 (op2 n)

// To clarify what you are returning, use a nested let expression:
let compose2 =
 fun op1 op2 ->
 // Use a let expression to build the function that will be returned.
 let funToReturn = fun n ->
 op1 (op2 n)
 // Then just return it.
 funToReturn

// Or, integrating the more concise syntax:
let compose3 op1 op2 =
 let funToReturn = fun n ->
 op1 (op2 n)
 funToReturn

NOTENOTE

The following function call returns a string.

The following function call, declared inline, returns a Boolean value. The value displayed is True .

The ability to return a function as the value of a function call is the second characteristic of higher-order functions. In the following example, checkFor is
defined to be a function that takes one argument, item , and returns a new function as its value. The returned function takes a list as its argument, lst ,
and searches for item in lst . If item is present, the function returns true . If item is not present, the function returns false . As in the previous
section, the following code uses a provided list function, List.exists, to search the list.

The following code uses checkFor to create a new function that takes one argument, a list, and searches for 7 in the list.

The following example uses the first-class status of functions in F# to declare a function, compose , that returns a composition of two function arguments.

For an even shorter version, see the following section, "Curried Functions."

The following code sends two functions as arguments to compose , both of which take a single argument of the same type. The return value is a new
function that is a composition of the two function arguments.

https://msdn.microsoft.com/library/15a3ebd5-98f0-44c0-8220-7dedec3e68a8

// Functions squareIt and doubleIt were defined in a previous example.
let doubleAndSquare = compose squareIt doubleIt
// The following expression doubles 3, squares 6, and returns and
// displays 36.
System.Console.WriteLine(doubleAndSquare 3)

let squareAndDouble = compose doubleIt squareIt
// The following expression squares 3, doubles 9, returns 18, and
// then displays 18.
System.Console.WriteLine(squareAndDouble 3)

NOTENOTE

let makeGame target =
 // Build a lambda expression that is the function that plays the game.
 let game = fun guess ->
 if guess = target then
 System.Console.WriteLine("You win!")
 else
 System.Console.WriteLine("Wrong. Try again.")
 // Now just return it.
 game

let playGame = makeGame 7
// Send in some guesses.
playGame 2
playGame 9
playGame 7

// Output:
// Wrong. Try again.
// Wrong. Try again.
// You win!

// The following game specifies a character instead of an integer for target.
let alphaGame = makeGame 'q'
alphaGame 'c'
alphaGame 'r'
alphaGame 'j'
alphaGame 'q'

// Output:
// Wrong. Try again.
// Wrong. Try again.
// Wrong. Try again.
// You win!

Curried Functions

let compose4 op1 op2 n = op1 (op2 n)

let compose4curried =
 fun op1 ->
 fun op2 ->
 fun n -> op1 (op2 n)

F# provides two operators, << and >> , that compose functions. For example, let squareAndDouble2 = doubleIt << squareIt is equivalent to
let squareAndDouble = compose doubleIt squareIt in the previous example.

The following example of returning a function as the value of a function call creates a simple guessing game. To create a game, call makeGame with the
value that you want someone to guess sent in for target . The return value from function makeGame is a function that takes one argument (the guess)
and reports whether the guess is correct.

The following code calls makeGame , sending the value 7 for target . Identifier playGame is bound to the returned lambda expression. Therefore,
playGame is a function that takes as its one argument a value for guess .

Many of the examples in the previous section can be written more concisely by taking advantage of the implicit currying in F# function declarations.
Currying is a process that transforms a function that has more than one parameter into a series of embedded functions, each of which has a single
parameter. In F#, functions that have more than one parameter are inherently curried. For example, compose from the previous section can be written as
shown in the following concise style, with three parameters.

However, the result is a function of one parameter that returns a function of one parameter that in turn returns another function of one parameter, as
shown in compose4curried .

// Access one layer at a time.
System.Console.WriteLine(((compose4 doubleIt) squareIt) 3)

// Access as in the original compose examples, sending arguments for
// op1 and op2, then applying the resulting function to a value.
System.Console.WriteLine((compose4 doubleIt squareIt) 3)

// Access by sending all three arguments at the same time.
System.Console.WriteLine(compose4 doubleIt squareIt 3)

let doubleAndSquare4 = compose4 squareIt doubleIt
// The following expression returns and displays 36.
System.Console.WriteLine(doubleAndSquare4 3)

let squareAndDouble4 = compose4 doubleIt squareIt
// The following expression returns and displays 18.
System.Console.WriteLine(squareAndDouble4 3)

NOTENOTE

let makeGame2 target guess =
 if guess = target then
 System.Console.WriteLine("You win!")
 else
 System.Console.WriteLine("Wrong. Try again.")

let playGame2 = makeGame2 7
playGame2 2
playGame2 9
playGame2 7

let alphaGame2 = makeGame2 'q'
alphaGame2 'c'
alphaGame2 'r'
alphaGame2 'j'
alphaGame2 'q'

Identifier and Function Definition Are Interchangeable

let isNegative = fun n -> n < 0

// This example uses the names of the function argument and the integer
// argument. Identifier num is defined in a previous example.
//let num = 10
System.Console.WriteLine(applyIt isNegative num)

// This example substitutes the value that num is bound to for num, and the
// value that isNegative is bound to for isNegative.
System.Console.WriteLine(applyIt (fun n -> n < 0) 10)

System.Console.WriteLine((fun op arg -> op arg) (fun n -> n < 0) 10)

Functions Are First-Class Values in F#

You can access this function in several ways. Each of the following examples returns and displays 18. You can replace compose4 with compose4curried in
any of the examples.

To verify that the function still works as it did before, try the original test cases again.

You can restrict currying by enclosing parameters in tuples. For more information, see "Parameter Patterns" in Parameters and Arguments.

The following example uses implicit currying to write a shorter version of makeGame . The details of how makeGame constructs and returns the game

function are less explicit in this format, but you can verify by using the original test cases that the result is the same.

For more information about currying, see "Partial Application of Arguments" in Functions.

The variable name num in the previous examples evaluates to the integer 10, and it is no surprise that where num is valid, 10 is also valid. The same is
true of function identifiers and their values: anywhere the name of the function can be used, the lambda expression to which it is bound can be used.

The following example defines a Boolean function called isNegative , and then uses the name of the function and the definition of the function
interchangeably. The next three examples all return and display False .

To take it one step further, substitute the value that applyIt is bound to for applyIt .

The examples in the previous sections demonstrate that functions in F# satisfy the criteria for being first-class values in F#:

Example
DescriptionDescription

CodeCode

// ** GIVE THE VALUE A NAME **

// Integer and string.
let num = 10
let str = "F#"

let squareIt = fun n -> n * n

let squareIt2 n = n * n

// ** STORE THE VALUE IN A DATA STRUCTURE **

// Lists.

// Storing integers and strings.
let integerList = [1; 2; 3; 4; 5; 6; 7]
let stringList = ["one"; "two"; "three"]

// You cannot mix types in a list. The following declaration causes a
// type-mismatch compiler error.
//let failedList = [5; "six"]

// In F#, functions can be stored in a list, as long as the functions
// have the same signature.

// Function doubleIt has the same signature as squareIt, declared previously.
//let squareIt = fun n -> n * n
let doubleIt = fun n -> 2 * n

// Functions squareIt and doubleIt can be stored together in a list.
let funList = [squareIt; doubleIt]

// Function squareIt cannot be stored in a list together with a function
// that has a different signature, such as the following body mass
// index (BMI) calculator.
let BMICalculator = fun ht wt ->
 (float wt / float (squareIt ht)) * 703.0

// The following expression causes a type-mismatch compiler error.
//let failedFunList = [squareIt; BMICalculator]

// Tuples.

let squareIt = fun n -> n * n

let funTuple2 = (BMICalculator, fun n -> n * n)

let increments = List.map (fun n -> n + 1) [1; 2; 3; 4; 5; 6; 7]

let checkFor item =
 let functionToReturn = fun lst ->
 List.exists (fun a -> a = item) lst
 functionToReturn

You can bind an identifier to a function definition.

You can store a function in a data structure.

You can pass a function as an argument.

You can return a function as the value of a function call.

For more information about F#, see the F# Language Reference.

The following code contains all the examples in this topic.

// Integers and strings.
let integerTuple = (1, -7)
let stringTuple = ("one", "two", "three")

// A tuple does not require its elements to be of the same type.
let mixedTuple = (1, "two", 3.3)

// Similarly, function elements in tuples can have different signatures.
let funTuple = (squareIt, BMICalculator)

// Functions can be mixed with integers, strings, and other types in
// a tuple. Identifier num was declared previously.
//let num = 10
let moreMixedTuple = (num, "two", 3.3, squareIt)

// You can pull a function out of a tuple and apply it. Both squareIt and num
// were defined previously.
let funAndArgTuple = (squareIt, num)

// The following expression applies squareIt to num, returns 100, and
// then displays 100.
System.Console.WriteLine((fst funAndArgTuple)(snd funAndArgTuple))

// Make a list of values instead of identifiers.
let funAndArgTuple2 = ((fun n -> n * n), 10)

// The following expression applies a squaring function to 10, returns
// 100, and then displays 100.
System.Console.WriteLine((fst funAndArgTuple2)(snd funAndArgTuple2))

// ** PASS THE VALUE AS AN ARGUMENT **

// An integer is passed to squareIt. Both squareIt and num are defined in
// previous examples.
//let num = 10
//let squareIt = fun n -> n * n
System.Console.WriteLine(squareIt num)

// String.
// Function repeatString concatenates a string with itself.
let repeatString = fun s -> s + s

// A string is passed to repeatString. HelloHello is returned and displayed.
let greeting = "Hello"
System.Console.WriteLine(repeatString greeting)

// Define the function, again using lambda expression syntax.
let applyIt = fun op arg -> op arg

// Send squareIt for the function, op, and num for the argument you want to
// apply squareIt to, arg. Both squareIt and num are defined in previous
// examples. The result returned and displayed is 100.
System.Console.WriteLine(applyIt squareIt num)

// The following expression shows the concise syntax for the previous function
// definition.
let applyIt2 op arg = op arg
// The following line also displays 100.
System.Console.WriteLine(applyIt2 squareIt num)

// List integerList was defined previously:
//let integerList = [1; 2; 3; 4; 5; 6; 7]

// You can send the function argument by name, if an appropriate function
// is available. The following expression uses squareIt.
let squareAll = List.map squareIt integerList

// The following line displays [1; 4; 9; 16; 25; 36; 49]
printfn "%A" squareAll

// Or you can define the action to apply to each list element inline.
// For example, no function that tests for even integers has been defined,
// so the following expression defines the appropriate function inline.
// The function returns true if n is even; otherwise it returns false.
let evenOrNot = List.map (fun n -> n % 2 = 0) integerList

// The following line displays [false; true; false; true; false; true; false]
printfn "%A" evenOrNot

// ** RETURN THE VALUE FROM A FUNCTION CALL **

// Function doubleIt is defined in a previous example.
//let doubleIt = fun n -> 2 * n
System.Console.WriteLine(doubleIt 3)
System.Console.WriteLine(squareIt 4)

// The following function call returns a string:

// str is defined in a previous section.
//let str = "F#"
let lowercase = str.ToLower()

System.Console.WriteLine((fun n -> n % 2 = 1) 15)

let checkFor item =
 let functionToReturn = fun lst ->
 List.exists (fun a -> a = item) lst
 functionToReturn

// integerList and stringList were defined earlier.
//let integerList = [1; 2; 3; 4; 5; 6; 7]
//let stringList = ["one"; "two"; "three"]

// The returned function is given the name checkFor7.
let checkFor7 = checkFor 7

// The result displayed when checkFor7 is applied to integerList is True.
System.Console.WriteLine(checkFor7 integerList)

// The following code repeats the process for "seven" in stringList.
let checkForSeven = checkFor "seven"

// The result displayed is False.
System.Console.WriteLine(checkForSeven stringList)

// Function compose takes two arguments. Each argument is a function
// that takes one argument of the same type. The following declaration
// uses lambda expresson syntax.
let compose =
 fun op1 op2 ->
 fun n ->
 op1 (op2 n)

// To clarify what you are returning, use a nested let expression:
let compose2 =
 fun op1 op2 ->
 // Use a let expression to build the function that will be returned.
 let funToReturn = fun n ->
 op1 (op2 n)
 // Then just return it.
 funToReturn

// Or, integrating the more concise syntax:
let compose3 op1 op2 =
 let funToReturn = fun n ->
 op1 (op2 n)
 funToReturn

// Functions squareIt and doubleIt were defined in a previous example.
let doubleAndSquare = compose squareIt doubleIt
// The following expression doubles 3, squares 6, and returns and
// displays 36.
System.Console.WriteLine(doubleAndSquare 3)

let squareAndDouble = compose doubleIt squareIt
// The following expression squares 3, doubles 9, returns 18, and
// then displays 18.
System.Console.WriteLine(squareAndDouble 3)

let makeGame target =
 // Build a lambda expression that is the function that plays the game.
 let game = fun guess ->

 if guess = target then
 System.Console.WriteLine("You win!")
 else
 System.Console.WriteLine("Wrong. Try again.")
 // Now just return it.
 game

let playGame = makeGame 7
// Send in some guesses.
playGame 2
playGame 9
playGame 7

// Output:
// Wrong. Try again.
// Wrong. Try again.
// You win!

// The following game specifies a character instead of an integer for target.
let alphaGame = makeGame 'q'
alphaGame 'c'
alphaGame 'r'
alphaGame 'j'
alphaGame 'q'

// Output:
// Wrong. Try again.
// Wrong. Try again.
// Wrong. Try again.
// You win!

// ** CURRIED FUNCTIONS **

let compose4 op1 op2 n = op1 (op2 n)

let compose4curried =
 fun op1 ->
 fun op2 ->
 fun n -> op1 (op2 n)

// Access one layer at a time.
System.Console.WriteLine(((compose4 doubleIt) squareIt) 3)

// Access as in the original compose examples, sending arguments for
// op1 and op2, then applying the resulting function to a value.
System.Console.WriteLine((compose4 doubleIt squareIt) 3)

// Access by sending all three arguments at the same time.
System.Console.WriteLine(compose4 doubleIt squareIt 3)

let doubleAndSquare4 = compose4 squareIt doubleIt
// The following expression returns and displays 36.
System.Console.WriteLine(doubleAndSquare4 3)

let squareAndDouble4 = compose4 doubleIt squareIt
// The following expression returns and displays 18.
System.Console.WriteLine(squareAndDouble4 3)

let makeGame2 target guess =
 if guess = target then
 System.Console.WriteLine("You win!")
 else
 System.Console.WriteLine("Wrong. Try again.")

let playGame2 = makeGame2 7
playGame2 2
playGame2 9
playGame2 7

let alphaGame2 = makeGame2 'q'
alphaGame2 'c'
alphaGame2 'r'
alphaGame2 'j'
alphaGame2 'q'

// ** IDENTIFIER AND FUNCTION DEFINITION ARE INTERCHANGEABLE **

let isNegative = fun n -> n < 0

// This example uses the names of the function argument and the integer
// argument. Identifier num is defined in a previous example.
//let num = 10
System.Console.WriteLine(applyIt isNegative num)

// This example substitutes the value that num is bound to for num, and the
// value that isNegative is bound to for isNegative.
System.Console.WriteLine(applyIt (fun n -> n < 0) 10)

System.Console.WriteLine((fun op arg -> op arg) (fun n -> n < 0) 10)

// ** FUNCTIONS ARE FIRST-CLASS VALUES IN F# **

//let squareIt = fun n -> n * n

let funTuple2 = (BMICalculator, fun n -> n * n)

let increments = List.map (fun n -> n + 1) [1; 2; 3; 4; 5; 6; 7]

//let checkFor item =
// let functionToReturn = fun lst ->
// List.exists (fun a -> a = item) lst
// functionToReturn

See Also
Lists

Tuples

Functions

let Bindings

Lambda Expressions: The fun Keyword

Async Programming in F#
5/4/2018 • 6 minutes to read • Edit Online

NOTENOTE

open System
open System.Net

let fetchHtmlAsync url =
 async {
 let uri = Uri(url)
 use webClient = new WebClient()

 // Execution of fetchHtmlAsync won't continue until the result
 // of AsyncDownloadString is bound.
 let! html = webClient.AsyncDownloadString(uri)
 return html
 }

let html = "https://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously
printfn "%s" html

How to start Async Code in F#

open System
open System.Net

let fetchHtmlAsync url =
 async {
 let uri = Uri(url)
 use webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 return html
 }

 // Execution will pause until fetchHtmlAsync finishes
 let html = "https://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously

 // you actually have the result from fetchHtmlAsync now!
 printfn "%s" html

Some inaccuracies have been discovered in this article. It is being rewritten. See Issue #666 to learn about the changes.

Async programming in F# can be accomplished through a language-level programming model designed to be easy to use and natural to the language.

The core of async programming in F# is Async<'T> , a representation of work that can be triggered to run in the background, where 'T is either the
type returned via the special return keyword or unit if the async workflow has no result to return.

The key concept to understand is that an async expression’s type is Async<'T> , which is merely a specification of work to be done in an asynchronous
context. It is not executed until you explicitly start it with one of the starting functions (such as Async.RunSynchronously). Although this is a different way
of thinking about doing work, it ends up being quite simple in practice.

For example, say you wanted to download the HTML from dotnetfoundation.org without blocking the main thread. You can accomplish it like this:

And that’s it! Aside from the use of async , let! , and return , this is just normal F# code.

There are a few syntactical constructs which are worth noting:

let! binds the result of an async expression (which runs on another context).
use! works just like let! , but disposes its bound resources when it goes out of scope.
do! will await an async workflow which doesn’t return anything.
return simply returns a result from an async expression.
return! executes another async workflow and returns its return value as a result.

Additionally, normal let , use , and do keywords can be used alongside the async versions just as they would in a normal function.

As mentioned earlier, async code is a specification of work to be done in another context which needs to be explicitly started. Here are two primary ways
to accomplish this:

1. Async.RunSynchronously will start an async workflow on another thread and await its result.

2. Async.Start will start an async workflow on another thread, and will not await its result.

https://github.com/dotnet/docs/blob/master/docs/fsharp/tutorials/asynchronous-and-concurrent-programming/async.md
https://github.com/dotnet/docs/issues/666

open System
open System.Net

let uploadDataAsync url data =
 async {
 let uri = Uri(url)
 use webClient = new WebClient()
 webClient.UploadStringAsync(uri, data)
 }

let workflow = uploadDataAsync "https://url-to-upload-to.com" "hello, world!"

// Execution will continue after calling this!
Async.Start(workflow)

printfn "%s" "uploadDataAsync is running in the background..."

A Note on ThreadsA Note on Threads

How to Add Parallelism to Async Code

open System
open System.Net

let urlList =
 ["https://www.microsoft.com"
 "https://www.google.com"
 "https://www.amazon.com"
 "https://www.facebook.com"]

let fetchHtmlAsync url =
 async {
 let uri = Uri(url)
 use webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 return html
 }

let getHtmlList urls =
 urls
 |> Seq.map fetchHtmlAsync // Build an Async<'T> for each site
 |> Async.Parallel // Returns an Async<'T []>
 |> Async.RunSynchronously // Wait for the result of the parallel work

let htmlList = getHtmlList urlList

// We now have the downloaded HTML for each site!
for html in htmlList do
 printfn "%s" html

Important Info and Advice

For the C#/VB Programmer Looking Into F#

There are other ways to start an async workflow available for more specific scenarios. They are detailed in the Async reference.

The phrase "on another thread" is mentioned above, but it is important to know that this does not mean that async workflows are a facade for
multithreading. The workflow actually "jumps" between threads, borrowing them for a small amount of time to do useful work. When an async
workflow is effectively "waiting" (for example, waiting for a network call to return something), any thread it was borrowing at the time is freed up to go
do useful work on something else. This allows async workflows to utilize the system they run on as effectively as possible, and makes them especially
strong for high-volume I/O scenarios.

Sometimes you may need to perform multiple asynchronous jobs in parallel, collect their results, and interpret them in some way. Async.Parallel

allows you to do this without needing to use the Task Parallel Library, which would involve needing to coerce Task<'T> and Async<'T> types.

The following example will use Async.Parallel to download the HTML from four popular sites in parallel, wait for those tasks to complete, and then
print the HTML which was downloaded.

Append "Async" to the end of any functions you’ll consume

Although this is just a naming convention, it does make things like API discoverability easier. Particularly if there are synchronous and asynchronous
versions of the same routine, it’s a good idea to explicitly state which is asynchronous via the name.

Listen to the compiler!

F#’s compiler is very strict, making it nearly impossible to do something troubling like run "async" code synchronously. If you come across a warning,
that’s a sign that the code won’t execute how you think it will. If you can make the compiler happy, your code will most likely execute as expected.

This section assumes you’re familiar with the async model in C#/VB. If you are not, Async Programming in C# is a starting point.

https://msdn.microsoft.com/library/ee370232.aspx

SimilaritiesSimilarities

DifferencesDifferences

open System
open System.Net

let uploadDataAsync url data =
 async {
 let uri = Uri(url)
 use webClient = new WebClient()
 webClient.UploadStringAsync(uri, data)
 }

let workflow = uploadDataAsync "https://url-to-upload-to.com" "hello, world!"

let token = new CancellationTokenSource()
Async.Start (workflow, token)

// Immediately cancel uploadDataAsync after it's been started.
token.Cancel()

Further resources:

There is a fundamental difference between the C#/VB async model and the F# async model.

When you call a function which returns a Task or Task<'T> , that job has already begun execution. The handle returned represents an already-running
asynchronous job. In contrast, when you call an async function in F#, the Async<'a> returned represents a job which will be generated at some point.
Understanding this model is powerful, because it allows for asynchronous jobs in F# to be chained together easier, performed conditionally, and be
started with a finer grain of control.

There are a few other similarities and differences worth noting.

let! , use! , and do! are analogous to await when calling an async job from within an async{ } block.

The three keywords can only be used within an async { } block, similar to how await can only be invoked inside an async method. In short, let! is
for when you want to capture and use a result, use! is the same but for something whose resources should get cleaned after it’s used, and do! is for
when you want to wait for an async workflow with no return value to finish before moving on.

F# supports data-parallelism in a similar way.

Although it operates very differently, Async.Parallel corresponds to Task.WhenAll for the scenario of wanting the results of a set of async jobs when
they all complete.

Nested let! is not allowed, unlike nested await

Unlike await , which can be nested indefinitely, let! cannot and must have its result bound before using it inside of another let! , do! , or use! .

Cancellation support is simpler in F# than in C#/VB.

Supporting cancellation of a task midway through its execution in C#/VB requires checking the IsCancellationRequested property or calling
ThrowIfCancellationRequested() on a CancellationToken object that’s passed into the async method.

In contrast, F# async workflows are more naturally cancellable. Cancellation is a simple three-step process.

1. Create a new CancellationTokenSource .
2. Pass it into a starting function.
3. Call Cancel on the token.

Example:

And that’s it!

Async Workflows on MSDN
Asynchronous Sequences for F#
F# Data HTTP Utilities

https://msdn.microsoft.com/library/dd233250.aspx
https://fsprojects.github.io/FSharp.Control.AsyncSeq/library/AsyncSeq.html
https://fsharp.github.io/FSharp.Data/library/Http.html

Using F# on Azure
5/4/2018 • 4 minutes to read • Edit Online

NOTENOTE

Using Azure Virtual Machines with F#

Using Azure Functions with F#

Using Azure Storage with F#

Using Azure App Service with F#

Using Apache Spark with F# with Azure HDInsight

Using Azure Cosmos DB with F#

F# is a superb language for cloud programming and is frequently used to write web applications, cloud services, cloud-hosted microservices, and for
scalable data processing.

In the following sections, you will find resources on how to use a range of Azure services with F#.

If a particular Azure service isn't in this documentation set, please consult either the Azure Functions or .NET documentation for that service. Some Azure services are
language-independent and require no language-specific documentation and are not listed here.

Azure supports a wide range of virtual machine (VM) configurations, see Linux and Azure Virtual Machines.

To install F# on a virtual machine for execution, compilation and/or scripting see Using F# on Linux and Using F# on Windows.

Azure Functions is a solution for easily running small pieces of code, or "functions," in the cloud. You can write just the code you need for the problem at
hand, without worrying about a whole application or the infrastructure to run it. Your functions are connected to events in Azure storage and other
cloud-hosted resources. Data flows into your F# functions via function arguments. You can use your development language of choice, trusting Azure to
scale as needed.

Azure Functions support F# as a first-class language with efficient, reactive, scalable execution of F# code. See the Azure Functions F# Developer
Reference for reference documentation on how to use F# with Azure Functions.

Other resources for using Azure Functions and F#:

Scale Up Azure Functions in F# Using Suave
How to create Azure function in F#
Using the Azure Type Provider with Azure Functions

Azure Storage is a base layer of storage services for modern applications that rely on durability, availability, and scalability to meet the needs of
customers. F# programs can interact directly with Azure storage services, using the techinques described in the following articles.

Get started with Azure Blob storage using F#
Get started with Azure File storage using F#
Get started with Azure Queue storage using F#
Get started with Azure Table storage using F#

Azure Storage can also be used in conjunction with Azure Functions through declarative configuration rather than explicit API calls. See Azure
Functions triggers and bindings for Azure Storage which includes F# examples.

Azure App Service is a cloud platform to build powerful web and mobile apps that connect to data anywhere, in the cloud or on-premises.

F# Azure Web API example
Hosting F# in a web application on Azure

Apache Spark for Azure HDInsight is an open source processing framework that runs large-scale data analytics applications. Azure makes Apache
Spark easy and cost effective to deploy. Develop your Spark application in F# using Mobius, a .NET API for Spark.

Implementing Spark Apps in F# using Mobius
Example F# Spark Apps using Mobius

Azure Cosmos DB is a NoSQL service for highly available, globally distributed apps.

Azure Cosmos DB can be used with F# in two ways:

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/index.md
https://azure.microsoft.com/services/virtual-machines/
http://fsharp.org/use/linux
http://fsharp.org/use/windows
https://azure.microsoft.com/services/functions/
https://docs.microsoft.com/azure/azure-functions/functions-reference-fsharp
https://blog.tamizhvendan.in/blog/2016/09/19/scale-up-azure-functions-in-f-number-using-suave/
https://mnie.github.io/2016-09-08-AzureFunctions/
https://compositional-it.com/blog/2017/08-30-using-the-azure-type-provider-with-azure-functions/index.html
https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage
https://azure.microsoft.com/services/app-service/
https://github.com/fsprojects/azure-webapi-example
https://github.com/isaacabraham/fsharp-demonstrator
https://azure.microsoft.com/services/hdinsight/apache-spark/
https://github.com/Microsoft/Mobius
https://github.com/Microsoft/Mobius/blob/master/notes/spark-fsharp-mobius.md
https://github.com/Microsoft/Mobius/tree/master/examples/fsharp
https://azure.microsoft.com/services/cosmos-db

Using Azure Event Hubs with F#

Using Azure Notification Hubs with F#

Implementing WebHooks on Azure with F#

Using Webjobs with F#

Implementing Timers on Azure with F#

Deploying and Managing Azure Resources with F# Scripts

Other resources

1. Through the creation of F# Azure Functions which react to or cause changes to Azure Cosmos DB collections. See Azure Cosmos DB bindings for
Azure Functions, or

2. By using the Azure Cosmos DB .NET SDK for SQL API. The related samples are in C#.

Azure Event Hubs provide cloud-scale telemetry ingestion from websites, apps, and devices.

Azure Event Hubs can be used with F# in two ways:

1. Through the creation of F# Azure Functions which are triggered by events. See Azure Function triggers for Event Hubs, or
2. By using the .NET SDK for Azure. Note these examples are in C#.

Azure Notification Hubs are multiplatform, scaled-out push infrastructure that enable you to send mobile push notifications from any backend (in the
cloud or on-premises) to any mobile platform.

Azure Notification Hubs can be used with F# in two ways:

1. Through the creation of F# Azure Functions which send results to a notification hub. See Azure Function output triggers for Notification Hubs, or
2. By using the .NET SDK for Azure. Note these examples are in C#.

A Webhook is a callback triggered via a web request. Webhooks are used by sites such as GitHub to signal events.

Webhooks can be implemented in F# and hosted on Azure via an Azure Function in F# with a Webhook Binding.

Webjobs are programs you can run in your App Service web app in three ways: on demand, continuously, or on a schedule.

Example F# Webjob

Timer triggers call functions based on a schedule, one time or recurring.

Timers can be implemented in F# and hosted on Azure via an Azure Function in F# with a Timer Trigger.

Azure VMs may be programmatically deployed and managed from F# scripts by using the Microsoft.Azure.Management packages and APIs. For
example, see Get Started with the Management Libraries for .NET and Using Azure Resource Manager.

Likewise, other Azure resources may also be deployed and managed from F# scripts using the same components. For example, you can create storage
accounts, deploy Azure Cloud Services, create Azure Cosmos DB instances and manage Azure Notifcation Hubs programmatically from F# scripts.

Using F# scripts to deploy and manage resources is not normally necessary. For example, Azure resources may also be deployed directy from JSON
template descriptions, which can be parameterized. See Azure Resource Manager Templates including examples such as the Azure Quickstart
Templates.

Full documentation on all Azure services

https://docs.microsoft.com/azure/azure-functions/functions-bindings-cosmosdb
https://docs.microsoft.com/azure/cosmos-db/sql-api-sdk-dotnet
https://azure.microsoft.com/services/event-hubs/
https://docs.microsoft.com/azure/azure-functions/functions-bindings-event-hubs
https://docs.microsoft.com/azure/event-hubs/event-hubs-csharp-ephcs-getstarted
https://docs.microsoft.com/azure/notification-hubs/
https://docs.microsoft.com/azure/azure-functions/functions-bindings-notification-hubs
https://blogs.msdn.microsoft.com/azuremobile/2014/04/08/push-notifications-using-notification-hub-and-net-backend/
https://en.wikipedia.org/wiki/Webhook
https://docs.microsoft.com/azure/azure-functions/functions-bindings-http-webhook
https://docs.microsoft.com/azure/app-service-web/web-sites-create-web-jobs
https://github.com/andredublin/fsharp-azure-webjob
https://docs.microsoft.com/azure/azure-functions/functions-bindings-timer
https://msdn.microsoft.com/library/dn722415.aspx
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-template-best-practices
https://azure.microsoft.com/resources/templates/
https://docs.microsoft.com/azure/

Get started with Azure Blob storage using F#
7/18/2018 • 12 minutes to read • Edit Online

Prerequisites

Create an F# Script and Start F# Interactive

Add namespace declarationsAdd namespace declarations

open System
open System.IO
open Microsoft.Azure // Namespace for CloudConfigurationManager
open Microsoft.WindowsAzure.Storage // Namespace for CloudStorageAccount
open Microsoft.WindowsAzure.Storage.Blob // Namespace for Blob storage types

Get your connection stringGet your connection string

let storageConnString = "..." // fill this in from your storage account

// Parse the connection string and return a reference to the storage account.
let storageConnString =
 CloudConfigurationManager.GetSetting("StorageConnectionString")

Parse the connection stringParse the connection string

// Parse the connection string and return a reference to the storage account.
let storageAccount = CloudStorageAccount.Parse(storageConnString)

Create some local dummy dataCreate some local dummy data

// Create a dummy file to upload
let localFile = __SOURCE_DIRECTORY__ + "/myfile.txt"
File.WriteAllText(localFile, "some data")

Azure Blob storage is a service that stores unstructured data in the cloud as objects/blobs. Blob storage can store any type of text or binary data, such as
a document, media file, or application installer. Blob storage is also referred to as object storage.

This article shows you how to perform common tasks using Blob storage. The samples are written using F# using the Azure Storage Client Library for
.NET. The tasks covered include how to upload, list, download, and delete blobs.

For a conceptual overview of blob storage, see the .NET guide for blob storage.

To use this guide, you must first create an Azure storage account. You also need your storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To create an F# script, create a file with the .fsx extension, for
example blobs.fsx , in your F# development environment.

Next, use a package manager such as Paket or NuGet to install the WindowsAzure.Storage and Microsoft.WindowsAzure.ConfigurationManager packages
and reference WindowsAzure.Storage.dll and Microsoft.WindowsAzure.Configuration.dll in your script using a #r directive.

Add the following open statements to the top of the blobs.fsx file:

You need an Azure Storage connection string for this tutorial. For more information about connection strings, see Configure Storage Connection
Strings.

For the tutorial, you enter your connection string in your script, like this:

However, this is not recommended for real projects. Your storage account key is similar to the root password for your storage account. Always be
careful to protect your storage account key. Avoid distributing it to other users, hard-coding it, or saving it in a plain-text file that is accessible to others.
You can regenerate your key using the Azure Portal if you believe it may have been compromised.

For real applications, the best way to maintain your storage connection string is in a configuration file. To fetch the connection string from a
configuration file, you can do this:

Using Azure Configuration Manager is optional. You can also use an API such as the .NET Framework's ConfigurationManager type.

To parse the connection string, use:

This returns a CloudStorageAccount .

Before you begin, create some dummy local data in the directory of our script. Later you upload this data.

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/blob-storage.md
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-blobs
https://docs.microsoft.com/azure/storage/storage-create-storage-account
https://fsprojects.github.io/Paket/
https://www.nuget.org/
https://docs.microsoft.com/azure/storage/storage-configure-connection-string

Create the Blob service clientCreate the Blob service client

let blobClient = storageAccount.CreateCloudBlobClient()

Create a container

 // Retrieve a reference to a container.
let container = blobClient.GetContainerReference("mydata")

// Create the container if it doesn't already exist.
container.CreateIfNotExists()

let permissions = BlobContainerPermissions(PublicAccess=BlobContainerPublicAccessType.Blob)
container.SetPermissions(permissions)

Upload a blob into a container

// Retrieve reference to a blob named "myblob.txt".
let blockBlob = container.GetBlockBlobReference("myblob.txt")

// Create or overwrite the "myblob.txt" blob with contents from the local file.
do blockBlob.UploadFromFile(localFile)

List the blobs in a container

// Loop over items within the container and output the length and URI.
for item in container.ListBlobs(null, false) do
 match item with
 | :? CloudBlockBlob as blob ->
 printfn "Block blob of length %d: %O" blob.Properties.Length blob.Uri

 | :? CloudPageBlob as pageBlob ->
 printfn "Page blob of length %d: %O" pageBlob.Properties.Length pageBlob.Uri

 | :? CloudBlobDirectory as directory ->
 printfn "Directory: %O" directory.Uri

 | _ ->
 printfn "Unknown blob type: %O" (item.GetType())

The CloudBlobClient type enables you to retrieve containers and blobs stored in Blob storage. Here's one way to create the service client:

Now you are ready to write code that reads data from and writes data to Blob storage.

This example shows how to create a container if it does not already exist:

By default, the new container is private, meaning that you must specify your storage access key to download blobs from this container. If you want to
make the files within the container available to everyone, you can set the container to be public using the following code:

Anyone on the Internet can see blobs in a public container, but you can modify or delete them only if you have the appropriate account access key or a
shared access signature.

Azure Blob Storage supports block blobs and page blobs. In most cases, a block blob is the recommended type to use.

To upload a file to a block blob, get a container reference and use it to get a block blob reference. Once you have a blob reference, you can upload any
stream of data to it by calling the UploadFromFile method. This operation creates the blob if it didn't previously exist, or overwrite it if it does exist.

To list the blobs in a container, first get a container reference. You can then use the container's ListBlobs method to retrieve the blobs and/or directories
within it. To access the rich set of properties and methods for a returned IListBlobItem , you must cast it to a CloudBlockBlob , CloudPageBlob , or
CloudBlobDirectory object. If the type is unknown, you can use a type check to determine which to cast it to. The following code demonstrates how to

retrieve and output the URI of each item in the mydata container :

You can also name blobs with path information in their names. This creates a virtual directory structure that you can organize and traverse as you would
a traditional file system. Note that the directory structure is virtual only - the only resources available in Blob storage are containers and blobs. However,
the storage client library offers a CloudBlobDirectory object to refer to a virtual directory and simplify the process of working with blobs that are
organized in this way.

For example, consider the following set of block blobs in a container named photos :

photo1.jpg 2015/architecture/description.txt 2015/architecture/photo3.jpg 2015/architecture/photo4.jpg 2016/architecture/photo5.jpg
2016/architecture/photo6.jpg 2016/architecture/description.txt 2016/photo7.jpg

When you call ListBlobs on a container (as in the above sample), a hierarchical listing is returned. If it contains both CloudBlobDirectory and

Directory: https://<accountname>.blob.core.windows.net/photos/2015/
Directory: https://<accountname>.blob.core.windows.net/photos/2016/
Block blob of length 505623: https://<accountname>.blob.core.windows.net/photos/photo1.jpg

// Loop over items within the container and output the length and URI.
for item in container.ListBlobs(null, true) do
 match item with
 | :? CloudBlockBlob as blob ->
 printfn "Block blob of length %d: %O" blob.Properties.Length blob.Uri

 | _ ->
 printfn "Unexpected blob type: %O" (item.GetType())

Block blob of length 4: https://<accountname>.blob.core.windows.net/photos/2015/architecture/description.txt
Block blob of length 314618: https://<accountname>.blob.core.windows.net/photos/2015/architecture/photo3.jpg
Block blob of length 522713: https://<accountname>.blob.core.windows.net/photos/2015/architecture/photo4.jpg
Block blob of length 4: https://<accountname>.blob.core.windows.net/photos/2016/architecture/description.txt
Block blob of length 419048: https://<accountname>.blob.core.windows.net/photos/2016/architecture/photo5.jpg
Block blob of length 506388: https://<accountname>.blob.core.windows.net/photos/2016/architecture/photo6.jpg
Block blob of length 399751: https://<accountname>.blob.core.windows.net/photos/2016/photo7.jpg
Block blob of length 505623: https://<accountname>.blob.core.windows.net/photos/photo1.jpg

Download blobs

// Retrieve reference to a blob named "myblob.txt".
let blobToDownload = container.GetBlockBlobReference("myblob.txt")

// Save blob contents to a file.
do
 use fileStream = File.OpenWrite(__SOURCE_DIRECTORY__ + "/path/download.txt")
 blobToDownload.DownloadToStream(fileStream)

let text =
 use memoryStream = new MemoryStream()
 blobToDownload.DownloadToStream(memoryStream)
 Text.Encoding.UTF8.GetString(memoryStream.ToArray())

Delete blobs

// Retrieve reference to a blob named "myblob.txt".
let blobToDelete = container.GetBlockBlobReference("myblob.txt")

// Delete the blob.
blobToDelete.Delete()

List blobs in pages asynchronously

CloudBlockBlob objects, representing the directories and blobs in the container, respectively, then the resulting output looks similar to this:

Optionally, you can set the UseFlatBlobListing parameter of the ListBlobs method to true . In this case, every blob in the container is returned as a
CloudBlockBlob object. The call to ListBlobs to return a flat listing looks like this:

and, depending on the current contents of your container, the results look like this:

To download blobs, first retrieve a blob reference and then call the DownloadToStream method. The following example uses the DownloadToStream

method to transfer the blob contents to a stream object that you can then persist to a local file.

You can also use the DownloadToStream method to download the contents of a blob as a text string.

To delete a blob, first get a blob reference and then call the Delete method on it.

If you are listing a large number of blobs, or you want to control the number of results you return in one listing operation, you can list blobs in pages of
results. This example shows how to return results in pages asynchronously, so that execution is not blocked while waiting to return a large set of results.

This example shows a flat blob listing, but you can also perform a hierarchical listing, by setting the useFlatBlobListing parameter of the
ListBlobsSegmentedAsync method to false .

The sample defines an asynchronous method, using an async block. The let! keyword suspends execution of the sample method until the listing task
completes.

let ListBlobsSegmentedInFlatListing(container:CloudBlobContainer) =
 async {

 // List blobs to the console window, with paging.
 printfn "List blobs in pages:"

 // Call ListBlobsSegmentedAsync and enumerate the result segment
 // returned, while the continuation token is non-null.
 // When the continuation token is null, the last page has been
 // returned and execution can exit the loop.

 let rec loop continuationToken (i:int) =
 async {
 let! ct = Async.CancellationToken
 // This overload allows control of the page size. You can return
 // all remaining results by passing null for the maxResults
 // parameter, or by calling a different overload.
 let! resultSegment =
 container.ListBlobsSegmentedAsync(
 "", true, BlobListingDetails.All, Nullable 10,
 continuationToken, null, null, ct)
 |> Async.AwaitTask

 if (resultSegment.Results |> Seq.length > 0) then
 printfn "Page %d:" i

 for blobItem in resultSegment.Results do
 printfn "\t%O" blobItem.StorageUri.PrimaryUri

 printfn ""

 // Get the continuation token.
 let continuationToken = resultSegment.ContinuationToken
 if (continuationToken <> null) then
 do! loop continuationToken (i+1)
 }

 do! loop null 1
 }

// Create some dummy data by uploading the same file over and over again
for i in 1 .. 100 do
 let blob = container.GetBlockBlobReference("myblob" + string i + ".txt")
 use fileStream = System.IO.File.OpenRead(localFile)
 blob.UploadFromFile(localFile)

ListBlobsSegmentedInFlatListing container |> Async.RunSynchronously

Writing to an append blob

We can now use this asynchronous routine as follows. First you upload some dummy data (using the local file created earlier in this tutorial).

Now, call the routine. You use Async.RunSynchronously to force the execution of the asynchronous operation.

An append blob is optimized for append operations, such as logging. Like a block blob, an append blob is comprised of blocks, but when you add a new
block to an append blob, it is always appended to the end of the blob. You cannot update or delete an existing block in an append blob. The block IDs for
an append blob are not exposed as they are for a block blob.

Each block in an append blob can be a different size, up to a maximum of 4 MB, and an append blob can include a maximum of 50,000 blocks. The
maximum size of an append blob is therefore slightly more than 195 GB (4 MB X 50,000 blocks).

The following example creates a new append blob and appends some data to it, simulating a simple logging operation.

// Get a reference to a container.
let appendContainer = blobClient.GetContainerReference("my-append-blobs")

// Create the container if it does not already exist.
appendContainer.CreateIfNotExists() |> ignore

// Get a reference to an append blob.
let appendBlob = appendContainer.GetAppendBlobReference("append-blob.log")

// Create the append blob. Note that if the blob already exists, the
// CreateOrReplace() method will overwrite it. You can check whether the
// blob exists to avoid overwriting it by using CloudAppendBlob.Exists().
appendBlob.CreateOrReplace()

let numBlocks = 10

// Generate an array of random bytes.
let rnd = new Random()
let bytes = Array.zeroCreate<byte>(numBlocks)
rnd.NextBytes(bytes)

// Simulate a logging operation by writing text data and byte data to the
// end of the append blob.
for i in 0 .. numBlocks - 1 do
 let msg = sprintf "Timestamp: %u \tLog Entry: %d\n" DateTime.UtcNow bytes.[i]
 appendBlob.AppendText(msg)

// Read the append blob to the console window.
let downloadedText = appendBlob.DownloadText()
printfn "%s" downloadedText

Concurrent access

Naming containers

https://storagesample.blob.core.windows.net/mydata/blob1.txt
https://storagesample.blob.core.windows.net/mydata/photos/myphoto.jpg

Managing security for blobs

Controlling access to blob dataControlling access to blob data

Encrypting blob dataEncrypting blob data

See Understanding Block Blobs, Page Blobs, and Append Blobs for more information about the differences between the three types of blobs.

To support concurrent access to a blob from multiple clients or multiple process instances, you can use ETags or leases.

Etag - provides a way to detect that the blob or container has been modified by another process

Lease - provides a way to obtain exclusive, renewable, write or delete access to a blob for a period of time

For more information, see Managing Concurrency in Microsoft Azure Storage.

Every blob in Azure storage must reside in a container. The container forms part of the blob name. For example, mydata is the name of the container in
these sample blob URIs:

A container name must be a valid DNS name, conforming to the following naming rules:

1. Container names must start with a letter or number, and can contain only letters, numbers, and the dash (-) character.
2. Every dash (-) character must be immediately preceded and followed by a letter or number; consecutive dashes are not permitted in container

names.
3. All letters in a container name must be lowercase.
4. Container names must be from 3 through 63 characters long.

Note that the name of a container must always be lowercase. If you include an upper-case letter in a container name, or otherwise violate the container
naming rules, you may receive a 400 error (Bad Request).

By default, Azure Storage keeps your data secure by limiting access to the account owner, who is in possession of the account access keys. When you
need to share blob data in your storage account, it is important to do so without compromising the security of your account access keys. Additionally,
you can encrypt blob data to ensure that it is secure going over the wire and in Azure Storage.

By default, the blob data in your storage account is accessible only to storage account owner. Authenticating requests against Blob storage requires the
account access key by default. However, you might want to make certain blob data available to other users.

For details on how to control access to blob storage, see the .NET guide for blob storage section on access control.

Azure Storage supports encrypting blob data both at the client and on the server.

https://msdn.microsoft.com/library/azure/ee691964.aspx
https://azure.microsoft.com/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-blobs#controlling-access-to-blob-data

Next steps

ToolsTools

Blob storage referenceBlob storage reference

Related guidesRelated guides

For details on encrypting blob data, see the .NET guide for blob storage section on encryption.

Now that you've learned the basics of Blob storage, follow these links to learn more.

F# AzureStorageTypeProvider An F# Type Provider which can be used to explore Blob, Table and Queue Azure Storage assets and easily apply
CRUD operations on them.
FSharp.Azure.Storage An F# API for using Microsoft Azure Table Storage service
Microsoft Azure Storage Explorer (MASE) is a free, standalone app from Microsoft that enables you to work visually with Azure Storage data on
Windows, OS X, and Linux.

Azure Storage APIs for .NET
Azure Storage Services REST API Reference

Getting Started with Azure Blob Storage in C#
Transfer data with the AzCopy command-line utility on Windows
Transfer data with the AzCopy command-line utility on Linux
Configure Azure Storage connection strings
Azure Storage Team Blog

https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-blobs#encrypting-blob-data
https://fsprojects.github.io/AzureStorageTypeProvider/
https://github.com/fsprojects/FSharp.Azure.Storage
https://docs.microsoft.com/azure/vs-azure-tools-storage-manage-with-storage-explorer
https://docs.microsoft.com/dotnet/api/overview/azure/storage
https://docs.microsoft.com/rest/api/storageservices/Azure-Storage-Services-REST-API-Reference
https://azure.microsoft.com/resources/samples/storage-blob-dotnet-getting-started/
https://docs.microsoft.com/azure/storage/common/storage-use-azcopy
https://docs.microsoft.com/azure/storage/common/storage-use-azcopy-linux
https://docs.microsoft.com/azure/storage/common/storage-configure-connection-string
https://blogs.msdn.microsoft.com/windowsazurestorage/

Get started with Azure File storage using F#
5/4/2018 • 6 minutes to read • Edit Online

Prerequisites

Create an F# Script and Start F# Interactive

Add namespace declarationsAdd namespace declarations

open System
open System.IO
open Microsoft.Azure // Namespace for CloudConfigurationManager
open Microsoft.WindowsAzure.Storage // Namespace for CloudStorageAccount
open Microsoft.WindowsAzure.Storage.File // Namespace for File storage types

Get your connection stringGet your connection string

let storageConnString = "..." // fill this in from your storage account

// Parse the connection string and return a reference to the storage account.
let storageConnString =
 CloudConfigurationManager.GetSetting("StorageConnectionString")

Parse the connection stringParse the connection string

// Parse the connection string and return a reference to the storage account.
let storageAccount = CloudStorageAccount.Parse(storageConnString)

Create the File service clientCreate the File service client

let fileClient = storageAccount.CreateCloudFileClient()

Azure File storage is a service that offers file shares in the cloud using the standard Server Message Block (SMB) Protocol. Both SMB 2.1 and SMB 3.0
are supported. With Azure File storage, you can migrate legacy applications that rely on file shares to Azure quickly and without costly rewrites.
Applications running in Azure virtual machines or cloud services or from on-premises clients can mount a file share in the cloud, just as a desktop
application mounts a typical SMB share. Any number of application components can then mount and access the File storage share simultaneously.

For a conceptual overview of file storage, please see the .NET guide for file storage.

To use this guide, you must first create an Azure storage account. You'll also need your storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To create an F# script, create a file with the .fsx extension, for
example files.fsx , in your F# development environment.

Next, use a package manager such as Paket or NuGet to install the WindowsAzure.Storage package and reference WindowsAzure.Storage.dll in your
script using a #r directive.

Add the following open statements to the top of the files.fsx file:

You'll need an Azure Storage connection string for this tutorial. For more information about connection strings, see Configure Storage Connection
Strings.

For the tutorial, you'll enter your connection string in your script, like this:

However, this is not recommended for real projects. Your storage account key is similar to the root password for your storage account. Always be
careful to protect your storage account key. Avoid distributing it to other users, hard-coding it, or saving it in a plain-text file that is accessible to others.
You can regenerate your key using the Azure Portal if you believe it may have been compromised.

For real applications, the best way to maintain your storage connection string is in a configuration file. To fetch the connection string from a
configuration file, you can do this:

Using Azure Configuration Manager is optional. You can also use an API such as the .NET Framework's ConfigurationManager type.

To parse the connection string, use:

This will return a CloudStorageAccount .

The CloudFileClient type enables you to programmatically use files stored in File storage. Here's one way to create the service client:

Now you are ready to write code that reads data from and writes data to File storage.

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/file-storage.md
https://msdn.microsoft.com/library/windows/desktop/aa365233.aspx
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-files
https://docs.microsoft.com/azure/storage/storage-create-storage-account
https://fsprojects.github.io/Paket/
https://www.nuget.org/
https://docs.microsoft.com/azure/storage/storage-configure-connection-string

Create a file share

let share = fileClient.GetShareReference("myfiles")
share.CreateIfNotExists()

Create a root directory and a subdirectory

let rootDir = share.GetRootDirectoryReference()
let subDir = rootDir.GetDirectoryReference("myLogs")
subDir.CreateIfNotExists()

Upload text as a file

let file = subDir.GetFileReference("log.txt")
file.UploadText("This is the content of the log file")

Download a file to a local copy of the fileDownload a file to a local copy of the file

file.DownloadToFile("log.txt", FileMode.Append)

Set the maximum size for a file shareSet the maximum size for a file share

// stats.Usage is current usage in GB
let stats = share.GetStats()
share.FetchAttributes()

// Set the quota to 10 GB plus current usage
share.Properties.Quota <- stats.Usage + 10 |> Nullable
share.SetProperties()

// Remove the quota
share.Properties.Quota <- Nullable()
share.SetProperties()

Generate a shared access signature for a file or file shareGenerate a shared access signature for a file or file share

// Create a 24-hour read/write policy.
let policy =
 SharedAccessFilePolicy
 (SharedAccessExpiryTime = (DateTimeOffset.UtcNow.AddHours(24.) |> Nullable),
 Permissions = (SharedAccessFilePermissions.Read ||| SharedAccessFilePermissions.Write))

// Set the policy on the share.
let permissions = share.GetPermissions()
permissions.SharedAccessPolicies.Add("policyName", policy)
share.SetPermissions(permissions)

let sasToken = file.GetSharedAccessSignature(policy)
let sasUri = Uri(file.StorageUri.PrimaryUri.ToString() + sasToken)

let fileSas = CloudFile(sasUri)
fileSas.UploadText("This write operation is authenticated via SAS")

Copy filesCopy files

This example shows how to create a file share if it does not already exist:

Here, you get the root directory and get a sub-directory of the root. You create both if they don't already exist.

This example shows how to upload text as a file.

Here you download the file just created, appending the contents to a local file.

The example below shows how to check the current usage for a share and how to set the quota for the share. FetchAttributes must be called to
populate a share's Properties , and SetProperties to propagate local changes to Azure File storage.

You can generate a shared access signature (SAS) for a file share or for an individual file. You can also create a shared access policy on a file share to
manage shared access signatures. Creating a shared access policy is recommended, as it provides a means of revoking the SAS if it should be
compromised.

Here, you create a shared access policy on a share, and then use that policy to provide the constraints for a SAS on a file in the share.

For more information about creating and using shared access signatures, see Using Shared Access Signatures (SAS) and Create and use a SAS with
Blob storage.

https://docs.microsoft.com/azure/storage/storage-dotnet-shared-access-signature-part-1
https://docs.microsoft.com/azure/storage/storage-dotnet-shared-access-signature-part-2

Copy a file to another fileCopy a file to another file

let destFile = subDir.GetFileReference("log_copy.txt")
destFile.StartCopy(file)

Copy a file to a blobCopy a file to a blob

// Get a reference to the blob to which the file will be copied.
let blobClient = storageAccount.CreateCloudBlobClient()
let container = blobClient.GetContainerReference("myContainer")
container.CreateIfNotExists()
let destBlob = container.GetBlockBlobReference("log_blob.txt")

let filePolicy =
 SharedAccessFilePolicy
 (Permissions = SharedAccessFilePermissions.Read,
 SharedAccessExpiryTime = (DateTimeOffset.UtcNow.AddHours(24.) |> Nullable))

let fileSas2 = file.GetSharedAccessSignature(filePolicy)
let sasUri2 = Uri(file.StorageUri.PrimaryUri.ToString() + fileSas2)
destBlob.StartCopy(sasUri2)

Troubleshooting File storage using metrics

open Microsoft.WindowsAzure.Storage.File.Protocol
open Microsoft.WindowsAzure.Storage.Shared.Protocol

let props =
 FileServiceProperties(
 (HourMetrics = MetricsProperties(
 MetricsLevel = MetricsLevel.ServiceAndApi,
 RetentionDays = (14 |> Nullable),
 Version = "1.0"),
 MinuteMetrics = MetricsProperties(
 MetricsLevel = MetricsLevel.ServiceAndApi,
 RetentionDays = (7 |> Nullable),
 Version = "1.0"))

fileClient.SetServiceProperties(props)

Next steps

Conceptual articles and videosConceptual articles and videos

Tooling support for File storageTooling support for File storage

ReferenceReference

Blog postsBlog posts

You can copy a file to another file or to a blob, or a blob to a file. If you are copying a blob to a file, or a file to a blob, you must use a shared access
signature (SAS) to authenticate the source object, even if you are copying within the same storage account.

Here, you copy a file to another file in the same share. Because this copy operation copies between files in the same storage account, you can use
Shared Key authentication to perform the copy.

Here, you create a file and copy it to a blob within the same storage account. You create a SAS for the source file, which the service uses to authenticate
access to the source file during the copy operation.

You can copy a blob to a file in the same way. If the source object is a blob, then create a SAS to authenticate access to that blob during the copy
operation.

Azure Storage Analytics supports metrics for File storage. With metrics data, you can trace requests and diagnose issues.

You can enable metrics for File storage from the Azure Portal, or you can do it from F# like this:

See these links for more information about Azure File storage.

Azure Files Storage: a frictionless cloud SMB file system for Windows and Linux
How to use Azure File Storage with Linux

Using Azure PowerShell with Azure Storage
How to use AzCopy with Microsoft Azure Storage
Using the Azure CLI with Azure Storage

Storage Client Library for .NET reference
File Service REST API reference

Azure File storage is now generally available
Inside Azure File Storage

https://portal.azure.com
https://azure.microsoft.com/resources/videos/azurecon-2015-azure-files-storage-a-frictionless-cloud-smb-file-system-for-windows-and-linux/
https://docs.microsoft.com/azure/storage/storage-how-to-use-files-linux
https://docs.microsoft.com/azure/storage/storage-powershell-guide-full
https://docs.microsoft.com/azure/storage/storage-use-azcopy
https://docs.microsoft.com/azure/storage/storage-azure-cli#create-and-manage-file-shares
https://msdn.microsoft.com/library/azure/mt347887.aspx
https://docs.microsoft.com/rest/api/storageservices/fileservices/File-Service-REST-API
https://azure.microsoft.com/blog/azure-file-storage-now-generally-available/
https://azure.microsoft.com/blog/inside-azure-file-storage/

Introducing Microsoft Azure File Service
Persisting connections to Microsoft Azure Files

https://blogs.msdn.microsoft.com/windowsazurestorage/2014/05/12/introducing-microsoft-azure-file-service/
https://blogs.msdn.microsoft.com/windowsazurestorage/2014/05/26/persisting-connections-to-microsoft-azure-files/

Get started with Azure Queue storage using F#
5/4/2018 • 6 minutes to read • Edit Online

About this tutorialAbout this tutorial

Prerequisites

Create an F# Script and Start F# Interactive

Add namespace declarationsAdd namespace declarations

open Microsoft.Azure // Namespace for CloudConfigurationManager
open Microsoft.WindowsAzure.Storage // Namespace for CloudStorageAccount
open Microsoft.WindowsAzure.Storage.Queue // Namespace for Queue storage types

Get your connection stringGet your connection string

let storageConnString = "..." // fill this in from your storage account

// Parse the connection string and return a reference to the storage account.
let storageConnString =
 CloudConfigurationManager.GetSetting("StorageConnectionString")

Parse the connection stringParse the connection string

// Parse the connection string and return a reference to the storage account.
let storageAccount = CloudStorageAccount.Parse(storageConnString)

Create the Queue service clientCreate the Queue service client

let queueClient = storageAccount.CreateCloudQueueClient()

Azure Queue storage provides cloud messaging between application components. In designing applications for scale, application components are often
decoupled, so that they can scale independently. Queue storage delivers asynchronous messaging for communication between application components,
whether they are running in the cloud, on the desktop, on an on-premises server, or on a mobile device. Queue storage also supports managing
asynchronous tasks and building process work flows.

This tutorial shows how to write F# code for some common tasks using Azure Queue storage. Tasks covered include creating and deleting queues and
adding, reading, and deleting queue messages.

For a conceptual overview of queue storage, please see the .NET guide for queue storage.

To use this guide, you must first create an Azure storage account. You'll also need your storage access key for this account.

The samples in this article can be used in either an F# application or an F# script. To create an F# script, create a file with the .fsx extension, for
example queues.fsx , in your F# development environment.

Next, use a package manager such as Paket or NuGet to install the WindowsAzure.Storage package and reference WindowsAzure.Storage.dll in your
script using a #r directive.

Add the following open statements to the top of the queues.fsx file:

You'll need an Azure Storage connection string for this tutorial. For more information about connection strings, see Configure Storage Connection
Strings.

For the tutorial, you'll enter your connection string in your script, like this:

However, this is not recommended for real projects. Your storage account key is similar to the root password for your storage account. Always be
careful to protect your storage account key. Avoid distributing it to other users, hard-coding it, or saving it in a plain-text file that is accessible to others.
You can regenerate your key using the Azure Portal if you believe it may have been compromised.

For real applications, the best way to maintain your storage connection string is in a configuration file. To fetch the connection string from a
configuration file, you can do this:

Using Azure Configuration Manager is optional. You can also use an API such as the .NET Framework's ConfigurationManager type.

To parse the connection string, use:

This will return a CloudStorageAccount .

The CloudQueueClient class enables you to retrieve queues stored in Queue storage. Here's one way to create the service client:

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/queue-storage.md
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/azure/storage/storage-create-storage-account
https://fsprojects.github.io/Paket/
https://www.nuget.org/
https://docs.microsoft.com/azure/storage/storage-configure-connection-string

Create a queue

// Retrieve a reference to a container.
let queue = queueClient.GetQueueReference("myqueue")

// Create the queue if it doesn't already exist
queue.CreateIfNotExists()

Insert a message into a queue

// Create a message and add it to the queue.
let message = new CloudQueueMessage("Hello, World")
queue.AddMessage(message)

Peek at the next message

// Peek at the next message.
let peekedMessage = queue.PeekMessage()
let msgAsString = peekedMessage.AsString

Get the next message for processing

// Get the next message. Successful processing must be indicated via DeleteMessage later.
let retrieved = queue.GetMessage()

Change the contents of a queued message

// Update the message contents and set a new timeout.
retrieved.SetMessageContent("Updated contents.")
queue.UpdateMessage(retrieved,
 TimeSpan.FromSeconds(60.0),
 MessageUpdateFields.Content ||| MessageUpdateFields.Visibility)

De-queue the next message

// Process the message in less than 30 seconds, and then delete the message.
queue.DeleteMessage(retrieved)

Use Async workflows with common Queue storage APIs

Now you are ready to write code that reads data from and writes data to Queue storage.

This example shows how to create a queue if it doesn't already exist:

To insert a message into an existing queue, first create a new CloudQueueMessage . Next, call the AddMessage method. A CloudQueueMessage can be created
from either a string (in UTF-8 format) or a byte array, like this:

You can peek at the message in the front of a queue, without removing it from the queue, by calling the PeekMessage method.

You can retrieve the message at the front of a queue for processing by calling the GetMessage method.

You later indicate successful processing of the message by using DeleteMessage .

You can change the contents of a retrieved message in-place in the queue. If the message represents a work task, you could use this feature to update
the status of the work task. The following code updates the queue message with new contents, and sets the visibility timeout to extend another 60
seconds. This saves the state of work associated with the message, and gives the client another minute to continue working on the message. You could
use this technique to track multi-step workflows on queue messages, without having to start over from the beginning if a processing step fails due to
hardware or software failure. Typically, you would keep a retry count as well, and if the message is retried more than some number of times, you would
delete it. This protects against a message that triggers an application error each time it is processed.

Your code de-queues a message from a queue in two steps. When you call GetMessage , you get the next message in a queue. A message returned from
GetMessage becomes invisible to any other code reading messages from this queue. By default, this message stays invisible for 30 seconds. To finish

removing the message from the queue, you must also call DeleteMessage . This two-step process of removing a message assures that if your code fails
to process a message due to hardware or software failure, another instance of your code can get the same message and try again. Your code calls
DeleteMessage right after the message has been processed.

This example shows how to use an async workflow with common Queue storage APIs.

async {
 let! exists = queue.CreateIfNotExistsAsync() |> Async.AwaitTask

 let! retrieved = queue.GetMessageAsync() |> Async.AwaitTask

 // ... process the message here ...

 // Now indicate successful processing:
 do! queue.DeleteMessageAsync(retrieved) |> Async.AwaitTask
}

Additional options for de-queuing messages

for msg in queue.GetMessages(20, Nullable(TimeSpan.FromMinutes(5.))) do
 // Process the message here.
 queue.DeleteMessage(msg)

Get the queue length

queue.FetchAttributes()
let count = queue.ApproximateMessageCount.GetValueOrDefault()

Delete a queue

// Delete the queue.
queue.Delete()

Next steps

There are two ways you can customize message retrieval from a queue. First, you can get a batch of messages (up to 32). Second, you can set a longer
or shorter invisibility timeout, allowing your code more or less time to fully process each message. The following code example uses GetMessages to get
20 messages in one call and then processes each message. It also sets the invisibility timeout to five minutes for each message. Note that the 5 minutes
starts for all messages at the same time, so after 5 minutes have passed since the call to GetMessages , any messages which have not been deleted will
become visible again.

You can get an estimate of the number of messages in a queue. The FetchAttributes method asks the Queue service to retrieve the queue attributes,
including the message count. The ApproximateMessageCount property returns the last value retrieved by the FetchAttributes method, without calling the
Queue service.

To delete a queue and all the messages contained in it, call the Delete method on the queue object.

Now that you've learned the basics of Queue storage, follow these links to learn about more complex storage tasks.

Azure Storage APIs for .NET
Azure Storage Type Provider
Azure Storage Team Blog
Configure Azure Storage connection strings
Azure Storage Services REST API Reference

https://docs.microsoft.com/dotnet/api/overview/azure/storage
https://github.com/fsprojects/AzureStorageTypeProvider
https://blogs.msdn.microsoft.com/windowsazurestorage/
https://docs.microsoft.com/azure/storage/common/storage-configure-connection-string
https://docs.microsoft.com/rest/api/storageservices/Azure-Storage-Services-REST-API-Reference

Get started with Azure Table storage and the Azure Cosmos DB Table
API using F#
5/4/2018 • 9 minutes to read • Edit Online

About this tutorial

Prerequisites

Create an F# Script and Start F# Interactive

Add namespace declarationsAdd namespace declarations

open System
open System.IO
open Microsoft.Azure // Namespace for CloudConfigurationManager
open Microsoft.WindowsAzure.Storage // Namespace for CloudStorageAccount
open Microsoft.WindowsAzure.Storage.Table // Namespace for Table storage types

Get your Azure Storage connection stringGet your Azure Storage connection string

Get your Azure Cosmos DB connection stringGet your Azure Cosmos DB connection string

let storageConnString = "..." // fill this in from your storage account

Azure Table storage is a service that stores structured NoSQL data in the cloud. Table storage is a key/attribute store with a schemaless design. Because
Table storage is schemaless, it's easy to adapt your data as the needs of your application evolve. Access to data is fast and cost-effective for all kinds of
applications. Table storage is typically significantly lower in cost than traditional SQL for similar volumes of data.

You can use Table storage to store flexible datasets, such as user data for web applications, address books, device information, and any other type of
metadata that your service requires. You can store any number of entities in a table, and a storage account may contain any number of tables, up to the
capacity limit of the storage account.

Azure Cosmos DB provides the Table API for applications that are written for Azure Table storage and that require premium capabilities such as:

Turnkey global distribution.
Dedicated throughput worldwide.
Single-digit millisecond latencies at the 99th percentile.
Guaranteed high availability.
Automatic secondary indexing.

Applications written for Azure Table storage can migrate to Azure Cosmos DB by using the Table API with no code changes and take advantage of
premium capabilities. The Table API has client SDKs available for .NET, Java, Python, and Node.js.

For more information, see Introduction to Azure Cosmos DB Table API.

This tutorial shows how to write F# code to do some common tasks using Azure Table storage or the Azure Cosmos DB Table API, including creating
and deleting a table and inserting, updating, deleting, and querying table data.

To use this guide, you must first create an Azure storage account or Azure Cosmos DB account.

The samples in this article can be used in either an F# application or an F# script. To create an F# script, create a file with the .fsx extension, for
example tables.fsx , in your F# development environment.

Next, use a package manager such as Paket or NuGet to install the WindowsAzure.Storage package and reference WindowsAzure.Storage.dll in your
script using a #r directive. Do it again for Microsoft.WindowsAzure.ConfigurationManager in order to get the Microsoft.Azure namespace.

Add the following open statements to the top of the tables.fsx file:

If you're connecting to Azure Storage Table service, you'll need your connection string for this tutorial. You can copy your connection string from the
Azure portal. For more information about connection strings, see Configure Storage Connection Strings.

If you're connecting to Azure Cosmos DB, you'll need your connection string for this tutorial. You can copy your connection string from the Azure portal.
In the Azure portal, in your Cosmos DB account, go to Settings > Connection String, and click the Copy button to copy your Primary Connection
String.

For the tutorial, enter your connection string in your script, like the following example:

However, this is not recommended for real projects. Your storage account key is similar to the root password for your storage account. Always be
careful to protect your storage account key. Avoid distributing it to other users, hard-coding it, or saving it in a plain-text file that is accessible to others.
You can regenerate your key using the Azure Portal if you believe it may have been compromised.

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/table-storage.md
https://docs.microsoft.com/azure/cosmos-db/table-introduction
https://docs.microsoft.com/azure/storage/storage-create-storage-account
https://azure.microsoft.com/try/cosmosdb/
https://fsprojects.github.io/Paket/
https://www.nuget.org/
https://docs.microsoft.com/azure/storage/storage-configure-connection-string

// Parse the connection string and return a reference to the storage account.
let storageConnString =
 CloudConfigurationManager.GetSetting("StorageConnectionString")

Parse the connection stringParse the connection string

// Parse the connection string and return a reference to the storage account.
let storageAccount = CloudStorageAccount.Parse(storageConnString)

Create the Table service clientCreate the Table service client

// Create the table client.
let tableClient = storageAccount.CreateCloudTableClient()

Create a tableCreate a table

// Retrieve a reference to the table.
let table = tableClient.GetTableReference("people")

// Create the table if it doesn't exist.
table.CreateIfNotExists()

Add an entity to a tableAdd an entity to a table

type Customer(firstName, lastName, email: string, phone: string) =
 inherit TableEntity(partitionKey=lastName, rowKey=firstName)
 new() = Customer(null, null, null, null)
 member val Email = email with get, set
 member val PhoneNumber = phone with get, set

let customer =
 Customer("Walter", "Harp", "Walter@contoso.com", "425-555-0101")

let insertOp = TableOperation.Insert(customer)
table.Execute(insertOp)

Insert a batch of entitiesInsert a batch of entities

For real applications, the best way to maintain your storage connection string is in a configuration file. To fetch the connection string from a
configuration file, you can do this:

Using Azure Configuration Manager is optional. You can also use an API such as the .NET Framework's ConfigurationManager type.

To parse the connection string, use:

This returns a CloudStorageAccount .

The CloudTableClient class enables you to retrieve tables and entities in Table storage. Here's one way to create the service client:

Now you are ready to write code that reads data from and writes data to Table storage.

This example shows how to create a table if it does not already exist:

An entity has to have a type that inherits from TableEntity . You can extend TableEntity in any way you like, but your type must have a parameter-less
constructor. Only properties that have both get and set are stored in your Azure Table.

An entity's partition and row key uniquely identify the entity in the table. Entities with the same partition key can be queried faster than those with
different partition keys, but using diverse partition keys allows for greater scalability of parallel operations.

Here's an example of a Customer that uses the lastName as the partition key and the firstName as the row key.

Now add Customer to the table. To do so, create a TableOperation that executes on the table. In this case, you create an Insert operation.

You can insert a batch of entities into a table using a single write operation. Batch operations allow you to combine operations into a single execution,
but they have some restrictions:

You can perform updates, deletes, and inserts in the same batch operation.
A batch operation can include up to 100 entities.
All entities in a batch operation must have the same partition key.
While it is possible to perform a query in a batch operation, it must be the only operation in the batch.

Here's some code that combines two inserts into a batch operation:

let customer1 =
 Customer("Jeff", "Smith", "Jeff@contoso.com", "425-555-0102")

let customer2 =
 Customer("Ben", "Smith", "Ben@contoso.com", "425-555-0103")

let batchOp = TableBatchOperation()
batchOp.Insert(customer1)
batchOp.Insert(customer2)
table.ExecuteBatch(batchOp)

Retrieve all entities in a partitionRetrieve all entities in a partition

let query =
 TableQuery<Customer>().Where(
 TableQuery.GenerateFilterCondition(
 "PartitionKey", QueryComparisons.Equal, "Smith"))

let result = table.ExecuteQuery(query)

for customer in result do
 printfn "customer: %A %A" customer.RowKey customer.PartitionKey

Retrieve a range of entities in a partitionRetrieve a range of entities in a partition

let range =
 TableQuery<Customer>().Where(
 TableQuery.CombineFilters(
 TableQuery.GenerateFilterCondition(
 "PartitionKey", QueryComparisons.Equal, "Smith"),
 TableOperators.And,
 TableQuery.GenerateFilterCondition(
 "RowKey", QueryComparisons.LessThan, "M")))

let rangeResult = table.ExecuteQuery(range)

for customer in rangeResult do
 printfn "customer: %A %A" customer.RowKey customer.PartitionKey

Retrieve a single entityRetrieve a single entity

let retrieveOp = TableOperation.Retrieve<Customer>("Smith", "Ben")

let retrieveResult = table.Execute(retrieveOp)

// Show the result
let retrieveCustomer = retrieveResult.Result :?> Customer
printfn "customer: %A %A" retrieveCustomer.RowKey retrieveCustomer.PartitionKey

Replace an entityReplace an entity

To query a table for all entities in a partition, use a TableQuery object. Here, you filter for entities where "Smith" is the partition key.

You now print the results:

If you don't want to query all the entities in a partition, you can specify a range by combining the partition key filter with a row key filter. Here, you use
two filters to get all entities in the "Smith" partition where the row key (first name) starts with a letter earlier than "M" in the alphabet.

You now print the results:

You can write a query to retrieve a single, specific entity. Here, you use a TableOperation to specify the customer "Ben Smith". Instead of a collection,
you get back a Customer . Specifying both the partition key and the row key in a query is the fastest way to retrieve a single entity from the Table
service.

You now print the results:

To update an entity, retrieve it from the Table service, modify the entity object, and then save the changes back to the Table service using a Replace

operation. This causes the entity to be fully replaced on the server, unless the entity on the server has changed since it was retrieved, in which case the
operation fails. This failure is to prevent your application from inadvertently overwriting changes from other sources.

try
 let customer = retrieveResult.Result :?> Customer
 customer.PhoneNumber <- "425-555-0103"
 let replaceOp = TableOperation.Replace(customer)
 table.Execute(replaceOp) |> ignore
 Console.WriteLine("Update succeeeded")
with e ->
 Console.WriteLine("Update failed")

Insert-or-replace an entityInsert-or-replace an entity

try
 let customer = retrieveResult.Result :?> Customer
 customer.PhoneNumber <- "425-555-0104"
 let replaceOp = TableOperation.InsertOrReplace(customer)
 table.Execute(replaceOp) |> ignore
 Console.WriteLine("Update succeeeded")
with e ->
 Console.WriteLine("Update failed")

Query a subset of entity propertiesQuery a subset of entity properties

// Define the query, and select only the Email property.
let projectionQ = TableQuery<DynamicTableEntity>().Select [|"Email"|]

// Define an entity resolver to work with the entity after retrieval.
let resolver = EntityResolver<string>(fun pk rk ts props etag ->
 if props.ContainsKey("Email") then
 props.["Email"].StringValue
 else
 null
)

let resolvedResults = table.ExecuteQuery(projectionQ, resolver, null, null)

Retrieve entities in pages asynchronouslyRetrieve entities in pages asynchronously

let tableQ = TableQuery<Customer>()

let asyncQuery =
 let rec loop (cont: TableContinuationToken) = async {
 let! ct = Async.CancellationToken
 let! result = table.ExecuteQuerySegmentedAsync(tableQ, cont, ct) |> Async.AwaitTask

 // ...process the result here...

 // Continue to the next segment
 match result.ContinuationToken with
 | null -> ()
 | cont -> return! loop cont
 }
 loop null

let asyncResults = asyncQuery |> Async.RunSynchronously

Delete an entityDelete an entity

let deleteOp = TableOperation.Delete(customer)
table.Execute(deleteOp)

Delete a tableDelete a table

Sometimes, you don't know whether an entity exists in the table. And if it does, the current values stored in it are no longer needed. You can use
InsertOrReplace to create the entity, or replace it if it exists, regardless of its state.

A table query can retrieve just a few properties from an entity instead of all of them. This technique, called projection, can improve query performance,
especially for large entities. Here, you return only email addresses using DynamicTableEntity and EntityResolver . Note that projection is not supported
on the local storage emulator, so this code runs only when you're using an account on the Table service.

If you are reading a large number of entities, and you want to process them as they are retrieved rather than waiting for them all to return, you can use
a segmented query. Here, you return results in pages by using an async workflow so that execution is not blocked while you're waiting for a large set of
results to return.

You now execute this computation synchronously:

You can delete an entity after you have retrieved it. As with updating an entity, this fails if the entity has changed since you retrieved it.

table.DeleteIfExists()

Next steps

You can delete a table from a storage account. A table that has been deleted will be unavailable to be re-created for a period of time following the
deletion.

Now that you've learned the basics of Table storage, follow these links to learn about more complex storage tasks and the Azure Cosmos DB Table API.

Introduction to Azure Cosmos DB Table API
Storage Client Library for .NET reference
Azure Storage Type Provider
Azure Storage Team Blog
Configuring Connection Strings
Getting Started with Azure Table Storage in .NET

https://docs.microsoft.com/azure/cosmos-db/table-introduction
https://docs.microsoft.com/dotnet/api/overview/azure/storage?view=azure-dotnet
http://fsprojects.github.io/AzureStorageTypeProvider/
http://blogs.msdn.com/b/windowsazurestorage/
https://docs.microsoft.com/azure/storage/common/storage-configure-connection-string
https://azure.microsoft.com/resources/samples/storage-table-dotnet-getting-started/

Package Management for F# Azure Dependencies
5/4/2018 • 2 minutes to read • Edit Online

Using Paket

> paket add nuget WindowsAzure.Storage

> mono paket.exe add nuget WindowsAzure.Storage

> paket install

> mono paket.exe install

> paket update

> mono paket.exe update

Using Nuget

> nuget install WindowsAzure.Storage -ExcludeVersion

> mono nuget.exe install WindowsAzure.Storage -ExcludeVersion

> nuget restore

> mono nuget.exe restore

> nuget update

Obtaining packages for Azure development is easy when you use a package manager. The two options are Paket and NuGet.

If you're using Paket as your dependency manager, you can use the paket.exe tool to add Azure dependencies. For example:

Or, if you're using Mono for cross-platform .NET development:

This will add WindowsAzure.Storage to your set of package dependencies for the project in the current directory, modify the paket.dependencies file, and
download the package. If you have previously set up dependencies, or are working with a project where dependencies have been set up by another
developer, you can resolve and install dependencies locally like this:

Or, for Mono development:

You can update all your package dependencies to the latest version like this:

Or, for Mono development:

If you're using NuGet as your dependency manager, you can use the nuget.exe tool to add Azure dependencies. For example:

Or, for Mono development:

This will add WindowsAzure.Storage to your set of package dependencies for the project in the current directory, and download the package. If you have
previously set up dependencies, or are working with a project where dependencies have been set up by another developer, you can resolve and install
dependencies locally like this:

Or, for Mono development:

You can update all your package dependencies to the latest version like this:

Or, for Mono development:

https://github.com/dotnet/docs/blob/master/docs/fsharp/using-fsharp-on-azure/package-management.md
https://fsprojects.github.io/Paket/
https://www.nuget.org/
https://fsprojects.github.io/Paket/
https://www.mono-project.com/
https://www.nuget.org/

> mono nuget.exe update

Referencing Assemblies

> #r "packages/WindowsAzure.Storage/lib/net40/Microsoft.WindowsAzure.Storage.dll"

> cd packages/WindowsAzure.Storage
> dir /s/b *.dll

> find packages/WindowsAzure.Storage -name "*.dll"

In order to use your packages in your F# script, you need to reference the assemblies included in the packages using a #r directive. For example:

As you can see, you'll need to specify the relative path to the DLL and the full DLL name, which may not be exactly the same as the package name. The
path will include a framework version and possibly a package version number. To find all the installed assemblies, you can use something like this on a
Windows command line:

Or in a Unix shell, something like this:

This will give you the paths to the installed assemblies. From there, you can select the correct path for your framework version.

F# Language Reference
7/10/2018 • 8 minutes to read • Edit Online

F# Tokens

TITLE DESCRIPTION

Keyword Reference Contains links to information about all F# language keywords.

Symbol and Operator Reference Contains a table of symbols and operators that are used in the F# language.

Literals Describes the syntax for literal values in F# and how to specify type information for
F# literals.

F# Language Concepts

TITLE DESCRIPTION

Functions Functions are the fundamental unit of program execution in any programming
language. As in other languages, an F# function has a name, can have parameters
and take arguments, and has a body. F# also supports functional programming
constructs such as treating functions as values, using unnamed functions in
expressions, composition of functions to form new functions, curried functions, and
the implicit definition of functions by way of the partial application of function
arguments.

F# Types Describes the types that are used in F# and how F# types are named and
described.

Type Inference Describes how the F# compiler infers the types of values, variables, parameters and
return values.

Automatic Generalization Describes generic constructs in F#.

Inheritance Describes inheritance, which is used to model the "is-a" relationship, or subtyping,
in object-oriented programming.

Members Describes members of F# object types.

Parameters and Arguments Describes language support for defining parameters and passing arguments to
functions, methods, and properties. It includes information about how to pass by
reference.

Operator Overloading Describes how to overload arithmetic operators in a class or record type, and at the
global level.

Casting and Conversions Describes support for type conversions in F#.

Access Control Describes access control in F#. Access control means declaring what clients are able
to use certain program elements, such as types, methods, functions and so on.

Pattern Matching Describes patterns, which are rules for transforming input data that are used
throughout the F# language to extract compare data with a pattern, decompose
data into constituent parts, or extract information from data in various ways.

Active Patterns Describes active patterns. Active patterns enable you to define named partitions
that subdivide input data. You can use active patterns to decompose data in a
customized manner for each partition.

Assertions Describes the assert expression, which is a debugging feature that you can use
to test an expression. Upon failure in Debug mode, an assertion generates a
system error dialog box.

This section is a reference to the F# language, a multi-paradigm programming language targeting .NET. The F# language supports functional, object-
oriented and imperative programming models.

The following table shows reference topics that provide tables of keywords, symbols and literals used as tokens in F#.

The following table shows reference topics available that describe language concepts.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/index.md

Exception Handling Contains information about exception handling support in the F# language.

attributes Describes attributes, which enable metadata to be applied to a programming
construct.

Resource Management: The use Keyword Describes the keywords use and using , which can control the initialization and
release of resources

namespaces Describes namespace support in F#. A namespace lets you organize code into areas
of related functionality by enabling you to attach a name to a grouping of program
elements.

Modules Describes modules. An F# module is a grouping of F# code, such as values, types,
and function values, in an F# program. Grouping code in modules helps keep
related code together and helps avoid name conflicts in your program.

Import Declarations: The open Keyword Describes how open works. An import declaration specifies a module or
namespace whose elements you can reference without using a fully qualified name.

Signatures Describes signatures and signature files. A signature file contains information about
the public signatures of a set of F# program elements, such as types, namespaces,
and modules. It can be used to specify the accessibility of these program elements.

XML Documentation Describes support for generating documentation files for XML doc comments, also
known as triple slash comments. You can produce documentation from code
comments in F# just as in other .NET languages.

Verbose Syntax Describes the syntax for F# constructs when lightweight syntax is not enabled.
Verbose syntax is indicated by the #light "off" directive at the top of the code
file.

TITLE DESCRIPTION

F# Types

TITLE DESCRIPTION

values Describes values, which are immutable quantities that have a specific type; values
can be integral or floating point numbers, characters or text, lists, sequences,
arrays, tuples, discriminated unions, records, class types, or function values.

Basic Types Describes the fundamental basic types that are used in the F# language. It also
provides the corresponding .NET types and the minimum and maximum values for
each type.

Unit Type Describes the unit type, which is a type that indicates the absence of a specific
value; the unit type has only a single value, which acts as a placeholder when no
other value exists or is needed.

Strings Describes strings in F#. The string type represents immutable text, as a
sequence of Unicode characters. string is an alias for System.String in the
.NET Framework.

Tuples Describes tuples, which are groupings of unnamed but ordered values of possibly
different types.

F# Collection Types An overview of the F# functional collection types, including types for arrays, lists,
sequences (seq), maps, and sets.

Lists Describes lists. A list in F# is an ordered, immutable series of elements all of the
same type.

Options Describes the option type. An option in F# is used when a value may or may not
exist. An option has an underlying type and may either hold a value of that type or
it may not have a value.

Sequences Describes sequences. A sequence is a logical series of elements all of one type.
Individual sequence elements are only computed if required, so the representation
may be smaller than a literal element count indicates.

The following table shows reference topics available that describe types supported by the F# language.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures

Arrays Describes arrays. Arrays are fixed-size, zero-based, mutable sequences of
consecutive data elements, all of the same type.

Records Describes records. Records represent simple aggregates of named values, optionally
with members.

Discriminated Unions Describes discriminated unions, which provides support for values which may be
one of a variety of named cases, each with possibly different values and types.

Enumerations Describes enumerations are types that have a defined set of named values. You can
use them in place of literals to make code more readable and maintainable.

Reference Cells Describes reference cells, which are storage locations that enable you to create
mutable variables with reference semantics.

Type Abbreviations Describes type abbreviations, which are alternate names for types.

Classes Describes classes, which are types that represent objects that can have properties,
methods, and events.

Structures Describes structures, which are compact object types that can be more efficient
than a class for types that have a small amount of data and simple behavior.

Interfaces Describes interfaces, which specify sets of related members that other classes
implement.

Abstract Classes Describes abstract classes, which are classes that leave some or all members
unimplemented, so that implementations can be provided by derived classes.

Type Extensions Describes type extensions, which let you add new members to a previously defined
object type.

Flexible Types Describes flexible types. A flexible type annotation is an indication that a parameter,
variable or value has a type that is compatible with type specified, where
compatibility is determined by position in an object-oriented hierarchy of classes or
interfaces.

Delegates Describes delegates, which represent a function call as an object.

Units of Measure Describes units of measure. Floating point values in F# can have associated units of
measure, which are typically used to indicate length, volume, mass, and so on.

Type Providers Describes type provides and provides links to walkthroughs on using the built-in
type providers to access databases and web services.

TITLE DESCRIPTION

F# Expressions

TITLE DESCRIPTION

Conditional Expressions: if...then...else Describes the if...then...else expression, which runs different branches of
code and also evaluates to a different value depending on the Boolean expression
given.

Match Expressions Describes the match expression, which provides branching control that is based
on the comparison of an expression with a set of patterns.

Loops: for...to Expression Describes the for...to expression, which is used to iterate in a loop over a range
of values of a loop variable.

Loops: for...in Expression Describes the for...in expression, a looping construct that is used to iterate
over the matches of a pattern in an enumerable collection such as a range
expression, sequence, list, array, or other construct that supports enumeration.

Loops: while...do Expression Describes the while...do expression, which is used to perform iterative execution
(looping) while a specified test condition is true.

The following table lists topics that describe F# expressions.

Object Expressions Describes object expressions, which are expressions that create new instances of a
dynamically created, anonymous object type that is based on an existing base type,
interface, or set of interfaces.

Lazy Computations Describes lazy computations, which are computations that are not evaluated
immediately, but are instead evaluated when the result is actually needed.

Computation Expressions Describes computation expressions in F#, which provide a convenient syntax for
writing computations that can be sequenced and combined using control flow
constructs and bindings. They can be used to provide a convenient syntax for
monads, a functional programming feature that can be used to manage data,
control and side effects in functional programs. One type of computation
expression, the asynchronous workflow, provides support for asynchronous and
parallel computations. For more information, see Asynchronous Workflows.

Asynchronous Workflows Describes asynchronous workflows, a language feature that lets you write
asynchronous code in a way that is very close to the way you would naturally write
synchronous code.

Code Quotations Describes code quotations, a language feature that enables you to generate and
work with F# code expressions programmatically.

Query Expressions Describes query expressions, a language feature that implements LINQ for F# and
enables you to write queries against a data source or enumerable collection.

TITLE DESCRIPTION

Compiler-supported Constructs

TOPIC DESCRIPTION

Compiler Options Describes the command-line options for the F# compiler.

Compiler Directives Describes processor directives and compiler directives.

Source Line, File, and Path Identifiers Describes the identifiers __LINE__ , __SOURCE_DIRECTORY__ and
__SOURCE_FILE__ , which are built-in values that enable you to access the source

line number, directory and file name in your code.

See Also

The following table lists topics that describe special compiler-supported constructs.

Visual F#

Keyword Reference
5/7/2018 • 7 minutes to read • Edit Online

F# Keyword Table

KEYWORD LINK DESCRIPTION

abstract Members

Abstract Classes

Indicates a method that either has no implementation
in the type in which it is declared or that is virtual and
has a default implementation.

and let Bindings

Members

Constraints

Used in mutually recursive bindings, in property
declarations, and with multiple constraints on generic
parameters.

as Classes

Pattern Matching

Used to give the current class object an object name.
Also used to give a name to a whole pattern within a
pattern match.

assert Assertions Used to verify code during debugging.

base Classes

Inheritance

Used as the name of the base class object.

begin Verbose Syntax In verbose syntax, indicates the start of a code block.

class Classes In verbose syntax, indicates the start of a class
definition.

default Members Indicates an implementation of an abstract method;
used together with an abstract method declaration to
create a virtual method.

delegate Delegates Used to declare a delegate.

do do Bindings

Loops: for...to Expression

Loops: for...in Expression

Loops: while...do Expression

Used in looping constructs or to execute imperative
code.

done Verbose Syntax In verbose syntax, indicates the end of a block of code
in a looping expression.

downcast Casting and Conversions Used to convert to a type that is lower in the
inheritance chain.

downto Loops: for...to Expression In a for expression, used when counting in reverse.

elif Conditional Expressions: if...then...else Used in conditional branching. A short form of
else if .

else Conditional Expressions: if...then...else Used in conditional branching.

This topic contains links to information about all F# language keywords.

The following table shows all F# keywords in alphabetical order, together with brief descriptions and links to relevant topics that contain more
information.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/keyword-reference.md

end Structures

Discriminated Unions

Records

Type Extensions

Verbose Syntax

In type definitions and type extensions, indicates the
end of a section of member definitions.

In verbose syntax, used to specify the end of a code
block that starts with the begin keyword.

exception Exception Handling

Exception Types

Used to declare an exception type.

extern External Functions Indicates that a declared program element is defined
in another binary or assembly.

false Primitive Types Used as a Boolean literal.

finally Exceptions: The try...finally Expression Used together with try to introduce a block of code
that executes regardless of whether an exception
occurs.

fixed Fixed Used to "pin" a pointer on the stack to prevent it from
being garbage collected.

for Loops: for...to Expression

Loops: for...in Expression

Used in looping constructs.

fun Lambda Expressions: The fun Keyword Used in lambda expressions, also known as
anonymous functions.

function Match Expressions

Lambda Expressions: The fun Keyword

Used as a shorter alternative to the fun keyword
and a match expression in a lambda expression that
has pattern matching on a single argument.

global Namespaces Used to reference the top-level .NET namespace.

if Conditional Expressions: if...then...else Used in conditional branching constructs.

in Loops: for...in Expression

Verbose Syntax

Used for sequence expressions and, in verbose syntax,
to separate expressions from bindings.

inherit Inheritance Used to specify a base class or base interface.

inline Functions

Inline Functions

Used to indicate a function that should be integrated
directly into the caller's code.

interface Interfaces Used to declare and implement interfaces.

internal Access Control Used to specify that a member is visible inside an
assembly but not outside it.

lazy Lazy Computations Used to specify a computation that is to be
performed only when a result is needed.

let let Bindings Used to associate, or bind, a name to a value or
function.

let! Asynchronous Workflows

Computation Expressions

Used in asynchronous workflows to bind a name to
the result of an asynchronous computation, or, in
other computation expressions, used to bind a name
to a result, which is of the computation type.

match Match Expressions Used to branch by comparing a value to a pattern.

member Members Used to declare a property or method in an object
type.

KEYWORD LINK DESCRIPTION

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

module Modules Used to associate a name with a group of related
types, values, and functions, to logically separate it
from other code.

mutable let Bindings Used to declare a variable, that is, a value that can be
changed.

namespace Namespaces Used to associate a name with a group of related
types and modules, to logically separate it from other
code.

new Constructors

Constraints

Used to declare, define, or invoke a constructor that
creates or that can create an object.

Also used in generic parameter constraints to indicate
that a type must have a certain constructor.

not Symbol and Operator Reference

Constraints

Not actually a keyword. However, not struct in
combination is used as a generic parameter
constraint.

null Null Values

Constraints

Indicates the absence of an object.

Also used in generic parameter constraints.

of Discriminated Unions

Delegates

Exception Types

Used in discriminated unions to indicate the type of
categories of values, and in delegate and exception
declarations.

open Import Declarations: The open Keyword Used to make the contents of a namespace or
module available without qualification.

or Symbol and Operator Reference

Constraints

Used with Boolean conditions as a Boolean or

operator. Equivalent to `

override Members Used to implement a version of an abstract or virtual
method that differs from the base version.

private Access Control Restricts access to a member to code in the same type
or module.

public Access Control Allows access to a member from outside the type.

rec Functions Used to indicate that a function is recursive.

return Asynchronous Workflows

Computation Expressions

Used to indicate a value to provide as the result of a
computation expression.

return! Computation Expressions

Asynchronous Workflows

Used to indicate a computation expression that, when
evaluated, provides the result of the containing
computation expression.

select Query Expressions Used in query expressions to specify what fields or
columns to extract. Note that this is a contextual
keyword, which means that it is not actually a
reserved word and it only acts like a keyword in
appropriate context.

static Members Used to indicate a method or property that can be
called without an instance of a type, or a value
member that is shared among all instances of a type.

struct Structures

Constraints

Used to declare a structure type.

Also used in generic parameter constraints.

Used for OCaml compatibility in module definitions.

KEYWORD LINK DESCRIPTION

then Conditional Expressions: if...then...else

Constructors

Used in conditional expressions.

Also used to perform side effects after object
construction.

to Loops: for...to Expression Used in for loops to indicate a range.

true Primitive Types Used as a Boolean literal.

try Exceptions: The try...with Expression

Exceptions: The try...finally Expression

Used to introduce a block of code that might
generate an exception. Used together with with or
finally .

type F# Types

Classes

Records

Structures

Enumerations

Discriminated Unions

Type Abbreviations

Units of Measure

Used to declare a class, record, structure,
discriminated union, enumeration type, unit of
measure, or type abbreviation.

upcast Casting and Conversions Used to convert to a type that is higher in the
inheritance chain.

use Resource Management: The use Keyword Used instead of let for values that require
Dispose to be called to free resources.

use! Computation Expressions

Asynchronous Workflows

Used instead of let! in asynchronous workflows
and other computation expressions for values that
require Dispose to be called to free resources.

val Explicit Fields: The val Keyword

Signatures

Members

Used in a signature to indicate a value, or in a type to
declare a member, in limited situations.

void Primitive Types Indicates the .NET void type. Used when
interoperating with other .NET languages.

when Constraints Used for Boolean conditions (when guards) on
pattern matches and to introduce a constraint clause
for a generic type parameter.

while Loops: while...do Expression Introduces a looping construct.

with Match Expressions

Object Expressions

Copy and Update Record Expressions

Type Extensions

Exceptions: The try...with Expression

Used together with the match keyword in pattern
matching expressions. Also used in object expressions,
record copying expressions, and type extensions to
introduce member definitions, and to introduce
exception handlers.

yield Sequences Used in a sequence expression to produce a value for
a sequence.

yield! Computation Expressions

Asynchronous Workflows

Used in a computation expression to append the
result of a given computation expression to a
collection of results for the containing computation
expression.

KEYWORD LINK DESCRIPTION

The following tokens are reserved in F# because they are keywords in the OCaml language:

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

See Also

asr

land

lor

lsl

lsr

lxor

mod

sig

If you use the --mlcompatibility compiler option, the above keywords are available for use as identifiers.

The following tokens are reserved as keywords for future expansion of the F# language:

atomic

break

checked

component

const

constraint

constructor

continue

eager

event

external

functor

include

method

mixin

object

parallel

process

protected

pure

sealed

tailcall

trait

virtual

volatile

F# Language Reference

Symbol and Operator Reference

Compiler Options

Symbol and Operator Reference
5/4/2018 • 8 minutes to read • Edit Online

NOTENOTE

Table of Symbols and Operators

SYMBOL OR OPERATOR LINKS DESCRIPTION

! Reference Cells

Computation Expressions

!= Not applicable.

" Literals

Strings

""" Strings Delimits a verbatim text string. Differs from @"..."

in that a you can indicate a quotation mark character
by using a single quote in the string.

Compiler Directives

Flexible Types

$ No more information available.

% Arithmetic Operators

Code Quotations

%% Code Quotations

%? Nullable Operators

& Match Expressions

&& Boolean Operators

&&& Bitwise Operators

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

This topic includes a table of symbols and operators that are used in the F# language.

The following table describes symbols used in the F# language, provides links to topics that provide more information, and provides a brief description
of some of the uses of the symbol. Symbols are ordered according to the ASCII character set ordering.

Dereferences a reference cell.
After a keyword, indicates a modified version
of the keyword's behavior as controlled by a
workflow.

Not used in F#. Use <> for inequality
operations.

Delimits a text string.

Prefixes a preprocessor or compiler directive,
such as #light .
When used with a type, indicates a flexible
type, which refers to a type or any one of its
derived types.

Used internally for certain compiler-generated
variable and function names.

Computes the integer remainder.
Used for splicing expressions into typed code
quotations.

Used for splicing expressions into untyped
code quotations.

Computes the integer remainder, when the
right side is a nullable type.

Computes the address of a mutable value, for
use when interoperating with other languages.
Used in AND patterns.

Computes the Boolean AND operation.

Computes the bitwise AND operation.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/symbol-and-operator-reference/index.md

' Literals

Automatic Generalization

``...`` No more information available.

() Unit Type

(...) Tuples

Operator Overloading

(*...*)

(|...|) Active Patterns

* Arithmetic Operators

Tuples

Units of Measure

*? Nullable Operators

** Arithmetic Operators

+ Arithmetic Operators

+? Nullable Operators

, Tuples

- Arithmetic Operators

- Nullable Operators

-> Functions

Match Expressions

SYMBOL OR OPERATOR LINKS DESCRIPTION

Delimits a single-character literal.
Indicates a generic type parameter.

Delimits an identifier that would otherwise not
be a legal identifier, such as a language
keyword.

Represents the single value of the unit type.

Indicates the order in which expressions are
evaluated.
Delimits a tuple.
Used in operator definitions.

Delimits a comment that could span multiple
lines.

Delimits an active pattern. Also called banana
clips.

When used as a binary operator, multiplies the
left and right sides.
In types, indicates pairing in a tuple.
Used in units of measure types.

Multiplies the left and right sides, when the
right side is a nullable type.

Computes the exponentiation operation (
x ** y means x to the power of y).

When used as a binary operator, adds the left
and right sides.
When used as a unary operator, indicates a
positive quantity. (Formally, it produces the
same value with the sign unchanged.)

Adds the left and right sides, when the right
side is a nullable type.

Separates the elements of a tuple, or type
parameters.

When used as a binary operator, subtracts the
right side from the left side.
When used as a unary operator, performs a
negation operation.

Subtracts the right side from the left side,
when the right side is a nullable type.

In function types, delimits arguments and
return values.
Yields an expression (in sequence expressions);
equivalent to the yield keyword.
Used in match expressions

. Members

Primitive Types

.. Loops: for...in Expression

.. .. Loops: for...in Expression

.[...] Arrays

/ Arithmetic Operators

Units of Measure

/? Nullable Operators

//

/// XML Documentation

: Functions

:: Lists

Match Expressions

:= Reference Cells

:> Casting and Conversions

:? Match Expressions

:?> Casting and Conversions

; Verbose Syntax

Lists

Records

< Arithmetic Operators

<? Nullable Operators Computes the less than operation, when the right
side is a nullable type.

<< Functions

SYMBOL OR OPERATOR LINKS DESCRIPTION

Accesses a member, and separates individual
names in a fully qualified name.
Specifies a decimal point in floating point
numbers.

Specifies a range.

Specifies a range together with an increment.

Accesses an array element.

Divides the left side (numerator) by the right
side (denominator).
Used in units of measure types.

Divides the left side by the right side, when
the right side is a nullable type.

Indicates the beginning of a single-line
comment.

Indicates an XML comment.

In a type annotation, separates a parameter or
member name from its type.

Creates a list. The element on the left side is
prepended to the list on the right side.
Used in pattern matching to separate the
parts of a list.

Assigns a value to a reference cell.

Converts a type to type that is higher in the
hierarchy.

Returns true if the value matches the
specified type; otherwise, returns false

(type test operator).

Converts a type to a type that is lower in the
hierarchy.

Separates expressions (used mostly in verbose
syntax).
Separates elements of a list.
Separates fields of a record.

Computes the less-than operation.

Composes two functions in reverse order; the
second one is executed first (backward
composition operator).

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

<<< Bitwise Operators

<- Values

<...> Automatic Generalization

<> Arithmetic Operators

<>? Nullable Operators

<= Arithmetic Operators

<=? Nullable Operators

<| Functions

<|| Operators.(<||)<'T1,'T2,'U> Function

<||| Operators.(<|||)<'T1,'T2,'T3,'U> Function

<@...@> Code Quotations

<@@...@@> Code Quotations

= Arithmetic Operators

=? Nullable Operators

== Not applicable.

> Arithmetic Operators

>? Nullable Operators

>> Functions

>>> Bitwise Operators

SYMBOL OR OPERATOR LINKS DESCRIPTION

Shifts bits in the quantity on the left side to
the left by the number of bits specified on the
right side.

Assigns a value to a variable.

Delimits type parameters.

Returns true if the left side is not equal to
the right side; otherwise, returns false.

Computes the "not equal" operation when the
right side is a nullable type.

Returns true if the left side is less than or
equal to the right side; otherwise, returns
false .

Computes the "less than or equal to"
operation when the right side is a nullable
type.

Passes the result of the expression on the right
side to the function on left side (backward pipe
operator).

Passes the tuple of two arguments on the
right side to the function on left side.

Passes the tuple of three arguments on the
right side to the function on left side.

Delimits a typed code quotation.

Delimits an untyped code quotation.

Returns true if the left side is equal to the
right side; otherwise, returns false .

Computes the "equal" operation when the
right side is a nullable type.

Not used in F#. Use = for equality
operations.

Returns true if the left side is greater than
the right side; otherwise, returns false .

Computes the "greather than" operation when
the right side is a nullable type.

Composes two functions (forward composition
operator).

Shifts bits in the quantity on the left side to
the right by the number of places specified on
the right side.

https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-%5bhh-%5d%5b%27t1%2c%27t2%2c%27u%5d-function-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-%5bhhh-%5d%5b%27t1%2c%27t2%2c%27t3%2c%27u%5d-function-%5bfsharp%5d

>= Arithmetic Operators

>=? Nullable Operators

? Parameters and Arguments

? ... <- ... No more information available.

?>= , ?> , ?<= , ?< , ?= , ?<> , ?+ , ?- , ?* ,
?/

Nullable Operators

>=? , >? , <=? , <? , =? , <>? , +? , -? , *? ,
/?

Nullable Operators

?>=? , ?>? , ?<=? , ?<? , ?=? , ?<>? , ?+? ,
?-? , ?*? , ?/?

Nullable Operators

@ Lists

Strings

[...] Lists

[|...|] Arrays

[<...>] Attributes

\ Strings

^ Statically Resolved Type Parameters

Strings

^^^ Bitwise Operators

_ Match Expressions

Generics

` Automatic Generalization

{...} Sequences

Records

SYMBOL OR OPERATOR LINKS DESCRIPTION

Returns true if the left side is greater than or
equal to the right side; otherwise, returns
false .

Computes the "greater than or equal"
operation when the right side is a nullable
type.

Specifies an optional argument.
Used as an operator for dynamic method and
property calls. You must provide your own
implementation.

Used as an operator for setting dynamic
properties. You must provide your own
implementation.

Equivalent to the corresponding operators
without the ? prefix, where a nullable type is
on the left.

Equivalent to the corresponding operators
without the ? suffix, where a nullable type is on
the right.

Equivalent to the corresponding operators
without the surrounding question marks,
where both sides are nullable types.

Concatenates two lists.
When placed before a string literal, indicates
that the string is to be interpreted verbatim,
with no interpretation of escape characters.

Delimits the elements of a list.

Delimits the elements of an array.

Delimits an attribute.

Escapes the next character; used in character
and string literals.

Specifies type parameters that must be
resolved at compile time, not at runtime.
Concatenates strings.

Computes the bitwise exclusive OR operation.

Indicates a wildcard pattern.
Specifies an anonymous generic parameter.

Used internally to indicate a generic type
parameter.

Delimits sequence expressions and
computation expressions.
Used in record definitions.

| Match Expressions

|| Boolean Operators

||| Bitwise Operators

|> Functions

||> Operators.(||>)<'T1,'T2,'U> Function

|||> Operators.(|||>)<'T1,'T2,'T3,'U> Function

~~ Operator Overloading

~~~ Bitwise Operators

~- Operator Overloading

~+ Operator Overloading

SYMBOL OR OPERATOR LINKS DESCRIPTION

Operator Precedence

OPERATOR ASSOCIATIVITY

as Right

when Right

|  (pipe) Left

; Right

let Nonassociative

function , fun , match , try Nonassociative

if Nonassociative

-> Right

:= Right

, Nonassociative

or , || Left

& , && Left

Delimits individual match cases, individual
discriminated union cases, and enumeration
values.

Computes the Boolean OR operation.

Computes the bitwise OR operation.

Passes the result of the left side to the
function on the right side (forward pipe
operator).

Passes the tuple of two arguments on the left
side to the function on the right side.

Passes the tuple of three arguments on the
left side to the function on the right side.

Used to declare an overload for the unary
negation operator.

Computes the bitwise NOT operation.

Used to declare an overload for the unary
minus operator.

Used to declare an overload for the unary plus
operator.

The following table shows the order of precedence of operators and other expression keywords in the F# language, in order from lowest precedence to
the highest precedence. Also listed is the associativity, if applicable.

https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-hh%5d-%5d%5b%27t1%2c%27t2%2c%27u%5d-function-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-hhh%5d-%5d%5b%27t1%2c%27t2%2c%27t3%2c%27u%5d-function-%5bfsharp%5d


:> , :?> Right

!= op, < op, > op, = , | op, & op, &

(including <<< , >>> , ||| , &&& )

Left

^ op

(including ^^^ )

Right

:: Right

:? Not associative

- op, + op Applies to infix uses of these symbols

* op, / op, % op Left

** op Right

f x  (function application) Left

|  (pattern match) Right

prefix operators ( + op, - op, % , %% , & , && , ! op, ~ op) Left

. Left

f(x) Left

f< types > Left

OPERATOR ASSOCIATIVITY

See Also

F# supports custom operator overloading. This means that you can define your own operators. In the previous table, op can be any valid (possibly
empty) sequence of operator characters, either built-in or user-defined. Thus, you can use this table to determine what sequence of characters to use for
a custom operator to achieve the desired level of precedence. Leading .  characters are ignored when the compiler determines precedence.

F# Language Reference

Operator Overloading



              

Arithmetic Operators
5/4/2018 • 3 minutes to read • Edit Online

Summary of Binary Arithmetic Operators

BINARY OPERATOR NOTES

+  (addition, plus) Unchecked. Possible overflow condition when numbers are added together and the
sum exceeds the maximum absolute value supported by the type.

-  (subtraction, minus) Unchecked. Possible underflow condition when unsigned types are subtracted, or
when floating-point values are too small to be represented by the type.

*  (multiplication, times) Unchecked. Possible overflow condition when numbers are multiplied and the
product exceeds the maximum absolute value supported by the type.

/  (division, divided by) Division by zero causes a DivideByZeroException for integral types. For floating-
point types, division by zero gives you the special floating-point values +Infinity

or -Infinity . There is also a possible underflow condition when a floating-point
number is too small to be represented by the type.

%  (remainder, rem) Returns the remainder of a division operation. The sign of the result is the same as
the sign of the first operand.

**  (exponentiation, to the power of) Possible overflow condition when the result exceeds the maximum absolute value
for the type.

The exponentiation operator works only with floating-point types.

Summary of Unary Arithmetic Operators

UNARY OPERATOR NOTES

+  (positive) Can be applied to any arithmetic expression. Does not change the sign of the value.

-  (negation, negative) Can be applied to any arithmetic expression. Changes the sign of the value.

Summary of Binary Comparison Operators

OPERATOR NOTES

=  (equality, equals) This is not an assignment operator. It is used only for comparison. This is a generic
operator.

>  (greater than) This is a generic operator.

<  (less than) This is a generic operator.

>=  (greater than or equals) This is a generic operator.

<=  (less than or equals) This is a generic operator.

This topic describes arithmetic operators that are available in the F# language.

The following table summarizes the binary arithmetic operators that are available for unboxed integral and floating-point types.

The following table summarizes the unary arithmetic operators that are available for integral and floating-point types.

The behavior at overflow or underflow for integral types is to wrap around. This causes an incorrect result. Integer overflow is a potentially serious
problem that can contribute to security issues when software is not written to account for it. If this is a concern for your application, consider using the
checked operators in Microsoft.FSharp.Core.Operators.Checked .

The following table shows the binary comparison operators that are available for integral and floating-point types. These operators return values of
type bool .

Floating-point numbers should never be directly compared for equality, because the IEEE floating-point representation does not support an exact
equality operation. Two numbers that you can easily verify to be equal by inspecting the code might actually have different bit representations.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/symbol-and-operator-reference/arithmetic-operators.md
https://docs.microsoft.com/dotnet/api/system.dividebyzeroexception


<>  (not equal) This is a generic operator.

OPERATOR NOTES

Overloaded and Generic Operators

Operators and Type Inference

// x, y and return value inferred to be int
// function1: int -> int -> int
let function1 x y = x + y

// x, y and return value inferred to be float
// function2: float -> float -> float
let function2 (x: float) y = x + y

See Also

All of the operators discussed in this topic are defined in the Microsoft.FSharp.Core.Operators namespace. Some of the operators are defined by
using statically resolved type parameters. This means that there are individual definitions for each specific type that works with that operator. All of the
unary and binary arithmetic and bitwise operators are in this category. The comparison operators are generic and therefore work with any type, not just
primitive arithmetic types. Discriminated union and record types have their own custom implementations that are generated by the F# compiler. Class
types use the method Equals.

The generic operators are customizable. To customize the comparison functions, override Equals to provide your own custom equality comparison, and
then implement IComparable. The System.IComparable interface has a single method, the CompareTo method.

The use of an operator in an expression constrains type inference on that operator. Also, the use of operators prevents automatic generalization, because
the use of operators implies an arithmetic type. In the absence of any other information, the F# compiler infers int  as the type of arithmetic
expressions. You can override this behavior by specifying another type. Thus the argument types and return type of function1  in the following code are
inferred to be int , but the types for function2  are inferred to be float .

Symbol and Operator Reference

Operator Overloading

Bitwise Operators

Boolean Operators

https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable.compareto


    

Boolean Operators
5/4/2018 • 2 minutes to read • Edit Online

Summary of Boolean Operators

OPERATOR DESCRIPTION

not Boolean negation

|| Boolean OR

&& Boolean AND

See Also

This topic describes the support for Boolean operators in the F# language.

The following table summarizes the Boolean operators that are available in the F# language. The only type supported by these operators is the bool

type.

The Boolean AND and OR operators perform short-circuit evaluation, that is, they evaluate the expression on the right of the operator only when it is
necessary to determine the overall result of the expression. The second expression of the &&  operator is evaluated only if the first expression evaluates
to true ; the second expression of the ||  operator is evaluated only if the first expression evaluates to false .

Bitwise Operators

Arithmetic Operators

Symbol and Operator Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/symbol-and-operator-reference/boolean-operators.md


        

Bitwise Operators
7/21/2018 • 2 minutes to read • Edit Online

Summary of Bitwise Operators

OPERATOR NOTES

&&& Bitwise AND operator. Bits in the result have the value 1 if and only if the
corresponding bits in both source operands are 1.

||| Bitwise OR operator. Bits in the result have the value 1 if either of the
corresponding bits in the source operands are 1.

^^^ Bitwise exclusive OR operator. Bits in the result have the value 1 if and only if bits in
the source operands have unequal values.

~~~ Bitwise negation operator. This is a unary operator and produces a result in which
all 0 bits in the source operand are converted to 1 bits and all 1 bits are converted
to 0 bits.

<<< Bitwise left-shift operator. The result is the first operand with bits shifted left by the
number of bits in the second operand. Bits shifted off the most significant position
are not rotated into the least significant position. The least significant bits are
padded with zeros. The type of the second argument is int32 .

>>> Bitwise right-shift operator. The result is the first operand with bits shifted right by
the number of bits in the second operand. Bits shifted off the least significant
position are not rotated into the most significant position. For unsigned types, the
most significant bits are padded with zeros. For signed types with negative values,
the most significant bits are padded with ones. The type of the second argument is
int32 .

See Also

This topic describes bitwise operators that are available in the F# language.

The following table describes the bitwise operators that are supported for unboxed integral types in the F# language.

The following types can be used with bitwise operators: byte , sbyte , int16 , uint16 , int32 (int) , uint32 , int64 , uint64 , nativeint , and
unativeint .

Symbol and Operator Reference

Arithmetic Operators

Boolean Operators

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/symbol-and-operator-reference/bitwise-operators.md

Nullable Operators
5/4/2018 • 3 minutes to read • Edit Online

Table of Nullable Operators

NULLABLE ON LEFT NULLABLE ON RIGHT BOTH SIDES NULLABLE

?>= >=? ?>=?

?> >? ?>?

?<= <=? ?<=?

?< <? ?<?

?= =? ?=?

?<> <>? ?<>?

?+ +? ?+?

?- -? ?-?

?* *? ?*?

?/ /? ?/?

?% %? ?%?

Remarks

open Microsoft.FSharp.Linq

let nullableInt = new System.Nullable<int>(10)

// Use the Nullable.float conversion operator to convert from one nullable type to another nullable type.
let nullableFloat = Nullable.float nullableInt

// Use the regular non-nullable float operator to convert to a non-nullable float.
printfn "%f" (float nullableFloat)

Nullable operators are binary arithmetic or comparison operators that work with nullable arithmetic types on one or both sides. Nullable types arise
frequently when you work with data from sources such as databases that allow nulls in place of actual values. Nullable operators are used frequently in
query expressions. In addition to nullable operators for arithmetic and comparison, conversion operators can be used to convert between nullable types.
There are also nullable versions of certain query operators.

The following table lists nullable operators supported in the F# language.

The nullable operators are included in the NullableOperators module in the namespace Microsoft.FSharp.Linq. The type for nullable data is
System.Nullable<'T> .

In query expressions, nullable types arise when selecting data from a data source that allows nulls instead of values. In a SQL Server database, each
data column in a table has an attribute that indicates whether nulls are allowed. If nulls are allowed, the data returned from the database can contain
nulls that cannot be represented by a primitive data type such as int , float , and so on. Therefore, the data is returned as a System.Nullable<int>

instead of int , and System.Nullable<float> instead of float . The actual value can be obtained from a System.Nullable<'T> object by using the Value

property, and you can determine if a System.Nullable<'T> object has a value by calling the HasValue method. Another useful method is the
System.Nullable<'T>.GetValueOrDefault method, which allows you to get the value or a default value of the appropriate type. The default value is some

form of "zero" value, such as 0, 0.0, or false .

Nullable types may be converted to non-nullable primitive types using the usual conversion operators such as int or float . It is also possible to
convert from one nullable type to another nullable type by using the conversion operators for nullable types. The appropriate conversion operators
have the same name as the standard ones, but they are in a separate module, the Nullable module in the Microsoft.FSharp.Linq namespace. Typically,
you open this namespace when working with query expressions. In that case, you can use the nullable conversion operators by adding the prefix
Nullable. to the appropriate conversion operator, as shown in the following code.

The output is 10.000000 .

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/symbol-and-operator-reference/nullable-operators.md
https://msdn.microsoft.com/library/94d29e32-a204-4f60-a527-6b0af86268f3
https://msdn.microsoft.com/library/0a255d8e-8cae-4160-ae61-243a5d96583f
https://msdn.microsoft.com/library/3051a50f-d276-4c84-9d73-bf2efeddef94
https://msdn.microsoft.com/library/62dc0021-1312-4ac3-be87-798b60b81bb6
https://msdn.microsoft.com/library/0ad1284b-de48-4a04-83d8-b6f13c9c8936
https://msdn.microsoft.com/library/dc18b6fa-30c4-47b0-9057-794439378a05
https://msdn.microsoft.com/library/56fddf0a-e4ca-4891-a3be-fad1876be3b6
https://msdn.microsoft.com/library/02454a0f-30ca-4e77-ad84-ee7837461804
https://msdn.microsoft.com/library/5c37c28c-0b57-4da5-be11-5a123f7e8ee4
https://msdn.microsoft.com/library/b71897f0-6e29-4c58-b0a7-a5bfa6f88917
https://msdn.microsoft.com/library/be9ea40f-a67f-4e98-8067-a14046752e8b
https://msdn.microsoft.com/library/6f1962c8-5605-468c-94ae-f379ae98e17d
https://msdn.microsoft.com/library/5cdc8ff6-244b-49cf-9376-69ecf249fd7c
https://msdn.microsoft.com/library/d2102894-6a51-475d-890a-735568c31f87
https://msdn.microsoft.com/library/5f793f29-1084-4570-b1c1-17c1b7ef764b
https://msdn.microsoft.com/library/3643a5a8-2ea5-4ad6-82c4-83927c3884a0
https://msdn.microsoft.com/library/3179aace-70c4-4911-9258-619592214976
https://msdn.microsoft.com/library/5da813d8-ee75-45b8-9ef4-146dcb6d394d
https://msdn.microsoft.com/library/2e8ddd05-b3f3-41b3-9d73-938d9e540f3f
https://msdn.microsoft.com/library/74772ea8-f010-493e-bdb5-ba347f2fd4f1
https://msdn.microsoft.com/library/57f28137-0f42-43d2-92af-cad8c6c9d05f
https://msdn.microsoft.com/library/f237a7a6-89f2-48b2-a2fe-f0b98a2bedc2
https://msdn.microsoft.com/library/4a345c07-314a-48f1-b557-ce072583589c
https://msdn.microsoft.com/library/e0024142-1d2a-4607-a39c-1eb1e86fa25a
https://msdn.microsoft.com/library/519da708-5ad6-4075-9d74-d00441cd6078
https://msdn.microsoft.com/library/04c47870-de7b-480d-98a0-f47593b4ffac
https://msdn.microsoft.com/library/e57057ba-9c3a-40ec-8401-150c2b25f75b
https://msdn.microsoft.com/library/add02a42-f556-40a7-a168-fbf2053322e3
https://msdn.microsoft.com/library/1de07646-3778-476d-8c61-5d37495d463c
https://msdn.microsoft.com/library/b17be0ac-bf98-4590-861d-a4dd6c6fa535
https://msdn.microsoft.com/library/44297bba-1bd9-4ed2-a848-f1e1e598db87
https://msdn.microsoft.com/library/a4c178e5-eec4-42e8-847f-90b24fc609fe
https://msdn.microsoft.com/library/dd555f20-1be3-4b8d-81f1-bf1921e62fda
https://msdn.microsoft.com/library/2c3633c5-3f31-4d62-a9f8-272ad6b19007
https://msdn.microsoft.com/library/4765b4e8-4006-4d8c-a405-39c218b3c82d
https://msdn.microsoft.com/library/e7a4ea13-28cc-462e-bc3a-33131ace976e
https://msdn.microsoft.com/library/4765b4e8-4006-4d8c-a405-39c218b3c82d

open System
open System.Data
open System.Data.Linq
open Microsoft.FSharp.Data.TypeProviders
open Microsoft.FSharp.Linq

[<Generate>]
type dbSchema = SqlDataConnection<"Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;">

let db = dbSchema.GetDataContext()

query {
 for row in db.Table2 do
 where (row.TestData1.HasValue && row.TestData1.Value > 2)
 select row
} |> Seq.iter (fun row -> printfn "%d %s" row.TestData1.Value row.Name)

query {
 for row in db.Table2 do
 // Use a nullable operator ?>
 where (row.TestData1 ?> 2)
 select row
} |> Seq.iter (fun row -> printfn "%d %s" (row.TestData1.GetValueOrDefault()) row.Name)

See Also

Query operators on nullable data fields, such as sumByNullable , also exist for use in query expressions. The query operators for non-nullable types are
not type-compatible with nullable types, so you must use the nullable version of the appropriate query operator when you are working with nullable
data values. For more information, see Query Expressions.

The following example shows the use of nullable operators in an F# query expression. The first query shows how you would write a query without a
nullable operator ; the second query shows an equivalent query that uses a nullable operator. For the full context, including how to set up the database
to use this sample code, see Walkthrough: Accessing a SQL Database by Using Type Providers.

Type Providers

Query Expressions

https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/accessing-a-sql-database

Functions
5/4/2018 • 9 minutes to read • Edit Online

Syntax
// Non-recursive function definition.
let [inline] function-name parameter-list [: return-type] = function-body
// Recursive function definition.
let rec function-name parameter-list = recursive-function-body

Remarks

let f x = x + 1

Scope

let list1 = [1; 2; 3]
// Error: duplicate definition.
let list1 = []
let function1 =
 let list1 = [1; 2; 3]
 let list1 = []
 list1

let list1 = [1; 2; 3]
let sumPlus x =
// OK: inner list1 hides the outer list1.
 let list1 = [1; 5; 10]
 x + List.sum list1

ParametersParameters

let f (x : int) = x + 1

Functions are the fundamental unit of program execution in any programming language. As in other languages, an F# function has a name, can have
parameters and take arguments, and has a body. F# also supports functional programming constructs such as treating functions as values, using
unnamed functions in expressions, composition of functions to form new functions, curried functions, and the implicit definition of functions by way of
the partial application of function arguments.

You define functions by using the let keyword, or, if the function is recursive, the let rec keyword combination.

The function-name is an identifier that represents the function. The parameter-list consists of successive parameters that are separated by spaces. You
can specify an explicit type for each parameter, as described in the Parameters section. If you do not specify a specific argument type, the compiler
attempts to infer the type from the function body. The function-body consists of an expression. The expression that makes up the function body is
typically a compound expression consisting of a number of expressions that culminate in a final expression that is the return value. The return-type is a
colon followed by a type and is optional. If you do not specify the type of the return value explicitly, the compiler determines the return type from the
final expression.

A simple function definition resembles the following:

In the previous example, the function name is f , the argument is x , which has type int , the function body is x + 1 , and the return value is of type
int .

Functions can be marked inline . For information about inline , see Inline Functions.

At any level of scope other than module scope, it is not an error to reuse a value or function name. If you reuse a name, the name declared later
shadows the name declared earlier. However, at the top level scope in a module, names must be unique. For example, the following code produces an
error when it appears at module scope, but not when it appears inside a function:

But the following code is acceptable at any level of scope:

Names of parameters are listed after the function name. You can specify a type for a parameter, as shown in the following example:

If you specify a type, it follows the name of the parameter and is separated from the name by a colon. If you omit the type for the parameter, the
parameter type is inferred by the compiler. For example, in the following function definition, the argument x is inferred to be of type int because 1 is
of type int .

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/index.md

let f x = x + 1

let f x = (x, x)

Function Bodies

let cylinderVolume radius length =
 // Define a local value pi.
 let pi = 3.14159
 length * pi * radius * radius

Return Values

let cylinderVolume radius length : float =
 // Define a local value pi.
 let pi = 3.14159
 length * pi * radius * radius

let cylinderVolume (radius : float) (length : float) : float

Calling a Function

let vol = cylinderVolume 2.0 3.0

Partial Application of Arguments

let smallPipeRadius = 2.0
let bigPipeRadius = 3.0

// These define functions that take the length as a remaining
// argument:

let smallPipeVolume = cylinderVolume smallPipeRadius
let bigPipeVolume = cylinderVolume bigPipeRadius

However, the compiler will attempt to make the function as generic as possible. For example, note the following code:

The function creates a tuple from one argument of any type. Because the type is not specified, the function can be used with any argument type. For
more information, see Automatic Generalization.

A function body can contain definitions of local variables and functions. Such variables and functions are in scope in the body of the current function but
not outside it. When you have the lightweight syntax option enabled, you must use indentation to indicate that a definition is in a function body, as
shown in the following example:

For more information, see Code Formatting Guidelines and Verbose Syntax.

The compiler uses the final expression in a function body to determine the return value and type. The compiler might infer the type of the final
expression from previous expressions. In the function cylinderVolume , shown in the previous section, the type of pi is determined from the type of the
literal 3.14159 to be float . The compiler uses the type of pi to determine the type of the expression h * pi * r * r to be float . Therefore, the
overall return type of the function is float .

To specify the return value explicitly, write the code as follows:

As the code is written above, the compiler applies float to the entire function; if you mean to apply it to the parameter types as well, use the following
code:

You call functions by specifying the function name followed by a space and then any arguments separated by spaces. For example, to call the function
cylinderVolume and assign the result to the value vol, you write the following code:

If you supply fewer than the specified number of arguments, you create a new function that expects the remaining arguments. This method of handling
arguments is referred to as currying and is a characteristic of functional programming languages like F#. For example, suppose you are working with
two sizes of pipe: one has a radius of 2.0 and the other has a radius of 3.0. You could create functions that determine the volume of pipe as follows:

You would then supply the additional argument as needed for various lengths of pipe of the two different sizes:

let length1 = 30.0
let length2 = 40.0
let smallPipeVol1 = smallPipeVolume length1
let smallPipeVol2 = smallPipeVolume length2
let bigPipeVol1 = bigPipeVolume length1
let bigPipeVol2 = bigPipeVolume length2

Recursive Functions

let rec fib n = if n < 2 then 1 else fib (n - 1) + fib (n - 2)

Function Values

let apply1 (transform : int -> int) y = transform y

let increment x = x + 1

let result1 = apply1 increment 100

let apply2 (f: int -> int -> int) x y = f x y

let mul x y = x * y

let result2 = apply2 mul 10 20

Lambda Expressions

let result3 = apply1 (fun x -> x + 1) 100

let result4 = apply2 (fun x y -> x * y) 10 20

Function Composition and Pipelining

Recursive functions are functions that call themselves. They require that you specify the rec keyword following the let keyword. Invoke the recursive
function from within the body of the function just as you would invoke any function call. The following recursive function computes the nth Fibonacci
number. The Fibonacci number sequence has been known since antiquity and is a sequence in which each successive number is the sum of the previous
two numbers in the sequence.

Some recursive functions might overflow the program stack or perform inefficiently if you do not write them with care and with awareness of special
techniques, such as the use of accumulators and continuations.

In F#, all functions are considered values; in fact, they are known as function values. Because functions are values, they can be used as arguments to
other functions or in other contexts where values are used. Following is an example of a function that takes a function value as an argument:

You specify the type of a function value by using the -> token. On the left side of this token is the type of the argument, and on the right side is the
return value. In the previous example, apply1 is a function that takes a function transform as an argument, where transform is a function that takes an
integer and returns another integer. The following code shows how to use apply1 :

The value of result will be 101 after the previous code runs.

Multiple arguments are separated by successive -> tokens, as shown in the following example:

The result is 200.

A lambda expression is an unnamed function. In the previous examples, instead of defining named functions increment and mul, you could use
lambda expressions as follows:

You define lambda expressions by using the fun keyword. A lambda expression resembles a function definition, except that instead of the = token, the
-> token is used to separate the argument list from the function body. As in a regular function definition, the argument types can be inferred or

specified explicitly, and the return type of the lambda expression is inferred from the type of the last expression in the body. For more information, see
Lambda Expressions: The fun Keyword.

Functions in F# can be composed from other functions. The composition of two functions function1 and function2 is another function that represents
the application of function1 followed the application of function2:

let function1 x = x + 1
let function2 x = x * 2
let h = function1 >> function2
let result5 = h 100

let result = 100 |> function1 |> function2

// Function composition and pipeline operators compared.

let addOne x = x + 1
let timesTwo x = 2 * x

// Composition operator
// (>>) : ('T1 -> 'T2) -> ('T2 -> 'T3) -> 'T1 -> 'T3
let Compose2 = addOne >> timesTwo

// Backward composition operator
// (<<) : ('T2 -> 'T3) -> ('T1 -> 'T2) -> 'T1 -> 'T3
let Compose1 = addOne << timesTwo

// Result is 5
let result1 = Compose1 2

// Result is 6
let result2 = Compose2 2

// Pipelining
// Pipeline operator
// (|>) : 'T1 -> ('T1 -> 'U) -> 'U
let Pipeline2 x = addOne x |> timesTwo

// Backward pipeline operator
// (<|) : ('T -> 'U) -> 'T -> 'U
let Pipeline1 x = addOne <| timesTwo x

// Result is 5
let result3 = Pipeline1 2

// Result is 6
let result4 = Pipeline2 2

Overloading Functions

See Also

The result is 202.

Pipelining enables function calls to be chained together as successive operations. Pipelining works as follows:

The result is again 202.

The composition operators take two functions and return a function; by contrast, the pipeline operators take a function and an argument and return a
value. The following code example shows the difference between the pipeline and composition operators by showing the differences in the function
signatures and usage.

You can overload methods of a type but not functions. For more information, see Methods.

Values

F# Language Reference

let Bindings
5/4/2018 • 5 minutes to read • Edit Online

Syntax
// Binding a value:
let identifier-or-pattern [: type] =expressionbody-expression
// Binding a function value:
let identifier parameter-list [: return-type] =expressionbody-expression

Remarks

let i = 1

let someVeryLongIdentifier =
 // Note indentation below.
 3 * 4 + 5 * 6

let i, j, k = (1, 2, 3)

let result =

 let i, j, k = (1, 2, 3)

 // Body expression:
 i + 2*j + 3*k

// Error:
printfn "%d" x
let x = 100
// OK:
printfn "%d" x

Function Bindings

let function1 a =
 a + 1

let function2 (a, b) = a + b

A binding associates an identifier with a value or function. You use the let keyword to bind a name to a value or function.

The let keyword is used in binding expressions to define values or function values for one or more names. The simplest form of the let expression
binds a name to a simple value, as follows.

If you separate the expression from the identifier by using a new line, you must indent each line of the expression, as in the following code.

Instead of just a name, a pattern that contains names can be specified, for example, a tuple, as shown in the following code.

The body-expression is the expression in which the names are used. The body expression appears on its own line, indented to line up exactly with the
first character in the let keyword:

A let binding can appear at the module level, in the definition of a class type, or in local scopes, such as in a function definition. A let binding at the
top level in a module or in a class type does not need to have a body expression, but at other scope levels, the body expression is required. The bound
names are usable after the point of definition, but not at any point before the let binding appears, as is illustrated in the following code.

Function bindings follow the rules for value bindings, except that function bindings include the function name and the parameters, as shown in the
following code.

In general, parameters are patterns, such as a tuple pattern:

A let binding expression evaluates to the value of the last expression. Therefore, in the following code example, the value of result is computed from
100 * function3 (1, 2) , which evaluates to 300 .

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/let-bindings.md

let result =
 let function3 (a, b) = a + b
 100 * function3 (1, 2)

Type Annotations

let function1 (a: int) : int = a + 1

let Bindings in Classes

type MyClass(a) =
 let field1 = a
 let field2 = "text"
 do printfn "%d %s" field1 field2
 member this.F input =
 printfn "Field1 %d Field2 %s Input %A" field1 field2 input

Type Parameters in let Bindings

Attributes on let Bindings

[<Obsolete>]
let function1 x y = x + y

Scope and Accessibility of Let Bindings

For more information, see Functions.

You can specify types for parameters by including a colon (:) followed by a type name, all enclosed in parentheses. You can also specify the type of the
return value by appending the colon and type after the last parameter. The full type annotations for function1 , with integers as the parameter types,
would be as follows.

When there are no explicit type parameters, type inference is used to determine the types of parameters of functions. This can include automatically
generalizing the type of a parameter to be generic.

For more information, see Automatic Generalization and Type Inference.

A let binding can appear in a class type but not in a structure or record type. To use a let binding in a class type, the class must have a primary
constructor. Constructor parameters must appear after the type name in the class definition. A let binding in a class type defines private fields and
members for that class type and, together with do bindings in the type, forms the code for the primary constructor for the type. The following code
examples show a class MyClass with private fields field1 and field2 .

The scopes of field1 and field2 are limited to the type in which they are declared. For more information, see let Bindings in Classes and Classes.

A let binding at the module level, in a type, or in a computation expression can have explicit type parameters. A let binding in an expression, such as
within a function definition, cannot have type parameters. For more information, see Generics.

Attributes can be applied to top-level let bindings in a module, as shown in the following code.

The scope of an entity declared with a let binding is limited to the portion of the containing scope (such as a function, module, file or class) after the
binding appears. Therefore, it can be said that a let binding introduces a name into a scope. In a module, a let-bound value or function is accessible to
clients of a module as long as the module is accessible, since the let bindings in a module are compiled into public functions of the module. By contrast,
let bindings in a class are private to the class.

Normally, functions in modules must be qualified by the name of the module when used by client code. For example, if a module Module1 has a
function function1 , users would specify Module1.function1 to refer to the function.

Users of a module may use an import declaration to make the functions within that module available for use without being qualified by the module
name. In the example just mentioned, users of the module can in that case open the module by using the import declaration open Module1 and
thereafter refer to function1 directly.

module Module1 =
 let function1 x = x + 1.0

module Module2 =
 let function2 x =
 Module1.function1 x

open Module1

let function3 x =
 function1 x

See Also

Some modules have the attribute RequireQualifiedAccess, which means that the functions that they expose must be qualified with the name of the
module. For example, the F# List module has this attribute.

For more information on modules and access control, see Modules and Access Control.

Functions

let Bindings in Classes

https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15

do Bindings
5/4/2018 • 2 minutes to read • Edit Online

Syntax
[attributes]
[do]expression

Remarks

open System
open System.Windows.Forms

let form1 = new Form()
form1.Text <- "XYZ"

[<STAThread>]
do
 Application.Run(form1)

See Also

A do binding is used to execute code without defining a function or value. Also, do bindings can be used in classes, see do Bindings in Classes.

Use a do binding when you want to execute code independently of a function or value definition. The expression in a do binding must return unit .
Code in a top-level do binding is executed when the module is initialized. The keyword do is optional.

Attributes can be applied to a top-level do binding. For example, if your program uses COM interop, you might want to apply the STAThread attribute
to your program. You can do this by using an attribute on a do binding, as shown in the following code.

F# Language Reference

Functions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/do-bindings.md

Lambda Expressions: The fun Keyword (F#)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
fun parameter-list -> expression

Remarks

// Lambda expressions with parameter lists.
fun a b c -> ...
fun (a: int) b c -> ...
fun (a : int) (b : string) (c:float) -> ...

// A lambda expression with a tuple pattern.
fun (a, b) -> …

// A lambda expression with a list pattern.
fun head :: tail -> …

fun x -> x + 1
fun a b c -> printfn "%A %A %A" a b c
fun (a: int) (b: int) (c: int) -> a + b * c
fun x y -> let swap (a, b) = (b, a) in swap (x, y)

Using Lambda Expressions

let list = List.map (fun i -> i + 1) [1;2;3]
printfn "%A" list

See Also

The fun keyword is used to define a lambda expression, that is, an anonymous function.

The parameter-list typically consists of names and, optionally, types of parameters. More generally, the parameter-list can be composed of any F#
patterns. For a full list of possible patterns, see Pattern Matching. Lists of valid parameters include the following examples.

The expression is the body of the function, the last expression of which generates a return value. Examples of valid lambda expressions include the
following:

Lambda expressions are especially useful when you want to perform operations on a list or other collection and want to avoid the extra work of defining
a function. Many F# library functions take function values as arguments, and it can be especially convenient to use a lambda expression in those cases.
The following code applies a lambda expression to elements of a list. In this case, the anonymous function adds 1 to every element of a list.

Functions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/lambda-expressions-the-fun-keyword.md

Recursive Functions: The rec Keyword
5/4/2018 • 2 minutes to read • Edit Online

Syntax
// Recursive function:
let rec function-nameparameter-list =
function-body

// Mutually recursive functions:
let rec function1-nameparameter-list =
function1-body
and function2-nameparameter-list =
function2-body
...

Remarks

let rec fib n =
 if n <= 2 then 1
 else fib (n - 1) + fib (n - 2)

NOTENOTE

Mutually Recursive Functions

let rec Even x =
 if x = 0 then true
 else Odd (x-1)
and Odd x =
 if x = 0 then false
 else Even (x-1)

See Also

The rec keyword is used together with the let keyword to define a recursive function.

Recursive functions, functions that call themselves, are identified explicitly in the F# language. This makes the identifer that is being defined available in
the scope of the function.

The following code illustrates a recursive function that computes the nth Fibonacci number.

In practice, code like that above is wasteful of memory and processor time because it involves the recomputation of previously computed values.

Methods are implicitly recursive within the type; there is no need to add the rec keyword. Let bindings within classes are not implicitly recursive.

Sometimes functions are mutually recursive, meaning that calls form a circle, where one function calls another which in turn calls the first, with any
number of calls in between. You must define such functions together in the one let binding, using the and keyword to link them together.

The following example shows two mutually recursive functions.

Functions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/recursive-functions-the-rec-keyword.md

Entry Point
5/4/2018 • 2 minutes to read • Edit Online

Syntax
[<EntryPoint>]
let-function-binding

Remarks

[<EntryPoint>]
let main args =
 printfn "Arguments passed to function : %A" args
 // Return 0. This indicates success.
 0

Arguments passed to function : [|"1"; "2"; "3"|]

Implicit Entry Point

See Also

This topic describes the method that you use to set the entry point to an F# program.

In the previous syntax, let-function-binding is the definition of a function in a let binding.

The entry point to a program that is compiled as an executable file is where execution formally starts. You specify the entry point to an F# application by
applying the EntryPoint attribute to the program's main function. This function (created by using a let binding) must be the last function in the last
compiled file. The last compiled file is the last file in the project or the last file that is passed to the command line.

The entry point function has type string array -> int . The arguments provided on the command line are passed to the main function in the array of
strings. The first element of the array is the first argument; the name of the executable file is not included in the array, as it is in some other languages.
The return value is used as the exit code for the process. Zero usually indicates success; nonzero values indicate an error. There is no convention for the
specific meaning of nonzero return codes; the meanings of the return codes are application-specific.

The following example illustrates a simple main function.

When this code is executed with the command line EntryPoint.exe 1 2 3 , the output is as follows.

When a program has no EntryPoint attribute that explicitly indicates the entry point, the top level bindings in the last file to be compiled are used as
the entry point.

Functions

let Bindings

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/entry-point.md

External Functions
5/4/2018 • 2 minutes to read • Edit Online

Syntax
[<DllImport(arguments)>]
extern declaration

Remarks

#include <stdio.h>
extern "C" void __declspec(dllexport) HelloWorld()
{
 printf("Hello world, invoked by F#!\n");
}

open System.Runtime.InteropServices

module InteropWithNative =
 [<DllImport(@"C:\bin\nativedll", CallingConvention = CallingConvention.Cdecl)>]
 extern void HelloWorld()

InteropWithNative.HelloWorld()

See Also

This topic describes F# language support for calling functions in native code.

In the previous syntax, arguments represents arguments that are supplied to the System.Runtime.InteropServices.DllImportAttribute attribute. The first
argument is a string that represents the name of the DLL that contains this function, without the .dll extension. Additional arguments can be supplied for
any of the public properties of the System.Runtime.InteropServices.DllImportAttribute class, such as the calling convention.

Assume you have a native C++ DLL that contains the following exported function.

You can call this function from F# by using the following code.

Interoperability with native code is referred to as platform invoke and is a feature of the CLR. For more information, see Interoperating with
Unmanaged Code. The information in that section is applicable to F#.

Functions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/external-functions.md

Inline Functions
5/4/2018 • 2 minutes to read • Edit Online

Using Inline Functions

let inline increment x = x + 1
type WrapInt32() =
 member inline this.incrementByOne(x) = x + 1
 static member inline Increment(x) = x + 1

Inline Functions and Type Inference

let inline printAsFloatingPoint number =
 printfn "%f" (float number)

^a -> unit when ^a : (static member op_Explicit : ^a -> float)

See Also

Inline functions are functions that are integrated directly into the calling code.

When you use static type parameters, any functions that are parameterized by type parameters must be inline. This guarantees that the compiler can
resolve these type parameters. When you use ordinary generic type parameters, there is no such restriction.

Other than enabling the use of member constraints, inline functions can be helpful in optimizing code. However, overuse of inline functions can cause
your code to be less resistant to changes in compiler optimizations and the implementation of library functions. For this reason, you should avoid using
inline functions for optimization unless you have tried all other optimization techniques. Making a function or method inline can sometimes improve
performance, but that is not always the case. Therefore, you should also use performance measurements to verify that making any given function inline
does in fact have a positive effect.

The inline modifier can be applied to functions at the top level, at the module level, or at the method level in a class.

The following code example illustrates an inline function at the top level, an inline instance method, and an inline static method.

The presence of inline affects type inference. This is because inline functions can have statically resolved type parameters, whereas non-inline
functions cannot. The following code example shows a case where inline is helpful because you are using a function that has a statically resolved type
parameter, the float conversion operator.

Without the inline modifier, type inference forces the function to take a specific type, in this case int . But with the inline modifier, the function is
also inferred to have a statically resolved type parameter. With the inline modifier, the type is inferred to be the following:

This means that the function accepts any type that supports a conversion to float.

Functions

Constraints

Statically Resolved Type Parameters

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/functions/inline-functions.md

Values
5/12/2018 • 3 minutes to read • Edit Online

Binding a Value

let a = 1
let b = 100u
let str = "text"

// A function value binding.

let f x = x + 1

Why Immutable?

Mutable Variables

let mutable x = 1
x <- x + 1

Related Topics
TITLE DESCRIPTION

let Bindings Provides information about using the let keyword to bind names to values and
functions.

Functions Provides an overview of functions in F#.

Values in F# are quantities that have a specific type; values can be integral or floating point numbers, characters or text, lists, sequences, arrays, tuples,
discriminated unions, records, class types, or function values.

The term binding means associating a name with a definition. The let keyword binds a value, as in the following examples:

The type of a value is inferred from the definition. For a primitive type, such as an integral or floating point number, the type is determined from the type
of the literal. Therefore, in the previous example, the compiler infers the type of b to be unsigned int , whereas the compiler infers the type of a to be
int . The type of a function value is determined from the return value in the function body. For more information about function value types, see

Functions. For more information about literal types, see Literals.

The compiler does not issue diagnostics about unused bindings by default. To receive these messages, enable warning 1182 in your project file or when
invoking the compiler (see --warnon under Compiler Options).

Immutable values are values that cannot be changed throughout the course of a program's execution. If you are used to languages such as C++, Visual
Basic, or C#, you might find it surprising that F# puts primacy over immutable values rather than variables that can be assigned new values during the
execution of a program. Immutable data is an important element of functional programming. In a multithreaded environment, shared mutable variables
that can be changed by many different threads are difficult to manage. Also, with mutable variables, it can sometimes be hard to tell if a variable might
be changed when it is passed to another function.

In pure functional languages, there are no variables, and functions behave strictly as mathematical functions. Where code in a procedural language uses
a variable assignment to alter a value, the equivalent code in a functional language has an immutable value that is the input, an immutable function, and
different immutable values as the output. This mathematical strictness allows for tighter reasoning about the behavior of the program. This tighter
reasoning is what enables compilers to check code more stringently and to optimize more effectively, and helps make it easier for developers to
understand and write correct code. Functional code is therefore likely to be easier to debug than ordinary procedural code.

F# is not a pure functional language, yet it fully supports functional programming. Using immutable values is a good practice because doing this allows
your code to benefit from an important aspect of functional programming.

You can use the keyword mutable to specify a variable that can be changed. Mutable variables in F# should generally have a limited scope, either as a
field of a type or as a local value. Mutable variables with a limited scope are easier to control and are less likely to be modified in incorrect ways.

You can assign an initial value to a mutable variable by using the let keyword in the same way as you would define a value. However, the difference is
that you can subsequently assign new values to mutable variables by using the <- operator, as in the following example.

Values marked mutable may be automatically promoted to 'a ref if captured by a closure, including forms that create closures, such as seq builders.
If you wish to be notified when this occurs, enable warning 3180 in your project file or when invoking the compiler.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/values/index.md

See Also
Null Values

F# Language Reference

Null Values
5/4/2018 • 3 minutes to read • Edit Online

Null Value

open System

// Pass a null value to a .NET method.
let ParseDateTime (str: string) =
 let (success, res) = DateTime.TryParse(str, null, System.Globalization.DateTimeStyles.AssumeUniversal)
 if success then
 Some(res)
 else
 None

// Open a file and create a stream reader.
let fileStream1 =
 try
 System.IO.File.OpenRead("TextFile1.txt")
 with
 | :? System.IO.FileNotFoundException -> printfn "Error: TextFile1.txt not found."; exit(1)

let streamReader = new System.IO.StreamReader(fileStream1)

// ProcessNextLine returns false when there is no more input;
// it returns true when there is more input.
let ProcessNextLine nextLine =
 match nextLine with
 | null -> false
 | inputString ->
 match ParseDateTime inputString with
 | Some(date) -> printfn "%s" (date.ToLocalTime().ToString())
 | None -> printfn "Failed to parse the input."
 true

// A null value returned from .NET method ReadLine when there is
// no more input.
while ProcessNextLine (streamReader.ReadLine()) do ()

match box value with
| null -> printf "The value is null."
| _ -> printf "The value is not null."

This topic describes how the null value is used in F#.

The null value is not normally used in F# for values or variables. However, null appears as an abnormal value in certain situations. If a type is defined in
F#, null is not permitted as a regular value unless the AllowNullLiteral attribute is applied to the type. If a type is defined in some other .NET language,
null is a possible value, and when you are interoperating with such types, your F# code might encounter null values.

For a type defined in F# and used strictly from F#, the only way to create a null value using the F# library directly is to use Unchecked.defaultof or
Array.zeroCreate. However, for an F# type that is used from other .NET languages, or if you are using that type with an API that is not written in F#, such
as the .NET Framework, null values can occur.

You can use the option type in F# when you might use a reference variable with a possible null value in another .NET language. Instead of null, with an
F# option type, you use the option value None if there is no object. You use the option value Some(obj) with an object obj when there is an object.
For more information, see Options.

The null keyword is a valid keyword in the F# language, and you have to use it when you are working with .NET Framework APIs or other APIs that
are written in another .NET language. The two situations in which you might need a null value are when you call a .NET API and pass a null value as an
argument, and when you interpret the return value or an output parameter from a .NET method call.

To pass a null value to a .NET method, just use the null keyword in the calling code. The following code example illustrates this.

To interpret a null value that is obtained from a .NET method, use pattern matching if you can. The following code example shows how to use pattern
matching to interpret the null value that is returned from ReadLine when it tries to read past the end of an input stream.

Null values for F# types can also be generated in other ways, such as when you use Array.zeroCreate , which calls Unchecked.defaultof . You must be
careful with such code to keep the null values encapsulated. In a library intended only for F#, you do not have to check for null values in every function.
If you are writing a library for interoperation with other .NET languages, you might have to add checks for null input parameters and throw an
ArgumentNullException , just as you do in C# or Visual Basic code.

You can use the following code to check if an arbitrary value is null.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/values/null-values.md
https://msdn.microsoft.com/library/4f315196-f444-4cca-ba07-1176ff71eb0f
https://msdn.microsoft.com/library/9ff97f2a-1bd4-4f4c-afbe-5886a74ab977
https://msdn.microsoft.com/library/fa5b8e7a-1b5b-411c-8622-b58d7a14d3b2

See Also
Values

Match Expressions

Literals
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Literal Types

TYPE DESCRIPTION SUFFIX OR PREFIX EXAMPLES

sbyte signed 8-bit integer y 86y

0b00000101y

byte unsigned 8-bit natural number uy 86uy

0b00000101uy

int16 signed 16-bit integer s 86s

uint16 unsigned 16-bit natural number us 86us

int

int32

signed 32-bit integer l or none 86

86l

uint

uint32

unsigned 32-bit natural number u or ul 86u

86ul

unativeint native pointer as an unsigned natural
number

un 0x00002D3Fun

int64 signed 64-bit integer L 86L

uint64 unsigned 64-bit natural number UL 86UL

single, float32 32-bit floating point number F or f 4.14F or 4.14f

lf 0x00000000lf

float; double 64-bit floating point number none 4.14 or 2.3E+32 or 2.3e+32

LF 0x0000000000000000LF

bigint integer not limited to 64-bit
representation

I 9999999999999999999999999999I

decimal fractional number represented as a
fixed point or rational number

M or m 0.7833M or 0.7833m

Char Unicode character none 'a'

The API reference links in this article will take you to MSDN (for now).

This topic provides a table that shows how to specify the type of a literal in F#.

The following table shows the literal types in F#. Characters that represent digits in hexadecimal notation are not case-sensitive; characters that identify
the type are case-sensitive.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/literals.md

String Unicode string none "text\n"

or

@"c:\filename"

or

"""<book title="Paradise
Lost">"""

or

"string1" + "string2"

See also Strings.

byte ASCII character B 'a'B

byte[] ASCII string B "text"B

String or byte[] verbatim string @ prefix @"\\server\share" (Unicode)

@"\\server\share"B (ASCII)

TYPE DESCRIPTION SUFFIX OR PREFIX EXAMPLES

Remarks

[<Literal>]
let Literal1 = "a" + "b"

[<Literal>]
let FileLocation = __SOURCE_DIRECTORY__ + "/" + __SOURCE_FILE__

[<Literal>]
let Literal2 = 1 ||| 64

[<Literal>]
let Literal3 = System.IO.FileAccess.Read ||| System.IO.FileAccess.Write

Named Literals

Integers In Other Bases

let Numbers = (0x9F, 0o77, 0b1010)
// Result: Numbers : int * int * int = (159, 63, 10)

Underscores in Numeric Literals

let DeadBeef = 0xDEAD_BEEF

let DeadBeefAsBits = 0b1101_1110_1010_1101_1011_1110_1110_1111

let ExampleSSN = 123_456_7890

Unicode strings can contain explicit encodings that you can specify by using \u followed by a 16-bit hexadecimal code or UTF-32 encodings that you
can specify by using \U followed by a 32-bit hexadecimal code that represents a Unicode surrogate pair.

As of F# 3.1, you can use the + sign to combine string literals. You can also use the bitwise or (|||) operator to combine enum flags. For example, the
following code is legal in F# 3.1:

The use of other bitwise operators isn't allowed.

Values that are intended to be constants can be marked with the Literal attribute. This attribute has the effect of causing a value to be compiled as a
constant.

In pattern matching expressions, identifiers that begin with lowercase characters are always treated as variables to be bound, rather than as literals, so
you should generally use initial capitals when you define literals.

Signed 32-bit integers can also be specified in hexadecimal, octal, or binary using a 0x , 0o or 0b prefix respectively.

Starting with F# 4.1, you can separate digits with the underscore character (_).

https://msdn.microsoft.com/library/465f36ce-d146-41c0-b425-679c509cd285

See Also
Core.LiteralAttribute Class

https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.literalattribute-class-%5bfsharp%5d

F# Types
5/4/2018 • 4 minutes to read • Edit Online

Summary of F# Types

Syntax for Types

TYPE TYPE SYNTAX EXAMPLES

primitive type type-name int

float

string

aggregate type (class, structure, union, record, enum,
and so on)

type-name System.DateTime

Color

type abbreviation type-abbreviation-name bigint

fully qualified type namespaces.type-name

or

modules.type-name

or

namespaces.modules.type-name

System.IO.StreamWriter

array type-name[] or

type-name array

int[]

array<int>

int array

two-dimensional array type-name[,] int[,]

float[,]

This topic describes the types that are used in F# and how F# types are named and described.

Some types are considered primitive types, such as the Boolean type bool and integral and floating point types of various sizes, which include types for
bytes and characters. These types are described in Primitive Types.

Other types that are built into the language include tuples, lists, arrays, sequences, records, and discriminated unions. If you have experience with other
.NET languages and are learning F#, you should read the topics for each of these types. Links to more information about these types are included in the
Related Topics section of this topic. These F#-specific types support styles of programming that are common to functional programming languages.
Many of these types have associated modules in the F# library that support common operations on these types.

The type of a function includes information about the parameter types and return type.

The .NET Framework is the source of object types, interface types, delegate types, and others. You can define your own object types just as you can in
any other .NET language.

Also, F# code can define aliases, which are named type abbreviations, that are alternative names for types. You might use type abbreviations when the
type might change in the future and you want to avoid changing the code that depends on the type. Or, you might use a type abbreviation as a friendly
name for a type that can make code easier to read and understand.

F# provides useful collection types that are designed with functional programming in mind. Using these collection types helps you write code that is
more functional in style. For more information, see F# Collection Types.

In F# code, you often have to write out the names of types. Every type has a syntactic form, and you use these syntactic forms in type annotations,
abstract method declarations, delegate declarations, signatures, and other constructs. Whenever you declare a new program construct in the interpreter,
the interpreter prints the name of the construct and the syntax for its type. This syntax might be just an identifier for a user-defined type or a built-in
identifier such as for int or string , but for more complex types, the syntax is more complex.

The following table shows aspects of the type syntax for F# types.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/fsharp-types.md
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types
https://msdn.microsoft.com/library/#rel

three-dimensional array type-name[,,] float[,,]

tuple type-name1 * type-name2 ... For example, (1,'b',3) has type
int * char * int

generic type type-parameter generic-type-name

or

generic-type-name<type-parameter-list>

'a list

list<'a>

Dictionary<'key, 'value>

constructed type (a generic type that has a specific
type argument supplied)

type-argument generic-type-name

or

generic-type-name<type-argument-list>

int option

string list

int ref

option<int>

list<string>

ref<int>

Dictionary<int, string>

function type that has a single parameter parameter-type1 -> return-type A function that takes an int and returns a string

has type int -> string

function type that has multiple parameters parameter-type1 -> parameter-type2 -> ... ->
return-type

A function that takes an int and a float and
returns a string has type
int -> float -> string

higher order function as a parameter (function-type) List.map has type
('a -> 'b) -> 'a list -> 'b list

delegate delegate of function-type delegate of unit -> int

flexible type #type-name #System.Windows.Forms.Control

#seq<int>

TYPE TYPE SYNTAX EXAMPLES

Related Topics
TOPIC DESCRIPTION

Primitive Types Describes built-in simple types such as integral types, the Boolean type, and
character types.

Unit Type Describes the unit type, a type that has one value and that is indicated by ();
equivalent to void in C# and Nothing in Visual Basic.

Tuples Describes the tuple type, a type that consists of associated values of any type
grouped in pairs, triples, quadruples, and so on.

Options Describes the option type, a type that may either have a value or be empty.

Lists Describes lists, which are ordered, immutable series of elements all of the same
type.

Arrays Describes arrays, which are ordered sets of mutable elements of the same type that
occupy a contiguous block of memory and are of fixed size.

Sequences Describes the sequence type, which represents a logical series of values; individual
values are computed only as necessary.

Records Describes the record type, a small aggregate of named values.

Discriminated Unions Describes the discriminated union type, a type whose values can be any one of a
set of possible types.

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

Functions Describes function values.

Classes Describes the class type, an object type that corresponds to a .NET reference type.
Class types can contain members, properties, implemented interfaces, and a base
type.

Structures Describes the struct type, an object type that corresponds to a .NET value type.
The struct type usually represents a small aggregate of data.

Interfaces Describes interface types, which are types that represent a set of members that
provide certain functionality but that contain no data. An interface type must be
implemented by an object type to be useful.

Delegates Describes the delegate type, which represents a function as an object.

Enumerations Describes enumeration types, whose values belong to a set of named values.

Attributes Describes attributes, which are used to specify metadata for another type.

Exception Types Describes exceptions, which specify error information.

TOPIC DESCRIPTION

Type Inference
5/4/2018 • 2 minutes to read • Edit Online

Type Inference in General

Inference of Parameter and Return Types

let f a b = a + b + 100

// Type annotations on a parameter.
let addu1 (x : uint32) y =
 x + y

// Type annotations on an expression.
let addu2 x y =
 (x : uint32) + y

let addu1 x y : uint32 =
 x + y

let replace(str: string) =
 str.Replace("A", "a")

Automatic Generalization

let makeTuple a b = (a, b)

'a -> 'b -> 'a * 'b

This topic describes how the F# compiler infers the types of values, variables, parameters and return values.

The idea of type inference is that you do not have to specify the types of F# constructs except when the compiler cannot conclusively deduce the type.
Omitting explicit type information does not mean that F# is a dynamically typed language or that values in F# are weakly typed. F# is a statically typed
language, which means that the compiler deduces an exact type for each construct during compilation. If there is not enough information for the
compiler to deduce the types of each construct, you must supply additional type information, typically by adding explicit type annotations somewhere in
the code.

In a parameter list, you do not have to specify the type of each parameter. And yet, F# is a statically typed language, and therefore every value and
expression has a definite type at compile time. For those types that you do not specify explicitly, the compiler infers the type based on the context. If the
type is not otherwise specified, it is inferred to be generic. If the code uses a value inconsistently, in such a way that there is no single inferred type that
satisfies all the uses of a value, the compiler reports an error.

The return type of a function is determined by the type of the last expression in the function.

For example, in the following code, the parameter types a and b and the return type are all inferred to be int because the literal 100 is of type int .

You can influence type inference by changing the literals. If you make the 100 a uint32 by appending the suffix u , the types of a , b , and the return
value are inferred to be uint32 .

You can also influence type inference by using other constructs that imply restrictions on the type, such as functions and methods that work with only a
particular type.

Also, you can apply explicit type annotations to function or method parameters or to variables in expressions, as shown in the following examples.
Errors result if conflicts occur between different constraints.

You can also explicitly specify the return value of a function by providing a type annotation after all the parameters.

A common case where a type annotation is useful on a parameter is when the parameter is an object type and you want to use a member.

If the function code is not dependent on the type of a parameter, the compiler considers the parameter to be generic. This is called automatic
generalization, and it can be a powerful aid to writing generic code without increasing complexity.

For example, the following function combines two parameters of any type into a tuple.

The type is inferred to be

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/type-inference.md

Additional Information

See Also

Type inference is described in more detail in the F# Language Specification.

Automatic Generalization

Basic types
7/10/2018 • 2 minutes to read • Edit Online

TYPE .NET TYPE DESCRIPTION

bool Boolean Possible values are true and false .

byte Byte Values from 0 to 255.

sbyte SByte Values from -128 to 127.

int16 Int16 Values from -32768 to 32767.

uint16 UInt16 Values from 0 to 65535.

int Int32 Values from -2,147,483,648 to 2,147,483,647.

uint32 UInt32 Values from 0 to 4,294,967,295.

int64 Int64 Values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

uint64 UInt64 Values from 0 to 18,446,744,073,709,551,615.

nativeint IntPtr A native pointer as a signed integer.

unativeint UIntPtr A native pointer as an unsigned integer.

char Char Unicode character values.

string String Unicode text.

decimal Decimal A floating point data type that has at least 28
significant digits.

unit not applicable Indicates the absence of an actual value. The type has
only one formal value, which is denoted () . The unit
value, () , is often used as a placeholder where a
value is needed but no real value is available or makes
sense.

void Void Indicates no type or value.

float32 , single Single A 32-bit floating point type.

float , double Double A 64-bit floating point type.

NOTENOTE

See also

This topic lists the basic types that are defined in the F# language. These types are the most fundamental in F#, forming the basis of nearly every F#
program. They are a superset of .NET primitive types.

You can perform computations with integers too big for the 64-bit integer type by using the bigint type. bigint is not considered a basic type; it is an abbreviation
for System.Numerics.BigInteger .

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/basic-types.md
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.uintptr
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.void
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.double
https://msdn.microsoft.com/library/dc8be18d-4042-46c4-b136-2f21a84f6efa

Unit Type
5/4/2018 • 2 minutes to read • Edit Online

Syntax
// The value of the unit type.
()

Remarks

let function1 x y = x + y
// The next line results in a compiler warning.
function1 10 20
// Changing the code to one of the following eliminates the warning.
// Use this when you do want the return value.
let result = function1 10 20
// Use this if you are only calling the function for its side effects,
// and do not want the return value.
function1 10 20 |> ignore

See Also

The unit type is a type that indicates the absence of a specific value; the unit type has only a single value, which acts as a placeholder when no other
value exists or is needed.

Every F# expression must evaluate to a value. For expressions that do not generate a value that is of interest, the value of type unit is used. The unit

type resembles the void type in languages such as C# and C++.

The unit type has a single value, and that value is indicated by the token () .

The value of the unit type is often used in F# programming to hold the place where a value is required by the language syntax, but when no value is
needed or desired. An example might be the return value of a printf function. Because the important actions of the printf operation occur in the
function, the function does not have to return an actual value. Therefore, the return value is of type unit .

Some constructs expect a unit value. For example, a do binding or any code at the top level of a module is expected to evaluate to a unit value. The
compiler reports a warning when a do binding or code at the top level of a module produces a result other than the unit value that is not used, as
shown in the following example.

This warning is a characteristic of functional programming; it does not appear in other .NET programming languages. In a purely functional program, in
which functions do not have any side effects, the final return value is the only result of a function call. Therefore, when the result is ignored, it is a
possible programming error. Although F# is not a purely functional programming language, it is a good practice to follow functional programming style
whenever possible.

Primitive

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/unit-type.md
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/primitive-types

Strings
7/12/2018 • 3 minutes to read • Edit Online

NOTENOTE

Remarks

CHARACTER ESCAPE SEQUENCE

Backspace \b

Newline \n

Carriage return \r

Tab \t

Backslash \\

Quotation mark \"

Apostrophe \'

Unicode character \uXXXX or \UXXXX (where X indicates a hexadecimal digit)

// Using a verbatim string
let xmlFragment1 = @"<book author=""Milton, John"" title=""Paradise Lost"">"

// Using a triple-quoted string
let xmlFragment2 = """<book author="Milton, John" title="Paradise Lost">"""

let str1 = "abc
def"
let str2 = "abc\
def"

printfn "%c" str1.[1]

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

The string type represents immutable text as a sequence of Unicode characters. string is an alias for System.String in the .NET Framework.

String literals are delimited by the quotation mark (") character. The backslash character (\) is used to encode certain special characters. The backslash
and the next character together are known as an escape sequence. Escape sequences supported in F# string literals are shown in the following table.

If preceded by the @ symbol, the literal is a verbatim string. This means that any escape sequences are ignored, except that two quotation mark
characters are interpreted as one quotation mark character.

Additionally, a string may be enclosed by triple quotes. In this case, all escape sequences are ignored, including double quotation mark characters. To
specify a string that contains an embedded quoted string, you can either use a verbatim string or a triple-quoted string. If you use a verbatim string, you
must specify two quotation mark characters to indicate a single quotation mark character. If you use a triple-quoted string, you can use the single
quotation mark characters without them being parsed as the end of the string. This technique can be useful when you work with XML or other
structures that include embedded quotation marks.

In code, strings that have line breaks are accepted and the line breaks are interpreted literally as newlines, unless a backslash character is the last
character before the line break. Leading white space on the next line is ignored when the backslash character is used. The following code produces a
string str1 that has value "abc\ndef" and a string str2 that has value "abcdef" .

You can access individual characters in a string by using array-like syntax, as follows.

The output is b .

Or you can extract substrings by using array slice syntax, as shown in the following code.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/strings.md

printfn "%s" (str1.[0..2])
printfn "%s" (str2.[3..5])

abc
def

// "abc" interpreted as a Unicode string.
let str1 : string = "abc"
// "abc" interpreted as an ASCII byte array.
let bytearray : byte[] = "abc"B

String Operators

let string1 = "Hello, " + "world"

String Class

let printChar (str : string) (index : int) =
 printfn "First character: %c" (str.Chars(index))

String Module

See Also

The output is as follows.

You can represent ASCII strings by arrays of unsigned bytes, type byte[] . You add the suffix B to a string literal to indicate that it is an ASCII string.
ASCII string literals used with byte arrays support the same escape sequences as Unicode strings, except for the Unicode escape sequences.

There are two ways to concatenate strings: by using the + operator or by using the ^ operator. The + operator maintains compatibility with the .NET
Framework string handling features.

The following example illustrates string concatenation.

Because the string type in F# is actually a .NET Framework System.String type, all the System.String members are available. This includes the +

operator, which is used to concatenate strings, the Length property, and the Chars property, which returns the string as an array of Unicode characters.
For more information about strings, see System.String .

By using the Chars property of System.String , you can access the individual characters in a string by specifying an index, as is shown in the following
code.

Additional functionality for string handling is included in the String module in the FSharp.Core namespace. For more information, see Core.String
Module.

F# Language Reference

https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.string-module-%5bfsharp%5d

Tuples
5/4/2018 • 5 minutes to read • Edit Online

Syntax
(element, ... , element)
struct(element, ... ,element)

Remarks

Examples

(1, 2)

// Triple of strings.
("one", "two", "three")

// Tuple of generic types.
(a, b)

// Tuple that has mixed types.
("one", 1, 2.0)

// Tuple of integer expressions.
(a + 1, b + 1)

// Struct Tuple of floats
struct (1.025f, 1.5f)

Obtaining Individual Values

let print tuple1 =
 match tuple1 with
 | (a, b) -> printfn "Pair %A %A" a b

let (a, b) = (1, 2)

// Or as a struct
let struct (c, d) = struct (1, 2)

let getDistance ((x1,y1): float*float) ((x2,y2): float*float) =
 // Note the ability to work on individual elements
 (x1*x2 - y1*y2)
 |> abs
 |> sqrt

let (a, _) = (1, 2)

A tuple is a grouping of unnamed but ordered values, possibly of different types. Tuples can either be reference types or structs.

Each element in the previous syntax can be any valid F# expression.

Examples of tuples include pairs, triples, and so on, of the same or different types. Some examples are illustrated in the following code.

You can use pattern matching to access and assign names for tuple elements, as shown in the following code.

You can also deconstruct a tuple via pattern matching outside of a match expression via let binding:

Or you can pattern match on tuples as inputs to functions:

If you need only one element of the tuple, the wildcard character (the underscore) can be used to avoid creating a new name for a value that you do not
need.

Copying elements from a reference tuple into a struct tuple is also simple:

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/tuples.md

// Create a reference tuple
let (a, b) = (1, 2)

// Construct a struct tuple from it
let struct (c, d) = struct (a, b)

let c = fst (1, 2)
let d = snd (1, 2)

let third (_, _, c) = c

Using Tuples

let divRem a b =
 let x = a / b
 let y = a % b
 (x, y)

let sumNoCurry (a, b) = a + b

let sum a b = a + b

let addTen = sum 10
let result = addTen 95
// Result is 105.

Names of Tuple Types

int * float * string

Interoperation with C# Tuples

namespace CSharpTupleInterop
{
 public static class Example
 {
 public static (int, int) AddOneToXAndY((int x, int y) a) =>
 (a.x + 1, a.y + 1);
 }
}

The functions fst and snd (reference tuples only) return the first and second elements of a tuple, respectively.

There is no built-in function that returns the third element of a triple, but you can easily write one as follows.

Generally, it is better to use pattern matching to access individual tuple elements.

Tuples provide a convenient way to return multiple values from a function, as shown in the following example. This example performs integer division
and returns the rounded result of the operation as a first member of a tuple pair and the remainder as a second member of the pair.

Tuples can also be used as function arguments when you want to avoid the implicit currying of function arguments that is implied by the usual function
syntax.

The usual syntax for defining the function let sum a b = a + b enables you to define a function that is the partial application of the first argument of
the function, as shown in the following code.

Using a tuple as the parameter disables currying. For more information, see "Partial Application of Arguments" in Functions.

When you write out the name of a type that is a tuple, you use the * symbol to separate elements. For a tuple that consists of an int , a float , and a
string , such as (10, 10.0, "ten") , the type would be written as follows.

C# 7.0 introduced tuples to the language. Tuples in C# are structs, and are equivalent to struct tuples in F#. If you need to interoperate with C#, you
must use struct tuples.

This is easy to do. For example, imagine you have to pass a tuple to a C# class and then consume its result, which is also a tuple:

In your F# code, you can then pass a struct tuple as the parameter and consume the result as a struct tuple.

open TupleInterop

let struct (newX, newY) = Example.AddOneToXAndY(struct (1, 2))
// newX is now 2, and newY is now 3

Converting between Reference Tuples and Struct TuplesConverting between Reference Tuples and Struct Tuples

// Will not compile!
let (a, b) = struct (1, 2)

// Will not compile!
let struct (c, d) = (1, 2)

// Won't compile!
let f(t: struct(int*int)): int*int = t

// Pattern match on the result.
let (a, b) = (1, 2)

// Construct a new tuple from the parts you pattern matched on.
let struct (c, d) = struct (a, b)

Compiled Form of Reference Tuples

Compiled Form of Struct TuplesCompiled Form of Struct Tuples

See Also

Because Reference Tuples and Struct Tuples have a completely different underlying representation, they are not implicitly convertible. That is, code such
as the following won't compile:

You must pattern match on one tuple and construct the other with the constituent parts. For example:

This section explains the form of tuples when they're compiled. The information here isn't necessary to read unless you are targeting .NET Framework
3.5 or lower.

Tuples are compiled into objects of one of several generic types, all named System.Tuple , that are overloaded on the arity, or number of type
parameters. Tuple types appear in this form when you view them from another language, such as C# or Visual Basic, or when you are using a tool that is
not aware of F# constructs. The Tuple types were introduced in .NET Framework 4. If you are targeting an earlier version of the .NET Framework, the
compiler uses versions of System.Tuple from the 2.0 version of the F# Core Library. The types in this library are used only for applications that target
the 2.0, 3.0, and 3.5 versions of the .NET Framework. Type forwarding is used to ensure binary compatibility between .NET Framework 2.0 and .NET
Framework 4 F# components.

Struct tuples (for example, struct (x, y)), are fundamentally different from reference tuples. They are compiled into the ValueTuple type, overloaded
by arity, or the number of type parameters. They are equivalent to C# 7.0 Tuples and Visual Basic 2017 Tuples, and interoperate bidirectionally.

F# Language Reference

F# Types

https://msdn.microsoft.com/library/5ac7953d-acdc-4a58-bfb7-c1f6406c0fa3
https://docs.microsoft.com/dotnet/api/system.valuetuple
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/tuples

F# Collection Types
5/4/2018 • 15 minutes to read • Edit Online

F# Collection Types

TYPE DESCRIPTION RELATED LINKS

List An ordered, immutable series of elements of the same
type. Implemented as a linked list.

Lists

List Module

Array A fixed-size, zero-based, mutable collection of
consecutive data elements that are all of the same
type.

Arrays

Array Module

Array2D Module

Array3D Module

seq A logical series of elements that are all of one type.
Sequences are particularly useful when you have a
large, ordered collection of data but don't necessarily
expect to use all the elements. Individual sequence
elements are computed only as required, so a
sequence can perform better than a list if not all the
elements are used. Sequences are represented by the
seq<'T> type, which is an alias for IEnumerable<T>

. Therefore, any .NET Framework type that
implements
System.Collections.Generic.IEnumerable<'T> can

be used as a sequence.

Sequences

Seq Module

Map An immutable dictionary of elements. Elements are
accessed by key.

Map Module

Set An immutable set that's based on binary trees, where
comparison is the F# structural comparison function,
which potentially uses implementations of the
System.IComparable interface on key values.

Set Module

Table of FunctionsTable of Functions

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

append O(M) O(N) O(N) - - Returns a new
collection that
contains the
elements of the first
collection followed
by elements of the
second collection.

add - - - O(log N) O(log N) Returns a new
collection with the
element added.

By reviewing this topic, you can determine which F# collection type best suits a particular need. These collection types differ from the collection types in
the .NET Framework, such as those in the System.Collections.Generic namespace, in that the F# collection types are designed from a functional
programming perspective rather than an object-oriented perspective. More specifically, only the array collection has mutable elements. Therefore, when
you modify a collection, you create an instance of the modified collection instead of altering the original collection.

Collection types also differ in the type of data structure in which objects are stored. Data structures such as hash tables, linked lists, and arrays have
different performance characteristics and a different set of available operations.

The following table shows F# collection types.

This section compares the functions that are available on F# collection types. The computational complexity of the function is given, where N is the size
of the first collection, and M is the size of the second collection, if any. A dash (-) indicates that this function isn't available on the collection. Because
sequences are lazily evaluated, a function such as Seq.distinct may be O(1) because it returns immediately, although it still affects the performance of
the sequence when enumerated.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/fsharp-collection-types.md
https://msdn.microsoft.com/library/c627b668-477b-4409-91ed-06d7f1b3e4a7
https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788
https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1
https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1
https://msdn.microsoft.com/library/ae1a9746-7817-4430-bcdb-a79c2411bbd3
https://msdn.microsoft.com/library/c8355e2d-add8-48a4-8aa6-1c57ae74c560
https://msdn.microsoft.com/library/2f0c87c6-8a0d-4d33-92a6-10d1d037ce75
https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684
https://msdn.microsoft.com/library/975316ea-55e3-4987-9994-90897ad45664
https://msdn.microsoft.com/library/bfe61ead-f16c-416f-af98-56dbcbe23e4f
https://msdn.microsoft.com/library/50cebdce-0cd7-4c5c-8ebc-f3a9e90b38d8
https://msdn.microsoft.com/library/61efa732-d55d-4c32-993f-628e2f98e6a0

average O(N) O(N) O(N) - - Returns the average
of the elements in
the collection.

averageBy O(N) O(N) O(N) - - Returns the average
of the results of the
provided function
applied to each
element.

blit O(N) - - - - Copies a section of
an array.

cache - - O(N) - - Computes and
stores elements of a
sequence.

cast - - O(N) - - Converts the
elements to the
specified type.

choose O(N) O(N) O(N) - - Applies the given
function f to each
element x of the
list. Returns the list
that contains the
results for each
element where the
function returns
Some(f(x)) .

collect O(N) O(N) O(N) - - Applies the given
function to each
element of the
collection,
concatenates all the
results, and returns
the combined list.

compareWith - - O(N) - - Compares two
sequences by using
the given
comparison
function, element by
element.

concat O(N) O(N) O(N) - - Combines the given
enumeration-of-
enumerations as a
single concatenated
enumeration.

contains - - - - O(log N) Returns true if the
set contains the
specified element.

containsKey - - - O(log N) - Tests whether an
element is in the
domain of a map.

count - - - - O(N) Returns the number
of elements in the
set.

countBy - - O(N) - - Applies a key-
generating function
to each element of a
sequence, and
returns a sequence
that yields unique
keys and their
number of
occurrences in the
original sequence.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

copy O(N) - O(N) - - Copies the
collection.

create O(N) - - - - Creates an array of
whole elements that
are all initially the
given value.

delay - - O(1) - - Returns a sequence
that's built from the
given delayed
specification of a
sequence.

difference - - - - O(M * log N) Returns a new set
with the elements of
the second set
removed from the
first set.

distinct O(1)* Returns a sequence
that contains no
duplicate entries
according to generic
hash and equality
comparisons on the
entries. If an
element occurs
multiple times in the
sequence, later
occurrences are
discarded.

distinctBy O(1)* Returns a sequence
that contains no
duplicate entries
according to the
generic hash and
equality
comparisons on the
keys that the given
key-generating
function returns. If
an element occurs
multiple times in the
sequence, later
occurrences are
discarded.

empty O(1) O(1) O(1) O(1) O(1) Creates an empty
collection.

exists O(N) O(N) O(N) O(log N) O(log N) Tests whether any
element of the
sequence satisfies
the given predicate.

exists2 O(min(N,M)) - O(min(N,M)) Tests whether any
pair of
corresponding
elements of the
input sequences
satisfies the given
predicate.

fill O(N) Sets a range of
elements of the
array to the given
value.

filter O(N) O(N) O(N) O(N) O(N) Returns a new
collection that
contains only the
elements of the
collection for which
the given predicate
returns true .

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

find O(N) O(N) O(N) O(log N) - Returns the first
element for which
the given function
returns true .
Returns
System.Collections.Generic.KeyNotFoundException

if no such element
exists.

findIndex O(N) O(N) O(N) - - Returns the index of
the first element in
the array that
satisfies the given
predicate. Raises
System.Collections.Generic.KeyNotFoundException

if no element
satisfies the
predicate.

findKey - - - O(log N) - Evaluates the
function on each
mapping in the
collection, and
returns the key for
the first mapping
where the function
returns true . If no
such element exists,
this function raises
System.Collections.Generic.KeyNotFoundException

.

fold O(N) O(N) O(N) O(N) O(N) Applies a function to
each element of the
collection, threading
an accumulator
argument through
the computation. If
the input function is
f and the elements
are i0...iN, this
function computes f
(... (f s i0)...) iN.

fold2 O(N) O(N) - - - Applies a function to
corresponding
elements of two
collections,
threading an
accumulator
argument through
the computation.
The collections must
have identical sizes.
If the input function
is f and the
elements are i0...iN
and j0...jN, this
function computes f
(... (f s i0 j0)...) iN jN.

foldBack O(N) O(N) - O(N) O(N) Applies a function to
each element of the
collection, threading
an accumulator
argument through
the computation. If
the input function is
f and the elements
are i0...iN, this
function computes f
i0 (...(f iN s)).

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

foldBack2 O(N) O(N) - - - Applies a function to
corresponding
elements of two
collections,
threading an
accumulator
argument through
the computation.
The collections must
have identical sizes.
If the input function
is f and the
elements are i0...iN
and j0...jN, this
function computes f
i0 j0 (...(f iN jN s)).

forall O(N) O(N) O(N) O(N) O(N) Tests whether all
elements of the
collection satisfy the
given predicate.

forall2 O(N) O(N) O(N) - - Tests whether all
corresponding
elements of the
collection satisfy the
given predicate
pairwise.

get / nth O(1) O(N) O(N) - - Returns an element
from the collection
given its index.

head - O(1) O(1) - - Returns the first
element of the
collection.

init O(N) O(N) O(1) - - Creates a collection
given the dimension
and a generator
function to compute
the elements.

initInfinite - - O(1) - - Generates a
sequence that, when
iterated, returns
successive elements
by calling the given
function.

intersect - - - - O(log N * log M) Computes the
intersection of two
sets.

intersectMany - - - - O(N1 * N2 ...) Computes the
intersection of a
sequence of sets.
The sequence must
not be empty.

isEmpty O(1) O(1) O(1) O(1) - Returns true if the
collection is empty.

isProperSubset - - - - O(M * log N) Returns true if all
elements of the first
set are in the
second set, and at
least one element of
the second set isn't
in the first set.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

isProperSuperset - - - - O(M * log N) Returns true if all
elements of the
second set are in
the first set, and at
least one element of
the first set isn't in
the second set.

isSubset - - - - O(M * log N) Returns true if all
elements of the first
set are in the
second set.

isSuperset - - - - O(M * log N) Returns true if all
elements of the
second set are in
the first set.

iter O(N) O(N) O(N) O(N) O(N) Applies the given
function to each
element of the
collection.

iteri O(N) O(N) O(N) - - Applies the given
function to each
element of the
collection. The
integer that's passed
to the function
indicates the index
of the element.

iteri2 O(N) O(N) - - - Applies the given
function to a pair of
elements that are
drawn from
matching indices in
two arrays. The
integer that's passed
to the function
indicates the index
of the elements. The
two arrays must
have the same
length.

iter2 O(N) O(N) O(N) - - Applies the given
function to a pair of
elements that are
drawn from
matching indices in
two arrays. The two
arrays must have
the same length.

length O(1) O(N) O(N) - - Returns the number
of elements in the
collection.

map O(N) O(N) O(1) - - Builds a collection
whose elements are
the results of
applying the given
function to each
element of the array.

map2 O(N) O(N) O(1) - - Builds a collection
whose elements are
the results of
applying the given
function to the
corresponding
elements of the two
collections pairwise.
The two input arrays
must have the same
length.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

map3 - O(N) - - - Builds a collection
whose elements are
the results of
applying the given
function to the
corresponding
elements of the
three collections
simultaneously.

mapi O(N) O(N) O(N) - - Builds an array
whose elements are
the results of
applying the given
function to each
element of the array.
The integer index
that's passed to the
function indicates
the index of the
element that's being
transformed.

mapi2 O(N) O(N) - - - Builds a collection
whose elements are
the results of
applying the given
function to the
corresponding
elements of the two
collections pairwise,
also passing the
index of the
elements. The two
input arrays must
have the same
length.

max O(N) O(N) O(N) - - Returns the greatest
element in the
collection, compared
by using the max
operator.

maxBy O(N) O(N) O(N) - - Returns the greatest
element in the
collection, compared
by using max on the
function result.

maxElement - - - - O(log N) Returns the greatest
element in the set
according to the
ordering that's used
for the set.

min O(N) O(N) O(N) - - Returns the least
element in the
collection, compared
by using the min
operator.

minBy O(N) O(N) O(N) - - Returns the least
element in the
collection, compared
by using the min
operator on the
function result.

minElement - - - - O(log N) Returns the lowest
element in the set
according to the
ordering that's used
for the set.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

https://msdn.microsoft.com/library/9a988328-00e9-467b-8dfa-e7a6990f6cce
https://msdn.microsoft.com/library/9a988328-00e9-467b-8dfa-e7a6990f6cce
https://msdn.microsoft.com/library/adea4fd7-bfad-4834-989c-7878aca81fed
https://msdn.microsoft.com/library/adea4fd7-bfad-4834-989c-7878aca81fed

ofArray - O(N) O(1) O(N) O(N) Creates a collection
that contains the
same elements as
the given array.

ofList O(N) - O(1) O(N) O(N) Creates a collection
that contains the
same elements as
the given list.

ofSeq O(N) O(N) - O(N) O(N) Creates a collection
that contains the
same elements as
the given sequence.

pairwise - - O(N) - - Returns a sequence
of each element in
the input sequence
and its predecessor
except for the first
element, which is
returned only as the
predecessor of the
second element.

partition O(N) O(N) - O(N) O(N) Splits the collection
into two collections.
The first collection
contains the
elements for which
the given predicate
returns true , and
the second
collection contains
the elements for
which the given
predicate returns
false .

permute O(N) O(N) - - - Returns an array
with all elements
permuted according
to the specified
permutation.

pick O(N) O(N) O(N) O(log N) - Applies the given
function to
successive elements,
returning the first
result where the
function returns
Some. If the
function never
returns Some,
System.Collections.Generic.KeyNotFoundException

is raised.

readonly - - O(N) - - Creates a sequence
object that
delegates to the
given sequence
object. This
operation ensures
that a type cast
can't rediscover and
mutate the original
sequence. For
example, if given an
array, the returned
sequence will return
the elements of the
array, but you can't
cast the returned
sequence object to
an array.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

reduce O(N) O(N) O(N) - - Applies a function to
each element of the
collection, threading
an accumulator
argument through
the computation.
This function starts
by applying the
function to the first
two elements,
passes this result
into the function
along with the third
element, and so on.
The function returns
the final result.

reduceBack O(N) O(N) - - - Applies a function to
each element of the
collection, threading
an accumulator
argument through
the computation. If
the input function is
f and the elements
are i0...iN, this
function computes f
i0 (...(f iN-1 iN)).

remove - - - O(log N) O(log N) Removes an element
from the domain of
the map. No
exception is raised if
the element isn't
present.

replicate - O(N) - - - Creates a list of a
specified length with
every element set to
the given value.

rev O(N) O(N) - - - Returns a new list
with the elements in
reverse order.

scan O(N) O(N) O(N) - - Applies a function to
each element of the
collection, threading
an accumulator
argument through
the computation.
This operation
applies the function
to the second
argument and the
first element of the
list. The operation
then passes this
result into the
function along with
the second element
and so on. Finally,
the operation
returns the list of
intermediate results
and the final result.

scanBack O(N) O(N) - - - Resembles the
foldBack operation
but returns both the
intermediate and
final results.

singleton - - O(1) - O(1) Returns a sequence
that yields only one
item.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

set O(1) - - - - Sets an element of
an array to the
specified value.

skip - - O(N) - - Returns a sequence
that skips N
elements of the
underlying sequence
and then yields the
remaining elements
of the sequence.

skipWhile - - O(N) - - Returns a sequence
that, when iterated,
skips elements of
the underlying
sequence while the
given predicate
returns true and
then yields the
remaining elements
of the sequence.

sort O(N log N) average

O(N^2) worst case

O(N log N) O(N log N) - - Sorts the collection
by element value.
Elements are
compared using
compare.

sortBy O(N log N) average

O(N^2) worst case

O(N log N) O(N log N) - - Sorts the given list
by using keys that
the given projection
provides. Keys are
compared using
compare.

sortInPlace O(N log N) average

O(N^2) worst case

- - - - Sorts the elements
of an array by
mutating it in place
and using the given
comparison
function. Elements
are compared by
using compare.

sortInPlaceBy O(N log N) average

O(N^2) worst case

- - - - Sorts the elements
of an array by
mutating it in place
and using the given
projection for the
keys. Elements are
compared by using
compare.

sortInPlaceWith O(N log N) average

O(N^2) worst case

- - - - Sorts the elements
of an array by
mutating it in place
and using the given
comparison function
as the order.

sortWith O(N log N) average

O(N^2) worst case

O(N log N) - - - Sorts the elements
of a collection, using
the given
comparison function
as the order and
returning a new
collection.

sub O(N) - - - - Builds an array that
contains the given
subrange that's
specified by starting
index and length.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c
https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c
https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c
https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c

sum O(N) O(N) O(N) - - Returns the sum of
the elements in the
collection.

sumBy O(N) O(N) O(N) - - Returns the sum of
the results that are
generated by
applying the
function to each
element of the
collection.

tail - O(1) - - - Returns the list
without its first
element.

take - - O(N) - - Returns the
elements of the
sequence up to a
specified count.

takeWhile - - O(1) - - Returns a sequence
that, when iterated,
yields elements of
the underlying
sequence while the
given predicate
returns true and
then returns no
more elements.

toArray - O(N) O(N) O(N) O(N) Creates an array
from the given
collection.

toList O(N) - O(N) O(N) O(N) Creates a list from
the given collection.

toSeq O(1) O(1) - O(1) O(1) Creates a sequence
from the given
collection.

truncate - - O(1) - - Returns a sequence
that, when
enumerated, returns
no more than N
elements.

tryFind O(N) O(N) O(N) O(log N) - Searches for an
element that
satisfies a given
predicate.

tryFindIndex O(N) O(N) O(N) - - Searches for the first
element that
satisfies a given
predicate and
returns the index of
the matching
element, or None if
no such element
exists.

tryFindKey - - - O(log N) - Returns the key of
the first mapping in
the collection that
satisfies the given
predicate, or returns
None if no such

element exists.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

tryPick O(N) O(N) O(N) O(log N) - Applies the given
function to
successive elements,
returning the first
result where the
function returns
Some for some

value. If no such
element exists, the
operation returns
None .

unfold - - O(N) - - Returns a sequence
that contains the
elements that the
given computation
generates.

union - - - - O(M * log N) Computes the union
of the two sets.

unionMany - - - - O(N1 * N2 ...) Computes the union
of a sequence of
sets.

unzip O(N) O(N) O(N) - - Splits a list of pairs
into two lists.

unzip3 O(N) O(N) O(N) - - Splits a list of triples
into three lists.

windowed - - O(N) - - Returns a sequence
that yields sliding
windows of
containing elements
that are drawn from
the input sequence.
Each window is
returned as a fresh
array.

zip O(N) O(N) O(N) - - Combines the two
collections into a list
of pairs. The two
lists must have
equal lengths.

zip3 O(N) O(N) O(N) - - Combines the three
collections into a list
of triples. The lists
must have equal
lengths.

FUNCTION ARRAY LIST SEQUENCE MAP SET DESCRIPTION

See Also
F# Types

F# Language Reference

Lists
5/4/2018 • 23 minutes to read • Edit Online

NOTENOTE

Creating and Initializing Lists

let list123 = [1; 2; 3]

let list123 = [
 1
 2
 3]

let myControlList : Control list = [new Button(); new CheckBox()]

let list1 = [1 .. 10]

// An empty list.
let listEmpty = []

let listOfSquares = [for i in 1 .. 10 -> i*i]

Operators for Working with Lists

let list2 = 100 :: list1

let list3 = list1 @ list2

Properties

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

A list in F# is an ordered, immutable series of elements of the same type. To perform basic operations on lists, use the functions in the List module.

You can define a list by explicitly listing out the elements, separated by semicolons and enclosed in square brackets, as shown in the following line of
code.

You can also put line breaks between elements, in which case the semicolons are optional. The latter syntax can result in more readable code when the
element initialization expressions are longer, or when you want to include a comment for each element.

Normally, all list elements must be the same type. An exception is that a list in which the elements are specified to be a base type can have elements that
are derived types. Thus the following is acceptable, because both Button and CheckBox derive from Control .

You can also define list elements by using a range indicated by integers separated by the range operator (..), as shown in the following code.

An empty list is specified by a pair of square brackets with nothing in between them.

You can also use a sequence expression to create a list. See Sequence Expressions for more information. For example, the following code creates a list of
squares of integers from 1 to 10.

You can attach elements to a list by using the :: (cons) operator. If list1 is [2; 3; 4] , the following code creates list2 as [100; 2; 3; 4] .

You can concatenate lists that have compatible types by using the @ operator, as in the following code. If list1 is [2; 3; 4] and list2 is
[100; 2; 3; 4] , this code creates list3 as [2; 3; 4; 100; 2; 3; 4] .

Functions for performing operations on lists are available in the List module.

Because lists in F# are immutable, any modifying operations generate new lists instead of modifying existing lists.

Lists in F# are implemented as singly linked lists, which means that operations that access only the head of the list are O(1), and element access is O(n).

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/lists.md
https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788
https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788

PROPERTY TYPE DESCRIPTION

Head 'T The first element.

Empty 'T list A static property that returns an empty list of the
appropriate type.

IsEmpty bool true if the list has no elements.

Item 'T The element at the specified index (zero-based).

Length int The number of elements.

Tail 'T list The list without the first element.

let list1 = [1; 2; 3]

// Properties
printfn "list1.IsEmpty is %b" (list1.IsEmpty)
printfn "list1.Length is %d" (list1.Length)
printfn "list1.Head is %d" (list1.Head)
printfn "list1.Tail.Head is %d" (list1.Tail.Head)
printfn "list1.Tail.Tail.Head is %d" (list1.Tail.Tail.Head)
printfn "list1.Item(1) is %d" (list1.Item(1))

Using Lists

Recursion with ListsRecursion with Lists

let rec sum list =
 match list with
 | head :: tail -> head + sum tail
 | [] -> 0

let sum list =
 let rec loop list acc =
 match list with
 | head :: tail -> loop tail (acc + head)
 | [] -> acc
 loop list 0

The list type supports the following properties:

Following are some examples of using these properties.

Programming with lists enables you to perform complex operations with a small amount of code. This section describes common operations on lists
that are important to functional programming.

Lists are uniquely suited to recursive programming techniques. Consider an operation that must be performed on every element of a list. You can do
this recursively by operating on the head of the list and then passing the tail of the list, which is a smaller list that consists of the original list without the
first element, back again to the next level of recursion.

To write such a recursive function, you use the cons operator (::) in pattern matching, which enables you to separate the head of a list from the tail.

The following code example shows how to use pattern matching to implement a recursive function that performs operations on a list.

The previous code works well for small lists, but for larger lists, it could overflow the stack. The following code improves on this code by using an
accumulator argument, a standard technique for working with recursive functions. The use of the accumulator argument makes the function tail
recursive, which saves stack space.

The function RemoveAllMultiples is a recursive function that takes two lists. The first list contains the numbers whose multiples will be removed, and the
second list is the list from which to remove the numbers. The code in the following example uses this recursive function to eliminate all the non-prime
numbers from a list, leaving a list of prime numbers as the result.

https://msdn.microsoft.com/library/5f9414fd-6bdb-470a-8b72-40016db30740
https://msdn.microsoft.com/library/44406ecb-1918-4d32-b32a-ca1f69840386
https://msdn.microsoft.com/library/3ba087b2-2fc2-406d-b10a-cff6a19322da
https://msdn.microsoft.com/library/bdb2553a-0e54-4ff8-baed-ab1aac8f5dae
https://msdn.microsoft.com/library/25f715c8-9daa-4c4d-a6c7-26772f9dab4d
https://msdn.microsoft.com/library/2a6f8eb9-dc32-41aa-8b62-2baffaface91

let IsPrimeMultipleTest n x =
 x = n || x % n <> 0

let rec RemoveAllMultiples listn listx =
 match listn with
 | head :: tail -> RemoveAllMultiples tail (List.filter (IsPrimeMultipleTest head) listx)
 | [] -> listx

let GetPrimesUpTo n =
 let max = int (sqrt (float n))
 RemoveAllMultiples [2 .. max] [1 .. n]

printfn "Primes Up To %d:\n %A" 100 (GetPrimesUpTo 100)

Primes Up To 100:
[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71; 73; 79; 83; 89; 97]

Module Functions

Boolean Operations on ListsBoolean Operations on Lists

// Use List.exists to determine whether there is an element of a list satisfies a given Boolean expression.
// containsNumber returns true if any of the elements of the supplied list match
// the supplied number.
let containsNumber number list = List.exists (fun elem -> elem = number) list
let list0to3 = [0 .. 3]
printfn "For list %A, contains zero is %b" list0to3 (containsNumber 0 list0to3)

For list [0; 1; 2; 3], contains zero is true

// Use List.exists2 to compare elements in two lists.
// isEqualElement returns true if any elements at the same position in two supplied
// lists match.
let isEqualElement list1 list2 = List.exists2 (fun elem1 elem2 -> elem1 = elem2) list1 list2
let list1to5 = [1 .. 5]
let list5to1 = [5 .. -1 .. 1]
if (isEqualElement list1to5 list5to1) then
 printfn "Lists %A and %A have at least one equal element at the same position." list1to5 list5to1
else
 printfn "Lists %A and %A do not have an equal element at the same position." list1to5 list5to1

Lists [1; 2; 3; 4; 5] and [5; 4; 3; 2; 1] have at least one equal element at the same position.

let isAllZeroes list = List.forall (fun elem -> elem = 0.0) list
printfn "%b" (isAllZeroes [0.0; 0.0])
printfn "%b" (isAllZeroes [0.0; 1.0])

The output is as follows:

The List module provides functions that access the elements of a list. The head element is the fastest and easiest to access. Use the property Head or the
module function List.head. You can access the tail of a list by using the Tail property or the List.tail function. To find an element by index, use the List.nth
function. List.nth traverses the list. Therefore, it is O(n). If your code uses List.nth frequently, you might want to consider using an array instead of a
list. Element access in arrays is O(1).

The List.isEmpty function determines whether a list has any elements.

The List.exists function applies a Boolean test to elements of a list and returns true if any element satisfies the test. List.exists2 is similar but operates
on successive pairs of elements in two lists.

The following code demonstrates the use of List.exists .

The output is as follows:

The following example demonstrates the use of List.exists2 .

The output is as follows:

You can use List.forall if you want to test whether all the elements of a list meet a condition.

The output is as follows:

https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788
https://msdn.microsoft.com/library/5f9414fd-6bdb-470a-8b72-40016db30740
https://msdn.microsoft.com/library/22514cc5-0511-498b-a2cc-837b688a6da2
https://msdn.microsoft.com/library/2a6f8eb9-dc32-41aa-8b62-2baffaface91
https://msdn.microsoft.com/library/da0a0638-4420-4571-84b6-d09ae601f601
https://msdn.microsoft.com/library/1f717d57-89be-4007-a971-9cf5a28d83b1
https://msdn.microsoft.com/library/a7941d44-9e92-427c-b806-c378f4558107
https://msdn.microsoft.com/library/15a3ebd5-98f0-44c0-8220-7dedec3e68a8
https://msdn.microsoft.com/library/7532b39e-3f4f-4534-a60b-d7721dc6fa7e
https://msdn.microsoft.com/library/e11a5233-d612-40ac-833b-d5cf496900b7

true
false

let listEqual list1 list2 = List.forall2 (fun elem1 elem2 -> elem1 = elem2) list1 list2
printfn "%b" (listEqual [0; 1; 2] [0; 1; 2])
printfn "%b" (listEqual [0; 0; 0] [0; 1; 0])

true
false

Sort Operations on ListsSort Operations on Lists

let sortedList1 = List.sort [1; 4; 8; -2; 5]
printfn "%A" sortedList1

[-2; 1; 4; 5; 8]

let sortedList2 = List.sortBy (fun elem -> abs elem) [1; 4; 8; -2; 5]
printfn "%A" sortedList2

[1; -2; 4; 5; 8]

type Widget = { ID: int; Rev: int }

let compareWidgets widget1 widget2 =
 if widget1.ID < widget2.ID then -1 else
 if widget1.ID > widget2.ID then 1 else
 if widget1.Rev < widget2.Rev then -1 else
 if widget1.Rev > widget2.Rev then 1 else
 0

let listToCompare = [
 { ID = 92; Rev = 1 }
 { ID = 110; Rev = 1 }
 { ID = 100; Rev = 5 }
 { ID = 100; Rev = 2 }
 { ID = 92; Rev = 1 }
]

let sortedWidgetList = List.sortWith compareWidgets listToCompare
printfn "%A" sortedWidgetList

Similarly, List.forall2 determines whether all elements in the corresponding positions in two lists satisfy a Boolean expression that involves each pair of
elements.

The output is as follows:

The List.sort, List.sortBy, and List.sortWith functions sort lists. The sorting function determines which of these three functions to use. List.sort uses
default generic comparison. Generic comparison uses global operators based on the generic compare function to compare values. It works efficiently
with a wide variety of element types, such as simple numeric types, tuples, records, discriminated unions, lists, arrays, and any type that implements
System.IComparable . For types that implement System.IComparable , generic comparison uses the System.IComparable.CompareTo() function. Generic

comparison also works with strings, but uses a culture-independent sorting order. Generic comparison should not be used on unsupported types, such
as function types. Also, the performance of the default generic comparison is best for small structured types; for larger structured types that need to be
compared and sorted frequently, consider implementing System.IComparable and providing an efficient implementation of the
System.IComparable.CompareTo() method.

List.sortBy takes a function that returns a value that is used as the sort criterion, and List.sortWith takes a comparison function as an argument.
These latter two functions are useful when you are working with types that do not support comparison, or when the comparison requires more complex
comparison semantics, as in the case of culture-aware strings.

The following example demonstrates the use of List.sort .

The output is as follows:

The following example demonstrates the use of List.sortBy .

The output is as follows:

The next example demonstrates the use of List.sortWith . In this example, the custom comparison function compareWidgets is used to first compare
one field of a custom type, and then another when the values of the first field are equal.

https://msdn.microsoft.com/library/bb611f02-8277-48f5-9af3-6194ae27d07e
https://msdn.microsoft.com/library/17f1030e-aa7e-41dd-94ea-72cb6c04fd3d
https://msdn.microsoft.com/library/955bfc5f-ad9c-4f2d-a7ab-91e43eb21359
https://msdn.microsoft.com/library/1d806a54-9166-4198-906d-15101f7916c7

[{ID = 92;
Rev = 1;}; {ID = 92;
Rev = 1;}; {ID = 100;
Rev = 2;}; {ID = 100;
Rev = 5;}; {ID = 110;
Rev = 1;}]

Search Operations on ListsSearch Operations on Lists

let isDivisibleBy number elem = elem % number = 0
let result = List.find (isDivisibleBy 5) [1 .. 100]
printfn "%d " result

let valuesList = [("a", 1); ("b", 2); ("c", 3)]

let resultPick = List.pick (fun elem ->
 match elem with
 | (value, 2) -> Some value
 | _ -> None) valuesList
printfn "%A" resultPick

"b"

let list1d = [1; 3; 7; 9; 11; 13; 15; 19; 22; 29; 36]
let isEven x = x % 2 = 0
match List.tryFind isEven list1d with
| Some value -> printfn "The first even value is %d." value
| None -> printfn "There is no even value in the list."

match List.tryFindIndex isEven list1d with
| Some value -> printfn "The first even value is at position %d." value
| None -> printfn "There is no even value in the list."

The first even value is 22.
The first even value is at position 8.

Arithmetic Operations on ListsArithmetic Operations on Lists

The output is as follows:

Numerous search operations are supported for lists. The simplest, List.find, enables you to find the first element that matches a given condition.

The following code example demonstrates the use of List.find to find the first number that is divisible by 5 in a list.

The result is 5.

If the elements must be transformed first, call List.pick, which takes a function that returns an option, and looks for the first option value that is Some(x) .
Instead of returning the element, List.pick returns the result x . If no matching element is found, List.pick throws
System.Collections.Generic.KeyNotFoundException . The following code shows the use of List.pick .

The output is as follows:

Another group of search operations, List.tryFind and related functions, return an option value. The List.tryFind function returns the first element of a
list that satisfies a condition if such an element exists, but the option value None if not. The variation List.tryFindIndex returns the index of the element,
if one is found, rather than the element itself. These functions are illustrated in the following code.

The output is as follows:

Common arithmetic operations such as sum and average are built into the List module. To work with List.sum, the list element type must support the
+ operator and have a zero value. All built-in arithmetic types satisfy these conditions. To work with List.average, the element type must support

division without a remainder, which excludes integral types but allows for floating point types. The List.sumBy and List.averageBy functions take a
function as a parameter, and this function's results are used to calculate the values for the sum or average.

The following code demonstrates the use of List.sum , List.sumBy , and List.average .

https://msdn.microsoft.com/library/0594593e-9c75-44c1-8f5a-a37b2e561c06
https://msdn.microsoft.com/library/0430b515-7fe4-49a1-a616-d2286d8b08b2
https://msdn.microsoft.com/library/37f4532e-9fd0-4802-8bbd-e1aa2380287d
https://msdn.microsoft.com/library/5e31968c-c3d3-43d2-859a-0526825895ec
https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788
https://msdn.microsoft.com/library/54d47fe3-5ecf-4883-beb5-e915342a17f9
https://msdn.microsoft.com/library/2b9a627b-106d-4548-8c4c-ab5058b8f8e1
https://msdn.microsoft.com/library/b7623389-0fe1-4762-9c67-51079903ab7d
https://msdn.microsoft.com/library/936cc9ec-62af-464d-8726-7999c2f48403

// Compute the sum of the first 10 integers by using List.sum.
let sum1 = List.sum [1 .. 10]

// Compute the sum of the squares of the elements of a list by using List.sumBy.
let sum2 = List.sumBy (fun elem -> elem*elem) [1 .. 10]

// Compute the average of the elements of a list by using List.average.
let avg1 = List.average [0.0; 1.0; 1.0; 2.0]

printfn "%f" avg1

let avg2 = List.averageBy (fun elem -> float elem) [1 .. 10]
printfn "%f" avg2

Lists and TuplesLists and Tuples

let list1 = [1; 2; 3]
let list2 = [-1; -2; -3]
let listZip = List.zip list1 list2
printfn "%A" listZip

[(1, -1); (2, -2); (3; -3)]

let list3 = [0; 0; 0]
let listZip3 = List.zip3 list1 list2 list3
printfn "%A" listZip3

[(1, -1, 0); (2, -2, 0); (3, -3, 0)]

let lists = List.unzip [(1,2); (3,4)]
printfn "%A" lists
printfn "%A %A" (fst lists) (snd lists)

([1; 3], [2; 4])
[1; 3] [2; 4]

let listsUnzip3 = List.unzip3 [(1,2,3); (4,5,6)]
printfn "%A" listsUnzip3

([1; 4], [2; 5], [3; 6])

Operating on List ElementsOperating on List Elements

The output is 1.000000 .

The following code shows the use of List.averageBy .

The output is 5.5 .

Lists that contain tuples can be manipulated by zip and unzip functions. These functions combine two lists of single values into one list of tuples or
separate one list of tuples into two lists of single values. The simplest List.zip function takes two lists of single elements and produces a single list of
tuple pairs. Another version, List.zip3, takes three lists of single elements and produces a single list of tuples that have three elements. The following
code example demonstrates the use of List.zip .

The output is as follows:

The following code example demonstrates the use of List.zip3 .

The output is as follows:

The corresponding unzip versions, List.unzip and List.unzip3, take lists of tuples and return lists in a tuple, where the first list contains all the elements
that were first in each tuple, and the second list contains the second element of each tuple, and so on.

The following code example demonstrates the use of List.unzip.

The output is as follows:

The following code example demonstrates the use of List.unzip3.

The output is as follows:

https://msdn.microsoft.com/library/3028d790-8f48-4c94-bf08-b058bec3689c
https://msdn.microsoft.com/library/003cc28e-0de3-4d99-89ed-cb19028e3c5b
https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21
https://msdn.microsoft.com/library/43078c77-32ec-4342-85b3-c31ccf984db4
https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21
https://msdn.microsoft.com/library/43078c77-32ec-4342-85b3-c31ccf984db4

let list1 = [1; 2; 3]
let list2 = [4; 5; 6]
List.iter (fun x -> printfn "List.iter: element is %d" x) list1
List.iteri(fun i x -> printfn "List.iteri: element %d is %d" i x) list1
List.iter2 (fun x y -> printfn "List.iter2: elements are %d %d" x y) list1 list2
List.iteri2 (fun i x y ->
 printfn "List.iteri2: element %d of list1 is %d element %d of list2 is %d"
 i x i y)
 list1 list2

List.iter: element is 1
List.iter: element is 2
List.iter: element is 3
List.iteri: element 0 is 1
List.iteri: element 1 is 2
List.iteri: element 2 is 3
List.iter2: elements are 1 4
List.iter2: elements are 2 5
List.iter2: elements are 3 6
List.iteri2: element 0 of list1 is 1; element 0 of list2 is 4
List.iteri2: element 1 of list1 is 2; element 1 of list2 is 5
List.iteri2: element 2 of list1 is 3; element 2 of list2 is 6

let list1 = [1; 2; 3]
let newList = List.map (fun x -> x + 1) list1
printfn "%A" newList

[2; 3; 4]

let list1 = [1; 2; 3]
let list2 = [4; 5; 6]
let sumList = List.map2 (fun x y -> x + y) list1 list2
printfn "%A" sumList

[5; 7; 9]

let newList2 = List.map3 (fun x y z -> x + y + z) list1 list2 [2; 3; 4]
printfn "%A" newList2

[7; 10; 13]

let newListAddIndex = List.mapi (fun i x -> x + i) list1
printfn "%A" newListAddIndex

F# supports a variety of operations on list elements. The simplest is List.iter, which enables you to call a function on every element of a list. Variations
include List.iter2, which enables you to perform an operation on elements of two lists, List.iteri, which is like List.iter except that the index of each
element is passed as an argument to the function that is called for each element, and List.iteri2, which is a combination of the functionality of
List.iter2 and List.iteri . The following code example illustrates these functions.

The output is as follows:

Another frequently used function that transforms list elements is List.map, which enables you to apply a function to each element of a list and put all the
results into a new list. List.map2 and List.map3 are variations that take multiple lists. You can also use List.mapi and List.mapi2, if, in addition to the
element, the function needs to be passed the index of each element. The only difference between List.mapi2 and List.mapi is that List.mapi2 works
with two lists. The following example illustrates List.map.

The output is as follows:

The following example shows the use of List.map2 .

The output is as follows:

The following example shows the use of List.map3 .

The output is as follows:

The following example shows the use of List.mapi .

The output is as follows:

https://msdn.microsoft.com/library/f778d075-81a9-4994-af60-cddcc53a201f
https://msdn.microsoft.com/library/ea3b7761-916c-4016-9bd8-651124c98b40
https://msdn.microsoft.com/library/6dd21ae6-5c00-41cd-8306-821e513d8f60
https://msdn.microsoft.com/library/9658d740-9be5-4bf7-b663-c8ab2b3e196c
https://msdn.microsoft.com/library/c6b49c99-d4f3-4ba3-b1d0-85a312683dc6
https://msdn.microsoft.com/library/5f48cce7-6eaf-4e54-8996-2b04d3c31e57
https://msdn.microsoft.com/library/dd9fb190-6980-4537-be96-5645a64908f8
https://msdn.microsoft.com/library/284b9234-3d26-409b-b328-ac79638d9e14
https://msdn.microsoft.com/library/680643af-233c-40a3-82f2-43d5af27ec49
https://msdn.microsoft.com/library/c6b49c99-d4f3-4ba3-b1d0-85a312683dc6

[1; 3; 5]

let listAddTimesIndex = List.mapi2 (fun i x y -> (x + y) * i) list1 list2
printfn "%A" listAddTimesIndex

[0; 7; 18]

let collectList = List.collect (fun x -> [for i in 1..3 -> x * i]) list1
printfn "%A" collectList

[1; 2; 3; 2; 4; 6; 3; 6; 9]

let evenOnlyList = List.filter (fun x -> x % 2 = 0) [1; 2; 3; 4; 5; 6]

let listWords = ["and"; "Rome"; "Bob"; "apple"; "zebra"]
let isCapitalized (string1:string) = System.Char.IsUpper string1.[0]
let results = List.choose (fun elem ->
 match elem with
 | elem when isCapitalized elem -> Some(elem + "'s")
 | _ -> None) listWords
printfn "%A" results

["Rome's"; "Bob's"]

Operating on Multiple ListsOperating on Multiple Lists

let list1to10 = List.append [1; 2; 3] [4; 5; 6; 7; 8; 9; 10]
let listResult = List.concat [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]]
List.iter (fun elem -> printf "%d " elem) list1to10
printfn ""
List.iter (fun elem -> printf "%d " elem) listResult

Fold and Scan OperationsFold and Scan Operations

The following example shows the use of List.mapi2 .

The output is as follows:

List.collect is like List.map , except that each element produces a list and all these lists are concatenated into a final list. In the following code, each
element of the list generates three numbers. These are all collected into one list.

The output is as follows:

You can also use List.filter, which takes a Boolean condition and produces a new list that consists only of elements that satisfy the given condition.

The resulting list is [2; 4; 6] .

A combination of map and filter, List.choose enables you to transform and select elements at the same time. List.choose applies a function that returns
an option to each element of a list, and returns a new list of the results for elements when the function returns the option value Some .

The following code demonstrates the use of List.choose to select capitalized words out of a list of words.

The output is as follows:

Lists can be joined together. To join two lists into one, use List.append. To join more than two lists, use List.concat.

Some list operations involve interdependencies between all of the list elements. The fold and scan operations are like List.iter and List.map in that
you invoke a function on each element, but these operations provide an additional parameter called the accumulator that carries information through
the computation.

Use List.fold to perform a calculation on a list.

The following code example demonstrates the use of List.fold to perform various operations.

The list is traversed; the accumulator acc is a value that is passed along as the calculation proceeds. The first argument takes the accumulator and the
list element, and returns the interim result of the calculation for that list element. The second argument is the initial value of the accumulator.

https://msdn.microsoft.com/library/cd08bbc7-a3b9-40ab-8c20-4e85ec84664f
https://msdn.microsoft.com/library/11a8c926-547b-44dd-bbae-98d44f3dd248
https://msdn.microsoft.com/library/2e21d3fb-ce35-4824-8a57-c4404616093d
https://msdn.microsoft.com/library/2954da80-3f4a-4a4b-9371-794645c03426
https://msdn.microsoft.com/library/c5afd433-8764-4ea8-a6a8-937fb4d77c4c
https://msdn.microsoft.com/library/c272779e-bae7-4983-8d7f-16b345bb33a0

let sumList list = List.fold (fun acc elem -> acc + elem) 0 list
printfn "Sum of the elements of list %A is %d." [1 .. 3] (sumList [1 .. 3])

// The following example computes the average of a list.
let averageList list = (List.fold (fun acc elem -> acc + float elem) 0.0 list / float list.Length)

// The following example computes the standard deviation of a list.
// The standard deviation is computed by taking the square root of the
// sum of the variances, which are the differences between each value
// and the average.
let stdDevList list =
 let avg = averageList list
 sqrt (List.fold (fun acc elem -> acc + (float elem - avg) ** 2.0) 0.0 list / float list.Length)

let testList listTest =
 printfn "List %A average: %f stddev: %f" listTest (averageList listTest) (stdDevList listTest)

testList [1; 1; 1]
testList [1; 2; 1]
testList [1; 2; 3]

// List.fold is the same as to List.iter when the accumulator is not used.
let printList list = List.fold (fun acc elem -> printfn "%A" elem) () list
printList [0.0; 1.0; 2.5; 5.1]

// The following example uses List.fold to reverse a list.
// The accumulator starts out as the empty list, and the function uses the cons operator
// to add each successive element to the head of the accumulator list, resulting in a
// reversed form of the list.
let reverseList list = List.fold (fun acc elem -> elem::acc) [] list
printfn "%A" (reverseList [1 .. 10])

// Use List.fold2 to perform computations over two lists (of equal size) at the same time.
// Example: Sum the greater element at each list position.
let sumGreatest list1 list2 = List.fold2 (fun acc elem1 elem2 ->
 acc + max elem1 elem2) 0 list1 list2

let sum = sumGreatest [1; 2; 3] [3; 2; 1]
printfn "The sum of the greater of each pair of elements in the two lists is %d." sum

// Discriminated union type that encodes the transaction type.
type Transaction =
 | Deposit
 | Withdrawal

let transactionTypes = [Deposit; Deposit; Withdrawal]
let transactionAmounts = [100.00; 1000.00; 95.00]
let initialBalance = 200.00

// Use fold2 to perform a calculation on the list to update the account balance.
let endingBalance = List.fold2 (fun acc elem1 elem2 ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2)
 initialBalance
 transactionTypes
 transactionAmounts
printfn "%f" endingBalance

The versions of these functions that have a digit in the function name operate on more than one list. For example, List.fold2 performs computations on
two lists.

The following example demonstrates the use of List.fold2 .

List.fold and List.scan differ in that List.fold returns the final value of the extra parameter, but List.scan returns the list of the intermediate values
(along with the final value) of the extra parameter.

Each of these functions includes a reverse variation, for example, List.foldBack, which differs in the order in which the list is traversed and the order of
the arguments. Also, List.fold and List.foldBack have variations, List.fold2 and List.foldBack2, that take two lists of equal length. The function that
executes on each element can use corresponding elements of both lists to perform some action. The element types of the two lists can be different, as in
the following example, in which one list contains transaction amounts for a bank account, and the other list contains the type of transaction: deposit or
withdrawal.

For a calculation like summation, List.fold and List.foldBack have the same effect because the result does not depend on the order of traversal. In
the following example, List.foldBack is used to add the elements in a list.

https://msdn.microsoft.com/library/6cfcd043-a65d-4423-805a-2ab234cb5343
https://msdn.microsoft.com/library/21f636db-885c-4a72-970e-e3841f33a1b8
https://msdn.microsoft.com/library/b9a58e66-efe1-445f-a90c-ac9ffb9d40c7
https://msdn.microsoft.com/library/6cfcd043-a65d-4423-805a-2ab234cb5343
https://msdn.microsoft.com/library/56371d3e-5271-4183-9e8c-15a02eda9aa2

let sumListBack list = List.foldBack (fun acc elem -> acc + elem) list 0
printfn "%d" (sumListBack [1; 2; 3])

// For a calculation in which the order of traversal is important, fold and foldBack have different
// results. For example, replacing fold with foldBack in the listReverse function
// produces a function that copies the list, rather than reversing it.
let copyList list = List.foldBack (fun elem acc -> elem::acc) list []
printfn "%A" (copyList [1 .. 10])

type Transaction2 =
 | Deposit
 | Withdrawal
 | Interest

let transactionTypes2 = [Deposit; Deposit; Withdrawal; Interest]
let transactionAmounts2 = [100.00; 1000.00; 95.00; 0.05 / 12.0]
let initialBalance2 = 200.00

// Because fold2 processes the lists by starting at the head element,
// the interest is calculated last, on the balance of 1205.00.
let endingBalance2 = List.fold2 (fun acc elem1 elem2 ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2
 | Interest -> acc * (1.0 + elem2))
 initialBalance2
 transactionTypes2
 transactionAmounts2
printfn "%f" endingBalance2

// Because foldBack2 processes the lists by starting at end of the list,
// the interest is calculated first, on the balance of only 200.00.
let endingBalance3 = List.foldBack2 (fun elem1 elem2 acc ->
 match elem1 with
 | Deposit -> acc + elem2
 | Withdrawal -> acc - elem2
 | Interest -> acc * (1.0 + elem2))
 transactionTypes2
 transactionAmounts2
 initialBalance2
printfn "%f" endingBalance3

let sumAList list =
 try
 List.reduce (fun acc elem -> acc + elem) list
 with
 | :? System.ArgumentException as exc -> 0

let resultSum = sumAList [2; 4; 10]
printfn "%d " resultSum

Converting Between Lists and Other Collection TypesConverting Between Lists and Other Collection Types

Additional OperationsAdditional Operations

See Also

The following example returns to the bank account example. This time a new transaction type is added: an interest calculation. The ending balance now
depends on the order of transactions.

The function List.reduce is somewhat like List.fold and List.scan , except that instead of passing around a separate accumulator, List.reduce takes a
function that takes two arguments of the element type instead of just one, and one of those arguments acts as the accumulator, meaning that it stores
the intermediate result of the computation. List.reduce starts by operating on the first two list elements, and then uses the result of the operation
along with the next element. Because there is not a separate accumulator that has its own type, List.reduce can be used in place of List.fold only
when the accumulator and the element type have the same type. The following code demonstrates the use of List.reduce . List.reduce throws an
exception if the list provided has no elements.

In the following code, the first call to the lambda expression is given the arguments 2 and 4, and returns 6, and the next call is given the arguments 6
and 10, so the result is 16.

The List module provides functions for converting to and from both sequences and arrays. To convert to or from a sequence, use List.toSeq or
List.ofSeq. To convert to or from an array, use List.toArray or List.ofArray.

For information about additional operations on lists, see the library reference topic Collections.List Module.

F# Language Reference

F# Types

Sequences

https://msdn.microsoft.com/library/048e1f95-691b-49cb-bb99-fb85f68f3d8b
https://msdn.microsoft.com/library/7024be4b-ee70-43cc-8d0a-e6564a4ff7c0
https://msdn.microsoft.com/library/74ab9289-4a59-4433-92eb-3f662d7f7db0
https://msdn.microsoft.com/library/ac87dd82-a0cd-40b3-b1fa-dd3168134547
https://msdn.microsoft.com/library/f4bddc26-8c8f-4307-a6d7-a49dceb97032
https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.list-module-%5bfsharp%5d

Arrays

Options

Options
5/4/2018 • 3 minutes to read • Edit Online

Remarks

let keepIfPositive (a : int) = if a > 0 then Some(a) else None

let exists (x : int option) =
 match x with
 | Some(x) -> true
 | None -> false

Using Options

let rec tryFindMatch pred list =
 match list with
 | head :: tail -> if pred(head)
 then Some(head)
 else tryFindMatch pred tail
 | [] -> None

// result1 is Some 100 and its type is int option.
let result1 = tryFindMatch (fun elem -> elem = 100) [200; 100; 50; 25]

// result2 is None and its type is int option.
let result2 = tryFindMatch (fun elem -> elem = 26) [200; 100; 50; 25]

open System.IO
let openFile filename =
 try
 let file = File.Open (filename, FileMode.Create)
 Some(file)
 with
 | ex -> eprintf "An exception occurred with message %s" ex.Message
 None

Option Properties and Methods

The option type in F# is used when an actual value might not exist for a named value or variable. An option has an underlying type and can hold a value
of that type, or it might not have a value.

The following code illustrates a function which generates an option type.

As you can see, if the input a is greater than 0, Some(a) is generated. Otherwise, None is generated.

The value None is used when an option does not have an actual value. Otherwise, the expression Some(...) gives the option a value. The values
Some and None are useful in pattern matching, as in the following function exists , which returns true if the option has a value and false if it does

not.

Options are commonly used when a search does not return a matching result, as shown in the following code.

In the previous code, a list is searched recursively. The function tryFindMatch takes a predicate function pred that returns a Boolean value, and a list to
search. If an element that satisfies the predicate is found, the recursion ends and the function returns the value as an option in the expression
Some(head) . The recursion ends when the empty list is matched. At that point the value head has not been found, and None is returned.

Many F# library functions that search a collection for a value that may or may not exist return the option type. By convention, these functions begin
with the try prefix, for example, Seq.tryFindIndex .

Options can also be useful when a value might not exist, for example if it is possible that an exception will be thrown when you try to construct a value.
The following code example illustrates this.

The openFile function in the previous example has type string -> File option because it returns a File object if the file opens successfully and
None if an exception occurs. Depending on the situation, it may not be an appropriate design choice to catch an exception rather than allowing it to

propagate.

The option type supports the following properties and methods.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/options.md
https://msdn.microsoft.com/library/c357b221-edf6-4f68-bf40-82a3156d945a

PROPERTY OR METHOD TYPE DESCRIPTION

None 'T option A static property that enables you to create an option
value that has the None value.

IsNone bool Returns true if the option has the None value.

IsSome bool Returns true if the option has a value that is not
None .

Some 'T option A static member that creates an option that has a
value that is not None .

Value 'T Returns the underlying value, or throws a
System.NullReferenceException if the value is
None .

Option Module

Converting to Other Types

See Also

There is a module, Option, that contains useful functions that perform operations on options. Some functions repeat the functionality of the properties
but are useful in contexts where a function is needed. Option.isSome and Option.isNone are both module functions that test whether an option holds a
value. Option.get obtains the value, if there is one. If there is no value, it throws System.ArgumentException .

The Option.bind function executes a function on the value, if there is a value. The function must take exactly one argument, and its parameter type must
be the option type. The return value of the function is another option type.

The option module also includes functions that correspond to the functions that are available for lists, arrays, sequences, and other collection types.
These functions include Option.map , Option.iter , Option.forall , Option.exists , Option.foldBack , Option.fold , and Option.count . These functions
enable options to be used like a collection of zero or one elements. For more information and examples, see the discussion of collection functions in
Lists.

Options can be converted to lists or arrays. When an option is converted into either of these data structures, the resulting data structure has zero or one
element. To convert an option to an array, use Option.toArray . To convert an option to a list, use Option.toList .

F# Language Reference

F# Types

https://msdn.microsoft.com/library/83ef260a-aa33-4e6f-aee6-b9bf0a461476
https://msdn.microsoft.com/library/f08532ca-1716-4f60-ae59-8ef6256df234
https://msdn.microsoft.com/library/c5088d51-c5d7-425f-a77f-12c379bb356f
https://msdn.microsoft.com/library/12f048d2-e293-4596-accb-de036ecd63fc
https://msdn.microsoft.com/library/c79f68e8-11fd-45b1-a053-e8fc38b56df7
https://msdn.microsoft.com/library/e615e4d3-bbbb-49ba-addc-6061ea2e2f4c
https://msdn.microsoft.com/library/41ad0857-5672-4326-84b5-c33dc43dcf79
https://msdn.microsoft.com/library/73db6a53-15e7-40a6-94f9-a0049e5f4819
https://msdn.microsoft.com/library/803e9fcb-6edd-4910-808c-25f08cbc55ea
https://msdn.microsoft.com/library/c3406192-24ac-49b5-bc3b-8f805187f1c0
https://msdn.microsoft.com/library/91a20385-7e73-40c2-9adc-635e86d6a622
https://msdn.microsoft.com/library/83389eef-3dff-4074-b4cc-f69581c25191
https://msdn.microsoft.com/library/ba884586-5eae-49c5-9e36-05481c1c3428
https://msdn.microsoft.com/library/a606d2d4-fddc-4eab-ab37-c6138fb7ad99
https://msdn.microsoft.com/library/a882fbaf-c019-46f0-b4f5-b8c2b8b90ffb
https://msdn.microsoft.com/library/af896794-3d53-406c-9411-316cd5c33ad8
https://msdn.microsoft.com/library/2dac83a9-684e-4d0f-b50e-ff722a8bb876
https://msdn.microsoft.com/library/c8044873-ba17-4b52-8231-eb1a28318c64
https://msdn.microsoft.com/library/5f1af295-9fa9-40ad-b4a1-3578d94d44e1

Results
5/4/2018 • 2 minutes to read • Edit Online

Syntax
// The definition of Result in FSharp.Core
[<StructuralEquality; StructuralComparison>]
[<CompiledName("FSharpResult`2")>]
[<Struct>]
type Result<'T,'TError> =
 | Ok of ResultValue:'T
 | Error of ErrorValue:'TError

Remarks

// Define a simple type which has fields that can be validated
type Request =
 { Name: string
 Email: string }

// Define some logic for what defines a valid name.
//
// Generates a Result which is an Ok if the name validates;
// otherwise, it generates a Result which is an Error.
let validateName req =
 match req.Name with
 | null -> Error "No name found."
 | "" -> Error "Name is empty."
 | "bananas" -> Error "Bananas is not a name."
 | _ -> Ok req

// Similarly, define some email validation logic.
let validateEmail req =
 match req.Email with
 | null -> Error "No email found."
 | "" -> Error "Email is empty."
 | s when s.EndsWith("bananas.com") -> Error "No email from bananas.com is allowed."
 | _ -> Ok req

let validateRequest reqResult =
 reqResult
 |> Result.bind validateName
 |> Result.bind validateEmail

let test() =
 // Now, create a Request and pattern match on the result.
 let req1 = { Name = "Phillip"; Email = "phillip@contoso.biz" }
 let res1 = validateRequest (Ok req1)
 match res1 with
 | Ok req -> printfn "My request was valid! Name: %s Email %s" req.Name req.Email
 | Error e -> printfn "Error: %s" e
 // Prints: "My request was valid! Name: Phillip Email: phillip@consoto.biz"

 let req2 = { Name = "Phillip"; Email = "phillip@bananas.com" }
 let res2 = validateRequest (Ok req2)
 match res2 with
 | Ok req -> printfn "My request was valid! Name: %s Email %s" req.Name req.Email
 | Error e -> printfn "Error: %s" e
 // Prints: "Error: No email from bananas.com is allowed."

test()

See Also

Starting with F# 4.1, there is a Result<'T,'TFailure> type which you can use for writing error-tolerant code which can be composed.

Note that the result type is a struct discriminated union, which is another feature introduced in F# 4.1. Structural equality semantics apply here.

The Result type is typically used in monadic error-handling, which is often referred to as Railway-oriented Programming within the F# community.
The following trivial example demonstrates this approach.

As you can see, it's quite easy to chain together various validation functions if you force them all to return a Result . This lets you break up functionality
like this into small pieces which are as composable as you need them to be. This also has the added value of enforcing the use of pattern matching at
the end of a round of validation, which in turns enforces a higher degree of program correctness.

Discriminated Unions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/results.md
https://swlaschin.gitbooks.io/fsharpforfunandprofit/content/posts/recipe-part2.html

Pattern Matching

Sequences
5/4/2018 • 18 minutes to read • Edit Online

NOTENOTE

Sequence Expressions

// Sequence that has an increment.
seq { 0 .. 10 .. 100 }

seq { for i in 1 .. 10 do yield i * i }

seq { for i in 1 .. 10 -> i * i }

let (height, width) = (10, 10)
seq { for row in 0 .. width - 1 do
 for col in 0 .. height - 1 do
 yield (row, col, row*width + col)
 }

seq { for n in 1 .. 100 do if isprime n then yield n }

Examples

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

A sequence is a logical series of elements all of one type. Sequences are particularly useful when you have a large, ordered collection of data but do not
necessarily expect to use all of the elements. Individual sequence elements are computed only as required, so a sequence can provide better
performance than a list in situations in which not all the elements are used. Sequences are represented by the seq<'T> type, which is an alias for
System.Collections.Generic.IEnumerable . Therefore, any .NET Framework type that implements System.IEnumerable can be used as a sequence. The Seq

module provides support for manipulations involving sequences.

A sequence expression is an expression that evaluates to a sequence. Sequence expressions can take a number of forms. The simplest form specifies a
range. For example, seq { 1 .. 5 } creates a sequence that contains five elements, including the endpoints 1 and 5. You can also specify an increment
(or decrement) between two double periods. For example, the following code creates the sequence of multiples of 10.

Sequence expressions are made up of F# expressions that produce values of the sequence. They can use the yield keyword to produce values that
become part of the sequence.

Following is an example.

You can use the -> operator instead of yield , in which case you can omit the do keyword, as shown in the following example.

The following code generates a list of coordinate pairs along with an index into an array that represents the grid.

An if expression used in a sequence is a filter. For example, to generate a sequence of only prime numbers, assuming that you have a function
isprime of type int -> bool , construct the sequence as follows.

When you use yield or -> in an iteration, each iteration is expected to generate a single element of the sequence. If each iteration produces a
sequence of elements, use yield! . In that case, the elements generated on each iteration are concatenated to produce the final sequence.

You can combine multiple expressions together in a sequence expression. The elements generated by each expression are concatenated together. For an
example, see the "Examples" section of this topic.

The first example uses a sequence expression that contains an iteration, a filter, and a yield to generate an array. This code prints a sequence of prime
numbers between 1 and 100 to the console.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/sequences.md
https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684

// Recursive isprime function.
let isprime n =
 let rec check i =
 i > n/2 || (n % i <> 0 && check (i + 1))
 check 2

let aSequence = seq { for n in 1..100 do if isprime n then yield n }
for x in aSequence do
 printfn "%d" x

let multiplicationTable =
 seq { for i in 1..9 do
 for j in 1..9 do
 yield (i, j, i*j) }

// Yield the values of a binary tree in a sequence.
type Tree<'a> =
 | Tree of 'a * Tree<'a> * Tree<'a>
 | Leaf of 'a

// inorder : Tree<'a> -> seq<'a>
let rec inorder tree =
 seq {
 match tree with
 | Tree(x, left, right) ->
 yield! inorder left
 yield x
 yield! inorder right
 | Leaf x -> yield x
 }

let mytree = Tree(6, Tree(2, Leaf(1), Leaf(3)), Leaf(9))
let seq1 = inorder mytree
printfn "%A" seq1

Using Sequences

Module Functions

Creating Sequences

let seqEmpty = Seq.empty
let seqOne = Seq.singleton 10

let seqFirst5MultiplesOf10 = Seq.init 5 (fun n -> n * 10)
Seq.iter (fun elem -> printf "%d " elem) seqFirst5MultiplesOf10

The following code uses yield to create a multiplication table that consists of tuples of three elements, each consisting of two factors and the product.

The following example demonstrates the use of yield! to combine individual sequences into a single final sequence. In this case, the sequences for
each subtree in a binary tree are concatenated in a recursive function to produce the final sequence.

Sequences support many of the same functions as lists. Sequences also support operations such as grouping and counting by using key-generating
functions. Sequences also support more diverse functions for extracting subsequences.

Many data types, such as lists, arrays, sets, and maps are implicitly sequences because they are enumerable collections. A function that takes a sequence
as an argument works with any of the common F# data types, in addition to any .NET Framework data type that implements
System.Collections.Generic.IEnumerable<'T> . Contrast this to a function that takes a list as an argument, which can only take lists. The type seq<'T> is a

type abbreviation for IEnumerable<'T> . This means that any type that implements the generic System.Collections.Generic.IEnumerable<'T> , which
includes arrays, lists, sets, and maps in F#, and also most .NET Framework collection types, is compatible with the seq type and can be used wherever a
sequence is expected.

The Seq module in the Microsoft.FSharp.Collections namespace contains functions for working with sequences. These functions work with lists, arrays,
maps, and sets as well, because all of those types are enumerable, and therefore can be treated as sequences.

You can create sequences by using sequence expressions, as described previously, or by using certain functions.

You can create an empty sequence by using Seq.empty, or you can create a sequence of just one specified element by using Seq.singleton.

You can use Seq.init to create a sequence for which the elements are created by using a function that you provide. You also provide a size for the
sequence. This function is just like List.init, except that the elements are not created until you iterate through the sequence. The following code illustrates
the use of Seq.init .

The output is

https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684
https://msdn.microsoft.com/library/24f64e5f-5030-47d0-9759-8d3e398ed13f
https://msdn.microsoft.com/library/3c7f1c69-6117-4782-b2da-0e04d6854f59
https://msdn.microsoft.com/library/9b8cc460-a282-4ec5-b29a-630ab17e9de7
https://msdn.microsoft.com/library/059de69d-812c-4f8e-be86-88aa72101576
https://msdn.microsoft.com/library/dd38c096-0ea8-4858-be6b-794b90418b83

0 10 20 30 40

// Convert an array to a sequence by using a cast.
let seqFromArray1 = [| 1 .. 10 |] :> seq<int>
// Convert an array to a sequence by using Seq.ofArray.
let seqFromArray2 = [| 1 .. 10 |] |> Seq.ofArray

open System
let mutable arrayList1 = new System.Collections.ArrayList(10)
for i in 1 .. 10 do arrayList1.Add(10) |> ignore
let seqCast : seq<int> = Seq.cast arrayList1

let seqInfinite = Seq.initInfinite (fun index ->
 let n = float(index + 1)
 1.0 / (n * n * (if ((index + 1) % 2 = 0) then 1.0 else -1.0)))
printfn "%A" seqInfinite

let seq1 = Seq.unfold (fun state -> if (state > 20) then None else Some(state, state + 1)) 0
printfn "The sequence seq1 contains numbers from 0 to 20."
for x in seq1 do printf "%d " x
let fib = Seq.unfold (fun state ->
 if (snd state > 1000) then None
 else Some(fst state + snd state, (snd state, fst state + snd state))) (1,1)
printfn "\nThe sequence fib contains Fibonacci numbers."
for x in fib do printf "%d " x

The sequence seq1 contains numbers from 0 to 20.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The sequence fib contains Fibonacci numbers.

2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

By using Seq.ofArray and Seq.ofList<'T> Function, you can create sequences from arrays and lists. However, you can also convert arrays and lists to
sequences by using a cast operator. Both techniques are shown in the following code.

By using Seq.cast, you can create a sequence from a weakly typed collection, such as those defined in System.Collections . Such weakly typed
collections have the element type System.Object and are enumerated by using the non-generic System.Collections.Generic.IEnumerable`1 type. The
following code illustrates the use of Seq.cast to convert an System.Collections.ArrayList into a sequence.

You can define infinite sequences by using the Seq.initInfinite function. For such a sequence, you provide a function that generates each element from
the index of the element. Infinite sequences are possible because of lazy evaluation; elements are created as needed by calling the function that you
specify. The following code example produces an infinite sequence of floating point numbers, in this case the alternating series of reciprocals of squares
of successive integers.

Seq.unfold generates a sequence from a computation function that takes a state and transforms it to produce each subsequent element in the sequence.
The state is just a value that is used to compute each element, and can change as each element is computed. The second argument to Seq.unfold is the
initial value that is used to start the sequence. Seq.unfold uses an option type for the state, which enables you to terminate the sequence by returning
the None value. The following code shows two examples of sequences, seq1 and fib , that are generated by an unfold operation. The first, seq1 , is
just a simple sequence with numbers up to 100. The second, fib , uses unfold to compute the Fibonacci sequence. Because each element in the
Fibonacci sequence is the sum of the previous two Fibonacci numbers, the state value is a tuple that consists of the previous two numbers in the
sequence. The initial value is (1,1) , the first two numbers in the sequence.

The output is as follows:

The following code is an example that uses many of the sequence module functions described here to generate and compute the values of infinite
sequences. The code might take a few minutes to run.

https://msdn.microsoft.com/library/299cd4d9-be72-4511-aac8-089e1ddaac99
https://msdn.microsoft.com/visualfsharpdocs/conceptual/seq.oflist%5b%27t%5d-function-%5bfsharp%5d
https://msdn.microsoft.com/library/1d087db3-a8b2-41dd-8ddc-227544529334
https://msdn.microsoft.com/library/d1804e53-da92-48ec-8d6e-57eaf4c62bef
https://msdn.microsoft.com/library/7d9232fc-742e-42bc-bdf7-6f130f0eff21

// infiniteSequences.fs
// generateInfiniteSequence generates sequences of floating point
// numbers. The sequences generated are computed from the fDenominator
// function, which has the type (int -> float) and computes the
// denominator of each term in the sequence from the index of that
// term. The isAlternating parameter is true if the sequence has
// alternating signs.
let generateInfiniteSequence fDenominator isAlternating =
 if (isAlternating) then
 Seq.initInfinite (fun index -> 1.0 /(fDenominator index) * (if (index % 2 = 0) then -1.0 else 1.0))
 else
 Seq.initInfinite (fun index -> 1.0 /(fDenominator index))

// The harmonic series is the series of reciprocals of whole numbers.
let harmonicSeries = generateInfiniteSequence (fun index -> float index) false
// The harmonic alternating series is like the harmonic series
// except that it has alternating signs.
let harmonicAlternatingSeries = generateInfiniteSequence (fun index -> float index) true
// This is the series of reciprocals of the odd numbers.
let oddNumberSeries = generateInfiniteSequence (fun index -> float (2 * index - 1)) true
// This is the series of recipocals of the squares.
let squaresSeries = generateInfiniteSequence (fun index -> float (index * index)) false

// This function sums a sequence, up to the specified number of terms.
let sumSeq length sequence =
 Seq.unfold (fun state ->
 let subtotal = snd state + Seq.nth (fst state + 1) sequence
 if (fst state >= length) then None
 else Some(subtotal,(fst state + 1, subtotal))) (0, 0.0)

// This function sums an infinite sequence up to a given value
// for the difference (epsilon) between subsequent terms,
// up to a maximum number of terms, whichever is reached first.
let infiniteSum infiniteSeq epsilon maxIteration =
 infiniteSeq
 |> sumSeq maxIteration
 |> Seq.pairwise
 |> Seq.takeWhile (fun elem -> abs (snd elem - fst elem) > epsilon)
 |> List.ofSeq
 |> List.rev
 |> List.head
 |> snd

// Compute the sums for three sequences that converge, and compare
// the sums to the expected theoretical values.
let result1 = infiniteSum harmonicAlternatingSeries 0.00001 100000
printfn "Result: %f ln2: %f" result1 (log 2.0)

let pi = Math.PI
let result2 = infiniteSum oddNumberSeries 0.00001 10000
printfn "Result: %f pi/4: %f" result2 (pi/4.0)

// Because this is not an alternating series, a much smaller epsilon
// value and more terms are needed to obtain an accurate result.
let result3 = infiniteSum squaresSeries 0.0000001 1000000
printfn "Result: %f pi*pi/6: %f" result3 (pi*pi/6.0)

Searching and Finding Elements

Obtaining Subsequences

Sequences support functionality available with lists: Seq.exists, Seq.exists2, Seq.find, Seq.findIndex, Seq.pick, Seq.tryFind, and Seq.tryFindIndex. The
versions of these functions that are available for sequences evaluate the sequence only up to the element that is being searched for. For examples, see
Lists.

Seq.filter and Seq.choose are like the corresponding functions that are available for lists, except that the filtering and choosing does not occur until the
sequence elements are evaluated.

Seq.truncate creates a sequence from another sequence, but limits the sequence to a specified number of elements. Seq.take creates a new sequence
that contains only a specified number of elements from the start of a sequence. If there are fewer elements in the sequence than you specify to take,
Seq.take throws a System.InvalidOperationException . The difference between Seq.take and Seq.truncate is that Seq.truncate does not produce an

error if the number of elements is fewer than the number you specify.

The following code shows the behavior of and differences between Seq.truncate and Seq.take .

https://msdn.microsoft.com/library/428c97bf-599d-4c39-a5b9-f8717c198ad1
https://msdn.microsoft.com/library/efdf14a4-27f7-4dc1-9281-52639e66d565
https://msdn.microsoft.com/library/02c21ecd-97e5-4e99-a4c1-b4d0b730b7d8
https://msdn.microsoft.com/library/96dfe86b-df15-4d92-8316-7cd6055e09f3
https://msdn.microsoft.com/library/a87bc771-55f7-43f9-94f9-33d8f9bf325d
https://msdn.microsoft.com/library/ac43c6f5-4dc7-4e9a-a222-00b5736aee47
https://msdn.microsoft.com/library/c357b221-edf6-4f68-bf40-82a3156d945a
https://msdn.microsoft.com/library/83102799-f251-42e1-93ef-64232e8c5b1d
https://msdn.microsoft.com/library/7f2e9850-a660-460c-9831-3bbff5613770
https://msdn.microsoft.com/library/63b83b06-4b24-4239-bf69-a2c12d891395
https://msdn.microsoft.com/library/1892dfeb-308e-45e2-857a-3c3405d02244
https://msdn.microsoft.com/library/6e75f701-640b-4c4a-9d63-4313fc090596

let mySeq = seq { for i in 1 .. 10 -> i*i }
let truncatedSeq = Seq.truncate 5 mySeq
let takenSeq = Seq.take 5 mySeq

let truncatedSeq2 = Seq.truncate 20 mySeq
let takenSeq2 = Seq.take 20 mySeq

let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""

// Up to this point, the sequences are not evaluated.
// The following code causes the sequences to be evaluated.
truncatedSeq |> printSeq
truncatedSeq2 |> printSeq
takenSeq |> printSeq
// The following line produces a run-time error (in printSeq):
takenSeq2 |> printSeq

1 4 9 16 25
1 4 9 16 25 36 49 64 81 100
1 4 9 16 25
1 4 9 16 25 36 49 64 81 100

// takeWhile
let mySeqLessThan10 = Seq.takeWhile (fun elem -> elem < 10) mySeq
mySeqLessThan10 |> printSeq

// skip
let mySeqSkipFirst5 = Seq.skip 5 mySeq
mySeqSkipFirst5 |> printSeq

// skipWhile
let mySeqSkipWhileLessThan10 = Seq.skipWhile (fun elem -> elem < 10) mySeq
mySeqSkipWhileLessThan10 |> printSeq

1 4 9
36 49 64 81 100
16 25 36 49 64 81 100

Transforming Sequences

let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""
let seqPairwise = Seq.pairwise (seq { for i in 1 .. 10 -> i*i })
printSeq seqPairwise

printfn ""
let seqDelta = Seq.map (fun elem -> snd elem - fst elem) seqPairwise
printSeq seqDelta

The output, before the error occurs, is as follows.

By using Seq.takeWhile, you can specify a predicate function (a Boolean function) and create a sequence from another sequence made up of those
elements of the original sequence for which the predicate is true , but stop before the first element for which the predicate returns false . Seq.skip
returns a sequence that skips a specified number of the first elements of another sequence and returns the remaining elements. Seq.skipWhile returns a
sequence that skips the first elements of another sequence as long as the predicate returns true , and then returns the remaining elements, starting
with the first element for which the predicate returns false .

The following code example illustrates the behavior of and differences between Seq.takeWhile , Seq.skip , and Seq.skipWhile .

The output is as follows.

Seq.pairwise creates a new sequence in which successive elements of the input sequence are grouped into tuples.

Seq.windowed is like Seq.pairwise , except that instead of producing a sequence of tuples, it produces a sequence of arrays that contain copies of
adjacent elements (a window) from the sequence. You specify the number of adjacent elements you want in each array.

The following code example demonstrates the use of Seq.windowed . In this case the number of elements in the window is 3. The example uses printSeq

, which is defined in the previous code example.

https://msdn.microsoft.com/library/19eea4ce-66e0-4353-b015-72eb03421d92
https://msdn.microsoft.com/library/b4eb3f08-8594-4d17-8180-852c6c688bf1
https://msdn.microsoft.com/library/fb729021-2a3c-430f-83c3-0b37526f1a16
https://msdn.microsoft.com/library/210dcf26-4e24-4d83-af6d-a8288b2ae4b1
https://msdn.microsoft.com/library/8b565b8f-d645-4dba-be22-099075fe4744

let seqNumbers = [1.0; 1.5; 2.0; 1.5; 1.0; 1.5] :> seq<float>
let seqWindows = Seq.windowed 3 seqNumbers
let seqMovingAverage = Seq.map Array.average seqWindows
printfn "Initial sequence: "
printSeq seqNumbers
printfn "\nWindows of length 3: "
printSeq seqWindows
printfn "\nMoving average: "
printSeq seqMovingAverage

1.0 1.5 2.0 1.5 1.0 1.5

Windows of length 3:
[|1.0; 1.5; 2.0|] [|1.5; 2.0; 1.5|] [|2.0; 1.5; 1.0|] [|1.5; 1.0; 1.5|]

Moving average:
1.5 1.666666667 1.5 1.333333333

Operations with Multiple Sequences

Sorting, Comparing, and Grouping

let sequence1 = seq { 1 .. 10 }
let sequence2 = seq { 10 .. -1 .. 1 }

// Compare two sequences element by element.
let compareSequences = Seq.compareWith (fun elem1 elem2 ->
 if elem1 > elem2 then 1
 elif elem1 < elem2 then -1
 else 0)

let compareResult1 = compareSequences sequence1 sequence2
match compareResult1 with
| 1 -> printfn "Sequence1 is greater than sequence2."
| -1 -> printfn "Sequence1 is less than sequence2."
| 0 -> printfn "Sequence1 is equal to sequence2."
| _ -> failwith("Invalid comparison result.")

let mySeq1 = seq { 1.. 100 }
let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""
let seqResult = Seq.countBy (fun elem -> if elem % 3 = 0 then 0
 elif elem % 3 = 1 then 1
 else 2) mySeq1

printSeq seqResult

(1, 34) (2, 33) (0, 33)

The output is as follows.

Initial sequence:

Seq.zip and Seq.zip3 take two or three sequences and produce a sequence of tuples. These functions are like the corresponding functions available for
lists. There is no corresponding functionality to separate one sequence into two or more sequences. If you need this functionality for a sequence,
convert the sequence to a list and use List.unzip.

The sorting functions supported for lists also work with sequences. This includes Seq.sort and Seq.sortBy. These functions iterate through the whole
sequence.

You compare two sequences by using the Seq.compareWith function. The function compares successive elements in turn, and stops when it encounters
the first unequal pair. Any additional elements do not contribute to the comparison.

The following code shows the use of Seq.compareWith .

In the previous code, only the first element is computed and examined, and the result is -1.

Seq.countBy takes a function that generates a value called a key for each element. A key is generated for each element by calling this function on each
element. Seq.countBy then returns a sequence that contains the key values, and a count of the number of elements that generated each value of the key.

The output is as follows.

The previous output shows that there were 34 elements of the original sequence that produced the key 1, 33 values that produced the key 2, and 33
values that produced the key 0.

You can group elements of a sequence by calling Seq.groupBy. Seq.groupBy takes a sequence and a function that generates a key from an element. The

https://msdn.microsoft.com/library/0a5df8bf-0d48-44ce-bff4-e8ef1df5bca4
https://msdn.microsoft.com/library/ef13bebb-22ae-4eb9-873b-87dd29154d16
https://msdn.microsoft.com/library/83102799-f251-42e1-93ef-64232e8c5b1d
https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21
https://msdn.microsoft.com/library/327ea595-e77c-4529-b61e-8c6cbf5ec92e
https://msdn.microsoft.com/library/4f8b4fb9-bf20-49d9-b4ee-dcc906c8208f
https://msdn.microsoft.com/library/5a740135-0b3a-4545-816f-8f91cc31290f
https://msdn.microsoft.com/library/721702a5-150e-4fe8-81cd-ffbf8476cc1f
https://msdn.microsoft.com/library/d46a04df-1a42-40cc-a368-058c9c5806fd

let sequence = seq { 1 .. 100 }
let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""
let sequences3 = Seq.groupBy (fun index ->
 if (index % 3 = 0) then 0
 elif (index % 3 = 1) then 1
 else 2) sequence
sequences3 |> printSeq

(1, seq [1; 4; 7; 10; ...]) (2, seq [2; 5; 8; 11; ...]) (0, seq [3; 6; 9; 12; ...])

let binary n =
 let rec generateBinary n =
 if (n / 2 = 0) then [n]
 else (n % 2) :: generateBinary (n / 2)
 generateBinary n |> List.rev |> Seq.ofList

printfn "%A" (binary 1024)

let resultSequence = Seq.distinct (binary 1024)
printfn "%A" resultSequence

let inputSequence = { -5 .. 10 }
let printSeq seq1 = Seq.iter (printf "%A ") seq1; printfn ""
printfn "Original sequence: "
printSeq inputSequence
printfn "\nSequence with distinct absolute values: "
let seqDistinctAbsoluteValue = Seq.distinctBy (fun elem -> abs elem) inputSequence
seqDistinctAbsoluteValue |> printSeq

Readonly and Cached Sequences

type ArrayContainer(start, finish) =
 let internalArray = [| start .. finish |]
 member this.RangeSeq = Seq.readonly internalArray
 member this.RangeArray = internalArray

let newArray = new ArrayContainer(1, 10)
let rangeSeq = newArray.RangeSeq
let rangeArray = newArray.RangeArray
// These lines produce an error:
//let myArray = rangeSeq :> int array
//myArray.[0] <- 0
// The following line does not produce an error.
// It does not preserve encapsulation.
rangeArray.[0] <- 0

function is executed on each element of the sequence. Seq.groupBy returns a sequence of tuples, where the first element of each tuple is the key and the
second is a sequence of elements that produce that key.

The following code example shows the use of Seq.groupBy to partition the sequence of numbers from 1 to 100 into three groups that have the distinct
key values 0, 1, and 2.

The output is as follows.

You can create a sequence that eliminates duplicate elements by calling Seq.distinct. Or you can use Seq.distinctBy, which takes a key-generating
function to be called on each element. The resulting sequence contains elements of the original sequence that have unique keys; later elements that
produce a duplicate key to an earlier element are discarded.

The following code example illustrates the use of Seq.distinct . Seq.distinct is demonstrated by generating sequences that represent binary numbers,
and then showing that the only distinct elements are 0 and 1.

The following code demonstrates Seq.distinctBy by starting with a sequence that contains negative and positive numbers and using the absolute value
function as the key-generating function. The resulting sequence is missing all the positive numbers that correspond to the negative numbers in the
sequence, because the negative numbers appear earlier in the sequence and therefore are selected instead of the positive numbers that have the same
absolute value, or key.

Seq.readonly creates a read-only copy of a sequence. Seq.readonly is useful when you have a read-write collection, such as an array, and you do not
want to modify the original collection. This function can be used to preserve data encapsulation. In the following code example, a type that contains an
array is created. A property exposes the array, but instead of returning an array, it returns a sequence that is created from the array by using
Seq.readonly .

Seq.cache creates a stored version of a sequence. Use Seq.cache to avoid reevaluation of a sequence, or when you have multiple threads that use a
sequence, but you must make sure that each element is acted upon only one time. When you have a sequence that is being used by multiple threads,
you can have one thread that enumerates and computes the values for the original sequence, and remaining threads can use the cached sequence.

https://msdn.microsoft.com/library/99d01014-7e0e-4e7b-9d0a-41a61d93f401
https://msdn.microsoft.com/library/9293293b-9420-49c8-848f-401a9cd49b75
https://msdn.microsoft.com/library/88059cb4-3bb0-4126-9448-fbcd48fe13a7
https://msdn.microsoft.com/library/d197f9cc-08bf-4986-9869-246e72ca73f0

Performing Computations on Sequences

See Also

Simple arithmetic operations are like those of lists, such as Seq.average, Seq.sum, Seq.averageBy, Seq.sumBy, and so on.

Seq.fold, Seq.reduce, and Seq.scan are like the corresponding functions that are available for lists. Sequences support a subset of the full variations of
these functions that lists support. For more information and examples, see Lists.

F# Language Reference

F# Types

https://msdn.microsoft.com/library/609d793b-c70f-4e36-9ab4-d928056d65b8
https://msdn.microsoft.com/library/01208515-4880-4358-91f5-af34f66dc77a
https://msdn.microsoft.com/library/47c855c1-2dbd-415a-885e-b909d9d3e4f8
https://msdn.microsoft.com/library/68cca78c-94ed-4a45-9b8d-34d2c5f2b1b1
https://msdn.microsoft.com/library/30c4c95a-9563-4c96-bbe1-f7aacfd026e3
https://msdn.microsoft.com/library/a2ad4f64-ac69-47d2-92f0-7173d9dfeae9
https://msdn.microsoft.com/library/7e2d23e9-f153-4411-a884-b6d415ff627e

Arrays
5/4/2018 • 17 minutes to read • Edit Online

NOTENOTE

Creating Arrays

let array1 = [| 1; 2; 3 |]

let array1 =
 [|
 1
 2
 3
 |]

// Causes an error.
// let array2 = [| 1.0; 2; 3 |]

let array3 = [| for i in 1 .. 10 -> i * i |]

let arrayOfTenZeroes : int array = Array.zeroCreate 10

Accessing Elements

array1.[0]

// Accesses elements from 0 to 2.

array1.[0..2]

// Accesses elements from the beginning of the array to 2.

array1.[..2]

// Accesses elements from 2 to the end of the array.

array1.[2..]

Array Types and Modules

The API reference link will take you to MSDN. The docs.microsoft.com API reference is not complete.

Arrays are fixed-size, zero-based, mutable collections of consecutive data elements that are all of the same type.

You can create arrays in several ways. You can create a small array by listing consecutive values between [| and |] and separated by semicolons, as
shown in the following examples.

You can also put each element on a separate line, in which case the semicolon separator is optional.

The type of the array elements is inferred from the literals used and must be consistent. The following code causes an error because 1.0 is a float and 2
and 3 are integers.

You can also use sequence expressions to create arrays. Following is an example that creates an array of squares of integers from 1 to 10.

To create an array in which all the elements are initialized to zero, use Array.zeroCreate .

You can access array elements by using a dot operator (.) and brackets ([and]).

Array indexes start at 0.

You can also access array elements by using slice notation, which enables you to specify a subrange of the array. Examples of slice notation follow.

When slice notation is used, a new copy of the array is created.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/arrays.md

Simple FunctionsSimple Functions

let array1 = Array.create 10 ""
for i in 0 .. array1.Length - 1 do
 Array.set array1 i (i.ToString())
for i in 0 .. array1.Length - 1 do
 printf "%s " (Array.get array1 i)

0 1 2 3 4 5 6 7 8 9

Functions That Create ArraysFunctions That Create Arrays

let myEmptyArray = Array.empty
printfn "Length of empty array: %d" myEmptyArray.Length

printfn "Array of floats set to 5.0: %A" (Array.create 10 5.0)

printfn "Array of squares: %A" (Array.init 10 (fun index -> index * index))

let (myZeroArray : float array) = Array.zeroCreate 10

Length of empty array: 0
Area of floats set to 5.0: [|5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0|]
Array of squares: [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]

open System.Text

let firstArray : StringBuilder array = Array.init 3 (fun index -> new StringBuilder(""))
let secondArray = Array.copy firstArray
// Reset an element of the first array to a new value.
firstArray.[0] <- new StringBuilder("Test1")
// Change an element of the first array.
firstArray.[1].Insert(0, "Test2") |> ignore
printfn "%A" firstArray
printfn "%A" secondArray

[|Test1; Test2; |]
[|; Test2; |]

The type of all F# arrays is the .NET Framework type System.Array. Therefore, F# arrays support all the functionality available in System.Array.

The library module Microsoft.FSharp.Collections.Array supports operations on one-dimensional arrays. The modules Array2D , Array3D , and Array4D

contain functions that support operations on arrays of two, three, and four dimensions, respectively. You can create arrays of rank greater than four by
using System.Array.

Array.get gets an element. Array.length gives the length of an array. Array.set sets an element to a specified value. The following code example
illustrates the use of these functions.

The output is as follows.

Several functions create arrays without requiring an existing array. Array.empty creates a new array that does not contain any elements. Array.create

creates an array of a specified size and sets all the elements to provided values. Array.init creates an array, given a dimension and a function to
generate the elements. Array.zeroCreate creates an array in which all the elements are initialized to the zero value for the array's type. The following
code demonstrates these functions.

The output is as follows.

Array.copy creates a new array that contains elements that are copied from an existing array. Note that the copy is a shallow copy, which means that if
the element type is a reference type, only the reference is copied, not the underlying object. The following code example illustrates this.

The output of the preceding code is as follows:

The string Test1 appears only in the first array because the operation of creating a new element overwrites the reference in firstArray but does not
affect the original reference to an empty string that is still present in secondArray . The string Test2 appears in both arrays because the Insert

operation on the System.Text.StringBuilder type affects the underlying System.Text.StringBuilder object, which is referenced in both arrays.

Array.sub generates a new array from a subrange of an array. You specify the subrange by providing the starting index and the length. The following
code demonstrates the use of Array.sub .

https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.array
https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1
https://docs.microsoft.com/dotnet/api/system.array
https://msdn.microsoft.com/library/dd93e85d-7e80-4d76-8de0-b6d45bcf07bc
https://msdn.microsoft.com/library/0d775b6a-4a8f-4bd1-83e5-843b3251725f
https://msdn.microsoft.com/library/847edc0d-4dc5-4a39-98c7-d4320c60e790
https://msdn.microsoft.com/library/c3694b92-1c16-4c54-9bf2-fe398fadce32
https://msdn.microsoft.com/library/e848c8d6-1142-4080-9727-8dacc26066be
https://msdn.microsoft.com/library/ee898089-63b0-40aa-910c-5ae7e32f6665
https://msdn.microsoft.com/library/fa5b8e7a-1b5b-411c-8622-b58d7a14d3b2
https://msdn.microsoft.com/library/9d0202f1-1ea0-475e-9d66-4f8ccc3c5b5f
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://msdn.microsoft.com/library/40fb12ba-41d7-4ef0-b33a-56727deeef9d

let a1 = [| 0 .. 99 |]
let a2 = Array.sub a1 5 10
printfn "%A" a2

[|5; 6; 7; 8; 9; 10; 11; 12; 13; 14|]

printfn "%A" (Array.append [| 1; 2; 3|] [| 4; 5; 6|])

[|1; 2; 3; 4; 5; 6|]

printfn "%A" (Array.choose (fun elem -> if elem % 2 = 0 then
 Some(float (elem*elem - 1))
 else
 None) [| 1 .. 10 |])

[|3.0; 15.0; 35.0; 63.0; 99.0|]

printfn "%A" (Array.collect (fun elem -> [| 0 .. elem |]) [| 1; 5; 10|])

[|0; 1; 0; 1; 2; 3; 4; 5; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]

Array.concat [[|0..3|] ; [|4|]]
//output [|0; 1; 2; 3; 4|]

Array.concat [| [|0..3|] ; [|4|] |]
//output [|0; 1; 2; 3; 4|]

[|(1, 1, 1); (1, 2, 2); (1, 3, 3); (2, 1, 2); (2, 2, 4); (2, 3, 6); (3, 1, 3);
(3, 2, 6); (3, 3, 9)|]

printfn "%A" (Array.filter (fun elem -> elem % 2 = 0) [| 1 .. 10|])

[|2; 4; 6; 8; 10|]

The output shows that the subarray starts at element 5 and contains 10 elements.

Array.append creates a new array by combining two existing arrays.

The following code demonstrates Array.append.

The output of the preceding code is as follows.

Array.choose selects elements of an array to include in a new array. The following code demonstrates Array.choose . Note that the element type of the
array does not have to match the type of the value returned in the option type. In this example, the element type is int and the option is the result of a
polynomial function, elem*elem - 1 , as a floating point number.

The output of the preceding code is as follows.

Array.collect runs a specified function on each array element of an existing array and then collects the elements generated by the function and
combines them into a new array. The following code demonstrates Array.collect .

The output of the preceding code is as follows.

Array.concat takes a sequence of arrays and combines them into a single array. The following code demonstrates Array.concat .

The output of the preceding code is as follows.

Array.filter takes a Boolean condition function and generates a new array that contains only those elements from the input array for which the
condition is true. The following code demonstrates Array.filter .

The output of the preceding code is as follows.

Array.rev generates a new array by reversing the order of an existing array. The following code demonstrates Array.rev .

https://msdn.microsoft.com/library/08836310-5036-4474-b9a2-2c73e2293911
https://msdn.microsoft.com/library/f5c8a5e2-637f-44d4-b35c-be96a6618b09
https://msdn.microsoft.com/library/c3b60c3b-9455-48c9-bc2b-e88f0434342a
https://msdn.microsoft.com/library/f7219b79-1ec8-4a25-96b1-edbedb358302
https://msdn.microsoft.com/library/b885b214-47fc-4639-9664-b8c183a39ede
https://msdn.microsoft.com/library/1bbf822c-763b-4794-af21-97d2e48ef709

let stringReverse (s: string) =
 System.String(Array.rev (s.ToCharArray()))

printfn "%A" (stringReverse("!dlrow olleH"))

"Hello world!"

[| 1 .. 10 |]
|> Array.filter (fun elem -> elem % 2 = 0)
|> Array.choose (fun elem -> if (elem <> 8) then Some(elem*elem) else None)
|> Array.rev
|> printfn "%A"

[|100; 36; 16; 4|]

Multidimensional ArraysMultidimensional Arrays

let my2DArray = array2D [[1; 0]; [0; 1]]

let arrayOfArrays = [| [| 1.0; 0.0 |]; [|0.0; 1.0 |] |]
let twoDimensionalArray = Array2D.init 2 2 (fun i j -> arrayOfArrays.[i].[j])

twoDimensionalArray.[0, 1] <- 1.0

Array Slicing and Multidimensional ArraysArray Slicing and Multidimensional Arrays

/ Get rows 1 to N from an NxM matrix (returns a matrix):
matrix.[1.., *]

// Get rows 1 to 3 from a matrix (returns a matrix):
matrix.[1..3, *]

// Get columns 1 to 3 from a matrix (returns a matrix):
matrix.[*, 1..3]

// Get a 3x3 submatrix:
matrix.[1..3, 1..3]

The output of the preceding code is as follows.

You can easily combine functions in the array module that transform arrays by using the pipeline operator (|>), as shown in the following example.

The output is

A multidimensional array can be created, but there is no syntax for writing a multidimensional array literal. Use the operator array2D to create an array
from a sequence of sequences of array elements. The sequences can be array or list literals. For example, the following code creates a two-dimensional
array.

You can also use the function Array2D.init to initialize arrays of two dimensions, and similar functions are available for arrays of three and four
dimensions. These functions take a function that is used to create the elements. To create a two-dimensional array that contains elements set to an initial
value instead of specifying a function, use the Array2D.create function, which is also available for arrays up to four dimensions. The following code
example first shows how to create an array of arrays that contain the desired elements, and then uses Array2D.init to generate the desired two-
dimensional array.

Array indexing and slicing syntax is supported for arrays up to rank 4. When you specify an index in multiple dimensions, you use commas to separate
the indexes, as illustrated in the following code example.

The type of a two-dimensional array is written out as <type>[,] (for example, int[,] , double[,]), and the type of a three-dimensional array is written
as <type>[,,] , and so on for arrays of higher dimensions.

Only a subset of the functions available for one-dimensional arrays is also available for multidimensional arrays. For more information, see
Collections.Array Module , Collections.Array2D Module , Collections.Array3D Module , and Collections.Array4D Module .

In a two-dimensional array (a matrix), you can extract a sub-matrix by specifying ranges and using a wildcard (*) character to specify whole rows or
columns.

As of F# 3.1, you can decompose a multidimensional array into subarrays of the same or lower dimension. For example, you can obtain a vector from a
matrix by specifying a single row or column.

https://msdn.microsoft.com/library/1d52503d-2990-49fc-8fd3-6b0e508aa236
https://msdn.microsoft.com/library/9de07e95-bc21-4927-b5b4-08fdec882c7b
https://msdn.microsoft.com/library/36c9d980-b241-4a20-bc64-bcfa0205d804
https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array-module-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array2d-module-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array3d-module-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array4d-module-%5bfsharp%5d

// Get row 3 from a matrix as a vector:
matrix.[3, *]

// Get column 3 from a matrix as a vector:
matrix.[*, 3]

type Matrix<'T>(N: int, M: int) =
 let internalArray = Array2D.zeroCreate<'T> N M

 member this.Item
 with get(a: int, b: int) = internalArray.[a, b]
 and set(a: int, b: int) (value:'T) = internalArray.[a, b] <- value

 member this.GetSlice(rowStart: int option, rowFinish : int option, colStart: int option, colFinish : int option) =
 let rowStart =
 match rowStart with
 | Some(v) -> v
 | None -> 0
 let rowFinish =
 match rowFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(0) - 1
 let colStart =
 match colStart with
 | Some(v) -> v
 | None -> 0
 let colFinish =
 match colFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(1) - 1
 internalArray.[rowStart..rowFinish, colStart..colFinish]

 member this.GetSlice(row: int, colStart: int option, colFinish: int option) =
 let colStart =
 match colStart with
 | Some(v) -> v
 | None -> 0
 let colFinish =
 match colFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(1) - 1
 internalArray.[row, colStart..colFinish]

 member this.GetSlice(rowStart: int option, rowFinish: int option, col: int) =
 let rowStart =
 match rowStart with
 | Some(v) -> v
 | None -> 0
 let rowFinish =
 match rowFinish with
 | Some(v) -> v
 | None -> internalArray.GetLength(0) - 1
 internalArray.[rowStart..rowFinish, col]

module test =
 let generateTestMatrix x y =
 let matrix = new Matrix<float>(3, 3)
 for i in 0..2 do
 for j in 0..2 do
 matrix.[i, j] <- float(i) * x - float(j) * y
 matrix

 let test1 = generateTestMatrix 2.3 1.1
 let submatrix = test1.[0..1, 0..1]
 printfn "%A" submatrix

 let firstRow = test1.[0,*]
 let secondRow = test1.[1,*]
 let firstCol = test1.[*,0]
 printfn "%A" firstCol

Boolean Functions on ArraysBoolean Functions on Arrays

You can use this slicing syntax for types that implement the element access operators and overloaded GetSlice methods. For example, the following
code creates a Matrix type that wraps the F# 2D array, implements an Item property to provide support for array indexing, and implements three
versions of GetSlice . If you can use this code as a template for your matrix types, you can use all the slicing operations that this section describes.

The functions Array.exists and Array.exists2 test elements in either one or two arrays, respectively. These functions take a test function and return
true if there is an element (or element pair for Array.exists2) that satisfies the condition.

The following code demonstrates the use of Array.exists and Array.exists2 . In these examples, new functions are created by applying only one of the
arguments, in these cases, the function argument.

https://msdn.microsoft.com/library/8e47ad6c-c065-4876-8cb4-ec960ec3e5c9
https://msdn.microsoft.com/library/2e384a6a-f99d-4e23-b677-250ffbc1dd8e

let allNegative = Array.exists (fun elem -> abs (elem) = elem) >> not
printfn "%A" (allNegative [| -1; -2; -3 |])
printfn "%A" (allNegative [| -10; -1; 5 |])
printfn "%A" (allNegative [| 0 |])

let haveEqualElement = Array.exists2 (fun elem1 elem2 -> elem1 = elem2)
printfn "%A" (haveEqualElement [| 1; 2; 3 |] [| 3; 2; 1|])

true
false
false
true

let allPositive = Array.forall (fun elem -> elem > 0)
printfn "%A" (allPositive [| 0; 1; 2; 3 |])
printfn "%A" (allPositive [| 1; 2; 3 |])

let allEqual = Array.forall2 (fun elem1 elem2 -> elem1 = elem2)
printfn "%A" (allEqual [| 1; 2 |] [| 1; 2 |])
printfn "%A" (allEqual [| 1; 2 |] [| 2; 1 |])

false
true
true
false

Searching ArraysSearching Arrays

let arrayA = [| 2 .. 100 |]
let delta = 1.0e-10
let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta
let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
let element = Array.find (fun elem -> isPerfectSquare elem && isPerfectCube elem) arrayA
let index = Array.findIndex (fun elem -> isPerfectSquare elem && isPerfectCube elem) arrayA
printfn "The first element that is both a square and a cube is %d and its index is %d." element index

The first element that is both a square and a cube is 64 and its index is 62.

The output of the preceding code is as follows.

Similarly, the function Array.forall tests an array to determine whether every element satisfies a Boolean condition. The variation Array.forall2 does
the same thing by using a Boolean function that involves elements of two arrays of equal length. The following code illustrates the use of these
functions.

The output for these examples is as follows.

Array.find takes a Boolean function and returns the first element for which the function returns true , or raises a
System.Collections.Generic.KeyNotFoundException if no element that satisfies the condition is found. Array.findIndex is like Array.find , except that it
returns the index of the element instead of the element itself.

The following code uses Array.find and Array.findIndex to locate a number that is both a perfect square and perfect cube.

The output is as follows.

Array.tryFind is like Array.find , except that its result is an option type, and it returns None if no element is found. Array.tryFind should be used
instead of Array.find when you do not know whether a matching element is in the array. Similarly, Array.tryFindIndex is like Array.findIndex except
that the option type is the return value. If no element is found, the option is None .

The following code demonstrates the use of Array.tryFind . This code depends on the previous code.

https://msdn.microsoft.com/library/d88f2cd0-fa7f-45cf-ac15-31eae9086cc4
https://msdn.microsoft.com/library/c68f61a1-030c-4024-b705-c4768b6c96b9
https://msdn.microsoft.com/library/db6d920a-de19-4520-85a4-d83de77c1b33
https://docs.microsoft.com/dotnet/api/system.collections.generic.keynotfoundexception
https://msdn.microsoft.com/library/5ae3a8f9-7b8f-44ea-a740-d5700f4d899f
https://msdn.microsoft.com/library/7bd65f6c-df77-454c-ac3a-6f7baecec9d9
https://msdn.microsoft.com/library/da82f7fe-95e9-4fd5-a924-cd3c9d10618a
https://msdn.microsoft.com/library/5ae3a8f9-7b8f-44ea-a740-d5700f4d899f

let delta = 1.0e-10
let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta
let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
let lookForCubeAndSquare array1 =
 let result = Array.tryFind (fun elem -> isPerfectSquare elem && isPerfectCube elem) array1
 match result with
 | Some x -> printfn "Found an element: %d" x
 | None -> printfn "Failed to find a matching element."

lookForCubeAndSquare [| 1 .. 10 |]
lookForCubeAndSquare [| 100 .. 1000 |]
lookForCubeAndSquare [| 2 .. 50 |]

Found an element: 1
Found an element: 729

let findPerfectSquareAndCube array1 =
 let delta = 1.0e-10
 let isPerfectSquare (x:int) =
 let y = sqrt (float x)
 abs(y - round y) < delta
 let isPerfectCube (x:int) =
 let y = System.Math.Pow(float x, 1.0/3.0)
 abs(y - round y) < delta
 // intFunction : (float -> float) -> int -> int
 // Allows the use of a floating point function with integers.
 let intFunction function1 number = int (round (function1 (float number)))
 let cubeRoot x = System.Math.Pow(x, 1.0/3.0)
 // testElement: int -> (int * int * int) option
 // Test an element to see whether it is a perfect square and a perfect
 // cube, and, if so, return the element, square root, and cube root
 // as an option value. Otherwise, return None.
 let testElement elem =
 if isPerfectSquare elem && isPerfectCube elem then
 Some(elem, intFunction sqrt elem, intFunction cubeRoot elem)
 else None
 match Array.tryPick testElement array1 with
 | Some (n, sqrt, cuberoot) -> printfn "Found an element %d with square root %d and cube root %d." n sqrt cuberoot
 | None -> printfn "Did not find an element that is both a perfect square and a perfect cube."

findPerfectSquareAndCube [| 1 .. 10 |]
findPerfectSquareAndCube [| 2 .. 100 |]
findPerfectSquareAndCube [| 100 .. 1000 |]
findPerfectSquareAndCube [| 1000 .. 10000 |]
findPerfectSquareAndCube [| 2 .. 50 |]

Found an element 1 with square root 1 and cube root 1.
Found an element 64 with square root 8 and cube root 4.
Found an element 729 with square root 27 and cube root 9.
Found an element 4096 with square root 64 and cube root 16.

Performing Computations on ArraysPerforming Computations on Arrays

The output is as follows.

Use Array.tryPick when you need to transform an element in addition to finding it. The result is the first element for which the function returns the
transformed element as an option value, or None if no such element is found.

The following code shows the use of Array.tryPick . In this case, instead of a lambda expression, several local helper functions are defined to simplify
the code.

The output is as follows.

The Array.average function returns the average of each element in an array. It is limited to element types that support exact division by an integer,
which includes floating point types but not integral types. The Array.averageBy function returns the average of the results of calling a function on each
element. For an array of integral type, you can use Array.averageBy and have the function convert each element to a floating point type for the
computation.

Use Array.max or Array.min to get the maximum or minimum element, if the element type supports it. Similarly, Array.maxBy and Array.minBy allow
a function to be executed first, perhaps to transform to a type that supports comparison.

Array.sum adds the elements of an array, and Array.sumBy calls a function on each element and adds the results together.

To execute a function on each element in an array without storing the return values, use Array.iter . For a function involving two arrays of equal length,
use Array.iter2 . If you also need to keep an array of the results of the function, use Array.map or Array.map2 , which operates on two arrays at a time.

https://msdn.microsoft.com/library/72d45f85-037b-43a9-97fd-17239f72713e
https://msdn.microsoft.com/library/7029f2b9-91ea-41cb-be1b-466a5a0db20e
https://msdn.microsoft.com/library/e9d64609-06a3-48f0-bc07-226ab0f85c54
https://msdn.microsoft.com/library/f03fbda0-fce6-40e2-a85d-79c9d81f710b
https://msdn.microsoft.com/library/d6b3da5f-bac0-4355-9846-4b72d95bc3fd
https://msdn.microsoft.com/library/18dbe7c5-482e-4766-8e01-12a76f847045
https://msdn.microsoft.com/library/24091583-be78-4cc9-9fab-de6d7506af4f
https://msdn.microsoft.com/library/4ffdb8c8-cd94-4b0b-9e5c-a7c9c17963c2
https://msdn.microsoft.com/library/41698ba6-1adc-4169-8cc5-7a0e3f8de56b
https://msdn.microsoft.com/library/94eba0f1-ecd7-459f-b89f-ed2a2923e516
https://msdn.microsoft.com/library/018aa9b9-f186-4142-be8a-a62462794fdc
https://msdn.microsoft.com/library/38cbe824-0480-47be-85fd-df3afdd97a45
https://msdn.microsoft.com/library/bb7aafe8-4a1f-45b9-92fc-1af9eafbea5c

Modifying ArraysModifying Arrays

let arrayFill1 = [| 1 .. 25 |]
Array.fill arrayFill1 2 20 0
printfn "%A" arrayFill1

[|1; 2; 0; 23; 24; 25|]

Converting to and from Other TypesConverting to and from Other Types

Sorting ArraysSorting Arrays

Arrays and TuplesArrays and Tuples

Parallel Computations on Arrays

See Also

The variations Array.iteri and Array.iteri2 allow the index of the element to be involved in the computation; the same is true for Array.mapi and
Array.mapi2 .

The functions Array.fold , Array.foldBack , Array.reduce , Array.reduceBack , Array.scan , and Array.scanBack execute algorithms that involve all the
elements of an array. Similarly, the variations Array.fold2 and Array.foldBack2 perform computations on two arrays.

These functions for performing computations correspond to the functions of the same name in the List module. For usage examples, see Lists.

Array.set sets an element to a specified value. Array.fill sets a range of elements in an array to a specified value. The following code provides an
example of Array.fill .

The output is as follows.

You can use Array.blit to copy a subsection of one array to another array.

Array.ofList creates an array from a list. Array.ofSeq creates an array from a sequence. Array.toList and Array.toSeq convert to these other
collection types from the array type.

Use Array.sort to sort an array by using the generic comparison function. Use Array.sortBy to specify a function that generates a value, referred to as
a key, to sort by using the generic comparison function on the key. Use Array.sortWith if you want to provide a custom comparison function.
Array.sort , Array.sortBy , and Array.sortWith all return the sorted array as a new array. The variations Array.sortInPlace , Array.sortInPlaceBy , and
Array.sortInPlaceWith modify the existing array instead of returning a new one.

The functions Array.zip and Array.unzip convert arrays of tuple pairs to tuples of arrays and vice versa. Array.zip3 and Array.unzip3 are similar
except that they work with tuples of three elements or tuples of three arrays.

The module Array.Parallel contains functions for performing parallel computations on arrays. This module is not available in applications that target
versions of the .NET Framework prior to version 4.

F# Language Reference

F#; Types

https://msdn.microsoft.com/library/8bbe2ed4-ada7-4906-ac3e-cb09f9db6486
https://msdn.microsoft.com/library/c041b91f-6080-45b7-867b-2ed983a90405
https://msdn.microsoft.com/library/f7e45994-b0a1-49e6-8fb5-5641cea8fde4
https://msdn.microsoft.com/library/5edb33d2-47da-44e1-9290-40c00c47d5b0
https://msdn.microsoft.com/library/5ed9dd3b-3694-4567-94d0-fd9a24474e09
https://msdn.microsoft.com/library/1121a453-dead-4711-a0ca-cc147752989c
https://msdn.microsoft.com/library/fd62a985-89fe-4f49-a9d4-0c808ac6749d
https://msdn.microsoft.com/library/4fdd4cbe-2238-4c5c-b286-597a7e9036f9
https://msdn.microsoft.com/library/f6893608-9146-450d-9ebb-a0016803fbb0
https://msdn.microsoft.com/library/7610f406-7a5c-41db-a0ca-8e2a2a4826ad
https://msdn.microsoft.com/library/5c845087-d041-476e-8cc4-53ae6849ef79
https://msdn.microsoft.com/library/aa51b405-df20-4c51-9998-a6530f7db862
https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788
https://msdn.microsoft.com/library/847edc0d-4dc5-4a39-98c7-d4320c60e790
https://msdn.microsoft.com/library/c83c9886-81d9-44f9-a195-61c7b87f7df2
https://msdn.microsoft.com/library/675e13e4-7fb9-4e0d-a5be-a112830de667
https://msdn.microsoft.com/library/e7225239-f561-45a4-b0b5-69a1cdcae78b
https://msdn.microsoft.com/library/6bedf5e0-4b22-46da-b09c-6aa09eff220c
https://msdn.microsoft.com/library/4deff724-0be4-4688-92e7-9d67a1097786
https://msdn.microsoft.com/library/ac28dbab-406c-4fe0-ab08-c1ce5e247af4
https://msdn.microsoft.com/library/c6679075-e7eb-463c-9be5-c89be140c312
https://msdn.microsoft.com/library/144498dc-091d-4575-a229-c0bcbd61426b
https://msdn.microsoft.com/library/699d3638-4244-4f42-8496-45f53d43ce95
https://msdn.microsoft.com/library/36f39947-8a88-4823-9e9b-e9d838d292e0
https://msdn.microsoft.com/library/7fb9d2dd-d461-4c67-8b43-b5c59fc12c3f
https://msdn.microsoft.com/library/454f9e11-972d-47a6-a854-8031cb0c7b0b
https://msdn.microsoft.com/library/23e086b8-b266-4db2-8b68-e88e6a8e2187
https://msdn.microsoft.com/library/a529b47c-2e2b-4f79-ad44-c578432d2f48
https://msdn.microsoft.com/library/1745744a-d2ca-4c3e-b825-3f15d9f4000d
https://msdn.microsoft.com/library/bc3e6db0-f334-444f-8c30-813942880677
https://msdn.microsoft.com/library/60f30b77-5af4-4050-9a5c-bcdb3f5cbb09

Generics
5/4/2018 • 6 minutes to read • Edit Online

Syntax
// Explicitly generic function.
let function-name<type-parameters> parameter-list =
function-body

// Explicitly generic method.
[static] member object-identifer.method-name<type-parameters> parameter-list [return-type] =
method-body

// Explicitly generic class, record, interface, structure,
// or discriminated union.
type type-name<type-parameters> type-definition

Remarks

Implicitly Generic Constructs

let makeList a b =
 [a; b]

let function1 (x: 'a) (y: 'a) =
 printfn "%A %A" x y

Explicitly Generic Constructs

F# function values, methods, properties, and aggregate types such as classes, records, and discriminated unions can be generic. Generic constructs
contain at least one type parameter, which is usually supplied by the user of the generic construct. Generic functions and types enable you to write code
that works with a variety of types without repeating the code for each type. Making your code generic can be simple in F#, because often your code is
implicitly inferred to be generic by the compiler's type inference and automatic generalization mechanisms.

The declaration of an explicitly generic function or type is much like that of a non-generic function or type, except for the specification (and use) of the
type parameters, in angle brackets after the function or type name.

Declarations are often implicitly generic. If you do not fully specify the type of every parameter that is used to compose a function or type, the compiler
attempts to infer the type of each parameter, value, and variable from the code you write. For more information, see Type Inference. If the code for your
type or function does not otherwise constrain the types of parameters, the function or type is implicitly generic. This process is named automatic
generalization. There are some limits on automatic generalization. For example, if the F# compiler is unable to infer the types for a generic construct, the
compiler reports an error that refers to a restriction called the value restriction. In that case, you may have to add some type annotations. For more
information about automatic generalization and the value restriction, and how to change your code to address the problem, see Automatic
Generalization.

In the previous syntax, type-parameters is a comma-separated list of parameters that represent unknown types, each of which starts with a single
quotation mark, optionally with a constraint clause that further limits what types may be used for that type parameter. For the syntax for constraint
clauses of various kinds and other information about constraints, see Constraints.

The type-definition in the syntax is the same as the type definition for a non-generic type. It includes the constructor parameters for a class type, an
optional as clause, the equal symbol, the record fields, the inherit clause, the choices for a discriminated union, let and do bindings, member
definitions, and anything else permitted in a non-generic type definition.

The other syntax elements are the same as those for non-generic functions and types. For example, object-identifier is an identifier that represents the
containing object itself.

Properties, fields, and constructors cannot be more generic than the enclosing type. Also, values in a module cannot be generic.

When the F# compiler infers the types in your code, it automatically treats any function that can be generic as generic. If you specify a type explicitly,
such as a parameter type, you prevent automatic generalization.

In the following code example, makeList is generic, even though neither it nor its parameters are explicitly declared as generic.

The signature of the function is inferred to be 'a -> 'a -> 'a list . Note that a and b in this example are inferred to have the same type. This is
because they are included in a list together, and all elements of a list must be of the same type.

You can also make a function generic by using the single quotation mark syntax in a type annotation to indicate that a parameter type is a generic type
parameter. In the following code, function1 is generic because its parameters are declared in this manner, as type parameters.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/generics/index.md

let function2<'T> x y =
 printfn "%A, %A" x y

Using Generic Constructs

// In this case, the type argument is inferred to be int.
function1 10 20
// In this case, the type argument is float.
function1 10.0 20.0
// Type arguments can be specified, but should only be specified
// if the type parameters are declared explicitly. If specified,
// they have an effect on type inference, so in this example,
// a and b are inferred to have type int.
let function3 a b =
 // The compiler reports a warning:
 function1<int> a b
 // No warning.
 function2<int> a b

NOTENOTE

Wildcards as Type Arguments

let printSequence (sequence1: Collections.seq<_>) =
 Seq.iter (fun elem -> printf "%s " (elem.ToString())) sequence1

Constraints in Generic Types and Functions

Statically Resolved Type Parameters

Examples

You can also make a function generic by explicitly declaring its type parameters in angle brackets (<type-parameter>). The following code illustrates this.

When you use generic functions or methods, you might not have to specify the type arguments. The compiler uses type inference to infer the
appropriate type arguments. If there is still an ambiguity, you can supply type arguments in angle brackets, separating multiple type arguments with
commas.

The following code shows the use of the functions that are defined in the previous sections.

There are two ways to refer to a generic type by name. For example, list<int> and int list are two ways to refer to a generic type list that has a single type
argument int . The latter form is conventionally used only with built-in F# types such as list and option . If there are multiple type arguments, you normally use
the syntax Dictionary<int, string> but you can also use the syntax (int, string) Dictionary .

To specify that a type argument should be inferred by the compiler, you can use the underscore, or wildcard symbol (_), instead of a named type
argument. This is shown in the following code.

In a generic type or function definition, you can use only those constructs that are known to be available on the generic type parameter. This is required
to enable the verification of function and method calls at compile time. If you declare your type parameters explicitly, you can apply an explicit constraint
to a generic type parameter to notify the compiler that certain methods and functions are available. However, if you allow the F# compiler to infer your
generic parameter types, it will determine the appropriate constraints for you. For more information, see Constraints.

There are two kinds of type parameters that can be used in F# programs. The first are generic type parameters of the kind described in the previous
sections. This first kind of type parameter is equivalent to the generic type parameters that are used in languages such as Visual Basic and C#. Another
kind of type parameter is specific to F# and is referred to as a statically resolved type parameter. For information about these constructs, see Statically
Resolved Type Parameters.

// A generic function.
// In this example, the generic type parameter 'a makes function3 generic.
let function3 (x : 'a) (y : 'a) =
 printf "%A %A" x y

// A generic record, with the type parameter in angle brackets.
type GR<'a> =
 {
 Field1: 'a;
 Field2: 'a;
 }

// A generic class.
type C<'a>(a : 'a, b : 'a) =
 let z = a
 let y = b
 member this.GenericMethod(x : 'a) =
 printfn "%A %A %A" x y z

// A generic discriminated union.
type U<'a> =
 | Choice1 of 'a
 | Choice2 of 'a * 'a

type Test() =
 // A generic member
 member this.Function1<'a>(x, y) =
 printfn "%A, %A" x y

 // A generic abstract method.
 abstract abstractMethod<'a, 'b> : 'a * 'b -> unit
 override this.abstractMethod<'a, 'b>(x:'a, y:'b) =
 printfn "%A, %A" x y

See Also
Language Reference

Types

Statically Resolved Type Parameters

Generics in the .NET Framework

Automatic Generalization

Constraints

https://docs.microsoft.com/en-us/dotnet/standard/generics/index

Automatic Generalization
5/4/2018 • 3 minutes to read • Edit Online

Automatic Generalization

let max a b = if a > b then a else b

let biggestFloat = max 2.0 3.0
let biggestInt = max 2 3

// Error: type mismatch.
let biggestIntFloat = max 2.0 3

let testString = max "cab" "cat"

Value Restriction

let counter = ref None
// Adding a type annotation fixes the problem:
let counter : int option ref = ref None

F# uses type inference to evaluate the types of functions and expressions. This topic describes how F# automatically generalizes the arguments and
types of functions so that they work with multiple types when this is possible.

The F# compiler, when it performs type inference on a function, determines whether a given parameter can be generic. The compiler examines each
parameter and determines whether the function has a dependency on the specific type of that parameter. If it does not, the type is inferred to be generic.

The following code example illustrates a function that the compiler infers to be generic.

The type is inferred to be 'a -> 'a -> 'a .

The type indicates that this is a function that takes two arguments of the same unknown type and returns a value of that same type. One of the reasons
that the previous function can be generic is that the greater-than operator (>) is itself generic. The greater-than operator has the signature
'a -> 'a -> bool . Not all operators are generic, and if the code in a function uses a parameter type together with a non-generic function or operator,

that parameter type cannot be generalized.

Because max is generic, it can be used with types such as int , float , and so on, as shown in the following examples.

However, the two arguments must be of the same type. The signature is 'a -> 'a -> 'a , not 'a -> 'b -> 'a . Therefore, the following code produces
an error because the types do not match.

The max function also works with any type that supports the greater-than operator. Therefore, you could also use it on a string, as shown in the
following code.

The compiler performs automatic generalization only on complete function definitions that have explicit arguments, and on simple immutable values.

This means that the compiler issues an error if you try to compile code that is not sufficiently constrained to be a specific type, but is also not
generalizable. The error message for this problem refers to this restriction on automatic generalization for values as the value restriction.

Typically, the value restriction error occurs either when you want a construct to be generic but the compiler has insufficient information to generalize it,
or when you unintentionally omit sufficient type information in a nongeneric construct. The solution to the value restriction error is to provide more
explicit information to more fully constrain the type inference problem, in one of the following ways:

Constrain a type to be nongeneric by adding an explicit type annotation to a value or parameter.

If the problem is using a nongeneralizable construct to define a generic function, such as a function composition or incompletely applied curried
function arguments, try to rewrite the function as an ordinary function definition.

If the problem is an expression that is too complex to be generalized, make it into a function by adding an extra, unused parameter.

Add explicit generic type parameters. This option is rarely used.

The following code examples illustrate each of these scenarios.

Case 1: Too complex an expression. In this example, the list counter is intended to be int option ref , but it is not defined as a simple immutable value.

Case 2: Using a nongeneralizable construct to define a generic function. In this example, the construct is nongeneralizable because it involves partial
application of function arguments.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/generics/automatic-generalization.md

let maxhash = max << hash
// The following is acceptable because the argument for maxhash is explicit:
let maxhash obj = (max << hash) obj

let emptyList10 = Array.create 10 []
// Adding an extra (unused) parameter makes it a function, which is generalizable.
let emptyList10 () = Array.create 10 []

let arrayOf10Lists = Array.create 10 []
// Adding a type parameter and type annotation lets you write a generic value.
let arrayOf10Lists<'T> = Array.create 10 ([]:'T list)

let intLists = arrayOf10Lists<int>
let floatLists = arrayOf10Lists<float>

See Also

Case 3: Adding an extra, unused parameter. Because this expression is not simple enough for generalization, the compiler issues the value restriction
error.

Case 4: Adding type parameters.

In the last case, the value becomes a type function, which may be used to create values of many different types, for example as follows:

Type Inference

Generics

Statically Resolved Type Parameters

Constraints

Constraints
7/10/2018 • 4 minutes to read • Edit Online

Syntax
type-parameter-list when constraint1 [and constraint2]

Remarks

CONSTRAINT SYNTAX DESCRIPTION

Type Constraint type-parameter :> type The provided type must be equal to or derived from
the type specified, or, if the type is an interface, the
provided type must implement the interface.

Null Constraint type-parameter : null The provided type must support the null literal. This
includes all .NET object types but not F# list, tuple,
function, class, record, or union types.

Explicit Member Constraint [(]type-parameter [or ... or type-parameter)] :
(member-signature)

At least one of the type arguments provided must
have a member that has the specified signature; not
intended for common use. Members must be either
explicitly defined on the type or part of an implicit
type extension to be valid targets for an Explicit
Member Constraint.

Constructor Constraint type-parameter : (new : unit -> 'a) The provided type must have a default constructor.

Value Type Constraint : struct The provided type must be a .NET value type.

Reference Type Constraint : not struct The provided type must be a .NET reference type.

Enumeration Type Constraint : enum<underlying-type> The provided type must be an enumerated type that
has the specified underlying type; not intended for
common use.

Delegate Constraint : delegate<tuple-parameter-type, return-type> The provided type must be a delegate type that has
the specified arguments and return value; not
intended for common use.

Comparison Constraint : comparison The provided type must support comparison.

Equality Constraint : equality The provided type must support equality.

Unmanaged Constraint : unmanaged The provided type must be an unmanaged type.
Unmanaged types are either certain primitive types (
sbyte , byte , char , nativeint , unativeint ,
float32 , float , int16 , uint16 , int32 ,
uint32 , int64 , uint64 , or decimal),

enumeration types, nativeptr<_> , or a non-
generic structure whose fields are all unmanaged
types.

This topic describes constraints that you can apply to generic type parameters to specify the requirements for a type argument in a generic type or
function.

There are several different constraints you can apply to limit the types that can be used in a generic type. The following table lists and describes these
constraints.

You have to add a constraint when your code has to use a feature that is available on the constraint type but not on types in general. For example, if you
use the type constraint to specify a class type, you can use any one of the methods of that class in the generic function or type.

Specifying constraints is sometimes required when writing type parameters explicitly, because without a constraint, the compiler has no way of verifying
that the features that you are using will be available on any type that might be supplied at run time for the type parameter.

The most common constraints you use in F# code are type constraints that specify base classes or interfaces. The other constraints are either used by
the F# library to implement certain functionality, such as the explicit member constraint, which is used to implement operator overloading for arithmetic
operators, or are provided mainly because F# supports the complete set of constraints that is supported by the common language runtime.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/generics/constraints.md

// Base Type Constraint
type Class1<'T when 'T :> System.Exception> =
class end

// Interface Type Constraint
type Class2<'T when 'T :> System.IComparable> =
class end

// Null constraint
type Class3<'T when 'T : null> =
class end

// Member constraint with static member
type Class4<'T when 'T : (static member staticMethod1 : unit -> 'T) > =
class end

// Member constraint with instance member
type Class5<'T when 'T : (member Method1 : 'T -> int)> =
class end

// Member constraint with property
type Class6<'T when 'T : (member Property1 : int)> =
class end

// Constructor constraint
type Class7<'T when 'T : (new : unit -> 'T)>() =
member val Field = new 'T()

// Reference type constraint
type Class8<'T when 'T : not struct> =
class end

// Enumeration constraint with underlying value specified
type Class9<'T when 'T : enum<uint32>> =
class end

// 'T must implement IComparable, or be an array type with comparable
// elements, or be System.IntPtr or System.UIntPtr. Also, 'T must not have
// the NoComparison attribute.
type Class10<'T when 'T : comparison> =
class end

// 'T must support equality. This is true for any type that does not
// have the NoEquality attribute.
type Class11<'T when 'T : equality> =
class end

type Class12<'T when 'T : delegate<obj * System.EventArgs, unit>> =
class end

type Class13<'T when 'T : unmanaged> =
class end

// Member constraints with two type parameters
// Most often used with static type parameters in inline functions
let inline add(value1 : ^T when ^T : (static member (+) : ^T * ^T -> ^T), value2: ^T) =
value1 + value2

// ^T and ^U must support operator +
let inline heterogenousAdd(value1 : ^T when (^T or ^U) : (static member (+) : ^T * ^U -> ^T), value2 : ^U) =
value1 + value2

// If there are multiple constraints, use the and keyword to separate them.
type Class14<'T,'U when 'T : equality and 'U : equality> =
class end

See Also

During the type inference process, some constraints are inferred automatically by the compiler. For example, if you use the + operator in a function, the
compiler infers an explicit member constraint on variable types that are used in the expression.

The following code illustrates some constraint declarations.

Generics

Constraints

Statically Resolved Type Parameters
5/16/2018 • 3 minutes to read • Edit Online

Syntax
ˆtype-parameter

Remarks

FEATURE GENERIC STATICALLY RESOLVED

Syntax 'T , 'U ^T , ^U

Resolution time Run time Compile time

Member constraints Cannot be used with member constraints. Can be used with member constraints.

Code generation A type (or method) with standard generic type
parameters results in the generation of a single
generic type or method.

Multiple instantiations of types and methods are
generated, one for each type that is needed.

Use with types Can be used on types. Cannot be used on types.

Use with inline functions No. An inline function cannot be parameterized with a
standard generic type parameter.

Yes. Statically resolved type parameters cannot be
used on functions or methods that are not inline.

let inline (+@) x y = x + x * y
// Call that uses int.
printfn "%d" (1 +@ 1)
// Call that uses float.
printfn "%f" (1.0 +@ 0.5)

^a -> ^c -> ^d
when (^a or ^b) : (static member (+) : ^a * ^b -> ^d) and
(^a or ^c) : (static member (*) : ^a * ^c -> ^b)

2
1.500000

A statically resolved type parameter is a type parameter that is replaced with an actual type at compile time instead of at run time. They are preceded by
a caret (^) symbol.

In the F# language, there are two distinct kinds of type parameters. The first kind is the standard generic type parameter. These are indicated by an
apostrophe ('), as in 'T and 'U . They are equivalent to generic type parameters in other .NET Framework languages. The other kind is statically
resolved and is indicated by a caret symbol, as in ^T and ^U .

Statically resolved type parameters are primarily useful in conjunction with member constraints, which are constraints that allow you to specify that a
type argument must have a particular member or members in order to be used. There is no way to create this kind of constraint by using a regular
generic type parameter.

The following table summarizes the similarities and differences between the two kinds of type parameters.

Many F# core library functions, especially operators, have statically resolved type parameters. These functions and operators are inline, and result in
efficient code generation for numeric computations.

Inline methods and functions that use operators, or use other functions that have statically resolved type parameters, can also use statically resolved
type parameters themselves. Often, type inference infers such inline functions to have statically resolved type parameters. The following example
illustrates an operator definition that is inferred to have a statically resolved type parameter.

The resolved type of (+@) is based on the use of both (+) and (*) , both of which cause type inference to infer member constraints on the statically
resolved type parameters. The resolved type, as shown in the F# interpreter, is as follows.

The output is as follows.

Starting with F# 4.1, you can also specify concrete type names in statically resolved type parameter signatures. In previous versions of the language, the
type name could actually be inferred by the compiler, but could not actually be specified in the signature. As of F# 4.1, you may also specify concrete

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/generics/statically-resolved-type-parameters.md

let inline konst x _ = x

type CFunctor() =
 static member inline fmap (f: ^a -> ^b, a: ^a list) = List.map f a
 static member inline fmap (f: ^a -> ^b, a: ^a option) =
 match a with
 | None -> None
 | Some x -> Some (f x)

 // default implementation of replace
 static member inline replace< ^a, ^b, ^c, ^d, ^e when ^a :> CFunctor and (^a or ^d): (static member fmap: (^b -> ^c) * ^d -> ^e) > (a, f) =
 ((^a or ^d) : (static member fmap : (^b -> ^c) * ^d -> ^e) (konst a, f))

 // call overridden replace if present
 static member inline replace< ^a, ^b, ^c when ^b: (static member replace: ^a * ^b -> ^c)>(a: ^a, f: ^b) =
 (^b : (static member replace: ^a * ^b -> ^c) (a, f))

let inline replace_instance< ^a, ^b, ^c, ^d when (^a or ^c): (static member replace: ^b * ^c -> ^d)> (a: ^b, f: ^c) =
 ((^a or ^c): (static member replace: ^b * ^c -> ^d) (a, f))

// Note the concrete type 'CFunctor' specified in the signature
let inline replace (a: ^a) (f: ^b): ^a0 when (CFunctor or ^b): (static member replace: ^a * ^b -> ^a0) =
 replace_instance<CFunctor, _, _, _> (a, f)

See Also

type names in statically resolved type parameter signatures. Here's an example:

Generics

Type Inference

Automatic Generalization

Constraints

Inline Functions

Records
5/25/2018 • 6 minutes to read • Edit Online

Syntax
[attributes]
type [accessibility-modifier] typename =
 { [mutable] label1 : type1;
 [mutable] label2 : type2;
 ... }
 [member-list]

Remarks

// Labels are separated by semicolons when defined on the same line.
type Point = { X: float; Y: float; Z: float; }

// You can define labels on their own line with a semicolon.
type Customer =
 { First: string
 Last: string
 SSN: uint32
 AccountNumber: uint32; }

// A struct record.
[<Struct>]
type StructPoint =
 { X: float
 Y: float
 Z: float }

let mypoint = { X = 1.0; Y = 1.0; Z = -1.0; }

type Point = { X: float; Y: float; Z: float; }
type Point3D = { X: float; Y: float; Z: float }
// Ambiguity: Point or Point3D?
let mypoint3D = { X = 1.0; Y = 1.0; Z = 0.0; }

let myPoint1 = { Point.X = 1.0; Y = 1.0; Z = 0.0; }

Creating Records by Using Record Expressions

Records represent simple aggregates of named values, optionally with members. Starting with F# 4.1, they can either be structs or reference types. They
are reference types by default.

In the previous syntax, typename is the name of the record type, label1 and label2 are names of values, referred to as labels, and type1 and type2 are
the types of these values. member-list is the optional list of members for the type. You can use the [<Struct>] attribute to create a struct record rather
than a record which is a reference type.

Following are some examples.

When each label is on a separate line, the semicolon is optional.

You can set values in expressions known as record expressions. The compiler infers the type from the labels used (if the labels are sufficiently distinct
from those of other record types). Braces ({ }) enclose the record expression. The following code shows a record expression that initializes a record with
three float elements with labels x , y and z .

Do not use the shortened form if there could be another type that also has the same labels.

The labels of the most recently declared type take precedence over those of the previously declared type, so in the preceding example, mypoint3D is
inferred to be Point3D . You can explicitly specify the record type, as in the following code.

Methods can be defined for record types just as for class types.

You can initialize records by using the labels that are defined in the record. An expression that does this is referred to as a record expression. Use braces
to enclose the record expression and use the semicolon as a delimiter.

The following example shows how to create a record.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/records.md

type MyRecord =
 { X: int
 Y: int
 Z: int }

let myRecord1 = { X = 1; Y = 2; Z = 3; }

let myRecord2 = { MyRecord.X = 1; MyRecord.Y = 2; MyRecord.Z = 3 }

let myRecord3 = { myRecord2 with Y = 100; Z = 2 }

type Car =
 { Make : string
 Model : string
 mutable Odometer : int }

let myCar = { Make = "Fabrikam"; Model = "Coupe"; Odometer = 108112 }
myCar.Odometer <- myCar.Odometer + 21

// Rather than use [<DefaultValue>], define a default record.
type MyRecord =
 { Field1 : int
 Field2 : int }

let defaultRecord1 = { Field1 = 0; Field2 = 0 }
let defaultRecord2 = { Field1 = 1; Field2 = 25 }

// Use the with keyword to populate only a few chosen fields
// and leave the rest with default values.
let rr3 = { defaultRecord1 with Field2 = 42 }

Pattern Matching with Records

type Point3D = { X: float; Y: float; Z: float }
let evaluatePoint (point: Point3D) =
 match point with
 | { X = 0.0; Y = 0.0; Z = 0.0 } -> printfn "Point is at the origin."
 | { X = xVal; Y = 0.0; Z = 0.0 } -> printfn "Point is on the x-axis. Value is %f." xVal
 | { X = 0.0; Y = yVal; Z = 0.0 } -> printfn "Point is on the y-axis. Value is %f." yVal
 | { X = 0.0; Y = 0.0; Z = zVal } -> printfn "Point is on the z-axis. Value is %f." zVal
 | { X = xVal; Y = yVal; Z = zVal } -> printfn "Point is at (%f, %f, %f)." xVal yVal zVal

evaluatePoint { X = 0.0; Y = 0.0; Z = 0.0 }
evaluatePoint { X = 100.0; Y = 0.0; Z = 0.0 }
evaluatePoint { X = 10.0; Y = 0.0; Z = -1.0 }

Point is at the origin.
Point is on the x-axis. Value is 100.000000.
Point is at (10.000000, 0.000000, -1.000000).

The semicolons after the last field in the record expression and in the type definition are optional, regardless of whether the fields are all in one line.

When you create a record, you must supply values for each field. You cannot refer to the values of other fields in the initialization expression for any
field.

In the following code, the type of myRecord2 is inferred from the names of the fields. Optionally, you can specify the type name explicitly.

Another form of record construction can be useful when you have to copy an existing record, and possibly change some of the field values. The
following line of code illustrates this.

This form of the record expression is called the copy and update record expression.

Records are immutable by default; however, you can easily create modified records by using a copy and update expression. You can also explicitly
specify a mutable field.

Don't use the DefaultValue attribute with record fields. A better approach is to define default instances of records with fields that are initialized to default
values and then use a copy and update record expression to set any fields that differ from the default values.

Records can be used with pattern matching. You can specify some fields explicitly and provide variables for other fields that will be assigned when a
match occurs. The following code example illustrates this.

The output of this code is as follows.

Differences Between Records and Classes

type RecordTest = { X: int; Y: int }

let record1 = { X = 1; Y = 2 }
let record2 = { X = 1; Y = 2 }

if (record1 = record2) then
 printfn "The records are equal."
else
 printfn "The records are unequal."

The records are equal.

See Also

Record fields differ from classes in that they are automatically exposed as properties, and they are used in the creation and copying of records. Record
construction also differs from class construction. In a record type, you cannot define a constructor. Instead, the construction syntax described in this topic
applies. Classes have no direct relationship between constructor parameters, fields, and properties.

Like union and structure types, records have structural equality semantics. Classes have reference equality semantics. The following code example
demonstrates this.

The output of this code is as follows:

If you write the same code with classes, the two class objects would be unequal because the two values would represent two objects on the heap and
only the addresses would be compared (unless the class type overrides the System.Object.Equals method).

If you need reference equality for records, add the attribute [<ReferenceEquality>] above the record.

F# Types

Classes

F# Language Reference

Reference-Equality

Pattern Matching

https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.referenceequalityattribute-class-%5bfsharp%5d

Discriminated Unions
5/12/2018 • 8 minutes to read • Edit Online

Syntax
[attributes]
type [accessibility-modifier] type-name =
 | case-identifier1 [of [fieldname1 :] type1 [* [fieldname2 :] type2 ...]
 | case-identifier2 [of [fieldname3 :]type3 [* [fieldname4 :]type4 ...]
...

Remarks

type Shape =
 | Rectangle of width : float * length : float
 | Circle of radius : float
 | Prism of width : float * float * height : float

let rect = Rectangle(length = 1.3, width = 10.0)
let circ = Circle (1.0)
let prism = Prism(5., 2.0, height = 3.0)

// The option type is a discriminated union.
type Option<'a> =
 | Some of 'a
 | None

Discriminated unions provide support for values that can be one of a number of named cases, possibly each with different values and types.
Discriminated unions are useful for heterogeneous data; data that can have special cases, including valid and error cases; data that varies in type from
one instance to another ; and as an alternative for small object hierarchies. In addition, recursive discriminated unions are used to represent tree data
structures.

Discriminated unions are similar to union types in other languages, but there are differences. As with a union type in C++ or a variant type in Visual
Basic, the data stored in the value is not fixed; it can be one of several distinct options. Unlike unions in these other languages, however, each of the
possible options is given a case identifier. The case identifiers are names for the various possible types of values that objects of this type could be; the
values are optional. If values are not present, the case is equivalent to an enumeration case. If values are present, each value can either be a single value
of a specified type, or a tuple that aggregates multiple fields of the same or different types. You can give an individual field a name, but the name is
optional, even if other fields in the same case are named.

Accessibility for discriminated unions defaults to public .

For example, consider the following declaration of a Shape type.

The preceding code declares a discriminated union Shape, which can have values of any of three cases: Rectangle, Circle, and Prism. Each case has a
different set of fields. The Rectangle case has two named fields, both of type float , that have the names width and length. The Circle case has just one
named field, radius. The Prism case has three fields, two of which (width and height) are named fields. Unnamed fields are referred to as anonymous
fields.

You construct objects by providing values for the named and anonymous fields according to the following examples.

This code shows that you can either use the named fields in the initialization, or you can rely on the ordering of the fields in the declaration and just
provide the values for each field in turn. The constructor call for rect in the previous code uses the named fields, but the constructor call for circ uses
the ordering. You can mix the ordered fields and named fields, as in the construction of prism .

The option type is a simple discriminated union in the F# core library. The option type is declared as follows.

The previous code specifies that the type Option is a discriminated union that has two cases, Some and None . The Some case has an associated value
that consists of one anonymous field whose type is represented by the type parameter 'a . The None case has no associated value. Thus the option

type specifies a generic type that either has a value of some type or no value. The type Option also has a lowercase type alias, option , that is more
commonly used.

The case identifiers can be used as constructors for the discriminated union type. For example, the following code is used to create values of the option

type.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/discriminated-unions.md

let myOption1 = Some(10.0)
let myOption2 = Some("string")
let myOption3 = None

let printValue opt =
 match opt with
 | Some x -> printfn "%A" x
 | None -> printfn "No value."

let getShapeHeight shape =
 match shape with
 | Rectangle(height = h) -> h
 | Circle(radius = r) -> 2. * r
 | Prism(height = h) -> h

Unwrapping Discriminated UnionsUnwrapping Discriminated Unions

let ([UnionCaseName] [values]) = [UnionValue]

type ShaderProgram = | ShaderProgram of id:int

let someMethodUsingShaderProgram shaderProgram =
 let (ShaderProgram id) = shaderProgram
 // Use the unwrapped value
 ..

Struct Discriminated Unions

[<Struct>]
type SingleCase = Case of string

[<Struct>]
type Multicase =
 | Case1 of Case1 : string
 | Case2 of Case2 : int
 | Case3 of Case3 : double

Using Discriminated Unions Instead of Object Hierarchies

The case identifiers are also used in pattern matching expressions. In a pattern matching expression, identifiers are provided for the values associated
with the individual cases. For example, in the following code, x is the identifier given the value that is associated with the Some case of the option

type.

In pattern matching expressions, you can use named fields to specify discriminated union matches. For the Shape type that was declared previously, you
can use the named fields as the following code shows to extract the values of the fields.

Normally, the case identifiers can be used without qualifying them with the name of the union. If you want the name to always be qualified with the
name of the union, you can apply the RequireQualifiedAccess attribute to the union type definition.

In F# Discriminated Unions are often used in domain-modeling for wrapping a single type. It's easy to extract the underlying value via pattern matching
as well. You don't need to use a match expression for a single case:

The following example demonstrates this:

Starting with F# 4.1, you can also represent Discriminated Unions as structs. This is done with the [<Struct>] attribute.

Because these are value types and not reference types, there are extra considerations compared with reference discriminated unions:

1. They are copied as value types and have value type semantics.
2. You cannot use a recursive type definition with a multicase struct Discriminated Union.
3. You must provide unique case names for a multicase struct Discriminated Union.

You can often use a discriminated union as a simpler alternative to a small object hierarchy. For example, the following discriminated union could be
used instead of a Shape base class that has derived types for circle, square, and so on.

https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15

type Shape =
 // The value here is the radius.
| Circle of float
 // The value here is the side length.
| EquilateralTriangle of double
 // The value here is the side length.
| Square of double
 // The values here are the height and width.
| Rectangle of double * double

let pi = 3.141592654

let area myShape =
 match myShape with
 | Circle radius -> pi * radius * radius
 | EquilateralTriangle s -> (sqrt 3.0) / 4.0 * s * s
 | Square s -> s * s
 | Rectangle (h, w) -> h * w

let radius = 15.0
let myCircle = Circle(radius)
printfn "Area of circle that has radius %f: %f" radius (area myCircle)

let squareSide = 10.0
let mySquare = Square(squareSide)
printfn "Area of square that has side %f: %f" squareSide (area mySquare)

let height, width = 5.0, 10.0
let myRectangle = Rectangle(height, width)
printfn "Area of rectangle that has height %f and width %f is %f" height width (area myRectangle)

Area of circle that has radius 15.000000: 706.858347
Area of square that has side 10.000000: 100.000000
Area of rectangle that has height 5.000000 and width 10.000000 is 50.000000

Using Discriminated Unions for Tree Data Structures

type Tree =
 | Tip
 | Node of int * Tree * Tree

let rec sumTree tree =
 match tree with
 | Tip -> 0
 | Node(value, left, right) ->
 value + sumTree(left) + sumTree(right)
let myTree = Node(0, Node(1, Node(2, Tip, Tip), Node(3, Tip, Tip)), Node(4, Tip, Tip))
let resultSumTree = sumTree myTree

Instead of a virtual method to compute an area or perimeter, as you would use in an object-oriented implementation, you can use pattern matching to
branch to appropriate formulas to compute these quantities. In the following example, different formulas are used to compute the area, depending on
the shape.

The output is as follows:

Discriminated unions can be recursive, meaning that the union itself can be included in the type of one or more cases. Recursive discriminated unions
can be used to create tree structures, which are used to model expressions in programming languages. In the following code, a recursive discriminated
union is used to create a binary tree data structure. The union consists of two cases, Node , which is a node with an integer value and left and right
subtrees, and Tip , which terminates the tree.

In the previous code, resultSumTree has the value 10. The following illustration shows the tree structure for myTree .

Discriminated unions work well if the nodes in the tree are heterogeneous. In the following code, the type Expression represents the abstract syntax
tree of an expression in a simple programming language that supports addition and multiplication of numbers and variables. Some of the union cases
are not recursive and represent either numbers (Number) or variables (Variable). Other cases are recursive, and represent operations (Add and
Multiply), where the operands are also expressions. The Evaluate function uses a match expression to recursively process the syntax tree.

type Expression =
 | Number of int
 | Add of Expression * Expression
 | Multiply of Expression * Expression
 | Variable of string

let rec Evaluate (env:Map<string,int>) exp =
 match exp with
 | Number n -> n
 | Add (x, y) -> Evaluate env x + Evaluate env y
 | Multiply (x, y) -> Evaluate env x * Evaluate env y
 | Variable id -> env.[id]

let environment = Map.ofList ["a", 1 ;
 "b", 2 ;
 "c", 3]

// Create an expression tree that represents
// the expression: a + 2 * b.
let expressionTree1 = Add(Variable "a", Multiply(Number 2, Variable "b"))

// Evaluate the expression a + 2 * b, given the
// table of values for the variables.
let result = Evaluate environment expressionTree1

Common Attributes

See Also

When this code is executed, the value of result is 5.

The following attributes are commonly seen in discriminated unions:

[RequireQualifiedAccess]

[NoEquality]

[NoComparison]

[Struct] (F# 4.1 and higher)

F# Language Reference

Enumerations
5/4/2018 • 2 minutes to read • Edit Online

Syntax
type enum-name =
| value1 = integer-literal1
| value2 = integer-literal2
...

Remarks

// Declaration of an enumeration.
type Color =
 | Red = 0
 | Green = 1
 | Blue = 2
// Use of an enumeration.
let col1 : Color = Color.Red

// Conversion to an integral type.
let n = int col1

let col2 = enum<Color>(3)

type uColor =
 | Red = 0u
 | Green = 1u
 | Blue = 2u
let col3 = Microsoft.FSharp.Core.LanguagePrimitives.EnumOfValue<uint32, uColor>(2u)

See Also

Enumerations, also known as enums, , are integral types where labels are assigned to a subset of the values. You can use them in place of literals to
make code more readable and maintainable.

An enumeration looks much like a discriminated union that has simple values, except that the values can be specified. The values are typically integers
that start at 0 or 1, or integers that represent bit positions. If an enumeration is intended to represent bit positions, you should also use the Flags
attribute.

The underlying type of the enumeration is determined from the literal that is used, so that, for example, you can use literals with a suffix, such as 1u ,
2u , and so on, for an unsigned integer (uint32) type.

When you refer to the named values, you must use the name of the enumeration type itself as a qualifier, that is, enum-name.value1 , not just value1 .
This behavior differs from that of discriminated unions. This is because enumerations always have the RequireQualifiedAccess attribute.

The following code shows the declaration and use of an enumeration.

You can easily convert enumerations to the underlying type by using the appropriate operator, as shown in the following code.

Enumerated types can have one of the following underlying types: sbyte , byte , int16 , uint16 , int32 , uint32 , int64 , uint16 , uint64 , and char .
Enumeration types are represented in the .NET Framework as types that are inherited from System.Enum , which in turn is inherited from
System.ValueType . Thus, they are value types that are located on the stack or inline in the containing object, and any value of the underlying type is a

valid value of the enumeration. This is significant when pattern matching on enumeration values, because you have to provide a pattern that catches the
unnamed values.

The enum function in the F# library can be used to generate an enumeration value, even a value other than one of the predefined, named values. You
use the enum function as follows.

The default enum function works with type int32 . Therefore, it cannot be used with enumeration types that have other underlying types. Instead, use
the following.

F# Language Reference

Casting and Conversions

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/enumerations.md
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15

Reference Cells
5/12/2018 • 4 minutes to read • Edit Online

Syntax
ref expression

Remarks

// Declare a reference.
let refVar = ref 6

// Change the value referred to by the reference.
refVar := 50

// Dereference by using the ! operator.
printfn "%d" !refVar

type Ref<'a> =
{ mutable contents: 'a }

let ref x = { contents = x }

OPERATOR, MEMBER, OR FIELD DESCRIPTION TYPE DEFINITION

! (dereference operator) Returns the underlying value. 'a ref -> 'a let (!) r = r.contents

:= (assignment operator) Changes the underlying value. 'a ref -> 'a -> unit let (:=) r x = r.contents <- x

ref (operator) Encapsulates a value into a new
reference cell.

'a -> 'a ref let ref x = { contents = x }

Value (property) Gets or sets the underlying value. unit -> 'a member x.Value = x.contents

contents (record field) Gets or sets the underlying value. 'a let ref x = { contents = x }

Reference cells are storage locations that enable you to create mutable values with reference semantics.

You use the ref operator before a value to create a new reference cell that encapsulates the value. You can then change the underlying value because it
is mutable.

A reference cell holds an actual value; it is not just an address. When you create a reference cell by using the ref operator, you create a copy of the
underlying value as an encapsulated mutable value.

You can dereference a reference cell by using the ! (bang) operator.

The following code example illustrates the declaration and use of reference cells.

The output is 50 .

Reference cells are instances of the Ref generic record type, which is declared as follows.

The type 'a ref is a synonym for Ref<'a> . The compiler and IntelliSense in the IDE display the former for this type, but the underlying definition is
the latter.

The ref operator creates a new reference cell. The following code is the declaration of the ref operator.

The following table shows the features that are available on the reference cell.

There are several ways to access the underlying value. The value returned by the dereference operator (!) is not an assignable value. Therefore, if you
are modifying the underlying value, you must use the assignment operator (:=) instead.

Both the Value property and the contents field are assignable values. Therefore, you can use these to either access or change the underlying value, as
shown in the following code.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/reference-cells.md

let xRef : int ref = ref 10

printfn "%d" (xRef.Value)
printfn "%d" (xRef.contents)

xRef.Value <- 11
printfn "%d" (xRef.Value)
xRef.contents <- 12
printfn "%d" (xRef.contents)

10
10
11
12

type Incrementor(delta) =
 member this.Increment(i : int byref) =
 i <- i + delta

let incrementor = new Incrementor(1)
let mutable myDelta1 = 10
incrementor.Increment(ref myDelta1)
// Prints 10:
printfn "%d" myDelta1

let mutable myDelta2 = 10
incrementor.Increment(&myDelta2)
// Prints 11:
printfn "%d" myDelta2

let refInt = ref 10
incrementor.Increment(refInt)
// Prints 11:
printfn "%d" !refInt

NOTENOTE

NOTENOTE

Consuming C# ref returns

The output is as follows.

The field contents is provided for compatibility with other versions of ML and will produce a warning during compilation. To disable the warning, use
the --mlcompatibility compiler option. For more information, see Compiler Options.

The following code illustrates the use of reference cells in parameter passing. The Incrementor type has a method Increment that takes a parameter that
includes byref in the parameter type. The byref in the parameter type indicates that callers must pass a reference cell or the address of a typical variable
of the specified type, in this case int. The remaining code illustrates how to call Increment with both of these types of arguments, and shows the use of
the ref operator on a variable to create a reference cell (ref myDelta1). It then shows the use of the address-of operator (&) to generate an appropriate
argument. Finally, the Increment method is called again by using a reference cell that is declared by using a let binding. The final line of code
demonstrates the use of the ! operator to dereference the reference cell for printing.

For more information about how to pass by reference, see Parameters and Arguments.

C# programmers should know that ref works differently in F# than it does in C#. For example, the use of ref when you pass an argument does not have the same
effect in F# as it does in C#.

mutable variables may be automatically promoted to 'a ref if captured by a closure; see Values.

Starting with F# 4.1, you can consume ref returns generated in C#. The result of such a call is a byref<_> pointer.

The following C# method:

namespace RefReturns
{
 public static class RefClass
 {
 public static ref int Find(int val, int[] vals)
 {
 for (int i = 0; i < vals.Length; i++)
 {
 if (vals[i] == val)
 {
 return ref numbers[i]; // Returns the location, not the value
 }
 }

 throw new IndexOutOfRangeException($"{nameof(number)} not found");
 }
 }
}

open RefReturns

let consumeRefReturn() =
 let result = RefClass.Find(3, [| 1; 2; 3; 4; 5 |]) // 'result' is of type 'byref<int>'.
 ()

let f (x: byref<int>) = &x

See Also

Can be transparently called by F# with no special syntax:

You can also declare functions which could take a ref return as input, for example:

There is currently no way to generate a ref return in F# which could be consumed in C#.

F# Language Reference

Parameters and Arguments

Symbol and Operator Reference

Values

Type Abbreviations
5/11/2018 • 2 minutes to read • Edit Online

Syntax
type [accessibility-modifier] type-abbreviation = type-name

Remarks

type SizeType = uint32

type Transform<'a> = 'a -> 'a

See Also

A type abbreviation is an alias or alternate name for a type.

You can use type abbreviations to give a type a more meaningful name, in order to make code easier to read. You can also use them to create an easy to
use name for a type that is otherwise cumbersome to write out. Additionally, you can use type abbreviations to make it easier to change an underlying
type without changing all the code that uses the type. The following is a simple type abbreviation.

Accessibility of type abbreviations defaults to public .

Type abbreviations can include generic parameters, as in the following code.

In the previous code, Transform is a type abbreviation that represents a function that takes a single argument of any type and that returns a single value
of that same type.

Type abbreviations are not preserved in the .NET Framework MSIL code. Therefore, when you use an F# assembly from another .NET Framework
language, you must use the underlying type name for a type abbreviation.

Type abbreviations can also be used on units of measure. For more information, see Units of Measure.

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/type-abbreviations.md

Classes
5/4/2018 • 8 minutes to read • Edit Online

Syntax
// Class definition:
type [access-modifier] type-name [type-params] [access-modifier] (parameter-list) [as identifier] =
[class]
[inherit base-type-name(base-constructor-args)]
[let-bindings]
[do-bindings]
member-list
...
[end]
// Mutually recursive class definitions:
type [access-modifier] type-name1 ...
and [access-modifier] type-name2 ...
...

Remarks

Constructors

type MyClass1(x: int, y: int) =
 do printfn "%d %d" x y
 new() = MyClass1(0, 0)

let and do Bindings

Classes are types that represent objects that can have properties, methods, and events.

Classes represent the fundamental description of .NET object types; the class is the primary type concept that supports object-oriented programming in
F#.

In the preceding syntax, the type-name is any valid identifier. The type-params describes optional generic type parameters. It consists of type parameter
names and constraints enclosed in angle brackets (< and >). For more information, see Generics and Constraints. The parameter-list describes
constructor parameters. The first access modifier pertains to the type; the second pertains to the primary constructor. In both cases, the default is
public .

You specify the base class for a class by using the inherit keyword. You must supply arguments, in parentheses, for the base class constructor.

You declare fields or function values that are local to the class by using let bindings, and you must follow the general rules for let bindings. The
do-bindings section includes code to be executed upon object construction.

The member-list consists of additional constructors, instance and static method declarations, interface declarations, abstract bindings, and property and
event declarations. These are described in Members.

The identifier that is used with the optional as keyword gives a name to the instance variable, or self identifier, which can be used in the type
definition to refer to the instance of the type. For more information, see the section Self Identifiers later in this topic.

The keywords class and end that mark the start and end of the definition are optional.

Mutually recursive types, which are types that reference each other, are joined together with the and keyword just as mutually recursive functions are.
For an example, see the section Mutually Recursive Types.

The constructor is code that creates an instance of the class type. Constructors for classes work somewhat differently in F# than they do in other .NET
languages. In an F# class, there is always a primary constructor whose arguments are described in the parameter-list that follows the type name, and
whose body consists of the let (and let rec) bindings at the start of the class declaration and the do bindings that follow. The arguments of the
primary constructor are in scope throughout the class declaration.

You can add additional constructors by using the new keyword to add a member, as follows:

new (argument-list) = constructor-body

The body of the new constructor must invoke the primary constructor that is specified at the top of the class declaration.

The following example illustrates this concept. In the following code, MyClass has two constructors, a primary constructor that takes two arguments
and another constructor that takes no arguments.

The let and do bindings in a class definition form the body of the primary class constructor, and therefore they run whenever a class instance is

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/classes.md

Self Identifiers

type MyClass2(dataIn) as self =
 let data = dataIn
 do
 self.PrintMessage()
 member this.PrintMessage() =
 printf "Creating MyClass2 with Data %d" data

Generic Type Parameters

type MyGenericClass<'a> (x: 'a) =
 do printfn "%A" x

let g1 = MyGenericClass(seq { for i in 1 .. 10 -> (i, i*i) })

Specifying Inheritance

Members Section

Mutually Recursive Types

created. If a let binding is a function, then it is compiled into a member. If the let binding is a value that is not used in any function or member, then
it is compiled into a variable that is local to the constructor. Otherwise, it is compiled into a field of the class. The do expressions that follow are
compiled into the primary constructor and execute initialization code for every instance. Because any additional constructors always call the primary
constructor, the let bindings and do bindings always execute regardless of which constructor is called.

Fields that are created by let bindings can be accessed throughout the methods and properties of the class; however, they cannot be accessed from
static methods, even if the static methods take an instance variable as a parameter. They cannot be accessed by using the self identifier, if one exists.

A self identifier is a name that represents the current instance. Self identifiers resemble the this keyword in C# or C++ or Me in Visual Basic. You can
define a self identifier in two different ways, depending on whether you want the self identifier to be in scope for the whole class definition or just for an
individual method.

To define a self identifier for the whole class, use the as keyword after the closing parentheses of the constructor parameter list, and specify the
identifier name.

To define a self identifier for just one method, provide the self identifier in the member declaration, just before the method name and a period (.) as a
separator.

The following code example illustrates the two ways to create a self identifier. In the first line, the as keyword is used to define the self identifier. In the
fifth line, the identifier this is used to define a self identifier whose scope is restricted to the method PrintMessage .

Unlike in other .NET languages, you can name the self identifier however you want; you are not restricted to names such as self , Me , or this .

The self identifier that is declared with the as keyword is not initialized until after the let bindings are executed. Therefore, it cannot be used in the
let bindings. You can use the self identifier in the do bindings section.

Generic type parameters are specified in angle brackets (< and >), in the form of a single quotation mark followed by an identifier. Multiple generic
type parameters are separated by commas. The generic type parameter is in scope throughout the declaration. The following code example shows how
to specify generic type parameters.

Type arguments are inferred when the type is used. In the following code, the inferred type is a sequence of tuples.

The inherit clause identifies the direct base class, if there is one. In F#, only one direct base class is allowed. Interfaces that a class implements are not
considered base classes. Interfaces are discussed in the Interfaces topic.

You can access the methods and properties of the base class from the derived class by using the language keyword base as an identifier, followed by a
period (.) and the name of the member.

For more information, see Inheritance.

You can define static or instance methods, properties, interface implementations, abstract members, event declarations, and additional constructors in
this section. Let and do bindings cannot appear in this section. Because members can be added to a variety of F# types in addition to classes, they are
discussed in a separate topic, Members.

When you define types that reference each other in a circular way, you string together the type definitions by using the and keyword. The and

keyword replaces the type keyword on all except the first definition, as follows.

open System.IO

type Folder(pathIn: string) =
 let path = pathIn
 let filenameArray : string array = Directory.GetFiles(path)
 member this.FileArray = Array.map (fun elem -> new File(elem, this)) filenameArray

and File(filename: string, containingFolder: Folder) =
 member this.Name = filename
 member this.ContainingFolder = containingFolder

let folder1 = new Folder(".")
for file in folder1.FileArray do
 printfn "%s" file.Name

When to Use Classes, Unions, Records, and Structures

See Also

The output is a list of all the files in the current directory.

Given the variety of types to choose from, you need to have a good understanding of what each type is designed for to select the appropriate type for a
particular situation. Classes are designed for use in object-oriented programming contexts. Object-oriented programming is the dominant paradigm
used in applications that are written for the .NET Framework. If your F# code has to work closely with the .NET Framework or another object-oriented
library, and especially if you have to extend from an object-oriented type system such as a UI library, classes are probably appropriate.

If you are not interoperating closely with object-oriented code, or if you are writing code that is self-contained and therefore protected from frequent
interaction with object-oriented code, you should consider using records and discriminated unions. A single, well thought–out discriminated union,
together with appropriate pattern matching code, can often be used as a simpler alternative to an object hierarchy. For more information about
discriminated unions, see Discriminated Unions.

Records have the advantage of being simpler than classes, but records are not appropriate when the demands of a type exceed what can be
accomplished with their simplicity. Records are basically simple aggregates of values, without separate constructors that can perform custom actions,
without hidden fields, and without inheritance or interface implementations. Although members such as properties and methods can be added to
records to make their behavior more complex, the fields stored in a record are still a simple aggregate of values. For more information about records,
see Records.

Structures are also useful for small aggregates of data, but they differ from classes and records in that they are .NET value types. Classes and records
are .NET reference types. The semantics of value types and reference types are different in that value types are passed by value. This means that they
are copied bit for bit when they are passed as a parameter or returned from a function. They are also stored on the stack or, if they are used as a field,
embedded inside the parent object instead of stored in their own separate location on the heap. Therefore, structures are appropriate for frequently
accessed data when the overhead of accessing the heap is a problem. For more information about structures, see Structures.

F# Language Reference

Members

Inheritance

Interfaces

Structures
5/15/2018 • 2 minutes to read • Edit Online

Syntax
[attributes]
type [accessibility-modifier] type-name =
 struct
 type-definition-elements-and-members
 end
// or
[attributes]
[<StructAttribute>]
type [accessibility-modifier] type-name =
 type-definition-elements-and-members

Remarks

A structure is a compact object type that can be more efficient than a class for types that have a small amount of data and simple behavior.

Structures are value types, which means that they are stored directly on the stack or, when they are used as fields or array elements, inline in the parent
type. Unlike classes and records, structures have pass-by-value semantics. This means that they are useful primarily for small aggregates of data that
are accessed and copied frequently.

In the previous syntax, two forms are shown. The first is not the lightweight syntax, but it is nevertheless frequently used because, when you use the
struct and end keywords, you can omit the StructAttribute attribute, which appears in the second form. You can abbreviate StructAttribute to just
Struct .

The type-definition-elements-and-members in the previous syntax represents member declarations and definitions. Structures can have constructors
and mutable and immutable fields, and they can declare members and interface implementations. For more information, see Members.

Structures cannot participate in inheritance, cannot contain let or do bindings, and cannot recursively contain fields of their own type (although they
can contain reference cells that reference their own type).

Because structures do not allow let bindings, you must declare fields in structures by using the val keyword. The val keyword defines a field and
its type but does not allow initialization. Instead, val declarations are initialized to zero or null. For this reason, structures that have an implicit
constructor (that is, parameters that are given immediately after the structure name in the declaration) require that val declarations be annotated with
the DefaultValue attribute. Structures that have a defined constructor still support zero-initialization. Therefore, the DefaultValue attribute is a
declaration that such a zero value is valid for the field. Implicit constructors for structures do not perform any actions because let and do bindings
aren’t allowed on the type, but the implicit constructor parameter values passed in are available as private fields.

Explicit constructors might involve initialization of field values. When you have a structure that has an explicit constructor, it still supports zero-
initialization; however, you do not use the DefaultValue attribute on the val declarations because it conflicts with the explicit constructor. For more
information about val declarations, see Explicit Fields: The val Keyword.

Attributes and accessibility modifiers are allowed on structures, and follow the same rules as those for other types. For more information, see Attributes
and Access Control.

The following code examples illustrate structure definitions.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/structures.md

// In Point3D, three immutable values are defined.
// x, y, and z will be initialized to 0.0.
type Point3D =
 struct
 val x: float
 val y: float
 val z: float
 end

// In Point2D, two immutable values are defined.
// It also has a member which computes a distance between itself and another Point2D.
// Point2D has an explicit constructor.
// You can create zero-initialized instances of Point2D, or you can
// pass in arguments to initialize the values.
type Point2D =
 struct
 val X: float
 val Y: float
 new(x: float, y: float) = { X = x; Y = y }

 member this.GetDistanceFrom(p: Point2D) =
 let dX = (p.X - this.X) ** 2.0
 let dY = (p.Y - this.Y) ** 2.0

 dX + dY
 |> sqrt
 end

Struct Records and Discriminated Unions

See Also

Starting with F# 4.1, you can represent Records and Discriminated Unions as structs with the [<Struct>] attribute. See each article to learn more.

F# Language Reference

Classes

Records

Members

Inheritance
5/4/2018 • 3 minutes to read • Edit Online

Specifying Inheritance Relationships

type MyDerived(...) =
 inherit MyBase(...)

Inherited Members

Virtual Methods and Overrides

abstract member [method-name] : [type]

default [self-identifier].[method-name] [argument-list] = [method-body]

override [self-identifier].[method-name] [argument-list] = [method-body]

type MyClassBase1() =
 let mutable z = 0
 abstract member function1 : int -> int
 default u.function1(a : int) = z <- z + a; z

type MyClassDerived1() =
 inherit MyClassBase1()
 override u.function1(a: int) = a + 1

Constructors and Inheritance

type MyClassBase2(x: int) =
 let mutable z = x * x
 do for i in 1..z do printf "%d " i

type MyClassDerived2(y: int) =
 inherit MyClassBase2(y * 2)
 do for i in 1..y do printf "%d " i

Inheritance is used to model the "is-a" relationship, or subtyping, in object-oriented programming.

You specify inheritance relationships by using the inherit keyword in a class declaration. The basic syntactical form is shown in the following example.

A class can have at most one direct base class. If you do not specify a base class by using the inherit keyword, the class implicitly inherits from
System.Object .

If a class inherits from another class, the methods and members of the base class are available to users of the derived class as if they were direct
members of the derived class.

Any let bindings and constructor parameters are private to a class and, therefore, cannot be accessed from derived classes.

The keyword base is available in derived classes and refers to the base class instance. It is used like the self-identifier.

Virtual methods (and properties) work somewhat differently in F# as compared to other .NET languages. To declare a new virtual member, you use the
abstract keyword. You do this regardless of whether you provide a default implementation for that method. Thus a complete definition of a virtual

method in a base class follows this pattern:

And in a derived class, an override of this virtual method follows this pattern:

If you omit the default implementation in the base class, the base class becomes an abstract class.

The following code example illustrates the declaration of a new virtual method function1 in a base class and how to override it in a derived class.

The constructor for the base class must be called in the derived class. The arguments for the base class constructor appear in the argument list in the
inherit clause. The values that are used must be determined from the arguments supplied to the derived class constructor.

The following code shows a base class and a derived class, where the derived class calls the base class constructor in the inherit clause:

In the case of multiple constructors, the following code can be used. The first line of the derived class constructors is the inherit clause, and the fields

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/inheritance.md

type BaseClass =
 val string1 : string
 new (str) = { string1 = str }
 new () = { string1 = "" }

type DerivedClass =
 inherit BaseClass

 val string2 : string
 new (str1, str2) = { inherit BaseClass(str1); string2 = str2 }
 new (str2) = { inherit BaseClass(); string2 = str2 }

let obj1 = DerivedClass("A", "B")
let obj2 = DerivedClass("A")

Alternatives to Inheritance

open System

let object1 = { new Object() with
 override this.ToString() = "This overrides object.ToString()"
 }

printfn "%s" (object1.ToString())

See Also

appear as explicit fields that are declared with the val keyword. For more information, see Explicit Fields: The val Keyword.

In cases where a minor modification of a type is required, consider using an object expression as an alternative to inheritance. The following example
illustrates the use of an object expression as an alternative to creating a new derived type:

For more information about object expressions, see Object Expressions.

When you are creating object hierarchies, consider using a discriminated union instead of inheritance. Discriminated unions can also model varied
behavior of different objects that share a common overall type. A single discriminated union can often eliminate the need for a number of derived
classes that are minor variations of each other. For information about discriminated unions, see Discriminated Unions.

Object Expressions

F# Language Reference

Interfaces
5/11/2018 • 3 minutes to read • Edit Online

Syntax
// Interface declaration:
[attributes]
type [accessibility-modifier] interface-name =
 [interface] [inherit base-interface-name ...]
 abstract member1 : [argument-types1 ->] return-type1
 abstract member2 : [argument-types2 ->] return-type2
 ...
[end]

// Implementing, inside a class type definition:
interface interface-name with
 member self-identifier.member1argument-list = method-body1
 member self-identifier.member2argument-list = method-body2

// Implementing, by using an object expression:
[attributes]
let class-name (argument-list) =
 { new interface-name with
 member self-identifier.member1argument-list = method-body1
 member self-identifier.member2argument-list = method-body2
 [base-interface-definitions]
 }
 member-list

Remarks

type ISprintable =
 abstract member Print : format:string -> unit

Implementing Interfaces by Using Class Types

type IPrintable =
 abstract member Print : unit -> unit

type SomeClass1(x: int, y: float) =
 interface IPrintable with
 member this.Print() = printfn "%d %f" x y

Interfaces specify sets of related members that other classes implement.

Interface declarations resemble class declarations except that no members are implemented. Instead, all the members are abstract, as indicated by the
keyword abstract . You do not provide a method body for abstract methods. However, you can provide a default implementation by also including a
separate definition of the member as a method together with the default keyword. Doing so is equivalent to creating a virtual method in a base class
in other .NET languages. Such a virtual method can be overridden in classes that implement the interface.

The default accessibility for interfaces is public .

You can optionally give each method parameter a name using normal F# syntax:

In the above ISprintable example, the Print method has a single parameter of the type string with the name format .

There are two ways to implement interfaces: by using object expressions, and by using class types. In either case, the class type or object expression
provides method bodies for abstract methods of the interface. Implementations are specific to each type that implements the interface. Therefore,
interface methods on different types might be different from each other.

The keywords interface and end , which mark the start and end of the definition, are optional when you use lightweight syntax. If you do not use
these keywords, the compiler attempts to infer whether the type is a class or an interface by analyzing the constructs that you use. If you define a
member or use other class syntax, the type is interpreted as a class.

The .NET coding style is to begin all interfaces with a capital I .

You can implement one or more interfaces in a class type by using the interface keyword, the name of the interface, and the with keyword, followed
by the interface member definitions, as shown in the following code.

Interface implementations are inherited, so any derived classes do not need to reimplement them.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/interfaces.md

Calling Interface Methods

let x1 = new SomeClass1(1, 2.0)
(x1 :> IPrintable).Print()

type SomeClass2(x: int, y: float) =
 member this.Print() = (this :> IPrintable).Print()
 interface IPrintable with
 member this.Print() = printfn "%d %f" x y

let x2 = new SomeClass2(1, 2.0)
x2.Print()

Implementing Interfaces by Using Object Expressions

let makePrintable(x: int, y: float) =
 { new IPrintable with
 member this.Print() = printfn "%d %f" x y }
let x3 = makePrintable(1, 2.0)
x3.Print()

Interface Inheritance

type Interface1 =
 abstract member Method1 : int -> int

type Interface2 =
 abstract member Method2 : int -> int

type Interface3 =
 inherit Interface1
 inherit Interface2
 abstract member Method3 : int -> int

type MyClass() =
 interface Interface3 with
 member this.Method1(n) = 2 * n
 member this.Method2(n) = n + 100
 member this.Method3(n) = n / 10

See Also

Interface methods can be called only through the interface, not through any object of the type that implements the interface. Thus, you might have to
upcast to the interface type by using the :> operator or the upcast operator in order to call these methods.

To call the interface method when you have an object of type SomeClass , you must upcast the object to the interface type, as shown in the following
code.

An alternative is to declare a method on the object that upcasts and calls the interface method, as in the following example.

Object expressions provide a short way to implement an interface. They are useful when you do not have to create a named type, and you just want an
object that supports the interface methods, without any additional methods. An object expression is illustrated in the following code.

Interfaces can inherit from one or more base interfaces.

F# Language Reference

Object Expressions

Classes

Abstract Classes
5/4/2018 • 4 minutes to read • Edit Online

Syntax
// Abstract class syntax.
[<AbstractClass>]
type [accessibility-modifier] abstract-class-name =
[inherit base-class-or-interface-name]
[abstract-member-declarations-and-member-definitions]

// Abstract member syntax.
abstract member member-name : type-signature

Remarks

Abstract classes are classes that leave some or all members unimplemented, so that implementations can be provided by derived classes.

In object-oriented programming, an abstract class is used as a base class of a hierarchy, and represents common functionality of a diverse set of object
types. As the name "abstract" implies, abstract classes often do not correspond directly onto concrete entities in the problem domain. However, they do
represent what many different concrete entities have in common.

Abstract classes must have the AbstractClass attribute. They can have implemented and unimplemented members. The use of the term abstract when
applied to a class is the same as in other .NET languages; however, the use of the term abstract when applied to methods (and properties) is a little
different in F# from its use in other .NET languages. In F#, when a method is marked with the abstract keyword, this indicates that a member has an
entry, known as a virtual dispatch slot, in the internal table of virtual functions for that type. In other words, the method is virtual, although the virtual

keyword is not used in the F# language. The keyword abstract is used on virtual methods regardless of whether the method is implemented. The
declaration of a virtual dispatch slot is separate from the definition of a method for that dispatch slot. Therefore, the F# equivalent of a virtual method
declaration and definition in another .NET language is a combination of both an abstract method declaration and a separate definition, with either the
default keyword or the override keyword. For more information and examples, see Methods.

A class is considered abstract only if there are abstract methods that are declared but not defined. Therefore, classes that have abstract methods are not
necessarily abstract classes. Unless a class has undefined abstract methods, do not use the AbstractClass attribute.

In the previous syntax, accessibility-modifier can be public , private or internal . For more information, see Access Control.

As with other types, abstract classes can have a base class and one or more base interfaces. Each base class or interface appears on a separate line
together with the inherit keyword.

The type definition of an abstract class can contain fully defined members, but it can also contain abstract members. The syntax for abstract members is
shown separately in the previous syntax. In this syntax, the type signature of a member is a list that contains the parameter types in order and the return
types, separated by -> tokens and/or * tokens as appropriate for curried and tupled parameters. The syntax for abstract member type signatures is
the same as that used in signature files and that shown by IntelliSense in the Visual Studio Code Editor.

The following code illustrates an abstract class Shape, which has two non-abstract derived classes, Square and Circle. The example shows how to use
abstract classes, methods, and properties. In the example, the abstract class Shape represents the common elements of the concrete entities circle and
square. The common features of all shapes (in a two-dimensional coordinate system) are abstracted out into the Shape class: the position on the grid, an
angle of rotation, and the area and perimeter properties. These can be overridden, except for position, the behavior of which individual shapes cannot
change.

The rotation method can be overridden, as in the Circle class, which is rotation invariant because of its symmetry. So in the Circle class, the rotation
method is replaced by a method that does nothing.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/abstract-classes.md

// An abstract class that has some methods and properties defined
// and some left abstract.
[<AbstractClass>]
type Shape2D(x0 : float, y0 : float) =
 let mutable x, y = x0, y0
 let mutable rotAngle = 0.0

 // These properties are not declared abstract. They
 // cannot be overriden.
 member this.CenterX with get() = x and set xval = x <- xval
 member this.CenterY with get() = y and set yval = y <- yval

 // These properties are abstract, and no default implementation
 // is provided. Non-abstract derived classes must implement these.
 abstract Area : float with get
 abstract Perimeter : float with get
 abstract Name : string with get

 // This method is not declared abstract. It cannot be
 // overridden.
 member this.Move dx dy =
 x <- x + dx
 y <- y + dy

 // An abstract method that is given a default implementation
 // is equivalent to a virtual method in other .NET languages.
 // Rotate changes the internal angle of rotation of the square.
 // Angle is assumed to be in degrees.
 abstract member Rotate: float -> unit
 default this.Rotate(angle) = rotAngle <- rotAngle + angle

type Square(x, y, sideLengthIn) =
 inherit Shape2D(x, y)
 member this.SideLength = sideLengthIn
 override this.Area = this.SideLength * this.SideLength
 override this.Perimeter = this.SideLength * 4.
 override this.Name = "Square"

type Circle(x, y, radius) =
 inherit Shape2D(x, y)
 let PI = 3.141592654
 member this.Radius = radius
 override this.Area = PI * this.Radius * this.Radius
 override this.Perimeter = 2. * PI * this.Radius
 // Rotating a circle does nothing, so use the wildcard
 // character to discard the unused argument and
 // evaluate to unit.
 override this.Rotate(_) = ()
 override this.Name = "Circle"

let square1 = new Square(0.0, 0.0, 10.0)
let circle1 = new Circle(0.0, 0.0, 5.0)
circle1.CenterX <- 1.0
circle1.CenterY <- -2.0
square1.Move -1.0 2.0
square1.Rotate 45.0
circle1.Rotate 45.0
printfn "Perimeter of square with side length %f is %f, %f"
 (square1.SideLength) (square1.Area) (square1.Perimeter)
printfn "Circumference of circle with radius %f is %f, %f"
 (circle1.Radius) (circle1.Area) (circle1.Perimeter)

let shapeList : list<Shape2D> = [(square1 :> Shape2D);
 (circle1 :> Shape2D)]
List.iter (fun (elem : Shape2D) ->
 printfn "Area of %s: %f" (elem.Name) (elem.Area))
 shapeList

Perimeter of square with side length 10.000000 is 40.000000
Circumference of circle with radius 5.000000 is 31.415927
Area of Square: 100.000000
Area of Circle: 78.539816

See Also

Output:

Classes

Members

Methods

Properties

Members
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Related Topics
TOPIC DESCRIPTION

let Bindings in Classes Describes the definition of private fields and functions in classes.

do Bindings in Classes Describes the specification of object initialization code.

Properties Describes property members in classes and other types.

Indexed Properties Describes array-like properties in classes and other types.

Methods Describes functions that are members of a type.

Constructors Describes special functions that initialize objects of a type.

Operator Overloading Describes the definition of customized operators for types.

Events Describes the definition of events and event handling support in F#.

Explicit Fields: The val Keyword Describes the definition of uninitialized fields in a type.

This section describes members of F# object types.

Members are features that are part of a type definition and are declared with the member keyword. F# object types such as records, classes,
discriminated unions, interfaces, and structures support members. For more information, see Records, Classes, Discriminated Unions, Interfaces, and
Structures.

Members typically make up the public interface for a type, which is why they are public unless otherwise specified. Members can also be declared
private or internal. For more information, see Access Control. Signatures for types can also be used to expose or not expose certain members of a type.
For more information, see Signatures.

Private fields and do bindings, which are used only with classes, are not true members, because they are never part of the public interface of a type and
are not declared with the member keyword, but they are described in this section also.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/index.md
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures

let Bindings in Classes
5/4/2018 • 2 minutes to read • Edit Online

Syntax
// Field.
[static] let [mutable] binding1 [and ... binding-n]

// Function.
[static] let [rec] binding1 [and ... binding-n]

Remarks

type PointWithCounter(a: int, b: int) =
 // A variable i.
 let mutable i = 0

 // A let binding that uses a pattern.
 let (x, y) = (a, b)

 // A private function binding.
 let privateFunction x y = x * x + 2*y

 // A static let binding.
 static let mutable count = 0

 // A do binding.
 do
 count <- count + 1

 member this.Prop1 = x
 member this.Prop2 = y
 member this.CreatedCount = count
 member this.FunctionValue = privateFunction x y

let point1 = PointWithCounter(10, 52)

printfn "%d %d %d %d" (point1.Prop1) (point1.Prop2) (point1.CreatedCount) (point1.FunctionValue)

10 52 1 204

Alternative Ways to Create Fields

See Also

You can define private fields and private functions for F# classes by using let bindings in the class definition.

The previous syntax appears after the class heading and inheritance declarations but before any member definitions. The syntax is like that of let

bindings outside of classes, but the names defined in a class have a scope that is limited to the class. A let binding creates a private field or function; to
expose data or functions publicly, declare a property or a member method.

A let binding that is not static is called an instance let binding. Instance let bindings execute when objects are created. Static let bindings are
part of the static initializer for the class, which is guaranteed to execute before the type is first used.

The code within instance let bindings can use the primary constructor's parameters.

Attributes and accessibility modifiers are not permitted on let bindings in classes.

The following code examples illustrate several types of let bindings in classes.

The output is as follows.

You can also use the val keyword to create a private field. When using the val keyword, the field is not given a value when the object is created, but
instead is initialized with a default value. For more information, see Explicit Fields: The val Keyword.

You can also define private fields in a class by using a member definition and adding the keyword private to the definition. This can be useful if you
expect to change the accessibility of a member without rewriting your code. For more information, see Access Control.

Members

do Bindings in Classes

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/let-bindings-in-classes.md

let Bindings

do Bindings in Classes
5/4/2018 • 2 minutes to read • Edit Online

Syntax
[static] do expression

Remarks

open System

type MyType(a:int, b:int) as this =
 inherit Object()
 let x = 2*a
 let y = 2*b
 do printfn "Initializing object %d %d %d %d %d %d"
 a b x y (this.Prop1) (this.Prop2)
 static do printfn "Initializing MyType."
 member this.Prop1 = 4*x
 member this.Prop2 = 4*y
 override this.ToString() = System.String.Format("{0} {1}", this.Prop1, this.Prop2)

let obj1 = new MyType(1, 2)

Initializing MyType.
Initializing object 1 2 2 4 8 16

See Also

A do binding in a class definition performs actions when the object is constructed or, for a static do binding, when the type is first used.

A do binding appears together with or after let bindings but before member definitions in a class definition. Although the do keyword is optional
for do bindings at the module level, it is not optional for do bindings in a class definition.

For the construction of every object of any given type, non-static do bindings and non-static let bindings are executed in the order in which they
appear in the class definition. Multiple do bindings can occur in one type. The non-static let bindings and the non-static do bindings become the
body of the primary constructor. The code in the non-static do bindings section can reference the primary constructor parameters and any values or
functions that are defined in the let bindings section.

Non-static do bindings can access members of the class as long as the class has a self identifier that is defined by an as keyword in the class heading,
and as long as all uses of those members are qualified with the self identifier for the class.

Because let bindings initialize the private fields of a class, which is often necessary to guarantee that members behave as expected, do bindings are
usually put after let bindings so that code in the do binding can execute with a fully initialized object. If your code attempts to use a member before
the initialization is complete, an InvalidOperationException is raised.

Static do bindings can reference static members or fields of the enclosing class but not instance members or fields. Static do bindings become part of
the static initializer for the class, which is guaranteed to execute before the class is first used.

Attributes are ignored for do bindings in types. If an attribute is required for code that executes in a do binding, it must be applied to the primary
constructor.

In the following code, a class has a static do binding and a non-static do binding. The object has a constructor that has two parameters, a and b ,
and two private fields are defined in the let bindings for the class. Two properties are also defined. All of these are in scope in the non-static do

bindings section, as is illustrated by the line that prints all those values.

The output is as follows.

Members

Classes

Constructors

let Bindings in Classes

do Bindings

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/do-bindings-in-classes.md

Properties
5/4/2018 • 7 minutes to read • Edit Online

Syntax
// Property that has both get and set defined.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with [accessibility-modifier] get() =
 get-function-body
and [accessibility-modifier] set parameter =
 set-function-body

// Alternative syntax for a property that has get and set.
[attributes-for-get]
[static] member [accessibility-modifier-for-get] [self-identifier.]PropertyName =
 get-function-body
[attributes-for-set]
[static] member [accessibility-modifier-for-set] [self-identifier.]PropertyName
with set parameter =
 set-function-body

// Property that has get only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName =
 get-function-body

// Alternative syntax for property that has get only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with get() =
 get-function-body

// Property that has set only.
[attributes]
[static] member [accessibility-modifier] [self-identifier.]PropertyName
with set parameter =
 set-function-body

// Automatically implemented properties.
[attributes]
[static] member val [accessibility-modifier] PropertyName = initialization-expression [with get, set]

Remarks

// A read-only property.
member this.MyReadOnlyProperty = myInternalValue
// A write-only property.
member this.MyWriteOnlyProperty with set (value) = myInternalValue <- value
// A read-write property.
member this.MyReadWriteProperty
 with get () = myInternalValue
 and set (value) = myInternalValue <- value

Properties are members that represent values associated with an object.

Properties represent the "has a" relationship in object-oriented programming, representing data that is associated with object instances or, for static
properties, with the type.

You can declare properties in two ways, depending on whether you want to explicitly specify the underlying value (also called the backing store) for the
property, or if you want to allow the compiler to automatically generate the backing store for you. Generally, you should use the more explicit way if the
property has a non-trivial implementation and the automatic way when the property is just a simple wrapper for a value or variable. To declare a
property explicitly, use the member keyword. This declarative syntax is followed by the syntax that specifies the get and set methods, also named
accessors. The various forms of the explicit syntax shown in the syntax section are used for read/write, read-only, and write-only properties. For read-
only properties, you define only a get method; for write-only properties, define only a set method. Note that when a property has both get and
set accessors, the alternative syntax enables you to specify attributes and accessibility modifiers that are different for each accessor, as is shown in the

following code.

For read/write properties, which have both a get and set method, the order of get and set can be reversed. Alternatively, you can provide the
syntax shown for get only and the syntax shown for set only instead of using the combined syntax. Doing this makes it easier to comment out the
individual get or set method, if that is something you might need to do. This alternative to using the combined syntax is shown in the following code.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/properties.md

member this.MyReadWriteProperty with get () = myInternalValue
member this.MyReadWriteProperty with set (value) = myInternalValue <- value

type MyClass(property1 : int) =
member val Property1 = property1
member val Property2 = "" with get, set

type MyClass() =
 let random = new System.Random()
 member val AutoProperty = random.Next() with get, set
 member this.ExplicitProperty = random.Next()

let class1 = new MyClass()

printfn "class1.AutoProperty = %d" class1.AutoProperty
printfn "class1.AutoProperty = %d" class1.AutoProperty
printfn "class1.ExplicitProperty = %d" class1.ExplicitProperty
printfn "class1.ExplicitProperty = %d" class1.ExplicitProperty

class1.AutoProperty = 1853799794
class1.AutoProperty = 1853799794
class1.ExplicitProperty = 978922705
class1.ExplicitProperty = 1131210765

WARNINGWARNING

Static and Instance Properties

static member MyStaticProperty
 with get() = myStaticValue
 and set(value) = myStaticValue <- value

Private values that hold the data for properties are called backing stores. To have the compiler create the backing store automatically, use the keywords
member val , omit the self-identifier, then provide an expression to initialize the property. If the property is to be mutable, include with get, set . For

example, the following class type includes two automatically implemented properties. Property1 is read-only and is initialized to the argument
provided to the primary constructor, and Property2 is a settable property initialized to an empty string:

Automatically implemented properties are part of the initialization of a type, so they must be included before any other member definitions, just like
let bindings and do bindings in a type definition. Note that the expression that initializes an automatically implemented property is only evaluated

upon initialization, and not every time the property is accessed. This behavior is in contrast to the behavior of an explicitly implemented property. What
this effectively means is that the code to initialize these properties is added to the constructor of a class. Consider the following code that shows this
difference:

Output

The output of the preceding code shows that the value of AutoProperty is unchanged when called repeatedly, whereas the ExplicitProperty changes
each time it is called. This demonstrates that the expression for an automatically implemented property is not evaluated each time, as is the getter
method for the explicit property.

There are some libraries, such as the Entity Framework (System.Data.Entity) that perform custom operations in base class constructors that don't work well with the
initialization of automatically implemented properties. In those cases, try using explicit properties.

Properties can be members of classes, structures, discriminated unions, records, interfaces, and type extensions and can also be defined in object
expressions.

Attributes can be applied to properties. To apply an attribute to a property, write the attribute on a separate line before the property. For more
information, see Attributes.

By default, properties are public. Accessibility modifiers can also be applied to properties. To apply an accessibility modifier, add it immediately before
the name of the property if it is meant to apply to both the get and set methods; add it before the get and set keywords if different accessibility is
required for each accessor. The accessibility-modifier can be one of the following: public , private , internal . For more information, see Access
Control.

Property implementations are executed each time a property is accessed.

Properties can be static or instance properties. Static properties can be invoked without an instance and are used for values associated with the type, not
with individual objects. For static properties, omit the self-identifier. The self-identifier is required for instance properties.

The following static property definition is based on a scenario in which you have a static field myStaticValue that is the backing store for the property.

Properties can also be array-like, in which case they are called indexed properties. For more information, see Indexed Properties.

Type Annotation for Properties

// To apply a type annotation to a property that does not have an explicit
// get or set, apply the type annotation directly to the property.
member this.MyProperty1 : int = myInternalValue
// If there is a get or set, apply the type annotation to the get or set method.
member this.MyProperty2 with get() : int = myInternalValue

Using Property set Accessors

// Assume that the constructor argument sets the initial value of the
// internal backing store.
let mutable myObject = new MyType(10)
myObject.MyProperty <- 20
printfn "%d" (myObject.MyProperty)

Abstract Properties

// Abstract property in abstract class.
// The property is an int type that has a get and
// set method
[<AbstractClass>]
type AbstractBase() =
 abstract Property1 : int with get, set

// Implementation of the abstract property
type Derived1() =
 inherit AbstractBase()
 let mutable value = 10
 override this.Property1 with get() = value and set(v : int) = value <- v

// A type with a "virtual" property.
 type Base1() =
 let mutable value = 10
 abstract Property1 : int with get, set
 default this.Property1 with get() = value and set(v : int) = value <- v

// A derived type that overrides the virtual property
type Derived2() =
 inherit Base1()
 let mutable value2 = 11
 override this.Property1 with get() = value2 and set(v) = value2 <- v

See Also

In many cases, the compiler has enough information to infer the type of a property from the type of the backing store, but you can set the type explicitly
by adding a type annotation.

You can set properties that provide set accessors by using the <- operator.

The output is 20.

Properties can be abstract. As with methods, abstract just means that there is a virtual dispatch associated with the property. Abstract properties can
be truly abstract, that is, without a definition in the same class. The class that contains such a property is therefore an abstract class. Alternatively,
abstract can just mean that a property is virtual, and in that case, a definition must be present in the same class. Note that abstract properties must not
be private, and if one accessor is abstract, the other must also be abstract. For more information about abstract classes, see Abstract Classes.

Members

Methods

Indexed Properties
5/16/2018 • 3 minutes to read • Edit Online

Syntax
// Indexed property that has both get and set defined.
member self-identifier.IndexerName
 with get(index-variable) =
 get-function-body
 and set index-variablesvalue-variables =
 set-function-body

// Indexed property that has get only.
member self-identifier.IndexerName(index-variable) =
 get-function-body

// Alternative syntax for indexed property with get only
member self-identifier.IndexerName
 with get(index-variables) =
 get-function-body

// Indexed property that has set only.
member self-identifier.IndexerName
 with set index-variablesvalue-variables =
 set-function-body

Remarks

Example

Indexed properties are properties that provide array-like access to ordered data. They come in three forms:

Item

Ordinal

Cardinal

An F# member must be named one of these three names to provide array-like access. IndexerName is used to represent any of the three options below:

The forms of the previous syntax show how to define indexed properties that have both a get and a set method, have a get method only, or have a
set method only. You can also combine both the syntax shown for get only and the syntax shown for set only, and produce a property that has both

get and set. This latter form allows you to put different accessibility modifiers and attributes on the get and set methods.

When the IndexerName is Item , the compiler treats the property as a default indexed property. A default indexed property is a property that you can
access by using array-like syntax on the object instance. For example, if obj is an object of the type that defines this property, the syntax obj.[index] is
used to access the property.

The syntax for accessing a nondefault indexed property is to provide the name of the property and the index in parentheses. For example, if the
property is Ordinal , you write obj.Ordinal(index) to access it.

Regardless of which form you use, you should always use the curried form for the set method on an indexed property. For information about curried
functions, see Functions.

The following code example illustrates the definition and use of default and non-default indexed properties that have get and set methods.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/indexed-properties.md

type NumberStrings() =
 let mutable ordinals = [| "one"; "two"; "three"; "four"; "five";
 "six"; "seven"; "eight"; "nine"; "ten" |]
 let mutable cardinals = [| "first"; "second"; "third"; "fourth";
 "fifth"; "sixth"; "seventh"; "eighth";
 "ninth"; "tenth" |]
 member this.Item
 with get(index) = ordinals.[index]
 and set index value = ordinals.[index] <- value
 member this.Ordinal
 with get(index) = ordinals.[index]
 and set index value = ordinals.[index] <- value
 member this.Cardinal
 with get(index) = cardinals.[index]
 and set index value = cardinals.[index] <- value

let nstrs = new NumberStrings()
nstrs.[0] <- "ONE"
for i in 0 .. 9 do
 printf "%s " (nstrs.[i])
printfn ""

nstrs.Cardinal(5) <- "6th"

for i in 0 .. 9 do
 printf "%s " (nstrs.Ordinal(i))
 printf "%s " (nstrs.Cardinal(i))
printfn ""

Output
ONE two three four five six seven eight nine ten
ONE first two second three third four fourth five fifth six 6th
seven seventh eight eighth nine ninth ten tenth

Indexed Properties with Multiple Index Variables

open System.Collections.Generic

type SparseMatrix() =
 let mutable table = new Dictionary<(int * int), float>()
 member this.Item
 with get(key1, key2) = table.[(key1, key2)]
 and set (key1, key2) value = table.[(key1, key2)] <- value

let matrix1 = new SparseMatrix()
for i in 1..1000 do
 matrix1.[i, i] <- float i * float i

See Also

Indexed properties can have more than one index variable. In that case, the variables are separated by commas when the property is used. The set
method in such a property must have two curried arguments, the first of which is a tuple containing the keys, and the second of which is the value being
set.

The following code demonstrates the use of an indexed property with multiple index variables.

Members

Methods
5/22/2018 • 7 minutes to read • Edit Online

Syntax
// Instance method definition.
[attributes]
member [inline] self-identifier.method-name parameter-list [: return-type] =
 method-body

// Static method definition.
[attributes]
static member [inline] method-name parameter-list [: return-type] =
 method-body

// Abstract method declaration or virtual dispatch slot.
[attributes]
abstract member method-name : type-signature

// Virtual method declaration and default implementation.
[attributes]
abstract member method-name : type-signature
[attributes]
default self-identifier.method-name parameter-list [: return-type] =
 method-body

// Override of inherited virtual method.
[attributes]
override self-identifier.method-name parameter-list [: return-type] =
 method-body

// Optional and DefaultParameterValue attributes on input parameters
[attributes]
[modifier] member [inline] self-identifier.method-name ([<Optional; DefaultParameterValue(default-value)>] input) [: return-type]

Remarks

Instance Methods

type SomeType(factor0: int) =
 let factor = factor0
 member this.SomeMethod(a, b, c) =
 (a + b + c) * factor

 member this.SomeOtherMethod(a, b, c) =
 this.SomeMethod(a, b, c) * factor

Static Methods

A method is a function that is associated with a type. In object-oriented programming, methods are used to expose and implement the functionality and
behavior of objects and types.

In the previous syntax, you can see the various forms of method declarations and definitions. In longer method bodies, a line break follows the equal
sign (=), and the whole method body is indented.

Attributes can be applied to any method declaration. They precede the syntax for a method definition and are usually listed on a separate line. For more
information, see Attributes.

Methods can be marked inline . For information about inline , see Inline Functions.

Non-inline methods can be used recursively within the type; there is no need to explicitly use the rec keyword.

Instance methods are declared with the member keyword and a self-identifier, followed by a period (.) and the method name and parameters. As is the
case for let bindings, the parameter-list can be a pattern. Typically, you enclose method parameters in parentheses in a tuple form, which is the way
methods appear in F# when they are created in other .NET Framework languages. However, the curried form (parameters separated by spaces) is also
common, and other patterns are supported also.

The following example illustrates the definition and use of a non-abstract instance method.

Within instance methods, do not use the self identifier to access fields defined by using let bindings. Use the self identifier when accessing other
members and properties.

The keyword static is used to specify that a method can be called without an instance and is not associated with an object instance. Otherwise,

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/methods.md

static member SomeStaticMethod(a, b, c) =
 (a + b + c)

static member SomeOtherStaticMethod(a, b, c) =
 SomeType.SomeStaticMethod(a, b, c) * 100

Abstract and Virtual Methods

type Ellipse(a0 : float, b0 : float, theta0 : float) =
 let mutable axis1 = a0
 let mutable axis2 = b0
 let mutable rotAngle = theta0
 abstract member Rotate: float -> unit
 default this.Rotate(delta : float) = rotAngle <- rotAngle + delta

type Circle(radius : float) =
 inherit Ellipse(radius, radius, 0.0)
 // Circles are invariant to rotation, so do nothing.
 override this.Rotate(_) = ()

Overloaded Methods

Optional Arguments

// A class with a method M, which takes in an optional integer argument.
type C() =
 __.M([<Optional; DefaultParameterValue(12)>] i) = i + 1

methods are instance methods.

The example in the next section shows fields declared with the let keyword, property members declared with the member keyword, and a static
method declared with the static keyword.

The following example illustrates the definition and use of static methods. Assume that these method definitions are in the SomeType class in the
previous section.

The keyword abstract indicates that a method has a virtual dispatch slot and might not have a definition in the class. A virtual dispatch slot is an entry
in an internally maintained table of functions that is used at run time to look up virtual function calls in an object-oriented type. The virtual dispatch
mechanism is the mechanism that implements polymorphism, an important feature of object-oriented programming. A class that has at least one
abstract method without a definition is an abstract class, which means that no instances can be created of that class. For more information about
abstract classes, see Abstract Classes.

Abstract method declarations do not include a method body. Instead, the name of the method is followed by a colon (:) and a type signature for the
method. The type signature of a method is the same as that shown by IntelliSense when you pause the mouse pointer over a method name in the
Visual Studio Code Editor, except without parameter names. Type signatures are also displayed by the interpreter, fsi.exe, when you are working
interactively. The type signature of a method is formed by listing out the types of the parameters, followed by the return type, with appropriate
separator symbols. Curried parameters are separated by -> and tuple parameters are separated by * . The return value is always separated from the
arguments by a -> symbol. Parentheses can be used to group complex parameters, such as when a function type is a parameter, or to indicate when a
tuple is treated as a single parameter rather than as two parameters.

You can also give abstract methods default definitions by adding the definition to the class and using the default keyword, as shown in the syntax
block in this topic. An abstract method that has a definition in the same class is equivalent to a virtual method in other .NET Framework languages.
Whether or not a definition exists, the abstract keyword creates a new dispatch slot in the virtual function table for the class.

Regardless of whether a base class implements its abstract methods, derived classes can provide implementations of abstract methods. To implement
an abstract method in a derived class, define a method that has the same name and signature in the derived class, except use the override or default

keyword, and provide the method body. The keywords override and default mean exactly the same thing. Use override if the new method overrides
a base class implementation; use default when you create an implementation in the same class as the original abstract declaration. Do not use the
abstract keyword on the method that implements the method that was declared abstract in the base class.

The following example illustrates an abstract method Rotate that has a default implementation, the equivalent of a .NET Framework virtual method.

The following example illustrates a derived class that overrides a base class method. In this case, the override changes the behavior so that the method
does nothing.

Overloaded methods are methods that have identical names in a given type but that have different arguments. In F#, optional arguments are usually
used instead of overloaded methods. However, overloaded methods are permitted in the language, provided that the arguments are in tuple form, not
curried form.

Starting with F# 4.1, you can also have optional arguments with a default parameter value in methods. This is to help facilitate interoperation with C#
code. The following example demonstrates the syntax:

Example: Properties and Methods

type RectangleXY(x1 : float, y1: float, x2: float, y2: float) =
 // Field definitions.
 let height = y2 - y1
 let width = x2 - x1
 let area = height * width
 // Private functions.
 static let maxFloat (x: float) (y: float) =
 if x >= y then x else y
 static let minFloat (x: float) (y: float) =
 if x <= y then x else y
 // Properties.
 // Here, "this" is used as the self identifier,
 // but it can be any identifier.
 member this.X1 = x1
 member this.Y1 = y1
 member this.X2 = x2
 member this.Y2 = y2
 // A static method.
 static member intersection(rect1 : RectangleXY, rect2 : RectangleXY) =
 let x1 = maxFloat rect1.X1 rect2.X1
 let y1 = maxFloat rect1.Y1 rect2.Y1
 let x2 = minFloat rect1.X2 rect2.X2
 let y2 = minFloat rect1.Y2 rect2.Y2
 let result : RectangleXY option =
 if (x2 > x1 && y2 > y1) then
 Some (RectangleXY(x1, y1, x2, y2))
 else
 None
 result

// Test code.
let testIntersection =
 let r1 = RectangleXY(10.0, 10.0, 20.0, 20.0)
 let r2 = RectangleXY(15.0, 15.0, 25.0, 25.0)
 let r3 : RectangleXY option = RectangleXY.intersection(r1, r2)
 match r3 with
 | Some(r3) -> printfn "Intersection rectangle: %f %f %f %f" r3.X1 r3.Y1 r3.X2 r3.Y2
 | None -> printfn "No intersection found."

testIntersection

See Also

Note that the value passed in for DefaultParameterValue must match the input type. In the above sample, it is an int . Attempting to pass a non-integer
value into DefaultParameterValue would result in a compile error.

The following example contains a type that has examples of fields, private functions, properties, and a static method.

Members

Constructors
5/4/2018 • 6 minutes to read • Edit Online

Construction of Class Objects

// This class has a primary constructor that takes three arguments
// and an additional constructor that calls the primary constructor.
type MyClass(x0, y0, z0) =
 let mutable x = x0
 let mutable y = y0
 let mutable z = z0
 do
 printfn "Initialized object that has coordinates (%d, %d, %d)" x y z
 member this.X with get() = x and set(value) = x <- value
 member this.Y with get() = y and set(value) = y <- value
 member this.Z with get() = z and set(value) = z <- value
 new() = MyClass(0, 0, 0)

// Create by using the new keyword.
let myObject1 = new MyClass(1, 2, 3)
// Create without using the new keyword.
let myObject2 = MyClass(4, 5, 6)
// Create by using named arguments.
let myObject3 = MyClass(x0 = 7, y0 = 8, z0 = 9)
// Create by using the additional constructor.
let myObject4 = MyClass()

Initialized object that has coordinates (1, 2, 3)
Initialized object that has coordinates (4, 5, 6)
Initialized object that has coordinates (7, 8, 9)
Initialized object that has coordinates (0, 0, 0)

Construction of Structures

type MyStruct =
 struct
 val X : int
 val Y : int
 val Z : int
 new(x, y, z) = { X = x; Y = y; Z = z }
 end

let myStructure1 = new MyStruct(1, 2, 3)

This topic describes how to define and use constructors to create and initialize class and structure objects.

Objects of class types have constructors. There are two kinds of constructors. One is the primary constructor, whose parameters appear in parentheses
just after the type name. You specify other, optional additional constructors by using the new keyword. Any such additional constructors must call the
primary constructor.

The primary constructor contains let and do bindings that appear at the start of the class definition. A let binding declares private fields and
methods of the class; a do binding executes code. For more information about let bindings in class constructors, see let Bindings in Classes. For
more information about do bindings in constructors, see do Bindings in Classes.

Regardless of whether the constructor you want to call is a primary constructor or an additional constructor, you can create objects by using a new

expression, with or without the optional new keyword. You initialize your objects together with constructor arguments, either by listing the arguments
in order and separated by commas and enclosed in parentheses, or by using named arguments and values in parentheses. You can also set properties
on an object during the construction of the object by using the property names and assigning values just as you use named constructor arguments.

The following code illustrates a class that has a constructor and various ways of creating objects.

The output is as follows.

Structures follow all the rules of classes. Therefore, you can have a primary constructor, and you can provide additional constructors by using new .
However, there is one important difference between structures and classes: structures can have a default constructor (that is, one with no arguments)
even if no primary constructor is defined. The default constructor initializes all the fields to the default value for that type, usually zero or its equivalent.
Any constructors that you define for structures must have at least one argument so that they do not conflict with the default constructor.

Also, structures often have fields that are created by using the val keyword; classes can also have these fields. Structures and classes that have fields
defined by using the val keyword can also be initialized in additional constructors by using record expressions, as shown in the following code.

For more information, see Explicit Fields: The val Keyword.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/constructors.md

Executing Side Effects in Constructors

 // Executing side effects in the primary constructor and
// additional constructors.
type Person(nameIn : string, idIn : int) =
 let mutable name = nameIn
 let mutable id = idIn
 do printfn "Created a person object."
 member this.Name with get() = name and set(v) = name <- v
 member this.ID with get() = id and set(v) = id <- v
 new() =
 Person("Invalid Name", -1)
 then
 printfn "Created an invalid person object."

let person1 = new Person("Humberto Acevedo", 123458734)
let person2 = new Person()

Created a person object.
Created a person object.
Created an invalid person object.

Self Identifiers in Constructors

type MyClass1(x) as this =
 // This use of the self identifier produces a warning - avoid.
 let x1 = this.X
 // This use of the self identifier is acceptable.
 do printfn "Initializing object with X =%d" this.X
 member this.X = x

type MyClass2(x : int) =
 member this.X = x
 new() as this = MyClass2(0) then printfn "Initializing with X = %d" this.X

Assigning Values to Properties at Initialization

A primary constructor in a class can execute code in a do binding. However, what if you have to execute code in an additional constructor, without a do

binding? To do this, you use the then keyword.

The side effects of the primary constructor still execute. Therefore, the output is as follows.

In other members, you provide a name for the current object in the definition of each member. You can also put the self identifier on the first line of the
class definition by using the as keyword immediately following the constructor parameters. The following example illustrates this syntax.

In additional constructors, you can also define a self identifier by putting the as clause right after the constructor parameters. The following example
illustrates this syntax.

Problems can occur when you try to use an object before it is fully defined. Therefore, uses of the self identifier can cause the compiler to emit a
warning and insert additional checks to ensure the members of an object are not accessed before the object is initialized. You should only use the self
identifier in the do bindings of the primary constructor, or after the then keyword in additional constructors.

The name of the self identifier does not have to be this . It can be any valid identifier.

You can assign values to the properties of a class object in the initialization code by appending a list of assignments of the form property = value to the
argument list for a constructor. This is shown in the following code example.

 type Account() =
 let mutable balance = 0.0
 let mutable number = 0
 let mutable firstName = ""
 let mutable lastName = ""
 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance + amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance - amount

let account1 = new Account(AccountNumber=8782108,
 FirstName="Darren", LastName="Parker",
 Balance=1543.33)

type Account(accountNumber : int, ?first: string, ?last: string, ?bal : float) =
 let mutable balance = defaultArg bal 0.0
 let mutable number = accountNumber
 let mutable firstName = defaultArg first ""
 let mutable lastName = defaultArg last ""
 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance + amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance - amount

let account1 = new Account(8782108, bal = 543.33,
 FirstName="Raman", LastName="Iyer")

Constructors in inherited class

Static Constructors or Type Constructors

See Also

The following version of the previous code illustrates the combination of ordinary arguments, optional arguments, and property settings in one
constructor call.

When inheriting from a base class that has a constructor, you must specify its arguments in the inherit clause. For more information, see Constructors
and inheritance.

In addition to specifying code for creating objects, static let and do bindings can be authored in class types that execute before the type is first used
to perform initialization at the type level. For more information, see let Bindings in Classes and do Bindings in Classes.

Members

Events
5/4/2018 • 6 minutes to read • Edit Online

NOTENOTE

Handling Events

open System.Windows.Forms

let form = new Form(Text="F# Windows Form",
 Visible = true,
 TopMost = true)

form.Click.Add(fun evArgs -> System.Console.Beep())
Application.Run(form)

open System.Windows.Forms

let Beep evArgs =
 System.Console.Beep()

let form = new Form(Text = "F# Windows Form",
 Visible = true,
 TopMost = true)

let MouseMoveEventHandler (evArgs : System.Windows.Forms.MouseEventArgs) =
 form.Text <- System.String.Format("{0},{1}", evArgs.X, evArgs.Y)

form.Click.Add(Beep)
form.MouseMove.Add(MouseMoveEventHandler)
Application.Run(form)

Creating Custom Events

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

Events enable you to associate function calls with user actions and are important in GUI programming. Events can also be triggered by your
applications or by the operating system.

When you use a GUI library like Windows Forms or Windows Presentation Foundation (WPF), much of the code in your application runs in response
to events that are predefined by the library. These predefined events are members of GUI classes such as forms and controls. You can add custom
behavior to a preexisting event, such as a button click, by referencing the specific named event of interest (for example, the Click event of the Form

class) and invoking the Add method, as shown in the following code. If you run this from F# Interactive, omit the call to
System.Windows.Forms.Application.Run(System.Windows.Forms.Form) .

The type of the Add method is ('a -> unit) -> unit . Therefore, the event handler method takes one parameter, typically the event arguments, and
returns unit . The previous example shows the event handler as a lambda expression. The event handler can also be a function value, as in the
following code example. The following code example also shows the use of the event handler parameters, which provide information specific to the type
of event. For a MouseMove event, the system passes a System.Windows.Forms.MouseEventArgs object, which contains the X and Y position of the pointer.

F# events are represented by the F# Event class, which implements the IEvent interface. IEvent is itself an interface that combines the functionality of
two other interfaces, System.IObservable<'T> and IDelegateEvent. Therefore, Event s have the equivalent functionality of delegates in other languages,
plus the additional functionality from IObservable , which means that F# events support event filtering and using F# first-class functions and lambda
expressions as event handlers. This functionality is provided in the Event module.

To create an event on a class that acts just like any other .NET Framework event, add to the class a let binding that defines an Event as a field in a
class. You can specify the desired event argument type as the type argument, or leave it blank and have the compiler infer the appropriate type. You also
must define an event member that exposes the event as a CLI event. This member should have the CLIEvent attribute. It is declared like a property and
its implementation is just a call to the Publish property of the event. Users of your class can use the Add method of the published event to add a
handler. The argument for the Add method can be a lambda expression. You can use the Trigger property of the event to raise the event, passing the
arguments to the handler function. The following code example illustrates this. In this example, the inferred type argument for the event is a tuple, which
represents the arguments for the lambda expression.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/events.md
https://msdn.microsoft.com/library/f3b47c8a-4ee5-4ce8-9a72-ad305a17c4b9
https://msdn.microsoft.com/library/8dbca0df-f8a1-40bd-8d50-aa26f6a8b862
https://msdn.microsoft.com/library/3d849465-6b8e-4fc5-b36c-2941d734268a
https://msdn.microsoft.com/library/8b883baa-a460-4840-9baa-de8260351bc7
https://msdn.microsoft.com/library/d359f1dd-ffa5-42fb-8808-b4c8131a0333
https://msdn.microsoft.com/library/b0fdaad5-25e5-43d0-9c0c-ce37c4aeb68e

open System.Collections.Generic

type MyClassWithCLIEvent() =

 let event1 = new Event<_>()

 [<CLIEvent>]
 member this.Event1 = event1.Publish

 member this.TestEvent(arg) =
 event1.Trigger(this, arg)

let classWithEvent = new MyClassWithCLIEvent()
classWithEvent.Event1.Add(fun (sender, arg) ->
 printfn "Event1 occurred! Object data: %s" arg)

classWithEvent.TestEvent("Hello World!")

System.Console.ReadLine() |> ignore

Event1 occurred! Object data: Hello World!

type MyType() =
 let myEvent = new Event<_>()

 member this.AddHandlers() =
 Event.add (fun string1 -> printfn "%s" string1) myEvent.Publish
 Event.add (fun string1 -> printfn "Given a value: %s" string1) myEvent.Publish

 member this.Trigger(message) =
 myEvent.Trigger(message)

let myMyType = MyType()
myMyType.AddHandlers()
myMyType.Trigger("Event occurred.")

Event occurred.
Given a value: Event occurred.

Processing Event Streams

let form = new Form(Text = "F# Windows Form",
 Visible = true,
 TopMost = true)
form.MouseMove
 |> Event.filter (fun evArgs -> evArgs.X > 100 && evArgs.Y > 100)
 |> Event.add (fun evArgs ->
 form.BackColor <- System.Drawing.Color.FromArgb(
 evArgs.X, evArgs.Y, evArgs.X ^^^ evArgs.Y))

Implementing an Interface Event

The output is as follows.

The additional functionality provided by the Event module is illustrated here. The following code example illustrates the basic use of Event.create to
create an event and a trigger method, add two event handlers in the form of lambda expressions, and then trigger the event to execute both lambda
expressions.

The output of the previous code is as follows.

Instead of just adding an event handler for an event by using the Event.add function, you can use the functions in the Event module to process streams
of events in highly customized ways. To do this, you use the forward pipe (|>) together with the event as the first value in a series of function calls, and
the Event module functions as subsequent function calls.

The following code example shows how to set up an event for which the handler is only called under certain conditions.

The Observable module contains similar functions that operate on observable objects. Observable objects are similar to events but only actively
subscribe to events if they themselves are being subscribed to.

As you develop UI components, you often start by creating a new form or a new control that inherits from an existing form or control. Events are
frequently defined on an interface, and, in that case, you must implement the interface to implement the event. The
System.ComponentModel.INotifyPropertyChanged interface defines a single System.ComponentModel.INotifyPropertyChanged.PropertyChanged event. The

following code illustrates how to implement the event that this inherited interface defined:

https://msdn.microsoft.com/library/10670d3b-8d47-4f6e-b8df-ebc6f64ef4fd
https://msdn.microsoft.com/library/16b8610b-b30a-4df7-aa99-d9d352276227

module CustomForm

open System.Windows.Forms
open System.ComponentModel

type AppForm() as this =
 inherit Form()

 // Define the propertyChanged event.
 let propertyChanged = Event<PropertyChangedEventHandler, PropertyChangedEventArgs>()
 let mutable underlyingValue = "text0"

 // Set up a click event to change the properties.
 do
 this.Click |> Event.add(fun evArgs -> this.Property1 <- "text2"
 this.Property2 <- "text3")

 // This property does not have the property-changed event set.
 member val Property1 : string = "text" with get, set

 // This property has the property-changed event set.
 member this.Property2
 with get() = underlyingValue
 and set(newValue) =
 underlyingValue <- newValue
 propertyChanged.Trigger(this, new PropertyChangedEventArgs("Property2"))

 // Expose the PropertyChanged event as a first class .NET event.
 [<CLIEvent>]
 member this.PropertyChanged = propertyChanged.Publish

 // Define the add and remove methods to implement this interface.
 interface INotifyPropertyChanged with
 member this.add_PropertyChanged(handler) = propertyChanged.Publish.AddHandler(handler)
 member this.remove_PropertyChanged(handler) = propertyChanged.Publish.RemoveHandler(handler)

 // This is the event-handler method.
 member this.OnPropertyChanged(args : PropertyChangedEventArgs) =
 let newProperty = this.GetType().GetProperty(args.PropertyName)
 let newValue = newProperty.GetValue(this :> obj) :?> string
 printfn "Property %s changed its value to %s" args.PropertyName newValue

// Create a form, hook up the event handler, and start the application.
let appForm = new AppForm()
let inpc = appForm :> INotifyPropertyChanged
inpc.PropertyChanged.Add(appForm.OnPropertyChanged)
Application.Run(appForm)

If you want to hook up the event in the constructor, the code is a bit more complicated because the event hookup must be in a then block in an
additional constructor, as in the following example:

module CustomForm

open System.Windows.Forms
open System.ComponentModel

// Create a private constructor with a dummy argument so that the public
// constructor can have no arguments.
type AppForm private (dummy) as this =
 inherit Form()

 // Define the propertyChanged event.
 let propertyChanged = Event<PropertyChangedEventHandler, PropertyChangedEventArgs>()
 let mutable underlyingValue = "text0"

 // Set up a click event to change the properties.
 do
 this.Click |> Event.add(fun evArgs -> this.Property1 <- "text2"
 this.Property2 <- "text3")

 // This property does not have the property changed event set.
 member val Property1 : string = "text" with get, set

 // This property has the property changed event set.
 member this.Property2
 with get() = underlyingValue
 and set(newValue) =
 underlyingValue <- newValue
 propertyChanged.Trigger(this, new PropertyChangedEventArgs("Property2"))

 [<CLIEvent>]
 member this.PropertyChanged = propertyChanged.Publish

 // Define the add and remove methods to implement this interface.
 interface INotifyPropertyChanged with
 member this.add_PropertyChanged(handler) = this.PropertyChanged.AddHandler(handler)
 member this.remove_PropertyChanged(handler) = this.PropertyChanged.RemoveHandler(handler)

 // This is the event handler method.
 member this.OnPropertyChanged(args : PropertyChangedEventArgs) =
 let newProperty = this.GetType().GetProperty(args.PropertyName)
 let newValue = newProperty.GetValue(this :> obj) :?> string
 printfn "Property %s changed its value to %s" args.PropertyName newValue

 new() as this =
 new AppForm(0)
 then
 let inpc = this :> INotifyPropertyChanged
 inpc.PropertyChanged.Add(this.OnPropertyChanged)

// Create a form, hook up the event handler, and start the application.
let appForm = new AppForm()
Application.Run(appForm)

See Also
Members

Handling and Raising Events

Lambda Expressions: The fun Keyword

Control.Event Module

Control.Event<'T> Class

Control.Event<'Delegate,'Args> Class

https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event-module-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event%5b%27t%5d-class-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event%5b%27delegate%2c%27args%5d-class-%5bfsharp%5d

Explicit Fields: The val Keyword
5/4/2018 • 4 minutes to read • Edit Online

Syntax
val [mutable] [access-modifier] field-name : type-name

Remarks

WARNINGWARNING

type MyType() =
 let mutable myInt1 = 10
 [<DefaultValue>] val mutable myInt2 : int
 [<DefaultValue>] val mutable myString : string
 member this.SetValsAndPrint(i: int, str: string) =
 myInt1 <- i
 this.myInt2 <- i + 1
 this.myString <- str
 printfn "%d %d %s" myInt1 (this.myInt2) (this.myString)

let myObject = new MyType()
myObject.SetValsAndPrint(11, "abc")
// The following line is not allowed because let bindings are private.
// myObject.myInt1 <- 20
myObject.myInt2 <- 30
myObject.myString <- "def"

printfn "%d %s" (myObject.myInt2) (myObject.myString)

11 12 abc
30 def

The val keyword is used to declare a location to store a value in a class or structure type, without initializing it. Storage locations declared in this
manner are called explicit fields. Another use of the val keyword is in conjunction with the member keyword to declare an auto-implemented property.
For more information on auto-implemented properties, see Properties.

The usual way to define fields in a class or structure type is to use a let binding. However, let bindings must be initialized as part of the class
constructor, which is not always possible, necessary, or desirable. You can use the val keyword when you want a field that is uninitialized.

Explicit fields can be static or non-static. The access-modifier can be public , private , or internal . By default, explicit fields are public. This differs
from let bindings in classes, which are always private.

The DefaultValue attribute is required on explicit fields in class types that have a primary constructor. This attribute specifies that the field is initialized to
zero. The type of the field must support zero-initialization. A type supports zero-initialization if it is one of the following:

A primitive type that has a zero value.

A type that supports a null value, either as a normal value, as an abnormal value, or as a representation of a value. This includes classes, tuples,
records, functions, interfaces, .NET reference types, the unit type, and discriminated union types.

A .NET value type.

A structure whose fields all support a default zero value.

For example, an immutable field called someField has a backing field in the .NET compiled representation with the name someField@ , and you access
the stored value using a property named someField .

For a mutable field, the .NET compiled representation is a .NET field.

Note The .NET Framework namespace System.ComponentModel contains an attribute that has the same name. For information about this attribute, see
System.ComponentModel.DefaultValueAttribute .

The following code shows the use of explicit fields and, for comparison, a let binding in a class that has a primary constructor. Note that the let -
bound field myInt1 is private. When the let -bound field myInt1 is referenced from a member method, the self identifier this is not required. But
when you are referencing the explicit fields myInt2 and myString , the self identifier is required.

The output is as follows:

The following code shows the use of explicit fields in a class that does not have a primary constructor. In this case, the DefaultValue attribute is not

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/members/explicit-fields-the-val-keyword.md
https://msdn.microsoft.com/library/a3a3307b-8c05-441e-b109-245511614d58

type MyClass =
 val a : int
 val b : int
 // The following version of the constructor is an error
 // because b is not initialized.
 // new (a0, b0) = { a = a0; }
 // The following version is acceptable because all fields are initialized.
 new(a0, b0) = { a = a0; b = b0; }

let myClassObj = new MyClass(35, 22)
printfn "%d %d" (myClassObj.a) (myClassObj.b)

type MyStruct =
 struct
 val mutable myInt : int
 val mutable myString : string
 end

let mutable myStructObj = new MyStruct()
myStructObj.myInt <- 11
myStructObj.myString <- "xyz"

printfn "%d %s" (myStructObj.myInt) (myStructObj.myString)

See Also

required, but all the fields must be initialized in the constructors that are defined for the type.

The output is 35 22 .

The following code shows the use of explicit fields in a structure. Because a structure is a value type, it automatically has a default constructor that sets
the values of its fields to zero. Therefore, the DefaultValue attribute is not required.

The output is 11 xyz .

Explicit fields are not intended for routine use. In general, when possible you should use a let binding in a class instead of an explicit field. Explicit
fields are useful in certain interoperability scenarios, such as when you need to define a structure that will be used in a platform invoke call to a native
API, or in COM interop scenarios. For more information, see External Functions. Another situation in which an explicit field might be necessary is when
you are working with an F# code generator which emits classes without a primary constructor. Explicit fields are also useful for thread-static variables or
similar constructs. For more information, see System.ThreadStaticAttribute .

When the keywords member val appear together in a type definition, it is a definition of an automatically implemented property. For more information,
see Properties.

Properties

Members

let Bindings in Classes

Type extensions
7/21/2018 • 5 minutes to read • Edit Online

Syntax
// Intrinsic and optional extensions
type typename with
 member self-identifier.member-name =
 body
 ...

// Extension methods
open System.Runtime.CompilerServices

[<Extension>]
type Extensions() =
 [static] member self-identifier.extension-name (ty: typename, [args]) =
 body
 ...

Intrinsic type extensions

namespace Example

type Variant =
 | Num of int
 | Str of string

module Variant =
 let print v =
 match v with
 | Num n -> printf "Num %d" n
 | Str s -> printf "Str %s" s

// Add a member to Variant as an extension
type Variant with
 member x.Print() = Variant.print x

Optional type extensions

Type extensions (also called augmentations) are a family of features that let you add new members to a previously defined object type. The three
features are:

Intrinsic type extensions
Optional type extensions
Extension methods

Each can be used in different scenarios and has different tradeoffs.

An intrinsic type extension is a type extension that extends a user-defined type.

Intrinsic type extensions must be defined in the same file and in the same namespace or module as the type they're extending. Any other definition will
result in them being optional type extensions.

Intrinsic type extensions are sometimes a cleaner way to separate functionality from the type declaration. The following example shows how to define
an intrinsic type extension:

Using a type extension allows you to separate each of the following:

The declaration of a Variant type
Functionality to print the Variant class depending on its "shape"
A way to access the printing functionality with object-style . -notation

This is an alternative to defining everything as a member on Variant . Although it is not an inherently better approach, it can be a cleaner
representation of functionality in some situations.

Intrinsic type extensions are compiled as members of the type they augment, and appear on the type when the type is examined by reflection.

An optional type extension is an extension that appears outside the original module, namespace, or assembly of the type being extended.

Optional type extensions are useful for extending a type that you have not defined yourself. For example:

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/type-extensions.md

module Extensions

open System.Collections.Generic

type IEnumerable<'T> with
 /// Repeat each element of the sequence n times
 member xs.RepeatElements(n: int) =
 seq {
 for x in xs do
 for i in 1 .. n do
 yield x
 }

Generic limitation of intrinsic and optional type extensions

open System.Collections.Generic

// NOT POSSIBLE AND FAILS TO COMPILE!
//
// The member 'Sum' has a different requirement on 'T than the type IEnumerable<'T>
type IEnumerable<'T> with
 member this.Sum() = Seq.sum this

Extension methods

namespace Extensions

open System.Runtime.CompilerServices

[<Extension>]
type IEnumerableExtensions() =
 [<Extension>]
 static member inline Sum(xs: IEnumerable<'T>) = Seq.sum xs

Other remarks

You can now access RepeatElements as if it's a member of IEnumerable<T> as long as the Extensions module is opened in the scope that you are
working in.

Optional extensions do not appear on the extended type when examined by reflection. Optional extensions must be in modules, and they're only in
scope when the module that contains the extension is open or is otherwise in scope.

Optional extension members are compiled to static members for which the object instance is passed implicitly as the first parameter. However, they act
as if they're instance members or static members according to how they're declared.

It's possible to declare a type extension on a generic type where the type variable is constrained. The requirement is that the constraint of the extension
declaration matches the constraint of the declared type.

However, even when constraints are matched between a declared type and a type extension, it's possible for a constraint to be inferred by the body of an
extended member that imposes a different requirement on the type parameter than the declared type. For example:

There is no way to get this code to work with an optional type extension:

As is, the Sum member has a different constraint on 'T (static member get_Zero and static member (+)) than what the type extension defines.
Modifying the type extension to have the same constraint as Sum will no longer match the defined constraint on IEnumerable<'T> .
Making changing the member to member inline Sum will give an error that type constraints are mismatched

What is desired are static methods that "float in space" and can be presented as if they're extending a type. This is where extension methods become
necessary.

Finally, extension methods (sometimes called "C# style extension members") can be declared in F# as a static member method on a class.

Extension methods are useful for when you wish to define extensions on a generic type that will constrain the type variable. For example:

When used, this code will make it appear as if Sum is defined on IEnumerable<T>, so long as Extensions has been opened or is in scope.

Type extensions also have the following attributes:

Any type that can be accessed can be extended.
Intrinsic and optional type extensions can define any member type, not just methods. So extension properties are also possible, for example.
The self-identifier token in the syntax represents the instance of the type being invoked, just like ordinary members.
Extended members can be static or instance members.
Type variables on a type extension must match the constraints of the declared type.

The following limitations also exist for type extensions:

https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1

See also

Type extensions do not support virtual or abstract methods.
Type extensions do not support override methods as augmentations.
Type extensions do not support Statically Resolved Type Parameters.
Optional Type extensions do not support constructors as augmentations.
Type extensions cannot be defined on type abbreviations.
Type extensions are not valid for byref<'T> (though they can be declared).
Type extensions are not valid for attributes (though they can be declared).
You can define extensions that overload other methods of the same name, but the F# compiler gives preference to non-extension methods if there is
an ambiguous call.

Finally, if multiple intrinsic type extensions exist for one type, all members must be unique. For optional type extensions, members in different type
extensions to the same type can have the same names. Ambiguity errors occur only if client code opens two different scopes that define the same
member names.

F# Language Reference

Members

Parameters and Arguments
5/4/2018 • 9 minutes to read • Edit Online

Parameters and Arguments

Parameter Patterns

// Tuple form.
member this.SomeMethod(param1, param2) = ...
// Curried form.
let function1 param1 param2 = ...

let function2 param1 (param2a, param2b) param3 = ...

let makeList _ = [for i in 1 .. 100 -> i * i]
// The arguments 100 and 200 are ignored.
let list1 = makeList 100
let list2 = makeList 200

[<EntryPoint>]
let main _ =
 printfn "Entry point!"
 0

type Slice = Slice of int * int * string

let GetSubstring1 (Slice(p0, p1, text)) =
 printfn "Data begins at %d and ends at %d in string %s" p0 p1 text
 text.[p0..p1]

let substring = GetSubstring1 (Slice(0, 4, "Et tu, Brute?"))
printfn "Substring: %s" substring

This topic describes language support for defining parameters and passing arguments to functions, methods, and properties. It includes information
about how to pass by reference, and how to define and use methods that can take a variable number of arguments.

The term parameter is used to describe the names for values that are expected to be supplied. The term argument is used for the values provided for
each parameter.

Parameters can be specified in tuple or curried form, or in some combination of the two. You can pass arguments by using an explicit parameter name.
Parameters of methods can be specified as optional and given a default value.

Parameters supplied to functions and methods are, in general, patterns separated by spaces. This means that, in principle, any of the patterns described
in Match Expressions can be used in a parameter list for a function or member.

Methods usually use the tuple form of passing arguments. This achieves a clearer result from the perspective of other .NET languages because the tuple
form matches the way arguments are passed in .NET methods.

The curried form is most often used with functions created by using let bindings.

The following pseudocode shows examples of tuple and curried arguments.

Combined forms are possible when some arguments are in tuples and some are not.

Other patterns can also be used in parameter lists, but if the parameter pattern does not match all possible inputs, there might be an incomplete match
at run time. The exception MatchFailureException is generated when the value of an argument does not match the patterns specified in the parameter
list. The compiler issues a warning when a parameter pattern allows for incomplete matches. At least one other pattern is commonly useful for
parameter lists, and that is the wildcard pattern. You use the wildcard pattern in a parameter list when you simply want to ignore any arguments that are
supplied. The following code illustrates the use of the wildcard pattern in an argument list.

The wildcard pattern can be useful whenever you do not need the arguments passed in, such as in the main entry point to a program, when you are not
interested in the command-line arguments that are normally supplied as a string array, as in the following code.

Other patterns that are sometimes used in arguments are the as pattern, and identifier patterns associated with discriminated unions and active
patterns. You can use the single-case discriminated union pattern as follows.

The output is as follows.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/parameters-and-arguments.md

Data begins at 0 and ends at 4 in string Et tu, Brute?
Et tu

type Point = { x : float; y : float }

let (| Polar |) { x = x; y = y} =
 (sqrt (x*x + y*y), System.Math.Atan (y/ x))

let radius (Polar(r, _)) = r
let angle (Polar(_, theta)) = theta

let GetSubstring2 (Slice(p0, p1, text) as s) = s

let isNil = function [] -> true | _::_ -> false

let sum [a; b; c;] = a + b + c

Named Arguments

type SpeedingTicket() =
 member this.GetMPHOver(speed: int, limit: int) = speed - limit

let CalculateFine (ticket : SpeedingTicket) =
 let delta = ticket.GetMPHOver(limit = 55, speed = 70)
 if delta < 20 then 50.0 else 100.0

let ticket1 : SpeedingTicket = SpeedingTicket()
printfn "%f" (CalculateFine ticket1)

Active patterns can be useful as parameters, for example, when transforming an argument into a desired format, as in the following example:

You can use the as pattern to store a matched value as a local value, as is shown in the following line of code.

Another pattern that is used occasionally is a function that leaves the last argument unnamed by providing, as the body of the function, a lambda
expression that immediately performs a pattern match on the implicit argument. An example of this is the following line of code.

This code defines a function that takes a generic list and returns true if the list is empty, and false otherwise. The use of such techniques can make
code more difficult to read.

Occasionally, patterns that involve incomplete matches are useful, for example, if you know that the lists in your program have only three elements, you
might use a pattern like the following in a parameter list.

The use of patterns that have incomplete matches is best reserved for quick prototyping and other temporary uses. The compiler will issue a warning
for such code. Such patterns cannot cover the general case of all possible inputs and therefore are not suitable for component APIs.

Arguments for methods can be specified by position in a comma-separated argument list, or they can be passed to a method explicitly by providing the
name, followed by an equal sign and the value to be passed in. If specified by providing the name, they can appear in a different order from that used in
the declaration.

Named arguments can make code more readable and more adaptable to certain types of changes in the API, such as a reordering of method
parameters.

Named arguments are allowed only for methods, not for let -bound functions, function values, or lambda expressions.

The following code example demonstrates the use of named arguments.

In a call to a class constructor, you can set the values of properties of the class by using a syntax similar to that of named arguments. The following
example shows this syntax.

 type Account() =
 let mutable balance = 0.0
 let mutable number = 0
 let mutable firstName = ""
 let mutable lastName = ""
 member this.AccountNumber
 with get() = number
 and set(value) = number <- value
 member this.FirstName
 with get() = firstName
 and set(value) = firstName <- value
 member this.LastName
 with get() = lastName
 and set(value) = lastName <- value
 member this.Balance
 with get() = balance
 and set(value) = balance <- value
 member this.Deposit(amount: float) = this.Balance <- this.Balance + amount
 member this.Withdraw(amount: float) = this.Balance <- this.Balance - amount

let account1 = new Account(AccountNumber=8782108,
 FirstName="Darren", LastName="Parker",
 Balance=1543.33)

Optional Parameters

type DuplexType =
 | Full
 | Half

type Connection(?rate0 : int, ?duplex0 : DuplexType, ?parity0 : bool) =
 let duplex = defaultArg duplex0 Full
 let parity = defaultArg parity0 false
 let mutable rate = match rate0 with
 | Some rate1 -> rate1
 | None -> match duplex with
 | Full -> 9600
 | Half -> 4800
 do printfn "Baud Rate: %d Duplex: %A Parity: %b" rate duplex parity

let conn1 = Connection(duplex0 = Full)
let conn2 = Connection(duplex0 = Half)
let conn3 = Connection(300, Half, true)

Baud Rate: 9600 Duplex: Full Parity: false
Baud Rate: 4800 Duplex: Half Parity: false
Baud Rate: 300 Duplex: Half Parity: true

Passing by Reference

For more information, see Constructors (F#).

You can specify an optional parameter for a method by using a question mark in front of the parameter name. Optional parameters are interpreted as
the F# option type, so you can query them in the regular way that option types are queried, by using a match expression with Some and None .
Optional parameters are permitted only on members, not on functions created by using let bindings.

You can also use a function defaultArg , which sets a default value of an optional argument. The defaultArg function takes the optional parameter as
the first argument and the default value as the second.

The following example illustrates the use of optional parameters.

The output is as follows.

F# supports the byref keyword, which specifies that a parameter is passed by reference. This means that any changes to the value are retained after
the execution of the function. Values provided to a byref parameter must be mutable. Alternatively, you can pass reference cells of the appropriate
type.

Passing by reference in .NET languages evolved as a way to return more than one value from a function. In F#, you can return a tuple for this purpose,
or use a mutable reference cell as a parameter. The byref parameter is mainly provided for interoperability with .NET libraries.

The following examples illustrate the use of the byref keyword. Note that when you use a reference cell as a parameter, you must create a reference
cell as a named value and use that as the parameter, not just add the ref operator as shown in the first call to Increment in the following code. Because
creating a reference cell creates a copy of the underlying value, the first call just increments a temporary value.

https://msdn.microsoft.com/library/2cd0ed07-d214-4125-8317-4f288af99f05

type Incrementor(z) =
 member this.Increment(i : int byref) =
 i <- i + z

let incrementor = new Incrementor(1)
let mutable x = 10
// Not recommended: Does not actually increment the variable.
incrementor.Increment(ref x)
// Prints 10.
printfn "%d" x

let mutable y = 10
incrementor.Increment(&y)
// Prints 11.
printfn "%d" y

let refInt = ref 10
incrementor.Increment(refInt)
// Prints 11.
printfn "%d" !refInt

// TryParse has a second parameter that is an out parameter
// of type System.DateTime.
let (b, dt) = System.DateTime.TryParse("12-20-04 12:21:00")

printfn "%b %A" b dt

// The same call, using an address of operator.
let mutable dt2 = System.DateTime.Now
let b2 = System.DateTime.TryParse("12-20-04 12:21:00", &dt2)

printfn "%b %A" b2 dt2

Parameter Arrays

open System

type X() =
 member this.F([<ParamArray>] args: Object[]) =
 for arg in args do
 printfn "%A" arg

[<EntryPoint>]
let main _ =
 // call a .NET method that takes a parameter array, passing values of various types
 Console.WriteLine("a {0} {1} {2} {3} {4}", 1, 10.0, "Hello world", 1u, true)

 let xobj = new X()
 // call an F# method that takes a parameter array, passing values of various types
 xobj.F("a", 1, 10.0, "Hello world", 1u, true)
 0

a 1 10 Hello world 1 True
"a"
1
10.0
"Hello world"
1u
true

You can use a tuple as a return value to store any out parameters in .NET library methods. Alternatively, you can treat the out parameter as a byref

parameter. The following code example illustrates both ways.

Occasionally it is necessary to define a function that takes an arbitrary number of parameters of heterogeneous type. It would not be practical to create
all the possible overloaded methods to account for all the types that could be used. The .NET implementations provide support for such methods
through the parameter array feature. A method that takes a parameter array in its signature can be provided with an arbitrary number of parameters.
The parameters are put into an array. The type of the array elements determines the parameter types that can be passed to the function. If you define
the parameter array with System.Object as the element type, then client code can pass values of any type.

In F#, parameter arrays can only be defined in methods. They cannot be used in standalone functions or functions that are defined in modules.

You define a parameter array by using the ParamArray attribute. The ParamArray attribute can only be applied to the last parameter.

The following code illustrates both calling a .NET method that takes a parameter array and the definition of a type in F# that has a method that takes a
parameter array.

When run in a project, the output of the previous code is as follows:

See Also
Members

Operator Overloading
5/4/2018 • 7 minutes to read • Edit Online

Syntax
// Overloading an operator as a class or record member.
static member (operator-symbols) (parameter-list) =
 method-body
// Overloading an operator at the global level
let [inline] (operator-symbols) parameter-list = function-body

Remarks

static member (~-) (v : Vector)

type Vector(x: float, y : float) =
 member this.x = x
 member this.y = y
 static member (~-) (v : Vector) =
 Vector(-1.0 * v.x, -1.0 * v.y)
 static member (*) (v : Vector, a) =
 Vector(a * v.x, a * v.y)
 static member (*) (a, v: Vector) =
 Vector(a * v.x, a * v.y)
 override this.ToString() =
 this.x.ToString() + " " + this.y.ToString()

let v1 = Vector(1.0, 2.0)

let v2 = v1 * 2.0
let v3 = 2.0 * v1

let v4 = - v2

printfn "%s" (v1.ToString())
printfn "%s" (v2.ToString())
printfn "%s" (v3.ToString())
printfn "%s" (v4.ToString())

Creating New Operators

Overloaded Operator Names

This topic describes how to overload arithmetic operators in a class or record type, and at the global level.

In the previous syntax, the operator-symbol is one of + , - , * , / , = , and so on. The parameter-list specifies the operands in the order they appear in
the usual syntax for that operator. The method-body constructs the resulting value.

Operator overloads for operators must be static. Operator overloads for unary operators, such as + and - , must use a tilde (~) in the operator-

symbol to indicate that the operator is a unary operator and not a binary operator, as shown in the following declaration.

The following code illustrates a vector class that has just two operators, one for unary minus and one for multiplication by a scalar. In the example, two
overloads for scalar multiplication are needed because the operator must work regardless of the order in which the vector and scalar appear.

You can overload all the standard operators, but you can also create new operators out of sequences of certain characters. Allowed operator characters
are ! , % , & , * , + , - , . , / , < , = , > , ? , @ , ^ , | , and ~ . The ~ character has the special meaning of making an operator unary, and is not
part of the operator character sequence. Not all operators can be made unary.

Depending on the exact character sequence you use, your operator will have a certain precedence and associativity. Associativity can be either left to
right or right to left and is used whenever operators of the same level of precedence appear in sequence without parentheses.

The operator character . does not affect precedence, so that, for example, if you want to define your own version of multiplication that has the same
precedence and associativity as ordinary multiplication, you could create operators such as .* .

Only the operators ? and ?<- may start with ? .

A table that shows the precedence of all operators in F# can be found in Symbol and Operator Reference.

When the F# compiler compiles an operator expression, it generates a method that has a compiler-generated name for that operator. This is the name
that appears in the Microsoft intermediate language (MSIL) for the method, and also in reflection and IntelliSense. You do not normally need to use
these names in F# code.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/operator-overloading.md

OPERATOR GENERATED NAME

[] op_Nil

:: op_Cons

+ op_Addition

- op_Subtraction

* op_Multiply

/ op_Division

@ op_Append

^ op_Concatenate

% op_Modulus

&&& op_BitwiseAnd

||| op_BitwiseOr

^^^ op_ExclusiveOr

<<< op_LeftShift

~~~ op_LogicalNot

>>> op_RightShift

~+ op_UnaryPlus

~- op_UnaryNegation

= op_Equality

<= op_LessThanOrEqual

>= op_GreaterThanOrEqual

< op_LessThan

> op_GreaterThan

? op_Dynamic

?<- op_DynamicAssignment

|> op_PipeRight

<| op_PipeLeft

! op_Dereference

>> op_ComposeRight

<< op_ComposeLeft

<@ @> op_Quotation

<@@ @@> op_QuotationUntyped

The following table shows the standard operators and their corresponding generated names.



+= op_AdditionAssignment

-= op_SubtractionAssignment

*= op_MultiplyAssignment

/= op_DivisionAssignment

.. op_Range

.. .. op_RangeStep

OPERATOR GENERATED NAME

OPERATOR CHARACTER NAME

> Greater

< Less

+ Plus

- Minus

* Multiply

/ Divide

= Equals

~ Twiddle

% Percent

. Dot

& Amp

| Bar

@ At

^ Hat

! Bang

? Qmark

( LParen

, Comma

) RParen

[ LBrack

] RBrack

Prefix and Infix Operators

Other combinations of operator characters that are not listed here can be used as operators and have names that are made up by concatenating names
for the individual characters from the following table. For example, +! becomes op_PlusBang .

Prefix operators are expected to be placed in front of an operand or operands, much like a function. Infix operators are expected to be placed between
the two operands.

Only certain operators can be used as prefix operators. Some operators are always prefix operators, others can be infix or prefix, and the rest are always



Example

infix operators. Operators that begin with ! , except != , and the operator ~ , or repeated sequences of ~ , are always prefix operators. The operators 
+ , - , +. , -. , & , && , % , and %%  can be prefix operators or infix operators. You distinguish the prefix version of these operators from the infix

version by adding a ~  at the beginning of a prefix operator when it is defined. The ~  is not used when you use the operator, only when it is defined.

The following code illustrates the use of operator overloading to implement a fraction type. A fraction is represented by a numerator and a denominator.
The function hcf  is used to determine the highest common factor, which is used to reduce fractions.



// Determine the highest common factor between
// two positive integers, a helper for reducing
// fractions.
let rec hcf a b =
  if a = 0u then b
  elif a<b then hcf a (b - a)
  else hcf (a - b) b

// type Fraction: represents a positive fraction
// (positive rational number).
type Fraction =
   {
      // n: Numerator of fraction.
      n : uint32
      // d: Denominator of fraction.
      d : uint32
   }

   // Produce a string representation. If the
   // denominator is "1", do not display it.
   override this.ToString() =
      if (this.d = 1u)
        then this.n.ToString()
        else this.n.ToString() + "/" + this.d.ToString()

   // Add two fractions.
   static member (+) (f1 : Fraction, f2 : Fraction) =
      let nTemp = f1.n * f2.d + f2.n * f1.d
      let dTemp = f1.d * f2.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // Adds a fraction and a positive integer.
   static member (+) (f1: Fraction, i : uint32) =
      let nTemp = f1.n + i * f1.d
      let dTemp = f1.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // Adds a positive integer and a fraction.
   static member (+) (i : uint32, f2: Fraction) =
      let nTemp = f2.n + i * f2.d
      let dTemp = f2.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // Subtract one fraction from another.
   static member (-) (f1 : Fraction, f2 : Fraction) =
      if (f2.n * f1.d > f1.n * f2.d)
        then failwith "This operation results in a negative number, which is not supported."
      let nTemp = f1.n * f2.d - f2.n * f1.d
      let dTemp = f1.d * f2.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // Multiply two fractions.
   static member (*) (f1 : Fraction, f2 : Fraction) =
      let nTemp = f1.n * f2.n
      let dTemp = f1.d * f2.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // Divide two fractions.
   static member (/) (f1 : Fraction, f2 : Fraction) =
      let nTemp = f1.n * f2.d
      let dTemp = f2.n * f1.d
      let hcfTemp = hcf nTemp dTemp
      { n = nTemp / hcfTemp; d = dTemp / hcfTemp }

   // A full set of operators can be quite lengthy. For example,
   // consider operators that support other integral data types,
   // with fractions, on the left side and the right side for each.
   // Also consider implementing unary operators.

let fraction1 = { n = 3u; d = 4u }
let fraction2 = { n = 1u; d = 2u }
let result1 = fraction1 + fraction2
let result2 = fraction1 - fraction2
let result3 = fraction1 * fraction2
let result4 = fraction1 / fraction2
let result5 = fraction1 + 1u
printfn "%s + %s = %s" (fraction1.ToString()) (fraction2.ToString()) (result1.ToString())
printfn "%s - %s = %s" (fraction1.ToString()) (fraction2.ToString()) (result2.ToString())
printfn "%s * %s = %s" (fraction1.ToString()) (fraction2.ToString()) (result3.ToString())
printfn "%s / %s = %s" (fraction1.ToString()) (fraction2.ToString()) (result4.ToString())
printfn "%s + 1 = %s" (fraction1.ToString()) (result5.ToString())



3/4 + 1/2 = 5/4
3/4 - 1/2 = 1/4
3/4 * 1/2 = 3/8
3/4 / 1/2 = 3/2
3/4 + 1 = 7/4

Operators at the Global Level

let inline (+?) (x: int) (y: int) = x + 2*y
printf "%d" (10 +? 1)

See Also

Output:

You can also define operators at the global level. The following code defines an operator +? .

The output of the above code is 12 .

You can redefine the regular arithmetic operators in this manner because the scoping rules for F# dictate that newly defined operators take precedence
over the built-in operators.

The keyword inline  is often used with global operators, which are often small functions that are best integrated into the calling code. Making operator
functions inline also enables them to work with statically resolved type parameters to produce statically resolved generic code. For more information,
see Inline Functions and Statically Resolved Type Parameters.

Members



   

Flexible Types
5/4/2018 • 2 minutes to read • Edit Online

Syntax
#type

Remarks

#SomeType

'T when 'T :> SomeType

let iterate1 (f : unit -> seq<int>) =
    for e in f() do printfn "%d" e
let iterate2 (f : unit -> #seq<int>) =
    for e in f() do printfn "%d" e

// Passing a function that takes a list requires a cast.
iterate1 (fun () -> [1] :> seq<int>)

// Passing a function that takes a list to the version that specifies a
// flexible type as the return value is OK as is.
iterate2 (fun () -> [1])

val concat: sequences:seq<#seq<'T>> -> seq<'T>

A flexible type annotation indicates that a parameter, variable, or value has a type that is compatible with a specified type, where compatibility is
determined by position in an object-oriented hierarchy of classes or interfaces. Flexible types are useful specifically when the automatic conversion to
types higher in the type hierarchy does not occur but you still want to enable your functionality to work with any type in the hierarchy or any type that
implements an interface.

In the previous syntax, type represents a base type or an interface.

A flexible type is equivalent to a generic type that has a constraint that limits the allowed types to types that are compatible with the base or interface
type. That is, the following two lines of code are equivalent.

Flexible types are useful in several types of situations. For example, when you have a higher order function (a function that takes a function as an
argument), it is often useful to have the function return a flexible type. In the following example, the use of a flexible type with a sequence argument in 
iterate2  enables the higher order function to work with functions that generate sequences, arrays, lists, and any other enumerable type.

Consider the following two functions, one of which returns a sequence, the other of which returns a flexible type.

As another example, consider the Seq.concat library function:

You can pass any of the following enumerable sequences to this function:

A list of lists
A list of arrays
An array of lists
An array of sequences
Any other combination of enumerable sequences

The following code uses Seq.concat  to demonstrate the scenarios that you can support by using flexible types.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/flexible-types.md
https://msdn.microsoft.com/library/2eeb69a9-fc2f-4b7d-8dee-101fa2b00712


let list1 = [1;2;3]
let list2 = [4;5;6]
let list3 = [7;8;9]

let concat1 = Seq.concat [ list1; list2; list3]
printfn "%A" concat1

let array1 = [|1;2;3|]
let array2 = [|4;5;6|]
let array3 = [|7;8;9|]

let concat2 = Seq.concat [ array1; array2; array3 ]
printfn "%A" concat2

let concat3 = Seq.concat [| list1; list2; list3 |]
printfn "%A" concat3

let concat4 = Seq.concat [| array1; array2; array3 |]
printfn "%A" concat4

let seq1 = { 1 .. 3 }
let seq2 = { 4 .. 6 }
let seq3 = { 7 .. 9 }

let concat5 = Seq.concat [| seq1; seq2; seq3 |]

printfn "%A" concat5

seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]

See Also

The output is as follows.

In F#, as in other object-oriented languages, there are contexts in which derived types or types that implement interfaces are automatically converted to
a base type or interface type. These automatic conversions occur in direct arguments, but not when the type is in a subordinate position, as part of a
more complex type such as a return type of a function type, or as a type argument. Thus, the flexible type notation is primarily useful when the type you
are applying it to is part of a more complex type.

F# Language Reference

Generics



    

Delegates
5/4/2018 • 3 minutes to read • Edit Online

Syntax
type delegate-typename = delegate of type1 -> type2

Remarks

type Test1() =
  static member add(a : int, b : int) =
     a + b
  static member add2 (a : int) (b : int) =
     a + b

  member x.Add(a : int, b : int) =
     a + b
  member x.Add2 (a : int) (b : int) =
     a + b

// Delegate1 works with tuple arguments.
type Delegate1 = delegate of (int * int) -> int
// Delegate2 works with curried arguments.
type Delegate2 = delegate of int * int -> int

let InvokeDelegate1 (dlg : Delegate1) (a : int) (b: int) =
   dlg.Invoke(a, b)
let InvokeDelegate2 (dlg : Delegate2) (a : int) (b: int) =
   dlg.Invoke(a, b)

// For static methods, use the class name, the dot operator, and the
// name of the static method.
let del1 : Delegate1 = new Delegate1( Test1.add )
let del2 : Delegate2 = new Delegate2( Test1.add2 )

let testObject = Test1()

// For instance methods, use the instance value name, the dot operator, and the instance method name.
let del3 : Delegate1 = new Delegate1( testObject.Add )
let del4 : Delegate2 = new Delegate2( testObject.Add2 )

for (a, b) in [ (100, 200); (10, 20) ] do
  printfn "%d + %d = %d" a b (InvokeDelegate1 del1 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate2 del2 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate1 del3 a b)
  printfn "%d + %d = %d" a b (InvokeDelegate2 del4 a b)

A delegate represents a function call as an object. In F#, you ordinarily should use function values to represent functions as first-class values; however,
delegates are used in the .NET Framework and so are needed when you interoperate with APIs that expect them. They may also be used when
authoring libraries designed for use from other .NET Framework languages.

In the previous syntax, type1  represents the argument type or types and type2  represents the return type. The argument types that are represented by
type1  are automatically curried. This suggests that for this type you use a tuple form if the arguments of the target function are curried, and a

parenthesized tuple for arguments that are already in the tuple form. The automatic currying removes a set of parentheses, leaving a tuple argument
that matches the target method. Refer to the code example for the syntax you should use in each case.

Delegates can be attached to F# function values, and static or instance methods. F# function values can be passed directly as arguments to delegate
constructors. For a static method, you construct the delegate by using the name of the class and the method. For an instance method, you provide the
object instance and method in one argument. In both cases, the member access operator ( . ) is used.

The Invoke  method on the delegate type calls the encapsulated function. Also, delegates can be passed as function values by referencing the Invoke
method name without the parentheses.

The following code shows the syntax for creating delegates that represent various methods in a class. Depending on whether the method is a static
method or an instance method, and whether it has arguments in the tuple form or the curried form, the syntax for declaring and assigning the delegate
is a little different.

The following code shows some of the different ways you can work with delegates.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/delegates.md


type Delegate1 = delegate of int * char -> string

let replicate n c = String.replicate n (string c)

// An F# function value constructed from an unapplied let-bound function
let function1 = replicate

// A delegate object constructed from an F# function value
let delObject = new Delegate1(function1)

// An F# function value constructed from an unapplied .NET member
let functionValue = delObject.Invoke

List.map (fun c -> functionValue(5,c)) ['a'; 'b'; 'c']
|> List.iter (printfn "%s")

// Or if you want to get back the same curried signature
let replicate' n c =  delObject.Invoke(n,c)

// You can pass a lambda expression as an argument to a function expecting a compatible delegate type
// System.Array.ConvertAll takes an array and a converter delegate that transforms an element from
// one type to another according to a specified function.
let stringArray = System.Array.ConvertAll([|'a';'b'|], fun c -> replicate' 3 c)
printfn "%A" stringArray

aaaaa
bbbbb
ccccc
[|"aaa"; "bbb"|]

See Also

The output of the previous code example is as follows.

F# Language Reference

Parameters and Arguments

Events



       

Object Expressions
5/4/2018 • 2 minutes to read • Edit Online

Syntax
// When typename is a class:
{ new typename [type-params]arguments with
    member-definitions
    [ additional-interface-definitions ]
}
// When typename is not a class:
{ new typename [generic-type-args] with
    member-definitions
    [ additional-interface-definitions ]
}

Remarks

// This object expression specifies a System.Object but overrides the
// ToString method.
let obj1 = { new System.Object() with member x.ToString() = "F#" }
printfn "%A" obj1

// This object expression implements the IFormattable interface.
let Delimiter(delim1 : string, delim2 : string ) = { new System.IFormattable with
                member x.ToString(format : string, provider : System.IFormatProvider) =
                  if format = "D" then delim1 + x.ToString() + delim2
                  else x.ToString()
           }

let obj2 = Delimiter("{","}");

printfn "%A" (System.String.Format("{0:D}", obj2))

// This object expression implements multiple interfaces.
type IFirst =
  abstract F : unit -> unit
  abstract G : unit -> unit

type ISecond =
  inherit IFirst
  abstract H : unit -> unit
  abstract J : unit -> unit

// This object expression implements an interface chain.
let Implementer() = { new ISecond with
                         member this.H() = ()
                         member this.J() = ()
                       interface IFirst with
                         member this.F() = ()
                         member this.G() = ()
                    }

Using Object Expressions

See Also

An object expression is an expression that creates a new instance of a dynamically created, anonymous object type that is based on an existing base type,
interface, or set of interfaces.

In the previous syntax, the typename represents an existing class type or interface type. type-params describes the optional generic type parameters.
The arguments are used only for class types, which require constructor parameters. The member-definitions are overrides of base class methods, or
implementations of abstract methods from either a base class or an interface.

The following example illustrates several different types of object expressions.

You use object expressions when you want to avoid the extra code and overhead that is required to create a new, named type. If you use object
expressions to minimize the number of types created in a program, you can reduce the number of lines of code and prevent the unnecessary
proliferation of types. Instead of creating many types just to handle specific situations, you can use an object expression that customizes an existing type
or provides an appropriate implementation of an interface for the specific case at hand.

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/object-expressions.md


 

Copy and Update Record Expressions
5/4/2018 • 2 minutes to read • Edit Online

Syntax
{ record-name with
    updated-member-definitions }

Remarks

let myRecord2 = { MyRecord.X = 1; MyRecord.Y = 2; MyRecord.Z = 3 }

let myRecord3 = { myRecord2 with Y = 100; Z = 2 }

See Also

A copy and update record expression is an expression that copies an existing record, updates specified fields, and returns the updated record.

Records are immutable by default, so that there is no update to an existing record possible. To create an updated record all the fields of a record would
have to be specified again. To simplify this task a copy and update record expression can be used. This expression takes an existing record, creates a new
one of the same type by using specified fields from the expression and the missing field specified by the expression. This can be useful when you have
to copy an existing record, and possibly change some of the field values.

Take for instance a newly created record.

If you were to update only on field of that record you could use the copy and update record expression like the following:

Records

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/copy-and-update-record-expressions.md


      

Casting and Conversions (F#)
5/4/2018 • 6 minutes to read • Edit Online

Arithmetic Types

let x : int = 5

let b : byte = byte x

OPERATOR DESCRIPTION

byte Convert to byte, an 8-bit unsigned type.

sbyte Convert to signed byte.

int16 Convert to a 16-bit signed integer.

uint16 Convert to a 16-bit unsigned integer.

int32, int Convert to a 32-bit signed integer.

uint32 Convert to a 32-bit unsigned integer.

int64 Convert to a 64-bit signed integer.

uint64 Convert to a 64-bit unsigned integer.

nativeint Convert to a native integer.

unativeint Convert to an unsigned native integer.

float, double Convert to a 64-bit double-precision IEEE floating point number.

float32, single Convert to a 32-bit single-precision IEEE floating point number.

decimal Convert to System.Decimal .

char Convert to System.Char , a Unicode character.

enum Convert to an enumerated type.

Enumerated Types

This topic describes support for type conversions in F#.

F# provides conversion operators for arithmetic conversions between various primitive types, such as between integer and floating point types. The
integral and char conversion operators have checked and unchecked forms; the floating point operators and the enum  conversion operator do not. The
unchecked forms are defined in Microsoft.FSharp.Core.Operators  and the checked forms are defined in Microsoft.FSharp.Core.Operators.Checked . The
checked forms check for overflow and generate a runtime exception if the resulting value exceeds the limits of the target type.

Each of these operators has the same name as the name of the destination type. For example, in the following code, in which the types are explicitly
annotated, byte  appears with two different meanings. The first occurrence is the type and the second is the conversion operator.

The following table shows conversion operators defined in F#.

In addition to built-in primitive types, you can use these operators with types that implement op_Explicit  or op_Implicit  methods with appropriate
signatures. For example, the int  conversion operator works with any type that provides a static method op_Explicit  that takes the type as a
parameter and returns int . As a special exception to the general rule that methods cannot be overloaded by return type, you can do this for 
op_Explicit  and op_Implicit .

The enum  operator is a generic operator that takes one type parameter that represents the type of the enum  to convert to. When it converts to an
enumerated type, type inference attempts to determine the type of the enum  that you want to convert to. In the following example, the variable col1  is
not explicitly annotated, but its type is inferred from the later equality test. Therefore, the compiler can deduce that you are converting to a Color

enumeration. Alternatively, you can supply a type annotation, as with col2  in the following example.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/casting-and-conversions.md


type Color =
    | Red = 1
    | Green = 2
    | Blue = 3

// The target type of the conversion is determined by type inference.
let col1 = enum 1
// The target type is supplied by a type annotation.
let col2 : Color = enum 2
do
    if (col1 = Color.Red) then
       printfn "Red"

let col3 = enum<Color> 3

// Error: types are incompatible
let col4 : Color = enum 2u

Casting Object Types

UpcastingUpcasting

upcast expression

DowncastingDowncasting

downcast expression

You can also specify the target enumeration type explicitly as a type parameter, as in the following code:

Note that the enumeration casts work only if the underlying type of the enumeration is compatible with the type being converted. In the following code,
the conversion fails to compile because of the mismatch between int32  and uint32 .

For more information, see Enumerations.

Conversion between types in an object hierarchy is fundamental to object-oriented programming. There are two basic types of conversions: casting up
(upcasting) and casting down (downcasting). Casting up a hierarchy means casting from a derived object reference to a base object reference. Such a
cast is guaranteed to work as long as the base class is in the inheritance hierarchy of the derived class. Casting down a hierarchy, from a base object
reference to a derived object reference, succeeds only if the object actually is an instance of the correct destination (derived) type or a type derived from
the destination type.

F# provides operators for these types of conversions. The :>  operator casts up the hierarchy, and the :?>  operator casts down the hierarchy.

In many object-oriented languages, upcasting is implicit; in F#, the rules are slightly different. Upcasting is applied automatically when you pass
arguments to methods on an object type. However, for let-bound functions in a module, upcasting is not automatic, unless the parameter type is
declared as a flexible type. For more information, see Flexible Types.

The :>  operator performs a static cast, which means that the success of the cast is determined at compile time. If a cast that uses :>  compiles
successfully, it is a valid cast and has no chance of failure at run time.

You can also use the upcast  operator to perform such a conversion. The following expression specifies a conversion up the hierarchy:

When you use the upcast operator, the compiler attempts to infer the type you are converting to from the context. If the compiler is unable to determine
the target type, the compiler reports an error.

The :?>  operator performs a dynamic cast, which means that the success of the cast is determined at run time. A cast that uses the :?>  operator is not
checked at compile time; but at run time, an attempt is made to cast to the specified type. If the object is compatible with the target type, the cast
succeeds. If the object is not compatible with the target type, the runtime raises an InvalidCastException .

You can also use the downcast  operator to perform a dynamic type conversion. The following expression specifies a conversion down the hierarchy to a
type that is inferred from program context:

As for the upcast  operator, if the compiler cannot infer a specific target type from the context, it reports an error.

The following code illustrates the use of the :>  and :?>  operators. The code illustrates that the :?>  operator is best used when you know that
conversion will succeed, because it throws InvalidCastException  if the conversion fails. If you do not know that a conversion will succeed, a type test
that uses a match  expression is better because it avoids the overhead of generating an exception.



type Base1() =
    abstract member F : unit -> unit
    default u.F() =
     printfn "F Base1"

type Derived1() =
    inherit Base1()
    override u.F() =
      printfn "F Derived1"

let d1 : Derived1 = Derived1()

// Upcast to Base1.
let base1 = d1 :> Base1

// This might throw an exception, unless
// you are sure that base1 is really a Derived1 object, as
// is the case here.
let derived1 = base1 :?> Derived1

// If you cannot be sure that b1 is a Derived1 object,
// use a type test, as follows:
let downcastBase1 (b1 : Base1) =
   match b1 with
   | :? Derived1 as derived1 -> derived1.F()
   | _ -> ()

downcastBase1 base1

let base1 = d1 :> Base1

let base1 = upcast d1

See Also

Because generic operators downcast  and upcast  rely on type inference to determine the argument and return type, in the above code, you can replace

with

In the previous code, the argument type and return types are Derived1  and Base1 , respectively.

For more information about type tests, see Match Expressions.

F# Language Reference



               

Access Control
5/4/2018 • 2 minutes to read • Edit Online

Basics of Access Control

NOTENOTE

Rules for Access Control

Example

Access control refers to declaring which clients can use certain program elements, such as types, methods, and functions.

In F#, the access control specifiers public , internal , and private  can be applied to modules, types, methods, value definitions, functions, properties,
and explicit fields.

public  indicates that the entity can be accessed by all callers.

internal  indicates that the entity can be accessed only from the same assembly.

private  indicates that the entity can be accessed only from the enclosing type or module.

The access specifier protected  is not used in F#, although it is acceptable if you are using types authored in languages that do support protected  access.
Therefore, if you override a protected method, your method remains accessible only within the class and its descendents.

In general, the specifier is put in front of the name of the entity, except when a mutable  or inline  specifier is used, which appear after the access
control specifier.

If no access specifier is used, the default is public , except for let  bindings in a type, which are always private  to the type.

Signatures in F# provide another mechanism for controlling access to F# program elements. Signatures are not required for access control. For more
information, see Signatures.

Access control is subject to the following rules:

Inheritance declarations (that is, the use of inherit  to specify a base class for a class), interface declarations (that is, specifying that a class
implements an interface), and abstract members always have the same accessibility as the enclosing type. Therefore, an access control specifier
cannot be used on these constructs.

Individual cases in a discriminated union cannot have their own access control modifiers separate from the union type.

Individual fields of a record type cannot have their own access control modifiers separate from the record type.

The following code illustrates the use of access control specifiers. There are two files in the project, Module1.fs  and Module2.fs . Each file is implicitly a
module. Therefore, there are two modules, Module1  and Module2 . A private type and an internal type are defined in Module1 . The private type cannot
be accessed from Module2 , but the internal type can.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/access-control.md
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures


// Module1.fs

module Module1

// This type is not usable outside of this file
type private MyPrivateType() =
   // x is private since this is an internal let binding
   let x = 5
   // X is private and does not appear in the QuickInfo window
   // when viewing this type in the Visual Studio editor
   member private this.X() = 10
   member this.Z() = x * 100

type internal MyInternalType() =
   let x = 5
   member private this.X() = 10
   member this.Z() = x * 100

// Top-level let bindings are public by default,
// so "private" and "internal" are needed here since a
// value cannot be more accessible than its type.
let private myPrivateObj = new MyPrivateType()
let internal myInternalObj = new MyInternalType()

// let bindings at the top level are public by default,
// so result1 and result2 are public.
let result1 = myPrivateObj.Z
let result2 = myInternalObj.Z

// Module2.fs
module Module2

open Module1

// The following line is an error because private means
// that it cannot be accessed from another file or module
// let private myPrivateObj = new MyPrivateType()
let internal myInternalObj = new MyInternalType()

let result = myInternalObj.Z

See Also

The following code tests the accessibility of the types created in Module1.fs .

F# Language Reference

Signatures

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures


      

Conditional Expressions: if...then...else
5/4/2018 • 2 minutes to read • Edit Online

Syntax
if boolean-expression then expression1 [ else expression2 ]

Remarks

Example

let test x y =
  if x = y then "equals"
  elif x < y then "is less than"
  else "is greater than"

printfn "%d %s %d." 10 (test 10 20) 20

printfn "What is your name? "
let nameString = System.Console.ReadLine()

printfn "What is your age? "
let ageString = System.Console.ReadLine()
let age = System.Int32.Parse(ageString)

if age < 10
then printfn "You are only %d years old and already learning F#? Wow!" age

10 is less than 20
What is your name? John
How old are you? 9
You are only 9 years old and already learning F#? Wow!

See Also

The if...then...else  expression runs different branches of code and also evaluates to a different value depending on the Boolean expression given.

In the previous syntax, expression1 runs when the Boolean expression evaluates to true ; otherwise, expression2 runs.

Unlike in other languages, the if...then...else  construct is an expression, not a statement. That means that it produces a value, which is the value of
the last expression in the branch that executes. The types of the values produced in each branch must match. If there is no explicit else  branch, its type
is unit . Therefore, if the type of the then  branch is any type other than unit , there must be an else  branch with the same return type. When
chaining if...then...else  expressions together, you can use the keyword elif  instead of else if ; they are equivalent.

The following example illustrates how to use the if...then...else  expression.

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/conditional-expressions-if-then-else.md


                 

Match expressions
5/4/2018 • 3 minutes to read • Edit Online

Syntax
// Match expression.
match test-expression with
| pattern1 [ when condition ] -> result-expression1
| pattern2 [ when condition ] -> result-expression2
| ...

// Pattern matching function.
function
| pattern1 [ when condition ] -> result-expression1
| pattern2 [ when condition ] -> result-expression2
| ...

Remarks

fun arg ->
    match arg with
    | pattern1 [ when condition ] -> result-expression1
    | pattern2 [ when condition ] -> result-expression2
    | ...

let list1 = [ 1; 5; 100; 450; 788 ]

// Pattern matching by using the cons pattern and a list
// pattern that tests for an empty list.
let rec printList listx =
    match listx with
    | head :: tail -> printf "%d " head; printList tail
    | [] -> printfn ""

printList list1

// Pattern matching with multiple alternatives on the same line.
let filter123 x =
    match x with
    | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
    | a -> printfn "%d" a

// The same function written with the pattern matching
// function syntax.
let filterNumbers =
    function | 1 | 2 | 3 -> printfn "Found 1, 2, or 3!"
             | a -> printfn "%d" a

Guards on patterns

The match  expression provides branching control that is based on the comparison of an expression with a set of patterns.

The pattern matching expressions allow for complex branching based on the comparison of a test expression with a set of patterns. In the match

expression, the test-expression is compared with each pattern in turn, and when a match is found, the corresponding result-expression is evaluated and
the resulting value is returned as the value of the match expression.

The pattern matching function shown in the previous syntax is a lambda expression in which pattern matching is performed immediately on the
argument. The pattern matching function shown in the previous syntax is equivalent to the following.

For more information about lambda expressions, see Lambda Expressions: The fun  Keyword.

The whole set of patterns should cover all the possible matches of the input variable. Frequently, you use the wildcard pattern ( _ ) as the last pattern to
match any previously unmatched input values.

The following code illustrates some of the ways in which the match  expression is used. For a reference and examples of all the possible patterns that
can be used, see Pattern Matching.

You can use a when  clause to specify an additional condition that the variable must satisfy to match a pattern. Such a clause is referred to as a guard.
The expression following the when  keyword is not evaluated unless a match is made to the pattern associated with that guard.

The following example illustrates the use of a guard to specify a numeric range for a variable pattern. Note that multiple conditions are combined by
using Boolean operators.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/match-expressions.md


let rangeTest testValue mid size =
    match testValue with
    | var1 when var1 >= mid - size/2 && var1 <= mid + size/2 -> printfn "The test value is in range."
    | _ -> printfn "The test value is out of range."

rangeTest 10 20 5
rangeTest 10 20 10
rangeTest 10 20 40

// This example uses patterns that have when guards.
let detectValue point target =
    match point with
    | (a, b) when a = target && b = target -> printfn "Both values match target %d." target
    | (a, b) when a = target -> printfn "First value matched target in (%d, %d)" target b
    | (a, b) when b = target -> printfn "Second value matched target in (%d, %d)" a target
    | _ -> printfn "Neither value matches target."
detectValue (0, 0) 0
detectValue (1, 0) 0
detectValue (0, 10) 0
detectValue (10, 15) 0

type Union =
    | A of int
    | B of int

let foo() =
    let test = A 42
    match test with
    | A a
    | B a when a > 41 -> a // the guard applies to both patterns
    | _ -> 1

foo() // returns 42

See also

Note that because values other than literals cannot be used in the pattern, you must use a when  clause if you have to compare some part of the input
against a value. This is shown in the following code:

Note that when a union pattern is covered by a guard, the guard applies to all of the patterns, not just the last one. For example, given the following
code, the guard when a > 12  applies to both A a  and B a :

F# Language Reference
Active Patterns
Pattern Matching



           

Pattern Matching
5/4/2018 • 12 minutes to read • Edit Online

Remarks

match expression with
| pattern [ when condition ] -> result-expression
...

NAME DESCRIPTION EXAMPLE

Constant pattern Any numeric, character, or string literal, an
enumeration constant, or a defined literal identifier

1.0 , "test" , 30 , Color.Red

Identifier pattern A case value of a discriminated union, an exception
label, or an active pattern case

Some(x)

Failure(msg)

Variable pattern identifier a

as  pattern pattern as identifier (a, b) as tuple1

OR pattern pattern1 | pattern2 ([h] | [h; _])

AND pattern pattern1 & pattern2 (a, b) & (_, "test")

Cons pattern identifier :: list-identifier h :: t

List pattern [ pattern_1; ... ; pattern_n ] [ a; b; c ]

Array pattern [| pattern_1; ..; pattern_n |] [| a; b; c |]

Parenthesized pattern ( pattern ) ( a )

Tuple pattern ( pattern_1, ... , pattern_n ) ( a, b )

Record pattern { identifier1 = pattern_1; ... ; identifier_n = pattern_n
}

{ Name = name; }

Wildcard pattern _ _

Pattern together with type annotation pattern : type a : int

Type test pattern :? type [ as identifier ] :? System.DateTime as dt

Null pattern null null

Constant Patterns

Patterns are rules for transforming input data. They are used throughout the F# language to compare data with a logical structure or structures,
decompose data into constituent parts, or extract information from data in various ways.

Patterns are used in many language constructs, such as the match  expression. They are used when you are processing arguments for functions in let

bindings, lambda expressions, and in the exception handlers associated with the try...with  expression. For more information, see Match Expressions,
let Bindings, Lambda Expressions: The fun  Keyword, and Exceptions: The try...with  Expression.

For example, in the match  expression, the pattern is what follows the pipe symbol.

Each pattern acts as a rule for transforming input in some way. In the match  expression, each pattern is examined in turn to see if the input data is
compatible with the pattern. If a match is found, the result expression is executed. If a match is not found, the next pattern rule is tested. The optional
when condition part is explained in Match Expressions.

Supported patterns are shown in the following table. At run time, the input is tested against each of the following patterns in the order listed in the
table, and patterns are applied recursively, from first to last as they appear in your code, and from left to right for the patterns on each line.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/pattern-matching.md


[<Literal>]
let Three = 3

let filter123 x =
    match x with
    // The following line contains literal patterns combined with an OR pattern.
    | 1 | 2 | Three -> printfn "Found 1, 2, or 3!"
    // The following line contains a variable pattern.
    | var1 -> printfn "%d" var1

for x in 1..10 do filter123 x

type Color =
    | Red = 0
    | Green = 1
    | Blue = 2

let printColorName (color:Color) =
    match color with
    | Color.Red -> printfn "Red"
    | Color.Green -> printfn "Green"
    | Color.Blue -> printfn "Blue"
    | _ -> ()

printColorName Color.Red
printColorName Color.Green
printColorName Color.Blue

Identifier Patterns

let printOption (data : int option) =
    match data with
    | Some var1  -> printfn "%d" var1
    | None -> ()

type PersonName =
    | FirstOnly of string
    | LastOnly of string
    | FirstLast of string * string

let constructQuery personName =
    match personName with
    | FirstOnly(firstName) -> printf "May I call you %s?" firstName
    | LastOnly(lastName) -> printf "Are you Mr. or Ms. %s?" lastName
    | FirstLast(firstName, lastName) -> printf "Are you %s %s?" firstName lastName

Constant patterns are numeric, character, and string literals, enumeration constants (with the enumeration type name included). A match  expression
that has only constant patterns can be compared to a case statement in other languages. The input is compared with the literal value and the pattern
matches if the values are equal. The type of the literal must be compatible with the type of the input.

The following example demonstrates the use of literal patterns, and also uses a variable pattern and an OR pattern.

Another example of a literal pattern is a pattern based on enumeration constants. You must specify the enumeration type name when you use
enumeration constants.

If the pattern is a string of characters that forms a valid identifier, the form of the identifier determines how the pattern is matched. If the identifier is
longer than a single character and starts with an uppercase character, the compiler tries to make a match to the identifier pattern. The identifier for this
pattern could be a value marked with the Literal attribute, a discriminated union case, an exception identifier, or an active pattern case. If no matching
identifier is found, the match fails and the next pattern rule, the variable pattern, is compared to the input.

Discriminated union patterns can be simple named cases or they can have a value, or a tuple containing multiple values. If there is a value, you must
specify an identifier for the value. In the case of a tuple, you must supply a tuple pattern with an identifier for each element of the tuple or an identifier
with a field name for one or more named union fields. See the code examples in this section for examples.

The option  type is a discriminated union that has two cases, Some  and None . One case ( Some ) has a value, but the other ( None ) is just a named case.
Therefore, Some  needs to have a variable for the value associated with the Some  case, but None  must appear by itself. In the following code, the
variable var1  is given the value that is obtained by matching to the Some  case.

In the following example, the PersonName  discriminated union contains a mixture of strings and characters that represent possible forms of names. The
cases of the discriminated union are FirstOnly , LastOnly , and FirstLast .

For discriminated unions that have named fields, you use the equals sign (=) to extract the value of a named field. For example, consider a discriminated
union with a declaration like the following.



type Shape =
    | Rectangle of height : float * width : float
    | Circle of radius : float

let matchShape shape =
    match shape with
    | Rectangle(height = h) -> printfn "Rectangle with length %f" h
    | Circle(r) -> printfn "Circle with radius %f" r

match shape with
| Rectangle(height = h; width = w) -> printfn "Rectangle with height %f and width %f" h w
| _ -> ()

Variable Patterns

let function1 x =
    match x with
    | (var1, var2) when var1 > var2 -> printfn "%d is greater than %d" var1 var2
    | (var1, var2) when var1 < var2 -> printfn "%d is less than %d" var1 var2
    | (var1, var2) -> printfn "%d equals %d" var1 var2

function1 (1,2)
function1 (2, 1)
function1 (0, 0)

as Pattern

let (var1, var2) as tuple1 = (1, 2)
printfn "%d %d %A" var1 var2 tuple1

OR Pattern

let detectZeroOR point =
    match point with
    | (0, 0) | (0, _) | (_, 0) -> printfn "Zero found."
    | _ -> printfn "Both nonzero."
detectZeroOR (0, 0)
detectZeroOR (1, 0)
detectZeroOR (0, 10)
detectZeroOR (10, 15)

AND Pattern

You can use the named fields in a pattern matching expression as follows.

The use of the named field is optional, so in the previous example, both Circle(r)  and Circle(radius = r)  have the same effect.

When you specify multiple fields, use the semicolon (;) as a separator.

Active patterns enable you to define more complex custom pattern matching. For more information about active patterns, see Active Patterns.

The case in which the identifier is an exception is used in pattern matching in the context of exception handlers. For information about pattern matching
in exception handling, see Exceptions: The try...with  Expression.

The variable pattern assigns the value being matched to a variable name, which is then available for use in the execution expression to the right of the 
->  symbol. A variable pattern alone matches any input, but variable patterns often appear within other patterns, therefore enabling more complex

structures such as tuples and arrays to be decomposed into variables.

The following example demonstrates a variable pattern within a tuple pattern.

The as  pattern is a pattern that has an as  clause appended to it. The as  clause binds the matched value to a name that can be used in the execution
expression of a match  expression, or, in the case where this pattern is used in a let  binding, the name is added as a binding to the local scope.

The following example uses an as  pattern.

The OR pattern is used when input data can match multiple patterns, and you want to execute the same code as a result. The types of both sides of the
OR pattern must be compatible.

The following example demonstrates the OR pattern.

The AND pattern requires that the input match two patterns. The types of both sides of the AND pattern must be compatible.



let detectZeroAND point =
    match point with
    | (0, 0) -> printfn "Both values zero."
    | (var1, var2) & (0, _) -> printfn "First value is 0 in (%d, %d)" var1 var2
    | (var1, var2)  & (_, 0) -> printfn "Second value is 0 in (%d, %d)" var1 var2
    | _ -> printfn "Both nonzero."
detectZeroAND (0, 0)
detectZeroAND (1, 0)
detectZeroAND (0, 10)
detectZeroAND (10, 15)

Cons Pattern

let list1 = [ 1; 2; 3; 4 ]

// This example uses a cons pattern and a list pattern.
let rec printList l =
    match l with
    | head :: tail -> printf "%d " head; printList tail
    | [] -> printfn ""

printList list1

List Pattern

// This example uses a list pattern.
let listLength list =
    match list with
    | [] -> 0
    | [ _ ] -> 1
    | [ _; _ ] -> 2
    | [ _; _; _ ] -> 3
    | _ -> List.length list

printfn "%d" (listLength [ 1 ])
printfn "%d" (listLength [ 1; 1 ])
printfn "%d" (listLength [ 1; 1; 1; ])
printfn "%d" (listLength [ ] )

Array Pattern

// This example uses array patterns.
let vectorLength vec =
    match vec with
    | [| var1 |] -> var1
    | [| var1; var2 |] -> sqrt (var1*var1 + var2*var2)
    | [| var1; var2; var3 |] -> sqrt (var1*var1 + var2*var2 + var3*var3)
    | _ -> failwith "vectorLength called with an unsupported array size of %d." (vec.Length)

printfn "%f" (vectorLength [| 1. |])
printfn "%f" (vectorLength [| 1.; 1. |])
printfn "%f" (vectorLength [| 1.; 1.; 1.; |])
printfn "%f" (vectorLength [| |] )

Parenthesized Pattern

The following example is like detectZeroTuple  shown in the Tuple Pattern section later in this topic, but here both var1  and var2  are obtained as
values by using the AND pattern.

The cons pattern is used to decompose a list into the first element, the head, and a list that contains the remaining elements, the tail.

The list pattern enables lists to be decomposed into a number of elements. The list pattern itself can match only lists of a specific number of elements.

The array pattern resembles the list pattern and can be used to decompose arrays of a specific length.

Parentheses can be grouped around patterns to achieve the desired associativity. In the following example, parentheses are used to control associativity
between an AND pattern and a cons pattern.

https://msdn.microsoft.com/library/#tuple


let countValues list value =
    let rec checkList list acc =
       match list with
       | (elem1 & head) :: tail when elem1 = value -> checkList tail (acc + 1)
       | head :: tail -> checkList tail acc
       | [] -> acc
    checkList list 0

let result = countValues [ for x in -10..10 -> x*x - 4 ] 0
printfn "%d" result

Tuple Pattern

let detectZeroTuple point =
    match point with
    | (0, 0) -> printfn "Both values zero."
    | (0, var2) -> printfn "First value is 0 in (0, %d)" var2
    | (var1, 0) -> printfn "Second value is 0 in (%d, 0)" var1
    | _ -> printfn "Both nonzero."
detectZeroTuple (0, 0)
detectZeroTuple (1, 0)
detectZeroTuple (0, 10)
detectZeroTuple (10, 15)

Record Pattern

// This example uses a record pattern.

type MyRecord = { Name: string; ID: int }

let IsMatchByName record1 (name: string) =
    match record1 with
    | { MyRecord.Name = nameFound; MyRecord.ID = _; } when nameFound = name -> true
    | _ -> false

let recordX = { Name = "Parker"; ID = 10 }
let isMatched1 = IsMatchByName recordX "Parker"
let isMatched2 = IsMatchByName recordX "Hartono"

Wildcard Pattern

Patterns That Have Type Annotations

let detect1 x =
    match x with
    | 1 -> printfn "Found a 1!"
    | (var1 : int) -> printfn "%d" var1
detect1 0
detect1 1

Type Test Pattern

The tuple pattern matches input in tuple form and enables the tuple to be decomposed into its constituent elements by using pattern matching variables
for each position in the tuple.

The following example demonstrates the tuple pattern and also uses literal patterns, variable patterns, and the wildcard pattern.

The record pattern is used to decompose records to extract the values of fields. The pattern does not have to reference all fields of the record; any
omitted fields just do not participate in matching and are not extracted.

The wildcard pattern is represented by the underscore ( _ ) character and matches any input, just like the variable pattern, except that the input is
discarded instead of assigned to a variable. The wildcard pattern is often used within other patterns as a placeholder for values that are not needed in
the expression to the right of the ->  symbol. The wildcard pattern is also frequently used at the end of a list of patterns to match any unmatched input.
The wildcard pattern is demonstrated in many code examples in this topic. See the preceding code for one example.

Patterns can have type annotations. These behave like other type annotations and guide inference like other type annotations. Parentheses are required
around type annotations in patterns. The following code shows a pattern that has a type annotation.

The type test pattern is used to match the input against a type. If the input type is a match to (or a derived type of) the type specified in the pattern, the
match succeeds.

The following example demonstrates the type test pattern.



open System.Windows.Forms

let RegisterControl(control:Control) =
    match control with
    | :? Button as button -> button.Text <- "Registered."
    | :? CheckBox as checkbox -> checkbox.Text <- "Registered."
    | _ -> ()

Null Pattern

let ReadFromFile (reader : System.IO.StreamReader) =
    match reader.ReadLine() with
    | null -> printfn "\n"; false
    | line -> printfn "%s" line; true

let fs = System.IO.File.Open("..\..\Program.fs", System.IO.FileMode.Open)
let sr = new System.IO.StreamReader(fs)
while ReadFromFile(sr) = true do ()
sr.Close()

See Also

The null pattern matches the null value that can appear when you are working with types that allow a null value. Null patterns are frequently used when
interoperating with .NET Framework code. For example, the return value of a .NET API might be the input to a match  expression. You can control
program flow based on whether the return value is null, and also on other characteristics of the returned value. You can use the null pattern to prevent
null values from propagating to the rest of your program.

The following example uses the null pattern and the variable pattern.

Match Expressions

Active Patterns

F# Language Reference



       

Active Patterns
5/4/2018 • 6 minutes to read • Edit Online

Syntax
// Complete active pattern definition.
let (|identifer1|identifier2|...|) [ arguments ] = expression
// Partial active pattern definition.
let (|identifier|_|) [ arguments ] = expression

Remarks

let (|Even|Odd|) input = if input % 2 = 0 then Even else Odd

let TestNumber input =
   match input with
   | Even -> printfn "%d is even" input
   | Odd -> printfn "%d is odd" input

TestNumber 7
TestNumber 11
TestNumber 32

7 is odd
11 is odd
32 is even

open System.Drawing

let (|RGB|) (col : System.Drawing.Color) =
     ( col.R, col.G, col.B )

let (|HSB|) (col : System.Drawing.Color) =
   ( col.GetHue(), col.GetSaturation(), col.GetBrightness() )

let printRGB (col: System.Drawing.Color) =
   match col with
   | RGB(r, g, b) -> printfn " Red: %d Green: %d Blue: %d" r g b

let printHSB (col: System.Drawing.Color) =
   match col with
   | HSB(h, s, b) -> printfn " Hue: %f Saturation: %f Brightness: %f" h s b

let printAll col colorString =
  printfn "%s" colorString
  printRGB col
  printHSB col

printAll Color.Red "Red"
printAll Color.Black "Black"
printAll Color.White "White"
printAll Color.Gray "Gray"
printAll Color.BlanchedAlmond "BlanchedAlmond"

Active patterns enable you to define named partitions that subdivide input data, so that you can use these names in a pattern matching expression just
as you would for a discriminated union. You can use active patterns to decompose data in a customized manner for each partition.

In the previous syntax, the identifiers are names for partitions of the input data that is represented by arguments, or, in other words, names for subsets
of the set of all values of the arguments. There can be up to seven partitions in an active pattern definition. The expression describes the form into which
to decompose the data. You can use an active pattern definition to define the rules for determining which of the named partitions the values given as
arguments belong to. The (| and |) symbols are referred to as banana clips and the function created by this type of let binding is called an active
recognizer.

As an example, consider the following active pattern with an argument.

You can use the active pattern in a pattern matching expression, as in the following example.

The output of this program is as follows:

Another use of active patterns is to decompose data types in multiple ways, such as when the same underlying data has various possible
representations. For example, a Color  object could be decomposed into an RGB representation or an HSB representation.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/active-patterns.md


Red
 Red: 255 Green: 0 Blue: 0
 Hue: 360.000000 Saturation: 1.000000 Brightness: 0.500000
Black
 Red: 0 Green: 0 Blue: 0
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.000000
White
 Red: 255 Green: 255 Blue: 255
 Hue: 0.000000 Saturation: 0.000000 Brightness: 1.000000
Gray
 Red: 128 Green: 128 Blue: 128
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.501961
BlanchedAlmond
 Red: 255 Green: 235 Blue: 205
 Hue: 36.000000 Saturation: 1.000000 Brightness: 0.901961

Partial Active Patterns

let (|Integer|_|) (str: string) =
   let mutable intvalue = 0
   if System.Int32.TryParse(str, &intvalue) then Some(intvalue)
   else None

let (|Float|_|) (str: string) =
   let mutable floatvalue = 0.0
   if System.Double.TryParse(str, &floatvalue) then Some(floatvalue)
   else None

let parseNumeric str =
   match str with
     | Integer i -> printfn "%d : Integer" i
     | Float f -> printfn "%f : Floating point" f
     | _ -> printfn "%s : Not matched." str

parseNumeric "1.1"
parseNumeric "0"
parseNumeric "0.0"
parseNumeric "10"
parseNumeric "Something else"

1.100000 : Floating point
0 : Integer
0.000000 : Floating point
10 : Integer
Something else : Not matched.

The output of the above program is as follows:

In combination, these two ways of using active patterns enable you to partition and decompose data into just the appropriate form and perform the
appropriate computations on the appropriate data in the form most convenient for the computation.

The resulting pattern matching expressions enable data to be written in a convenient way that is very readable, greatly simplifying potentially complex
branching and data analysis code.

Sometimes, you need to partition only part of the input space. In that case, you write a set of partial patterns each of which match some inputs but fail
to match other inputs. Active patterns that do not always produce a value are called partial active patterns; they have a return value that is an option
type. To define a partial active pattern, you use a wildcard character (_) at the end of the list of patterns inside the banana clips. The following code
illustrates the use of a partial active pattern.

The output of the previous example is as follows:

When using partial active patterns, sometimes the individual choices can be disjoint or mutually exclusive, but they need not be. In the following
example, the pattern Square and the pattern Cube are not disjoint, because some numbers are both squares and cubes, such as 64. The following
program prints out all integers up to 1000000 that are both squares and cubes.



let err = 1.e-10

let isNearlyIntegral (x:float) = abs (x - round(x)) < err

let (|Square|_|) (x : int) =
  if isNearlyIntegral (sqrt (float x)) then Some(x)
  else None

let (|Cube|_|) (x : int) =
  if isNearlyIntegral ((float x) ** ( 1.0 / 3.0)) then Some(x)
  else None

let examineNumber x =
   match x with
      | Cube x -> printfn "%d is a cube" x
      | _ -> ()
   match x with
      | Square x -> printfn "%d is a square" x
      | _ -> ()

let findSquareCubes x =
   if (match x with
       | Cube x -> true
       | _ -> false
       &&
       match x with
       | Square x -> true
       | _ -> false
      )
   then printf "%d \n" x

[ 1 .. 1000000 ] |> List.iter (fun elem -> findSquareCubes elem)

1
64
729
4096
15625
46656
117649
262144
531441
1000000

Parameterized Active Patterns

The output is as follows:

Active patterns always take at least one argument for the item being matched, but they may take additional arguments as well, in which case the name
parameterized active pattern applies. Additional arguments allow a general pattern to be specialized. For example, active patterns that use regular
expressions to parse strings often include the regular expression as an extra parameter, as in the following code, which also uses the partial active
pattern Integer  defined in the previous code example. In this example, strings that use regular expressions for various date formats are given to
customize the general ParseRegex active pattern. The Integer active pattern is used to convert the matched strings into integers that can be passed to
the DateTime constructor.



open System.Text.RegularExpressions

// ParseRegex parses a regular expression and returns a list of the strings that match each group in
// the regular expression.
// List.tail is called to eliminate the first element in the list, which is the full matched expression,
// since only the matches for each group are wanted.
let (|ParseRegex|_|) regex str =
   let m = Regex(regex).Match(str)
   if m.Success
   then Some (List.tail [ for x in m.Groups -> x.Value ])
   else None

// Three different date formats are demonstrated here. The first matches two-
// digit dates and the second matches full dates. This code assumes that if a two-digit
// date is provided, it is an abbreviation, not a year in the first century.
let parseDate str =
   match str with
     | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{1,2})$" [Integer m; Integer d; Integer y]
          -> new System.DateTime(y + 2000, m, d)
     | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{3,4})" [Integer m; Integer d; Integer y]
          -> new System.DateTime(y, m, d)
     | ParseRegex "(\d{1,4})-(\d{1,2})-(\d{1,2})" [Integer y; Integer m; Integer d]
          -> new System.DateTime(y, m, d)
     | _ -> new System.DateTime()

let dt1 = parseDate "12/22/08"
let dt2 = parseDate "1/1/2009"
let dt3 = parseDate "2008-1-15"
let dt4 = parseDate "1995-12-28"

printfn "%s %s %s %s" (dt1.ToString()) (dt2.ToString()) (dt3.ToString()) (dt4.ToString())

12/22/2008 12:00:00 AM 1/1/2009 12:00:00 AM 1/15/2008 12:00:00 AM 12/28/1995 12:00:00 AM

let (|Default|) onNone value =
    match value with
    | None -> onNone
    | Some e -> e

let greet (Default "random citizen" name) =
    printfn "Hello, %s!" name

greet None
greet (Some "George")

Hello, random citizen!
Hello, George!

See Also

The output of the previous code is as follows:

Active patterns are not restricted only to pattern matching expressions, you can also use them on let-bindings.

The output of the previous code is as follows:

F# Language Reference

Match Expressions



       

Loops: for...to Expression
5/4/2018 • 2 minutes to read • Edit Online

Syntax
for identifier = start [ to | downto ] finish do
    body-expression

Remarks

// A simple for...to loop.
let function1() =
  for i = 1 to 10 do
    printf "%d " i
  printfn ""

// A for...to loop that counts in reverse.
let function2() =
  for i = 10 downto 1 do
    printf "%d " i
  printfn ""

function1()
function2()

// A for...to loop that uses functions as the start and finish expressions.
let beginning x y = x - 2*y
let ending x y = x + 2*y

let function3 x y =
  for i = (beginning x y) to (ending x y) do
     printf "%d " i
  printfn ""

function3 10 4

1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

See Also

The for...to  expression is used to iterate in a loop over a range of values of a loop variable.

The type of the identifier is inferred from the type of the start and finish expressions. Types for these expressions must be 32-bit integers.

Although technically an expression, for...to  is more like a traditional statement in an imperative programming language. The return type for the
body-expression must be unit . The following examples show various uses of the for...to  expression.

The output of the previous code is as follows.

F# Language Reference

Loops: for...in  Expression

Loops: while...do  Expression

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/loops-for-to-expression.md


        

Loops: for...in Expression
5/4/2018 • 3 minutes to read • Edit Online

Syntax
for pattern in enumerable-expression do
    body-expression

Remarks

// Looping over a list.
let list1 = [ 1; 5; 100; 450; 788 ]
for i in list1 do
   printfn "%d" i

1
5
100
450
788

let seq1 = seq { for i in 1 .. 10 -> (i, i*i) }
for (a, asqr) in seq1 do
  printfn "%d squared is %d" a asqr

1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100

This looping construct is used to iterate over the matches of a pattern in an enumerable collection such as a range expression, sequence, list, array, or
other construct that supports enumeration.

The for...in  expression can be compared to the for each  statement in other .NET languages because it is used to loop over the values in an
enumerable collection. However, for...in  also supports pattern matching over the collection instead of just iteration over the whole collection.

The enumerable expression can be specified as an enumerable collection or, by using the ..  operator, as a range on an integral type. Enumerable
collections include lists, sequences, arrays, sets, maps, and so on. Any type that implements System.Collections.IEnumerable  can be used.

When you express a range by using the ..  operator, you can use the following syntax.

start .. finish

You can also use a version that includes an increment called the skip, as in the following code.

start .. skip .. finish

When you use integral ranges and a simple counter variable as a pattern, the typical behavior is to increment the counter variable by 1 on each iteration,
but if the range includes a skip value, the counter is incremented by the skip value instead.

Values matched in the pattern can also be used in the body expression.

The following code examples illustrate the use of the for...in  expression.

The output is as follows.

The following example shows how to loop over a sequence, and how to use a tuple pattern instead of a simple variable.

The output is as follows.

The following example shows how to loop over a simple integer range.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/loops-for-in-expression.md


let function1() =
  for i in 1 .. 10 do
    printf "%d " i
  printfn ""
function1()

1 2 3 4 5 6 7 8 9 10

let function2() =
  for i in 1 .. 2 .. 10 do
     printf "%d " i
  printfn ""
function2()

1 3 5 7 9

let function3() =
  for c in 'a' .. 'z' do
    printf "%c " c
  printfn ""
function3()

a b c d e f g h i j k l m n o p q r s t u v w x y z

let function4() =
    for i in 10 .. -1 .. 1 do
        printf "%d " i
    printfn " ... Lift off!"
function4()

10 9 8 7 6 5 4 3 2 1 ... Lift off!

let beginning x y = x - 2*y
let ending x y = x + 2*y

let function5 x y =
  for i in (beginning x y) .. (ending x y) do
     printf "%d " i
  printfn ""

function5 10 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

let mutable count = 0
for _ in list1 do
   count <- count + 1
printfn "Number of elements in list1: %d" count

The output of function1 is as follows.

The following example shows how to loop over a range with a skip of 2, which includes every other element of the range.

The output of function2  is as follows.

The following example shows how to use a character range.

The output of function3  is as follows.

The following example shows how to use a negative skip value for a reverse iteration.

The output of function4  is as follows.

The beginning and ending of the range can also be expressions, such as functions, as in the following code.

The output of function5  with this input is as follows.

The next example shows the use of a wildcard character (_) when the element is not needed in the loop.



Number of elements in list1: 5

See Also

The output is as follows.

Note  You can use for...in  in sequence expressions and other computation expressions, in which case a customized version of the for...in

expression is used. For more information, see Sequences, Asynchronous Workflows, and Computation Expressions.

F# Language Reference

Loops: for...to  Expression

Loops: while...do  Expression



     

Loops: while...do Expression
5/4/2018 • 2 minutes to read • Edit Online

Syntax
while test-expression do
    body-expression

Remarks

open System

let lookForValue value maxValue =
  let mutable continueLooping = true
  let randomNumberGenerator = new Random()
  while continueLooping do
    // Generate a random number between 1 and maxValue.
    let rand = randomNumberGenerator.Next(maxValue)
    printf "%d " rand
    if rand = value then
       printfn "\nFound a %d!" value
       continueLooping <- false

lookForValue 10 20

13 19 8 18 16 2 10
Found a 10!

NOTENOTE

See Also

The while...do  expression is used to perform iterative execution (looping) while a specified test condition is true.

The test-expression is evaluated; if it is true , the body-expression is executed and the test expression is evaluated again. The body-expression must have
type unit . If the test expression is false , the iteration ends.

The following example illustrates the use of the while...do  expression.

The output of the previous code is a stream of random numbers between 1 and 20, the last of which is 10.

You can use while...do  in sequence expressions and other computation expressions, in which case a customized version of the while...do  expression is used. For
more information, see Sequences, Asynchronous Workflows, and Computation Expressions.

F# Language Reference

Loops: for...in  Expression

Loops: for...to  Expression

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/loops-while-do-expression.md


  

Assertions
5/4/2018 • 2 minutes to read • Edit Online

Syntax
assert condition

Remarks

NOTENOTE

Example

let subtractUnsigned (x : uint32) (y : uint32) =
    assert (x > y)
    let z = x - y
    z
// This code does not generate an assertion failure.
let result1 = subtractUnsigned 2u 1u
// This code generates an assertion failure.
let result2 = subtractUnsigned 1u 2u

See Also

The assert  expression is a debugging feature that you can use to test an expression. Upon failure in Debug mode, an assertion generates a system
error dialog box.

The assert  expression has type bool -> unit .

In the previous syntax, condition represents a Boolean expression that is to be tested. If the expression evaluates to true , execution continues
unaffected. If it evaluates to false , a system error dialog box is generated. The error dialog box has a caption that contains the string Assertion Failed.
The dialog box contains a stack trace that indicates where the assertion failure occurred.

Assertion checking is enabled only when you compile in Debug mode; that is, if the constant DEBUG  is defined. In the project system, by default, the 
DEBUG  constant is defined in the Debug configuration but not in the Release configuration.

The assertion failure error cannot be caught by using F# exception handling.

The assert  function resolves to Debug.Assert.

The following code example illustrates the use of the assert  expression.

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/assertions.md
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug.assert


        

Exception Handling
5/4/2018 • 2 minutes to read • Edit Online

Exception Handling Basics

Related Topics
TITLE DESCRIPTION

Exception Types Describes how to declare an exception type.

Exceptions: The try...with  Expression Describes the language construct that supports exception handling.

Exceptions: The try...finally  Expression Describes the language construct that enables you to execute clean-up code as the
stack unwinds when an exception is thrown.

Exceptions: the raise  Function Describes how to throw an exception object.

Exceptions: The failwith  Function Describes how to generate a general F# exception.

Exceptions: The invalidArg  Function Describes how to generate an invalid argument exception.

This section contains information about exception handling support in the F# language.

Exception handling is the standard way of handling error conditions in the .NET Framework. Thus, any .NET language must support this mechanism,
including F#. An exception is an object that encapsulates information about an error. When errors occur, exceptions are raised and regular execution
stops. Instead, the runtime searches for an appropriate handler for the exception. The search starts in the current function, and proceeds up the stack
through the layers of callers until a matching handler is found. Then the handler is executed.

In addition, as the stack is unwound, the runtime executes any code in finally  blocks, to guarantee that objects are cleaned up correctly during the
unwinding process.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/index.md


        

Exception Types
5/4/2018 • 2 minutes to read • Edit Online

Syntax
exception exception-type of argument-type

Remarks

exception MyError of string

raise (MyError("Error message"))

exception Error1 of string
// Using a tuple type as the argument type.
exception Error2 of string * int

let function1 x y =
   try
      if x = y then raise (Error1("x"))
      else raise (Error2("x", 10))
   with
      | Error1(str) -> printfn "Error1 %s" str
      | Error2(str, i) -> printfn "Error2 %s %d" str i

function1 10 10
function1 9 2

See Also

There are two categories of exceptions in F#: .NET exception types and F# exception types. This topic describes how to define and use F# exception
types.

In the previous syntax, exception-type is the name of a new F# exception type, and argument-type represents the type of an argument that can be
supplied when you raise an exception of this type. You can specify multiple arguments by using a tuple type for argument-type.

A typical definition for an F# exception resembles the following.

You can generate an exception of this type by using the raise  function, as follows.

You can use an F# exception type directly in the filters in a try...with  expression, as shown in the following example.

The exception type that you define with the exception  keyword in F# is a new type that inherits from System.Exception .

Exception Handling

Exceptions: the raise  Function

Exception Hierarchy

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/exception-types.md
https://msdn.microsoft.com/library/z4c5tckx.aspx


         

Exceptions: The try...with Expression
5/4/2018 • 3 minutes to read • Edit Online

Syntax
try
    expression1
with
| pattern1 -> expression2
| pattern2 -> expression3
...

Remarks

let divide1 x y =
   try
      Some (x / y)
   with
      | :? System.DivideByZeroException -> printfn "Division by zero!"; None

let result1 = divide1 100 0

PATTERN DESCRIPTION

:? exception-type Matches the specified .NET exception type.

:? exception-type as identifier Matches the specified .NET exception type, but gives the exception a named value.

exception-name(arguments) Matches an F# exception type and binds the arguments.

identifier Matches any exception and binds the name to the exception object. Equivalent to
:? System.Exception asidentifier

identifier when condition Matches any exception if the condition is true.

Examples

This topic describes the try...with  expression, the expression that is used for exception handling in the F# language.

The try...with  expression is used to handle exceptions in F#. It is similar to the try...catch  statement in C#. In the preceding syntax, the code in
expression1 might generate an exception. The try...with  expression returns a value. If no exception is thrown, the whole expression returns the value
of expression1. If an exception is thrown, each pattern is compared in turn with the exception, and for the first matching pattern, the corresponding
expression, known as the exception handler, for that branch is executed, and the overall expression returns the value of the expression in that exception
handler. If no pattern matches, the exception propagates up the call stack until a matching handler is found. The types of the values returned from each
expression in the exception handlers must match the type returned from the expression in the try  block.

Frequently, the fact that an error occurred also means that there is no valid value that can be returned from the expressions in each exception handler. A
frequent pattern is to have the type of the expression be an option type. The following code example illustrates this pattern.

Exceptions can be .NET exceptions, or they can be F# exceptions. You can define F# exceptions by using the exception  keyword.

You can use a variety of patterns to filter on the exception type and other conditions; the options are summarized in the following table.

The following code examples illustrate the use of the various exception handler patterns.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/the-try-with-expression.md


// This example shows the use of the as keyword to assign a name to a
// .NET exception.
let divide2 x y =
  try
    Some( x / y )
  with
    | :? System.DivideByZeroException as ex -> printfn "Exception! %s " (ex.Message); None

// This version shows the use of a condition to branch to multiple paths
// with the same exception.
let divide3 x y flag =
  try
     x / y
  with
     | ex when flag -> printfn "TRUE: %s" (ex.ToString()); 0
     | ex when not flag -> printfn "FALSE: %s" (ex.ToString()); 1

let result2 = divide3 100 0 true

// This version shows the use of F# exceptions.
exception Error1 of string
exception Error2 of string * int

let function1 x y =
   try
      if x = y then raise (Error1("x"))
      else raise (Error2("x", 10))
   with
      | Error1(str) -> printfn "Error1 %s" str
      | Error2(str, i) -> printfn "Error2 %s %d" str i

function1 10 10
function1 9 2

NOTENOTE

NOTENOTE

See Also

The try...with  construct is a separate expression from the try...finally  expression. Therefore, if your code requires both a with  block and a finally  block,
you will have to nest the two expressions.

You can use try...with  in asynchronous workflows and other computation expressions, in which case a customized version of the try...with  expression is used.
For more information, see Asynchronous Workflows, and Computation Expressions.

Exception Handling

Exception Types

Exceptions: The try...finally  Expression



       

Exceptions: The try...finally Expression
5/4/2018 • 2 minutes to read • Edit Online

Syntax
try
    expression1
finally
    expression2

Remarks

let divide x y =
   let stream : System.IO.FileStream = System.IO.File.Create("test.txt")
   let writer : System.IO.StreamWriter = new System.IO.StreamWriter(stream)
   try
      writer.WriteLine("test1");
      Some( x / y )
   finally
      writer.Flush()
      printfn "Closing stream"
      stream.Close()

let result =
  try
     divide 100 0
  with
     | :? System.DivideByZeroException -> printfn "Exception handled."; None

Closing stream
Exception handled.

The try...finally  expression enables you to execute clean-up code even if a block of code throws an exception.

The try...finally  expression can be used to execute the code in expression2 in the preceding syntax regardless of whether an exception is generated
during the execution of expression1.

The type of expression2 does not contribute to the value of the whole expression; the type returned when an exception does not occur is the last value in
expression1. When an exception does occur, no value is returned and the flow of control transfers to the next matching exception handler up the call
stack. If no exception handler is found, the program terminates. Before the code in a matching handler is executed or the program terminates, the code
in the finally  branch is executed.

The following code demonstrates the use of the try...finally  expression.

The output to the console is as follows.

As you can see from the output, the stream was closed before the outer exception was handled, and the file test.txt  contains the text test1 , which
indicates that the buffers were flushed and written to disk even though the exception transferred control to the outer exception handler.

Note that the try...with  construct is a separate construct from the try...finally  construct. Therefore, if your code requires both a with  block and a 
finally  block, you have to nest the two constructs, as in the following code example.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/the-try-finally-expression.md


exception InnerError of string
exception OuterError of string

let function1 x y =
   try
     try
        if x = y then raise (InnerError("inner"))
        else raise (OuterError("outer"))
     with
      | InnerError(str) -> printfn "Error1 %s" str
   finally
      printfn "Always print this."

let function2 x y =
  try
     function1 x y
  with
     | OuterError(str) -> printfn "Error2 %s" str

function2 100 100
function2 100 10

See Also

In the context of computation expressions, including sequence expressions and asynchronous workflows, try...finally expressions can have a custom
implementation. For more information, see Computation Expressions.

Exception Handling

Exceptions: The try...with  Expression



    

Exceptions: the raise Function
5/4/2018 • 2 minutes to read • Edit Online

Syntax
raise (expression)

Remarks

exception InnerError of string
exception OuterError of string

let function1 x y =
   try
     try
        if x = y then raise (InnerError("inner"))
        else raise (OuterError("outer"))
     with
      | InnerError(str) -> printfn "Error1 %s" str
   finally
      printfn "Always print this."

let function2 x y =
  try
     function1 x y
  with
     | OuterError(str) -> printfn "Error2 %s" str

function2 100 100
function2 100 10

let divide x y =
  if (y = 0) then raise (System.ArgumentException("Divisor cannot be zero!"))
  else
     x / y

See Also

The raise  function is used to indicate that an error or exceptional condition has occurred. Information about the error is captured in an exception
object.

The raise  function generates an exception object and initiates a stack unwinding process. The stack unwinding process is managed by the common
language runtime (CLR), so the behavior of this process is the same as it is in any other .NET language. The stack unwinding process is a search for an
exception handler that matches the generated exception. The search starts in the current try...with  expression, if there is one. Each pattern in the 
with  block is checked, in order. When a matching exception handler is found, the exception is considered handled; otherwise, the stack is unwound and 
with  blocks up the call chain are checked until a matching handler is found. Any finally  blocks that are encountered in the call chain are also

executed in sequence as the stack unwinds.

The raise  function is the equivalent of throw  in C# or C++. Use reraise  in a catch handler to propagate the same exception up the call chain.

The following code examples illustrate the use of the raise  function to generate an exception.

The raise  function can also be used to raise .NET exceptions, as shown in the following example.

Exception Handling

Exception Types

Exceptions: The try...with  Expression

Exceptions: The try...finally  Expression

Exceptions: The failwith  Function

Exceptions: The invalidArg  Function

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/the-raise-function.md


   

Exceptions: The failwith Function
5/4/2018 • 2 minutes to read • Edit Online

Syntax
failwith error-message-string

Remarks

let divideFailwith x y =
  if (y = 0) then failwith "Divisor cannot be zero."
  else
    x / y

let testDivideFailwith x y =
  try
     divideFailwith x y
  with
     | Failure(msg) -> printfn "%s" msg; 0

let result1 = testDivideFailwith 100 0

See Also

The failwith  function generates an F# exception.

The error-message-string in the previous syntax is a literal string or a value of type string . It becomes the Message  property of the exception.

The exception that is generated by failwith  is a System.Exception  exception, which is a reference that has the name Failure  in F# code. The following
code illustrates the use of failwith  to throw an exception.

Exception Handling

Exception Types

Exceptions: The try...with  Expression

Exceptions: The try...finally  Expression

Exceptions: the raise  Function

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/the-failwith-function.md


  

Exceptions: The invalidArg Function
5/4/2018 • 2 minutes to read • Edit Online

Syntax
invalidArg parameter-name error-message-string

Remarks

let months = [| "January"; "February"; "March"; "April";
                "May"; "June"; "July"; "August"; "September";
                "October"; "November"; "December" |]

let lookupMonth month =
   if (month > 12 || month < 1)
     then invalidArg "month" (sprintf "Value passed in was %d." month)
   months.[month - 1]

printfn "%s" (lookupMonth 12)
printfn "%s" (lookupMonth 1)
printfn "%s" (lookupMonth 13)

December
January
System.ArgumentException: Month parameter out of range.

See Also

The invalidArg  function generates an argument exception.

The parameter-name in the previous syntax is a string with the name of the parameter whose argument was invalid. The error-message-string is a literal
string or a value of type string . It becomes the Message  property of the exception object.

The exception generated by invalidArg  is a System.ArgumentException  exception. The following code illustrates the use of invalidArg  to throw an
exception.

The output is the following, followed by a stack trace (not shown).

Exception Handling

Exception Types

Exceptions: The try...with  Expression

Exceptions: The try...finally  Expression

Exceptions: the raise  Function

Exceptions: The failwith  Function

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/exception-handling/the-invalidArg-function.md


       

Attributes
5/4/2018 • 3 minutes to read • Edit Online

Syntax
[<target:attribute-name(arguments)>]

Remarks

*property-name* = *property-value*

open System.Runtime.InteropServices

[<DllImport("kernel32", SetLastError=true)>]
extern bool CloseHandle(nativeint handle)

[<Owner("Jason Carlson")>]
[<Company("Microsoft")>]
type SomeType1 =

[<Owner("Darren Parker"); Company("Microsoft")>]
type SomeType2 =

Attributes enable metadata to be applied to a programming construct.

In the previous syntax, the target is optional and, if present, specifies the kind of program entity that the attribute applies to. Valid values for target are
shown in the table that appears later in this document.

The attribute-name refers to the name (possibly qualified with namespaces) of a valid attribute type, with or without the suffix Attribute  that is usually
used in attribute type names. For example, the type ObsoleteAttribute  can be shortened to just Obsolete  in this context.

The arguments are the arguments to the constructor for the attribute type. If an attribute has a default constructor, the argument list and parentheses
can be omitted. Attributes support both positional arguments and named arguments. Positional arguments are arguments that are used in the order in
which they appear. Named arguments can be used if the attribute has public properties. You can set these by using the following syntax in the argument
list.

Such property initializations can be in any order, but they must follow any positional arguments. Following is an example of an attribute that uses
positional arguments and property initializations.

In this example, the attribute is DllImportAttribute , here used in shortened form. The first argument is a positional parameter and the second is a
property.

Attributes are a .NET programming construct that enables an object known as an attribute to be associated with a type or other program element. The
program element to which an attribute is applied is known as the attribute target. The attribute usually contains metadata about its target. In this
context, metadata could be any data about the type other than its fields and members.

Attributes in F# can be applied to the following programming constructs: functions, methods, assemblies, modules, types (classes, records, structures,
interfaces, delegates, enumerations, unions, and so on), constructors, properties, fields, parameters, type parameters, and return values. Attributes are
not allowed on let  bindings inside classes, expressions, or workflow expressions.

Typically, the attribute declaration appears directly before the declaration of the attribute target. Multiple attribute declarations can be used together, as
follows.

You can query attributes at run time by using .NET reflection.

You can declare multiple attributes individually, as in the previous code example, or you can declare them in one set of brackets if you use a semicolon to
separate the individual attributes and constructors, as shown here.

Typically encountered attributes include the Obsolete  attribute, attributes for security considerations, attributes for COM support, attributes that relate
to ownership of code, and attributes indicating whether a type can be serialized. The following example demonstrates the use of the Obsolete  attribute.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/attributes.md


open System

[<Obsolete("Do not use. Use newFunction instead.")>]
let obsoleteFunction x y =
  x + y

let newFunction x y =
  x + 2 * y

// The use of the obsolete function produces a warning.
let result1 = obsoleteFunction 10 100
let result2 = newFunction 10 100

open System.Reflection
[<assembly:AssemblyVersionAttribute("1.0.0.0")>]
do
   printfn "Executing..."

ATTRIBUTE TARGET EXAMPLE

assembly `[<assembly: AssemblyVersionAttribute("1.0.0.0")>]`

return `let function1 x : [<return: Obsolete>] int = x + 1`

field `[<field: DefaultValue>] val mutable x: int`

property `[<property: Obsolete>] this.MyProperty = x`

param `member this.MyMethod([<param: Out>] x : ref) = x := 10`

type ``` [<type: StructLayout(Sequential)>] type MyStruct = struct x : byte y : int end ```

See Also

For the attribute targets assembly  and module , you apply the attributes to a top-level do  binding in your assembly. You can include the word 
assembly  or module  in the attribute declaration, as follows.

If you omit the attribute target for an attribute applied to a do  binding, the F# compiler attempts to determine the attribute target that makes sense for
that attribute. Many attribute classes have an attribute of type System.AttributeUsageAttribute  that includes information about the possible targets
supported for that attribute. If the System.AttributeUsageAttribute  indicates that the attribute supports functions as targets, the attribute is taken to
apply to the main entry point of the program. If the System.AttributeUsageAttribute  indicates that the attribute supports assemblies as targets, the
compiler takes the attribute to apply to the assembly. Most attributes do not apply to both functions and assemblies, but in cases where they do, the
attribute is taken to apply to the program's main function. If the attribute target is specified explicitly, the attribute is applied to the specified target.

Although you do not usually need to specify the attribute target explicitly, valid values for target in an attribute are shown in the following table, along
with examples of usage.

F# Language Reference



   

Resource Management: The use Keyword
5/4/2018 • 3 minutes to read • Edit Online

Resources

Managing Resources

use Binding

open System.IO

let writetofile filename obj =
   use file1 = File.CreateText(filename)
   file1.WriteLine("{0}", obj.ToString() )
   // file1.Dispose() is called implicitly here.

writetofile "abc.txt" "Humpty Dumpty sat on a wall."

NOTENOTE

using Function

open System.IO

let writetofile2 filename obj =
    using (System.IO.File.CreateText(filename)) ( fun file1 ->
        file1.WriteLine("{0}", obj.ToString() )
    )

writetofile2 "abc2.txt" "The quick sly fox jumps over the lazy brown dog."

This topic describes the keyword use  and the using  function, which can control the initialization and release of resources.

The term resource is used in more than one way. Yes, resources can be data that an application uses, such as strings, graphics, and the like, but in this
context, resources refers to software or operating system resources, such as graphics device contexts, file handles, network and database connections,
concurrency objects such as wait handles, and so on. The use of these resources by applications involves the acquisition of the resource from the
operating system or other resource provider, followed by the later release of the resource to the pool so that it can be provided to another application.
Problems occur when applications do not release resources back to the common pool.

To efficiently and responsibly manage resources in an application, you must release resources promptly and in a predictable manner. The .NET
Framework helps you do this by providing the System.IDisposable  interface. A type that implements System.IDisposable  has the 
System.IDisposable.Dispose  method, which correctly frees resources. Well-written applications guarantee that System.IDisposable.Dispose  is called

promptly when any object that holds a limited resource is no longer needed. Fortunately, most .NET languages provide support to make this easier, and
F# is no exception. There are two useful language constructs that support the dispose pattern: the use  binding and the using  function.

The use  keyword has a form that resembles that of the let  binding:

use value = expression

It provides the same functionality as a let  binding but adds a call to Dispose  on the value when the value goes out of scope. Note that the compiler
inserts a null check on the value, so that if the value is null , the call to Dispose  is not attempted.

The following example shows how to close a file automatically by using the use  keyword.

You can use use  in computation expressions, in which case a customized version of the use  expression is used. For more information, see Sequences, Asynchronous
Workflows, and Computation Expressions.

The using  function has the following form:

using  (expression1) function-or-lambda

In a using  expression, expression1 creates the object that must be disposed. The result of expression1 (the object that must be disposed) becomes an
argument, value, to function-or-lambda, which is either a function that expects a single remaining argument of a type that matches the value produced
by expression1, or a lambda expression that expects an argument of that type. At the end of the execution of the function, the runtime calls Dispose  and
frees the resources (unless the value is null , in which case the call to Dispose is not attempted).

The following example demonstrates the using  expression with a lambda expression.

The next example shows the using  expression with a function.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/resource-management-the-use-keyword.md


let printToFile (file1 : System.IO.StreamWriter) =
    file1.WriteLine("Test output");

using (System.IO.File.CreateText("test.txt")) printToFile

let printToFile2 obj (file1 : System.IO.StreamWriter) =
    file1.WriteLine(obj.ToString())

using (System.IO.File.CreateText("test.txt")) (printToFile2 "XYZ")

See Also

Note that the function could be a function that has some arguments applied already. The following code example demonstrates this. It creates a file that
contains the string XYZ .

The using  function and the use  binding are nearly equivalent ways to accomplish the same thing. The using  keyword provides more control over
when Dispose  is called. When you use using , Dispose  is called at the end of the function or lambda expression; when you use the use  keyword, 
Dispose  is called at the end of the containing code block. In general, you should prefer to use use  instead of the using  function.

F# Language Reference



       

Namespaces
5/10/2018 • 4 minutes to read • Edit Online

Syntax
namespace [parent-namespaces.]identifier

Remarks

namespace Widgets

type MyWidget1 =
    member this.WidgetName = "Widget1"

module WidgetsModule =
    let widgetName = "Widget2"

module Widgets.WidgetModule

let widgetFunction x y =
   printfn "%A %A" x y

namespace Widgets

module WidgetModule =

    let widgetFunction x y =
        printfn "%A %A" x y

namespace Widgets

module WidgetModule1 =
   let widgetFunction x y =
      printfn "Module1 %A %A" x y
module WidgetModule2 =
   let widgetFunction x y =
      printfn "Module2 %A %A" x y

module useWidgets =

  do
     WidgetModule1.widgetFunction 10 20
     WidgetModule2.widgetFunction 5 6

A namespace lets you organize code into areas of related functionality by enabling you to attach a name to a grouping of program elements.

If you want to put code in a namespace, the first declaration in the file must declare the namespace. The contents of the entire file then become part of
the namespace.

Namespaces cannot directly contain values and functions. Instead, values and functions must be included in modules, and modules are included in
namespaces. Namespaces can contain types, modules.

Namespaces can be declared explicitly with the namespace keyword, or implicitly when declaring a module. To declare a namespace explicitly, use the
namespace keyword followed by the namespace name. The following example shows a code file that declares a namespace Widgets with a type and a
module included in that namespace.

If the entire contents of the file are in one module, you can also declare namespaces implicitly by using the module  keyword and providing the new
namespace name in the fully qualified module name. The following example shows a code file that declares a namespace Widgets  and a module 
WidgetsModule , which contains a function.

The following code is equivalent to the preceding code, but the module is a local module declaration. In that case, the namespace must appear on its
own line.

If more than one module is required in the same file in one or more namespaces, you must use local module declarations. When you use local module
declarations, you cannot use the qualified namespace in the module declarations. The following code shows a file that has a namespace declaration and
two local module declarations. In this case, the modules are contained directly in the namespace; there is no implicitly created module that has the same
name as the file. Any other code in the file, such as a do  binding, is in the namespace but not in the inner modules, so you need to qualify the module
member widgetFunction  by using the module name.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/namespaces.md


Module1 10 20
Module2 5 6

Nested Namespaces

namespace Outer

    // Full name: Outer.MyClass
    type MyClass() =
       member this.X(x) = x + 1

// Fully qualify any nested namespaces.
namespace Outer.Inner

    // Full name: Outer.Inner.MyClass
    type MyClass() =
       member this.Prop1 = "X"

Namespaces in Files and Assemblies

Global Namespace

namespace global

type SomeType() =
    member this.SomeMember = 0

global.System.Console.WriteLine("Hello World!")

Recursive namespaces

The output of this example is as follows.

For more information, see Modules.

When you create a nested namespace, you must fully qualify it. Otherwise, you create a new top-level namespace. Indentation is ignored in namespace
declarations.

The following example shows how to declare a nested namespace.

Namespaces can span multiple files in a single project or compilation. The term namespace fragment describes the part of a namespace that is included
in one file. Namespaces can also span multiple assemblies. For example, the System  namespace includes the whole .NET Framework, which spans
many assemblies and contains many nested namespaces.

You use the predefined namespace global  to put names in the .NET top-level namespace.

You can also use global to reference the top-level .NET namespace, for example, to resolve name conflicts with other namespaces.

F# 4.1 introduces the notion of namespaces which allow for all contained code to be mutually recursive. This is done via namespace rec . Use of 
namespace rec  can alleviate some pains in not being able to write mutually referential code between types and modules. The following is an example of

this:



namespace rec MutualReferences

type Orientation = Up | Down
type PeelState = Peeled | Unpeeled

// This exception depends on the type below.
exception DontSqueezeTheBananaException of Banana

type BananaPeel() = class end

type Banana(orientation : Orientation) =
    member val IsPeeled = false with get, set
    member val Orientation = orientation with get, set
    member val Sides: PeelState list = [ Unpeeled; Unpeeled; Unpeeled; Unpeeled] with get, set

    member self.Peel() = BananaHelpers.peel self // Note the dependency on the BananaHelpers module.
    member self.SqueezeJuiceOut() = raise (DontSqueezeTheBananaException self) // This member depends on the exception above.

module BananaHelpers =
    let peel (b: Banana) =
        let flip (banana: Banana) =
            match banana.Orientation with
            | Up -> 
                banana.Orientation <- Down
                banana
            | Down -> banana

        let peelSides (banana: Banana) =
            banana.Sides
            |> List.map (function
                         | Unpeeled -> Peeled
                         | Peeled -> Peeled)

        match b.Orientation with
        | Up ->   b |> flip |> peelSides
        | Down -> b |> peelSides

See Also

Note that the exception DontSqueezeTheBananaException  and the class Banana  both refer to each other. Additionally, the module BananaHelpers  and the
class Banana  also refer to each other. This would not be possible to express in F# if you removed the rec  keyword from the MutualReferences

namespace.

This feature is also available for top-level Modules in F# 4.1 or higher.

F# Language Reference

Modules

F# RFC FS-1009 - Allow mutually referential types and modules over larger scopes within files

https://github.com/fsharp/fslang-design/blob/master/FSharp-4.1/FS-1009-mutually-referential-types-and-modules-single-scope.md


          

Modules
5/25/2018 • 6 minutes to read • Edit Online

Syntax
// Top-level module declaration.
module [accessibility-modifier] [qualified-namespace.]module-name
declarations
// Local module declaration.
module [accessibility-modifier] module-name =
    declarations

Remarks

// In the file program.fs.
let x = 40

module Program
let x = 40

// In the file multiplemodules.fs.
// MyModule1
module MyModule1 =
    // Indent all program elements within modules that are declared with an equal sign.
    let module1Value = 100

    let module1Function x =
        x + 10

// MyModule2
module MyModule2 =

    let module2Value = 121

    // Use a qualified name to access the function.
    // from MyModule1.
    let module2Function x =
        x * (MyModule1.module1Function module2Value)

In the context of the F# language, a module is a grouping of F# code, such as values, types, and function values, in an F# program. Grouping code in
modules helps keep related code together and helps avoid name conflicts in your program.

An F# module is a grouping of F# code constructs such as types, values, function values, and code in do  bindings. It is implemented as a common
language runtime (CLR) class that has only static members. There are two types of module declarations, depending on whether the whole file is
included in the module: a top-level module declaration and a local module declaration. A top-level module declaration includes the whole file in the
module. A top-level module declaration can appear only as the first declaration in a file.

In the syntax for the top-level module declaration, the optional qualified-namespace is the sequence of nested namespace names that contains the
module. The qualified namespace does not have to be previously declared.

You do not have to indent declarations in a top-level module. You do have to indent all declarations in local modules. In a local module declaration, only
the declarations that are indented under that module declaration are part of the module.

If a code file does not begin with a top-level module declaration or a namespace declaration, the whole contents of the file, including any local modules,
becomes part of an implicitly created top-level module that has the same name as the file, without the extension, with the first letter converted to
uppercase. For example, consider the following file.

This file would be compiled as if it were written in this manner :

If you have multiple modules in a file, you must use a local module declaration for each module. If an enclosing namespace is declared, these modules
are part of the enclosing namespace. If an enclosing namespace is not declared, the modules become part of the implicitly created top-level module.
The following code example shows a code file that contains multiple modules. The compiler implicitly creates a top-level module named 
Multiplemodules , and MyModule1  and MyModule2  are nested in that top-level module.

If you have multiple files in a project or in a single compilation, or if you are building a library, you must include a namespace declaration or module
declaration at the top of the file. The F# compiler only determines a module name implicitly when there is only one file in a project or compilation
command line, and you are creating an application.

The accessibility-modifier can be one of the following: public , private , internal . For more information, see Access Control. The default is public.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/modules.md


Referencing Code in Modules

module Arithmetic

let add x y =
    x + y

let sub x y =
    x - y

// Fully qualify the function name.
let result1 = Arithmetic.add 5 9
// Open the module.
open Arithmetic
let result2 = add 5 9

Nested Modules

module Y =
    let x = 1

    module Z =
        let z = 5

module Y =
    let x = 1

module Z =
    let z = 5

module Y =
        let x = 1

    module Z =
        let z = 5

// This code produces a warning, but treats Z as a inner module.
module Y =
module Z =
    let z = 5

module Y =
    module Z =
        let z = 5

When you reference functions, types, and values from another module, you must either use a qualified name or open the module. If you use a qualified
name, you must specify the namespaces, the module, and the identifier for the program element you want. You separate each part of the qualified path
with a dot (.), as follows.

Namespace1.Namespace2.ModuleName.Identifier

You can open the module or one or more of the namespaces to simplify the code. For more information about opening namespaces and modules, see
Import Declarations: The open  Keyword.

The following code example shows a top-level module that contains all the code up to the end of the file.

To use this code from another file in the same project, you either use qualified names or you open the module before you use the functions, as shown in
the following examples.

Modules can be nested. Inner modules must be indented as far as outer module declarations to indicate that they are inner modules, not new modules.
For example, compare the following two examples. Module Z  is an inner module in the following code.

But module Z  is a sibling to module Y  in the following code.

Module Z  is also a sibling module in the following code, because it is not indented as far as other declarations in module Y .

Finally, if the outer module has no declarations and is followed immediately by another module declaration, the new module declaration is assumed to
be an inner module, but the compiler will warn you if the second module definition is not indented farther than the first.

To eliminate the warning, indent the inner module.

If you want all the code in a file to be in a single outer module and you want inner modules, the outer module does not require the equal sign, and the
declarations, including any inner module declarations, that will go in the outer module do not have to be indented. Declarations inside the inner module



// The top-level module declaration can be omitted if the file is named
// TopLevel.fs or topLevel.fs, and the file is the only file in an
// application.
module TopLevel

let topLevelX = 5

module Inner1 =
    let inner1X = 1
module Inner2 =
    let inner2X = 5

Recursive modules

module rec RecursiveModule =
    type Orientation = Up | Down
    type PeelState = Peeled | Unpeeled

    // This exception depends on the type below.
    exception DontSqueezeTheBananaException of Banana

    type BananaPeel() = class end

    type Banana(orientation : Orientation) =
        member val IsPeeled = false with get, set
        member val Orientation = orientation with get, set
        member val Sides: PeelState list = [ Unpeeled; Unpeeled; Unpeeled; Unpeeled] with get, set

        member self.Peel() = BananaHelpers.peel self // Note the dependency on the BananaHelpers module.
        member self.SqueezeJuiceOut() = raise (DontSqueezeTheBananaException self) // This member depends on the exception above.

    module BananaHelpers =
        let peel (b: Banana) =
            let flip (banana: Banana) =
                match banana.Orientation with
                | Up -> 
                    banana.Orientation <- Down
                    banana
                | Down -> banana

            let peelSides (banana: Banana) =
                banana.Sides
                |> List.map (function
                             | Unpeeled -> Peeled
                             | Peeled -> Peeled)

            match b.Orientation with
            | Up ->   b |> flip |> peelSides
            | Down -> b |> peelSides

See also

declarations do have to be indented. The following code shows this case.

F# 4.1 introduces the notion of modules which allow for all contained code to be mutually recursive. This is done via module rec . Use of module rec

can alleviate some pains in not being able to write mutually referential code between types and modules. The following is an example of this:

Note that the exception DontSqueezeTheBananaException  and the class Banana  both refer to each other. Additionally, the module BananaHelpers  and the
class Banana  also refer to each other. This would not be possible to express in F# if you removed the rec  keyword from the RecursiveModule  module.

This capability is also possible in Namespaces with F# 4.1.

F# Language Reference
Namespaces
F# RFC FS-1009 - Allow mutually referential types and modules over larger scopes within files

https://github.com/fsharp/fslang-design/blob/master/FSharp-4.1/FS-1009-mutually-referential-types-and-modules-single-scope.md


   

Import Declarations: The open  Keyword
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Syntax
open module-or-namespace-name

Remarks

// Without the import declaration, you must include the full
// path to .NET Framework namespaces such as System.IO.
let writeToFile1 filename (text: string) =
  let stream1 = new System.IO.FileStream(filename, System.IO.FileMode.Create)
  let writer = new System.IO.StreamWriter(stream1)
  writer.WriteLine(text)

// Open a .NET Framework namespace.
open System.IO

// Now you do not have to include the full paths.
let writeToFile2 filename (text: string) =
  let stream1 = new FileStream(filename, FileMode.Create)
  let writer = new StreamWriter(stream1)
  writer.WriteLine(text)

writeToFile2 "file1.txt" "Testing..."

open List
open Seq
printfn "%A" empty

Namespaces That Are Open by Default

NAMESPACE DESCRIPTION

Microsoft.FSharp.Core Contains basic F# type definitions for built-in types such as int  and float .

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

An import declaration specifies a module or namespace whose elements you can reference without using a fully qualified name.

Referencing code by using the fully qualified namespace or module path every time can create code that is hard to write, read, and maintain. Instead,
you can use the open  keyword for frequently used modules and namespaces so that when you reference a member of that module or namespace, you
can use the short form of the name instead of the fully qualified name. This keyword is similar to the using  keyword in C#, using namespace  in Visual
C++, and Imports  in Visual Basic.

The module or namespace provided must be in the same project or in a referenced project or assembly. If it is not, you can add a reference to the
project, or use the -reference  command - line option (or its abbreviation, -r ). For more information, see Compiler Options.

The import declaration makes the names available in the code that follows the declaration, up to the end of the enclosing namespace, module, or file.

When you use multiple import declarations, they should appear on separate lines.

The following code shows the use of the open  keyword to simplify code.

The F# compiler does not emit an error or warning when ambiguities occur when the same name occurs in more than one open module or namespace.
When ambiguities occur, F# gives preference to the more recently opened module or namespace. For example, in the following code, empty  means 
Seq.empty , even though empty  is located in both the List  and Seq  modules.

Therefore, be careful when you open modules or namespaces such as List  or Seq  that contain members that have identical names; instead, consider
using the qualified names. You should avoid any situation in which the code is dependent upon the order of the import declarations.

Some namespaces are so frequently used in F# code that they are opened implicitly without the need of an explicit import declaration. The following
table shows the namespaces that are open by default.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/import-declarations-the-open-keyword.md


Microsoft.FSharp.Core.Operators Contains basic arithmetic operations such as +  and * .

Microsoft.FSharp.Collections Contains immutable collection classes such as List  and Array .

Microsoft.FSharp.Control Contains types for control constructs such as lazy evaluation and asynchronous
workflows.

Microsoft.FSharp.Text Contains functions for formatted IO, such as the printf  function.

NAMESPACE DESCRIPTION

AutoOpen Attribute

RequireQualifiedAccess Attribute

See Also

You can apply the AutoOpen  attribute to an assembly if you want to automatically open a namespace or module when the assembly is referenced. You
can also apply the AutoOpen  attribute to a module to automatically open that module when the parent module or namespace is opened. For more
information, see Core.AutoOpenAttribute Class.

Some modules, records, or union types may specify the RequireQualifiedAccess  attribute. When you reference elements of those modules, records, or
unions, you must use a qualified name regardless of whether you include an import declaration. If you use this attribute strategically on types that
define commonly used names, you help avoid name collisions and thereby make code more resilient to changes in libraries. For more information, see
Core.RequireQualifiedAccessAttribute Class.

# Language Reference

Namespaces

Modules

https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.autoopenattribute-class-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.requirequalifiedaccessattribute-class-%5Bfsharp%5D


 

Signatures
6/19/2018 • 4 minutes to read • Edit Online

Remarks

ATTRIBUTE DESCRIPTION

[<Sealed>] For a type that has no abstract members, or that should not be extended.

[<Interface>] For a type that is an interface.

A signature file contains information about the public signatures of a set of F# program elements, such as types, namespaces, and modules. It can be
used to specify the accessibility of these program elements.

For each F# code file, you can have a signature file, which is a file that has the same name as the code file but with the extension .fsi instead of .fs.
Signature files can also be added to the compilation command-line if you are using the command line directly. To distinguish between code files and
signature files, code files are sometimes referred to as implementation files. In a project, the signature file should precede the associated code file.

A signature file describes the namespaces, modules, types, and members in the corresponding implementation file. You use the information in a
signature file to specify what parts of the code in the corresponding implementation file can be accessed from code outside the implementation file, and
what parts are internal to the implementation file. The namespaces, modules, and types that are included in the signature file must be a subset of the
namespaces, modules, and types that are included in the implementation file. With some exceptions noted later in this topic, those language elements
that are not listed in the signature file are considered private to the implementation file. If no signature file is found in the project or command line, the
default accessibility is used.

For more information about the default accessibility, see Access Control.

In a signature file, you do not repeat the definition of the types and the implementations of each method or function. Instead, you use the signature for
each method and function, which acts as a complete specification of the functionality that is implemented by a module or namespace fragment. The
syntax for a type signature is the same as that used in abstract method declarations in interfaces and abstract classes, and is also shown by IntelliSense
and by the F# interpreter fsi.exe when it displays correctly compiled input.

If there is not enough information in the type signature to indicate whether a type is sealed, or whether it is an interface type, you must add an attribute
that indicates the nature of the type to the compiler. Attributes that you use for this purpose are described in the following table.

The compiler produces an error if the attributes are not consistent between the signature and the declaration in the implementation file.

Use the keyword val  to create a signature for a value or function value. The keyword type  introduces a type signature.

You can generate a signature file by using the --sig  compiler option. Generally, you do not write .fsi files manually. Instead, you generate .fsi files by
using the compiler, add them to your project, if you have one, and edit them by removing methods and functions that you do not want to be accessible.

There are several rules for type signatures:

Type abbreviations in an implementation file must not match a type without an abbreviation in a signature file.

Records and discriminated unions must expose either all or none of their fields and constructors, and the order in the signature must match the
order in the implementation file. Classes can reveal some, all, or none of their fields and methods in the signature.

Classes and structures that have constructors must expose the declarations of their base classes (the inherits  declaration). Also, classes and
structures that have constructors must expose all of their abstract methods and interface declarations.

Interface types must reveal all their methods and interfaces.

The rules for value signatures are as follows:

Modifiers for accessibility ( public , internal , and so on) and the inline  and mutable  modifiers in the signature must match those in the
implementation.

The number of generic type parameters (either implicitly inferred or explicitly declared) must match, and the types and type constraints in generic
type parameters must match.

If the Literal  attribute is used, it must appear in both the signature and the implementation, and the same literal value must be used for both.

The pattern of parameters (also known as the arity) of signatures and implementations must be consistent.

If parameter names in a signature file differ from the corresponding implementation file, the name in the signature file will be used instead,
which may cause issues when debugging or profiling. If you wish to be notified of such mismatches, enable warning 3218 in your project file or
when invoking the compiler (see --warnon  under Compiler Options).

The following code example shows an example of a signature file that has namespace, module, function value, and type signatures together with the
appropriate attributes. It also shows the corresponding implementation file.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/signature-files.md


// Module1.fsi

namespace Library1
  module Module1 =
    val function1 : int -> int
    type Type1 =
        new : unit -> Type1
        member method1 : unit -> unit
        member method2 : unit -> unit

    [<Sealed>]
    type Type2 =
        new : unit -> Type2
        member method1 : unit -> unit
        member method2 : unit -> unit

    [<Interface>]
    type InterfaceType1 =
        abstract member method1 : int -> int
        abstract member method2 : string -> unit

namespace Library1

module Module1 =

    let function1 x = x + 1

    type Type1() =
        member type1.method1() =
            printfn "type1.method1"
        member type1.method2() =
            printfn "type1.method2"

    [<Sealed>]
    type Type2() =
        member type2.method1() =
            printfn "type2.method1"
        member type2.method2() =
            printfn "type2.method2"

    [<Interface>]
    type InterfaceType1 =
        abstract member method1 : int -> int
        abstract member method2 : string -> unit

See Also

The following code shows the implementation file.

F# Language Reference

Access Control

Compiler Options



      

Units of Measure
5/4/2018 • 7 minutes to read • Edit Online

Syntax
[<Measure>] type unit-name [ = measure ]

Remarks

[<Measure>] type cm

[<Measure>] type ml = cm^3

1.0<cm>
55.0<miles/hour>

// The f indicates single-precision floating point.
55.0f<miles/hour>

let convertg2kg (x : float<g>) = x / 1000.0<g/kg>

Floating point and signed integer values in F# can have associated units of measure, which are typically used to indicate length, volume, mass, and so
on. By using quantities with units, you enable the compiler to verify that arithmetic relationships have the correct units, which helps prevent
programming errors.

The previous syntax defines unit-name as a unit of measure. The optional part is used to define a new measure in terms of previously defined units. For
example, the following line defines the measure cm  (centimeter).

The following line defines the measure ml  (milliliter) as a cubic centimeter ( cm^3 ).

In the previous syntax, measure is a formula that involves units. In formulas that involve units, integral powers are supported (positive and negative),
spaces between units indicate a product of the two units, *  also indicates a product of units, and /  indicates a quotient of units. For a reciprocal unit,
you can either use a negative integer power or a /  that indicates a separation between the numerator and denominator of a unit formula. Multiple
units in the denominator should be surrounded by parentheses. Units separated by spaces after a /  are interpreted as being part of the denominator,
but any units following a *  are interpreted as being part of the numerator.

You can use 1 in unit expressions, either alone to indicate a dimensionless quantity, or together with other units, such as in the numerator. For example,
the units for a rate would be written as 1/s , where s  indicates seconds. Parentheses are not used in unit formulas. You do not specify numeric
conversion constants in the unit formulas; however, you can define conversion constants with units separately and use them in unit-checked
computations.

Unit formulas that mean the same thing can be written in various equivalent ways. Therefore, the compiler converts unit formulas into a consistent
form, which converts negative powers to reciprocals, groups units into a single numerator and a denominator, and alphabetizes the units in the
numerator and denominator.

For example, the unit formulas kg m s^-2  and m /s s * kg  are both converted to kg m/s^2 .

You use units of measure in floating point expressions. Using floating point numbers together with associated units of measure adds another level of
type safety and helps avoid the unit mismatch errors that can occur in formulas when you use weakly typed floating point numbers. If you write a
floating point expression that uses units, the units in the expression must match.

You can annotate literals with a unit formula in angle brackets, as shown in the following examples.

You do not put a space between the number and the angle bracket; however, you can include a literal suffix such as f , as in the following example.

Such an annotation changes the type of the literal from its primitive type (such as float ) to a dimensioned type, such as float<cm>  or, in this case, 
float<miles/hour> . A unit annotation of <1>  indicates a dimensionless quantity, and its type is equivalent to the primitive type without a unit

parameter.

The type of a unit of measure is a floating point or signed integral type together with an extra unit annotation, indicated in brackets. Thus, when you
write the type of a conversion from g  (grams) to kg  (kilograms), you describe the types as follows.

Units of measure are used for compile-time unit checking but are not persisted in the run-time environment. Therefore, they do not affect performance.

Units of measure can be applied to any type, not just floating point types; however, only floating point types, signed integral types, and decimal types

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/units-of-measure.md


// Mass, grams.
[<Measure>] type g
// Mass, kilograms.
[<Measure>] type kg
// Weight, pounds.
[<Measure>] type lb

// Distance, meters.
[<Measure>] type m
// Distance, cm
[<Measure>] type cm

// Distance, inches.
[<Measure>] type inch
// Distance, feet
[<Measure>] type ft

// Time, seconds.
[<Measure>] type s

// Force, Newtons.
[<Measure>] type N = kg m / s

// Pressure, bar.
[<Measure>] type bar
// Pressure, Pascals
[<Measure>] type Pa = N / m^2

// Volume, milliliters.
[<Measure>] type ml
// Volume, liters.
[<Measure>] type L

// Define conversion constants.
let gramsPerKilogram : float<g kg^-1> = 1000.0<g/kg>
let cmPerMeter : float<cm/m> = 100.0<cm/m>
let cmPerInch : float<cm/inch> = 2.54<cm/inch>

let mlPerCubicCentimeter : float<ml/cm^3> = 1.0<ml/cm^3>
let mlPerLiter : float<ml/L> = 1000.0<ml/L>

// Define conversion functions.
let convertGramsToKilograms (x : float<g>) = x / gramsPerKilogram
let convertCentimetersToInches (x : float<cm>) = x / cmPerInch

[<Measure>] type degC // temperature, Celsius/Centigrade
[<Measure>] type degF // temperature, Fahrenheit

let convertCtoF ( temp : float<degC> ) = 9.0<degF> / 5.0<degC> * temp + 32.0<degF>
let convertFtoC ( temp: float<degF> ) = 5.0<degC> / 9.0<degF> * ( temp - 32.0<degF>)

// Define conversion functions from dimensionless floating point values.
let degreesFahrenheit temp = temp * 1.0<degF>
let degreesCelsius temp = temp * 1.0<degC>

printfn "Enter a temperature in degrees Fahrenheit."
let input = System.Console.ReadLine()
let parsedOk, floatValue = System.Double.TryParse(input)
if parsedOk
   then
      printfn "That temperature in Celsius is %8.2f degrees C." ((convertFtoC (degreesFahrenheit floatValue))/(1.0<degC>))
   else
      printfn "Error parsing input."

Enter a temperature in degrees Fahrenheit.
90
That temperature in degrees Celsius is    32.22.

support dimensioned quantities. Therefore, it only makes sense to use units of measure on the primitive types and on aggregates that contain these
primitive types.

The following example illustrates the use of units of measure.

The following code example illustrates how to convert from a dimensionless floating point number to a dimensioned floating point value. You just
multiply by 1.0, applying the dimensions to the 1.0. You can abstract this into a function like degreesFahrenheit .

Also, when you pass dimensioned values to functions that expect dimensionless floating point numbers, you must cancel out the units or cast to float

by using the float  operator. In this example, you divide by 1.0<degC>  for the arguments to printf  because printf  expects dimensionless quantities.

The following example session shows the outputs from and inputs to this code.



Using Generic Units

// Distance, meters.
[<Measure>] type m
// Time, seconds.
[<Measure>] type s

let genericSumUnits ( x : float<'u>) (y: float<'u>) = x + y

let v1 = 3.1<m/s>
let v2 = 2.7<m/s>
let x1 = 1.2<m>
let t1 = 1.0<s>

// OK: a function that has unit consistency checking.
let result1 = genericSumUnits v1 v2
// Error reported: mismatched units.
// Uncomment to see error.
// let result2 = genericSumUnits v1 x1

Creating Aggregate Types with Generic Units

 // Distance, meters.
[<Measure>] type m
// Time, seconds.
[<Measure>] type s

// Define a vector together with a measure type parameter.
// Note the attribute applied to the type parameter.
type vector3D<[<Measure>] 'u> = { x : float<'u>; y : float<'u>; z : float<'u>}

// Create instances that have two different measures.
// Create a position vector.
let xvec : vector3D<m> = { x = 0.0<m>; y = 0.0<m>; z = 0.0<m> }
// Create a velocity vector.
let v1vec : vector3D<m/s> = { x = 1.0<m/s>; y = -1.0<m/s>; z = 0.0<m/s> }

Units at Runtime

Conversions

[<Measure>]
type cm
let length = 12.0<cm>
let x = float length

open Microsoft.FSharp.Core
let height:float<cm> = LanguagePrimitives.FloatWithMeasure x

Units of Measure in the F# Power Pack

You can write generic functions that operate on data that has an associated unit of measure. You do this by specifying a type together with a generic unit
as a type parameter, as shown in the following code example.

The following code shows how to create an aggregate type that consists of individual floating point values that have units that are generic. This enables
a single type to be created that works with a variety of units. Also, generic units preserve type safety by ensuring that a generic type that has one set of
units is a different type than the same generic type with a different set of units. The basis of this technique is that the Measure  attribute can be applied to
the type parameter.

Units of measure are used for static type checking. When floating point values are compiled, the units of measure are eliminated, so the units are lost at
run time. Therefore, any attempt to implement functionality that depends on checking the units at run time is not possible. For example, implementing a
ToString  function to print out the units is not possible.

To convert a type that has units (for example, float<'u> ) to a type that does not have units, you can use the standard conversion function. For example,
you can use float  to convert to a float  value that does not have units, as shown in the following code.

To convert a unitless value to a value that has units, you can multiply by a 1 or 1.0 value that is annotated with the appropriate units. However, for
writing interoperability layers, there are also some explicit functions that you can use to convert unitless values to values with units. These are in the
Microsoft.FSharp.Core.LanguagePrimitives module. For example, to convert from a unitless float  to a float<cm> , use FloatWithMeasure, as shown in
the following code.

A unit library is available in the F# PowerPack. The unit library includes SI units and physical constants.

https://msdn.microsoft.com/library/69d08ac5-5d51-4c20-bf1e-850fd312ece3
https://msdn.microsoft.com/library/69520bc7-d67b-46b8-9004-7cac9646b8d9


See Also
F# Language Reference



     

XML Documentation
5/4/2018 • 3 minutes to read • Edit Online

Generating Documentation from Comments

Recommended Tags

TAG SYNTAX DESCRIPTION

<c>text</c> Specifies that text is code. This tag can be used by documentation generators to
display text in a font that is appropriate for code.

<summary>text</summary> Specifies that text is a brief description of the program element. The description is
usually one or two sentences.

<remarks>text</remarks> Specifies that text contains supplementary information about the program element.

<param name="name">description</param> Specifies the name and description for a function or method parameter.

<typeparam name="name">description</typeparam> Specifies the name and description for a type parameter.

<returns>text</returns> Specifies that text describes the return value of a function or method.

<exception cref="type">description</exception> Specifies the type of exception that can be generated and the circumstances under
which it is thrown.

<see cref="reference">text</see> Specifies an inline link to another program element. The reference is the name as it
appears in the XML documentation file. The text is the text shown in the link.

<seealso cref="reference"/> Specifies a See Also link to the documentation for another type. The reference is the
name as it appears in the XML documentation file. See Also links usually appear at
the bottom of a documentation page.

<para>text</para> Specifies a paragraph of text. This is used to separate text inside the remarks tag.

Example
DescriptionDescription

CodeCode

/// <summary>Builds a new string whose characters are the results of applying the function <c>mapping</c>
/// to each of the characters of the input string and concatenating the resulting
/// strings.</summary>
/// <param name="mapping">The function to produce a string from each character of the input string.</param>
///<param name="str">The input string.</param>
///<returns>The concatenated string.</returns>
///<exception cref="System.ArgumentNullException">Thrown when the input string is null.</exception>
val collect : (char -> string) -> string -> string

You can produce documentation from triple-slash (///) code comments in F#. XML comments can precede declarations in code files (.fs) or signature
(.fsi) files.

The support in F# for generating documentation from comments is the same as that in other .NET Framework languages. As in other .NET Framework
languages, the -doc compiler option enables you to produce an XML file that contains information that you can convert into documentation by using a
tool such as Sandcastle. The documentation generated by using tools that are designed for use with assemblies that are written in other .NET
Framework languages generally produce a view of the APIs that is based on the compiled form of F# constructs. Unless tools specifically support F#,
documentation generated by these tools does not match the F# view of an API.

For more information about how to generate documentation from XML, see XML Documentation Comments (C# Programming Guide).

There are two ways to write XML documentation comments. One is to just write the documentation directly in a triple-slash comment, without using
XML tags. If you do this, the entire comment text is taken as the summary documentation for the code construct that immediately follows. Use this
method when you want to write only a brief summary for each construct. The other method is to use XML tags to provide more structured
documentation. The second method enables you to specify separate notes for a short summary, additional remarks, documentation for each parameter
and type parameter and exceptions thrown, and a description of the return value. The following table describes XML tags that are recognized in F# XML
code comments.

The following is a typical XML documentation comment in a signature file.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/xml-documentation.md
https://msdn.microsoft.com/library/434394ae-0d4a-459c-a684-bffede519a04
https://msdn.microsoft.com/library/b2s063f7


Example
DescriptionDescription

CodeCode

/// Creates a new string whose characters are the result of applying
/// the function mapping to each of the characters of the input string
/// and concatenating the resulting strings.
val collect : (char -> string) -> string -> string

See Also

The following example shows the alternative method, without XML tags. In this example, the entire text in the comment is considered a summary. Note
that if you do not specify a summary tag explicitly, you should not specify other tags, such as param or returns tags.

F# Language Reference

Compiler Options



  

Lazy Computations
5/4/2018 • 2 minutes to read • Edit Online

Syntax
let identifier = lazy ( expression )

Remarks

let x = 10
let result = lazy (x + 10)
printfn "%d" (result.Force())

See Also

Lazy computations are computations that are not evaluated immediately, but are instead evaluated when the result is needed. This can help to improve
the performance of your code.

In the previous syntax, expression is code that is evaluated only when a result is required, and identifier is a value that stores the result. The value is of
type Lazy<'T> , where the actual type that is used for 'T  is determined from the result of the expression.

Lazy computations enable you to improve performance by restricting the execution of a computation to only those situations in which a result is
needed.

To force the computation to be performed, you call the method Force . Force  causes the execution to be performed only one time. Subsequent calls to 
Force  return the same result, but do not execute any code.

The following code illustrates the use of lazy computation and the use of Force . In this code, the type of result  is Lazy<int> , and the Force  method
returns an int .

Lazy evaluation, but not the Lazy  type, is also used for sequences. For more information, see Sequences.

F# Language Reference

LazyExtensions module

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/lazy-computations.md
https://msdn.microsoft.com/library/b29d0af5-6efb-4a55-a278-2662a4ecc489
https://msdn.microsoft.com/library/86671f40-84a0-402a-867d-ae596218d948


               

Computation Expressions
7/13/2018 • 10 minutes to read • Edit Online

Built-in Workflows

builder-name { expression }

Creating a New Type of Computation Expression

METHOD TYPICAL SIGNATURE(S) DESCRIPTION

Bind M<'T> * ('T -> M<'U>) -> M<'U> Called for let!  and do!  in computation
expressions.

Delay (unit -> M<'T>) -> M<'T> Wraps a computation expression as a function.

Return 'T -> M<'T> Called for return  in computation expressions.

ReturnFrom M<'T> -> M<'T> Called for return!  in computation expressions.

Run M<'T> -> M<'T>  or

M<'T> -> 'T

Executes a computation expression.

Combine M<'T> * M<'T> -> M<'T>  or

M<unit> * M<'T> -> M<'T>

Called for sequencing in computation expressions.

For seq<'T> * ('T -> M<'U>) -> M<'U>  or

seq<'T> * ('T -> M<'U>) -> seq<M<'U>>

Called for for...do  expressions in computation
expressions.

TryFinally M<'T> * (unit -> unit) -> M<'T> Called for try...finally  expressions in
computation expressions.

TryWith M<'T> * (exn -> M<'T>) -> M<'T> Called for try...with  expressions in computation
expressions.

Using 'T * ('T -> M<'U>) -> M<'U> when 'U :>
IDisposable

Called for use  bindings in computation expressions.

Computation expressions in F# provide a convenient syntax for writing computations that can be sequenced and combined using control flow
constructs and bindings. They can be used to provide a convenient syntax for monads, a functional programming feature that can be used to manage
data, control, and side effects in functional programs.

Sequence expressions are an example of a computation expression, as are asynchronous workflows and query expressions. For more information, see
Sequences, Asynchronous Workflows, and Query Expressions.

Certain features are common to both sequence expressions and asynchronous workflows and illustrate the basic syntax for a computation expression:

The previous syntax specifies that the given expression is a computation expression of a type specified by builder-name. The computation expression
can be a built-in workflow, such as seq  or async , or it can be something you define. The builder-name is the identifier for an instance of a special type
known as the builder type. The builder type is a class type that defines special methods that govern the way the fragments of the computation
expression are combined, that is, code that controls how the expression executes. Another way to describe a builder class is to say that it enables you to
customize the operation of many F# constructs, such as loops and bindings.

In computation expressions, two forms are available for some common language constructs. You can invoke the variant constructs by using a ! (bang)
suffix on certain keywords, such as let! , do! , and so on. These special forms cause certain functions defined in the builder class to replace the
ordinary built-in behavior of these operations. These forms resemble the yield!  form of the yield  keyword that is used in sequence expressions. For
more information, see Sequences.

You can define the characteristics of your own computation expressions by creating a builder class and defining certain special methods on the class.
The builder class can optionally define the methods as listed in the following table.

The following table describes methods that can be used in a workflow builder class.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/computation-expressions.md


While (unit -> bool) * M<'T> -> M<'T> Called for while...do  expressions in computation
expressions.

Yield 'T -> M<'T> Called for yield  expressions in computation
expressions.

YieldFrom M<'T> -> M<'T> Called for yield!  expressions in computation
expressions.

Zero unit -> M<'T> Called for empty else  branches of if...then

expressions in computation expressions.

METHOD TYPICAL SIGNATURE(S) DESCRIPTION

builder.Run(builder.Delay(fun () -> {| cexpr |}))

EXPRESSION TRANSLATION

{| let binding in cexpr |} let binding in {| cexpr |}

{| let! pattern = expr in cexpr |} builder.Bind(expr, (fun pattern -> {| cexpr |}))

{| do! expr in cexpr |} builder.Bind(expr, (fun () -> {| cexpr |}))

{| yield expr |} builder.Yield(expr)

{| yield! expr |} builder.YieldFrom(expr)

{| return expr |} builder.Return(expr)

{| return! expr |} builder.ReturnFrom(expr)

{| use pattern = expr in cexpr |} builder.Using(expr, (fun pattern -> {| cexpr |}))

{| use! value = expr in cexpr |} builder.Bind(expr, (fun value -> builder.Using(value, (fun value -> {|
cexpr |}))))

{| if expr then cexpr0 |} if expr then {| cexpr0 |} else binder.Zero()

{| if expr then cexpr0 else cexpr1 |} if expr then {| cexpr0 |} else {| cexpr1 |}

{| match expr with | pattern_i -> cexpr_i |} match expr with | pattern_i -> {| cexpr_i |}

{| for pattern in expr do cexpr |} builder.For(enumeration, (fun pattern -> {| cexpr |}))

{| for identifier = expr1 to expr2 do cexpr |} builder.For(enumeration, (fun identifier -> {| cexpr |}))

{| while expr do cexpr |} builder.While(fun () -> expr), builder.Delay({|cexpr |})

{| try cexpr with | pattern_i -> expr_i |} builder.TryWith(builder.Delay({| cexpr |}), (fun value -> match value
with | pattern_i -> expr_i | exn -> reraise exn)))

{| try cexpr finally expr |} builder.TryFinally(builder.Delay( {| cexpr |}), (fun () -> expr))

{| cexpr1; cexpr2 |} builder.Combine({|cexpr1 |}, {| cexpr2 |})

Many of the methods in a builder class use and return an M<'T>  construct, which is typically a separately defined type that characterizes the kind of
computations being combined, for example, Async<'T>  for asynchronous workflows and Seq<'T>  for sequence workflows. The signatures of these
methods enable them to be combined and nested with each other, so that the workflow object returned from one construct can be passed to the next.
The compiler, when it parses a computation expression, converts the expression into a series of nested function calls by using the methods in the
preceding table and the code in the computation expression.

The nested expression is of the following form:

In the above code, the calls to Run  and Delay  are omitted if they are not defined in the computation expression builder class. The body of the
computation expression, here denoted as {| cexpr |} , is translated into calls involving the methods of the builder class by the translations described in
the following table. The computation expression {| cexpr |}  is defined recursively according to these translations where expr  is an F# expression and
cexpr  is a computation expression.



{| other-expr; cexpr |} expr; {| cexpr |}

{| other-expr |} expr; builder.Zero()

EXPRESSION TRANSLATION

// Computations that can be run step by step
type Eventually<'T> =
    | Done of 'T
    | NotYetDone of (unit -> Eventually<'T>)

module Eventually =
    // The bind for the computations. Append 'func' to the
    // computation.
    let rec bind func expr =
        match expr with
        | Done value -> NotYetDone (fun () -> func value)
        | NotYetDone work -> NotYetDone (fun () -> bind func (work()))

    // Return the final value wrapped in the Eventually type.
    let result value = Done value

    type OkOrException<'T> =
        | Ok of 'T
        | Exception of System.Exception

    // The catch for the computations. Stitch try/with throughout
    // the computation, and return the overall result as an OkOrException.
    let rec catch expr =
        match expr with
        | Done value -> result (Ok value)
        | NotYetDone work ->
            NotYetDone (fun () ->
                let res = try Ok(work()) with | exn -> Exception exn
                match res with
                | Ok cont -> catch cont // note, a tailcall
                | Exception exn -> result (Exception exn))

    // The delay operator.
    let delay func = NotYetDone (fun () -> func())

    // The stepping action for the computations.
    let step expr =
        match expr with
        | Done _ -> expr
        | NotYetDone func -> func ()

    // The rest of the operations are boilerplate.
    // The tryFinally operator.
    // This is boilerplate in terms of "result", "catch", and "bind".
    let tryFinally expr compensation =
        catch (expr)
        |> bind (fun res -> 
            compensation();
            match res with
            | Ok value -> result value
            | Exception exn -> raise exn)

    // The tryWith operator.
    // This is boilerplate in terms of "result", "catch", and "bind".
    let tryWith exn handler =
        catch exn
        |> bind (function Ok value -> result value | Exception exn -> handler exn)

    // The whileLoop operator.
    // This is boilerplate in terms of "result" and "bind".
    let rec whileLoop pred body =
        if pred() then body |> bind (fun _ -> whileLoop pred body)
        else result ()

    // The sequential composition operator.
    // This is boilerplate in terms of "result" and "bind".
    let combine expr1 expr2 =
        expr1 |> bind (fun () -> expr2)

    // The using operator.

In the previous table, other-expr  describes an expression that is not otherwise listed in the table. A builder class does not need to implement all of the
methods and support all of the translations listed in the previous table. Those constructs that are not implemented are not available in computation
expressions of that type. For example, if you do not want to support the use  keyword in your computation expressions, you can omit the definition of 
Use  in your builder class.

The following code example shows a computation expression that encapsulates a computation as a series of steps that can be evaluated one step at a
time. A discriminated union type, OkOrException , encodes the error state of the expression as evaluated so far. This code demonstrates several typical
patterns that you can use in your computation expressions, such as boilerplate implementations of some of the builder methods.



    // The using operator.
    let using (resource: #System.IDisposable) func =
        tryFinally (func resource) (fun () -> resource.Dispose())

    // The forLoop operator.
    // This is boilerplate in terms of "catch", "result", and "bind".
    let forLoop (collection:seq<_>) func =
        let ie = collection.GetEnumerator()
        tryFinally 
            (whileLoop 
                (fun () -> ie.MoveNext()) 
                (delay (fun () -> let value = ie.Current in func value)))
            (fun () -> ie.Dispose())

// The builder class.
type EventuallyBuilder() =
    member x.Bind(comp, func) = Eventually.bind func comp
    member x.Return(value) = Eventually.result value
    member x.ReturnFrom(value) = value
    member x.Combine(expr1, expr2) = Eventually.combine expr1 expr2
    member x.Delay(func) = Eventually.delay func
    member x.Zero() = Eventually.result ()
    member x.TryWith(expr, handler) = Eventually.tryWith expr handler
    member x.TryFinally(expr, compensation) = Eventually.tryFinally expr compensation
    member x.For(coll:seq<_>, func) = Eventually.forLoop coll func
    member x.Using(resource, expr) = Eventually.using resource expr

let eventually = new EventuallyBuilder()

let comp = eventually {
    for x in 1..2 do
        printfn " x = %d" x
    return 3 + 4 }

// Try the remaining lines in F# interactive to see how this 
// computation expression works in practice.
let step x = Eventually.step x

// returns "NotYetDone <closure>"
comp |> step

// prints "x = 1"
// returns "NotYetDone <closure>"
comp |> step |> step

// prints "x = 1"
// prints "x = 2"
// returns "NotYetDone <closure>"
comp |> step |> step |> step |> step |> step |> step

// prints "x = 1"
// prints "x = 2"
// returns "Done 7"
comp |> step |> step |> step |> step |> step |> step |> step |> step

Custom Operations

Extending existing Builders with new Custom OperationsExtending existing Builders with new Custom Operations

type Microsoft.FSharp.Linq.QueryBuilder with

    [<CustomOperation("existsNot")>]
    member __.ExistsNot (source: QuerySource<'T, 'Q>, predicate) =
        Enumerable.Any (source.Source, Func<_,_>(predicate)) |> not

A computation expression has an underlying type, which the expression returns. The underlying type may represent a computed result or a delayed
computation that can be performed, or it may provide a way to iterate through some type of collection. In the previous example, the underlying type
was Eventually. For a sequence expression, the underlying type is System.Collections.Generic.IEnumerable<T>. For a query expression, the underlying
type is System.Linq.IQueryable. For an asychronous workflow, the underlying type is Async . The Async  object represents the work to be performed to
compute the result. For example, you call Async.RunSynchronously  to execute a computation and return the result.

You can define a custom operation on a computation expression and use a custom operation as an operator in a computation expression. For example,
you can include a query operator in a query expression. When you define a custom operation, you must define the Yield and For methods in the
computation expression. To define a custom operation, put it in a builder class for the computation expression, and then apply the 
CustomOperationAttribute . This attribute takes a string as an argument, which is the name to be used in a custom operation. This name comes into

scope at the start of the opening curly brace of the computation expression. Therefore, you shouldn’t use identifiers that have the same name as a
custom operation in this block. For example, avoid the use of identifiers such as all  or last  in query expressions.

If you already have a builder class, its custom operations can be extended from outside of this builder class. Extensions must be declared in modules.
Namespaces cannot contain extension members except in the same file and the same namespace declaration group where the type is defined.

The following example shows the extension of the existing Microsoft.FSharp.Linq.QueryBuilder  class.

https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable
https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7
https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b
https://msdn.microsoft.com/library/199f3927-79df-484b-ba66-85f58cc49b19


See Also
F# Language Reference

Asynchronous Workflows

Sequences

Query Expressions

https://msdn.microsoft.com/library/6b773b6b-9c9a-4af8-bd9e-d96585c166db


             

Asynchronous Workflows
7/2/2018 • 4 minutes to read • Edit Online

NOTENOTE

Syntax
async { expression }

Remarks

Asynchronous Binding by Using let!

// let just stores the result as an asynchronous operation.
let (result1 : Async<byte[]>) = stream.AsyncRead(bufferSize)
// let! completes the asynchronous operation and returns the data.
let! (result2 : byte[])  = stream.AsyncRead(bufferSize)

Asynchronous Primitives

The API reference link will take you to MSDN. The docs.microsoft.com API reference is not complete.

This topic describes support in F# for performing computations asynchronously, that is, without blocking execution of other work. For example,
asynchronous computations can be used to write applications that have UIs that remain responsive to users as the application performs other work.

In the previous syntax, the computation represented by expression  is set up to run asynchronously, that is, without blocking the current computation
thread when asynchronous sleep operations, I/O, and other asynchronous operations are performed. Asynchronous computations are often started on
a background thread while execution continues on the current thread. The type of the expression is Async<'T> , where 'T  is the type returned by the
expression when the return  keyword is used. The code in such an expression is referred to as an asynchronous block, or async block.

There are a variety of ways of programming asynchronously, and the Async  class provides methods that support several scenarios. The general
approach is to create Async  objects that represent the computation or computations that you want to run asynchronously, and then start these
computations by using one of the triggering functions. The various triggering functions provide different ways of running asynchronous computations,
and which one you use depends on whether you want to use the current thread, a background thread, or a .NET Framework task object, and whether
there are continuation functions that should run when the computation finishes. For example, to start an asynchronous computation on the current
thread, you can use Async.StartImmediate . When you start an asynchronous computation from the UI thread, you do not block the main event loop that
processes user actions such as keystrokes and mouse activity, so your application remains responsive.

In an asynchronous workflow, some expressions and operations are synchronous, and some are longer computations that are designed to return a
result asynchronously. When you call a method asynchronously, instead of an ordinary let  binding, you use let! . The effect of let!  is to enable
execution to continue on other computations or threads as the computation is being performed. After the right side of the let!  binding returns, the
rest of the asynchronous workflow resumes execution.

The following code shows the difference between let  and let! . The line of code that uses let  just creates an asynchronous computation as an
object that you can run later by using, for example, Async.StartImmediate  or Async.RunSynchronously . The line of code that uses let!  starts the
computation, and then the thread is suspended until the result is available, at which point execution continues.

In addition to let! , you can use use!  to perform asynchronous bindings. The difference between let!  and use!  is the same as the difference
between let  and use . For use! , the object is disposed of at the close of the current scope. Note that in the current release of the F# language, use!

does not allow a value to be initialized to null, even though use  does.

A method that performs a single asynchronous task and returns the result is called an asynchronous primitive, and these are designed specifically for
use with let! . Several asynchronous primitives are defined in the F# core library. Two such methods for Web applications are defined in the module 
Microsoft.FSharp.Control.WebExtensions : WebRequest.AsyncGetResponse  and WebClient.AsyncDownloadString . Both primitives download data from a Web

page, given a URL. AsyncGetResponse  produces a System.Net.WebResponse  object, and AsyncDownloadString  produces a string that represents the HTML
for a Web page.

Several primitives for asynchronous I/O operations are included in the Microsoft.FSharp.Control.CommonExtensions  module. These extension methods of
the System.IO.Stream  class are Stream.AsyncRead  and Stream.AsyncWrite .

You can also write your own asynchronous primitives by defining a function whose complete body is enclosed in an async block.

To use asynchronous methods in the .NET Framework that are designed for other asynchronous models with the F# asynchronous programming
model, you create a function that returns an F# Async  object. The F# library has functions that make this easy to do.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/asynchronous-workflows.md
https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7
https://msdn.microsoft.com/library/2f71d1cc-187f-48cf-ac66-e7fda41c46e3
https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b
https://msdn.microsoft.com/library/95ef17bc-ee3f-44ba-8a11-c90fcf4cf003
https://msdn.microsoft.com/library/09a60c31-e6e2-4b5c-ad23-92a86e50060c
https://msdn.microsoft.com/library/8a85a9b7-f712-4cac-a0ce-0a797f8ea32a
https://msdn.microsoft.com/library/2edb67cb-6814-4a30-849f-b6dbdd042396
https://msdn.microsoft.com/library/85698aaa-bdda-47e6-abed-3730f59fda5e
https://msdn.microsoft.com/library/1b0a2751-e42a-47e1-bd27-020224adc618


open System.Net
open Microsoft.FSharp.Control.WebExtensions

let urlList = [ "Microsoft.com", "http://www.microsoft.com/"
                "MSDN", "http://msdn.microsoft.com/"
                "Bing", "http://www.bing.com"
              ]

let fetchAsync(name, url:string) =
    async {
        try
            let uri = new System.Uri(url)
            let webClient = new WebClient()
            let! html = webClient.AsyncDownloadString(uri)
            printfn "Read %d characters for %s" html.Length name
        with
            | ex -> printfn "%s" (ex.Message);
    }

let runAll() =
    urlList
    |> Seq.map fetchAsync
    |> Async.Parallel
    |> Async.RunSynchronously
    |> ignore

runAll()

See Also

One example of using asynchronous workflows is included here; there are many others in the documentation for the methods of the Async class.

This example shows how to use asynchronous workflows to perform computations in parallel.

In the following code example, a function fetchAsync  gets the HTML text returned from a Web request. The fetchAsync  function contains an
asynchronous block of code. When a binding is made to the result of an asynchronous primitive, in this case AsyncDownloadString , let! is used instead of
let.

You use the function Async.RunSynchronously  to execute an asynchronous operation and wait for its result. As an example, you can execute multiple
asynchronous operations in parallel by using the Async.Parallel  function together with the Async.RunSynchronously  function. The Async.Parallel

function takes a list of the Async  objects, sets up the code for each Async  task object to run in parallel, and returns an Async  object that represents the
parallel computation. Just as for a single operation, you call Async.RunSynchronously  to start the execution.

The runAll  function launches three asynchronous workflows in parallel and waits until they have all completed.

F# Language Reference

Computation Expressions

Control.Async Class

https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7
https://msdn.microsoft.com/library/8a85a9b7-f712-4cac-a0ce-0a797f8ea32a
https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b
https://msdn.microsoft.com/library/aa9b0355-2d55-4858-b943-cbe428de9dc4
https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.async-class-%5bfsharp%5d


      

Query Expressions
5/30/2018 • 41 minutes to read • Edit Online

NOTENOTE

Syntax
query { expression }

Remarks

// Use the OData type provider to create types that can be used to access the Northwind database.
// Add References to FSharp.Data.TypeProviders and System.Data.Services.Client
open Microsoft.FSharp.Data.TypeProviders

type Northwind = ODataService<"http://services.odata.org/Northwind/Northwind.svc">
let db = Northwind.GetDataContext()

// A query expression.
let query1 =
    query {
        for customer in db.Customers do
            select customer
    }

// Print results
query1
|> Seq.iter (fun customer -> printfn "Company: %s Contact: %s" customer.CompanyName customer.ContactName)

Query Operators

The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

Query expressions enable you to query a data source and put the data in a desired form. Query expressions provide support for L INQ in F#.

Query expressions are a type of computation expression similar to sequence expressions. Just as you specify a sequence by providing code in a
sequence expression, you specify a set of data by providing code in a query expression. In a sequence expression, the yield  keyword identifies data to
be returned as part of the resulting sequence. In query expressions, the select  keyword performs the same function. In addition to the select

keyword, F# also supports a number of query operators that are much like the parts of a SQL SELECT statement. Here is an example of a simple query
expression, along with code that connects to the Northwind OData source.

In the previous code example, the query expression is in curly braces. The meaning of the code in the expression is, return every customer in the
Customers table in the database in the query results. Query expressions return a type that implements IQueryable<T> and IEnumerable<T>, and so
they can be iterated using the Seq module as the example shows.

Every computation expression type is built from a builder class. The builder class for the query computation expression is QueryBuilder . For more
information, see Computation Expressions and Linq.QueryBuilder Class.

Query operators enable you to specify the details of the query, such as to put criteria on records to be returned, or specify the sorting order of results.
The query source must support the query operator. If you attempt to use an unsupported query operator, System.NotSupportedException  will be thrown.

Only expressions that can be translated to SQL are allowed in query expressions. For example, no function calls are allowed in the expressions when
you use the where  query operator.

Table 1 shows available query operators. In addition, see Table2, which compares SQL queries and the equivalent F# query expressions later in this
topic. Some query operators aren't supported by some type providers. In particular, the OData type provider is limited in the query operators that it
supports due to limitations in OData. For more information, see ODataService Type Provider (F#).

This table assumes a database in the following form:

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/query-expressions.md
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684
https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.querybuilder-class-%5bfsharp%5d
https://msdn.microsoft.com/library/bac609dd-9d12-4bf9-a662-24bdf4faa43e


open System
open Microsoft.FSharp.Data.TypeProviders
open System.Data.Linq.SqlClient
open System.Linq
open Microsoft.FSharp.Linq

type schema = SqlDataConnection< @"Data Source=SERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;" >

let db = schema.GetDataContext()

// Needed for some query operator examples:
let data = [ 1; 5; 7; 11; 18; 21]

Table 1. Query OperatorsTable 1. Query Operators

OPERATOR DESCRIPTION

contains Determines whether the selected elements include a specified element.

query {
    for student in db.Student do
    select student.Age.Value
    contains 11
}

count Returns the number of selected elements.

query {
    for student in db.Student do
    select student
    count
}

last Selects the last element of those selected so far.

query {
    for number in data do
    last
}

lastOrDefault Selects the last element of those selected so far, or a default value if no element is
found.

query {
    for number in data do
    where (number < 0)
    lastOrDefault
}

The code in the tables that follow also assumes the following database connection code. Projects should add references to System.Data,
System.Data.Linq, and FSharp.Data.TypeProviders assemblies. The code that creates this database is included at the end of this topic.



exactlyOne Selects the single, specific element selected so far. If multiple elements are present,
an exception is thrown.

query {
    for student in db.Student do
    where (student.StudentID = 1)
    select student
    exactlyOne
}

exactlyOneOrDefault Selects the single, specific element of those selected so far, or a default value if that
element is not found.

query {
    for student in db.Student do
    where (student.StudentID = 1)
    select student
    exactlyOneOrDefault
}

headOrDefault Selects the first element of those selected so far, or a default value if the sequence
contains no elements.

query {
    for student in db.Student do
    select student
    headOrDefault
}

select Projects each of the elements selected so far.

query {
    for student in db.Student do
    select student
}

where Selects elements based on a specified predicate.

query {
    for student in db.Student do
    where (student.StudentID > 4)
    select student
}

minBy Selects a value for each element selected so far and returns the minimum resulting
value.

query {
    for student in db.Student do
    minBy student.StudentID
}

maxBy Selects a value for each element selected so far and returns the maximum resulting
value.

query {
    for student in db.Student do
    maxBy student.StudentID
}



groupBy Groups the elements selected so far according to a specified key selector.

query {
    for student in db.Student do
    groupBy student.Age into g
    select (g.Key, g.Count())
}

sortBy Sorts the elements selected so far in ascending order by the given sorting key.

query {
    for student in db.Student do
    sortBy student.Name
    select student
}

sortByDescending Sorts the elements selected so far in descending order by the given sorting key.

query {
    for student in db.Student do
    sortByDescending student.Name
    select student
}

thenBy Performs a subsequent ordering of the elements selected so far in ascending order
by the given sorting key. This operator may only be used after a sortBy , 
sortByDescending , thenBy , or thenByDescending .

query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenBy student.Name
    select student
}

thenByDescending Performs a subsequent ordering of the elements selected so far in descending
order by the given sorting key. This operator may only be used after a sortBy , 
sortByDescending , thenBy , or thenByDescending .

query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenByDescending student.Name
    select student
}

groupValBy Selects a value for each element selected so far and groups the elements by the
given key.

query {
    for student in db.Student do
    groupValBy student.Name student.Age into g
    select (g, g.Key, g.Count())
}



join Correlates two sets of selected values based on matching keys. Note that the order
of the keys around the = sign in a join expression is significant. In all joins, if the
line is split after the ->  symbol, the indentation must be indented at least as far
as the keyword for .

query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}

groupJoin Correlates two sets of selected values based on matching keys and groups the
results. Note that the order of the keys around the = sign in a join expression is
significant.

query {
    for student in db.Student do
    groupJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g
    for courseSelection in g do
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}

leftOuterJoin Correlates two sets of selected values based on matching keys and groups the
results. If any group is empty, a group with a single default value is used instead.
Note that the order of the keys around the = sign in a join expression is significant.

query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}

sumByNullable Selects a nullable value for each element selected so far and returns the sum of
these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    sumByNullable student.Age
}

minByNullable Selects a nullable value for each element selected so far and returns the minimum
of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    minByNullable student.Age
}

maxByNullable Selects a nullable value for each element selected so far and returns the maximum
of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    maxByNullable student.Age
}



averageByNullable Selects a nullable value for each element selected so far and returns the average of
these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    averageByNullable (Nullable.float student.Age)
}

averageBy Selects a value for each element selected so far and returns the average of these
values.

query {
    for student in db.Student do
    averageBy (float student.StudentID)
}

distinct Selects distinct elements from the elements selected so far.

query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct       
}

exists Determines whether any element selected so far satisfies a condition.

query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) 
})
    select student
}

find Selects the first element selected so far that satisfies a specified condition.

query {
    for student in db.Student do
    find (student.Name = "Abercrombie, Kim")
}

all Determines whether all elements selected so far satisfy a condition.

query {
    for student in db.Student do
    all (SqlMethods.Like(student.Name, "%,%"))
}

head Selects the first element from those selected so far.

query {
    for student in db.Student do
    head
}



nth Selects the element at a specified index amongst those selected so far.

query {
    for numbers in data do
    nth 3
}

skip Bypasses a specified number of the elements selected so far and then selects the
remaining elements.

query {
    for student in db.Student do
    skip 1
}

skipWhile Bypasses elements in a sequence as long as a specified condition is true and then
selects the remaining elements.

query {
    for number in data do
    skipWhile (number < 3)
    select student
}

sumBy Selects a value for each element selected so far and returns the sum of these
values.

query {
    for student in db.Student do
    sumBy student.StudentID
}

take Selects a specified number of contiguous elements from those selected so far.

query {
    for student in db.Student do
    select student
    take 2
}

takeWhile Selects elements from a sequence as long as a specified condition is true, and then
skips the remaining elements.

query {
    for number in data do
    takeWhile (number < 10)
}

sortByNullable Sorts the elements selected so far in ascending order by the given nullable sorting
key.

query {
    for student in db.Student do
    sortByNullable student.Age
    select student
}



sortByNullableDescending Sorts the elements selected so far in descending order by the given nullable sorting
key.

query {
    for student in db.Student do
    sortByNullableDescending student.Age
    select student
}

thenByNullable Performs a subsequent ordering of the elements selected so far in ascending order
by the given nullable sorting key. This operator may only be used immediately after
a sortBy , sortByDescending , thenBy , or thenByDescending , or their nullable
variants.

query {
    for student in db.Student do
    sortBy student.Name
    thenByNullable student.Age
    select student
}

thenByNullableDescending Performs a subsequent ordering of the elements selected so far in descending
order by the given nullable sorting key. This operator may only be used
immediately after a sortBy , sortByDescending , thenBy , or 
thenByDescending , or their nullable variants.

query {
    for student in db.Student do
    sortBy student.Name
    thenByNullableDescending student.Age
    select student
}

Comparison of Transact-SQL and F# Query Expressions

Table 2. Transact-SQL and F# Query ExpressionsTable 2. Transact-SQL and F# Query Expressions

TRANSACT-SQL (NOT CASE SENSITIVE) F# QUERY EXPRESSION (CASE SENSITIVE)

Select all fields from table.

SELECT * FROM Student

// All students.
query {
    for student in db.Student do
    select student
}

Count records in a table.

SELECT COUNT( * ) FROM Student

// Count of students.
query {
    for student in db.Student do       
    count
}

EXISTS  

SELECT * FROM Student
WHERE EXISTS
  (SELECT * FROM CourseSelection
   WHERE CourseSelection.StudentID = Student.StudentID)

// Find students who have signed up at least one course.
query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) 
})
    select student
}

The following table shows some common Transact-SQL queries and their equivalents in F#. The code in this table also assumes the same database as
the previous table and the same initial code to set up the type provider.



Grouping

SELECT Student.Age, COUNT( * ) FROM Student
GROUP BY Student.Age

// Group by age and count.
query {
    for n in db.Student do
    groupBy n.Age into g
    select (g.Key, g.Count())
}
// OR
query {
    for n in db.Student do
    groupValBy n.Age n.Age into g
    select (g.Key, g.Count())
}

Grouping with condition.

SELECT Student.Age, COUNT( * )
FROM Student
GROUP BY Student.Age
HAVING student.Age > 10

// Group students by age where age > 10.
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Key.HasValue && g.Key.Value > 10)
    select (g.Key, g.Count())
}

Grouping with count condition.

SELECT Student.Age, COUNT( * )
FROM Student
GROUP BY Student.Age
HAVING COUNT( * ) > 1

// Group students by age and count number of students
// at each age with more than 1 student.
query {
    for student in db.Student do
    groupBy student.Age into group
    where (group.Count() > 1)
    select (group.Key, group.Count())
}

Grouping, counting, and summing.

SELECT Student.Age, COUNT( * ), SUM(Student.Age) as total
FROM Student
GROUP BY Student.Age

// Group students by age and sum ages.
query {
    for student in db.Student do
    groupBy student.Age into g       
    let total =
        query {
            for student in g do
            sumByNullable student.Age
        }
    select (g.Key, g.Count(), total)
}

Grouping, counting, and ordering by count.

SELECT Student.Age, COUNT( * ) as myCount
FROM Student
GROUP BY Student.Age
HAVING COUNT( * ) > 1
ORDER BY COUNT( * ) DESC

// Group students by age, count number of students
// at each age, and display all with count > 1
// in descending order of count.
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Count() > 1)       
    sortByDescending (g.Count())
    select (g.Key, g.Count())
}

IN  a set of specified values

SELECT *
FROM Student
WHERE Student.StudentID IN (1, 2, 5, 10)

// Select students where studentID is one of a given list.
let idQuery =
    query {
        for id in [1; 2; 5; 10] do
        select id
    }
query {
    for student in db.Student do
    where (idQuery.Contains(student.StudentID))
    select student
}



LIKE  and TOP .

-- '_e%' matches strings where the second character is 'e'
SELECT TOP 2 * FROM Student
WHERE Student.Name LIKE '_e%'

// Look for students with Name match _e% pattern and take first 
two.
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "_e%") )
    select student
    take 2
}

LIKE  with pattern match set.

-- '[abc]%' matches strings where the first character is
-- 'a', 'b', 'c', 'A', 'B', or 'C'
SELECT * FROM Student
WHERE Student.Name LIKE '[abc]%'

query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[abc]%") )
    select student 
}

LIKE  with set exclusion pattern.

-- '[^abc]%' matches strings where the first character is
-- not 'a', 'b', 'c', 'A', 'B', or 'C'
SELECT * FROM Student
WHERE Student.Name LIKE '[^abc]%'

// Look for students with name matching [^abc]%% pattern.
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[^abc]%") )
    select student
}

LIKE  on one field, but select a different field.

SELECT StudentID AS ID FROM Student
WHERE Student.Name LIKE '[^abc]%'

query {
    for n in db.Student do
    where (SqlMethods.Like( n.Name, "[^abc]%") )
    select n.StudentID   
}

LIKE , with substring search.

SELECT * FROM Student
WHERE Student.Name like '%A%'

// Using Contains as a query filter.
query {
    for student in db.Student do
    where (student.Name.Contains("a"))
    select student
}

Simple JOIN  with two tables.

SELECT * FROM Student
JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID

// Join Student and CourseSelection tables.
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}

LEFT JOIN  with two tables.

SELECT * FROM Student
LEFT JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID

//Left Join Student and CourseSelection tables.
query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}

JOIN  with COUNT

SELECT COUNT( * ) FROM Student
JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID

// Join with count.
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    count
}



DISTINCT

SELECT DISTINCT StudentID FROM CourseSelection

// Join with distinct.
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct
}

Distinct count.

SELECT DISTINCT COUNT(StudentID) FROM CourseSelection

// Join with distinct and count.
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    distinct
    count
}

BETWEEN

SELECT * FROM Student
WHERE Student.Age BETWEEN 10 AND 15

// Selecting students with ages between 10 and 15.
query {
    for student in db.Student do
    where (student.Age ?>= 10 && student.Age ?< 15)
    select student
}

OR

SELECT * FROM Student
WHERE Student.Age = 11 OR Student.Age = 12

// Selecting students with age that's either 11 or 12.
query {
    for student in db.Student do
    where (student.Age.Value = 11 || student.Age.Value = 12)
    select student
}

OR  with ordering

SELECT * FROM Student
WHERE Student.Age = 12 OR Student.Age = 13
ORDER BY Student.Age DESC

// Selecting students in a certain age range and sorting.
query {
    for n in db.Student do
    where (n.Age.Value = 12 || n.Age.Value = 13)
    sortByNullableDescending n.Age
    select n
}

TOP , OR , and ordering.

SELECT TOP 2 student.Name FROM Student
WHERE Student.Age = 11 OR Student.Age = 12
ORDER BY Student.Name DESC

// Selecting students with certain ages,
// taking account of the possibility of nulls.
query {
    for student in db.Student do
    where
        ((student.Age.HasValue && student.Age.Value = 11) ||
         (student.Age.HasValue && student.Age.Value = 12))
    sortByDescending student.Name
    select student.Name
    take 2
}

UNION  of two queries.

SELECT * FROM Student
UNION
SELECT * FROM lastStudent

let query1 =
    query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

let query2 =
    query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

query2.Union (query1)



Intersection of two queries.

SELECT * FROM Student
INTERSECT
SELECT * FROM LastStudent

let query1 =
    query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

let query2 =
    query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

query1.Intersect(query2)

CASE  condition.

SELECT student.StudentID,
CASE Student.Age
  WHEN -1 THEN 100
  ELSE Student.Age
END,
Student.Age
FROM Student

// Using if statement to alter results for special value.
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
             (student.StudentID, System.Nullable(100), student.Age)
         else (student.StudentID, student.Age, student.Age))
}

Multiple cases.

SELECT Student.StudentID,
CASE Student.Age
  WHEN -1 THEN 100
  WHEN 0 THEN 1000
  ELSE Student.Age
END,
Student.Age
FROM Student

// Using if statement to alter results for special values.
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
             (student.StudentID, System.Nullable(100), student.Age)
         elif student.Age.HasValue && student.Age.Value = 0 then
             (student.StudentID, System.Nullable(1000), 
student.Age)
         else (student.StudentID, student.Age, student.Age))
}

Multiple tables.

SELECT * FROM Student, Course

// Multiple table select.
query {
    for student in db.Student do
    for course in db.Course do
    select (student, course)
}

Multiple joins.

SELECT Student.Name, Course.CourseName
FROM Student
JOIN CourseSelection
ON CourseSelection.StudentID = Student.StudentID
JOIN Course
ON Course.CourseID = CourseSelection.CourseID

// Multiple joins.
query {
    for student in db.Student do
    join courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID)
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}

Multiple left outer joins.

SELECT Student.Name, Course.CourseName
FROM Student
LEFT OUTER JOIN CourseSelection
ON CourseSelection.StudentID = Student.StudentID
LEFT OUTER JOIN Course
ON Course.CourseID = CourseSelection.CourseID

// Using leftOuterJoin with multiple joins.
query {
    for student in db.Student do
    leftOuterJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g1
    for courseSelection in g1.DefaultIfEmpty() do
    leftOuterJoin course in db.Course
        on (courseSelection.CourseID = course.CourseID) into g2
    for course in g2.DefaultIfEmpty() do
    select (student.Name, course.CourseName)
}



SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

USE [master];
GO

IF EXISTS (SELECT * FROM sys.databases WHERE name = 'MyDatabase')
DROP DATABASE MyDatabase;
GO

-- Create the MyDatabase database.
CREATE DATABASE MyDatabase COLLATE SQL_Latin1_General_CP1_CI_AS;
GO

-- Specify a simple recovery model
-- to keep the log growth to a minimum.
ALTER DATABASE MyDatabase
SET RECOVERY SIMPLE;
GO

USE MyDatabase;
GO

CREATE TABLE [dbo].[Course] (
[CourseID]   INT           NOT NULL,
[CourseName] NVARCHAR (50) NOT NULL,
PRIMARY KEY CLUSTERED ([CourseID] ASC)
);

CREATE TABLE [dbo].[Student] (
[StudentID] INT           NOT NULL,
[Name]      NVARCHAR (50) NOT NULL,
[Age]       INT           NULL,
PRIMARY KEY CLUSTERED ([StudentID] ASC)
);

CREATE TABLE [dbo].[CourseSelection] (
[ID]        INT NOT NULL,
[StudentID] INT NOT NULL,
[CourseID]  INT NOT NULL,
PRIMARY KEY CLUSTERED ([ID] ASC),
CONSTRAINT [FK_CourseSelection_ToTable] FOREIGN KEY ([StudentID]) REFERENCES [dbo].[Student] ([StudentID]) ON DELETE NO ACTION ON UPDATE NO ACTION,
CONSTRAINT [FK_CourseSelection_Course_1] FOREIGN KEY ([CourseID]) REFERENCES [dbo].[Course] ([CourseID]) ON DELETE NO ACTION ON UPDATE NO ACTION
);

CREATE TABLE [dbo].[LastStudent] (
[StudentID] INT           NOT NULL,
[Name]      NVARCHAR (50) NOT NULL,
[Age]       INT           NULL,
PRIMARY KEY CLUSTERED ([StudentID] ASC)
);

-- Insert data into the tables.
USE MyDatabase
INSERT INTO Course (CourseID, CourseName)
VALUES(1, 'Algebra I');
INSERT INTO Course (CourseID, CourseName)
VALUES(2, 'Trigonometry');
INSERT INTO Course (CourseID, CourseName)
VALUES(3, 'Algebra II');
INSERT INTO Course (CourseID, CourseName)
VALUES(4, 'History');
INSERT INTO Course (CourseID, CourseName)
VALUES(5, 'English');
INSERT INTO Course (CourseID, CourseName)
VALUES(6, 'French');
INSERT INTO Course (CourseID, CourseName)
VALUES(7, 'Chinese');

INSERT INTO Student (StudentID, Name, Age)
VALUES(1, 'Abercrombie, Kim', 10);
INSERT INTO Student (StudentID, Name, Age)
VALUES(2, 'Abolrous, Hazen', 14);
INSERT INTO Student (StudentID, Name, Age)
VALUES(3, 'Hance, Jim', 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(4, 'Adams, Terry', 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(5, 'Hansen, Claus', 11);
INSERT INTO Student (StudentID, Name, Age)
VALUES(6, 'Penor, Lori', 13);
INSERT INTO Student (StudentID, Name, Age)
VALUES(7, 'Perham, Tom', 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(8, 'Peng, Yun-Feng', NULL);

The following code can be used to create the sample database for these examples.



VALUES(8, 'Peng, Yun-Feng', NULL);

INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(1, 1, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(2, 1, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(3, 1, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(4, 2, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(5, 2, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(6, 2, 6);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(7, 2, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(8, 3, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(9, 3, 1);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(10, 4, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(11, 4, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(12, 4, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(13, 5, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(14, 5, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(15, 7, 3);

#if INTERACTIVE
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.dll"
#r "System.Data.Linq.dll"
#endif
open System
open Microsoft.FSharp.Data.TypeProviders
open System.Data.Linq.SqlClient
open System.Linq

type schema = SqlDataConnection<"Data Source=SERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;">

let db = schema.GetDataContext()

let data = [1; 5; 7; 11; 18; 21]

type Nullable<'T when 'T : ( new : unit -> 'T) and 'T : struct and 'T :> ValueType > with
    member this.Print() =
        if this.HasValue then this.Value.ToString()
        else "NULL"

printfn "\ncontains query operator"
query {
    for student in db.Student do
    select student.Age.Value
    contains 11
}
|> printfn "Is at least one student age 11? %b"

printfn "\ncount query operator"
query {
    for student in db.Student do
    select student
    count
}
|> printfn "Number of students: %d"

printfn "\nlast query operator."
let num =
    query {
        for number in data do
        sortBy number
        last
    }
printfn "Last number: %d" num

open Microsoft.FSharp.Linq

printfn "\nlastOrDefault query operator."
query {
    for number in data do
    sortBy number
    lastOrDefault

The following code contains the sample code that appears in this topic.



}
|> printfn "lastOrDefault: %d"

printfn "\nexactlyOne query operator."
let student2 =
    query {
        for student in db.Student do
        where (student.StudentID = 1)
        select student
        exactlyOne
    }
printfn "Student with StudentID = 1 is %s" student2.Name

printfn "\nexactlyOneOrDefault query operator."
let student3 =
    query {
        for student in db.Student do
        where (student.StudentID = 1)
        select student
        exactlyOneOrDefault
    }
printfn "Student with StudentID = 1 is %s" student3.Name

printfn "\nheadOrDefault query operator."
let student4 =
    query {
        for student in db.Student do
        select student
        headOrDefault
    }
printfn "head student is %s" student4.Name

printfn "\nselect query operator."
query {
    for student in db.Student do
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nwhere query operator."
query {
    for student in db.Student do
    where (student.StudentID > 4)
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nminBy query operator."
let student5 =
    query {
        for student in db.Student do
        minBy student.StudentID
    }

printfn "\nmaxBy query operator."
let student6 =
    query {
        for student in db.Student do
        maxBy student.StudentID
    }

printfn "\ngroupBy query operator."
query {
    for student in db.Student do
    groupBy student.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "Age: %s Count at that age: %d" (age.Print()) count)

printfn "\nsortBy query operator."
query {
    for student in db.Student do
    sortBy student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nsortByDescending query operator."
query {
    for student in db.Student do
    sortByDescending student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nthenBy query operator."
query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value



    sortBy student.Age.Value
    thenBy student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.Age.Value student.Name)

printfn "\nthenByDescending query operator."
query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenByDescending student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.Age.Value student.Name)

printfn "\ngroupValBy query operator."
query {
    for student in db.Student do
    groupValBy student.Name student.Age into g
    select (g, g.Key, g.Count())
}
|> Seq.iter (fun (group, age, count) ->
    printfn "Age: %s Count at that age: %d" (age.Print()) count
    group |> Seq.iter (fun name -> printfn "Name: %s" name))

printfn "\n sumByNullable query operator"
query {
    for student in db.Student do
    sumByNullable student.Age
}
|> (fun sum -> printfn "Sum of ages: %s" (sum.Print()))

printfn "\n minByNullable"
query {
    for student in db.Student do
    minByNullable student.Age
}
|> (fun age -> printfn "Minimum age: %s" (age.Print()))

printfn "\n maxByNullable"
query {
    for student in db.Student do
    maxByNullable student.Age
}
|> (fun age -> printfn "Maximum age: %s" (age.Print()))

printfn "\n averageBy"
query {
    for student in db.Student do
    averageBy (float student.StudentID)
}
|> printfn "Average student ID: %f"

printfn "\n averageByNullable"
query {
    for student in db.Student do
    averageByNullable (Nullable.float student.Age)
}
|> (fun avg -> printfn "Average age: %s" (avg.Print()))

printfn "\n find query operator"
query {
    for student in db.Student do
    find (student.Name = "Abercrombie, Kim")
}
|> (fun student -> printfn "Found a match with StudentID = %d" student.StudentID)

printfn "\n all query operator"
query {
    for student in db.Student do
    all (SqlMethods.Like(student.Name, "%,%"))
}
|> printfn "Do all students have a comma in the name? %b"

printfn "\n head query operator"
query {
    for student in db.Student do
    head
}
|> (fun student -> printfn "Found the head student with StudentID = %d" student.StudentID)

printfn "\n nth query operator"
query {
    for numbers in data do
    nth 3
}
|> printfn "Third number is %d"

printfn "\n skip query operator"
query {



query {
    for student in db.Student do
    skip 1
}
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID)

printfn "\n skipWhile query operator"
query {
    for number in data do
    skipWhile (number < 3)
    select number
}
|> Seq.iter (fun number -> printfn "Number = %d" number)

printfn "\n sumBy query operator"
query {
    for student in db.Student do
    sumBy student.StudentID
}
|> printfn "Sum of student IDs: %d"

printfn "\n take query operator"
query {
    for student in db.Student do
    select student
    take 2
}
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID)

printfn "\n takeWhile query operator"
query {
    for number in data do
    takeWhile (number < 10)
}
|> Seq.iter (fun number -> printfn "Number = %d" number)

printfn "\n sortByNullable query operator"
query {
    for student in db.Student do
    sortByNullable student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n sortByNullableDescending query operator"
query {
    for student in db.Student do
    sortByNullableDescending student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n thenByNullable query operator"
query {
    for student in db.Student do
    sortBy student.Name
    thenByNullable student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n thenByNullableDescending query operator"
query {
    for student in db.Student do
    sortBy student.Name
    thenByNullableDescending student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "All students: "
query {
    for student in db.Student do
    select student
}
|> Seq.iter (fun student -> printfn "%s %d %s" student.Name student.StudentID (student.Age.Print()))

printfn "\nCount of students: "
query {
    for student in db.Student do
    count
}
|> (fun count -> printfn "Student count: %d" count)

printfn "\nExists."
query {



query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) })
    select student
}
|> Seq.iter (fun student -> printfn "%A" student.Name)

printfn "\n Group by age and count"
query {
    for n in db.Student do
    groupBy n.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count)

printfn "\n Group value by age."
query {
    for n in db.Student do
    groupValBy n.Age n.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count)

printfn "\nGroup students by age where age > 10."
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Key.HasValue && g.Key.Value > 10)
    select (g, g.Key)
}
|> Seq.iter (fun (students, age) ->
    printfn "Age: %s" (age.Value.ToString())
    students
    |> Seq.iter (fun student -> printfn "%s" student.Name))

printfn "\nGroup students by age and print counts of number of students at each age with more than 1 student."
query {
    for student in db.Student do
    groupBy student.Age into group
    where (group.Count() > 1)
    select (group.Key, group.Count())
}
|> Seq.iter (fun (age, ageCount) ->
    printfn "Age: %s Count: %d" (age.Print()) ageCount)

printfn "\nGroup students by age and sum ages."
query {
    for student in db.Student do
    groupBy student.Age into g
    let total = query { for student in g do sumByNullable student.Age }
    select (g.Key, g.Count(), total)
}
|> Seq.iter (fun (age, count, total) ->
    printfn "Age: %d" (age.GetValueOrDefault())
    printfn "Count: %d" count
    printfn "Total years: %s" (total.ToString()))

printfn "\nGroup students by age and count number of students at each age, and display all with count > 1 in descending order of count."
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Count() > 1)
    sortByDescending (g.Count())
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, myCount) ->
    printfn "Age: %s" (age.Print())
    printfn "Count: %d" myCount)

printfn "\n Select students from a set of IDs"
let idList = [1; 2; 5; 10]
let idQuery =
    query { for id in idList do select id }
query {
    for student in db.Student do
    where (idQuery.Contains(student.StudentID))
    select student
}
|> Seq.iter (fun student ->
    printfn "Name: %s" student.Name)

printfn "\nLook for students with Name match _e%% pattern and take first two."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "_e%") )
    select student
    take 2
}



}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with Name matching [abc]%% pattern."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[abc]%") )
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with name matching [^abc]%% pattern."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[^abc]%") )
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with name matching [^abc]%% pattern and select ID."
query {
    for n in db.Student do
    where (SqlMethods.Like( n.Name, "[^abc]%") )
    select n.StudentID
}
|> Seq.iter (fun id -> printfn "%d" id)

printfn "\n Using Contains as a query filter."
query {
    for student in db.Student do
    where (student.Name.Contains("a"))
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nSearching for names from a list."
let names = [|"a";"b";"c"|]
query {
    for student in db.Student do
    if names.Contains (student.Name) then select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nJoin Student and CourseSelection tables."
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}
|> Seq.iter (fun (student, selection) -> printfn "%d %s %d" student.StudentID student.Name selection.CourseID)

printfn "\nLeft Join Student and CourseSelection tables."
query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}
|> Seq.iter (fun (student, selection) ->
    let selectionID, studentID, courseID =
        match selection with
        | null -> "NULL", "NULL", "NULL"
        | sel -> (sel.ID.ToString(), sel.StudentID.ToString(), sel.CourseID.ToString())
    printfn "%d %s %d %s %s %s" student.StudentID student.Name (student.Age.GetValueOrDefault()) selectionID studentID courseID)

printfn "\nJoin with count"
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    count
}
|> printfn "%d"

printfn "\n Join with distinct."
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct
}
|> Seq.iter (fun (student, selection) -> printfn "%s %d" student.Name selection.CourseID)

printfn "\n Join with distinct and count."
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    distinct



    distinct
    count
}
|> printfn "%d"

printfn "\n Selecting students with age between 10 and 15."
query {
    for student in db.Student do
    where (student.Age.Value >= 10 && student.Age.Value < 15)
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\n Selecting students with age either 11 or 12."
query {
    for student in db.Student do
    where (student.Age.Value = 11 || student.Age.Value = 12)
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\n Selecting students in a certain age range and sorting."
query {
    for n in db.Student do
    where (n.Age.Value = 12 || n.Age.Value = 13)
    sortByNullableDescending n.Age
    select n
}
|> Seq.iter (fun student -> printfn "%s %s" student.Name (student.Age.Print()))

printfn "\n Selecting students with certain ages, taking account of possibility of nulls."
query {
    for student in db.Student do
    where
        ((student.Age.HasValue && student.Age.Value = 11) ||
         (student.Age.HasValue && student.Age.Value = 12))
    sortByDescending student.Name
    select student.Name
    take 2
}
|> Seq.iter (fun name -> printfn "%s" name)

printfn "\n Union of two queries."
module Queries =
    let query1 = query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

    let query2 = query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

    query2.Union (query1)
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print()))

printfn "\n Intersect of two queries."
module Queries2 =
    let query1 = query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

    let query2 = query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

    query1.Intersect(query2)
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print()))

printfn "\n Using if statement to alter results for special value."
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         else (student.StudentID, student.Age, student.Age))
}
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) (age.Print()))

printfn "\n Using if statement to alter results special values."
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         elif student.Age.HasValue && student.Age.Value = 0 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         else (student.StudentID, student.Age, student.Age))



         else (student.StudentID, student.Age, student.Age))
}
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) (age.Print()))

printfn "\n Multiple table select."
query {
    for student in db.Student do
    for course in db.Course do
    select (student, course)
}
|> Seq.iteri (fun index (student, course) ->
    if index = 0 then
        printfn "StudentID Name Age CourseID CourseName"
    printfn "%d %s %s %d %s" student.StudentID student.Name (student.Age.Print()) course.CourseID course.CourseName)

printfn "\nMultiple Joins"
query {
    for student in db.Student do
    join courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID)
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName courseName)

printfn "\nMultiple Left Outer Joins"
query {
    for student in db.Student do
    leftOuterJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g1
    for courseSelection in g1.DefaultIfEmpty() do
    leftOuterJoin course in db.Course
        on (courseSelection.CourseID = course.CourseID) into g2
    for course in g2.DefaultIfEmpty() do
    select (student.Name, course.CourseName)
}
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName courseName)

--> Referenced 'C:\Program Files (x86)\Reference Assemblies\Microsoft\FSharp\3.0\Runtime\v4.0\Type Providers\FSharp.Data.TypeProviders.dll'

--> Referenced 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.dll'

--> Referenced 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.Linq.dll'

contains query operator
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp5E3C.dll'...
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp611A.dll'...
Is at least one student age 11? true

count query operator
Number of students: 8

last query operator.
Last number: 21

lastOrDefault query operator.
lastOrDefault: 21

exactlyOne query operator.
Student with StudentID = 1 is Abercrombie, Kim

exactlyOneOrDefault query operator.
Student with StudentID = 1 is Abercrombie, Kim

headOrDefault query operator.
head student is Abercrombie, Kim

select query operator.
StudentID, Name: 1 Abercrombie, Kim
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 3 Hance, Jim
StudentID, Name: 4 Adams, Terry
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom
StudentID, Name: 8 Peng, Yun-Feng

where query operator.
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom
StudentID, Name: 8 Peng, Yun-Feng

And here is the full output when this code is run in F# Interactive.



minBy query operator.

maxBy query operator.

groupBy query operator.
Age: NULL Count at that age: 1
Age: 10 Count at that age: 1
Age: 11 Count at that age: 1
Age: 12 Count at that age: 3
Age: 13 Count at that age: 1
Age: 14 Count at that age: 1

sortBy query operator.
StudentID, Name: 1 Abercrombie, Kim
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 4 Adams, Terry
StudentID, Name: 3 Hance, Jim
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom

sortByDescending query operator.
StudentID, Name: 7 Perham, Tom
StudentID, Name: 6 Penor, Lori
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 3 Hance, Jim
StudentID, Name: 4 Adams, Terry
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 1 Abercrombie, Kim

thenBy query operator.
StudentID, Name: 10 Abercrombie, Kim
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Adams, Terry
StudentID, Name: 12 Hance, Jim
StudentID, Name: 12 Perham, Tom
StudentID, Name: 13 Penor, Lori
StudentID, Name: 14 Abolrous, Hazen

thenByDescending query operator.
StudentID, Name: 10 Abercrombie, Kim
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Perham, Tom
StudentID, Name: 12 Hance, Jim
StudentID, Name: 12 Adams, Terry
StudentID, Name: 13 Penor, Lori
StudentID, Name: 14 Abolrous, Hazen

groupValBy query operator.
Age: NULL Count at that age: 1
Name: Peng, Yun-Feng
Age: 10 Count at that age: 1
Name: Abercrombie, Kim
Age: 11 Count at that age: 1
Name: Hansen, Claus
Age: 12 Count at that age: 3
Name: Hance, Jim
Name: Adams, Terry
Name: Perham, Tom
Age: 13 Count at that age: 1
Name: Penor, Lori
Age: 14 Count at that age: 1
Name: Abolrous, Hazen

sumByNullable query operator
Sum of ages: 84

minByNullable
Minimum age: 10

maxByNullable
Maximum age: 14

averageBy
Average student ID: 4.500000

averageByNullable
Average age: 12

find query operator
Found a match with StudentID = 1

all query operator
Do all students have a comma in the name? true

head query operator
Found the head student with StudentID = 1



nth query operator
Third number is 11

skip query operator
StudentID = 2
StudentID = 3
StudentID = 4
StudentID = 5
StudentID = 6
StudentID = 7
StudentID = 8

skipWhile query operator
Number = 5
Number = 7
Number = 11
Number = 18
Number = 21

sumBy query operator
Sum of student IDs: 36

take query operator
StudentID = 1
StudentID = 2

takeWhile query operator
Number = 1
Number = 5
Number = 7

sortByNullable query operator
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 7 Perham, Tom 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 2 Abolrous, Hazen 14

sortByNullableDescending query operator
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 8 Peng, Yun-Feng NULL

thenByNullable query operator
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12

thenByNullableDescending query operator
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12
All students:
Abercrombie, Kim 1 10
Abolrous, Hazen 2 14
Hance, Jim 3 12
Adams, Terry 4 12
Hansen, Claus 5 11
Penor, Lori 6 13
Perham, Tom 7 12
Peng, Yun-Feng 8 NULL

Count of students:
Student count: 8

Exists.
"Abercrombie, Kim"
"Abolrous, Hazen"
"Hance, Jim"
"Adams, Terry"
"Hansen, Claus"
"Perham, Tom"



"Perham, Tom"

Group by age and count
NULL 1
10 1
11 1
12 3
13 1
14 1

Group value by age.
NULL 1
10 1
11 1
12 3
13 1
14 1

Group students by age where age > 10.
Age: 11
Hansen, Claus
Age: 12
Hance, Jim
Adams, Terry
Perham, Tom
Age: 13
Penor, Lori
Age: 14
Abolrous, Hazen

Group students by age and print counts of number of students at each age with more than 1 student.
Age: 12 Count: 3

Group students by age and sum ages.
Age: 0
Count: 1
Total years:
Age: 10
Count: 1
Total years: 10
Age: 11
Count: 1
Total years: 11
Age: 12
Count: 3
Total years: 36
Age: 13
Count: 1
Total years: 13
Age: 14
Count: 1
Total years: 14

Group students by age and count number of students at each age, and display all with count > 1 in descending order of count.
Age: 12
Count: 3

Select students from a set of IDs
Name: Abercrombie, Kim
Name: Abolrous, Hazen
Name: Hansen, Claus

Look for students with Name match _e% pattern and take first two.
Penor, Lori
Perham, Tom

Look for students with Name matching [abc]% pattern.
Abercrombie, Kim
Abolrous, Hazen
Adams, Terry

Look for students with name matching [^abc]% pattern.
Hance, Jim
Hansen, Claus
Penor, Lori
Perham, Tom
Peng, Yun-Feng

Look for students with name matching [^abc]% pattern and select ID.
3
5
6
7
8

Using Contains as a query filter.
Abercrombie, Kim
Abolrous, Hazen
Hance, Jim
Adams, Terry



Hansen, Claus
Perham, Tom

Searching for names from a list.

Join Student and CourseSelection tables.
2 Abolrous, Hazen 2
3 Hance, Jim 3
5 Hansen, Claus 5
2 Abolrous, Hazen 2
5 Hansen, Claus 5
6 Penor, Lori 6
3 Hance, Jim 3
2 Abolrous, Hazen 2
1 Abercrombie, Kim 1
2 Abolrous, Hazen 2
5 Hansen, Claus 5
2 Abolrous, Hazen 2
3 Hance, Jim 3
2 Abolrous, Hazen 2
3 Hance, Jim 3

Left Join Student and CourseSelection tables.
1 Abercrombie, Kim 10 9 3 1
2 Abolrous, Hazen 14 1 1 2
2 Abolrous, Hazen 14 4 2 2
2 Abolrous, Hazen 14 8 3 2
2 Abolrous, Hazen 14 10 4 2
2 Abolrous, Hazen 14 12 4 2
2 Abolrous, Hazen 14 14 5 2
3 Hance, Jim 12 2 1 3
3 Hance, Jim 12 7 2 3
3 Hance, Jim 12 13 5 3
3 Hance, Jim 12 15 7 3
4 Adams, Terry 12 NULL NULL NULL
5 Hansen, Claus 11 3 1 5
5 Hansen, Claus 11 5 2 5
5 Hansen, Claus 11 11 4 5
6 Penor, Lori 13 6 2 6
7 Perham, Tom 12 NULL NULL NULL
8 Peng, Yun-Feng 0 NULL NULL NULL

Join with count
15

Join with distinct.
Abercrombie, Kim 2
Abercrombie, Kim 3
Abercrombie, Kim 5
Abolrous, Hazen 2
Abolrous, Hazen 5
Abolrous, Hazen 6
Abolrous, Hazen 3
Hance, Jim 2
Hance, Jim 1
Adams, Terry 2
Adams, Terry 5
Adams, Terry 2
Hansen, Claus 3
Hansen, Claus 2
Perham, Tom 3

Join with distinct and count.
15

Selecting students with age between 10 and 15.
Abercrombie, Kim
Abolrous, Hazen
Hance, Jim
Adams, Terry
Hansen, Claus
Penor, Lori
Perham, Tom

Selecting students with age either 11 or 12.
Hance, Jim
Adams, Terry
Hansen, Claus
Perham, Tom

Selecting students in a certain age range and sorting.
Penor, Lori 13
Perham, Tom 12
Hance, Jim 12
Adams, Terry 12

Selecting students with certain ages, taking account of possibility of nulls.
Hance, Jim
Adams, Terry



Union of two queries.
Abercrombie, Kim 10
Abolrous, Hazen 14
Hance, Jim 12
Adams, Terry 12
Hansen, Claus 11
Penor, Lori 13
Perham, Tom 12
Peng, Yun-Feng NULL

Intersect of two queries.

Using if statement to alter results for special value.
1 10 10
2 14 14
3 12 12
4 12 12
5 11 11
6 13 13
7 12 12
8 NULL NULL

Using if statement to alter results special values.
1 10 10
2 14 14
3 12 12
4 12 12
5 11 11
6 13 13
7 12 12
8 NULL NULL

Multiple table select.
StudentID Name Age CourseID CourseName
1 Abercrombie, Kim 10 1 Algebra I
2 Abolrous, Hazen 14 1 Algebra I
3 Hance, Jim 12 1 Algebra I
4 Adams, Terry 12 1 Algebra I
5 Hansen, Claus 11 1 Algebra I
6 Penor, Lori 13 1 Algebra I
7 Perham, Tom 12 1 Algebra I
8 Peng, Yun-Feng NULL 1 Algebra I
1 Abercrombie, Kim 10 2 Trigonometry
2 Abolrous, Hazen 14 2 Trigonometry
3 Hance, Jim 12 2 Trigonometry
4 Adams, Terry 12 2 Trigonometry
5 Hansen, Claus 11 2 Trigonometry
6 Penor, Lori 13 2 Trigonometry
7 Perham, Tom 12 2 Trigonometry
8 Peng, Yun-Feng NULL 2 Trigonometry
1 Abercrombie, Kim 10 3 Algebra II
2 Abolrous, Hazen 14 3 Algebra II
3 Hance, Jim 12 3 Algebra II
4 Adams, Terry 12 3 Algebra II
5 Hansen, Claus 11 3 Algebra II
6 Penor, Lori 13 3 Algebra II
7 Perham, Tom 12 3 Algebra II
8 Peng, Yun-Feng NULL 3 Algebra II
1 Abercrombie, Kim 10 4 History
2 Abolrous, Hazen 14 4 History
3 Hance, Jim 12 4 History
4 Adams, Terry 12 4 History
5 Hansen, Claus 11 4 History
6 Penor, Lori 13 4 History
7 Perham, Tom 12 4 History
8 Peng, Yun-Feng NULL 4 History
1 Abercrombie, Kim 10 5 English
2 Abolrous, Hazen 14 5 English
3 Hance, Jim 12 5 English
4 Adams, Terry 12 5 English
5 Hansen, Claus 11 5 English
6 Penor, Lori 13 5 English
7 Perham, Tom 12 5 English
8 Peng, Yun-Feng NULL 5 English
1 Abercrombie, Kim 10 6 French
2 Abolrous, Hazen 14 6 French
3 Hance, Jim 12 6 French
4 Adams, Terry 12 6 French
5 Hansen, Claus 11 6 French
6 Penor, Lori 13 6 French
7 Perham, Tom 12 6 French
8 Peng, Yun-Feng NULL 6 French
1 Abercrombie, Kim 10 7 Chinese
2 Abolrous, Hazen 14 7 Chinese
3 Hance, Jim 12 7 Chinese
4 Adams, Terry 12 7 Chinese
5 Hansen, Claus 11 7 Chinese
6 Penor, Lori 13 7 Chinese
7 Perham, Tom 12 7 Chinese
8 Peng, Yun-Feng NULL 7 Chinese



8 Peng, Yun-Feng NULL 7 Chinese

Multiple Joins
Abercrombie, Kim Trigonometry
Abercrombie, Kim Algebra II
Abercrombie, Kim English
Abolrous, Hazen Trigonometry
Abolrous, Hazen English
Abolrous, Hazen French
Abolrous, Hazen Algebra II
Hance, Jim Trigonometry
Hance, Jim Algebra I
Adams, Terry Trigonometry
Adams, Terry English
Adams, Terry Trigonometry
Hansen, Claus Algebra II
Hansen, Claus Trigonometry
Perham, Tom Algebra II

Multiple Left Outer Joins
Abercrombie, Kim Trigonometry
Abercrombie, Kim Algebra II
Abercrombie, Kim English
Abolrous, Hazen Trigonometry
Abolrous, Hazen English
Abolrous, Hazen French
Abolrous, Hazen Algebra II
Hance, Jim Trigonometry
Hance, Jim Algebra I
Adams, Terry Trigonometry
Adams, Terry English
Adams, Terry Trigonometry
Hansen, Claus Algebra II
Hansen, Claus Trigonometry
Penor, Lori
Perham, Tom Algebra II
Peng, Yun-Feng

type schema
val db : schema.ServiceTypes.SimpleDataContextTypes.MyDatabase1
val student : System.Data.Linq.Table<schema.ServiceTypes.Student>
val data : int list = [1; 5; 7; 11; 18; 21]
type Nullable<'T
                when 'T : (new : unit ->  'T) and 'T : struct and
                     'T :> System.ValueType> with
  member Print : unit -> string
val num : int = 21
val student2 : schema.ServiceTypes.Student
val student3 : schema.ServiceTypes.Student
val student4 : schema.ServiceTypes.Student
val student5 : int = 1
val student6 : int = 8
val idList : int list = [1; 2; 5; 10]
val idQuery : seq<int>
val names : string [] = [|"a"; "b"; "c"|]
module Queries = begin
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>>
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>>
end
module Queries2 = begin
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>>
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>>
end

See Also
F# Language Reference

Linq.QueryBuilder Class

Computation Expressions

https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.querybuilder-class-%5bfsharp%5d


       

Code Quotations
5/4/2018 • 7 minutes to read • Edit Online

NOTENOTE

Quoted Expressions

open Microsoft.FSharp.Quotations
// A typed code quotation.
let expr : Expr<int> = <@ 1 + 1 @>
// An untyped code quotation.
let expr2 : Expr = <@@ 1 + 1 @@>

// Not valid:
// <@ let f x = x + 1 @>

// Valid:
<@ let f x = x + 10 in f 20 @>
// Valid:
<@
    let f x = x + 10
    f 20
@>

Expr Type

Splicing Operators

The API reference link will take you to MSDN. The docs.microsoft.com API reference is not complete.

This topic describes code quotations, a language feature that enables you to generate and work with F# code expressions programmatically. This feature
lets you generate an abstract syntax tree that represents F# code. The abstract syntax tree can then be traversed and processed according to the needs
of your application. For example, you can use the tree to generate F# code or generate code in some other language.

A quoted expression is an F# expression in your code that is delimited in such a way that it is not compiled as part of your program, but instead is
compiled into an object that represents an F# expression. You can mark a quoted expression in one of two ways: either with type information or without
type information. If you want to include type information, you use the symbols <@  and @>  to delimit the quoted expression. If you do not need type
information, you use the symbols <@@  and @@> . The following code shows typed and untyped quotations.

Traversing a large expression tree is faster if you do not include type information. The resulting type of an expression quoted with the typed symbols is 
Expr<'T> , where the type parameter has the type of the expression as determined by the F# compiler's type inference algorithm. When you use code

quotations without type information, the type of the quoted expression is the non-generic type Expr. You can call the Raw property on the typed Expr

class to obtain the untyped Expr  object.

There are a variety of static methods that allow you to generate F# expression objects programmatically in the Expr  class without using quoted
expressions.

Note that a code quotation must include a complete expression. For a let  binding, for example, you need both the definition of the bound name and
an additional expression that uses the binding. In verbose syntax, this is an expression that follows the in  keyword. At the top-level in a module, this is
just the next expression in the module, but in a quotation, it is explicitly required.

Therefore, the following expression is not valid.

But the following expressions are valid.

To use code quotations, you must add an import declaration (by using the open  keyword) that opens the Microsoft.FSharp.Quotations namespace.

The F# PowerPack provides support for evaluating and executing F# expression objects.

An instance of the Expr  type represents an F# expression. Both the generic and the non-generic Expr  types are documented in the F# library
documentation. For more information, see Microsoft.FSharp.Quotations Namespace and Quotations.Expr Class.

Splicing enables you to combine literal code quotations with expressions that you have created programmatically or from another code quotation. The 
%  and %%  operators enable you to add an F# expression object into a code quotation. You use the %  operator to insert a typed expression object into

a typed quotation; you use the %%  operator to insert an untyped expression object into an untyped quotation. Both operators are unary prefix
operators. Thus if expr  is an untyped expression of type Expr , the following code is valid.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/code-quotations.md
https://msdn.microsoft.com/library/ed6a2caf-69d4-45c2-ab97-e9b3be9bce65
https://msdn.microsoft.com/library/47fb94f1-e77f-4c68-aabc-2b0ba40d59c2
https://msdn.microsoft.com/library/e9ce8a3a-e00c-4190-bad5-cce52ee089b2
https://msdn.microsoft.com/visualfsharpdocs/conceptual/microsoft.fsharp.quotations-namespace-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/quotations.expr-class-%5bfsharp%5d


<@@ 1 + %%expr @@>

<@ 1 + %expr @>

Example
DescriptionDescription

CodeCode

And if expr  is a typed quotation of type Expr<int> , the following code is valid.

The following example illustrates the use of code quotations to put F# code into an expression object and then print the F# code that represents the
expression. A function println  is defined that contains a recursive function print  that displays an F# expression object (of type Expr ) in a friendly
format. There are several active patterns in the Microsoft.FSharp.Quotations.Patterns and Microsoft.FSharp.Quotations.DerivedPatterns modules that
can be used to analyze expression objects. This example does not include all the possible patterns that might appear in an F# expression. Any
unrecognized pattern triggers a match to the wildcard pattern ( _ ) and is rendered by using the ToString  method, which, on the Expr  type, lets you
know the active pattern to add to your match expression.

https://msdn.microsoft.com/library/093944a9-c752-403a-8983-5fcd5dbf92a4
https://msdn.microsoft.com/library/d2434a6e-ae7b-4f3d-b567-c162938bc9cd


module Print
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.Patterns
open Microsoft.FSharp.Quotations.DerivedPatterns

let println expr =
    let rec print expr =
        match expr with
        | Application(expr1, expr2) ->
            // Function application.
            print expr1
            printf " "
            print expr2
        | SpecificCall <@@ (+) @@> (_, _, exprList) ->
            // Matches a call to (+). Must appear before Call pattern.
            print exprList.Head
            printf " + "
            print exprList.Tail.Head
        | Call(exprOpt, methodInfo, exprList) ->
            // Method or module function call.
            match exprOpt with
            | Some expr -> print expr
            | None -> printf "%s" methodInfo.DeclaringType.Name
            printf ".%s(" methodInfo.Name
            if (exprList.IsEmpty) then printf ")" else
            print exprList.Head
            for expr in exprList.Tail do
                printf ","
                print expr
            printf ")"
        | Int32(n) ->
            printf "%d" n
        | Lambda(param, body) ->
            // Lambda expression.
            printf "fun (%s:%s) -> " param.Name (param.Type.ToString())
            print body
        | Let(var, expr1, expr2) ->
            // Let binding.
            if (var.IsMutable) then
                printf "let mutable %s = " var.Name
            else
                printf "let %s = " var.Name
            print expr1
            printf " in "
            print expr2
        | PropertyGet(_, propOrValInfo, _) ->
            printf "%s" propOrValInfo.Name
        | String(str) ->
            printf "%s" str
        | Value(value, typ) ->
            printf "%s" (value.ToString())
        | Var(var) ->
            printf "%s" var.Name
        | _ -> printf "%s" (expr.ToString())
    print expr
    printfn ""

let a = 2

// exprLambda has type "(int -> int)".
let exprLambda = <@ fun x -> x + 1 @>
// exprCall has type unit.
let exprCall = <@ a + 1 @>

println exprLambda
println exprCall
println <@@ let f x = x + 10 in f 10 @@>

OutputOutput

fun (x:System.Int32) -> x + 1
a + 1
let f = fun (x:System.Int32) -> x + 10 in f 10

Example
DescriptionDescription
You can also use the three active patterns in the ExprShape module to traverse expression trees with fewer active patterns. These active patterns can be
useful when you want to traverse a tree but you do not need all the information in most of the nodes. When you use these patterns, any F# expression
matches one of the following three patterns: ShapeVar  if the expression is a variable, ShapeLambda  if the expression is a lambda expression, or 
ShapeCombination  if the expression is anything else. If you traverse an expression tree by using the active patterns as in the previous code example, you

have to use many more patterns to handle all possible F# expression types, and your code will be more complex. For more information, see

https://msdn.microsoft.com/library/7685150e-2432-4d39-9338-57292eff18de


CodeCode

module Module1
open Print
open Microsoft.FSharp.Quotations
open Microsoft.FSharp.Quotations.DerivedPatterns
open Microsoft.FSharp.Quotations.ExprShape

let add x y = x + y
let mul x y = x * y

let rec substituteExpr expression =
    match expression with
    | SpecificCall <@@ add @@> (_, _, exprList) ->
        let lhs = substituteExpr exprList.Head
        let rhs = substituteExpr exprList.Tail.Head
        <@@ mul %%lhs %%rhs @@>
    | ShapeVar var -> Expr.Var var
    | ShapeLambda (var, expr) -> Expr.Lambda (var, substituteExpr expr)
    | ShapeCombination(shapeComboObject, exprList) ->
        RebuildShapeCombination(shapeComboObject, List.map substituteExpr exprList)

let expr1 = <@@ 1 + (add 2 (add 3 4)) @@>
println expr1
let expr2 = substituteExpr expr1
println expr2

OutputOutput

1 + Module1.add(2,Module1.add(3,4))
1 + Module1.mul(2,Module1.mul(3,4))

See Also

ExprShape.ShapeVar|ShapeLambda|ShapeCombination Active Pattern.

The following code example can be used as a basis for more complex traversals. In this code, an expression tree is created for an expression that
involves a function call, add . The SpecificCall active pattern is used to detect any call to add  in the expression tree. This active pattern assigns the
arguments of the call to the exprList  value. In this case, there are only two, so these are pulled out and the function is called recursively on the
arguments. The results are inserted into a code quotation that represents a call to mul  by using the splice operator ( %% ). The println  function from
the previous example is used to display the results.

The code in the other active pattern branches just regenerates the same expression tree, so the only change in the resulting expression is the change
from add  to mul .

F# Language Reference

https://msdn.microsoft.com/visualfsharpdocs/conceptual/exprshape.shapevarhshapelambdahshapecombination-active-pattern-%5bfsharp%5d
https://msdn.microsoft.com/library/05a77b21-20fe-4b9a-8e07-aa999538198d


 

The Fixed Keyword
5/4/2018 • 2 minutes to read • Edit Online

Syntax
use ptr = fixed expression

Remarks

Example
open Microsoft.FSharp.NativeInterop

type Point = { mutable X: int; mutable Y: int}

let squareWithPointer (p: nativeptr<int>) =
    // Dereference the pointer at the 0th address.
    let mutable value = NativePtr.get p 0

    // Perform some work
    value <- value * value

    // Set the value in the pointer at the 0th address.
    NativePtr.set p 0 value

let pnt = { X = 1; Y = 2 }
printfn "pnt before - X: %d Y: %d" pnt.X pnt.Y // prints 1 and 2

// Note that the use of 'fixed' is inside a function.
// You cannot fix a pointer at a script-level or module-level scope.
let doPointerWork() =
    use ptr = fixed &pnt.Y

    // Square the Y value
    squareWithPointer ptr
    printfn "pnt after - X: %d Y: %d" pnt.X pnt.Y // prints 1 and 4

doPointerWork()

See Also

F# 4.1 introduces the fixed  keyword, which allows you to "pin" a local onto the stack to prevent it from being collected or moved during garbage-
collection. It is used for low-level programming scenarios.

This extends the syntax of expressions to allow extracting a pointer and binding it to a name which is prevented from being collected or moved during
garbage-collection.

A pointer from an expression is fixed via the fixed  keyword is bound to an identifier via the use  keyword. The semantics of this are similar to resource
management via the use  keyword. The pointer is fixed while it is in scope, and once it is out of scope, it is no longer fixed. fixed  cannot be used
outside the context of a use  binding. You must bind the pointer to a name with use .

Use of fixed  must occur within an expression in a function or a method. It cannot be used at a script-level or module-level scope.

Like all pointer code, this is an unsafe feature and will emit a warning when used.

NativePtr Module

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/fixed.md
https://msdn.microsoft.com/visualfsharpdocs/conceptual/nativeinterop.nativeptr-module-%5Bfsharp%5D


     

Compiler Directives
5/4/2018 • 4 minutes to read • Edit Online

Preprocessor Directives

DIRECTIVE DESCRIPTION

#if  symbol Supports conditional compilation. Code in the section after the #if  is included if
the symbol is defined.

#else Supports conditional compilation. Marks a section of code to include if the symbol
used with the previous #if  is not defined.

#endif Supports conditional compilation. Marks the end of a conditional section of code.

# [line] int,
# [line] int string,
# [line] int verbatim-string

Indicates the original source code line and file name, for debugging. This feature is
provided for tools that generate F# source code.

#nowarn  warningcode Disables a compiler warning or warnings. To disable a warning, find its number from
the compiler output and include it in quotation marks. Omit the "FS" prefix. To
disable multiple warning numbers on the same line, include each number in
quotation marks, and separate each string by a space. For example:

Conditional Compilation Directives

NOTENOTE

#if VERSION1
let function1 x y =
   printfn "x: %d y: %d" x y
   x + 2 * y
#else
let function1 x y =
   printfn "x: %d y: %d" x y
   x - 2*y
#endif

let result = function1 10 20

Line Directives

This topic describes processor directives and compiler directives.

A preprocessor directive is prefixed with the # symbol and appears on a line by itself. It is interpreted by the preprocessor, which runs before the
compiler itself.

The following table lists the preprocessor directives that are available in F#.

#nowarn "9" "40"

The effect of disabling a warning applies to the entire file, including portions of the file that precede the directive.|

Code that is deactivated by one of these directives appears dimmed in the Visual StudioCode Editor.

The behavior of the conditional compilation directives is not the same as it is in other languages. For example, you cannot use Boolean expressions involving symbols,
and true  and false  have no special meaning. Symbols that you use in the if  directive must be defined by the command line or in the project settings; there is
no define  preprocessor directive.

The following code illustrates the use of the #if , #else , and #endif  directives. In this example, the code contains two versions of the definition of 
function1 . When VERSION1  is defined by using the -define compiler option, the code between the #if  directive and the #else  directive is activated.

Otherwise, the code between #else  and #endif  is activated.

There is no #define  preprocessor directive in F#. You must use the compiler option or project settings to define the symbols used by the #if  directive.

Conditional compilation directives can be nested. Indentation is not significant for preprocessor directives.

When building, the compiler reports errors in F# code by referencing line numbers on which each error occurs. These line numbers start at 1 for the
first line in a file. However, if you are generating F# source code from another tool, the line numbers in the generated code are generally not of interest,

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/compiler-directives.md
https://msdn.microsoft.com/library/434394ae-0d4a-459c-a684-bffede519a04


# 25
#line 25
#line 25 "C:\\Projects\\MyProject\\MyProject\\Script1"
#line 25 @"C:\Projects\MyProject\MyProject\Script1"
# 25 @"C:\Projects\MyProject\MyProject\Script1"

Compiler Directives

DIRECTIVE DESCRIPTION

#light  ["on"|"off"] Enables or disables lightweight syntax, for compatibility with other versions of ML.
By default, lightweight syntax is enabled. Verbose syntax is always enabled.
Therefore, you can use both lightweight syntax and verbose syntax. The directive 
#light  by itself is equivalent to #light "on" . If you specify #light "off" ,

you must use verbose syntax for all language constructs. Syntax in the
documentation for F# is presented with the assumption that you are using
lightweight syntax. For more information, see Verbose Syntax.

See Also

because the errors in the generated F# code most likely arise from another source. The #line  directive provides a way for authors of tools that
generate F# source code to pass information about the original line numbers and source files to the generated F# code.

When you use the #line  directive, file names must be enclosed in quotation marks. Unless the verbatim token ( @ ) appears in front of the string, you
must escape backslash characters by using two backslash characters instead of one in order to use them in the path. The following are valid line tokens.
In these examples, assume that the original file Script1  results in an automatically generated F# code file when it is run through a tool, and that the
code at the location of these directives is generated from some tokens at line 25 in file Script1 .

These tokens indicate that the F# code generated at this location is derived from some constructs at or near line 25  in Script1 .

Compiler directives resemble preprocessor directives, because they are prefixed with a # sign, but instead of being interpreted by the preprocessor, they
are left for the compiler to interpret and act on.

The following table lists the compiler directive that is available in F#.

For interpreter (fsi.exe) directives, see Interactive Programming with F#.

F# Language Reference

Compiler Options



                          

Compiler Options
5/4/2018 • 8 minutes to read • Edit Online

Compiler Options Listed Alphabetically

COMPILER OPTION DESCRIPTION

-a<output-filename> Generates a library and specifies its filename. This option is a short form of --
target:library<filename>.

--baseaddress:<string> Specifies the base address of the library to be built.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /baseaddress (C# Compiler Options).

--codepage:<int> Specifies the codepage used to read source files.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /codepage (C# Compiler Options).

--consolecolors Specifies that errors and warnings use color-coded text on the console.

--crossoptimize[+|-] Enables or disables cross-module optimizations.

--delaysign[+|-] Delay-signs the assembly using only the public portion of the strong name key.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /delaysign (C# Compiler Options).

--checked[+|-] Enables or disables the generation of overflow checks.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /checked (C# Compiler Options).

--debug[+|-]

-g[+|-]

--debug:[full|pdbonly]

-g: [full|pdbonly]

Enables or disables the generation of debug information, or specifies the type of
debug information to generate. The default is full, which allows attaching to a
running program. Choose pdbonly to get limited debugging information stored in
a pdb (program database) file.

Equivalent to the C# compiler option of the same name. For more information, see

/debug (C# Compiler Options).

--define:<string>

-d:<string>

Defines a symbol for use in conditional compilation.

--deterministic[+|-] Produce a deterministic assembly (including module version GUID and timestamp).
This cannot be used with wildcard version numbers, and only supports embedded
and portable debugging types

--doc:<xmldoc-filename> Instructs the compiler to generate XML documentation comments to the file
specified. For more information, see XML Documentation.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /doc (C# Compiler Options).

--fullpaths Instructs the compiler to generate fully qualified paths.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /fullpaths (C# Compiler Options).

--help

-?

Displays usage information, including a brief description of all the compiler options.

This topic describes compiler command-line options for the F# compiler, fsc.exe. The compilation environment can also be controlled by setting the
project properties.

The following table shows compiler options listed alphabetically. Some of the F# compiler options are similar to the C# compiler options. If that is the
case, a link to the C# compiler options topic is provided.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/compiler-options.md
https://msdn.microsoft.com/library/2fdbz5xd.aspx
https://msdn.microsoft.com/library/w0kyekyh.aspx
https://msdn.microsoft.com/library/ta1sxwy8.aspx
https://msdn.microsoft.com/library/h25wtyxf.aspx
https://msdn.microsoft.com/library/8cw0bt21.aspx
https://msdn.microsoft.com/library/3260k4x7.aspx
https://msdn.microsoft.com/library/d315xc66.aspx


--highentropyva[+|-] Enable or disable high-entropy address space layout randomization (ASLR), an
enhanced security feature. The OS randomizes the locations in memory where
infrastructure for applications (such as the stack and heap) are loaded. If you enable
this option, operating systems can use this randomization to use the full 64-bit
address-space on a 64-bit machine.

--keycontainer:<string> Specifies a strong name key container.

--keyfile:<filename> Specifies the name of a public key file for signing the generated assembly.

--lib:<folder-name>

-I:<folder-name>

Specifies a directory to be searched for assemblies that are referenced.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /lib (C# Compiler Options).

--linkresource:<resource-info> Links a specified resource to the assembly. The format of resource-info is
filename[,name[,public|private]]

Linking a single resource with this option is an alternative to embedding an entire
resource file with the --resource option.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /linkresource (C# Compiler Options).

--mlcompatibility Ignores warnings that appear when you use features that are designed for
compatibility with other versions of ML.

--noframework Disables the default reference to the .NET Framework assembly.

--nointerfacedata Instructs the compiler to omit the resource it normally adds to an assembly that
includes F#-specific metadata.

--nologo Doesn't show the banner text when launching the compiler.

--nooptimizationdata Instructs the compiler to only include optimization essential for implementing
inlined constructs. Inhibits cross-module inlining but improves binary compatibility.

--nowin32manifest Instructs the compiler to omit the default Win32 manifest.

--nowarn:<int-list> Disables specific warnings listed by number. Separate each warning number by a
comma. You can discover the warning number for any warning from the
compilation output.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /nowarn (C# Compiler Options).

--optimize[+|-][<string-list>]

-O[+|-] [<string-list>]

Enables or disables optimizations. Some optimization options can be disabled or
enabled selectively by listing them. These are: nojitoptimize, nojittracking,
nolocaloptimize, nocrossoptimize, notailcalls.

--out:<output-filename>

-o:<output-filename>

Specifies the name of the compiled assembly or module.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /out (C# Compiler Options).

--pdb:<pdb-filename> Names the output debug PDB (program database) file. This option only applies
when --debug is also enabled.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /pdb (C# Compiler Options).

--platform:<platform-name> Specifies that the generated code will only run on the specified platform (x86,
Itanium, or x64), or, if the platform-name anycpu is chosen, specifies that the
generated code can run on any platform.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /platform (C# Compiler Options).

--preferreduilang:<lang> Specifies the preferred output language culture name (for example, es-ES, ja-JP).

--quotations-debug Specifies that extra debugging information should be emitted for expressions that
are derived from F# quotation literals and reflected definitions. The debug
information is added to the custom attributes of an F# expression tree node. See
Code Quotations and Expr.CustomAttributes.

COMPILER OPTION DESCRIPTION

https://msdn.microsoft.com/library/s5bac5fx.aspx
https://msdn.microsoft.com/library/xawyf94k.aspx
https://msdn.microsoft.com/library/7f28x9z3.aspx
https://msdn.microsoft.com/library/bw3t50f3.aspx
https://msdn.microsoft.com/library/ms228625.aspx
https://msdn.microsoft.com/library/zekwfyz4.aspx
https://msdn.microsoft.com/library/eb89943f-5f5b-474e-b125-030ca412edb3


--reference:<assembly-filename>

-r <assembly-filename>

Makes code from an F# or .NET Framework assembly available to the code being
compiled.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /reference (C# Compiler Options).

--resource:<resource-filename> Embeds a managed resource file into the generated assembly.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /resource (C# Compiler Options).

--sig:<signature-filename> Generates a signature file based on the generated assembly. For more information
about signature files, see Signatures.

--simpleresolution Specifies that assembly references should be resolved using directory-based Mono
rules rather than MSBuild resolution. The default is to use MSBuild resolution
except when running under Mono.

--standalone Specifies to produce an assembly that contains all of its dependencies so that it
runs by itself without the need for additional assemblies, such as the F# library.

--staticlink:<assembly-name> Statically links the given assembly and all referenced DLLs that depend on this
assembly. Use the assembly name, not the DLL name.

--subsystemversion Specifies the version of the OS subsystem to be used by the generated executable.
Use 6.02 for Windows 8.1, 6.01 for Windows 7, 6.00 for Windows Vista. This option
only applies to executables, not DLLs, and need only be used if your application
depends on specific security features available only on certain versions of the OS. If
this option is used, and a user attempts to execute your application on a lower
version of the OS, it will fail with an error message.

--tailcalls[+|-] Enables or disables the use of the tail IL instruction, which causes the stack frame
to be reused for tail recursive functions. This option is enabled by default.

--target:[exe | winexe | library | module ] <output-filename> Specifies the type and file name of the generated compiled code.

--times Displays timing information for compilation.

--utf8output Enables printing compiler output in the UTF-8 encoding.

--warn:<warning-level> Sets a warning level (0 to 5). The default level is 3. Each warning is given a level
based on its severity. Level 5 gives more, but less severe, warnings than level 1.

Level 5 warnings are: 21 (recursive use checked at runtime), 22 (let rec evaluated
out of order), 45 (full abstraction), and 52 (defensive copy). All other warnings are
level 2.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /warn (C# Compiler Options).

--warnon:<int-list> Enable specific warnings that might be off by default or disabled by another
command line option. In F# 3.0, only the 1182 (unused variables) warning is off by
default.

--warnaserror[+|-] [<int-list>] Enables or disables the option to report warnings as errors. You can provide specific
warning numbers to be disabled or enabled. Options later in the command line
override options earlier in the command line. For example, to specify the warnings
that you don't want reported as errors, specify --warnaserror+ --warnaserror-:
<int-list>.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /warnaserror (C# Compiler Options).

COMPILER OPTION DESCRIPTION

exe means a console application.
winexe means a Windows application, which differs from the console
application in that it does not have standard input/output streams (stdin,
stdout, and stderr) defined.
library is an assembly without an entry point.
module is a .NET Framework module (.netmodule), which can later be
combined with other modules into an assembly.

This compiler option is equivalent to the C# compiler option of the same name.
For more information, see /target (C# Compiler Options).

https://msdn.microsoft.com/library/yabyz3h4.aspx
https://msdn.microsoft.com/library/c0tyye07.aspx
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/signatures
https://msdn.microsoft.com/library/6h25dztx.aspx
https://msdn.microsoft.com/library/13b90fz7.aspx
https://msdn.microsoft.com/library/406xhdz3.aspx


--win32manifest:manifest-filename Adds a Win32 manifest file to the compilation. This compiler option is equivalent to
the C# compiler option of the same name. For more information, see
/win32manifest (C# Compiler Options).

--win32res:resource-filename Adds a Win32 resource file to the compilation.

This compiler option is equivalent to the C# compiler option of the same name. For
more information, see /win32res ((C&#35); Compiler Options).

COMPILER OPTION DESCRIPTION

Related Topics
TITLE DESCRIPTION

F# Interactive Options Describes command-line options supported by the F# interpreter, fsi.exe.

Project Properties Reference Describes the UI for projects, including project property pages that provide build
options.

https://msdn.microsoft.com/library/bb545961.aspx
https://msdn.microsoft.com/library/8f2f5x2e.aspx
https://docs.microsoft.com/visualstudio/ide/reference/project-properties-reference


   

F# Interactive Options
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Using F# Interactive for Scripting

> fsi.exe [options] [ script-file [arguments] ]

Table of F# Interactive Options

OPTION DESCRIPTION

-- Used to instruct F# Interactive to treat remaining arguments as command line
arguments to the F# program or script, which you can access in code by using the
list fsi.CommandLineArgs.

--checked[+|-] Same as the fsc.exe compiler option. For more information, see Compiler Options.

--codepage:<int> Same as the fsc.exe compiler option. For more information, see Compiler Options.

--consolecolors[+|-] Outputs warning and error messages in color.

--crossoptimize[+|-] Enable or disable cross-module optimizations.

--debug[+|-]

--debug:[full|pdbonly|portable|embedded]

-g[+|-]

-g:[full|pdbonly|portable|embedded]

Same as the fsc.exe compiler option. For more information, see Compiler Options.

--define:<string> Same as the fsc.exe compiler option. For more information, see Compiler Options.

--deterministic[+|-] Produces a deterministic assembly (including module version GUID and
timestamp).

--exec Instructs F# interactive to exit after loading the files or running the script file given
on the command line.

--fullpaths Same as the fsc.exe compiler option. For more information, see Compiler Options.

--gui[+|-] Enables or disables the Windows Forms event loop. The default is enabled.

--help

-?

Used to display the command line syntax and a brief description of each option.

--lib:<folder-list>

-I:<folder-list>

Same as the fsc.exe compiler option. For more information, see Compiler Options.

This article currently describes the experience for Windows only. It will be rewritten.

This topic describes the command-line options supported by F# Interactive, fsi.exe . F# Interactive accepts many of the same command line options as
the F# compiler, but also accepts some additional options.

F# Interactive, fsi.exe , can be launched interactively, or it can be launched from the command line to run a script. The command line syntax is

The file extension for F# script files is .fsx .

The following table summarizes the options supported by F# Interactive. You can set these options on the command-line or through the Visual Studio
IDE. To set these options in the Visual Studio IDE, open the Tools menu, select Options..., then expand the F# Tools node and select F# Interactive.

Where lists appear in F# Interactive option arguments, list elements are separated by semicolons ( ; ).

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/fsharp-interactive-options.md


--load:<filename> Compiles the given source code at startup and loads the compiled F# constructs
into the session. If the target source contains scripting directives such as #use or
#load, then you must use --use or #use instead of --load or #load.

--mlcompatibility Same as the fsc.exe compiler option. For more information, see Compiler Options.

--noframework Same as the fsc.exe compiler option. For more information, see Compiler Options

--nologo Same as the fsc.exe compiler option. For more information, see Compiler Options.

--nowarn:<warning-list> Same as the fsc.exe compiler option. For more information, see Compiler Options.

--optimize[+|-] Same as the fsc.exe compiler option. For more information, see Compiler Options.

--preferreduilang:<lang> Specifies the preferred output language culture name (for example, es-ES, ja-JP).

--quiet Suppress F# Interactive's output to the stdout stream.

--quotations-debug Specifies that extra debugging information should be emitted for expressions that
are derived from F# quotation literals and reflected definitions. The debug
information is added to the custom attributes of an F# expression tree node. See
Code Quotations and Expr.CustomAttributes.

--readline[+|-] Enable or disable tab completion in interactive mode.

--reference:<filename>

-r:<filename>

Same as the fsc.exe compiler option. For more information, see Compiler Options.

--shadowcopyreferences[+|-] Prevents references from being locked by the F# Interactive process.

--simpleresolution Resolves assembly references using directory-based rules rather than MSBuild
resolution.

--tailcalls[+|-] Enable or disable the use of the tail IL instruction, which causes the stack frame to
be reused for tail recursive functions. This option is enabled by default.

--targetprofile:<string> Specifies target framework profile of this assembly. Valid values are mscorlib,
netcore or netstandard. The default is mscorlib.

--use:<filename> Tells the interpreter to use the given file on startup as initial input.

--utf8output Same as the fsc.exe compiler option. For more information, see Compiler Options.

--warn:<warning-level> Same as the fsc.exe compiler option. For more information, see Compiler Options.

--warnaserror[+|-] Same as the fsc.exe compiler option. For more information, see Compiler Options.

--warnaserror[+|-]:<int-list> Same as the fsc.exe compiler option. For more information, see Compiler Options.

OPTION DESCRIPTION

Related Topics
TITLE DESCRIPTION

Compiler Options Describes command line options available for the F# compiler, fsc.exe.

https://msdn.microsoft.com/library/eb89943f-5f5b-474e-b125-030ca412edb3


 

Source Line, File, and Path Identifiers
5/4/2018 • 2 minutes to read • Edit Online

Syntax
__LINE__
__SOURCE_DIRECTORY__
__SOURCE_FILE__

Remarks

PREDEFINED IDENTIFIER DESCRIPTION

__LINE__ Evaluates to the current line number, considering #line  directives.

__SOURCE_DIRECTORY__ Evaluates to the current full path of the source directory, considering #line

directives.

__SOURCE_FILE__ Evaluates to the current source file name and its path, considering #line

directives.

Example

let printSourceLocation() =
    printfn "Line: %s" __LINE__
    printfn "Source Directory: %s" __SOURCE_DIRECTORY__
    printfn "Source File: %s" __SOURCE_FILE__
printSourceLocation()

Line: 4
Source Directory: C:\Users\username\Documents\Visual Studio 2017\Projects\SourceInfo\SourceInfo
Source File: C:\Users\username\Documents\Visual Studio 2017\Projects\SourceInfo\SourceInfo\Program.fs

See Also

The identifiers __LINE__ , __SOURCE_DIRECTORY__  and __SOURCE_FILE__  are built-in values that enable you to access the source line number, directory and
file name in your code.

Each of these values has type string .

The following table summarizes the source line, file, and path identifiers that are available in F#. These identifiers are not preprocessor macros; they are
built-in values that are recognized by the compiler.

For more information about the #line  directive, see Compiler Directives.

The following code example demonstrates the use of these values.

Output:

Compiler Directives

F# Language Reference

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/source-line-file-path-identifiers.md


 

Caller information
5/4/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION TYPE

CallerFilePath Full path of the source file that contains the caller. This
is the file path at compile time.

String

CallerLineNumber Line number in the source file at which the method is
called.

Integer

CallerMemberName Method or property name of the caller. See the
Member Names section later in this topic.

String

Example

open System.Diagnostics
open System.Runtime.CompilerServices

type Tracer() =
    member __.DoTrace(msg: string,
                      [<CallerMemberName>] ?memberName: string,
                      [<CallerFilePath>] ?path: string
                      [<CallerLineNumber>] ?line: int) =
        Trace.WriteLine(sprintf "Message: %s" message)
        match (memberName, path, line) with
        | Some m, Some p, Some l ->
            Trace.WriteLine(sprintf "Member name: %s" m)
            Trace.WriteLine(sprintf "Source file path: %s" p)
            Trace.WriteLine(sprintf "Source line number: %d" l)
        | _,_,_ -> ()

Remarks

Member names

CALLS OCCURS WITHIN MEMBER NAME RESULT

Method, property, or event The name of the method, property, or event from which the call originated.

Constructor The string ".ctor"

Static constructor The string ".cctor"

By using Caller Info attributes, you can obtain information about the caller to a method. You can obtain file path of the source code, the line number in
the source code, and the member name of the caller. This information is helpful for tracing, debugging, and creating diagnostic tools.

To obtain this information, you use attributes that are applied to optional parameters, each of which has a default value. The following table lists the
Caller Info attributes that are defined in the System.Runtime.CompilerServices namespace:

The following example shows how you might use these attributes to trace a caller.

Caller Info attributes can only be applied to optional parameters. You must supply an explicit value for each optional parameter. The Caller Info
attributes cause the compiler to write the proper value for each optional parameter decorated with a Caller Info attribute.

Caller Info values are emitted as literals into the Intermediate Language (IL) at compile time. Unlike the results of the StackTrace property for
exceptions, the results aren't affected by obfuscation.

You can explicitly supply the optional arguments to control the caller information or to hide caller information.

You can use the CallerMemberName  attribute to avoid specifying the member name as a String  argument to the called method. By using this technique,
you avoid the problem that Rename Refactoring doesn't change the String  values. This benefit is especially useful for the following tasks:

Using tracing and diagnostic routines.
Implementing the INotifyPropertyChanged interface when binding data. This interface allows the property of an object to notify a bound control
that the property has changed, so that the control can display the updated information. Without the CallerMemberName  attribute, you must specify the
property name as a literal.

The following chart shows the member names that are returned when you use the CallerMemberName attribute.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/caller-information.md
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callerfilepathattribute
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callerlinenumberattribute
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://docs.microsoft.com/dotnet/api/system.diagnostics.stacktrace
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callermembernameattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.inotifypropertychanged
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.callermembernameattribute


Destructor The string "Finalize"

User-defined operators or conversions The generated name for the member, for example, "op_Addition".

Attribute constructor The name of the member to which the attribute is applied. If the attribute is any
element within a member (such as a parameter, a return value, or a generic type
parameter), this result is the name of the member that's associated with that
element.

No containing member (for example, assembly-level or attributes that are applied
to types)

The default value of the optional parameter.

CALLS OCCURS WITHIN MEMBER NAME RESULT

See also
Attributes
Named arguments
Optional parameters



        

Verbose Syntax
5/4/2018 • 2 minutes to read • Edit Online

Table of Constructs

LANGUAGE CONSTRUCT LIGHTWEIGHT SYNTAX VERBOSE SYNTAX

compound expressions ```xml ``` ``` ; ```

nested `let` bindings ``` let f x = let a = 1 let b = 2 x + a + b ``` ``` let f x = let a = 1 in let b = 2 in x + a + b ```

code block ``` ( ) ``` ``` begin ; ; end ```

`for...do` ``` for counter = start to finish do ... ``` ``` for counter = start to finish do ... done ```

`while...do` ``` while do ... ``` ``` while do ... done ```

`for...in` ``` for var in start .. finish do ... ``` ``` for var in start .. finish do ... done ```

`do` ``` do ... ``` ``` do ... in ```

record ``` type = { } ``` ``` type = { } with end ```

class ``` type () = ... ``` ``` type () = class ... end ```

structure ``` [] type = ... ``` ``` type = struct ... end ```

discriminated union ``` type = | ... | ... ... ``` ``` type = | ... | ... ... with end ```

interface ``` type = ... ``` ``` type = interface ... end ```

object expression ``` { new with } ``` ``` { new with end } ```

interface implementation ``` interface with ``` ``` interface with end ```

type extension ``` type with ``` ``` type with end ```

module ``` module = ... ``` ``` module = begin ... end ```

See Also

There are two forms of syntax available for many constructs in the F# language: verbose syntax and lightweight syntax. The verbose syntax is not as
commonly used, but has the advantage of being less sensitive to indentation. The lightweight syntax is shorter and uses indentation to signal the
beginning and end of constructs, rather than additional keywords like begin , end , in , and so on. The default syntax is the lightweight syntax. This
topic describes the syntax for F# constructs when lightweight syntax is not enabled. Verbose syntax is always enabled, so even if you enable lightweight
syntax, you can still use verbose syntax for some constructs. You can disable lightweight syntax by using the #light "off"  directive.

The following table shows the lightweight and verbose syntax for F# language constructs in contexts where there is a difference between the two forms.
In this table, angle brackets (<>) enclose user-supplied syntax elements. Refer to the documentation for each language construct for more detailed
information about the syntax used within these constructs.

F# Language Reference

Compiler Directives

Code Formatting Guidelines

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/verbose-syntax.md


  

Code Formatting Guidelines
5/4/2018 • 7 minutes to read • Edit Online

General Rules for Indentation

let printList list1 =
    for elem in list1 do
        if elem > 0 then
            printf "%d" elem
        elif elem = 0 then
            printf "Zero"
        else
            printf "(Negative number)"
        printf " "
    printfn "Done!"
printfn "Top-level context."
printList [-1;0;1;2;3]

Top-level context

(Negative number) Zero 1 2 3 Done!

This topic summarizes code indentation guidelines for F#. Because the F# language is sensitive to line breaks and indentation, it is not just a readability
issue, aesthetic issue, or coding standardization issue to format your code correctly. You must format your code correctly for it to compile correctly.

When indentation is required, you must use spaces, not tabs. At least one space is required. Your organization can create coding standards to specify the
number of spaces to use for indentation; three or four spaces of indentation at each level where indentation occurs is typical. You can configure Visual
Studio to match your organization's indentation standards by changing the options in the Options  dialog box, which is available from the Tools  menu.
In the Text Editor  node, expand F#  and then click Tabs . For a description of the available options, see Options, Text Editor, All Languages, Tabs.

In general, when the compiler parses your code, it maintains an internal stack that indicates the current level of nesting. When code is indented, a new
level of nesting is created, or pushed onto this internal stack. When a construct ends, the level is popped. Indentation is one way to signal the end of a
level and pop the internal stack, but certain tokens also cause the level to be popped, such as the end  keyword, or a closing brace or parenthesis.

Code in a multiline construct, such as a type definition, function definition, try...with  construct, and looping constructs, must be indented relative to
the opening line of the construct. The first indented line establishes a column position for subsequent code in the same construct. The indentation level
is called a context. The column position sets a minimum column, referred to as an offside line, for subsequent lines of code that are in the same context.
When a line of code is encountered that is indented less than this established column position, the compiler assumes that the context has ended and
that you are now coding at the next level up, in the previous context. The term offside is used to describe the condition in which a line of code triggers
the end of a construct because it is not indented far enough. In other words, code to the left of an offside line is offside. In correctly indented code, you
take advantage of the offside rule in order to delineate the end of constructs. If you use indentation improperly, an offside condition can cause the
compiler to issue a warning or can lead to the incorrect interpretation of your code.

Offside lines are determined as follows.

An =  token associated with a let  introduces an offside line at the column of the first token after the =  sign.

In an if...then...else  expression, the column position of the first token after the then  keyword or the else  keyword introduces an offside
line.

In a try...with  expression, the first token after try  introduces an offside line.

In a match  expression, the first token after with  and the first token after each ->  introduce offside lines.

The first token after with  in a type extension introduces an offside line.

The first token after an opening brace or parenthesis, or after the begin  keyword, introduces an offside line.

The first character in the keywords let , if , and module  introduce offside lines.

The following code examples illustrate the indentation rules. Here, the print statements rely on indentation to associate them with the appropriate
context. Every time the indentation shifts, the context is popped and returns to the previous context. Therefore, a space is printed at the end of each
iteration; "Done!" is only printed one time because the offside indentation establishes that it is not part of the loop. The printing of the string "Top-level
context" is not part of the function. Therefore, it is printed first, during the static initialization, before the function is called.

The output is as follows.

When you break long lines, the continuation of the line must be indented farther than the enclosing construct. For example, function arguments must be
indented farther than the first character of the function name, as shown in the following code.

https://github.com/dotnet/docs/blob/master/docs/fsharp/language-reference/code-formatting-guidelines.md
https://msdn.microsoft.com/library/7sffa753.aspx


let myFunction1 a b = a + b
let myFunction2(a, b) = a + b
let someFunction param1 param2 =
    let result = myFunction1 param1
                     param2
    result * 100
let someOtherFunction param1 param2 =
    let result = myFunction2(param1,
                     param2)
    result * 100

Indentation in Modules

// Program1.fs
// A is a top-level module.
module A

let function1 a b = a - b * b

// Program2.fs
// A1 and A2 are local modules.
module A1 =
    let function1 a b = a*a + b*b

module A2 =
    let function2 a b = a*a - b*b

Exceptions to the Basic Indentation Rules

let abs1 x =
    if (x >= 0)
    then
        x
    else
        -x

// The following code does not produce a warning.
let abs2 x =
    if (x >= 0)
        then
        x
        else
        -x

// The following code is not indented properly and produces a warning.
let abs3 x =
    if (x >= 0)
    then
    x
    else
    -x

There are exceptions to these rules, as described in the next section.

Code in a local module must be indented relative to the module, but code in a top-level module does not have to be indented. Namespace elements do
not have to be indented.

The following code examples illustrate this.

For more information, see Modules.

The general rule, as described in the previous section, is that code in multiline constructs must be indented relative to the indentation of the first line of
the construct, and that the end of the construct is determined by when the first offside line occurs. An exception to the rule about when contexts end is
that some constructs, such as the try...with  expression, the if...then...else  expression, and the use of and  syntax for declaring mutually recursive
functions or types, have multiple parts. You indent the later parts, such as then  and else  in an if...then...else  expression, at the same level as the
token that starts the expression, but instead of indicating an end to the context, it represents the next part of the same context. Therefore, an 
if...then...else  expression can be written as in the following code example.

The exception to the offside rule applies only to the then  and else  keywords. Therefore, although it is not an error to indent the then  and else

further, failing to indent the lines of code in a then  block produces a warning. This is illustrated in the following lines of code.

For code in an else  block, an additional special rule applies. The warning in the previous example occurs only on the code in the then  block, not on
the code in the else  block. This allows you to write code that checks for various conditions at the beginning of a function without forcing the rest of the



let abs4 x =
    if (x >= 0) then x else
    -x

let function1 arg1 arg2 arg3 arg4 =
    arg1 + arg2
  + arg3 + arg4

See Also

code for the function, which might be in an else  block, to be indented. Thus, you can write the following without producing a warning.

Another exception to the rule that contexts end when a line is not indented as far as a previous line is for infix operators, such as +  and |> . Lines that
start with infix operators are permitted to begin (1 + oplength)  columns before the normal position without triggering an end to the context, where 
oplength  is the number of characters that make up the operator. This causes the first token after the operator to align with the previous line.

For example, in the following code, the +  symbol is permitted to be indented two columns less than the previous line.

Although indentation usually increases as the level of nesting becomes higher, there are several constructs in which the compiler allows you to reset the
indentation to a lower column position.

The constructs that permit a reset of column position are as follows:

let printListWithOffset a list1 =
    List.iter (fun elem ->
        printfn "%d" (a + elem)) list1

type IMyInterface = interface
   abstract Function1: int -> int
end

Bodies of anonymous functions. In the following code, the print expression starts at a column position that is farther to the left than the fun

keyword. However, the line must not start at a column to the left of the start of the previous indentation level (that is, to the left of the L  in List

).

Constructs enclosed by parentheses or by begin  and end  in a then  or else  block of an if...then...else  expression, provided the
indentation is no less than the column position of the if  keyword. This exception allows for a coding style in which an opening parenthesis or 
begin  is used at the end of a line after then  or else .

Bodies of modules, classes, interfaces, and structures delimited by begin...end , {...} , class...end , or interface...end . This allows for a style
in which the opening keyword of a type definition can be on the same line as the type name without forcing the whole body to be indented
farther than the opening keyword.

F# Language Reference



                  

Visual Basic Guide
6/6/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

Visual Basic is engineered for productively building type-safe and object-oriented applications. Visual Basic enables developers to target Windows,
Web, and mobile devices. As with all languages targeting the Microsoft .NET Framework, programs written in Visual Basic benefit from security and
language interoperability.

This generation of Visual Basic continues the tradition of giving you a fast and easy way to create .NET Framework-based applications.

If you don't already have Visual Basic, you can acquire a version of Visual Studio that includes Visual Basic for free from the Visual Studio site.

Getting Started
Helps you begin working by listing what is new and what is available in various editions of the product.

Programming Concepts Presents the language concepts that are most useful to Visual Basic programmers.

Program Structure and Code Conventions
Contains documentation on the basic structure and code conventions of Visual Basic such as naming conventions, comments in code, and limitations
within Visual Basic.

Visual Basic Language Features
Provides links to topics that introduce and discuss important features of Visual Basic, including LINQ and XML literals.

Visual Basic Reference
Contains the Visual Basic language and compiler information.

Developing Applications with Visual Basic
Discusses various aspects of development in Visual Basic, such as security, exception handling, and using the .NET Framework class library.

COM Interop
Explains the interoperability issues associated with creating and using component object model (COM) objects with Visual Basic.

Samples
Contains information about samples.

Walkthroughs
Provides links to step-by-step instructions for common scenarios.

Get Started Developing with Visual Studio
Provides links to topics that help you learn about the basics of Visual Studio.

.NET API Browser
Provides entry to the library of classes, interfaces, and value types that are included in the Microsoft .NET Framework SDK.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/index.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://docs.microsoft.com/visualstudio/ide/get-started-developing-with-visual-studio
https://docs.microsoft.com/en-us/dotnet/api/index


    

Get started with Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

Get started with Visual Basic and .NET Core

Additional information

Develop .NET Core applications with Visual Basic

See also

This section of the documentation helps you get started with Visual Basic application development.

Build a Visual Basic Hello World application with .NET Core in Visual Studio 2017

Build a class library with Visual Basic and .NET Core in Visual Studio 2017

What's new for Visual Basic
Lists new features in each of the versions of Visual Basic .NET.

Visual Basic Breaking Changes in Visual Studio
Lists changes in this release that might prevent an application from compiling or change its run-time behavior.

Additional Resources for Visual Basic Programmers
Provides a list of Web sites and newsgroups that can help you find answers to common problems.

Build a Visual Basic Hello World app with .NET Core in Visual Studio 2017

Build a class library with Visual Basic and .NET Core in Visual Studio 2017

Get Visual Basic
Provides download links for Visual Studio versions that include Visual Basic support, including free versions.

Visual Basic Fundamentals for Absolute Beginners
Microsoft Virtual Academy course that teaches the fundamentals of Visual Basic programming.

Object-Oriented Programming
Provides links to pages that introduce object-oriented programming and describe how to create your own objects and how to use objects to simplify
your coding.

Samples
Provides links to sample code in Visual Basic.

Walkthroughs
Provides a list of Help pages that demonstrate aspects of the Visual Basic language.

Talk to Us
Covers how to receive support and give feedback.

Visual Studio
Provides links into the Visual Studio documentation.

C# Provides links into the documentation on application development with Visual C#.

Visual C++
Provides links into the Visual C++ documentation.

Office and SharePoint Development
Provides information about using Microsoft Office and Visual Studio as part of a business application.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/getting-started/index.md
https://aka.ms/vsdownload?utm_source=mscom&utm_campaign=msdocs
https://mva.microsoft.com/en-US/training-courses/visual-basic-fundamentals-for-absolute-beginners-16507
https://docs.microsoft.com/visualstudio/ide/talk-to-us
https://docs.microsoft.com/visualstudio/
https://docs.microsoft.com/cpp/
https://msdn.microsoft.com/library/d2tx7z6d


 

 

What's new for Visual Basic
5/4/2018 • 9 minutes to read • Edit Online

Current Version

Previous versions

Visual Basic 15.5

StudentInfo.Display("Mary", age:=19, #9/21/1998#)

Dim number As Integer = &H_C305_F860

This topic lists key feature names for each version of Visual Basic, with detailed descriptions of the new and enhanced features in the lastest version of
the language.

Visual Basic 15.5
For new features, see Visual Basic 15.5

Visual Basic 15.3
For new features, see Visual Basic 15.3

Visual Basic 2017
For new features, see Visual Basic 2017

Visual Basic / Visual Studio .NET 2015
For new features, see Visual Basic 14

Visual Basic / Visual Studio .NET 2013
Technology previews of the .NET Compiler Platform (“Roslyn”)

Visual Basic / Visual Studio .NET 2012
Async  and await  keywords, iterators, caller info attributes

Visual Basic, Visual Studio .NET 2010
Auto-implemented properties, collection initializers, implicit line continuation, dynamic, generic co/contra variance, global namespace access

Visual Basic / Visual Studio .NET 2008
Language Integrated Query (L INQ), XML literals, local type inference, object initializers, anonymous types, extension methods, local var  type
inference, lambda expressions, if  operator, partial methods, nullable value types

Visual Basic / Visual Studio .NET 2005
The My  type and helper types (access to app, computer, files system, network)

Visual Basic / Visual Studio .NET 2003
Bit-shift operators, loop variable declaration

Visual Basic / Visual Studio .NET 2002
The first release of Visual Basic .NET

Non-trailing named arguments

In Visual Basic 15.3 and earlier versions, when a method call included arguments both by position and by name, positional arguments had to precede
named arguments. Starting with Visual Basic 15.5, positional and named arguments can appear in any order as long as all arguments up to the last
positional argument are in the correct position. This is particularly useful when named arguments are used to make code more readable.

For example, the following method call has two positional arguments between a named argument. The named argument makes it clear that the value
19 represents an age.

Leading hex/binary/octal separator

Visual Basic 2017 added support for the underscore character ( _ ) as a digit separator. Starting with Visual Basic 15.5, you can use the underscore
character as a leading separator between the prefix and hexadecimal, binary, or octal digits. The following example uses a leading digit separator to
define 3,271,948,384 as a hexadecimal number:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/getting-started/whats-new.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-position-and-by-name


 

 

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Visual Basic 15.3

Dim state = "MI"
Dim stateName = "Michigan"
Dim capital = "Lansing"
Dim stateInfo = ( state, stateName, capital )
Console.WriteLine($"{stateInfo.stateName}: 2-letter code: {stateInfo.State}, Capital {stateInfo.capital}")   
' The example displays the following output:
'      Michigan: 2-letter code: MI, Capital Lansing

Visual Basic 2017

Imports System.Globalization

Public Module NumericLibrary
    Public Function ParseInteger(value As String) As (Success As Boolean, Number As Int32)
        Dim number As Integer
        Return (Int32.TryParse(value, NumberStyles.Any, CultureInfo.InvariantCulture, number), number)
    End Function
End Module

Dim numericString As String = "123,456"
Dim result = ParseInteger(numericString)
Console.WriteLine($"{If(result.Success, $"Success: {result.Number:N0}", "Failure")}")
Console.ReadLine()
'      Output: Success: 123,456

Dim value As Byte = &B0110_1110
Console.WriteLine($"{NameOf(value)}  = {value} (hex: 0x{value:X2}) " +
                  $"(binary: {Convert.ToString(value, 2)})")
' The example displays the following output:
'      value  = 110 (hex: 0x6E) (binary: 1101110)      

Named tuple inference

When you assign the value of tuple elements from variables, Visual Basic infers the name of tuple elements from the corresponding variable names;
you do not have to explicitly name a tuple element. The following example uses inference to create a tuple with three named elements, state , 
stateName , and capital .

Additional compiler switches

The Visual Basic command-line compiler now supports the -refout and -refonly compiler options to control the output of reference assemblies. -
refout defines the output directory of the reference assembly, and -refonly specifies that only a reference assembly is to be output by compilation.

Tuples

Tuples are a lightweight data structure that most commonly is used to return multiple values from a single method call. Ordinarily, to return multiple
values from a method, you have to do one of the following:

Define a custom type (a Class  or a Structure ). This is a heavyweight solution.

Define one or more ByRef  parameters, in addition to returning a value from the method.

Visual Basic's support for tuples lets you quickly define a tuple, optionally assign semantic names to its values, and quickly retrieve its values. The
following example wraps a call to the TryParse method and returns a tuple.

You can then call the method and handle the returned tuple with code like the following.

Binary literals and digit separators

You can define a binary literal by using the prefix &B  or &b . In addition, you can use the underscore character, _ , as a digit separator to enhance
readability. The following example uses both features to assign a Byte  value and to display it as a decimal, hexadecimal, and binary number.

For more information, see the "Literal assignments" section of the Byte, Integer, Long, Short, SByte, UInteger, ULong, and UShort data types.

Support for C# reference return values

Starting with C# 7.0, C# supports reference return values. That is, when the calling method receives a value returned by reference, it can change the
value of the reference. Visual Basic does not allow you to author methods with reference return values, but it does allow you to consume and modify the
reference return values.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/tuples
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/tuples
https://docs.microsoft.com/dotnet/api/system.int32.tryparse


using System;
 
public class Sentence
{
    private string[] words;
    private int currentSearchPointer;
    
    public Sentence(string sentence)
    {
        words = sentence.Split(' ');
        currentSearchPointer = -1;
    }
    
    public ref string FindNext(string startWithString, ref bool found)
    {
        for (int count = currentSearchPointer + 1; count < words.Length; count++)
        {
            if (words[count].StartsWith(startWithString))
            {
                currentSearchPointer = count;
                found = true;
                return ref words[currentSearchPointer];
            }
        }
        currentSearchPointer = -1;
        found = false;
        return ref words[0];
    }
    
    public string GetSentence()
    {
        string stringToReturn = null;
        foreach (var word in words)
            stringToReturn += $"{word} ";
      
        return stringToReturn.Trim();    
    }
}

Dim sentence As New Sentence("A time to see the world is now.")
Dim found = False
sentence.FindNext("A", found) = "A good" 
Console.WriteLine(sentence.GetSentence()) 
' The example displays the following output:
'      A good time to see the world is now.

Dim sentence As New Sentence("A time to see the world is now.")
Dim found = False
sentence.FindNext("A", found) = IIf(found, "A good", sentence.FindNext("B", found)) 
Console.WriteLine(sentence.GetSentence()) 
' The example displays the following output:
'      A good time to see the world is now.

For example, the following Sentence  class written in C# includes a FindNext  method that finds the next word in a sentence that begins with a specified
substring. The string is returned as a reference return value, and a Boolean  variable passed by reference to the method indicates whether the search
was successful. This means that the caller can not only read the returned value; he or she can also modify it, and that modification is reflected in the 
Sentence  class.

In its simplest form, you can modify the word found in the sentence by using code like the following. Note that you are not assigning a value to the
method, but rather to the expression that the method returns, which is the reference return value.

A problem with this code, though, is that if a match is not found, the method returns the first word. Since the example does not examine the value of the 
Boolean  argument to determine whether a match is found, it modifies the first word if there is no match. The following example corrects this by

replacing the first word with itself if there is no match.

A better solution is to use a helper method to which the reference return value is passed by reference. The helper method can then modify the argument
passed to it by reference. The following example does that.



 

Module Example
   Public Sub Main()
      Dim sentence As New Sentence("A time to see the world is now.")
      Dim found = False
      Dim returns = RefHelper(sentence.FindNext("A", found), "A good", found) 
      Console.WriteLine(sentence.GetSentence()) 
   End Sub
   
   Private Function RefHelper(ByRef stringFound As String, replacement As String, success As Boolean) _ 
                    As (originalString As String, found As Boolean) 
      Dim originalString = stringFound
      If found Then stringFound = replacement
      Return (originalString, found)   
   End Function
End Module
' The example displays the following output:
'      A good time to see the world is now.

Visual Basic 14

For more information, see Reference Return Values.

Nameof
You can get the unqualified string name of a type or member for use in an error message without hard coding a string. This allows your code to remain
correct when refactoring. This feature is also useful for hooking up model-view-controller MVC links and firing property changed events.

String Interpolation
You can use string interpolation expressions to construct strings. An interpolated string expression looks like a template string that contains expressions.
An interpolated string is easier to understand with respect to arguments than Composite Formatting.

Null-conditional Member Access and Indexing
You can test for null in a very light syntactic way before performing a member access ( ?. ) or index ( ?[] ) operation. These operators help you write
less code to handle null checks, especially for descending into data structures. If the left operand or object reference is null, the operations returns null.

Multi-line String Literals
String literals can contain newline sequences. You no longer need the old work around of using <xml><![CDATA[...text with newlines...]]></xml>.Value

Comments
You can put comments after implicit line continuations, inside initializer expressions, and amongst L INQ expression terms.

Smarter Fully-qualified Name Resolution
Given code such as Threading.Thread.Sleep(1000) , Visual Basic used to look up the namespace "Threading", discover it was ambiguous between
System.Threading and System.Windows.Threading, and then report an error. Visual Basic now considers both possible namespaces together. If you
show the completion list, the Visual Studio editor lists members from both types in the completion list.

Year-first Date Literals
You can have date literals in yyyy-mm-dd format, #2015-03-17 16:10 PM# .

Readonly Interface Properties
You can implement readonly interface properties using a readwrite property. The interface guarantees minimum functionality, and it does not stop an
implementing class from allowing the property to be set.

TypeOf <expr> IsNot <type>
For more readability of your code, you can now use TypeOf  with IsNot .

#Disable Warning <ID> and #Enable Warning <ID>
You can disable and enable specific warnings for regions within a source file.

XML Doc-comment Improvements
When writing doc comments, you get smart editor and build support for validating parameter names, proper handling of crefs  (generics, operators,
etc.), colorizing, and refactoring.

Partial Module and Interface Definitions
In addition to classes and structs, you can declare partial modules and interfaces.

#Region Directives inside Method Bodies
You can put #Region…#End Region delimiters anywhere in a file, inside functions, and even spanning across function bodies.

Overrides Definitions are Implicitly Overloads
If you add the Overrides  modifier to a definition, the compiler implicitly adds Overloads  so that you can type less code in common cases.

CObj Allowed in Attributes Arguments
The compiler used to give an error that CObj(…) was not a constant when used in attribute constructions.

Declaring and Consuming Ambiguous Methods from Different Interfaces
Previously the following code yielded errors that prevented you from declaring IMock  or from calling GetDetails  (if these had been declared in C#):

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/ref-return-values
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/nameof
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/interpolated-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-format
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/null-conditional-operators
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/string-basics


Interface ICustomer  
  Sub GetDetails(x As Integer)  
End Interface  

Interface ITime  
  Sub GetDetails(x As String)  
End Interface  

Interface IMock : Inherits ICustomer, ITime  
  Overloads Sub GetDetails(x As Char)  
End Interface  

Interface IMock2 : Inherits ICustomer, ITime  
End Interface  

See also

Now the compiler will use normal overload resolution rules to choose the most appropriate GetDetails  to call, and you can declare interface
relationships in Visual Basic like those shown in the sample.

What's New in Visual Studio 2017

https://docs.microsoft.com/visualstudio/ide/whats-new-in-visual-studio


 

Visual Basic Breaking Changes in Visual Studio
6/4/2018 • 2 minutes to read • Edit Online

See Also

For the latest documentation on Visual Studio 2017, see Visual Studio 2017 Documentation.

No changes in Visual Basic in Visual Studio 2015 will prevent an application that was created in Visual Basic in Visual Studio 2013 from compiling or
change the run-time behavior of such an application.

Arrays
LINQ
Lambda Expressions
For Each...Next Statement
Getting Started
When is a non-breaking language fix breaking?

https://github.com/dotnet/docs/blob/master/docs/visual-basic/getting-started/breaking-changes-in-visual-studio.md
http://docs.microsoft.com/visualstudio/
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://blogs.msdn.microsoft.com/lucian/2012/07/19/when-is-a-non-breaking-language-fix-breaking


  

Additional resources
5/4/2018 • 2 minutes to read • Edit Online

Microsoft resources
On the webOn the web

TERM DEFINITION

Visual Basic .NET Language Design Official repository on GitHub for Visual Basic .NET language design.

Microsoft Visual Basic Team Blog Provides access to the Visual Basic team blog.

Code samplesCode samples

TERM DEFINITION

Code Gallery Download and share sample applications and other resources with the developer
community.

Visual Basic documentation samples Contains the samples used throughout the Visual Basic and .NET documentation.

ForumsForums

TERM DEFINITION

Visual Basic Forums Discusses general Visual Basic issues.

Videos and webcastsVideos and webcasts

TERM DEFINITION

Channel9 Provides continuous community through videos, Wikis, and forums.

SupportSupport

TERM DEFINITION

Microsoft Support Provides access to Knowledge Base (KB) articles, downloads and updates, support
webcasts, and other services.

Visual Studio Questions Enables you to file bugs or provide suggestions to Microsoft about .NET and Visual
Studio. You can also report a bug by selecting Help > Send Feedback > Report a
Problem in Visual Studio.

Third-party resources
TERM DEFINITION

VBForums Provides a forum to discuss Visual Basic, .NET, and more.

vbCity A community site for people to learn and ask questions about Visual Basic and
.NET.

Stack Overflow Stack Overflow is a question and answer site for developers.

See also

The following web sites provide guidance and can help you find answers to common problems.

Get started with Visual Basic
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/getting-started/additional-resources.md
https://github.com/dotnet/vblang
https://blogs.msdn.microsoft.com/vbteam/
https://code.msdn.microsoft.com/site/search?f%5B0%5D.Type=ProgrammingLanguage&f%5B0%5D.Value=VB&f%5B0%5D.Text=VB.NET
https://github.com/dotnet/samples/tree/master/snippets/visualbasic
https://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=vbgeneral
https://channel9.msdn.com/
https://support.microsoft.com
https://developercommunity.visualstudio.com
http://www.vbforums.com/
http://vbcity.com/
https://stackoverflow.com/questions/tagged/vb.net
https://docs.microsoft.com/visualstudio/ide/talk-to-us


   

Developing Applications with Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section covers conceptual documentation for the Visual Basic language.

Programming in Visual Basic
Covers a variety of programming subjects.

Development with My
Discusses a new feature called My , which provides access to information and default object instances that are related to an application and its run-time
environment.

Accessing Data in Visual Basic Applications
Contains Help on accessing data in Visual Basic.

Creating and Using Components in Visual Basic
Defines the term component and discusses how and when to create components.

Printing and Reporting
Provides overviews and links to the relevant documentation related to printing and reporting.

Windows Forms Application Basics
Provides information about creating Windows Forms applications by using Visual Studio.

Customizing Projects and Extending My
Describes how you can customize project templates to provide additional My  objects.

Visual Basic Programming Guide
Walks through the essential elements of programming with Visual Basic.

Visual Basic Language Reference
Contains reference documentation for the Visual Basic language.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/index


 

Programming in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In this section

See Also

This section discusses programming tasks that you may want to learn more about as you create your Visual Basic application.

Accessing Computer Resources
Contains documentation on how to use the My.Computer  object to access information about the computer on which an application runs and how to
control the computer.

Logging Information from the Application
Contains documentation on how to log information from your application using the My.Application.Log  and My.Log  objects, and how to extend the
application's logging capabilities.

Accessing User Data
Contains documentation on tasks that you can accomplish using the My.User  object.

Accessing Application Forms
Contains documentation on accessing an application's forms by using the My.Forms  and My.Application  objects.

Accessing Application Web Services
Contains documentation on how to access the Web services referenced by the application using the My.WebServices  object.

Accessing Application Settings
Contains documentation on accessing an application's settings using the My.Settings  object.

Processing Drives, Directories, and Files
Contains documentation on how to access the file system using the My.Computer.FileSystem  object.

Visual Basic Language Features
Programming Concepts
Collections
Developing Applications with Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/collections


 

Accessing computer resources (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In this section

The My.Computer  object is one of the three central objects in My , providing access to information and commonly used functionality. My.Computer

provides methods, properties, and events for accessing the computer on which the application is running. Its objects include:

Audio
Clipboard (ClipboardProxy)
Clock
FileSystem
Info
Keyboard
Mouse
Network
Ports
Registry (RegistryProxy)

Playing Sounds
Lists tasks associated with My.Computer.Audio , such as playing a sound in the background.

Storing Data to and Reading from the Clipboard
Lists tasks associated with My.Computer.Clipboard , such as reading data from or writing data to the Clipboard.

Getting Information about the Computer
Lists tasks associated with My.Computer.Info , such as determining a computer's full name or IP addresses.

Accessing the Keyboard
Lists tasks associated with My.Computer.Keyboard , such as determining whether CAPS LOCK is on.

Accessing the Mouse
Lists tasks associated with My.Computer.Mouse , such as determining whether a mouse is present.

Performing Network Operations
Lists tasks associated with My.Computer.Network , such as uploading or downloading files.

Accessing the Computer's Ports
Lists tasks associated with My.Computer.Ports , such as showing available serial ports or sending strings to serial ports.

Reading from and Writing to the Registry
Lists tasks associated with My.Computer.Registry , such as reading data from or writing data to registry keys.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/computer-resources/computer-resources.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.audio
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.clipboardproxy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.clock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.servercomputer.info
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.keyboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.mouse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.network
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.ports
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/playing-sounds
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/storing-data-to-and-reading-from-the-clipboard
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/getting-information-about-the-computer
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-keyboard
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-mouse
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/performing-network-operations
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-computer-s-ports
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/reading-from-and-writing-to-the-registry


  

Logging Information from the Application (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Tasks
TO SEE

Write event information to the application's logs. How to: Write Log Messages

Write exception information to the application's logs. How to: Log Exceptions

Write trace information to the application's logs when the application starts and
shuts down.

How to: Log Messages When the Application Starts or Shuts Down

Configure My.Application.Log  to write information to a text file. How to: Write Event Information to a Text File

Configure My.Application.Log  to write information to an event log. How to: Write to an Application Event Log

Change where My.Application.Log  writes information. Walkthrough: Changing Where My.Application.Log Writes Information

Determine where My.Application.Log  writes information. Walkthrough: Determining Where My.Application.Log Writes Information

Create a custom log listener for My.Application.Log . Walkthrough: Creating Custom Log Listeners

Filter the output of the My.Application.Log  logs. Walkthrough: Filtering My.Application.Log Output

See Also

This section contains topics that cover how to log information from your application using the My.Application.Log  or My.Log  object, and how to extend
the application's logging capabilities.

The Log  object provides methods for writing information to the application's log listeners, and the Log  object's advanced TraceSource  property
provides detailed configuration information. The Log  object is configured by the application's configuration file.

The My.Log  object is available only for ASP.NET applications. For client applications, use My.Application.Log . For more information, see Log.

Microsoft.VisualBasic.Logging.Log
Working with Application Logs
Troubleshooting: Log Listeners

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/log-info/logging-information-from-the-application.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/how-to-write-log-messages
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/how-to-log-exceptions
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/how-to-log-messages-when-the-application-starts-or-shuts-down
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/how-to-write-event-information-to-a-text-file
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/how-to-write-to-an-application-event-log
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-changing-where-my-application-log-writes-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-determining-where-my-application-log-writes-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-creating-custom-log-listeners
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-filtering-my-application-log-output
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/working-with-application-logs
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/troubleshooting-log-listeners


  

Accessing User Data (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Tasks
TO SEE

Get the user's login name Name

Get the user's domain name, if the application uses Windows authentication CurrentPrincipal

Determine the user's role IsInRole

See Also

This section contains topics dealing with the My.User  object and tasks that you can accomplish with it.

The My.User  object provides access to information about the logged-on user by returning an object that implements the IPrincipal interface.

User

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/accessing-user-data.md
https://docs.microsoft.com/dotnet/api/system.security.principal.iprincipal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user.name
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user.currentprincipal#Microsoft_VisualBasic_ApplicationServices_User_CurrentPrincipal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user.isinrole
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


  

Accessing Application Forms (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Tasks

TO SEE

Access one form from another form in an application. My.Forms Object

Display the titles of all the application's open forms. OpenForms

Update the splash screen with status information as the application starts. SplashScreen

See Also

The My.Forms  object provides an easy way to access an instance of each Windows Form declared in the application's project. You can also use
properties of the My.Application  object to access the application's splash screen and main form, and get a list of the application's open forms.

The following table lists examples showing how to access an application's forms.

OpenForms
SplashScreen
My.Forms Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/accessing-application-forms.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.openforms
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.splashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.openforms
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.splashscreen


      

Accessing Application Web Services (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Tasks

TO SEE

Call a Web service My.WebServices Object

Call a Web service asynchronously and handle an event when it completes How to: Call a Web Service Asynchronously

See Also

The My.WebServices  object provides an instance of each Web service referenced by the current project. Each instance is instantiated on demand. You
can access these Web services through the properties of the My.WebServices  object. The name of the property is the same as the name of the Web
service that the property accesses. Any class that inherits from SoapHttpClientProtocol is a Web service.

The following table lists possible ways to access Web services referenced by an application.

My.WebServices Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/accessing-application-web-services.md
https://docs.microsoft.com/dotnet/api/system.web.services.protocols.soaphttpclientprotocol


 

How to: Call a Web Service Asynchronously (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To call a Web service asynchronouslyTo call a Web service asynchronously

See Also

This example attaches a handler to a Web service's asynchronous handler event, so that it can retrieve the result of an asynchronous method call. This
example used the DemoTemperatureService Web service at http://www.xmethods.net.

When you reference a Web service in your project in the Visual Studio Integrated Development Environment (IDE), it is added to the My.WebServices

object, and the IDE generates a client proxy class to access a specified Web service

The proxy class allows you to call the Web service methods synchronously, where your application waits for the function to complete. In addition, the
proxy creates additional members to help call the method asynchronously. For each Web service function, NameOfWebServiceFunction, the proxy
creates a NameOfWebServiceFunction Async  subroutine, a NameOfWebServiceFunction Completed  event, and a NameOfWebServiceFunction

CompletedEventArgs  class. This example demonstrates how to use the asynchronous members to access the getTemp  function of the
DemoTemperatureService Web service.

This code does not work in Web applications, because ASP.NET does not support the My.WebServices  object.

http://www.xmethods.net/sd/2001/DemoTemperatureService.wsdl  

Private Sub getTempCompletedHandler(ByVal sender As Object,   
    ByVal e As net.xmethods.www.getTempCompletedEventArgs)  

    MsgBox("Temperature: " & e.Result)  
End Sub  

NOTENOTE

Private handlerAttached As Boolean = False  

Sub CallGetTempAsync(ByVal zipCode As Integer)  
    If Not handlerAttached Then  
        AddHandler My.WebServices.  
            TemperatureService.getTempCompleted,   
            AddressOf Me.TS_getTempCompleted  
        handlerAttached = True  
    End If  
    My.WebServices.TemperatureService.getTempAsync(zipCode)  
End Sub  

1. Reference the DemoTemperatureService Web service at http://www.xmethods.net. The address is

2. Add an event handler for the getTempCompleted  event:

You cannot use the Handles  statement to associate an event handler with the My.WebServices  object's events.

3. Add a field to track if the event handler has been added to the getTempCompleted  event:

4. Add a method to add the event handler to the getTempCompleted  event, if necessary, and to call the getTempAsynch  method:

To call the getTemp  Web method asynchronously, call the CallGetTempAsync  method. When the Web method finishes, its return value is passed
to the getTempCompletedHandler  event handler.

Accessing Application Web Services
My.WebServices Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/how-to-call-a-web-service-asynchronously.md
http://www.xmethods.net
http://www.xmethods.net


  

Accessing application settings (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

My.Settings

Tasks

TO SEE

Update the value of a user setting How to: Change User Settings in Visual Basic

Display application and user settings in a property grid How to: Create Property Grids for User Settings in Visual Basic

Save updated user setting values How to: Persist User Settings in Visual Basic

Determine the values of user settings How to: Read Application Settings in Visual Basic

See also

This section contains topics describing the My.Settings  object and the tasks it enables you to accomplish.

The properties of the My.Settings  object provide access to your application's settings. To add or remove settings, use the Settings pane of the Project
Designer.

The methods of the My.Settings  object allow you to save the current user settings or revert the user settings to the last saved values.

The following table lists examples showing how to access an application's forms.

Managing Application Settings (.NET)
My.Settings Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/app-settings/accessing-application-settings.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-change-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-create-property-grids-for-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-persist-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-read-application-settings
https://docs.microsoft.com/visualstudio/ide/managing-application-settings-dotnet


 

Processing Drives, Directories, and Files (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

You can use Visual Basic to process drives, folders, and files with the My.Computer.FileSystem  object, which provides better performance and is easier to
use than traditional methods such as the FileOpen  and Write  functions (although they are still available). The following sections discuss these
methods in detail.

File Access with Visual Basic
Discusses how to use the My.Computer.FileSystem  object to work with files, drives, and folders.

Basics of .NET Framework File I/O and the File System (Visual Basic)
Provides an overview of file I/O concepts in the .NET Framework, including streams, isolated storage, file events, file attributes, and file access.

Walkthrough: Manipulating Files by Using .NET Framework Methods
Demonstrates how to use the .NET Framework to manipulate files and folders.

Walkthrough: Manipulating Files and Directories in Visual Basic
Demonstrates how to use the My.Computer.FileSystem  object to manipulate files and folders.

Program Structure and Code Conventions
Provides guidelines for the physical structure and appearance of programs.

FileSystem
Reference documentation for the My.Computer.FileSystem  object and its members.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/programming/drives-directories-files/processing.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/file-access
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/basics-of-net-framework-file-io-and-the-file-system
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/walkthrough-manipulating-files-by-using-net-framework-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/walkthrough-manipulating-files-and-directories
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem


   

Development with My (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

See Also

Visual Basic provides new features for rapid application development that improve productivity and ease of use while delivering power. One of these
features, called My , provides access to information and default object instances that are related to the application and its run-time environment. This
information is organized in a format that is discoverable through IntelliSense and logically delineated according to use.

Top-level members of My  are exposed as objects. Each object behaves similarly to a namespace or a class with Shared  members, and it exposes a set of
related members.

This table shows the top-level My  objects and their relationship to each other.

Performing Tasks with My.Application, My.Computer, and My.User
Describes the three central My  objects, My.Application , My.Computer , and My.User , which provide access to information and functionality

Default Object Instances Provided by My.Forms and My.WebServices
Describes the My.Forms  and My.WebServices  objects, which provide access to forms, data sources, and XML Web services used by your application.

Rapid Application Development with My.Resources and My.Settings
Describes the My.Resources  and My.Settings  objects, which provide access to an application's resources and settings.

Overview of the Visual Basic Application Model
Describes the Visual Basic Application Startup/Shutdown model.

How My Depends on Project Type
Gives details on which My  features are available in different project types.

ApplicationBase
Computer
User
My.Forms Object
My.WebServices Object
How My Depends on Project Type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/index.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


 

Performing Tasks with My.Application, My.Computer, and My.User (Visual
Basic)
7/13/2018 • 2 minutes to read • Edit Online

My.Application, My.Computer, and My.User

' Displays a message box that shows the full command line for the
' application.
Dim args As String = ""
For Each arg As String In My.Application.CommandLineArgs
    args &= arg & " "
Next
MsgBox(args)

' Gets a list of subfolders in a folder
My.Computer.FileSystem.GetDirectories(
  My.Computer.FileSystem.SpecialDirectories.MyDocuments, True, "*Logs*")

Dim reader = 
  My.Computer.FileSystem.OpenTextFieldParser("C:\TestFolder1\test1.txt")
reader.TextFieldType = Microsoft.VisualBasic.FileIO.FieldType.Delimited
reader.Delimiters = New String() {","}
Dim currentRow As String()
While Not reader.EndOfData
  Try
      currentRow = reader.ReadFields()
      Dim currentField As String
        For Each currentField In currentRow
            MsgBox(currentField)
        Next
        Catch ex As Microsoft.VisualBasic.FileIO.MalformedLineException
          MsgBox("Line " & ex.Message & 
          "is not valid and will be skipped.")
    End Try
End While

' Changes the current culture for the application to Jamaican English.
My.Application.ChangeCulture("en-JM")

See Also

The three central My  objects that provide access to information and commonly used functionality are My.Application  (ApplicationBase), My.Computer

(Computer), and My.User  (User). You can use these objects to access information that is related to the current application, the computer that the
application is installed on, or the current user of the application, respectively.

The following examples demonstrate how information can be retrieved using My .

In addition to retrieving information, the members exposed through these three objects also allow you to execute methods related to that object. For
instance, you can access a variety of methods to manipulate files or update the registry through My.Computer .

File I/O is significantly easier and faster with My , which includes a variety of methods and properties for manipulating files, directories, and drives. The
TextFieldParser object allows you to read from large structured files that have delimited or fixed-width fields. This example opens the TextFieldParser  
reader  and uses it to read from C:\TestFolder1\test1.txt .

My.Application  allows you to change the culture for your application. The following example demonstrates how this method can be called.

ApplicationBase
Computer
User
How My Depends on Project Type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/performing-tasks-with-my-application-my-computer-and-my-user.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


 

Default Object Instances Provided by My.Forms and My.WebServices
(Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Default Instances

' The old method of declaration and instantiation
Dim myForm As New Form1
myForm.show()

' With My.Forms, you can directly call methods on the default 
' instance()
My.Forms.Form1.Show()

See Also

The My.Forms and My.WebServices objects provide access to forms, data sources, and XML Web services used by your application. They do this by
providing collections of default instances of each of these objects.

A default instance is an instance of the class that is provided by the runtime and does not need to be declared and instantiated using the Dim  and New

statements. The following example demonstrates how you might have declared and instantiated an instance of a Form class called Form1 , and how you
are now able to get a default instance of this Form class through My.Forms .

The My.Forms  object returns a collection of default instances for every Form  class that exists in your project. Similarly, My.WebServices  provides a
default instance of the proxy class for every Web service that you have created a reference to in your application.

My.Forms Object
My.WebServices Object
How My Depends on Project Type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/default-object-instances-provided-by-my-forms-and-my-webservices.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.form


 

Rapid Application Development with My.Resources and My.Settings
(Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Retrieving Resources

Sub SetFormIcon()
    Me.Icon = My.Resources.Form1Icon
End Sub

See Also

The My.Resources  object provides access to the application's resources and allows you to dynamically retrieve resources for your application.

A number of resources such as audio files, icons, images, and strings can be retrieved through the My.Resources  object. For example, you can access the
application's culture-specific resource files. The following example sets the icon of the form to the icon named Form1Icon  stored in the application's
resource file.

The My.Resources  object exposes only global resources. It does not provide access to resource files associated with forms. You must access the form
resources from the form.

Similarly, the My.Settings  object provides access to the application's settings and allows you to dynamically store and retrieve property settings and
other information for your application. For more information, see My.Resources Object and My.Settings Object.

My.Resources Object
My.Settings Object
Accessing Application Settings

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/rapid-application-development-with-my-resources-and-my-settings.md


     

Overview of the Visual Basic Application Model
5/4/2018 • 3 minutes to read • Edit Online

Uses for the Application Model

Events in the Application Model

Availability

Visual Basic provides a well-defined model for controlling the behavior of Windows Forms applications: the Visual Basic Application model. This model
includes events for handling the application's startup and shutdown, as well as events for catching unhandled exceptions. It also provides support for
developing single-instance applications. The application model is extensible, so developers that need more control can customize its overridable
methods.

A typical application needs to perform tasks when it starts up and shuts down. For example, when it starts up, the application can display a splash
screen, make database connections, load a saved state, and so on. When the application shuts down, it can close database connections, save the current
state, and so on. In addition, the application can execute specific code when the application shuts down unexpectedly, such as during an unhandled
exception.

The Visual Basic Application model makes it easy to create a single-instance application. A single-instance application differs from a normal application
in that only one instance of the application can be running at a time. An attempt to launch another instance of a single-instance application results in the
original instance being notified—by means of the StartupNextInstance  event—that another launch attempt was made. The notification includes the
subsequent instance's command-line arguments. The subsequent instance of the application is then closed before any initialization can occur.

A single-instance application starts and checks whether it is the first instance or a subsequent instance of the application:

If it is the first instance, it starts as usual.

Each subsequent attempt to start the application, while the first instance runs, results in very different behavior. The subsequent attempt notifies
the first instance about the command-line arguments, and then immediately exits. The first instance handles the StartupNextInstance  event to
determine what the subsequent instance's command-line arguments were, and continues to run.

This diagram shows how a subsequent instance signals the first instance.

By handling the StartupNextInstance  event, you can control how your single-instance application behaves. For example, Microsoft Outlook typically
runs as a single-instance application; when Outlook is running and you attempt to start Outlook again, focus shifts to the original instance but another
instance does not open.

The following events are found in the application model:

Application startup. The application raises the Startup event when it starts. By handling this event, you can add code that initializes the
application before the main form is loaded. The Startup  event also provides for canceling execution of the application during that phase of the
startup process, if desired.

You can configure the application to show a splash screen while the application startup code runs. By default, the application model suppresses
the splash screen when either the /nosplash  or -nosplash  command-line argument is used.

Single-instance applications. The StartupNextInstance event is raised when a subsequent instance of a single-instance application starts. The
event passes the command-line arguments of the subsequent instance.

Unhandled exceptions. If the application encounters an unhandled exception, it raises the UnhandledException event. Your handler for that
event can examine the exception and determine whether to continue execution.

The UnhandledException  event is not raised in some circumstances. For more information, see UnhandledException.

Network-connectivity changes. If the computer's network availability changes, the application raises the NetworkAvailabilityChanged event.

The NetworkAvailabilityChanged  event is not raised in some circumstances. For more information, see NetworkAvailabilityChanged.

Application shut down. The application provides the Shutdown event to signal when it is about to shut down. In that event handler, you can
make sure that the operations your application needs to perform—closing and saving, for example—are completed. You can configure your
application to shut down when the main form closes, or to shut down only when all forms close.

By default, the Visual Basic Application model is available for Windows Forms projects. If you configure the application to use a different startup object,
or start the application code with a custom Sub Main , then that object or class may need to provide an implementation of the
WindowsFormsApplicationBase class to use the application model. For information about changing the startup object, see Application Page, Project

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/overview-of-the-visual-basic-application-model.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.networkavailabilitychanged
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.networkavailabilitychanged
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.shutdown
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


See Also

Designer (Visual Basic).

WindowsFormsApplicationBase
Startup
StartupNextInstance
UnhandledException
Shutdown
NetworkAvailabilityChanged
WindowsFormsApplicationBase
Extending the Visual Basic Application Model

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.shutdown
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.networkavailabilitychanged
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase


      

How My Depends on Project Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

My in Windows Applications and Web Sites

Project Details

MY OBJECT
WINDOWS
APPLICATION CLASS LIBRARY

CONSOLE
APPLICATION

WINDOWS
CONTROL
LIBRARY

WEB CONTROL
LIBRARY

WINDOWS
SERVICE EMPTY WEB SITE

My.Application Yes Yes Yes Yes No Yes No No

My.Computer Yes Yes Yes Yes Yes Yes No Yes 

My.Forms Yes No No Yes No No No No

My.Log No No No No No No No Yes

My.Request No No No No No No No Yes

My  exposes only those objects required by a particular project type. For example, the My.Forms  object is available in a Windows Forms application but
not available in a console application. This topic describes which My  objects are available in different project types.

My  exposes only objects that are useful in the current project type; it suppresses objects that are not applicable. For example, the following image
shows the My  object model in a Windows Forms project.

In a Web site project, My  exposes objects that are relevant to a Web developer (such as the My.Request  and My.Response  objects) while suppressing
objects that are not relevant (such as the My.Forms  object). The following image shows the My  object model in a Web site project:

The following table shows which My  objects are enabled by default for eight project types: Windows application, class Library, console application,
Windows control library, Web control library, Windows service, empty, and Web site.

There are three versions of the My.Application  object, two versions of the My.Computer  object, and two versions of My.User  object; details about these
versions are given in the footnotes after the table.

1 2 3 2 3

4 4 4 4 5 4 5

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/development-with-my/how-my-depends-on-project-type.md


My.Resources Yes Yes Yes Yes Yes Yes No No

My.Response No No No No No No No Yes

My.Settings Yes Yes Yes Yes Yes Yes No No

My.User Yes Yes Yes Yes Yes Yes No Yes 

My.WebServices Yes Yes Yes Yes Yes Yes No No

MY OBJECT
WINDOWS
APPLICATION CLASS LIBRARY

CONSOLE
APPLICATION

WINDOWS
CONTROL
LIBRARY

WEB CONTROL
LIBRARY

WINDOWS
SERVICE EMPTY WEB SITE

See Also

6 6 6 6 7 6 7

 Windows Forms version of My.Application . Derives from the console version (see Note 3); adds support for interacting with the application's
windows and provides the Visual Basic Application model.

1

 Library version of My.Application . Provides the basic functionality needed by an application: provides members for writing to the application log and
accessing application information.

2

 Console version of My.Application . Derives from the library version (see Note 2), and adds additional members for accessing the application's
command-line arguments and ClickOnce deployment information.

3

 Windows version of My.Computer . Derives from the Server version (see Note 5), and provides access to useful objects on a client machine, such as the
keyboard, screen, and mouse.

4

 Server version of My.Computer . Provides basic information about the computer, such as the name, access to the clock, and so on.5

 Windows version of My.User . This object is associated with the thread's current identity.6

 Web version of My.User . This object is associated with the user identity of the application's current HTTP request.7

ApplicationBase
Computer
Log
User
Customizing Which Objects are Available in My
Conditional Compilation
/define (Visual Basic)
My.Forms Object
My.Request Object
My.Response Object
My.WebServices Object

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


 

Accessing data in Visual Basic applications
5/4/2018 • 2 minutes to read • Edit Online

Related sections

Visual Basic includes several new features to assist in developing applications that access data. Data-bound forms for Windows applications are created
by dragging items from the Data Sources Window onto the form. You bind controls to data by dragging items from the Data Sources Window onto
existing controls.

Accessing Data in Visual Studio
Provides links to pages that discuss incorporating data access functionality into your applications.

Visual Studio data tools for .NET
Provides links to pages on creating applications that work with data, using Visual Studio.

L INQ
Provides links to topics that describe how to use L INQ with Visual Basic.

L INQ to SQL
Provides information about L INQ to SQL. Includes programming examples.

L INQ to SQL Tools in Visual Studio
Provides links to topics about how to create a L INQ to SQL object model in applications.

Work with datasets in n-tier applications
Provides links to topics about how to create multitiered data applications.

Add new connections
Provides links to pages on connecting your application to data with design-time tools and ADO.NET connection objects, using Visual Studio.

Dataset Tools in Visual Studio
Provides links to pages describing how to load data into datasets and how to execute SQL statements and stored procedures.

Bind controls to data in Visual Studio
Provides links to pages that explain how to display data on Windows Forms through data-bound controls.

Edit Data in Datasets
Provides links to pages describing how to manipulate the data in the data tables of a dataset.

Validate data in datasets
Provides links to pages describing how to add validation to a dataset during column and row changes.

Save data back to the database
Provides links to pages explaining how to send updated data from an application to the database.

ADO.NET
Describes the ADO.NET classes, which expose data-access services to the .NET Framework programmer.

Data in Office Solutions
Contains links to pages that explain how data works in Office solutions, including information about schema-oriented programming, data caching, and
server-side data access.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/accessing-data.md
https://docs.microsoft.com/visualstudio/data-tools/add-new-data-sources
https://docs.microsoft.com/visualstudio/data-tools/
https://docs.microsoft.com/visualstudio/data-tools/visual-studio-data-tools-for-dotnet
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/index
https://docs.microsoft.com/visualstudio/data-tools/linq-to-sql-tools-in-visual-studio2
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/index
https://docs.microsoft.com/visualstudio/data-tools/work-with-datasets-in-n-tier-applications
https://docs.microsoft.com/visualstudio/data-tools/add-new-connections
https://docs.microsoft.com/visualstudio/data-tools/dataset-tools-in-visual-studio
https://docs.microsoft.com/visualstudio/data-tools/bind-controls-to-data-in-visual-studio
https://docs.microsoft.com/visualstudio/data-tools/edit-data-in-datasets
https://docs.microsoft.com/visualstudio/data-tools/validate-data-in-datasets
https://docs.microsoft.com/visualstudio/data-tools/save-data-back-to-the-database
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/index
https://msdn.microsoft.com/library/xx069ybh


 

Creating and Using Components in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

When to Create a Component

Component Classes

Related Sections

See Also

A component is a class that implements the System.ComponentModel.IComponent interface or that derives directly or indirectly from a class that
implements IComponent. A .NET Framework component is an object that is reusable, can interact with other objects, and provides control over external
resources and design-time support.

An important feature of components is that they are designable, which means that a class that is a component can be used in the Visual Studio
Integrated Development Environment. A component can be added to the Toolbox, dragged and dropped onto a form, and manipulated on a design
surface. Notice that base design-time support for components is built into the .NET Framework; a component developer does not have to do any
additional work to take advantage of the base design-time functionality.

A control is similar to a component, as both are designable. However, a control provides a user interface, while a component does not. A control must
derive from one of the base control classes: Control or Control.

If your class will be used on a design surface (such as the Windows Forms or Web Forms Designer) but has no user interface, it should be a component
and implement IComponent, or derive from a class that directly or indirectly implements IComponent.

The Component and MarshalByValueComponent classes are base implementations of the IComponent interface. The main difference between these
classes is that the Component class is marshaled by reference, while IComponent is marshaled by value. The following list provides broad guidelines for
implementers.

If your component needs to be marshaled by reference, derive from Component.

If your component needs to be marshaled by value, derive from MarshalByValueComponent.

If your component cannot derive from one of the base implementations due to single inheritance, implement IComponent.

The System.ComponentModel namespace provides classes that are used to implement the run-time and design-time behavior of components and
controls. This namespace includes the base classes and interfaces for implementing attributes and type converters, binding to data sources, and
licensing components.

The core component classes are:

Component. A base implementation for the IComponent interface. This class enables object sharing between applications.

MarshalByValueComponent. A base implementation for the IComponent interface.

Container. The base implementation for the IContainer interface. This class encapsulates zero or more components.

Some of the classes used for component licensing are:

License. The abstract base class for all licenses. A license is granted to a specific instance of a component.

LicenseManager. Provides properties and methods to add a license to a component and to manage a LicenseProvider.

LicenseProvider. The abstract base class for implementing a license provider.

LicenseProviderAttribute. Specifies the LicenseProvider class to use with a class.

Classes commonly used for describing and persisting components.

TypeDescriptor. Provides information about the characteristics for a component, such as its attributes, properties, and events.

EventDescriptor. Provides information about an event.

PropertyDescriptor. Provides information about a property.

Troubleshooting Control and Component Authoring
Explains how to fix common problems.

How to: Access Design-Time Support in Windows Forms

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/creating-and-using-components.md
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/dotnet/api/system.web.ui.control
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.componentmodel.marshalbyvaluecomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.componentmodel.marshalbyvaluecomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.marshalbyvaluecomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.componentmodel.container
https://docs.microsoft.com/dotnet/api/system.componentmodel.icontainer
https://docs.microsoft.com/dotnet/api/system.componentmodel.license
https://docs.microsoft.com/dotnet/api/system.componentmodel.licensemanager
https://docs.microsoft.com/dotnet/api/system.componentmodel.licenseprovider
https://docs.microsoft.com/dotnet/api/system.componentmodel.licenseprovider
https://docs.microsoft.com/dotnet/api/system.componentmodel.licenseproviderattribute
https://docs.microsoft.com/dotnet/api/system.componentmodel.licenseprovider
https://docs.microsoft.com/dotnet/api/system.componentmodel.typedescriptor
https://docs.microsoft.com/dotnet/api/system.componentmodel.eventdescriptor
https://docs.microsoft.com/dotnet/api/system.componentmodel.propertydescriptor
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/troubleshooting-control-and-component-authoring
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/developing-windows-forms-controls-at-design-time


 

Printing and Reporting (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Visual Basic offers several options for printing and reporting. The following topics provide overviews and links to the relevant documentation related to
printing and reporting.

PrintForm Component
Provides an overview of the PrintForm  component that enables printing the contents of a form.

How to: Print a Scrollable Form
Explains how to print a scrollable form by using the PrintForm  component.

How to: Print Client and Non-Client Areas of a Form
Explains how to print both the client and non-client areas of a form by using the PrintForm  component.

How to: Print the Client Area of a Form
Explains how to print the client area of a form by using the PrintForm  component.

How to: Print a Form by Using the PrintForm Component
Explains how to print a basic form by using the PrintForm  component.

Deploying Applications That Reference the PrintForm Component
Discusses how to deploy the PrintForm  component together with an application.

Adding Printable Reports to Visual Studio Applications
Discusses options available for writing reports.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/printing-and-reporting.md


      

PrintForm Component (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

PrintForm Component Overview

Key Methods, Properties, and EventsKey Methods, Properties, and Events

RemarksRemarks

Example

The PrintForm component for Visual Basic enables you to print an image of a Windows Form at run time. Its behavior replaces that of the PrintForm

method in earlier versions of Visual Basic.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

A common scenario for Windows Forms is to create a form that is formatted to resemble a paper form or a report, and then to print an image of the
form. Although you can use a PrintDocument component to do this, it would require a lot of code. The PrintForm component enables you to print an
image of a form to a printer, to a print preview window, or to a file without using a PrintDocument component.

The PrintForm component is located on the Visual Basic PowerPacks tab of the Toolbox. When it is dragged onto a form it appears in the
component tray, the small area under the bottom border of the form. When the component is selected, properties that define its behavior can be set in
the Properties window. All of these properties can also be set in code. You can also create an instance of the PrintForm component in code without
adding the component at design time.

When you print a form, everything in the client area of the form is printed. This includes all controls and any text or graphics drawn on the form by
graphics methods. By default, the form's title bar, scroll bars, and border are not printed. Also by default, the PrintForm component prints only the
visible part of the form. For example, if the user resizes the form at run time, only the controls and graphics that are currently visible are printed.

The default printer used by the PrintForm component is determined by the operating system's Control Panel settings.

After printing is initiated, a standard PrintDocument printing dialog box is displayed. This dialog box enables users to cancel the print job.

The key method of the PrintForm component is the Print method, which prints an image of the form to a printer, print preview window, or file. There are
two versions of the Print method:

A basic version without parameters: Print()

An overloaded version with parameters that specify printing behavior : Print(printForm As Form, printFormOption As PrintOption)

The PrintOption  parameter of the overloaded method determines the underlying implementation used to print the form, whether the form's title
bar, scroll bars, and border are printed, and whether scrollable parts of the form are printed.

The PrintAction property is a key property of the PrintForm component. This property determines whether the output is sent to a printer, displayed in a
print preview window, or saved as an Encapsulated PostScript file. If the PrintAction property is set to PrintToFile, the PrintFileName property specifies
the path and file name.

The PrinterSettings property provides access to an underlying PrinterSettings object that enables you to specify such settings as the printer to use and
the number of copies to print. You can also query the printer's capabilities, such as color or duplex support. This property does not appear in the
Properties window; it can be accessed only from code.

The Form property is used to specify the form to print when you invoke the PrintForm component programmatically. If the component is added to a
form at design time, that form is the default.

Key events for the PrintForm component include the following:

BeginPrint event. Occurs when the Print method is called and before the first page of the document prints.

EndPrint event. Occurs after the last page is printed.

QueryPageSettings event. Occurs immediately before each page is printed.

If a form contains text or graphics drawn by Graphics methods, use the basic Print ( Print() ) method to print it. Graphics may not render on some
operating systems when the overloaded Print method is used.

If the width of a form is wider than the width of the paper in the printer, the right side of the form might be cut off. When you design forms for printing,
make sure that the form fits on standard-sized paper.

The following example shows a common use of the PrintForm component.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/printform-component.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToFile
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printfilename.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printersettings.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument.printersettings
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.form.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.beginprint.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.endprint.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.querypagesettings.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.graphics
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx


' Visual Basic.  
Dim pf As New PrintForm  
pf.Form = Me  
pf.PrintAction = PrintToPrinter  
pf.Print()  

See Also
Print
PrintAction
How to: Print a Form by Using the PrintForm Component
How to: Print the Client Area of a Form
How to: Print Client and Non-Client Areas of a Form
How to: Print a Scrollable Form

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx


     

How to: Print a Scrollable Form (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To print the complete client area of a scrollable formTo print the complete client area of a scrollable form

See Also

The PrintForm component enables you to quickly print an image of a form without using a PrintDocument component. By default, only the currently
visible part of the form is printed; if a user has resized the form at run time, the image may not print as intended. The following procedure shows how to
print the complete client area of a scrollable form, even if the form has been resized.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

PrintForm1.Print(Me, PowerPacks.Printing.PrintForm.PrintOption.Scrollable)  

NOTENOTE

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component will be added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToPrinter.

3. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

On some operating systems, text or graphics drawn by Graphics methods may not print correctly. In this case, you will not be able to print with the 
Scrollable  parameter.

PrintAction
Print
PrintForm Component
How to: Print the Client Area of a Form
How to: Print Client and Non-Client Areas of a Form

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/how-to-print-a-scrollable-form.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToPrinter
https://docs.microsoft.com/dotnet/api/system.drawing.graphics
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx


     

How to: Print Client and Non-Client Areas of a Form (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To print both the client and the non-client areas of a formTo print both the client and the non-client areas of a form

See Also

The PrintForm component enables you to quickly print an image of a form exactly as it appears on screen without using a PrintDocument component.
The following procedure shows how to print a form, including both the client area and the non-client area. The non-client area includes the title bar,
borders, and scroll bars.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

PrintForm1.Print(Me, PowerPacks.Printing.PrintForm.PrintOption.FullWindow)  

NOTENOTE

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component is added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToPrinter.

3. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

On some operating systems, text or graphics drawn by Graphics methods may not print correctly. In this case, use the compatible printing method: 
PrintForm1.Print(Me, PowerPacks.Printing.PrintForm.PrintOption.CompatibleModeFullWindow ).

PrintAction
Print
PrintForm Component
How to: Print a Scrollable Form

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/how-to-print-client-and-non-client-areas-of-a-form.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToPrinter
https://docs.microsoft.com/dotnet/api/system.drawing.graphics
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx


    

How to: Print the Client Area of a Form (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To print the client area of a formTo print the client area of a form

See Also

The PrintForm component enables you to quickly print an image of a form without using a PrintDocument component. The following procedure shows
how to print just the client area of a form, without the title bar, borders, and scroll bars.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

PrintForm1.Print(Me, PowerPacks.Printing.PrintForm.PrintOption.ClientAreaOnly)  

NOTENOTE

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component is added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToPrinter.

3. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

On some operating systems, text or graphics drawn by Graphics methods may not print correctly. In this case, use the compatible printing method: 
PrintForm1.Print(Me, PowerPacks.Printing.PrintForm.PrintOption CompatibleModeClientAreaOnly).

PrintAction
Print
PrintForm Component
How to: Print Client and Non-Client Areas of a Form
How to: Print a Scrollable Form

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/how-to-print-the-client-area-of-a-form.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToPrinter
https://docs.microsoft.com/dotnet/api/system.drawing.graphics
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.print.aspx


  

How to: Print a Form by Using the PrintForm Component (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To print a form to the default printerTo print a form to the default printer

To display a form in a print preview windowTo display a form in a print preview window

To print a form to a fileTo print a form to a file

See Also

The PrintForm component enables you to quickly print an image of a form exactly as it appears on screen without using a PrintDocument component.
The following procedures show how to print a form to a printer, to a print preview window, and to an Encapsulated PostScript file.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

PrintForm1.Print()  

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component is added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToPrinter.

3. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

PrintForm1.Print()  

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component is added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToPreview.

3. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

PrintForm1.Print()  

1. In the Toolbox, click the Visual Basic PowerPacks tab and then drag the PrintForm component onto the form.

The PrintForm component is added to the component tray.

2. In the Properties window, set the PrintAction property to PrintToFile.

3. Optionally, select the PrintFileName property and type the full path and file name for the destination file.

If you skip this step, the user will be prompted for a file name at run time.

4. Add the following code in the appropriate event handler (for example, in the Click  event handler for a Print Button ).

PrintAction
PrintFileName
How to: Print the Client Area of a Form
How to: Print Client and Non-Client Areas of a Form
How to: Print a Scrollable Form
PrintForm Component

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/how-to-print-a-form-by-using-the-printform-component.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printdocument
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToPrinter
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToPreview
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.printing.printaction#System_Drawing_Printing_PrintAction_PrintToFile
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printfilename.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printaction.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.printfilename.aspx


 

Deploying applications that reference the PrintForm component (Visual
Basic)
5/4/2018 • 2 minutes to read • Edit Online

Installing the PrintForm as a prerequisite

NOTENOTE

See also

If you want to deploy an application that references the PrintForm component, the component must be installed on the destination computer.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

To successfully deploy an application, you must also deploy all components that are referenced by the application. The process of installing prerequisite
components is known as bootstrapping.

When the PrintForm component is installed on your development computer, a Microsoft Visual Basic Power Packs bootstrapper package is added to the
Visual Studio bootstrapper directory. This package is then available when you follow the procedures for adding prerequisites for either ClickOnce or
Windows Installer deployment.

By default, bootstrapped components are deployed from the same location as the installation package. Alternatively, you can choose to deploy the
components from a URL or file share location from which users can download them as necessary.

To install bootstrapped components, the user might need administrative or similar user permissions on the computer. For ClickOnce applications, this means that the
user will need administrative permissions to install the application, regardless of the security level specified by the application. After the application is installed, the user
can run the application without administrative permissions.

During installation, users will be prompted to install the PrintForm component if it is not present on the destination computer.

As an alternative to bootstrapping, you can pre-deploy the PrintForm component by using an electronic software distribution system like Microsoft
Systems Management Server.

How to: Install Prerequisites with a ClickOnce Application
PrintForm Component

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/deploying-applications-that-reference-the-printform-component.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.printform.aspx
https://docs.microsoft.com/visualstudio/deployment/how-to-install-prerequisites-with-a-clickonce-application


 

Adding Printable Reports to Visual Studio Applications
5/4/2018 • 6 minutes to read • Edit Online

NOTENOTE

Overview of Microsoft Reporting Technology in Visual Basic Applications

Using ReportViewer Controls

Creating Reports in Visual Studio for ReportViewer ControlsCreating Reports in Visual Studio for ReportViewer Controls

TO ADD BASIC REPORT FUNCTIONALITY TO YOUR APPLICATION

1. Drag a ReportViewer control from the Data tab of the Toolbox onto your form.
2. On the Project menu, choose Add New Item. In the Add New Item dialog box, select the Report icon and click Add.
The Report Designer opens in the development environment, and a report (.rdlc) file is added to the project.
3. Drag report items from the Toolbox on the report layout and arrange them as you want.
4. Drag fields from the Data Sources window to the report items in the report layout.

Using Reporting Services in Visual Basic Applications

Visual Studio supports a variety of reporting solutions to help you add rich data reporting to your Visual Basic applications. You can create and add
reports using ReportViewer controls, Crystal Reports, or SQL Server Reporting Services.

SQL Server Reporting Services is part of SQL Server 2005 rather than Visual Studio. Reporting Services not installed on your system unless you have installed SQL
Server 2005.

Choose from the following approaches to use a Microsoft reporting technology in your application:

Add one or more instances of a ReportViewer control to a Visual Basic Windows application.

Integrate SQL Server Reporting Services programmatically by making calls to the Report Server Web service.

Use the ReportViewer control and Microsoft SQL Server 2005 Reporting Services together, using the control as a report viewer and a report
server as a report processor. (Note that you must use the SQL Server 2005 version of Reporting Services if you want to use a report server and
the ReportViewer control together).

The easiest way to embed report functionality into a Visual Basic Windows application is to add the ReportViewer control to a form in your application.
The control adds report processing capabilities directly to your application and provides an integrated report designer so that you can build reports
using data from any ADO.NET data object. A full-featured API provides programmatic access to the control and reports so that you can configure run-
time functionality.

ReportViewer provides built-in report processing and viewing capability in a single, freely distributable data control. Choose ReportViewer controls if
you require the following report functionality:

Report processing in the client application. A processed report appears in a view area provided by the control.

Data binding to ADO.NET data tables. You can create reports that consume DataTable instances supplied to the control. You can also bind directly
to business objects.

Redistributable controls that you can include in your application.

Runtime functionality such as page navigation, printing, searching, and export formats. A ReportViewer toolbar provides support for these
operations.

To use the ReportViewer control, you can drag it from the Data section of the Visual Studio Toolbox onto a form in your Visual Basic Windows
application.

To build a report that runs in ReportViewer, add a Report template to your project. Visual Studio creates a client report definition file (.rdlc), adds the file
to your project, and opens an integrated report designer in the Visual Studio workspace.

The Visual Studio Report Designer integrates with the Data Sources window. When you drag a field from the Data Sources window to the report, the
Report Designer copies metadata about the data source into the report definition file. This metadata is used by the ReportViewer control to
automatically generate data-binding code.

The Visual Studio Report Designer does not include report preview functionality. To preview your report, run the application and preview the report
embedded in it.

Reporting Services is a server-based reporting technology that is included with SQL Server. Reporting Services includes additional features that are not
found in the ReportViewer controls. Choose Reporting Services if you require any of the following features:

Scale-out deployment and server-side report processing that provides improved performance for complex or long-running reports and for high-

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/printing/adding-printable-reports-to-visual-studio-applications.md
https://docs.microsoft.com/dotnet/api/system.data.datatable


Creating Reports in Visual Studio for Reporting ServicesCreating Reports in Visual Studio for Reporting Services

NOTENOTE

TO CREATE A REPORT THAT RUNS ON A REPORT SERVER

1. On the File menu, choose New.
The New Project dialog box opens.
2. In the Project types pane, click Business Intelligence Projects.
3. In the Templates pane, select Report Server Project or Report Server Project Wizard.

Using ReportViewer Controls and SQL Server Reporting Services Together

volume report activity.

Integrated data and report processing, with support for custom report controls and rich rendering output formats.

Scheduled report processing so that you can specify exactly when reports are run.

Subscriber-based report distribution through email or to file share locations.

Ad hoc reporting so that business users can create reports as needed.

Data-driven subscriptions that route customized report output to a dynamic list of recipients.

Custom extensions for data processing, report delivery, custom authentication, and report rendering.

The report server is implemented as Web service. Your application code must include calls to the Web service to access reports and other metadata.
The Web service provides complete programmatic access to a report server instance.

Because Reporting Services is a Web-based reporting technology, the default viewer shows reports that are rendered in HTML format. If you do not
want to use HTML as the default report presentation format, you will have to write a custom report viewer for your application.

To build reports that run on a report server, you create report definition (.rdl) files in Visual Studio through the Business Intelligence Development
Studio, which is included with SQL Server 2005.

You must have SQL Server 2005 installed in order to use SQL Server Reporting Services and the Business Intelligence Development Studio.

The Business Intelligence Development Studio adds project templates that are specific to SQL Server components. To create reports, you can choose
from the Report Server Project or Report Server Project Wizard templates. You can specify data source connections and queries to a variety of data
source types, including SQL Server, Oracle, Analysis Services, XML, and SQL Server Integration Services. A Data tab, Layout tab, and Preview tab
allow you to define data, create a report layout, and preview the report all in the same workspace.

Report definitions that you build for the control or the report server can be reused in either technology.

The ReportViewer controls and SQL Server 2005 Reporting Services can be used together in the same application.

The ReportViewer control provides a viewer that is used to display reports in your application.

Reporting Services provides the reports and performs all processing on a remote server.

The ReportViewer control can be configured to show reports that are stored and processed on a remote Reporting Services report server. This type of
configuration is called remote processing mode. In remote processing mode, the control requests a report that is stored on a remote report server. The
report server performs all report processing, data processing, and report rendering. A finished, rendered report is returned to the control and displayed
in the view area.

Reports that run on a report server support additional export formats, have a different report parameterization implementation, use the data source
types that are supported by the report server, and are accessed through the role-based authorization model on the report server.

To use remote processing mode, specify the URL and path to a server report when configuring the ReportViewer control.



 

Windows Forms Application Basics (Visual Basic)
5/4/2018 • 6 minutes to read • Edit Online

Designing Windows Forms Applications

Building Rich, Interactive User Interfaces

EventsEvents

ControlsControls

Custom UI ElementsCustom UI Elements

TO SEE

Create a new Windows Forms application with Visual Studio Walkthrough: Creating a Simple Windows Form

Use controls on forms How to: Add Controls to Windows Forms

Create graphics with System.Drawing Getting Started with Graphics Programming

Create custom controls How to: Inherit from the UserControl Class

Displaying and Manipulating Data

An important part of Visual Basic is the ability to create Windows Forms applications that run locally on users' computers. You can use Visual Studio to
create the application and user interface using Windows Forms. A Windows Forms application is built on classes from the System.Windows.Forms
namespace.

You can create Windows Forms and Windows service applications with Visual Studio. For more information, see the following topics:

Getting Started with Windows Forms. Provides information on how to create and program Windows Forms.

Windows Forms Controls. Collection of topics detailing the use of Windows Forms controls.

Windows Service Applications. Lists topics that explain how to create Windows services.

Windows Forms is the smart-client component of the .NET Framework, a set of managed libraries that enable common application tasks such as
reading and writing to the file system. Using a development environment like Visual Studio, you can create Windows Forms applications that display
information, request input from users, and communicate with remote computers over a network.

In Windows Forms, a form is a visual surface on which you display information to the user. You commonly build Windows Forms applications by
placing controls on forms and developing responses to user actions, such as mouse clicks or key presses. A control is a discrete user interface (UI)
element that displays data or accepts data input.

When a user does something to your form or one of its controls, it generates an event. Your application reacts to these events by using code, and
processes the events when they occur. For more information, see Creating Event Handlers in Windows Forms.

Windows Forms contains a variety of controls that you can place on forms: controls that display text boxes, buttons, drop-down boxes, radio buttons,
and even Web pages. For a list of all the controls you can use on a form, see Controls to Use on Windows Forms. If an existing control does not meet
your needs, Windows Forms also supports creating your own custom controls using the UserControl class.

Windows Forms has rich UI controls that emulate features in high-end applications like Microsoft Office. Using the ToolStrip and MenuStrip control,
you can create toolbars and menus that contain text and images, display submenus, and host other controls such as text boxes and combo boxes.

With the Visual Studio drag-and-drop forms designer, you can easily create Windows Forms applications: just select the controls with your cursor and
place them where you want on the form. The designer provides tools such as grid lines and "snap lines" to take the hassle out of aligning controls. And
whether you use Visual Studio or compile at the command line, you can use the FlowLayoutPanel, TableLayoutPanel and SplitContainer controls to
create advanced form layouts with minimal time and effort.

Finally, if you must create your own custom UI elements, the System.Drawing namespace contains all of the classes you need to render lines, circles,
and other shapes directly on a form.

For step-by-step information about using these features, see the following Help topics.

Many applications must display data from a database, XML file, XML Web service, or other data source. Windows Forms provides a flexible control
called the DataGridView control for rendering such tabular data in a traditional row and column format, so that every piece of data occupies its own cell.
Using DataGridView you can customize the appearance of individual cells, lock arbitrary rows and columns in place, and display complex controls inside
cells, among other features.

Connecting to data sources over a network is a simple task with Windows Forms smart clients. The BindingSource component, new with Windows
Forms in Visual Studio 2005 and the .NET Framework 2.0, represents a connection to a data source, and exposes methods for binding data to controls,

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/windows-forms-application-basics.md
https://docs.microsoft.com/dotnet/api/system.windows.forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/getting-started-with-windows-forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/index
https://docs.microsoft.com/en-us/dotnet/framework/winforms/creating-event-handlers-in-windows-forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/controls-to-use-on-windows-forms
https://docs.microsoft.com/dotnet/api/system.windows.forms.usercontrol
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolstrip
https://docs.microsoft.com/dotnet/api/system.windows.forms.menustrip
https://docs.microsoft.com/dotnet/api/system.windows.forms.flowlayoutpanel
https://docs.microsoft.com/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/dotnet/api/system.windows.forms.splitcontainer
https://docs.microsoft.com/dotnet/api/system.drawing
http://msdn.microsoft.com/library/2d9daec0-0543-41d0-acb1-964f685bddbb
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/how-to-add-controls-to-windows-forms
https://docs.microsoft.com/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/getting-started-with-graphics-programming
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/how-to-inherit-from-the-usercontrol-class
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource


Data-Bound ControlsData-Bound Controls

SettingsSettings

TO SEE

Use the BindingSource component How to: Bind Windows Forms Controls with the BindingSource Component Using
the Designer

Work with ADO.NET data sources How to: Sort and Filter ADO.NET Data with the Windows Forms BindingSource
Component

Use the Data Sources window Walkthrough: Displaying Data on a Windows Form

Deploying Applications to Client Computers

TO SEE

Deploy an application with ClickOnce How to: Publish a ClickOnce Application using the Publish Wizard

Walkthrough: Manually Deploying a ClickOnce Application

Update a ClickOnce deployment How to: Manage Updates for a ClickOnce Application

Manage security with ClickOnce How to: Enable ClickOnce Security Settings

Other Controls and Features

TO SEE

Print the contents of a form How to: Print Graphics in Windows Forms

How to: Print a Multi-Page Text File in Windows Forms

Learn more about Windows Forms security Security in Windows Forms Overview

See Also

navigating to the previous and next records, editing records, and saving changes back to the original source. The BindingNavigator control provides a
simple interface over the BindingSource component for users to navigate between records.

You can create data-bound controls easily using the Data Sources window, which displays data sources such as databases, Web services, and objects in
your project. You can create data-bound controls by dragging items from this window onto forms in your project. You can also data-bind existing
controls to data by dragging objects from the Data Sources window onto existing controls.

Another type of data binding you can manage in Windows Forms is settings. Most smart-client applications must retain some information about their
run-time state, such as the last-known size of forms, and retain user-preference data, such as default locations for saved files. The application-settings
feature addresses these requirements by providing an easy way to store both types of settings on the client computer. Once defined using either Visual
Studio or a code editor, these settings are persisted as XML and automatically read back into memory at run time.

For step-by-step information about using these features, see the following Help topics.

Once you have written your application, you must send it to your users so that they can install and run it on their own client computers. Using the
ClickOnce technology, you can deploy your applications from within Visual Studio by using just a few clicks and provide users with a URL pointing to
your application on the Web. ClickOnce manages all of the elements and dependencies in your application and ensures that the application is properly
installed on the client computer.

ClickOnce applications can be configured to run only when the user is connected to the network, or to run both online and offline. When you specify
that an application should support offline operation, ClickOnce adds a link to your application in the user's Start menu, so that the user can open it
without using the URL.

When you update your application, you publish a new deployment manifest and a new copy of your application to your Web server. ClickOnce detects
that there is an update available and upgrades the user's installation; no custom programming is required to update old assemblies.

For a full introduction to ClickOnce, see ClickOnce Security and Deployment. For step-by-step information about using these features, see the following
Help topics:

There are many other features in Windows Forms that make implementing common tasks fast and easy, such as support for creating dialog boxes,
printing, adding Help and documentation, and localizing your application to multiple languages. In addition, Windows Forms relies on the robust
security system of the .NET Framework, enabling you to release more secure applications to your customers.

For step-by-step information about using these features, see the following Help topics:

WindowsFormsApplicationBase

https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/bind-wf-controls-with-the-bindingsource
https://msdn.microsoft.com/library/ya3sah92.aspx
https://docs.microsoft.com/visualstudio/data-tools/accessing-data-in-visual-studio
https://docs.microsoft.com/visualstudio/deployment/clickonce-security-and-deployment
https://docs.microsoft.com/visualstudio/deployment/how-to-publish-a-clickonce-application-using-the-publish-wizard
https://docs.microsoft.com/visualstudio/deployment/walkthrough-manually-deploying-a-clickonce-application
https://docs.microsoft.com/visualstudio/deployment/how-to-manage-updates-for-a-clickonce-application
https://docs.microsoft.com/visualstudio/deployment/how-to-enable-clickonce-security-settings
https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/how-to-print-graphics-in-windows-forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/how-to-print-a-multi-page-text-file-in-windows-forms
https://docs.microsoft.com/en-us/dotnet/framework/winforms/security-in-windows-forms-overview
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase


Windows Forms Overview
My.Forms Object

https://docs.microsoft.com/en-us/dotnet/framework/winforms/windows-forms-overview


   

Visual Basic Power Packs Controls
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Reference

Visual Basic Power Packs controls are additional Windows Forms controls. They are not included in Visual Studio. You can download them, but they are
provided as-is, without support.

Line and Shape Controls
Introduces the Line and Shape controls and provides links to more information.

DataRepeater Control
Introduces the DataRepeater control and provides links to additional information.

Microsoft.VisualBasic.PowerPacks

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/power-packs-controls.md
http://go.microsoft.com/fwlink/?LinkId=321343
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.aspx


  

DataRepeater Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

The Visual Basic Power Packs DataRepeater control is a scrollable container for controls that display repeated data, for example, rows in a database
table. It can be used as an alternative to the DataGridView control when you need more control over the layout of the data.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

Introduction to the DataRepeater Control
Introduces and discusses the DataRepeater  control.

How to: Display Bound Data in a DataRepeater Control
Demonstrates how to use the DataRepeater  control to display data from a data source.

How to: Display Unbound Controls in a DataRepeater Control
Demonstrates how to use the DataRepeater  control to display additional data.

How to: Change the Layout of a DataRepeater Control
Demonstrates how to change the orientation of a DataRepeater  control.

How to: Change the Appearance of a DataRepeater Control
Demonstrates how to customize a DataRepeater  control at design time and at run time.

How to: Display Item Headers in a DataRepeater Control
Demonstrates how to control the selection indicators on a DataRepeater  control.

How to: Disable Adding and Deleting DataRepeater Items
Demonstrates how to prevent users from adding or deleting items in a DataRepeater  control.

How to: Search Data in a DataRepeater Control
Demonstrates how to implement search capabilities in a DataRepeater  control.

How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio)
Demonstrates how to display related records by using two DataRepeater  controls.

Walkthrough: Displaying Data in a DataRepeater Control
Provides a start-to-finish demonstration of how to use a DataRepeater  control.

Troubleshooting the DataRepeater Control
Describes potential problems and their solutions.

Microsoft.VisualBasic.PowerPacks

DataRepeater

Virtual Mode in the DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


            

Introduction to the DataRepeater Control (Visual Studio)
5/4/2018 • 3 minutes to read • Edit Online

Overview

Data BindingData Binding

EventsEvents

CustomizationsCustomizations

See Also

The Visual Basic Power Packs DataRepeater control is a scrollable container for controls that display repeated data, for example, rows in a database
table. It can be used as an alternative to the DataGridView control when you need more control over the layout of the data. The DataRepeater "repeats"
a group of related controls by creating multiple instances in a scrolling view. This enables users to view several records at the same time.

At design time, the DataRepeater control consists of two sections. The outer section is the viewport, where the scrolling data will be displayed at run
time. The inner (top) section, known as the item template, is where you position controls that will be repeated at run time, typically one control for each
field in the data source. The properties and controls in the item template are encapsulated in the ItemTemplate property.

At run time, the ItemTemplate is copied to a virtual DataRepeaterItem object that is used to display the data when each record is scrolled into view. You
can customize the display of individual records in the DrawItem event, for example, highlighting a field based on the value that it contains. For more
information, see How to: Change the Appearance of a DataRepeater Control.

The most common use for a DataRepeater control is to display data from a database table or other bound data source. In addition to ADO.NET data
objects, the DataRepeater control can bind to any class that implements the IList interface (including arrays), any class that implements the IListSource
interface, any class that implements the IBindingList interface, or any class that implements the IBindingListView interface.

Typically, you accomplish data binding by dragging fields from the Data Sources window onto the DataRepeater control. For more information, see
How to: Display Bound Data in a DataRepeater Control.

When working with large amounts of data, you can set the VirtualMode property to True  to display a subset of the available data. Virtual mode
requires the implementation of a data cache from which the DataRepeater is populated, and you must control all interactions with the data cache at run
time. For more information, see Virtual Mode in the DataRepeater Control.

You can also display unbound controls on a DataRepeater control. For example, you can display an image that is repeated on each item. For more
information, see How to: Display Unbound Controls in a DataRepeater Control.

The most important events for the DataRepeater control are the DrawItem event, which is raised when new items are scrolled into view, and the
CurrentItemIndexChanged event, which is raised when an item is selected. You can use the DrawItem event to change the appearance of the item. For
example, you can highlight negative values. Use the CurrentItemIndexChanged event to access the values of controls when an item is selected.

The DataRepeater control exposes all the standard control events in the Code Editor. However, some of the events should not be used. Keyboard and
mouse events such as KeyDown , Click , and MouseDown  will not be raised at run time because the DataRepeater control itself never has focus.

The DataRepeaterItem does not expose events at design time because it is created only at run time. If you want to handle keyboard and mouse events,
you can add a Panel control to the ItemTemplate at design time and then handle the events for the Panel. For more information, see Troubleshooting the
DataRepeater Control.

There are many ways to customize the appearance and behavior of the DataRepeater control, both at run time and at design time. Properties can be set
to change colors, hide or modify the item headers, change the orientation from vertical to horizontal, and much more. For more information, see How
to: Change the Appearance of a DataRepeater Control, How to: Display Item Headers in a DataRepeater Control, and How to: Change the Layout of a
DataRepeater Control.

Note that some properties apply to the DataRepeater control itself whereas others apply only to the ItemTemplate. Make sure that you have the correct
section of the control selected before you set properties. For more information, see How to: Change the Appearance of a DataRepeater Control.

Other customizations include controlling the ability to add or delete records, adding search capabilities, and displaying related data in a master and
detail format. For more information, see How to: Disable Adding and Deleting DataRepeater Items, How to: Search Data in a DataRepeater Control, and
How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio).

DataRepeater Control
Walkthrough: Displaying Data in a DataRepeater Control
Troubleshooting the DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/introduction-to-the-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.collections.ilist
https://docs.microsoft.com/dotnet/api/system.componentmodel.ilistsource
https://docs.microsoft.com/dotnet/api/system.componentmodel.ibindinglist
https://docs.microsoft.com/dotnet/api/system.componentmodel.ibindinglistview
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.virtualmode.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.currentitemindexchanged.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.currentitemindexchanged.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx


   

Virtual Mode in the DataRepeater Control (Visual Studio)
5/4/2018 • 4 minutes to read • Edit Online

How Virtual Mode Works

Implementing Virtual Mode

To implement virtual modeTo implement virtual mode

When you want to display large quantities of tabular data in a DataRepeater control, you can improve performance by setting the VirtualMode property
to True  and explicitly managing the control's interaction with its data source. The DataRepeater control provides several events that you can handle to
interact with your data source and display the data as needed at run time.

The most common scenario for the DataRepeater control is to bind the child controls of the ItemTemplate to a data source at design time and allow the
BindingSource to pass data back and forth as needed. When you use virtual mode, the controls are not bound to a data source, and data is passed back
and forth to the underlying data source at run time.

When the VirtualMode property is set to True , you create the user interface by adding controls from the Toolbox instead of adding bound controls
from the Data Sources window.

Events are raised on a control-by-control basis, and you must add code to handle the display of data. When a new DataRepeaterItem is scrolled into
view, the ItemValueNeeded event is raised one time for each control and you must supply the values for each control in the ItemValueNeeded event
handler.

If data in one of the controls is changed by the user, the ItemValuePushed event is raised and you must validate the data and save it to your data source.

If the user adds a new item, the NewItemNeeded event is raised. Use this event's handler to create a new record in your data source. To prevent
unintended changes, you must also monitor the KeyDown event for each control and call CancelEdit if the user presses the ESC key.

If your data source changes, you can refresh the DataRepeater control by calling the BeginResetItemTemplate and EndResetItemTemplate methods.
Both methods must be called in order.

Finally, you must implement event handlers for the ItemsRemoved event, which occurs when an item is deleted, and optionally for the
UserDeletingItems and UserDeletedItems events, which occur whenever a user deletes an item by pressing the DELETE key.

Following are the steps that are required to implement virtual mode.

Private Sub DataRepeater1_ItemValueNeeded(
    ByVal sender As Object, 
    ByVal e As Microsoft.VisualBasic.PowerPacks.DataRepeaterItemValueEventArgs
  ) Handles DataRepeater1.ItemValueNeeded
    If e.ItemIndex < Employees.Count Then
        Select Case e.Control.Name
            Case "txtFirstName"
                e.Value = Employees.Item(e.ItemIndex + 1).firstName
            Case "txtLastName"
                e.Value = Employees.Item(e.ItemIndex + 1).lastName
        End Select
    End If
End Sub

1. Drag a DataRepeater control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control. Set the VirtualMode
property to True .

2. Drag controls from the Toolbox onto the item template region (the upper region) of the DataRepeater control. You will need one control for each
field in your data source that you want to display.

3. Implement a handler for the ItemValueNeeded event to provide values for each control. This event is raised when a new DataRepeaterItem is
scrolled into view. The code will resemble the following example, which is for a data source named Employees .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/virtual-mode-in-the-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.virtualmode.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.virtualmode.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvalueneeded.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvalueneeded.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvaluepushed.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.newitemneeded.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.keydown
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.canceledit.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.beginresetitemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.endresetitemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemsremoved.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.userdeletingitems.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.userdeleteditems.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.virtualmode.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvalueneeded.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx


private void dataRepeater1_ItemValueNeeded(object sender, Microsoft.VisualBasic.PowerPacks.DataRepeaterItemValueEventArgs e)
{
    if (e.ItemIndex < Employees.Count)
    {
        switch (e.Control.Name)
        {
            case "txtFirstName":
                e.Value = Employees[e.ItemIndex + 1].firstName;
                break;
            case "txtLastName":
                e.Value = Employees[e.ItemIndex + 1].lastName;
                break;
        }
    }
}

Private Sub DataRepeater1_ItemValuePushed(
    ByVal sender As Object, 
    ByVal e As Microsoft.VisualBasic.PowerPacks.DataRepeaterItemValueEventArgs
  ) Handles DataRepeater1.ItemValuePushed

    Dim emp As Employee = Employees.Item(e.ItemIndex)
    Select Case e.Control.Name
        Case "txtFirstName"
            emp.firstName = e.Control.Text
        Case "txtLastName"
            emp.lastName = e.Control.Text
        Case Else
            MsgBox("Error during ItemValuePushed unexpected control: " & 
                e.Control.Name)
    End Select
End Sub

private void dataRepeater1_ItemValuePushed(object sender, Microsoft.VisualBasic.PowerPacks.DataRepeaterItemValueEventArgs e)
{
    Employee emp = Employees[e.ItemIndex];
    switch (e.Control.Name)
    {
        case "txtFirstName":
            emp.firstName = e.Control.Text;
            break;
        case "txtLastName":
            emp.lastName = e.Control.Text;
            break;
        default:
            MessageBox.Show("Error during ItemValuePushed unexpected control: " + e.Control.Name);
            break;
    }
}

Private Sub Child_KeyDown(
    ByVal sender As Object, 
    ByVal e As System.Windows.Forms.KeyEventArgs
  ) Handles txtFirstName.KeyDown, txtLastName.KeyDown

    If e.KeyCode = Keys.Escape Then
        Datarepeater1.CancelEdit()
    End If
End Sub

private void child_KeyDown(object sender, System.Windows.Forms.KeyEventArgs e)
{
    if (e.KeyCode == Keys.Escape)
    {
        this.dataRepeater1.CancelEdit();
    }
}

4. Implement a handler for the ItemValuePushed event to store the data. This event is raised when the user commits changes to a child control of
the DataRepeaterItem. The code will resemble the following example, which is for a data source named Employees .

5. Implement a handler for each child control's KeyDown event and monitor the ESC key. Call the CancelEdit method to prevent the
ItemValuePushed event from being raised. The code will resemble the following example.

6. Implement a handler for the NewItemNeeded event. This event is raised when the user adds a new item to the DataRepeater control. The code
will resemble the following example, which is for a data source named Employees .

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvaluepushed.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.keydown
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.canceledit.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvaluepushed.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.newitemneeded.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


See Also

Private Sub DataRepeater1_NewItemNeeded(
  ) Handles DataRepeater1.NewItemNeeded

    Dim newEmployee As New Employee
    Employees.Add(newEmployee)
    blnNewItemNeedEventFired = True
End Sub

private void dataRepeater1_NewItemNeeded(object sender, System.EventArgs e)
{
    Employee newEmployee = new Employee();
    Employees.Add(newEmployee);
    blnNewItemNeedEventFired = true;
}

Private Sub DataRepeater1_ItemsRemoved(
    ByVal sender As Object, 
    ByVal e As Microsoft.VisualBasic.PowerPacks.DataRepeaterAddRemoveItemsEventArgs
  ) Handles DataRepeater1.ItemsRemoved

    Employees.RemoveAt(e.ItemIndex)
End Sub

private void dataRepeater1_ItemsRemoved(object sender, Microsoft.VisualBasic.PowerPacks.DataRepeaterAddRemoveItemsEventArgs e)
{
    Employees.RemoveAt(e.ItemIndex);
}

Private Sub Text_Validating(
    ByVal sender As Object, 
    ByVal e As System.ComponentModel.CancelEventArgs
  ) Handles txtFirstName.Validating, txtLastName.Validating

    If txtFirstName.Text = "" Then
        MsgBox("Please enter a name.")
        e.Cancel = True
    End If
End Sub

private void Text_Validating(object sender, System.ComponentModel.CancelEventArgs e)
{
    if (txtFirstName.Text == "")
    {
        MessageBox.Show("Please enter a name.");
        e.Cancel = true;
    }
}

7. Implement a handler for the ItemsRemoved event. This event occurs when a user deletes an existing item. The code will resemble the following
example, which is for a data source named Employees .

8. For control-level validation, optionally implement handlers for the Validating events of the child controls. The code will resemble the following
example.

ItemValuePushed
NewItemNeeded
ItemValueNeeded
Introduction to the DataRepeater Control

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemsremoved.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.validating
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvaluepushed.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.newitemneeded.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemvalueneeded.aspx


        

How to: Display Bound Data in a DataRepeater Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To create a data-bound DataRepeaterTo create a data-bound DataRepeater

See Also

The most common use of the DataRepeater control is to display bound data from a database or other data source.

In addition to bound controls, you may want to add other controls, such as a static label or an image that is repeated on each item in the DataRepeater
control. For more information, see How to: Display Unbound Controls in a DataRepeater Control.

You can also bind to a data source at run time by setting the VirtualMode property to True  and assigning a data source to the DataSource property. In
this case, you will need to manage all interaction with the data source. For more information, see Virtual Mode in the DataRepeater Control.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

NOTENOTE

1. Drag a DataRepeater control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. Drag the sizing and position handles to size and position the control.

Note that the control has two rectangular regions. The upper region is the item template; controls added to the template will be repeated in each
item in the DataRepeater control at run time. The lower region is the viewport, where the items will be displayed.

You can also size and position the control or the item template by changing the Size and Position properties in the Properties window.

3. On the Data menu, click Show Data Sources.

If the Data Sources window is empty, add a data source to it. For more information, see Add new data sources.

4. In the Data Sources window, select the top-level node for the table that contains the data that you want to bind.

5. Change the drop type of the table to Details  by clicking Details  in the drop-down list on the table node.

6. Select the table node and drag it onto the item template region of the DataRepeater control.

You can specify which types of controls are displayed for each field. For more information, see Set the control to be created when dragging from
the Data Sources window.

DataRepeater
Introduction to the DataRepeater Control
How to: Display Unbound Controls in a DataRepeater Control
How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio)
How to: Change the Appearance of a DataRepeater Control
Troubleshooting the DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-display-bound-data-in-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.virtualmode.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.datasource.aspx
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/data-tools/add-new-data-sources
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/data-tools/set-the-control-to-be-created-when-dragging-from-the-data-sources-window
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


       

How to: Display Unbound Controls in a DataRepeater Control (Visual
Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To add unbound controls to a DataRepeaterTo add unbound controls to a DataRepeater

See Also

In addition to bound controls, you may want to add other controls to a DataRepeater, such as a static label or an image that is repeated on each item in
the DataRepeater control.

You must also have at least one bound control on the DataRepeater or nothing will be displayed at run time.

1. Drag a DataRepeater control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. Drag the sizing and position handles to size and position the control.

You can also size and position the control by changing the Size and Position properties in the Properties window.

3. Add at least one data-bound control to the DataRepeater control. For more information, see How to: Display Bound Data in a DataRepeater
Control.

4. Drag a control from the Toolbox onto the item template region of the DataRepeater control.

Note that the control has two rectangular regions. The inner region is the item template; controls added to the template will be repeated in each
item in the DataRepeater control at run time. The outer region is the viewport, where the items will be displayed; controls that are added to this
region will not be displayed at run time.

DataRepeater
Introduction to the DataRepeater Control
Troubleshooting the DataRepeater Control
How to: Display Bound Data in a DataRepeater Control
How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio)
How to: Change the Appearance of a DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-display-unbound-controls-in-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


     

How to: Change the Layout of a DataRepeater Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To change the layout at design timeTo change the layout at design time

To change the layout at run timeTo change the layout at run time

Example

The DataRepeater control can be displayed in either a vertical (items scroll vertically) or horizontal (items scroll horizontally) orientation. You can
change the orientation at design time or at run time by changing the LayoutStyle property. If you change the LayoutStyle property at run time, you may
also want to resize the ItemTemplate and reposition the child controls.

If you reposition controls on the ItemTemplate at run time, you will need to call the BeginResetItemTemplate and EndResetItemTemplate methods at the beginning and
end of the code block that repositions the controls.

NOTENOTE

1. In the Windows Forms Designer, select the DataRepeater control.

You must select the outer border of the DataRepeater control by clicking in the lower region of the control, not in the upper ItemTemplate region.

2. In the Properties window, set the LayoutStyle property to either DataRepeaterLayoutStyles.Vertical or DataRepeaterLayoutStyles.Horizontal.

// Switch the orientation.
if (dataRepeater1.LayoutStyle == DataRepeaterLayoutStyles.Vertical)
{
    dataRepeater1.LayoutStyle = DataRepeaterLayoutStyles.Horizontal;
}
else
{
    dataRepeater1.LayoutStyle = DataRepeaterLayoutStyles.Vertical;
}            

' Switch the orientation.
If DataRepeater1.LayoutStyle =
 PowerPacks.DataRepeaterLayoutStyles.Vertical Then
    DataRepeater1.LayoutStyle =
     PowerPacks.DataRepeaterLayoutStyles.Horizontal
Else
    DataRepeater1.LayoutStyle =
     PowerPacks.DataRepeaterLayoutStyles.Vertical
End If

1. Add the following code to a button or menu Click  event handler :

2. In most cases, you will want to add code similar to that shown in the Example section to resize the ItemTemplate and rearrange controls to fit the
new orientation.

The following example shows how to respond to the LayoutStyleChanged event in an event handler. This example requires that you have a
DataRepeater control named DataRepeater1  on a form and that its ItemTemplate contain two TextBox controls named TextBox1  and TextBox2 .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-change-the-layout-of-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.beginresetitemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.endresetitemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeaterlayoutstyles.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeaterlayoutstyles.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstylechanged.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.textbox


private void dataRepeater1_LayoutStyleChanged_1(object sender, EventArgs e)
{
    // Call a method to re-initialize the template.
    dataRepeater1.BeginResetItemTemplate();
    if (dataRepeater1.LayoutStyle == DataRepeaterLayoutStyles.Vertical)
    // Change the height of the template and rearrange the controls.
    {
        dataRepeater1.ItemTemplate.Height = 150;
        dataRepeater1.ItemTemplate.Controls["TextBox1"].Location = new Point(20, 40);
        dataRepeater1.ItemTemplate.Controls["TextBox2"].Location = new Point(150, 40);
    }
    else
    {
        // Change the width of the template and rearrange the controls.
        dataRepeater1.ItemTemplate.Width = 150;
        dataRepeater1.ItemTemplate.Controls["TextBox1"].Location = new Point(40, 20);
        dataRepeater1.ItemTemplate.Controls["TextBox2"].Location = new Point(40, 150);
    }
    // Apply the changes to the template.
    dataRepeater1.EndResetItemTemplate();
}

Private Sub DataRepeater1_LayoutStyleChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles DataRepeater1.LayoutStyleChanged
    ' Call a method to re-initialize the template.
    DataRepeater1.BeginResetItemTemplate()
    If DataRepeater1.LayoutStyle =
     PowerPacks.DataRepeaterLayoutStyles.Vertical Then
        ' Change the height of the template and rearrange the controls.
        DataRepeater1.ItemTemplate.Height = 150
        DataRepeater1.ItemTemplate.Controls(TextBox1.Name).Location =
         New Point(20, 40)
        DataRepeater1.ItemTemplate.Controls(TextBox2.Name).Location =
         New Point(150, 40)
    Else
        ' Change the width of the template and rearrange the controls.
        DataRepeater1.ItemTemplate.Width = 150
        DataRepeater1.ItemTemplate.Controls(TextBox1.Name).Location =
         New Point(40, 20)
        DataRepeater1.ItemTemplate.Controls(TextBox2.Name).Location =
         New Point(40, 150)
    End If
    ' Apply the changes to the template.
    DataRepeater1.EndResetItemTemplate()
End Sub

See Also
DataRepeater
LayoutStyle
BeginResetItemTemplate
EndResetItemTemplate
Introduction to the DataRepeater Control
Troubleshooting the DataRepeater Control
How to: Change the Appearance of a DataRepeater Control

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.beginresetitemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.endresetitemtemplate.aspx


            

How to: Change the Appearance of a DataRepeater Control (Visual
Studio)
5/4/2018 • 3 minutes to read • Edit Online

To change the appearance at design timeTo change the appearance at design time

To change the appearance at run timeTo change the appearance at run time

Example

You can change the appearance of a DataRepeater control at design time by setting properties or at run time by handling the DrawItem event.

Properties that you set at design time when the item template section of the control is selected will be repeated for each DataRepeaterItem at run time.
Appearance-related properties of the DataRepeater control itself will be visible at run time only if a part of the container is left uncovered (for example,
if the Padding property is set to a large value).

At run time, appearance-related properties can be set based on conditions. For example, in a scheduling application, you might change the background
color of an item to warn users when an item is past due. In the DrawItem event handler, if you set a property in a conditional statement such as If…Then

, you must also use an Else  clause to specify the appearance when the condition is not met.

1. In the Windows Forms Designer, select the item template (upper) region of the DataRepeater control.

2. In the Properties window, select a property and change the value. Common properties that affect appearance include BackColor,
BackgroundImage, BorderStyle, and ForeColor.

// Set the default BackColor.
e.DataRepeaterItem.BackColor = Color.White;
// Loop through the controls on the DataRepeaterItem.
foreach (Control c in e.DataRepeaterItem.Controls)
{
    // Check the type of each control.
    if (c is TextBox)
    // If a TextBox, change the BackColor.
    {
        c.BackColor = Color.AliceBlue;
    }
    else
    {
        // Otherwise use the default BackColor.
        c.BackColor = e.DataRepeaterItem.BackColor;
    }
}

' Set the default BackColor.
e.DataRepeaterItem.BackColor = Color.White
' Loop through the controls on the DataRepeaterItem.
For Each c As Control In e.DataRepeaterItem.Controls
    ' Check the type of each control.
    If TypeOf c Is TextBox Then
        ' If a TextBox, change the BackColor.
        c.BackColor = Color.AliceBlue
    Else
        ' Otherwise use the default BackColor.
        c.BackColor = e.DataRepeaterItem.BackColor
    End If
Next

1. In the Code Editor, in the Event drop-down list, click DrawItem.

2. In the DrawItem event handler, add code to set the properties:

Some common customizations for the DataRepeater control include displaying the rows in alternating colors and changing the color of a field based on
a condition. The following example shows how to perform these customizations. This example assumes that you have a DataRepeater control that is
bound to the Products table in the Northwind database.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-change-the-appearance-of-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.padding
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.backcolor
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.backgroundimage
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel.borderstyle
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.forecolor
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


Private Sub DataRepeater1_DrawItem(
    ByVal sender As Object, 
    ByVal e As Microsoft.VisualBasic.PowerPacks.DataRepeaterItemEventArgs
  ) Handles DataRepeater1.DrawItem

    ' Alternate the back color.
    If (e.DataRepeaterItem.ItemIndex Mod 2) <> 0 Then
        ' Apply the secondary back color.
        e.DataRepeaterItem.BackColor = Color.AliceBlue
    Else
        ' Apply the default back color.
        e.DataRepeaterItem.BackColor = Color.White
    End If
    ' Change the color of out-of-stock items to red.
    If e.DataRepeaterItem.Controls(
          UnitsInStockTextBox.Name).Text < 1 Then

        e.DataRepeaterItem.Controls(UnitsInStockTextBox.Name). 
         BackColor = Color.Red
    Else
        e.DataRepeaterItem.Controls(UnitsInStockTextBox.Name). 
         BackColor = Color.White
    End If
End Sub

private void dataRepeater1_DrawItem(object sender, 
    Microsoft.VisualBasic.PowerPacks.DataRepeaterItemEventArgs e)
{
    // Alternate the back color.
    if ((e.DataRepeaterItem.ItemIndex % 2) != 0)
    // Apply the secondary back color.
    {
        e.DataRepeaterItem.BackColor = Color.AliceBlue;
    }
    else
    {
        // Apply the default back color.
        e.DataRepeaterItem.BackColor = Color.White;
    }
    // Change the color of out-of-stock items to red.
    if (e.DataRepeaterItem.Controls["unitsInStockTextBox"].Text == "0")
    {
        e.DataRepeaterItem.Controls["unitsInStockTextBox"].BackColor = Color.Red;
    }
    else
    {
        e.DataRepeaterItem.Controls["unitsInStockTextBox"].BackColor = Color.White;
    }
}

See Also

Note that for both of these customizations, you must provide code to set the properties for both sides of the condition. If you do not specify the Else

condition, you will see unexpected results at run time.

DataRepeater
DrawItem
Introduction to the DataRepeater Control
Troubleshooting the DataRepeater Control
How to: Display Bound Data in a DataRepeater Control
How to: Display Unbound Controls in a DataRepeater Control
How to: Display Item Headers in a DataRepeater Control

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx


     

How to: Display Item Headers in a DataRepeater Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

NOTENOTE

To change the appearance of item headersTo change the appearance of item headers

To hide item headersTo hide item headers

See Also

The item header in a DataRepeater control provides a visual indicator when a DataRepeaterItem is selected. When the LayoutStyle property is set to
DataRepeaterLayoutStyles.Vertical (the default), the item header is displayed to the left of each item. When the LayoutStyle property is set to
DataRepeaterLayoutStyles.Horizontal, the item header is displayed at the top of each item.

When it is first selected, the item header is displayed in the color that is specified by the SelectionColor property, and a white arrow icon is displayed.

If you set the SelectionColor to White, the selection symbol will not be visible when the item is first selected.

When a field in the DataRepeaterItem has focus, the color of the item header changes to the ItemTemplate background color and the arrow icon
changes to black. If data is changed, a pencil symbol is displayed in the item header.

The default width (or height when the LayoutStyle property is set to DataRepeaterLayoutStyles.Horizontal) of the item header is 15 pixels. You can
change the width by setting the ItemHeaderSize property.

If the ItemHeaderSize property is set to a value that is less than 11, the indicator symbols in the item header will not be displayed.

You can hide the item headers by setting the ItemHeaderVisible property to False. When ItemHeaderVisible is set to False, the only indication that an
item is selected is a dotted line around the perimeter of the DataRepeaterItem.

You can also provide your own selection indicator by monitoring the IsCurrent property of the DataRepeaterItem in the DrawItem event of the DataRepeater control.
For more information, see IsCurrent.

NOTENOTE

NOTENOTE

NOTENOTE

1. In the Windows Forms Designer, select the lower region of the DataRepeater control.

You must select the lower region of the control. If you select the item template section, a different set of properties will appear in the Properties window.

2. In the Properties window, use the SelectionColor property to change the color of the item headers.

If you set the SelectionColor to White, the selection symbol will not be visible when the item is first selected.

3. Use the ItemHeaderSize property to change the width (or height) of the item headers.

If the ItemHeaderSize property is set to a value that is less than 11, the indicator symbols in the item header will not be displayed.

NOTENOTE

1. In the Windows Forms Designer, select the lower region of the DataRepeater control.

You must select the lower region of the control. If you select the item template section, a different set of properties will appear in the Properties window.

2. In the Properties window, set the ItemHeaderVisible property to False.

When an item in the DataRepeater is selected, the only indication will be a dotted line around the perimeter of the DataRepeaterItem.

DataRepeater
Introduction to the DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-display-item-headers-in-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeaterlayoutstyles.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeaterlayoutstyles.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.color.white
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.layoutstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeaterlayoutstyles.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadervisible.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadervisible.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.iscurrent.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.iscurrent.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.color.white
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadervisible.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


How to: Change the Appearance of a DataRepeater Control
How to: Change the Layout of a DataRepeater Control
Troubleshooting the DataRepeater Control



    

How to: Disable Adding and Deleting DataRepeater Items (Visual
Studio)
5/4/2018 • 2 minutes to read • Edit Online

To disable adding and deleting at design timeTo disable adding and deleting at design time

To disable adding and deleting at run timeTo disable adding and deleting at run time

By default, users can add and delete items in a DataRepeater control. Users can add a new item by pressing CTRL+N when a DataRepeaterItem has
focus or by clicking the AddNewItem button on the BindingNavigator control. Users can delete an item by pressing DELETE when a
DataRepeaterItem has focus or by clicking the DeleteItem button on the BindingNavigator control.

You can disable adding and/or deleting at design time or at run time.

NOTENOTE

if (bindingNavigatorDeleteItem.Enabled == true)
{
    bindingNavigatorDeleteItem.Enabled = false;
}

If BindingNavigatorDeleteItem.Enabled = True Then
    BindingNavigatorDeleteItem.Enabled = False
End If

NOTENOTE

1. In the Windows Forms Designer, select the DataRepeater control.

You must select the lower section of the control. If you select the item template section, a different set of properties will be displayed.

2. In the Properties window, set the AllowUserToAddItems property to False.

3. Set the AllowUserToDeleteItems property to False.

4. In the Windows Forms Designer, select the BindingNavigator control, and then click the AddNewItem button (the button with a plus sign on it).

5. In the Properties window, set the Enabled property to False.

6. In the Windows Forms Designer, select the BindingNavigator control, and then click the DeleteItem button (the button with a red X on it).

7. In the Properties window, set the Enabled property to False.

8. In the Component Tray, select the BindingSource to which the DataRepeater is bound.

9. In the Properties window, set the AllowNew property to False.

10. In the Windows Forms Designer, double-click the DeleteItem button to open the Code Editor.

11. In the Events drop-down list, select the BindingNavigatorDeleteItem_EnabledChanged  event.

12. Add the following code to the BindingNavigatorDeleteItem_EnabledChanged  event handler :

This step is necessary because the BindingSource will enable the DeleteItem button every time that the current record changes.

dataRepeater1.AllowUserToAddItems = false;
dataRepeater1.AllowUserToDeleteItems = false;
bindingNavigatorAddNewItem.Enabled = false;
ordersBindingSource.AllowNew = false;
bindingNavigatorDeleteItem.Enabled = false;

DataRepeater1.AllowUserToAddItems = False
DataRepeater1.AllowUserToDeleteItems = False
BindingNavigatorAddNewItem.Enabled = False
ordersBindingSource.AllowNew = False
BindingNavigatorDeleteItem.Enabled = False

1. In the Windows Forms Designer, double-click the form to open the Code Editor.

2. Add the following code to the Form_Load  event:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-disable-adding-and-deleting-datarepeater-items-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritemeventargs.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritemeventargs.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.allowusertoadditems.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.allowusertodeleteitems.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolbarbutton.enabled
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://docs.microsoft.com/dotnet/api/system.windows.forms.toolbarbutton.enabled
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource.allownew
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource


See Also

if (bindingNavigatorDeleteItem.Enabled == true)
{
    bindingNavigatorDeleteItem.Enabled = false;
}

If BindingNavigatorDeleteItem.Enabled = True Then
    BindingNavigatorDeleteItem.Enabled = False
End If

NOTENOTE

3. Add the following code to the BindingNavigatorDeleteItem_EnabledChanged  event handler :

This step is necessary because the BindingSource will enable the DeleteItem button every time that the current record changes.

DataRepeater
Introduction to the DataRepeater Control
Troubleshooting the DataRepeater Control

https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


    

How to: Search Data in a DataRepeater Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

To implement searchTo implement search

See Also

When you are using a DataRepeater control that contains many records, you may want to let users search for a specific record. Rather than searching
the data in the control itself, you can implement a search by querying the underlying BindingSource. If the item is found, you can then use the
CurrentItemIndex property to select the item and scroll it into view.

Private Sub SearchButton_Click() Handles SearchButton.Click
    Dim foundIndex As Integer
    Dim searchString As String
    searchString = SearchTextBox.Text
    foundIndex = ProductsBindingSource.Find("ProductID", 
       searchString)
    If foundIndex > -1 Then
        DataRepeater1.CurrentItemIndex = foundIndex
    Else
        MsgBox("Item " & searchString & " not found.")
    End If
End Sub

private void searchButton_Click(System.Object sender, System.EventArgs e)
{
    int foundIndex;
    string searchString;
    searchString = searchTextBox.Text;
    foundIndex = productsBindingSource.Find("ProductID", searchString);
    if (foundIndex > -1)
    {
        dataRepeater1.CurrentItemIndex = foundIndex;
    }
    else
    {
        MessageBox.Show("Item " + searchString + " not found.");
    }
}

1. Drag a TextBox control from the Toolbox onto the form that contains the DataRepeater control.

2. In the Properties window, change the Name property to SearchTextBox.

3. Drag a Button control from the Toolbox onto the form that contains the DataRepeater control.

4. In the Properties window, change the Name property to SearchButton. Change the Text property to Search.

5. Double-click the Button control to open the Code Editor, and add the following code to the SearchButton_Click  event handler.

Replace ProductsBindingSource with the name of the BindingSource for your DataRepeater, and replace ProductID with the name of the field
that you want to search.

DataRepeater
Introduction to the DataRepeater Control
Troubleshooting the DataRepeater Control
How to: Change the Appearance of a DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-search-data-in-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.currentitemindex.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.textbox
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


      

How to: Create a Master/Detail Form by Using Two DataRepeater
Controls (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To display related data in two DataRepeater controlsTo display related data in two DataRepeater controls

See Also

You can display related data by using two or more DataRepeater controls to create a master/detail form. For example, you might want to display a list of
customers in one DataRepeater, and when the user selects a customer, display a list of that customer's orders in a second DataRepeater.

You can display related data by dragging detail items that share the same master table node from the Data Sources window onto a DataRepeater
control. For example, if you have a data source that has a Customers table and a related Orders table, you see both tables as top-level nodes in the tree
view in the Data Sources window. Expand the Customers node so that you can see the columns. Notice that the last column in the list is an expandable
node that represents the Orders table. This node represents the related orders for a customer.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

NOTENOTE

1. Drag two DataRepeater controls from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. Drag the sizing and position handles to size the controls and position them side-by-side.

3. On the Data menu, click Show Data Sources.

If the Data Sources window is empty, add a data source to it. For more information, see Add new data sources.

4. In the Data Sources window, select the top-level node for the master table.

5. Change the drop type of the master table to Details by clicking Details in the drop-down list on the table node.

6. Drag the master table node onto the item template region of the first DataRepeater control.

7. Expand the master table node and select the detail node for the related table.

8. Change the drop type of the detail table to Details by clicking Details in the drop-down list on the table node.

9. Select this table node and drag it onto the item template region of the second DataRepeater control.

DataRepeater
Introduction to the DataRepeater Control
How to: Display Bound Data in a DataRepeater Control
How to: Display Related Data in a Windows Forms Application
How to: Change the Appearance of a DataRepeater Control
Troubleshooting the DataRepeater Control

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-create-a-master-detail-form-by-using-two-datarepeater-controls.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/data-tools/add-new-data-sources
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/data-tools/bind-windows-forms-controls-to-data-in-visual-studio


  

Walkthrough: Displaying Data in a DataRepeater Control (Visual Studio)
6/8/2018 • 7 minutes to read • Edit Online

Prerequisite

Overview

NOTENOTE

Creating a DataRepeater Solution

To create a DataRepeater solutionTo create a DataRepeater solution

Adding a DataRepeater Control

To add a DataRepeater controlTo add a DataRepeater control

Adding a Data Source

To add a data sourceTo add a data source

This walkthrough provides a basic start-to-finish scenario for displaying bound data in a DataRepeater control.

This walkthrough requires the Northwind sample database.

If you do not have this database on your development computer, you can download it from the Microsoft Download Center. For instructions, see
Downloading Sample Databases.

The first part of this walkthrough consists of four main tasks:

Creating a solution.

Adding a DataRepeater control.

Adding a data source.

Adding data-bound controls.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

In the first step, you create a project and solution.

1. On the Visual Studio File menu, click New Project.

2. In the Project types pane in the New Project dialog box, expand Visual Basic, and then click Windows.

3. In the Templates pane, click Windows Forms Application.

4. In the Name box, type DataRepeaterApp .

5. Click OK.

The Windows Forms Designer opens.

6. Select the form in the Windows Forms Designer. In the Properties window, set the Size property to 800, 700 .

In this step, you add a DataRepeater control to the form.

1. On the View menu, click Toolbox.

The Toolbox opens.

2. Select the Visual Basic PowerPacks tab.

3. Drag a DataRepeater control onto Form1.

4. In the Properties window, set the Location property to 0, 25 .

5. Set the Size property to 460, 600 .

In this step, you add a data source for the DataRepeater control.

1. On the Data menu, click Show Data Sources.

2. In the Data Sources window, click Add New Data Source.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/walkthrough-displaying-data-in-a-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/downloading-sample-databases
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


Adding Data-Bound Controls

To add data-bound controlsTo add data-bound controls

Next Steps (Optional)

Changing the Appearance of the DataRepeater Control

To change the appearance of the controlTo change the appearance of the control

NOTENOTE

3. Select Database on the Choose a Data Source Type page, and then click Next.

4. On the Choose Your Data Connection page, perform one of the following steps:

If a data connection to the Northwind sample database is available in the drop-down list, click it.

-or-

Click New Connection to configure a new data connection. For more information, see Add new connections.

5. If the database requires a password, select the option to include sensitive data, and then click Next.

If a dialog box appears, click Yes to save the file to your project.

6. Click Next on the Save Connection String to the Application Configuration file page.

7. Expand the Tables node on the Choose Your Database Objects page.

8. Select the check boxes next to the Customers and Orders tables, and then click Finish.

NorthwindDataSet is added to your project and the Customers and Orders tables appear in the Data Sources window.

In this step, you add data-bound controls to the DataRepeater.

1. In the Data Sources window, select the top-level node for the Customers table.

2. Change the drop type of the table to Details by clicking Details in the drop-down list on the table node.

3. Select the Customers table node and drag it onto the item template region (the upper region) of the DataRepeater control.

A BindingNavigator control is added to the form, and the NorthwindDataSet, CustomersBindingSource, CustomersTableAdapter,
TableAdapterManager, and CustomersBindingNavigator components are added to the Component Tray.

4. Select all of the fields and their associated labels and position them near the left edge of the item template region.

5. Select the last five fields (Region, Postal Code, Country, Phone, and Fax) and their associated labels and move them up and to the right of the
first six fields.

6. Select the item template (the upper region of the control).

7. In the Properties window, set the Size property to 427, 170 .

At this point, you have a working application that will display a repeating list of customers. You can press F5 to run the application, change the data, and
add or delete customer records.

In the next optional steps, you will learn how to customize the DataRepeater control.

This part of the walkthrough consists of four optional tasks:

Changing the appearance of the DataRepeater control.

Preventing users from adding or deleting records.

Adding search capability to the DataRepeater control.

Adding a master and detail table to the DataRepeater control.

In this optional step, you change the BackColor  of the DataRepeater control at design time. You also add code to display rows in alternating colors and
to change a label's ForeColor  conditionally.

1. In the Windows Forms Designer, select the main (lower) region of the DataRepeater control.

2. In the Properties window, set the BackColor  property to white.

3. Double-click the DataRepeater to open the Code Editor.

4. In the Code Editor, in the Event drop-down list, click DrawItem.

5. In the DrawItem event handler, add the following code to alternate the BackColor :

https://docs.microsoft.com/visualstudio/data-tools/add-new-connections
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx


Preventing Users from Adding or Deleting Records

To prevent users from adding and deleting recordsTo prevent users from adding and deleting records

// Alternate the back color.
if ((e.DataRepeaterItem.ItemIndex % 2) != 0)
// Apply the secondary back color.
{
    e.DataRepeaterItem.BackColor = Color.AliceBlue;
}
else
{
    // Apply the default back color.
    e.DataRepeaterItem.BackColor = dataRepeater1.BackColor;
}

' Alternate the back color.
If (e.DataRepeaterItem.ItemIndex Mod 2) <> 0 Then
    ' Apply the secondary back color.
    e.DataRepeaterItem.BackColor = Color.AliceBlue
Else
    ' Apply the default back color.
    e.DataRepeaterItem.BackColor = DataRepeater1.BackColor
End If

if (e.DataRepeaterItem.Controls[regionTextBox.Name].Text == "")
{
    e.DataRepeaterItem.Controls["regionLabel"].ForeColor = Color.Red;
}
else
{
    e.DataRepeaterItem.Controls["regionLabel"].ForeColor = Color.Black;
}

If e.DataRepeaterItem.Controls(RegionTextBox.Name).Text = "" Then
    e.DataRepeaterItem.Controls("RegionLabel").
     ForeColor = Color.Red
Else
    e.DataRepeaterItem.Controls("RegionLabel").
     ForeColor = Color.Black
End If

6. In the DrawItem event handler, add the following code to change the ForeColor  of a label depending on a condition:

7. Press F5 to run the application and see the customizations.

In this optional step, you add code that prevents users from adding or deleting records in the DataRepeater control.

dataRepeater1.AllowUserToAddItems = false;
dataRepeater1.AllowUserToDeleteItems = false;
bindingNavigatorAddNewItem.Enabled = false;
customersBindingSource.AllowNew = false;
bindingNavigatorDeleteItem.Enabled = false;

DataRepeater1.AllowUserToAddItems = False
DataRepeater1.AllowUserToDeleteItems = False
BindingNavigatorAddNewItem.Enabled = False
CustomersBindingSource.AllowNew = False
BindingNavigatorDeleteItem.Enabled = False

if (bindingNavigatorDeleteItem.Enabled == true)
{
    bindingNavigatorDeleteItem.Enabled = false;
}

1. In the Windows Forms Designer, double-click the form to open the Code Editor.

2. Add the following code to the Form_Load  event:

3. In the Class Name drop-down list, click BindingNavigatorDeleteItem. In the Method Name drop-down list, click EnabledChanged.

4. Add the following code to the BindingNavigatorDeleteItem_EnabledChanged  event handler :

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


Adding Search Capability to the DataRepeater Control

To add search capabilityTo add search capability

Adding a Master and Detail Table to the DataRepeater

To add a master and detail tableTo add a master and detail table

If BindingNavigatorDeleteItem.Enabled = True Then
    BindingNavigatorDeleteItem.Enabled = False
End If

NOTENOTE
This step is necessary because the BindingSource will enable the DeleteItem button every time that the current record changes.

5. Press F5 to run the application. Notice that the DeleteItem button is disabled and that you cannot delete items by pressing the DELETE key.

In this optional step, you implement the capability to search for a value in the DataRepeater control. If the search string is found, the control selects the
item that contains the value and scrolls the item into view.

int foundIndex;
string searchString;
searchString = searchTextBox.Text;
// Search for the string in the CustomerID field.
foundIndex = customersBindingSource.Find("CustomerID", searchString);
if (foundIndex > -1)
{
    dataRepeater1.CurrentItemIndex = foundIndex;
}
else
{
    MessageBox.Show("Item " + searchString + " not found.");
}

Dim foundIndex As Integer
Dim searchString As String
searchString = SearchTextBox.Text
' Search for the string in the CustomerID field.
foundIndex = CustomersBindingSource.Find("CustomerID",
 searchString)
If foundIndex > -1 Then
    DataRepeater1.CurrentItemIndex = foundIndex
Else
    MsgBox("Item " & searchString & " not found.")
End If

1. Drag a TextBox control from the Toolbox onto the form that contains the DataRepeater control.

Position it under the DataRepeater control.

2. In the Properties window, change the Name property to SearchTextBox.

3. Drag a Button control from the Toolbox onto the form that contains the DataRepeater control. Position it under the DataRepeater control.

4. In the Properties window, change the Name property to SearchButton. Change the Text property to Search.

5. Double-click the Button control to open the Code Editor, and add the following code to the SearchButton_Click  event handler.

6. Press F5 to run the application. Type a customer ID in SearchTextBox and click the Search button.

In this optional step, you add a second DataRepeater control to display related orders for each customer.

1. Drag a second DataRepeater control from the Visual Basic PowerPacks tab in the Toolbox onto the form.

2. In the Properties window, set the Location property to 465, 25 .

3. Set the Size property to 315, 600 .

4. In the Data Sources window, expand the Customers table node and select the detail node for the Orders table.

5. Change the drop type of this Orders table to Details by clicking Details in the drop-down list on the table node.

6. Drag this Orders table node onto the item template region (the upper region) of the second DataRepeater control.

An OrdersBindingSource component and an OrdersTableAdapter component are added to the Component Tray.

7. Press F5 to run the application. When you select each customer in the first DataRepeater control, the orders for that customer are displayed in
the second DataRepeater control.

https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingsource
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.textbox
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


See Also
Introduction to the DataRepeater Control
How to: Display Bound Data in a DataRepeater Control
How to: Display Unbound Controls in a DataRepeater Control
How to: Change the Layout of a DataRepeater Control
How to: Display Item Headers in a DataRepeater Control
How to: Search Data in a DataRepeater Control
How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio)
How to: Change the Appearance of a DataRepeater Control
How to: Disable Adding and Deleting DataRepeater Items
Troubleshooting the DataRepeater Control



            

Troubleshooting the DataRepeater Control (Visual Studio)
5/4/2018 • 3 minutes to read • Edit Online

DataRepeater Keyboard and Mouse Events Are Not Raised

The DataRepeater Is Partially Hidden Behind the Binding Navigator

DataRepeater1.Top = ProductsBindingNavigator.Height  

dataRepeater1.Top = productsBindingNavigator.Height;  

Controls Are Not Displayed Correctly at Run Time

private void dataRepeater1_ItemCloned(object sender, 
    Microsoft.VisualBasic.PowerPacks.DataRepeaterItemEventArgs e)
{
    ListBox Source = (ListBox)dataRepeater1.ItemTemplate.Controls["listBox1"];
    ListBox listBox1 = (ListBox)e.DataRepeaterItem.Controls["listBox1"];
    foreach (string s in Source.Items)
    {
        listBox1.Items.Add(s);
    }
}

Private Sub DataRepeater1_ItemCloned(
    ByVal sender As Object, 
    ByVal e As Microsoft.VisualBasic.PowerPacks.DataRepeaterItemEventArgs
  ) Handles DataRepeater1.ItemCloned

    Dim Source As ListBox = 
        CType(DataRepeater1.ItemTemplate.Controls.Item("ListBox1"), ListBox)
    Dim ListBox1 As ListBox = 
        CType(e.DataRepeaterItem.Controls.Item("ListBox1"), ListBox)
    For Each s As String In Source.Items
        ListBox1.Items.Add(s)
    Next
End Sub

The Selection Symbol on the Item Header Is Missing

This topic lists common issues that may occur when you are working with the DataRepeater control.

Some DataRepeater control events, such as keyboard and mouse events, are not raised. This is by design. The DataRepeater control itself is a container
for DataRepeaterItem objects and cannot be accessed at run time. The DataRepeaterItem does not expose events at design time. Therefore, clicking an
item or pressing a key when the item has focus does not raise an event.

The exception to this is when the Padding property is set to a large enough value to expose the edges of the DataRepeater control. In this case, clicking
in the exposed margin will raise mouse events.

To resolve this issue, add a Panel control to the ItemTemplate section of the DataRepeater control, and then add the rest of the controls to the Panel. You
can then add code to the Panel control's event handlers for keyboard and mouse events.

When you first add a DataRepeater control to a form and then add data-bound controls from the Data Sources window, the BindingNavigator control
may appear on top of the DataRepeater control. This is a known limitation of the Data Sources window and is consistent with the behavior of other
controls, such as the DataGridView control.

You can either move the DataRepeater lower than the BindingNavigator control at design time, or add code resembling the following in the Load  event
handler.

Some controls in a DataRepeater control may not be displayed as expected at run time. The process used to clone controls from the ItemTemplate to the
DataRepeaterItem cannot always determine all the properties of all controls. For example, if you add an unbound ListBox control to a DataRepeater
control at design time and populate its Items collection with a list of strings, the ListBox will be empty at run time. This is because the cloning process
cannot take into account the Items property.

You can fix problems such as this by restoring the missing properties in the ItemCloned event, which occurs after the default cloning is completed. The
following example demonstrates how to repair the Items collection of a ListBox control in the ItemCloned event handler.

When you change the SelectionColor property of the item header in a DataRepeater control, some color choices may cause the selection symbol to

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/troubleshooting-the-datarepeater-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.padding
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel
https://docs.microsoft.com/dotnet/api/system.windows.forms.panel
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.datagridview
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.bindingnavigator
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemtemplate.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox.items
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox.items
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemcloned.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox.items
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemcloned.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx


See Also

disappear. Changing the ItemHeaderSize property may also cause the selection symbol to disappear.

The color and size of the selection symbol cannot be changed.

If you set the SelectionColor to White, the selection symbol will not be visible when an item is first selected.

If you set the SelectionColor to Black, the selection symbol will not be visible when a control is selected, and the pencil symbol will not be visible
when a control is in edit mode.

If the ItemHeaderSize property is set to a value that is less than 11, the indicator symbols in the item header will not be displayed.

You can provide your own item header and selection symbol by using a PictureBox control and monitoring the IsCurrent property of the
DataRepeaterItem in the DrawItem event of the DataRepeater control. For more information, see IsCurrent.

Introduction to the DataRepeater Control
How to: Display Bound Data in a DataRepeater Control
How to: Display Unbound Controls in a DataRepeater Control
How to: Change the Layout of a DataRepeater Control
How to: Change the Appearance of a DataRepeater Control
How to: Display Item Headers in a DataRepeater Control
How to: Disable Adding and Deleting DataRepeater Items
How to: Search Data in a DataRepeater Control
How to: Create a Master/Detail Form by Using Two DataRepeater Controls (Visual Studio)

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.color.white
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.selectioncolor.aspx
https://docs.microsoft.com/dotnet/api/system.drawing.color.black
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.itemheadersize.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.picturebox
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.iscurrent.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.drawitem.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeateritem.iscurrent.aspx


 

Line and Shape Controls (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Reference

The Visual Basic Power Packs Line and Shape controls are graphical controls that enable you to draw horizontal, vertical, and diagonal lines, rectangles,
squares, ovals, circles, and rectangles and squares with rounded corners on a form or container.

The PowerPack controls are no longer included in Visual Studio, but you can download them from the Download Center.

Introduction to the Line and Shape Controls
Introduces and discusses the Line and Shape controls and describes the object model.

How to: Draw Lines with the LineShape Control
Demonstrates how to use the LineShape control to draw lines at design time and at run time.

How to: Draw Shapes with the OvalShape and RectangleShape Controls
Demonstrates how to use the OvalShape and RectangleShape controls to draw shapes at design time and at run time.

How to: Enable Tabbing Between Shapes
Demonstrates how to enable users to move between shapes by using the keyboard.

Microsoft.VisualBasic.PowerPacks

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/line-and-shape-controls-visual-studio.md
http://www.microsoft.com/en-us/download/details.aspx?id=25169
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.aspx


    

Introduction to the Line and Shape Controls (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

Line and Shape Controls

Object ModelObject Model

NOTENOTE

See Also

The Visual Basic Power Packs Line and Shape controls are a set of three graphical controls that enable you to draw lines and shapes on forms and
containers. The LineShape control is used to draw horizontal, vertical, and diagonal lines. The OvalShape control is used to draw circles and ovals, and
the RectangleShape control is used to draw rectangles and squares.

Line and Shape controls encapsulate many of the graphics methods that are contained in the System.Drawing namespace. This enables you to draw
lines and shapes in a single step without having to create graphics objects, pens, and brushes. Complex graphics techniques such as gradient fills can be
accomplished by just setting some properties.

Although it is also possible to draw lines and shapes by using graphics methods, there are several advantages to using the Line and Shape controls:

Graphics methods can be called only at run time. Line and Shape controls can be added to a form at design time. This enables you to see what
they look like and to position them exactly; they can also be added at run time.

Line and Shape controls are selectable at run time, providing events such as Click and OnDoubleClick. The outputs of graphics methods are not
selectable and do not provide events.

Line and Shape controls provide BringToFront and SendToBack methods that enable you to control their z-order at design time and at run time.
The z-order of graphics methods can be controlled only by changing their order of execution at run time.

Line and Shape controls are windowless controls; they have no window handles and therefore use less system resources.

Line and Shape controls derive from a base Shape class that defines their shared properties, methods, and events.

The following illustration shows the Line and Shape object hierarchy.

Line and Shape object hierarchy

The derived LineShape class contains properties, methods, and events that are unique to lines. The derived SimpleShape class is the base class for
OvalShape and RectangleShape; it contains properties, methods, and events common to all shapes. You can also derive from SimpleShape to create
your own Shape  controls.

The OvalShape and RectangleShape classes can be used to draw circles, ovals, rectangles, and rectangles with rounded corners.

When a Line or Shape control is added to a form or container, an invisible ShapeContainer object is created. The ShapeContainer acts as a canvas for
the shapes within each container control; each ShapeContainer has a corresponding ShapeCollection that enables you to iterate through the Line and
Shape controls. You can move shapes from one container to another by using cut and paste or by dragging and dropping. When the last shape is
removed from a container, the ShapeContainer is removed also.

Not all container controls support the Line and Shape controls. You cannot host a Line or Shape control on a TableLayoutPanel or a FlowLayoutPanel.

Microsoft.VisualBasic.PowerPacks
How to: Draw Lines with the LineShape Control
How to: Draw Shapes with the OvalShape and RectangleShape Controls

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/introduction-to-the-line-and-shape-controls-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://docs.microsoft.com/dotnet/api/system.drawing
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shape.click.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shape.ondoubleclick.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shape.bringtofront.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shape.sendtoback.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shapecontainer.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shapecontainer.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shapecontainer.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shapecollection.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.shapecontainer.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.tablelayoutpanel
https://docs.microsoft.com/dotnet/api/system.windows.forms.flowlayoutpanel
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.aspx


How to: Enable Tabbing Between Shapes



    

How to: Draw Lines with the LineShape Control (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

To draw a line at design timeTo draw a line at design time

To draw a line at run timeTo draw a line at run time

Imports Microsoft.VisualBasic.PowerPacks  

using Microsoft.VisualBasic.PowerPacks;  

See Also

You can use the LineShape control to draw horizontal, vertical, or diagonal lines on a form or container, both at design time and at run time.

Note Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The
Visual Studio edition that you have and the settings that you use determine these elements. For more information, see Personalize the Visual Studio
IDE.

1. Drag the LineShape control from the Visual Basic PowerPacks tab in the Toolbox drag to a form or container control.

2. Drag the sizing and move handles to size and position the line.

You can also size and position the line by changing the X1 , X2 , Y1 , and Y2  properties in the Properties window.

3. In the Properties window, optionally set additional properties such as BorderStyle  or BorderColor  to change the appearance of the line.

1. On the Project menu, click Add Reference.

2. In the Add Reference dialog box, select Microsoft.VisualBasic.PowerPacks.VS, and then click OK.

3. In the Code Editor, add an Imports  or using  statement at the top of the module:

ShapeContainer canvas = new ShapeContainer();
LineShape theLine = new LineShape();
// Set the form as the parent of the ShapeContainer.
canvas.Parent = this;
// Set the ShapeContainer as the parent of the LineShape.
theLine.Parent = canvas;
// Set the starting and ending coordinates for the line.
theLine.StartPoint = new System.Drawing.Point(0, 0);
theLine.EndPoint = new System.Drawing.Point(640, 480);

Dim canvas As New ShapeContainer
Dim theLine As New LineShape
' Set the form as the parent of the ShapeContainer.
canvas.Parent = Me
' Set the ShapeContainer as the parent of the LineShape.
theLine.Parent = canvas
' Set the starting and ending coordinates for the line.
theLine.StartPoint = New System.Drawing.Point(0, 0)
theLine.EndPoint = New System.Drawing.Point(640, 480)

4. Add the following code in an Event  procedure:

LineShape
Introduction to the Line and Shape Controls
How to: Draw Shapes with the OvalShape and RectangleShape Controls

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-draw-lines-with-the-lineshape-control-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx


    

How to: Draw Shapes with the OvalShape and RectangleShape Controls
(Visual Studio)
5/4/2018 • 5 minutes to read • Edit Online

To draw a simple shape at design timeTo draw a simple shape at design time

To draw a simple shape at run timeTo draw a simple shape at run time

Imports Microsoft.VisualBasic.PowerPacks  

using Microsoft.VisualBasic.PowerPacks;  

Customizing Shapes

You can use the OvalShape control to draw circles or ovals on a form or container, both at design time and at run time. You can use the RectangleShape
control to draw squares, rectangles, or rectangles with rounded corners on a form or container. You can also use this control to draw shapes both at
design time and at run time.

You can customize the appearance of a shape by changing the width, color, and style of the border. The background of a shape is transparent by default;
you can customize the background to display a solid color, a pattern, a gradient fill (transitioning from one color to another), or an image.

1. Drag the OvalShape or RectangleShape control from the Visual Basic PowerPacks tab (to install, see Visual Basic Power Packs Controls)in the
Toolbox to a form or container control.

2. Drag the sizing and move handles to size and position the shape.

You can also size and position the shape by changing the Size  and Position  properties in the Properties window.

To create a rectangle with rounded corners, select the CornerRadius  property in the Properties window and set it to a value that is greater than
0.

3. In the Properties window, optionally set additional properties to change the appearance of the shape.

1. On the Project menu, click Add Reference.

2. In the Add Reference dialog box, select Microsoft.VisualBasic.PowerPacks.VS, and then click OK.

3. In the Code Editor, add an Imports  or using  statement at the top of the module:

ShapeContainer canvas = new ShapeContainer();
// To draw an oval, substitute 
// OvalShape for RectangleShape.
RectangleShape theShape = new RectangleShape();
// Set the form as the parent of the ShapeContainer.
canvas.Parent = this;
// Set the ShapeContainer as the parent of the Shape.
theShape.Parent = canvas;
// Set the size of the shape.
theShape.Size = new System.Drawing.Size(200, 300);
// Set the location of the shape.
theShape.Location = new System.Drawing.Point(100, 100);
// To draw a rounded rectangle, add the following code:
theShape.CornerRadius = 12;

Dim canvas As New ShapeContainer
' To draw an oval, substitute 
' OvalShape for RectangleShape.
Dim theShape As New RectangleShape
' Set the form as the parent of the ShapeContainer.
canvas.Parent = Me
' Set the ShapeContainer as the parent of the Shape.
theShape.Parent = canvas
' Set the size of the shape.
theShape.Size = New System.Drawing.Size(200, 300)
' Set the location of the shape.
theShape.Location = New System.Drawing.Point(100, 100)
' To draw a rounded rectangle, add the following code:
theShape.CornerRadius = 12

4. Add the following code in an Event  procedure:

When you use the default settings, the OvalShape and RectangleShape controls are displayed with a solid black border that is one pixel wide and a

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-draw-shapes-with-the-ovalshape-and-rectangleshape-controls.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx


To draw a circle that has a custom borderTo draw a circle that has a custom border

To draw a circle that has a solid fillTo draw a circle that has a solid fill

To draw a circle that has a patterned fillTo draw a circle that has a patterned fill

To draw a circle that has a gradient fillTo draw a circle that has a gradient fill

To draw a circle that is filled with an imageTo draw a circle that is filled with an image

See Also

transparent background. You can change the width, style, and color of the border by setting properties. Additional properties enable you to change the
background of a shape to a solid color, a pattern, a gradient fill, or an image.

Before you change the background of a shape, you should know how several of the properties interact.

The BackColor property setting has no effect unless the BackStyle property is set to BackStyle.Opaque.

If the FillStyle property is set to FillStyle.Solid, the FillColor overrides the BackColor.

If the FillStyle property is set to a pattern value such as FillStyle.Horizontal or FillStyle.Vertical, the pattern will be displayed in the FillColor. The
background will be displayed in the BackColor, provided that the BackStyle property is set to BackStyle.Opaque.

In order to display a gradient fill, the FillStyle property must be set to FillStyle.Solid and the FillGradientStyle property must be set to a value
other than FillGradientStyle.None.

Setting the BackgroundImage property to an image overrides all other background settings.

1. Drag the OvalShape  control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. In the Properties window, in the Size  property, set Height  and Width  to equal values.

3. Set the BorderColor  property to the color that you want.

4. Set the BorderStyle  property to any value other than Solid .

5. Set the BorderWidth  to the size that you want, in pixels.

1. Drag the OvalShape  control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. In the Properties window, in the Size  property, set Height  and Width  to equal values.

3. Set the BackColor  property to the color that you want.

4. Set the BackStyle  property to Opaque .

1. Drag the OvalShape  control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. In the Properties window, in the Size  property, set Height  and Width  to equal values.

3. Set the BackColor  property to the color that you want for the background.

4. Set the BackStyle  property to Opaque .

5. Set the FillColor  property to the color that you want for the pattern.

6. Set the FillStyle  property to any value other than Transparent  or Solid .

1. Drag the OvalShape  control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. In the Properties window, in the Size  property, set Height  and Width  to equal values.

3. Set the FillColor  property to the color that you want for the starting color.

4. Set the FillGradientColor  property to the color that you want for the ending color.

5. Set the FillGradientStyle  property to a value other than None .

1. Drag the OvalShape  control from the Visual Basic PowerPacks tab in the Toolbox to a form or container control.

2. In the Properties window, in the Size  property, set Height  and Width  to equal values.

3. Select the BackgroundImage  property and click the ellipsis button (...).

4. In the Select Resource dialog box, select an image to display. If no image resources are listed, click Import to browse to the location of an
image.

5. Click OK to insert the image.

OvalShape
RectangleShape
Introduction to the Line and Shape Controls
How to: Draw Lines with the LineShape Control

https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backcolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.backstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillcolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backcolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillcolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backcolor.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.backstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.fillstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.fillgradientstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.fillgradientstyle.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.simpleshape.backgroundimage.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx


  

How to: Enable Tabbing Between Shapes (Visual Studio)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To enable tabbing among shapes

Imports Microsoft.VisualBasic.PowerPacks  

using Microsoft.VisualBasic.PowerPacks;  

private void shapes_PreviewKeyDown(Shape sender, System.Windows.Forms.PreviewKeyDownEventArgs e)
{
    Shape sh;
    // Check for the Control and Tab keys.
    if (e.KeyCode == Keys.Tab && e.Modifiers == Keys.Control)
    // Find the next shape in the order.
    {
        sh = shapeContainer1.GetNextShape(sender, true);
        // Select the next shape.
        shapeContainer1.SelectNextShape(sender, false, true);
    }
}

Private Sub Shapes_PreviewKeyDown(
    ByVal sender As Object, 
    ByVal e As System.Windows.Forms.PreviewKeyDownEventArgs
  ) Handles RectangleShape1.PreviewKeyDown, 
            RectangleShape2.PreviewKeyDown, 
            RectangleShape3.PreviewKeyDown

    Dim sh As Shape
    ' Check for the Control and Tab keys.
    If e.KeyCode = Keys.Tab And e.Modifiers = Keys.Control Then
        ' Find the next shape in the order.
        sh = ShapeContainer1.GetNextShape(sender, True)
        ' Select the next shape.
        ShapeContainer1.SelectNextShape(sender, False, True)
    End If
End Sub

private void button1_PreviewKeyDown(object sender, System.Windows.Forms.PreviewKeyDownEventArgs e)
{
    // Check for the Control and Tab keys.
    if (e.KeyCode == Keys.Tab & e.Modifiers == Keys.Control)
    // Select the first shape.
    {
        rectangleShape1.Select();
    }
}

Line and shape controls do not have TabStop  or TabIndex  properties, but you can still enable tabbing among them. In the following example, pressing
both the CTRL and the TAB keys will tab between shapes; pressing only the TAB key will tab between the buttons.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalize the Visual Studio IDE.

1. Drag three RectangleShape controls and two Button controls from the Toolbox to a form.

2. In the Code Editor, add an Imports  or using  statement at the top of the module:

3. Add the following code in an event procedure:

4. Add the following code in the Button1_PreviewKeyDown  event procedure:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/how-to-enable-tabbing-between-shapes-visual-studio.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://docs.microsoft.com/dotnet/api/system.windows.forms.button


Private Sub Button1_PreviewKeyDown(
    ByVal sender As Object, 
    ByVal e As System.Windows.Forms.PreviewKeyDownEventArgs
  ) Handles Button1.PreviewKeyDown

    ' Check for the Control and Tab keys.
    If e.KeyCode = Keys.Tab And e.Modifiers = Keys.Control Then
        ' Select the first shape.
        RectangleShape1.Select()
    End If
End Sub

See Also
How to: Draw Shapes with the OvalShape and RectangleShape Controls
How to: Draw Lines with the LineShape Control
Introduction to the Line and Shape Controls



 

Deploying applications that reference Power Packs controls (Visual
Studio)
5/4/2018 • 2 minutes to read • Edit Online

Installing the Power Packs controls as a prerequisite

NOTENOTE

See also

If you want to deploy an application that references the Power Packs controls (LineShape, OvalShape, RectangleShape, or DataRepeater), the controls
must be installed on the destination computer.

To successfully deploy an application, you must also deploy all components that are referenced by the application. The process of installing prerequisite
components is known as bootstrapping.

When Visual Studio is installed on your development computer, a Power Packs bootstrapper package is added to the Visual Studio bootstrapper
directory. This package is then available when you follow the procedures for adding prerequisites for either ClickOnce or Windows Installer
deployment.

By default, bootstrapped components are deployed from the same location as the installation package. Alternatively, you can choose to deploy the
components from a URL or file share location from which users can download them as necessary.

To install bootstrapped components, the user might need administrative or similar user permissions on the computer. For ClickOnce applications, this means that the
user will need administrative permissions to install the application, regardless of the security level specified by the application. After the application is installed, the user
can run the application without administrative permissions.

During installation, users will be prompted to install the Power Packs controls if they are not present on the destination computer.

As an alternative to bootstrapping, you can pre-deploy the Power Packs controls by using an electronic software distribution system such as Microsoft
Systems Management Server.

How to: Install Prerequisites with a ClickOnce Application
Visual Basic Power Packs Controls

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/windows-forms/deploying-applications-that-reference-power-packs-controls-visual-studio.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.lineshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.ovalshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.rectangleshape.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.datarepeater.aspx
https://docs.microsoft.com/visualstudio/deployment/how-to-install-prerequisites-with-a-clickonce-application


 

Customizing Projects and Extending My with Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

See Also

You can customize project templates to provide additional My  objects. This makes it easy for other developers to find and use your objects.

Extending the My Namespace in Visual Basic
Describes how to add custom members and values to the My  namespace in Visual Basic.

Packaging and Deploying Custom My Extensions
Describes how to publish custom My  namespace extensions by using Visual Studio templates.

Extending the Visual Basic Application Model
Describes how to specify your own extensions to the application model by overriding members of the WindowsFormsApplicationBase class.

Customizing Which Objects are Available in My
Describes how to control which My  objects are enabled by setting your project's _MYTYPE conditional-compilation constant.

Development with My
Describes which My  objects are available in different project types by default.

Overview of the Visual Basic Application Model
Describes Visual Basic's model for controlling the behavior of Windows Forms applications.

How My Depends on Project Type
Describes which My  objects are available in different project types by default.

Conditional Compilation
Discusses how the compiler uses conditional-compilation to select particular sections of code to compile and exclude other sections.

ApplicationBase
Describes the My  object that provides properties, methods, and events related to the current application.

Developing Applications with Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/customizing-extending-my/customizing-projects-and-extending-my.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase


   

 

 

Extending the My Namespace in Visual Basic
5/4/2018 • 8 minutes to read • Edit Online

Customizing Existing My Namespace Members

My.User.CurrentPrincipal = CustomPrincipal

Adding Members to My Objects

The My  namespace in Visual Basic exposes properties and methods that enable you to easily take advantage of the power of the .NET Framework. The 
My  namespace simplifies common programming problems, often reducing a difficult task to a single line of code. Additionally, the My  namespace is

fully extensible so that you can customize the behavior of My  and add new services to its hierarchy to adapt to specific application needs. This topic
discusses both how to customize existing members of the My  namespace and how to add your own custom classes to the My  namespace.

Topic Contents

Customizing Existing My Namespace Members

Adding Members to My Objects

Adding Custom Objects to the My Namespace

Adding Members to the My Namespace

Adding Events to Custom My Objects

Design Guidelines

Designing Class Libraries for My

Packaging and Deploying Extensions

The My  namespace in Visual Basic exposes frequently used information about your application, your computer, and more. For a complete list of the
objects in the My  namespace, see My Reference. You may have to customize existing members of the My  namespace so that they better match the
needs of your application. Any property of an object in the My  namespace that is not read-only can be set to a custom value.

For example, assume that you frequently use the My.User  object to access the current security context for the user running your application. However,
your company uses a custom user object to expose additional information and capabilities for users within the company. In this scenario, you can
replace the default value of the My.User.CurrentPrincipal  property with an instance of your own custom principal object, as shown in the following
example.

Setting the CurrentPrincipal  property on the My.User  object changes the identity under which the application runs. The My.User  object, in turn,
returns information about the newly specified user.

The types returned from My.Application  and My.Computer  are defined as Partial  classes. Therefore, you can extend the My.Application  and 
My.Computer  objects by creating a Partial  class named MyApplication  or MyComputer . The class cannot be a Private  class. If you specify the class as

part of the My  namespace, you can add properties and methods that will be included with the My.Application  or My.Computer  objects.

For example, the following example adds a property named DnsServerIPAddresses  to the My.Computer  object.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/customizing-extending-my/extending-the-my-namespace.md


 

  

 

Imports System.Net.NetworkInformation

Namespace My

  Partial Class MyComputer
    Friend ReadOnly Property DnsServerIPAddresses() As IPAddressCollection
      Get
        Dim dnsAddressList As IPAddressCollection = Nothing

        For Each adapter In System.Net.NetworkInformation.
          NetworkInterface.GetAllNetworkInterfaces()

          Dim adapterProperties = adapter.GetIPProperties()
          Dim dnsServers As IPAddressCollection = adapterProperties.DnsAddresses
          If dnsAddressList Is Nothing Then
            dnsAddressList = dnsServers
          Else
            dnsAddressList.Union(dnsServers)
          End If
        Next adapter

        Return dnsAddressList
      End Get
    End Property
  End Class

End Namespace

Adding Custom Objects to the My Namespace

Adding Members to the My NamespaceAdding Members to the My Namespace

Namespace My
  <HideModuleName()> 
  Module MyCustomModule

  End Module
End Namespace

Namespace My
  <HideModuleName()> 
  Module MyCustomExtensions
    Private _extension As New ThreadSafeObjectProvider(Of SampleExtension)
    Friend ReadOnly Property SampleExtension() As SampleExtension
      Get
        Return _extension.GetInstance()
      End Get
    End Property
  End Module
End Namespace

Adding Events to Custom My Objects

Although the My  namespace provides solutions for many common programming tasks, you may encounter tasks that the My  namespace does not
address. For example, your application might access custom directory services for user data, or your application might use assemblies that are not
installed by default with Visual Basic. You can extend the My  namespace to include custom solutions to common tasks that are specific to your
environment. The My  namespace can easily be extended to add new members to meet growing application needs. Additionally, you can deploy your 
My  namespace extensions to other developers as a Visual Basic template.

Because My  is a namespace like any other namespace, you can add top-level properties to it by just adding a module and specifying a Namespace  of 
My . Annotate the module with the HideModuleName  attribute as shown in the following example. The HideModuleName  attribute ensures that IntelliSense

will not display the module name when it displays the members of the My  namespace.

To add members to the My  namespace, add properties as needed to the module. For each property added to the My  namespace, add a private field of
type ThreadSafeObjectProvider(Of T) , where the type is the type returned by your custom property. This field is used to create thread-safe object
instances to be returned by the property by calling the GetInstance  method. As a result, each thread that is accessing the extended property receives its
own instance of the returned type. The following example adds a property named SampleExtension  that is of type SampleExtension  to the My

namespace:

You can use the My.Application  object to expose events for your custom My  objects by extending the MyApplication  partial class in the My

namespace. For Windows-based projects, you can double-click the My Project node in for your project in Solution Explorer. In the Visual Basic
Project Designer, click the Application  tab and then click the View Application Events  button. A new file that is named ApplicationEvents.vb will be
created. It contains the following code for extending the MyApplication  class.



 

 

Namespace My
  Partial Friend Class MyApplication
  End Class
End Namespace

Namespace My

  Partial Friend Class MyApplication

    ' Custom event handler for Load event.
    Private _sampleExtensionHandlers As EventHandler

    Public Custom Event SampleExtensionLoad As EventHandler
      AddHandler(ByVal value As EventHandler)
        ' Warning: This code is not thread-safe. Do not call
        ' this code from multiple concurrent threads.
        If _sampleExtensionHandlers Is Nothing Then
          AddHandler My.SampleExtension.Load, AddressOf OnSampleExtensionLoad
        End If
        _sampleExtensionHandlers = 
            System.Delegate.Combine(_sampleExtensionHandlers, value)
      End AddHandler
      RemoveHandler(ByVal value As EventHandler)
        _sampleExtensionHandlers = 
          System.Delegate.Remove(_sampleExtensionHandlers, value)
      End RemoveHandler
      RaiseEvent(ByVal sender As Object, ByVal e As EventArgs)
        If _sampleExtensionHandlers IsNot Nothing Then
          _sampleExtensionHandlers.Invoke(sender, e)
        End If
      End RaiseEvent
    End Event

    ' Method called by custom event handler to raise user-defined
    ' event handlers.
    <Global.System.ComponentModel.EditorBrowsable( 
         Global.System.ComponentModel.EditorBrowsableState.Advanced)> 
      Protected Overridable Sub OnSampleExtensionLoad( 
                ByVal sender As Object, ByVal e As EventArgs)
      RaiseEvent SampleExtensionLoad(sender, e)
    End Sub

    ' Event handler to call My.SampleExtensionLoad event.
    Private Sub MyApplication_SampleExtensionLoad( 
        ByVal sender As Object, ByVal e As System.EventArgs
        ) Handles Me.SampleExtensionLoad

    End Sub
  End Class
End Namespace

Design Guidelines

Designing Class Libraries for My

You can add event handlers for your custom My  objects by adding custom event handlers to the MyApplication  class. Custom events enable you to add
code that will execute when an event handler is added, removed, or the event is raised. Note that the AddHandler  code for a custom event runs only if
code is added by a user to handle the event. For example, consider that the SampleExtension  object from the previous section has a Load  event that you
want to add a custom event handler for. The following code example shows a custom event handler named SampleExtensionLoad  that will be invoked
when the My.SampleExtension.Load  event occurs. When code is added to handle the new My.SampleExtensionLoad  event, the AddHandler  part of this
custom event code is executed. The MyApplication_SampleExtensionLoad  method is included in the code example to show an example of an event handler
that handles the My.SampleExtensionLoad  event. Note that the SampleExtensionLoad  event will be available when you select the My Application Events
option in the left drop-down list above the Code Editor when you are editing the ApplicationEvents.vb file.

When you develop extensions to the My  namespace, use the following guidelines to help minimize the maintenance costs of your extension
components.

Include only the extension logic. The logic included in the My  namespace extension should include only the code that is needed to expose the
required functionality in the My  namespace. Because your extension will reside in user projects as source code, updating the extension
component incurs a high maintenance cost and should be avoided if possible.

Minimize project assumptions. When you create your extensions of the My  namespace, do not assume a set of references, project-level
imports, or specific compiler settings (for example, Option Strict  off). Instead, minimize dependencies and fully qualify all type references by
using the Global  keyword. Also, ensure that the extension compiles with Option Strict  on to minimize errors in the extension.

Isolate the extension code. Placing the code in a single file makes your extension easily deployable as a Visual Studio item template. For more
information, see "Packaging and Deploying Extensions" later in this topic. Placing all the My  namespace extension code in a single file or a
separate folder in a project will also help users locate the My  namespace extension.



Packaging and Deploying Extensions

See Also

As is the case with most object models, some design patterns work well in the My  namespace and others do not. When designing an extension to the 
My  namespace, consider the following principles:

Stateless methods. Methods in the My  namespace should provide a complete solution to a specific task. Ensure that the parameter values that
are passed to the method provide all the input required to complete the particular task. Avoid creating methods that rely on prior state, such as
open connections to resources.

Global instances. The only state that is maintained in the My  namespace is global to the project. For example, My.Application.Info

encapsulates state that is shared throughout the application.

Simple parameter types. Keep things simple by avoiding complex parameter types. Instead, create methods that either take no parameter input
or that take simple input types such as strings, primitive types, and so on.

Factory methods. Some types are necessarily difficult to instantiate. Providing factory methods as extensions to the My  namespace enables
you to more easily discover and consume types that fall into this category. An example of a factory method that works well is 
My.Computer.FileSystem.OpenTextFileReader . There are several stream types available in the .NET Framework. By specifying text files specifically,

the OpenTextFileReader  helps the user understand which stream to use.

These guidelines do not preclude general design principles for class libraries. Rather, they are recommendations that are optimized for developers who
are using Visual Basic and the My  namespace. For general design principles for creating class libraries, see Framework Design Guidelines.

You can include My  namespace extensions in a Visual Studio project template, or you can package your extensions and deploy them as a Visual Studio
item template. When you package your My  namespace extensions as a Visual Studio item template, you can take advantage of additional capabilities
provided by Visual Basic. These capabilities enable you to include an extension when a project references a particular assembly, or enable users to
explicitly add your My  namespace extension by using the My Extensions page of the Visual Basic Project Designer.

For details about how to deploy My  namespace extensions, see Packaging and Deploying Custom My Extensions.

Packaging and Deploying Custom My Extensions
Extending the Visual Basic Application Model
Customizing Which Objects are Available in My
My Extensions Page, Project Designer
Application Page, Project Designer (Visual Basic)
Partial

https://docs.microsoft.com/visualstudio/ide/reference/my-extensions-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


   

Packaging and deploying custom My extensions (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Create a My namespace extension

Export a My namespace extension as an item template

NOTENOTE

Customize the item template

Add the CustomData fileAdd the CustomData file

<VBMyExtensionTemplate   
    ID="Microsoft.VisualBasic.Samples.MyExtensions.MyPrinterInfo"   
    Version="1.0.0.0"  
    AssemblyFullName="Microsoft.VisualBasic.PowerPacks.vs"  
/>  

ATTRIBUTE DESCRIPTION

ID Required. A unique identifier for the extension. If the extension that has this ID has
already been added to the project, the user will not be prompted to add it again.

Version Required. A version number for the item template.

Visual Basic provides an easy way for you to deploy your custom My  namespace extensions by using Visual Studio templates. If you are creating a
project template for which your My  extensions are an integral part of the new project type, you can just include your custom My  extension code with
the project when you export the template. For more information about exporting project templates, see How to: Create Project Templates.

If your custom My  extension is in a single code file, you can export the file as an item template that users can add to any type of Visual Basic project.
You can then customize the item template to enable additional capabilities and behavior for your custom My  extension in a Visual Basic project. Those
capabilities include the following:

Allowing users to manage your custom My  extension from the My Extensions page of the Visual Basic Project Designer.

Automatically adding your custom My  extension when a reference to a specified assembly is added to a project.

Hiding the My  extension item template in the Add Item dialog box so that it is not included in the list of project items.

This topic discusses how to package a custom My  extension as a hidden item template that can be managed from the My Extensions page of the
Visual Basic Project Designer. The custom My  extension can also be added automatically when a reference to a specified assembly is added to a project.

The first step in creating a deployment package for a custom My  extension is to create the extension as a single code file. For details and guidance
about how to create a custom My  extension, see Extending the My Namespace in Visual Basic.

After you have a code file that includes your My  namespace extension, you can export the code file as a Visual Studio item template. For instructions on
how to export a file as a Visual Studio item template, see How to: Create Item Templates.

If your My  namespace extension has a dependency on a particular assembly, you can customize your item template to automatically install your My  namespace
extension when a reference to that assembly is added. As a result, you will want to exclude that assembly reference when you export the code file as a Visual Studio
item template.

You can enable your item template to be managed from the My Extensions page of the Visual Basic Project Designer. You can also enable the item
template to be added automatically when a reference to a specified assembly is added to a project. To enable these customizations, you will add a new
file, called the CustomData file, to your template, and then add a new element to the XML in your .vstemplate file.

The CustomData file is a text file that has a file name extension of .CustomData (the file name can be set to any value meaningful to your template) and
that contains XML. The XML in the CustomData file instructs Visual Basic to include your My  extension when users use the My Extensions page of the
Visual Basic Project Designer. You can optionally add the < AssemblyFullName>  attribute to your CustomData file XML. This instructs Visual Basic to
automatically install your custom My  extension when a reference to a particular assembly is added to the project. You can use any text editor or XML
editor to create the CustomData file, and then add it to your item template's compressed folder (.zip file).

For example, the following XML shows the contents of a CustomData file that will add the template item to the My Extensions folder of a Visual Basic
project when a reference to the Microsoft.VisualBasic.PowerPacks.Vs.dll assembly is added to the project.

The CustomData file contains a < VBMyExtensionTemplate>  element that has attributes as listed in the following table.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/customizing-extending-my/packaging-and-deploying-custom-my-extensions.md
https://docs.microsoft.com/visualstudio/ide/how-to-create-project-templates
https://docs.microsoft.com/visualstudio/ide/how-to-create-item-templates


AssemblyFullName Optional. An assembly name. When a reference to this assembly is added to the
project, the user will be prompted to add the My  extension from this item
template.

ATTRIBUTE DESCRIPTION

Add the <CustomDataSignature> element to the .vstemplate fileAdd the <CustomDataSignature> element to the .vstemplate file

<CustomDataSignature>Microsoft.VisualBasic.MyExtension</CustomDataSignature>  

<VSTemplate Version="2.0.0" xmlns="http://schemas.microsoft.com/developer/vstemplate/2005" Type="Item">  
  <TemplateData>  
    <DefaultName>MyCustomExtensionModule.vb</DefaultName>  
    <Name>MyPrinterInfo</Name>  
    <Description>Custom My Extensions Item Template</Description>  
    <ProjectType>VisualBasic</ProjectType>  
    <SortOrder>10</SortOrder>  
    <Icon>__TemplateIcon.ico</Icon>  
    <CustomDataSignature      >Microsoft.VisualBasic.MyExtension</CustomDataSignature>  
  </TemplateData>  
  <TemplateContent>  
    <References />  
    <ProjectItem SubType="Code"   
                 TargetFileName="$fileinputname$.vb"  
                 ReplaceParameters="true"  
     >MyCustomExtensionModule.vb</ProjectItem>  
  </TemplateContent>  
</VSTemplate>  

Install the template

See also

To identify your Visual Studio item template as a My  namespace extension, you must also modify the .vstemplate file for your item template. You must
add a <CustomDataSignature>  element to the <TemplateData>  element. The <CustomDataSignature>  element must contain the text 
Microsoft.VisualBasic.MyExtension , as shown in the following example.

You cannot modify files in a compressed folder (.zip file) directly. You must copy the .vstemplate file from the compressed folder, modify it, and then
replace the .vstemplate file in the compressed folder with your updated copy.

The following example shows the contents of a .vstemplate file that has the <CustomDataSignature>  element added.

To install the template, you can copy the compressed folder (.zip file) to the Visual Basic item templates folder (for example, My Documents\Visual
Studio 2008\Templates\Item Templates\Visual Basic). Alternatively, you can publish the template as a Visual Studio Installer (.vsi) file.

Extending the My Namespace in Visual Basic
Extending the Visual Basic Application Model
Customizing Which Objects are Available in My
My Extensions Page, Project Designer

https://docs.microsoft.com/visualstudio/ide/reference/my-extensions-page-project-designer-visual-basic


    

Extending the Visual Basic Application Model
5/4/2018 • 4 minutes to read • Edit Online

Visual Overview of the Application Model

Overriding the Base Methods

You can add functionality to the application model by overriding the Overridable  members of the WindowsFormsApplicationBase class. This technique
allows you to customize the behavior of the application model and add calls to your own methods as the application starts up and shuts down.

This section visually presents the sequence of function calls in the Visual Basic Application Model. The next section describes the purpose of each
function in detail.

The following graphic shows the application model call sequence in a normal Visual Basic Windows Forms application. The sequence starts when the 
Sub Main  procedure calls the Run method.

The Visual Basic Application Model also provides the StartupNextInstance and UnhandledException events. The following graphics show the
mechanism for raising these events.

The Run method defines the order in which the Application  methods run. By default, the Sub Main  procedure for a Windows Forms application calls
the Run method.

If the application is a normal application (multiple-instance application), or the first instance of a single-instance application, the Run method executes
the Overridable  methods in the following order :

1. OnInitialize. By default, this method sets the visual styles, text display styles, and current principal for the main application thread (if the
application uses Windows authentication), and calls ShowSplashScreen  if neither /nosplash  nor -nosplash  is used as a command-line argument.

The application startup sequence is canceled if this function returns False . This can be useful if there are circumstances in which the application
should not run.

The OnInitialize method calls the following methods:

a. ShowSplashScreen. Determines if the application has a splash screen defined and if it does, displays the splash screen on a separate
thread.

The ShowSplashScreen method contains the code that displays the splash screen for at least the number of milliseconds specified by the
MinimumSplashScreenDisplayTime property. To use this functionality, you must add the splash screen to your application using the
Project Designer (which sets the My.Application.MinimumSplashScreenDisplayTime  property to two seconds), or set the 
My.Application.MinimumSplashScreenDisplayTime  property in a method that overrides the OnInitialize or OnCreateSplashScreen method.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/customizing-extending-my/extending-the-visual-basic-application-model.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.run
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.run
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.run
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.run
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oninitialize
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oninitialize
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.showsplashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.showsplashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.minimumsplashscreendisplaytime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oninitialize
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatesplashscreen


Configuring the Application

PROPERTY DETERMINES
SETTING IN THE APPLICATION PANE OF THE PROJECT
DESIGNER

IsSingleInstance Whether the application runs as a single-instance or
multiple-instance application.

Make single instance application check box

EnableVisualStyles If the application will use visual styles that match
Windows XP.

Enable XP visual styles check box

SaveMySettingsOnExit If application automatically saves application's user-
settings changes when the application exits.

Save My.Settings on Shutdown check box

ShutdownStyle What causes the application to terminate, such as
when the startup form closes or when the last form
closes.

Shutdown mode list

See Also

For more information, see MinimumSplashScreenDisplayTime.

b. OnCreateSplashScreen. Allows a designer to emit code that initializes the splash screen.

By default, this method does nothing. If you select a splash screen for your application in the Visual Basic Project Designer, the designer
overrides the OnCreateSplashScreen method with a method that sets the SplashScreen property to a new instance of the splash-screen
form.

2. OnStartup. Provides an extensibility point for raising the Startup  event. The application startup sequence stops if this function returns False .

By default, this method raises the Startup event. If the event handler sets the Cancel property of the event argument to True , the method returns
False  to cancel the application startup.

3. OnRun. Provides the starting point for when the main application is ready to start running, after the initialization is done.

By default, before it enters the Windows Forms message loop, this method calls the OnCreateMainForm  (to create the application's main form) and
HideSplashScreen  (to close the splash screen) methods:

a. OnCreateMainForm. Provides a way for a designer to emit code that initializes the main form.

By default, this method does nothing. However, when you select a main form for your application in the Visual Basic Project Designer,
the designer overrides the OnCreateMainForm method with a method that sets the MainForm property to a new instance of the main
form.

b. HideSplashScreen. If application has a splash screen defined and it is open, this method closes the splash screen.

By default, this method closes the splash screen.

4. OnStartupNextInstance. Provides a way to customize how a single-instance application behaves when another instance of the application starts.

By default, this method raises the StartupNextInstance event.

5. OnShutdown. Provides an extensibility point for raising the Shutdown  event. This method does not run if an unhandled exception occurs in the
main application.

By default, this method raises the Shutdown event.

6. OnUnhandledException. Executed if an unhandled exception occurs in any of the above listed methods.

By default, this method raises the UnhandledException event as long as a debugger is not attached and the application is handling the 
UnhandledException  event.

If the application is a single-instance application, and the application is already running, the subsequent instance of the application calls the
OnStartupNextInstance method on the original instance of the application, and then exits.

The OnStartupNextInstance(StartupNextInstanceEventArgs) constructor calls the UseCompatibleTextRendering property to determine which text
rendering engine to use for the application's forms. By default, the UseCompatibleTextRendering property returns False , indicating that the GDI text
rendering engine be used, which is the default in Visual Basic 2005. You can override the UseCompatibleTextRendering property to return True , which
indicates that the GDI+ text rendering engine be used, which is the default in Visual Basic .NET 2002 and Visual Basic .NET 2003.

As a part of the Visual Basic Application model, the UseCompatibleTextRendering class provides protected properties that configure the application.
These properties should be set in the constructor of the implementing class.

In a default Windows Forms project, the Project Designer creates code to set the properties with the designer settings. The properties are used only
when the application is starting; setting them after the application starts has no effect.

ApplicationBase

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.minimumsplashscreendisplaytime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatesplashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatesplashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.splashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onstartup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startup
https://docs.microsoft.com/dotnet/api/system.componentmodel.canceleventargs.cancel#System_ComponentModel_CancelEventArgs_Cancel
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onrun
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatemainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatemainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.mainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.hidesplashscreen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onstartupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onshutdown
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.shutdown
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onunhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onstartupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.onstartupnextinstance#Microsoft_VisualBasic_ApplicationServices_WindowsFormsApplicationBase_OnStartupNextInstance_Microsoft_VisualBasic_ApplicationServices_StartupNextInstanceEventArgs_
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.usecompatibletextrendering
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.usecompatibletextrendering
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.usecompatibletextrendering
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.usecompatibletextrendering#Microsoft_VisualBasic_ApplicationServices_WindowsFormsApplicationBase_UseCompatibleTextRendering
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.issingleinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.enablevisualstyles
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.savemysettingsonexit
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.shutdownstyle
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase


Startup
StartupNextInstance
UnhandledException
Shutdown
NetworkAvailabilityChanged
NetworkAvailabilityChanged
Overview of the Visual Basic Application Model
Application Page, Project Designer (Visual Basic)

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.startupnextinstance
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.unhandledexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.shutdown
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.networkavailabilitychanged
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.networkavailabilitychanged
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


     

Customizing Which Objects are Available in My (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Predefined _MYTYPE Values

/define:_MYTYPE=\"WindowsForms\"  

PROJECT TYPE _MYTYPE VALUE

Class Library "Windows"

Console Application "Console"

Web "Web"

Web Control Library "WebControl"

Windows Application "WindowsForms"

Windows Application, when starting with custom Sub Main "WindowsFormsWithCustomSubMain"

Windows Control Library "Windows"

Windows Service "Console"

Empty "Empty"

NOTENOTE

Dependent _MY Compilation Constants

_MYTYPE _MYAPPLICATIONTYPE _MYCOMPUTERTYPE _MYFORMS _MYUSERTYPE _MYWEBSERVICES

"Console" "Console" "Windows" Undefined "Windows" TRUE

"Custom" Undefined Undefined Undefined Undefined Undefined

"Empty" Undefined Undefined Undefined Undefined Undefined

"Web" Undefined "Web" FALSE "Web" FALSE

"WebControl" Undefined "Web" FALSE "Web" TRUE

"Windows" or "" "Windows" "Windows" Undefined "Windows" TRUE

"WindowsForms" "WindowsForms" "Windows" TRUE "Windows" TRUE

"WindowsFormsWithCus
tomSubMain"

"Console" "Windows" TRUE "Windows" TRUE

This topic describes how you can control which My  objects are enabled by setting your project's _MYTYPE  conditional-compilation constant. The Visual
Studio Integrated Development Environment (IDE) keeps the _MYTYPE  conditional-compilation constant for a project in sync with the project's type.

You must use the /define  compiler option to set the _MYTYPE  conditional-compilation constant. When specifying your own value for the _MYTYPE

constant, you must enclose the string value in backslash/quotation mark (\") sequences. For example, you could use:

This table shows what the _MYTYPE  conditional-compilation constant is set to for several project types.

All conditional-compilation string comparisons are case-sensitive, regardless of how the Option Compare  statement is set.

The _MYTYPE  conditional-compilation constant, in turn, controls the values of several other _MY  compilation constants:

By default, undefined conditional-compilation constants resolve to FALSE . You can specify values for the undefined constants when compiling your
project to override the default behavior.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/developing-apps/customizing-extending-my/customizing-which-objects-are-available-in-my.md


NOTENOTE

CONSTANT MEANING

_MYAPPLICATIONTYPE Enables My.Application , if the constant is "Console," Windows," or
"WindowsForms":

- The "Console" version derives from ConsoleApplicationBase. and has fewer
members than the "Windows" version.
- The "Windows" version derives from ApplicationBase.and has fewer members
than the "WindowsForms" version.
- The "WindowsForms" version of My.Application  derives from
WindowsFormsApplicationBase. If the TARGET  constant is defined to be "winexe",
then the class includes a Sub Main  method.

_MYCOMPUTERTYPE Enables My.Computer , if the constant is "Web" or "Windows":

- The "Web" version derives from ServerComputer, and has fewer members than
the "Windows" version.
- The "Windows" version of My.Computer  derives from Computer.

_MYFORMS Enables My.Forms , if the constant is TRUE .

_MYUSERTYPE Enables My.User , if the constant is "Web" or "Windows":

- The "Web" version of My.User  is associated with the user identity of the current
HTTP request.
- The "Windows" version of My.User  is associated with the thread's current
principal.

_MYWEBSERVICES Enables My.WebServices , if the constant is TRUE .

_MYTYPE Enables My.Log , My.Request , and My.Response , if the constant is "Web".

See Also

When _MYTYPE  is set to "Custom", the project contains the My  namespace, but it contains no objects. However, setting _MYTYPE  to "Empty" prevents the compiler
from adding the My  namespace and its objects.

This table describes the effects of the predefined values of the _MY  compilation constants.

ApplicationBase
Computer
Log
User
How My Depends on Project Type
Conditional Compilation
/define (Visual Basic)
My.Forms Object
My.Request Object
My.Response Object
My.WebServices Object

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.consoleapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.servercomputer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


   

Programming Concepts (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section
TITLE DESCRIPTION

Assemblies and the Global Assembly Cache (Visual Basic) Describes how to create and use assemblies.

Asynchronous Programming with Async and Await (Visual Basic) Describes how to write asynchronous solutions by using Async and Await
keywords. Includes a walkthrough.

Attributes overview (Visual Basic) Discusses how to provide additional information about programming elements
such as types, fields, methods, and properties by using attributes.

Caller Information (Visual Basic) Describes how to obtain information about the caller of a method. This information
includes the file path and the line number of the source code and the member
name of the caller.

Collections (Visual Basic) Describes some of the types of collections provided by the .NET Framework.
Demonstrates how to use simple collections and collections of key/value pairs.

Covariance and Contravariance (Visual Basic) Shows how to enable implicit conversion of generic type parameters in interfaces
and delegates.

Expression Trees (Visual Basic) Explains how you can use expression trees to enable dynamic modification of
executable code.

Iterators (Visual Basic) Describes iterators, which are used to step through collections and return elements
one at a time.

Language-Integrated Query (LINQ) (Visual Basic) Discusses the powerful query capabilities in the language syntax of Visual Basic,
and themodel for querying relational databases, XML documents, datasets, and in-
memory collections.

Object-Oriented Programming (Visual Basic) Describes common object-oriented concepts, including encapsulation, inheritance,
and polymorphism.

Reflection (Visual Basic) Explains how to use reflection to dynamically create an instance of a type, bind the
type to an existing object, or get the type from an existing object and invoke its
methods or access its fields and properties.

Serialization (Visual Basic) Describes key concepts in binary, XML, and SOAP serialization.

Threading (Visual Basic) Provides an overview of the .NET threading model and shows how to write code
that performs multiple tasks at the same time to improve the performance and
responsiveness of your applications.

Related Sections

Performance Tips Discusses several basic rules that may help you increase the performance of your
application.

This section explains programming concepts in the Visual Basic language.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/caller-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/collections
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/en-us/dotnet/framework/performance/performance-tips


           

Assemblies and the Global Assembly Cache (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Assembly Manifest

Adding a Reference to an Assembly

Creating an Assembly

NOTENOTE

See Also

Assemblies form the fundamental unit of deployment, version control, reuse, activation scoping, and security permissions for a .NET-based application.
Assemblies take the form of an executable (.exe) file or dynamic link library (.dll) file, and are the building blocks of the .NET Framework. They provide
the common language runtime with the information it needs to be aware of type implementations. You can think of an assembly as a collection of types
and resources that form a logical unit of functionality and are built to work together.

Assemblies can contain one or more modules. For example, larger projects may be planned in such a way that several individual developers work on
separate modules, all coming together to create a single assembly. For more information about modules, see the topic How to: Build a Multifile
Assembly.

Assemblies have the following properties:

Assemblies are implemented as .exe or .dll files.

You can share an assembly between applications by putting it in the global assembly cache. Assemblies must be strong-named before they can
be included in the global assembly cache. For more information, see Strong-Named Assemblies.

Assemblies are only loaded into memory if they are required. If they are not used, they are not loaded. This means that assemblies can be an
efficient way to manage resources in larger projects.

You can programmatically obtain information about an assembly by using reflection. For more information, see Reflection (Visual Basic).

If you want to load an assembly only to inspect it, use a method such as ReflectionOnlyLoadFrom.

Within every assembly is an assembly manifest. Similar to a table of contents, the assembly manifest contains the following:

The assembly's identity (its name and version).

A file table describing all the other files that make up the assembly, for example, any other assemblies you created that your .exe or .dll file relies
on, or even bitmap or Readme files.

An assembly reference list, which is a list of all external dependencies—.dlls or other files your application needs that may have been created by
someone else. Assembly references contain references to both global and private objects. Global objects reside in the global assembly cache, an
area available to other applications, somewhat like the System32 directory. The Microsoft.VisualBasic namespace is an example of an assembly
in the global assembly cache. Private objects must be in a directory at either the same level as or below the directory in which your application is
installed.

Because assemblies contain information about content, versioning, and dependencies, the applications you create with Visual Basic do not rely on
Windows registry values to function properly. Assemblies reduce .dll conflicts and make your applications more reliable and easier to deploy. In many
cases, you can install a .NET-based application simply by copying its files to the target computer.

For more information see Assembly Manifest.

To use an assembly, you must add a reference to it. Next, you use the Imports statement to choose the namespace of the items you want to use. Once an
assembly is referenced and imported, all the accessible classes, properties, methods, and other members of its namespaces are available to your
application as if their code were part of your source file.

Compile your application by building it from the command line using the command-line compiler. For details about building assemblies from the
command line, see Building from the Command Line.

To build an assembly in Visual Studio, on the Build menu choose Build.

Assemblies in the Common Language Runtime
Friend Assemblies (Visual Basic)
How to: Share an Assembly with Other Applications (Visual Basic)
How to: Load and Unload Assemblies (Visual Basic)
How to: Determine If a File Is an Assembly (Visual Basic)
How to: Create and Use Assemblies Using the Command Line (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/assemblies-gac/index.md
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-build-a-multifile-assembly
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/strong-named-assemblies
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.reflectiononlyloadfrom
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assembly-manifest
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/friend-assemblies
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/how-to-share-an-assembly-with-other-applications
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/how-to-load-and-unload-assemblies
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/how-to-determine-if-a-file-is-an-assembly
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/how-to-create-and-use-assemblies-using-the-command-line


Walkthrough: Embedding Types from Managed Assemblies in Visual Studio (Visual Basic)
Walkthrough: Embedding Type Information from Microsoft Office Assemblies in Visual Studio (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/walkthrough-embedding-types-from-managed-assemblies-in-vs
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/walkthrough-embedding-type-information-from-microsoft-office-assemblies-in-vs


          

Asynchronous Programming with Async and Await (Visual Basic)
6/4/2018 • 16 minutes to read • Edit Online

Async Improves Responsiveness

APPLICATION AREA SUPPORTING APIS THAT CONTAIN ASYNC METHODS

Web access HttpClient, SyndicationClient

Working with files StorageFile, StreamWriter, StreamReader, XmlReader

Working with images MediaCapture, BitmapEncoder, BitmapDecoder

WCF programming Synchronous and Asynchronous Operations

Async Methods Are Easier to Write

You can avoid performance bottlenecks and enhance the overall responsiveness of your application by using asynchronous programming. However,
traditional techniques for writing asynchronous applications can be complicated, making them difficult to write, debug, and maintain.

Visual Studio 2012 introduced a simplified approach, async programming, that leverages asynchronous support in the .NET Framework 4.5 and higher
as well as in the Windows Runtime. The compiler does the difficult work that the developer used to do, and your application retains a logical structure
that resembles synchronous code. As a result, you get all the advantages of asynchronous programming with a fraction of the effort.

This topic provides an overview of when and how to use async programming and includes links to support topics that contain details and examples.

Asynchrony is essential for activities that are potentially blocking, such as when your application accesses the web. Access to a web resource sometimes
is slow or delayed. If such an activity is blocked within a synchronous process, the entire application must wait. In an asynchronous process, the
application can continue with other work that doesn't depend on the web resource until the potentially blocking task finishes.

The following table shows typical areas where asynchronous programming improves responsiveness. The listed APIs from the .NET Framework 4.5 and
the Windows Runtime contain methods that support async programming.

Asynchrony proves especially valuable for applications that access the UI thread because all UI-related activity usually shares one thread. If any process
is blocked in a synchronous application, all are blocked. Your application stops responding, and you might conclude that it has failed when instead it's
just waiting.

When you use asynchronous methods, the application continues to respond to the UI. You can resize or minimize a window, for example, or you can
close the application if you don't want to wait for it to finish.

The async-based approach adds the equivalent of an automatic transmission to the list of options that you can choose from when designing
asynchronous operations. That is, you get all the benefits of traditional asynchronous programming but with much less effort from the developer.

The Async and Await keywords in Visual Basic are the heart of async programming. By using those two keywords, you can use resources in the .NET
Framework or the Windows Runtime to create an asynchronous method almost as easily as you create a synchronous method. Asynchronous methods
that you define by using Async  and Await  are referred to as async methods.

The following example shows an async method. Almost everything in the code should look completely familiar to you. The comments call out the
features that you add to create the asynchrony.

You can find a complete Windows Presentation Foundation (WPF) example file at the end of this topic, and you can download the sample from Async
Sample: Example from "Asynchronous Programming with Async and Await".

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/async/index.md
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/uwp/api/windows.web.syndication.syndicationclient
https://docs.microsoft.com/uwp/api/windows.storage.storagefile
https://docs.microsoft.com/dotnet/api/system.io.streamwriter
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.xml.xmlreader
https://docs.microsoft.com/uwp/api/windows.media.capture.mediacapture
https://docs.microsoft.com/uwp/api/windows.graphics.imaging.bitmapencoder
https://docs.microsoft.com/uwp/api/windows.graphics.imaging.bitmapdecoder
https://docs.microsoft.com/en-us/dotnet/framework/wcf/synchronous-and-asynchronous-operations
https://code.msdn.microsoft.com/Async-Sample-Example-from-9b9f505c


' Three things to note in the signature:  
'  - The method has an Async modifier.   
'  - The return type is Task or Task(Of T). (See "Return Types" section.)  
'    Here, it is Task(Of Integer) because the return statement returns an integer.  
'  - The method name ends in "Async."  
Async Function AccessTheWebAsync() As Task(Of Integer)  

    ' You need to add a reference to System.Net.Http to declare client.  
    Dim client As HttpClient = New HttpClient()  

    ' GetStringAsync returns a Task(Of String). That means that when you await the  
    ' task you'll get a string (urlContents).  
    Dim getStringTask As Task(Of String) = client.GetStringAsync("http://msdn.microsoft.com")  

    ' You can do work here that doesn't rely on the string from GetStringAsync.  
    DoIndependentWork()  

    ' The Await operator suspends AccessTheWebAsync.  
    '  - AccessTheWebAsync can't continue until getStringTask is complete.  
    '  - Meanwhile, control returns to the caller of AccessTheWebAsync.  
    '  - Control resumes here when getStringTask is complete.   
    '  - The Await operator then retrieves the string result from getStringTask.  
    Dim urlContents As String = Await getStringTask  

    ' The return statement specifies an integer result.  
    ' Any methods that are awaiting AccessTheWebAsync retrieve the length value.  
    Return urlContents.Length  
End Function  

Dim urlContents As String = Await client.GetStringAsync()  

What Happens in an Async Method

If AccessTheWebAsync  doesn't have any work that it can do between calling GetStringAsync  and awaiting its completion, you can simplify your code by
calling and awaiting in the following single statement.

The following characteristics summarize what makes the previous example an async method.

The method signature includes an Async  modifier.

The name of an async method, by convention, ends with an "Async" suffix.

The return type is one of the following types:

Task<TResult> if your method has a return statement in which the operand has type TResult.

Task if your method has no return statement or has a return statement with no operand.

Sub if you're writing an async event handler.

For more information, see "Return Types and Parameters" later in this topic.

The method usually includes at least one await expression, which marks a point where the method can't continue until the awaited asynchronous
operation is complete. In the meantime, the method is suspended, and control returns to the method's caller. The next section of this topic
illustrates what happens at the suspension point.

In async methods, you use the provided keywords and types to indicate what you want to do, and the compiler does the rest, including keeping track of
what must happen when control returns to an await point in a suspended method. Some routine processes, such as loops and exception handling, can
be difficult to handle in traditional asynchronous code. In an async method, you write these elements much as you would in a synchronous solution, and
the problem is solved.

For more information about asynchrony in previous versions of the .NET Framework, see TPL and Traditional .NET Framework Asynchronous
Programming.

The most important thing to understand in asynchronous programming is how the control flow moves from method to method. The following diagram
leads you through the process.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/sub-procedures
http://msdn.microsoft.com/library/e7b31170-a156-433f-9f26-b1fc7cd1776f


The numbers in the diagram correspond to the following steps.

NOTENOTE

1. An event handler calls and awaits the AccessTheWebAsync  async method.

2. AccessTheWebAsync  creates an HttpClient instance and calls the GetStringAsync asynchronous method to download the contents of a website as a
string.

3. Something happens in GetStringAsync  that suspends its progress. Perhaps it must wait for a website to download or some other blocking
activity. To avoid blocking resources, GetStringAsync  yields control to its caller, AccessTheWebAsync .

GetStringAsync  returns a Task<TResult> where TResult is a string, and AccessTheWebAsync  assigns the task to the getStringTask  variable. The
task represents the ongoing process for the call to GetStringAsync , with a commitment to produce an actual string value when the work is
complete.

4. Because getStringTask  hasn't been awaited yet, AccessTheWebAsync  can continue with other work that doesn't depend on the final result from 
GetStringAsync . That work is represented by a call to the synchronous method DoIndependentWork .

5. DoIndependentWork  is a synchronous method that does its work and returns to its caller.

6. AccessTheWebAsync  has run out of work that it can do without a result from getStringTask . AccessTheWebAsync  next wants to calculate and return
the length of the downloaded string, but the method can't calculate that value until the method has the string.

Therefore, AccessTheWebAsync  uses an await operator to suspend its progress and to yield control to the method that called AccessTheWebAsync . 
AccessTheWebAsync  returns a Task<int>  ( Task(Of Integer)  in Visual Basic) to the caller. The task represents a promise to produce an integer

result that's the length of the downloaded string.

If GetStringAsync  (and therefore getStringTask ) is complete before AccessTheWebAsync  awaits it, control remains in AccessTheWebAsync . The expense
of suspending and then returning to AccessTheWebAsync  would be wasted if the called asynchronous process ( getStringTask ) has already completed and
AccessTheWebSync doesn't have to wait for the final result.

Inside the caller (the event handler in this example), the processing pattern continues. The caller might do other work that doesn't depend on the
result from AccessTheWebAsync  before awaiting that result, or the caller might await immediately. The event handler is waiting for 
AccessTheWebAsync , and AccessTheWebAsync  is waiting for GetStringAsync .

7. GetStringAsync  completes and produces a string result. The string result isn't returned by the call to GetStringAsync  in the way that you might
expect. (Remember that the method already returned a task in step 3.) Instead, the string result is stored in the task that represents the
completion of the method, getStringTask . The await operator retrieves the result from getStringTask . The assignment statement assigns the
retrieved result to urlContents .

8. When AccessTheWebAsync  has the string result, the method can calculate the length of the string. Then the work of AccessTheWebAsync  is also
complete, and the waiting event handler can resume. In the full example at the end of the topic, you can confirm that the event handler retrieves
and prints the value of the length result.

If you are new to asynchronous programming, take a minute to consider the difference between synchronous and asynchronous behavior. A
synchronous method returns when its work is complete (step 5), but an async method returns a task value when its work is suspended (steps 3 and 6).
When the async method eventually completes its work, the task is marked as completed and the result, if any, is stored in the task.

For more information about control flow, see Control Flow in Async Programs (Visual Basic).

https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getstringasync
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/control-flow-in-async-programs


API Async Methods

Threads

Async and Await

Return Types and Parameters

You might be wondering where to find methods such as GetStringAsync  that support async programming. The .NET Framework 4.5 or higher contains
many members that work with Async  and Await . You can recognize these members by the "Async" suffix that’s attached to the member name and a
return type of Task or Task<TResult>. For example, the System.IO.Stream  class contains methods such as CopyToAsync, ReadAsync, and WriteAsync
alongside the synchronous methods CopyTo, Read, and Write.

The Windows Runtime also contains many methods that you can use with Async  and Await  in Windows apps. For more information and example
methods, see Call asynchronous APIs in C# or Visual Basic, Asynchronous programming (Windows Runtime apps), and WhenAny: Bridging between
the .NET Framework and the Windows Runtime.

Async methods are intended to be non-blocking operations. An Await  expression in an async method doesn’t block the current thread while the
awaited task is running. Instead, the expression signs up the rest of the method as a continuation and returns control to the caller of the async method.

The Async  and Await  keywords don't cause additional threads to be created. Async methods don't require multithreading because an async method
doesn't run on its own thread. The method runs on the current synchronization context and uses time on the thread only when the method is active. You
can use Task.Run to move CPU-bound work to a background thread, but a background thread doesn't help with a process that's just waiting for results
to become available.

The async-based approach to asynchronous programming is preferable to existing approaches in almost every case. In particular, this approach is better
than BackgroundWorker for I/O-bound operations because the code is simpler and you don't have to guard against race conditions. In combination
with Task.Run, async programming is better than BackgroundWorker for CPU-bound operations because async programming separates the
coordination details of running your code from the work that Task.Run  transfers to the threadpool.

If you specify that a method is an async method by using an Async modifier, you enable the following two capabilities.

The marked async method can use Await to designate suspension points. The await operator tells the compiler that the async method can't
continue past that point until the awaited asynchronous process is complete. In the meantime, control returns to the caller of the async method.

The suspension of an async method at an Await  expression doesn't constitute an exit from the method, and Finally  blocks don’t run.

The marked async method can itself be awaited by methods that call it.

An async method typically contains one or more occurrences of an Await  operator, but the absence of Await  expressions doesn’t cause a compiler
error. If an async method doesn’t use an Await  operator to mark a suspension point, the method executes as a synchronous method does, despite the 
Async  modifier. The compiler issues a warning for such methods.

Async  and Await  are contextual keywords. For more information and examples, see the following topics:

Async

Await Operator

In .NET Framework programming, an async method typically returns a Task or a Task<TResult>. Inside an async method, an Await  operator is applied
to a task that's returned from a call to another async method.

You specify Task<TResult> as the return type if the method contains a Return statement that specifies an operand of type TResult .

You use Task  as the return type if the method has no return statement or has a return statement that doesn't return an operand.

The following example shows how you declare and call a method that returns a Task<TResult> or a Task.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.io.stream.copytoasync
https://docs.microsoft.com/dotnet/api/system.io.stream.readasync
https://docs.microsoft.com/dotnet/api/system.io.stream.writeasync
https://docs.microsoft.com/dotnet/api/system.io.stream.copyto
https://docs.microsoft.com/dotnet/api/system.io.stream.read
https://docs.microsoft.com/dotnet/api/system.io.stream.write
https://docs.microsoft.com/windows/uwp/threading-async/call-asynchronous-apis-in-csharp-or-visual-basic
https://docs.microsoft.com/previous-versions/windows/apps/hh464924(v=win.10)
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2013/jj635140(v=vs.120)
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.run
https://docs.microsoft.com/dotnet/api/system.componentmodel.backgroundworker
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task


' Signature specifies Task(Of Integer)  
Async Function TaskOfTResult_MethodAsync() As Task(Of Integer)  

    Dim hours As Integer  
    ' . . .  
    ' Return statement specifies an integer result.  
    Return hours  
End Function  

' Calls to TaskOfTResult_MethodAsync  
Dim returnedTaskTResult As Task(Of Integer) = TaskOfTResult_MethodAsync()  
Dim intResult As Integer = Await returnedTaskTResult  
' or, in a single statement  
Dim intResult As Integer = Await TaskOfTResult_MethodAsync()  

' Signature specifies Task  
Async Function Task_MethodAsync() As Task  

    ' . . .  
    ' The method has no return statement.  
End Function  

' Calls to Task_MethodAsync  
Task returnedTask = Task_MethodAsync()  
Await returnedTask  
' or, in a single statement  
Await Task_MethodAsync()  

Naming Convention

Related Topics and Samples (Visual Studio)
TITLE DESCRIPTION SAMPLE

Walkthrough: Accessing the Web by Using Async and
Await (Visual Basic)

Shows how to convert a synchronous WPF solution
to an asynchronous WPF solution. The application
downloads a series of websites.

Async Sample: Accessing the Web Walkthrough

How to: Extend the Async Walkthrough by Using
Task.WhenAll (Visual Basic)

Adds Task.WhenAll to the previous walkthrough. The
use of WhenAll  starts all the downloads at the same
time.

How to: Make Multiple Web Requests in Parallel by
Using Async and Await (Visual Basic)

Demonstrates how to start several tasks at the same
time.

Async Sample: Make Multiple Web Requests in Parallel

Async Return Types (Visual Basic) Illustrates the types that async methods can return
and explains when each type is appropriate.

Each returned task represents ongoing work. A task encapsulates information about the state of the asynchronous process and, eventually, either the
final result from the process or the exception that the process raises if it doesn't succeed.

An async method can also be a Sub  method. This return type is used primarily to define event handlers, where a return type is required. Async event
handlers often serve as the starting point for async programs.

An async method that’s a Sub  procedure can’t be awaited, and the caller can't catch any exceptions that the method throws.

An async method can't declare ByRef parameters, but the method can call methods that have such parameters.

For more information and examples, see Async Return Types (Visual Basic). For more information about how to catch exceptions in async methods, see
Try...Catch...Finally Statement.

Asynchronous APIs in Windows Runtime programming have one of the following return types, which are similar to tasks:

IAsyncOperation<TResult>, which corresponds to Task<TResult>

IAsyncAction, which corresponds to Task

IAsyncActionWithProgress<TProgress>

IAsyncOperationWithProgress<TResult, TProgress>

For more information and an example, see Call asynchronous APIs in C# or Visual Basic.

By convention, you append "Async" to the names of methods that have an Async  modifier.

You can ignore the convention where an event, base class, or interface contract suggests a different name. For example, you shouldn’t rename common
event handlers, such as Button1_Click .

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/async-return-types
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncoperation_tresult_
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncaction
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncactionwithprogress_tprogress_
https://docs.microsoft.com/uwp/api/windows.foundation.iasyncoperationwithprogress_tresult_tprogress_
https://docs.microsoft.com/windows/uwp/threading-async/call-asynchronous-apis-in-csharp-or-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/how-to-extend-the-async-walkthrough-by-using-task-whenall
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/how-to-make-multiple-web-requests-in-parallel-by-using-async-and-await
https://code.msdn.microsoft.com/Async-Make-Multiple-Web-49adb82e
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/async-return-types


Control Flow in Async Programs (Visual Basic) Traces in detail the flow of control through a
succession of await expressions in an asynchronous
program.

Async Sample: Control Flow in Async Programs

Fine-Tuning Your Async Application (Visual Basic) Shows how to add the following functionality to your
async solution:

- Cancel an Async Task or a List of Tasks (Visual Basic)
- Cancel Async Tasks after a Period of Time (Visual
Basic)
- Cancel Remaining Async Tasks after One Is Complete
(Visual Basic)
- Start Multiple Async Tasks and Process Them As
They Complete (Visual Basic)

Async Sample: Fine Tuning Your Application

Handling Reentrancy in Async Apps (Visual Basic) Shows how to handle cases in which an active
asynchronous operation is restarted while it’s running.

WhenAny: Bridging between the .NET Framework and
the Windows Runtime

Shows how to bridge between Task types in the .NET
Framework and IAsyncOperations in the Windows
Runtime so that you can use WhenAny with a
Windows Runtime method.

Async Sample: Bridging between .NET and Windows
Runtime (AsTask and WhenAny)

Async Cancellation: Bridging between the .NET
Framework and the Windows Runtime

Shows how to bridge between Task types in the .NET
Framework and IAsyncOperations in the Windows
Runtime so that you can use CancellationTokenSource
with a Windows Runtime method.

Async Sample: Bridging between .NET and Windows
Runtime (AsTask & Cancellation)

Using Async for File Access (Visual Basic) Lists and demonstrates the benefits of using async
and await to access files.

Task-based Asynchronous Pattern (TAP) Describes a new pattern for asynchrony in the .NET
Framework. The pattern is based on the Task and
Task<TResult> types.

Async Videos on Channel 9 Provides links to a variety of videos about async
programming.

TITLE DESCRIPTION SAMPLE

Complete Example
The following code is the MainWindow.xaml.vb file from the Windows Presentation Foundation (WPF) application that this topic discusses. You can
download the sample from Async Sample: Example from "Asynchronous Programming with Async and Await".

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/control-flow-in-async-programs
https://code.msdn.microsoft.com/Async-Sample-Control-Flow-5c804fc0
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/fine-tuning-your-async-application
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/cancel-an-async-task-or-a-list-of-tasks
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/cancel-async-tasks-after-a-period-of-time
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/cancel-remaining-async-tasks-after-one-is-complete
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/start-multiple-async-tasks-and-process-them-as-they-complete
https://code.msdn.microsoft.com/Async-Fine-Tuning-Your-a676abea
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/handling-reentrancy-in-async-apps
https://msdn.microsoft.com/library/jj635140(v=vs.120).aspx
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenany
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2013/jj635140(v=vs.120)
https://docs.microsoft.com/dotnet/api/system.threading.cancellationtokensource
https://code.msdn.microsoft.com/Async-Sample-Bridging-9479eca3
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/using-async-for-file-access
http://msdn.microsoft.com/library/8cef1fcf-6f9f-417c-b21f-3fd8bac75007
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://channel9.msdn.com/search?term=async+&type=All
https://code.msdn.microsoft.com/Async-Sample-Example-from-9b9f505c


' Add an Imports statement and a reference for System.Net.Http  
Imports System.Net.Http  

Class MainWindow  

    ' Mark the event handler with async so you can use Await in it.  
    Private Async Sub StartButton_Click(sender As Object, e As RoutedEventArgs)  

        ' Call and await separately.  
        'Task<int> getLengthTask = AccessTheWebAsync();  
        '' You can do independent work here.  
        'int contentLength = await getLengthTask;  

        Dim contentLength As Integer = Await AccessTheWebAsync()  

        ResultsTextBox.Text &=  
            String.Format(vbCrLf & "Length of the downloaded string: {0}." & vbCrLf, contentLength)  
    End Sub  

    ' Three things to note in the signature:  
    '  - The method has an Async modifier.   
    '  - The return type is Task or Task(Of T). (See "Return Types" section.)  
    '    Here, it is Task(Of Integer) because the return statement returns an integer.  
    '  - The method name ends in "Async."  
    Async Function AccessTheWebAsync() As Task(Of Integer)  

        ' You need to add a reference to System.Net.Http to declare client.  
        Dim client As HttpClient = New HttpClient()  

        ' GetStringAsync returns a Task(Of String). That means that when you await the  
        ' task you'll get a string (urlContents).  
        Dim getStringTask As Task(Of String) = client.GetStringAsync("http://msdn.microsoft.com")  

        ' You can do work here that doesn't rely on the string from GetStringAsync.  
        DoIndependentWork()  

        ' The Await operator suspends AccessTheWebAsync.  
        '  - AccessTheWebAsync can't continue until getStringTask is complete.  
        '  - Meanwhile, control returns to the caller of AccessTheWebAsync.  
        '  - Control resumes here when getStringTask is complete.   
        '  - The Await operator then retrieves the string result from getStringTask.  
        Dim urlContents As String = Await getStringTask  

        ' The return statement specifies an integer result.  
        ' Any methods that are awaiting AccessTheWebAsync retrieve the length value.  
        Return urlContents.Length  
    End Function  

    Sub DoIndependentWork()  
        ResultsTextBox.Text &= "Working . . . . . . ." & vbCrLf  
    End Sub  
End Class  

' Sample Output:  

' Working . . . . . . .  

' Length of the downloaded string: 41763.  

See Also
Await Operator
Async



             

Attributes overview (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Using Attributes

<System.Serializable()> Public Class SampleClass  
    ' Objects of this type can be serialized.  
End Class  

Imports System.Runtime.InteropServices  

<System.Runtime.InteropServices.DllImport("user32.dll")>   
Sub SampleMethod()  
End Sub  

Imports System.Runtime.InteropServices  

Sub MethodA(<[In](), Out()> ByVal x As Double)  
End Sub  
Sub MethodB(<Out(), [In]()> ByVal x As Double)  
End Sub  

<Conditional("DEBUG"), Conditional("TEST1")>   
Sub TraceMethod()  
End Sub  

NOTENOTE

Attribute ParametersAttribute Parameters

Attributes provide a powerful method of associating metadata, or declarative information, with code (assemblies, types, methods, properties, and so
forth). After an attribute is associated with a program entity, the attribute can be queried at run time by using a technique called reflection. For more
information, see Reflection (Visual Basic).

Attributes have the following properties:

Attributes add metadata to your program. Metadata is information about the types defined in a program. All .NET assemblies contain a specified
set of metadata that describes the types and type members defined in the assembly. You can add custom attributes to specify any additional
information that is required. For more information, see, Creating Custom Attributes (Visual Basic).

You can apply one or more attributes to entire assemblies, modules, or smaller program elements such as classes and properties.

Attributes can accept arguments in the same way as methods and properties.

Your program can examine its own metadata or the metadata in other programs by using reflection. For more information, see Accessing
Attributes by Using Reflection (Visual Basic).

Attributes can be placed on most any declaration, though a specific attribute might restrict the types of declarations on which it is valid. In Visual Basic,
an attribute is enclosed in angle brackets (< >). It must appear immediately before the element to which it is applied, on the same line.

In this example, the SerializableAttribute attribute is used to apply a specific characteristic to a class:

A method with the attribute DllImportAttribute is declared like this:

More than one attribute can be placed on a declaration:

Some attributes can be specified more than once for a given entity. An example of such a multiuse attribute is ConditionalAttribute:

By convention, all attribute names end with the word "Attribute" to distinguish them from other items in the .NET Framework. However, you do not need to specify the
attribute suffix when using attributes in code. For example, [DllImport]  is equivalent to [DllImportAttribute] , but DllImportAttribute  is the attribute's actual
name in the .NET Framework.

Many attributes have parameters, which can be positional, unnamed, or named. Any positional parameters must be specified in a certain order and
cannot be omitted; named parameters are optional and can be specified in any order. Positional parameters are specified first. For example, these three
attributes are equivalent:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/attributes/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/creating-custom-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/accessing-attributes-by-using-reflection
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx
https://docs.microsoft.com/dotnet/api/system.diagnostics.conditionalattribute


<DllImport("user32.dll")>  
<DllImport("user32.dll", SetLastError:=False, ExactSpelling:=False)>  
<DllImport("user32.dll", ExactSpelling:=False, SetLastError:=False)>  

Attribute TargetsAttribute Targets

<target : attribute-list>  

TARGET VALUE APPLIES TO

assembly Entire assembly

module Current assembly module (which is different from a Visual Basic Module)

Imports System.Reflection  
<Assembly: AssemblyTitleAttribute("Production assembly 4"),   
Module: CLSCompliant(True)>   

Common Uses for Attributes

Related Sections

See Also

The first parameter, the DLL name, is positional and always comes first; the others are named. In this case, both named parameters default to false, so
they can be omitted. Refer to the individual attribute's documentation for information on default parameter values.

The target of an attribute is the entity to which the attribute applies. For example, an attribute may apply to a class, a particular method, or an entire
assembly. By default, an attribute applies to the element that it precedes. But you can also explicitly identify, for example, whether an attribute is applied
to a method, or to its parameter, or to its return value.

To explicitly identify an attribute target, use the following syntax:

The list of possible target  values is shown in the following table.

The following example shows how to apply attributes to assemblies and modules. For more information, see Common Attributes (Visual Basic).

The following list includes a few of the common uses of attributes in code:

Marking methods using the WebMethod  attribute in Web services to indicate that the method should be callable over the SOAP protocol. For
more information, see WebMethodAttribute.

Describing how to marshal method parameters when interoperating with native code. For more information, see MarshalAsAttribute.

Describing the COM properties for classes, methods, and interfaces.

Calling unmanaged code using the DllImportAttribute class.

Describing your assembly in terms of title, version, description, or trademark.

Describing which members of a class to serialize for persistence.

Describing how to map between class members and XML nodes for XML serialization.

Describing the security requirements for methods.

Specifying characteristics used to enforce security.

Controlling optimizations by the just-in-time (JIT) compiler so the code remains easy to debug.

Obtaining information about the caller to a method.

For more information, see:

Creating Custom Attributes (Visual Basic)

Accessing Attributes by Using Reflection (Visual Basic)

How to: Create a C/C++ Union by Using Attributes (Visual Basic)

Common Attributes (Visual Basic)

Caller Information (Visual Basic)

Visual Basic Programming Guide
Reflection (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/common-attributes
https://docs.microsoft.com/dotnet/api/system.web.services.webmethodattribute
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/creating-custom-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/accessing-attributes-by-using-reflection
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/how-to-create-a-c-cpp-union-by-using-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/common-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/caller-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/index


Attributes



  

Expression Trees (Visual Basic)
6/1/2018 • 4 minutes to read • Edit Online

Creating Expression Trees from Lambda Expressions

Dim lambda As Expression(Of Func(Of Integer, Boolean)) =  
    Function(num) num < 5  

Creating Expression Trees by Using the API

' Import the following namespace to your project: System.Linq.Expressions  

' Manually build the expression tree for the lambda expression num => num < 5.  
Dim numParam As ParameterExpression = Expression.Parameter(GetType(Integer), "num")  
Dim five As ConstantExpression = Expression.Constant(5, GetType(Integer))  
Dim numLessThanFive As BinaryExpression = Expression.LessThan(numParam, five)  
Dim lambda1 As Expression(Of Func(Of Integer, Boolean)) =  
  Expression.Lambda(Of Func(Of Integer, Boolean))(  
        numLessThanFive,  
        New ParameterExpression() {numParam})  

Expression trees represent code in a tree-like data structure, where each node is an expression, for example, a method call or a binary operation such as 
x < y .

You can compile and run code represented by expression trees. This enables dynamic modification of executable code, the execution of L INQ queries in
various databases, and the creation of dynamic queries. For more information about expression trees in L INQ, see How to: Use Expression Trees to
Build Dynamic Queries (Visual Basic).

Expression trees are also used in the dynamic language runtime (DLR) to provide interoperability between dynamic languages and the .NET Framework
and to enable compiler writers to emit expression trees instead of Microsoft intermediate language (MSIL). For more information about the DLR, see
Dynamic Language Runtime Overview.

You can have the C# or Visual Basic compiler create an expression tree for you based on an anonymous lambda expression, or you can create
expression trees manually by using the System.Linq.Expressions namespace.

When a lambda expression is assigned to a variable of type Expression<TDelegate>, the compiler emits code to build an expression tree that represents
the lambda expression.

The Visual Basic compiler can generate expression trees only from expression lambdas (or single-line lambdas). It cannot parse statement lambdas (or
multi-line lambdas). For more information about lambda expressions in Visual Basic, see Lambda Expressions.

The following code examples demonstrate how to have the Visual Basic compiler create an expression tree that represents the lambda expression 
Function(num) num < 5 .

To create expression trees by using the API, use the Expression class. This class contains static factory methods that create expression tree nodes of
specific types, for example, ParameterExpression, which represents a variable or parameter, or MethodCallExpression, which represents a method call.
ParameterExpression, MethodCallExpression, and the other expression-specific types are also defined in the System.Linq.Expressions namespace. These
types derive from the abstract type Expression.

The following code example demonstrates how to create an expression tree that represents the lambda expression Function(num) num < 5  by using the
API.

In .NET Framework 4 or later, the expression trees API also supports assignments and control flow expressions such as loops, conditional blocks, and 
try-catch  blocks. By using the API, you can create expression trees that are more complex than those that can be created from lambda expressions by

the Visual Basic compiler. The following example demonstrates how to create an expression tree that calculates the factorial of a number.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/expression-trees/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-use-expression-trees-to-build-dynamic-queries
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/dotnet/api/system.linq.expressions
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression
https://docs.microsoft.com/dotnet/api/system.linq.expressions.parameterexpression
https://docs.microsoft.com/dotnet/api/system.linq.expressions.methodcallexpression
https://docs.microsoft.com/dotnet/api/system.linq.expressions.parameterexpression
https://docs.microsoft.com/dotnet/api/system.linq.expressions.methodcallexpression
https://docs.microsoft.com/dotnet/api/system.linq.expressions
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression


' Creating a parameter expression.  
Dim value As ParameterExpression =  
    Expression.Parameter(GetType(Integer), "value")  

' Creating an expression to hold a local variable.   
Dim result As ParameterExpression =  
    Expression.Parameter(GetType(Integer), "result")  

' Creating a label to jump to from a loop.  
Dim label As LabelTarget = Expression.Label(GetType(Integer))  

' Creating a method body.  
Dim block As BlockExpression = Expression.Block(  
    New ParameterExpression() {result},  
    Expression.Assign(result, Expression.Constant(1)),  
    Expression.Loop(  
        Expression.IfThenElse(  
            Expression.GreaterThan(value, Expression.Constant(1)),  
            Expression.MultiplyAssign(result,  
                Expression.PostDecrementAssign(value)),  
            Expression.Break(label, result)  
        ),  
        label  
    )  
)  

' Compile an expression tree and return a delegate.  
Dim factorial As Integer =  
    Expression.Lambda(Of Func(Of Integer, Integer))(block, value).Compile()(5)  

Console.WriteLine(factorial)  
' Prints 120.  

Parsing Expression Trees

' Import the following namespace to your project: System.Linq.Expressions  

' Create an expression tree.  
Dim exprTree As Expression(Of Func(Of Integer, Boolean)) = Function(num) num < 5  

' Decompose the expression tree.  
Dim param As ParameterExpression = exprTree.Parameters(0)  
Dim operation As BinaryExpression = exprTree.Body  
Dim left As ParameterExpression = operation.Left  
Dim right As ConstantExpression = operation.Right  

Console.WriteLine(String.Format("Decomposed expression: {0} => {1} {2} {3}",  
                  param.Name, left.Name, operation.NodeType, right.Value))  

' This code produces the following output:  
'  
' Decomposed expression: num => num LessThan 5  

Immutability of Expression Trees

Compiling Expression Trees

For more information, see Generating Dynamic Methods with Expression Trees in Visual Studio 2010, which also applies to later versions of Visual
Studio.

The following code example demonstrates how the expression tree that represents the lambda expression Function(num) num < 5  can be decomposed
into its parts.

Expression trees should be immutable. This means that if you want to modify an expression tree, you must construct a new expression tree by copying
the existing one and replacing nodes in it. You can use an expression tree visitor to traverse the existing expression tree. For more information, see How
to: Modify Expression Trees (Visual Basic).

The Expression<TDelegate> type provides the Compile method that compiles the code represented by an expression tree into an executable delegate.

The following code example demonstrates how to compile an expression tree and run the resulting code.

https://blogs.msdn.microsoft.com/csharpfaq/2009/09/14/generating-dynamic-methods-with-expression-trees-in-visual-studio-2010
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-modify-expression-trees
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression-1
https://docs.microsoft.com/dotnet/api/system.linq.expressions.expression-1.compile


' Creating an expression tree.  
Dim expr As Expression(Of Func(Of Integer, Boolean)) =  
    Function(num) num < 5  

' Compiling the expression tree into a delegate.  
Dim result As Func(Of Integer, Boolean) = expr.Compile()  

' Invoking the delegate and writing the result to the console.  
Console.WriteLine(result(4))  

' Prints True.  

' You can also use simplified syntax  
' to compile and run an expression tree.  
' The following line can replace two previous statements.  
Console.WriteLine(expr.Compile()(4))  

' Also prints True.  

See Also

For more information, see How to: Execute Expression Trees (Visual Basic).

System.Linq.Expressions
How to: Execute Expression Trees (Visual Basic)
How to: Modify Expression Trees (Visual Basic)
Lambda Expressions
Dynamic Language Runtime Overview
Programming Concepts (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-execute-expression-trees
https://docs.microsoft.com/dotnet/api/system.linq.expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-execute-expression-trees
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-modify-expression-trees
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview


          

 

Iterators (Visual Basic)
5/4/2018 • 10 minutes to read • Edit Online

Sub Main()  
    For Each number As Integer In SomeNumbers()  
        Console.Write(number & " ")  
    Next  
    ' Output: 3 5 8  
    Console.ReadKey()  
End Sub  

Private Iterator Function SomeNumbers() As System.Collections.IEnumerable  
    Yield 3  
    Yield 5  
    Yield 8  
End Function  

NOTENOTE

Simple Iterator

An iterator can be used to step through collections such as lists and arrays.

An iterator method or get  accessor performs a custom iteration over a collection. An iterator method uses the Yield statement to return each element
one at a time. When a Yield  statement is reached, the current location in code is remembered. Execution is restarted from that location the next time
the iterator function is called.

You consume an iterator from client code by using a For Each…Next statement, or by using a L INQ query.

In the following example, the first iteration of the For Each  loop causes execution to proceed in the SomeNumbers  iterator method until the first Yield

statement is reached. This iteration returns a value of 3, and the current location in the iterator method is retained. On the next iteration of the loop,
execution in the iterator method continues from where it left off, again stopping when it reaches a Yield  statement. This iteration returns a value of 5,
and the current location in the iterator method is again retained. The loop completes when the end of the iterator method is reached.

The return type of an iterator method or get  accessor can be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.

You can use an Exit Function  or Return  statement to end the iteration.

A Visual Basic iterator function or get  accessor declaration includes an Iterator modifier.

Iterators were introduced in Visual Basic in Visual Studio 2012.

In this topic

Simple Iterator

Creating a Collection Class

Try Blocks

Anonymous Methods

Using Iterators with a Generic List

Syntax Information

Technical Implementation

Use of Iterators

For all examples in the topic except the Simple Iterator example, include Imports statements for the System.Collections  and System.Collections.Generic

namespaces.

The following example has a single Yield  statement that is inside a For…Next loop. In Main , each iteration of the For Each  statement body creates a
call to the iterator function, which proceeds to the next Yield  statement.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/iterators.md
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1


 

Sub Main()  
    For Each number As Integer In EvenSequence(5, 18)  
        Console.Write(number & " ")  
    Next  
    ' Output: 6 8 10 12 14 16 18  
    Console.ReadKey()  
End Sub  

Private Iterator Function EvenSequence(  
ByVal firstNumber As Integer, ByVal lastNumber As Integer) _  
As System.Collections.Generic.IEnumerable(Of Integer)  

    ' Yield even numbers in the range.  
    For number As Integer = firstNumber To lastNumber  
        If number Mod 2 = 0 Then  
            Yield number  
        End If  
    Next  
End Function  

Creating a Collection Class

Sub Main()  
    Dim days As New DaysOfTheWeek()  
    For Each day As String In days  
        Console.Write(day & " ")  
    Next  
    ' Output: Sun Mon Tue Wed Thu Fri Sat  
    Console.ReadKey()  
End Sub  

Private Class DaysOfTheWeek  
    Implements IEnumerable  

    Public days =  
        New String() {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}  

    Public Iterator Function GetEnumerator() As IEnumerator _  
        Implements IEnumerable.GetEnumerator  

        ' Yield each day of the week.  
        For i As Integer = 0 To days.Length - 1  
            Yield days(i)  
        Next  
    End Function  
End Class  

In the following example, the DaysOfTheWeek  class implements the IEnumerable interface, which requires a GetEnumerator method. The compiler
implicitly calls the GetEnumerator  method, which returns an IEnumerator.

The GetEnumerator  method returns each string one at a time by using the Yield  statement, and an Iterator  modifier is in the function declaration.

The following example creates a Zoo  class that contains a collection of animals.

The For Each  statement that refers to the class instance ( theZoo ) implicitly calls the GetEnumerator  method. The For Each  statements that refer to the 
Birds  and Mammals  properties use the AnimalsForType  named iterator method.

https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator


Sub Main()  
    Dim theZoo As New Zoo()  

    theZoo.AddMammal("Whale")  
    theZoo.AddMammal("Rhinoceros")  
    theZoo.AddBird("Penguin")  
    theZoo.AddBird("Warbler")  

    For Each name As String In theZoo  
        Console.Write(name & " ")  
    Next  
    Console.WriteLine()  
    ' Output: Whale Rhinoceros Penguin Warbler  

    For Each name As String In theZoo.Birds  
        Console.Write(name & " ")  
    Next  
    Console.WriteLine()  
    ' Output: Penguin Warbler  

    For Each name As String In theZoo.Mammals  
        Console.Write(name & " ")  
    Next  
    Console.WriteLine()  
    ' Output: Whale Rhinoceros  

    Console.ReadKey()  
End Sub  

Public Class Zoo  
    Implements IEnumerable  

    ' Private members.  
    Private animals As New List(Of Animal)  

    ' Public methods.  
    Public Sub AddMammal(ByVal name As String)  
        animals.Add(New Animal With {.Name = name, .Type = Animal.TypeEnum.Mammal})  
    End Sub  

    Public Sub AddBird(ByVal name As String)  
        animals.Add(New Animal With {.Name = name, .Type = Animal.TypeEnum.Bird})  
    End Sub  

    Public Iterator Function GetEnumerator() As IEnumerator _  
        Implements IEnumerable.GetEnumerator  

        For Each theAnimal As Animal In animals  
            Yield theAnimal.Name  
        Next  
    End Function  

    ' Public members.  
    Public ReadOnly Property Mammals As IEnumerable  
        Get  
            Return AnimalsForType(Animal.TypeEnum.Mammal)  
        End Get  
    End Property  

    Public ReadOnly Property Birds As IEnumerable  
        Get  
            Return AnimalsForType(Animal.TypeEnum.Bird)  
        End Get  
    End Property  

    ' Private methods.  
    Private Iterator Function AnimalsForType( _  
    ByVal type As Animal.TypeEnum) As IEnumerable  
        For Each theAnimal As Animal In animals  
            If (theAnimal.Type = type) Then  
                Yield theAnimal.Name  
            End If  
        Next  
    End Function  

    ' Private class.  
    Private Class Animal  
        Public Enum TypeEnum  
            Bird  
            Mammal  
        End Enum  

        Public Property Name As String  
        Public Property Type As TypeEnum  
    End Class  
End Class  



 

 

Try Blocks

Sub Main()  
    For Each number As Integer In Test()  
        Console.WriteLine(number)  
    Next  
    Console.WriteLine("For Each is done.")  

    ' Output:  
    '  3  
    '  4  
    '  Something happened. Yields are done.  
    '  Finally is called.  
    '  For Each is done.  
    Console.ReadKey()  
End Sub  

Private Iterator Function Test() As IEnumerable(Of Integer)  
    Try  
        Yield 3  
        Yield 4  
        Throw New Exception("Something happened. Yields are done.")  
        Yield 5  
        Yield 6  
    Catch ex As Exception  
        Console.WriteLine(ex.Message)  
    Finally  
        Console.WriteLine("Finally is called.")  
    End Try  
End Function  

Anonymous Methods

Dim iterateSequence = Iterator Function() _  
                      As IEnumerable(Of Integer)  
                          Yield 1  
                          Yield 2  
                      End Function  

For Each number As Integer In iterateSequence()  
    Console.Write(number & " ")  
Next  
' Output: 1 2  
Console.ReadKey()  

Visual Basic allows a Yield  statement in the Try  block of a Try...Catch...Finally Statement. A Try  block that has a Yield  statement can have Catch

blocks, and can have a Finally  block.

The following example includes Try , Catch , and Finally  blocks in an iterator function. The Finally  block in the iterator function executes before the 
For Each  iteration finishes.

A Yield  statement cannot be inside a Catch  block or a Finally  block.

If the For Each  body (instead of the iterator method) throws an exception, a Catch  block in the iterator function is not executed, but a Finally  block in
the iterator function is executed. A Catch  block inside an iterator function catches only exceptions that occur inside the iterator function.

In Visual Basic, an anonymous function can be an iterator function. The following example illustrates this.

The following example has a non-iterator method that validates the arguments. The method returns the result of an anonymous iterator that describes
the collection elements.



 

Sub Main()  
    For Each number As Integer In GetSequence(5, 10)  
        Console.Write(number & " ")  
    Next  
    ' Output: 5 6 7 8 9 10  
    Console.ReadKey()  
End Sub  

Public Function GetSequence(ByVal low As Integer, ByVal high As Integer) _  
As IEnumerable  
    ' Validate the arguments.  
    If low < 1 Then  
        Throw New ArgumentException("low is too low")  
    End If  
    If high > 140 Then  
        Throw New ArgumentException("high is too high")  
    End If  

    ' Return an anonymous iterator function.  
    Dim iterateSequence = Iterator Function() As IEnumerable  
                              For index = low To high  
                                  Yield index  
                              Next  
                          End Function  
    Return iterateSequence()  
End Function  

Using Iterators with a Generic List

Sub Main()  
    Dim theStack As New Stack(Of Integer)  

    ' Add items to the stack.  
    For number As Integer = 0 To 9  
        theStack.Push(number)  
    Next  

    ' Retrieve items from the stack.  
    ' For Each is allowed because theStack implements  
    ' IEnumerable(Of Integer).  
    For Each number As Integer In theStack  
        Console.Write("{0} ", number)  
    Next  
    Console.WriteLine()  
    ' Output: 9 8 7 6 5 4 3 2 1 0  

    ' For Each is allowed, because theStack.TopToBottom  
    ' returns IEnumerable(Of Integer).  
    For Each number As Integer In theStack.TopToBottom  
        Console.Write("{0} ", number)  
    Next  
    Console.WriteLine()  
    ' Output: 9 8 7 6 5 4 3 2 1 0  

    For Each number As Integer In theStack.BottomToTop  
        Console.Write("{0} ", number)  
    Next  
    Console.WriteLine()  
    ' Output: 0 1 2 3 4 5 6 7 8 9   

    For Each number As Integer In theStack.TopN(7)  
        Console.Write("{0} ", number)  
    Next  
    Console.WriteLine()  
    ' Output: 9 8 7 6 5 4 3  

    Console.ReadKey()  
End Sub  

Public Class Stack(Of T)  
    Implements IEnumerable(Of T)  

If validation is instead inside the iterator function, the validation cannot be performed until the start of the first iteration of the For Each  body.

In the following example, the Stack(Of T)  generic class implements the IEnumerable<T> generic interface. The Push  method assigns values to an
array of type T . The GetEnumerator method returns the array values by using the Yield  statement.

In addition to the generic GetEnumerator method, the non-generic GetEnumerator method must also be implemented. This is because
IEnumerable<T> inherits from IEnumerable. The non-generic implementation defers to the generic implementation.

The example uses named iterators to support various ways of iterating through the same collection of data. These named iterators are the TopToBottom

and BottomToTop  properties, and the TopN  method.

The BottomToTop  property declaration includes the Iterator  keyword.

https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable


 

 

    Private values As T() = New T(99) {}  
    Private top As Integer = 0  

    Public Sub Push(ByVal t As T)  
        values(top) = t  
        top = top + 1  
    End Sub  

    Public Function Pop() As T  
        top = top - 1  
        Return values(top)  
    End Function  

    ' This function implements the GetEnumerator method. It allows  
    ' an instance of the class to be used in a For Each statement.  
    Public Iterator Function GetEnumerator() As IEnumerator(Of T) _  
        Implements IEnumerable(Of T).GetEnumerator  

        For index As Integer = top - 1 To 0 Step -1  
            Yield values(index)  
        Next  
    End Function  

    Public Iterator Function GetEnumerator1() As IEnumerator _  
        Implements IEnumerable.GetEnumerator  

        Yield GetEnumerator()  
    End Function  

    Public ReadOnly Property TopToBottom() As IEnumerable(Of T)  
        Get  
            Return Me  
        End Get  
    End Property  

    Public ReadOnly Iterator Property BottomToTop As IEnumerable(Of T)  
        Get  
            For index As Integer = 0 To top - 1  
                Yield values(index)  
            Next  
        End Get  
    End Property  

    Public Iterator Function TopN(ByVal itemsFromTop As Integer) _  
        As IEnumerable(Of T)  

        ' Return less than itemsFromTop if necessary.  
        Dim startIndex As Integer =  
            If(itemsFromTop >= top, 0, top - itemsFromTop)  

        For index As Integer = top - 1 To startIndex Step -1  
            Yield values(index)  
        Next  
    End Function  
End Class  

Syntax Information

Technical Implementation

An iterator can occur as a method or get  accessor. An iterator cannot occur in an event, instance constructor, static constructor, or static destructor.

An implicit conversion must exist from the expression type in the Yield  statement to the return type of the iterator.

In Visual Basic, an iterator method cannot have any ByRef  parameters.

In Visual Basic, "Yield" is not a reserved word and has special meaning only when it is used in an Iterator  method or get  accessor.

Although you write an iterator as a method, the compiler translates it into a nested class that is, in effect, a state machine. This class keeps track of the
position of the iterator as long the For Each...Next  loop in the client code continues.

To see what the compiler does, you can use the Ildasm.exe tool to view the Microsoft intermediate language code that is generated for an iterator
method.

When you create an iterator for a class or struct, you do not have to implement the whole IEnumerator interface. When the compiler detects the iterator,
it automatically generates the Current , MoveNext , and Dispose  methods of the IEnumerator or IEnumerator<T> interface.

On each successive iteration of the For Each…Next  loop (or the direct call to IEnumerator.MoveNext ), the next iterator code body resumes after the
previous Yield  statement. It then continues to the next Yield  statement until the end of the iterator body is reached, or until an Exit Function  or 
Return  statement is encountered.

Iterators do not support the IEnumerator.Reset method. To re-iterate from the start, you must obtain a new iterator.

For additional information, see the Visual Basic Language Specification.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/class
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/struct
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.reset


 Use of Iterators

See Also

Iterators enable you to maintain the simplicity of a For Each  loop when you need to use complex code to populate a list sequence. This can be useful
when you want to do the following:

Modify the list sequence after the first For Each  loop iteration.

Avoid fully loading a large list before the first iteration of a For Each  loop. An example is a paged fetch to load a batch of table rows. Another
example is the EnumerateFiles method, which implements iterators within the .NET Framework.

Encapsulate building the list in the iterator. In the iterator method, you can build the list and then yield each result in a loop.

System.Collections.Generic
IEnumerable<T>
For Each...Next Statement
Yield Statement
Iterator

https://docs.microsoft.com/dotnet/api/system.io.directoryinfo.enumeratefiles
https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1


  

Language-Integrated Query (LINQ) (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

LINQ is a set of features that extends powerful query capabilities to the language syntax of Visual Basic. L INQ introduces standard, easily-learned
patterns for querying and updating data, and the technology can be extended to support potentially any kind of data store. The .NET Framework
includes L INQ provider assemblies that enable the use of L INQ with .NET Framework collections, SQL Server databases, ADO.NET Datasets, and XML
documents.

Introduction to L INQ (Visual Basic)
Provides a general introduction to the kinds of applications that you can write and the kinds of problems that you can solve with L INQ queries.

Getting Started with L INQ in Visual Basic
Describes the basic facts you should know in order to understand the Visual Basic documentation and samples.

Visual Studio IDE and Tools Support for L INQ (Visual Basic)
Describes Visual Studio's Object Relational Designer, debugger support for queries, and other IDE features related to L INQ.

Standard Query Operators Overview (Visual Basic)
Provides an introduction to the standard query operators. It also provides links to topics that have more information about each type of query
operation.

L INQ to Objects (Visual Basic)
Includes links to topics that explain how to use L INQ to Objects to access in-memory data structures,

L INQ to XML (Visual Basic)
Includes links to topics that explain how to use L INQ to XML, which provides the in-memory document modification capabilities of the Document
Object Model (DOM), and supports L INQ query expressions.

L INQ to ADO.NET (Portal Page)
Provides an entry point for documentation about L INQ to DataSet, L INQ to SQL, and LINQ to Entities. L INQ to DataSet enables you to build richer
query capabilities into DataSet by using the same query functionality that is available for other data sources. L INQ to SQL provides a run-time
infrastructure for managing relational data as objects. L INQ to Entities enables developers to write queries against the Entity Framework conceptual
model by using C#.

Enabling a Data Source for L INQ Querying
Provides an introduction to custom LINQ providers, L INQ expression trees, and other ways to extend LINQ.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/linq/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/introduction-to-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/getting-started-with-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/visual-studio-ide-and-tools-support-for-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/standard-query-operators-overview
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/linq-to-objects
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/linq-to-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/linq-to-adonet-portal-page
https://docs.microsoft.com/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/enabling-a-data-source-for-linq-querying


  

 

Object-Oriented Programming (Visual Basic)
5/4/2018 • 10 minutes to read • Edit Online

Classes and objects

Class SampleClass
End Class

Structure SampleStructure
End Structure

Class membersClass members

Visual Basic provides full support for object-oriented programming including encapsulation, inheritance, and polymorphism.

Encapsulation means that a group of related properties, methods, and other members are treated as a single unit or object.

Inheritance describes the ability to create new classes based on an existing class.

Polymorphism means that you can have multiple classes that can be used interchangeably, even though each class implements the same properties or
methods in different ways.

This section describes the following concepts:

Classes and objects

Class members

Properties and fields

Methods

Constructors

Destructors

Events

Nested classes

Access modifiers and access levels

Instantiating classes

Shared classes and members

Anonymous types

Inheritance

Overriding members
Interfaces

Generics

Delegates

The terms class and object are sometimes used interchangeably, but in fact, classes describe the type of objects, while objects are usable instances of
classes. So, the act of creating an object is called instantiation. Using the blueprint analogy, a class is a blueprint, and an object is a building made from
that blueprint.

To define a class:

Visual Basic also provides a light version of classes called structures that are useful when you need to create large array of objects and do not want to
consume too much memory for that.

To define a structure:

For more information, see:

Class Statement

Structure Statement

Each class can have different class members that include properties that describe class data, methods that define class behavior, and events that provide
communication between different classes and objects.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/object-oriented-programming.md


  Properties and fieldsProperties and fields

Class SampleClass
    Public SampleField As String
End Class

Class SampleClass
    Public Property SampleProperty as String
End Class

Class SampleClass
    Private m_Sample As String
    Public Property Sample() As String
        Get
            ' Return the value stored in the field.
            Return m_Sample
        End Get
        Set(ByVal Value As String)
            ' Store the value in the field.
            m_Sample = Value
        End Set
    End Property
End Class

MethodsMethods

NOTENOTE

Class SampleClass
    Public Function SampleFunc(ByVal SampleParam As String)
        ' Add code here
    End Function
End Class

Fields and properties represent information that an object contains. Fields are like variables because they can be read or set directly.

To define a field:

Properties have get and set procedures, which provide more control on how values are set or returned.

Visual Basic allows you either to create a private field for storing the property value or use so-called auto-implemented properties that create this field
automatically behind the scenes and provide the basic logic for the property procedures.

To define an auto-implemented property:

If you need to perform some additional operations for reading and writing the property value, define a field for storing the property value and provide
the basic logic for storing and retrieving it:

Most properties have methods or procedures to both set and get the property value. However, you can create read-only or write-only properties to
restrict them from being modified or read. In Visual Basic you can use ReadOnly  and WriteOnly  keywords. However, auto-implemented properties
cannot be read-only or write-only.

For more information, see:

Property Statement

Get Statement

Set Statement

ReadOnly

WriteOnly

A method is an action that an object can perform.

In Visual Basic, there are two ways to create a method: the Sub  statement is used if the method does not return a value; the Function  statement is used if a
method returns a value.

To define a method of a class:

A class can have several implementations, or overloads, of the same method that differ in the number of parameters or parameter types.

To overload a method:



  

  

  

Overloads Sub Display(ByVal theChar As Char)
    ' Add code that displays Char data.
End Sub
Overloads Sub Display(ByVal theInteger As Integer)
    ' Add code that displays Integer data.
End Sub

ConstructorsConstructors

Class SampleClass
    Sub New(ByVal s As String)
        // Add code here.
    End Sub
End Class 

DestructorsDestructors

EventsEvents

Nested classesNested classes

Class Container
    Class Nested
    ' Add code here.
    End Class
End Class

Dim nestedInstance As Container.Nested = New Container.Nested()

Access modifiers and access levelsAccess modifiers and access levels

In most cases you declare a method within a class definition. However, Visual Basic also supports extension methods that allow you to add methods to
an existing class outside the actual definition of the class.

For more information, see:

Function Statement

Sub Statement

Overloads

Extension Methods

Constructors are class methods that are executed automatically when an object of a given type is created. Constructors usually initialize the data
members of the new object. A constructor can run only once when a class is created. Furthermore, the code in the constructor always runs before any
other code in a class. However, you can create multiple constructor overloads in the same way as for any other method.

To define a constructor for a class:

For more information, see: Object Lifetime: How Objects Are Created and Destroyed.

Destructors are used to destruct instances of classes. In the .NET Framework, the garbage collector automatically manages the allocation and release of
memory for the managed objects in your application. However, you may still need destructors to clean up any unmanaged resources that your
application creates. There can be only one destructor for a class.

For more information about destructors and garbage collection in the .NET Framework, see Garbage Collection.

Events enable a class or object to notify other classes or objects when something of interest occurs. The class that sends (or raises) the event is called the
publisher and the classes that receive (or handle) the event are called subscribers. For more information about events, how they are raised and handled,
see Events.

To declare events, use the Event Statement.

To raise events, use the RaiseEvent Statement.

To specify event handlers using a declarative way, use the WithEvents statement and the Handles clause.

To be able to dynamically add, remove, and change the event handler associated with an event, use the AddHandler Statement and
RemoveHandler Statement together with the AddressOf Operator.

A class defined within another class is called nested. By default, the nested class is private.

To create an instance of the nested class, use the name of the container class followed by the dot and then followed by the name of the nested class:

All classes and class members can specify what access level they provide to other classes by using access modifiers.

The following access modifiers are available:

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/index


  

  

VISUAL BASIC MODIFIER DEFINITION

Public The type or member can be accessed by any other code in the same assembly or
another assembly that references it.

Private The type or member can only be accessed by code in the same class.

Protected The type or member can only be accessed by code in the same class or in a derived
class.

Friend The type or member can be accessed by any code in the same assembly, but not
from another assembly.

Protected Friend The type or member can be accessed by any code in the same assembly, or by any
derived class in another assembly.

Instantiating classesInstantiating classes

Dim sampleObject as New SampleClass()

' Set a property value.
sampleObject.SampleProperty = "Sample String"
' Call a method.
sampleObject.SampleMethod()

Dim sampleObject = New SampleClass With
    {.FirstProperty = "A", .SecondProperty = "B"}

Shared Classes and MembersShared Classes and Members

Class SampleClass  
    Public Shared SampleString As String = "Sample String"  
End Class  

MsgBox(SampleClass.SampleString)  

Anonymous typesAnonymous types

For more information, see Access levels in Visual Basic.

To create an object, you need to instantiate a class, or create a class instance.

After instantiating a class, you can assign values to the instance's properties and fields and invoke class methods.

To assign values to properties during the class instantiation process, use object initializers:

For more information, see:

New Operator

Object Initializers: Named and Anonymous Types

A shared member of the class is a property, procedure, or field that is shared by all instances of a class.

To define a shared member:

To access the shared member, use the name of the class without creating an object of this class:

Shared modules in Visual Basic have shared members only and cannot be instantiated. Shared members also cannot access non-shared properties,
fields or methods

For more information, see:

Shared

Module Statement

Anonymous types enable you to create objects without writing a class definition for the data type. Instead, the compiler generates a class for you. The
class has no usable name and contains the properties you specify in declaring the object.

To create an instance of an anonymous type:

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types


  

' sampleObject is an instance of a simple anonymous type.
Dim sampleObject =
    New With {Key .FirstProperty = "A", .SecondProperty = "B"}

Inheritance

NOTENOTE

Class DerivedClass
    Inherits BaseClass
End Class

NotInheritable Class SampleClass
End Class

MustInherit Class BaseClass
End Class

Overriding membersOverriding members

VISUAL BASIC MODIFIER DEFINITION

Overridable Allows a class member to be overridden in a derived class.

Overrides Overrides a virtual (overridable) member defined in the base class.

NotOverridable Prevents a member from being overridden in an inheriting class.

MustOverride Requires that a class member to be overridden in the derived class.

Shadows Hides a member inherited from a base class

Interfaces

For more information, see: Anonymous Types.

Inheritance enables you to create a new class that reuses, extends, and modifies the behavior that is defined in another class. The class whose members
are inherited is called the base class, and the class that inherits those members is called the derived class. However, all classes in Visual Basic implicitly
inherit from the Object class that supports .NET class hierarchy and provides low-level services to all classes.

Visual Basic doesn't support multiple inheritance. That is, you can specify only one base class for a derived class.

To inherit from a base class:

By default all classes can be inherited. However, you can specify whether a class must not be used as a base class, or create a class that can be used as a
base class only.

To specify that a class cannot be used as a base class:

To specify that a class can be used as a base class only and cannot be instantiated:

For more information, see:

Inherits Statement

NotInheritable

MustInherit

By default, a derived class inherits all members from its base class. If you want to change the behavior of the inherited member, you need to override it.
That is, you can define a new implementation of the method, property or event in the derived class.

The following modifiers are used to control how properties and methods are overridden:

Interfaces, like classes, define a set of properties, methods, and events. But unlike classes, interfaces do not provide implementation. They are
implemented by classes, and defined as separate entities from classes. An interface represents a contract, in that a class that implements an interface
must implement every aspect of that interface exactly as it is defined.

To define an interface:

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/dotnet/api/system.object


Public Interface ISampleInterface
    Sub DoSomething()
End Interface

Class SampleClass
    Implements ISampleInterface
    Sub DoSomething
        ' Method implementation.
    End Sub
End Class

Generics

Class SampleGeneric(Of T)
    Public Field As T
End Class

Dim sampleObject As New SampleGeneric(Of String)
sampleObject.Field = "Sample string"

Delegates

NOTENOTE

Delegate Sub SampleDelegate(ByVal str As String)

Class SampleClass
    ' Method that matches the SampleDelegate signature.
    Sub SampleSub(ByVal str As String)
        ' Add code here.
    End Sub
    ' Method that instantiates the delegate.
    Sub SampleDelegateSub()
        Dim sd As SampleDelegate = AddressOf SampleSub
        sd("Sample string")
    End Sub
End Class

To implement an interface in a class:

For more information, see:

Interfaces

Interface Statement

Implements Statement

Classes, structures, interfaces and methods in .NET can include type parameters that define types of objects that they can store or use. The most
common example of generics is a collection, where you can specify the type of objects to be stored in a collection.

To define a generic class:

To create an instance of a generic class:

For more information, see:

Generics

Generic Types in Visual Basic

A delegate is a type that defines a method signature, and can provide a reference to any method with a compatible signature. You can invoke (or call)
the method through the delegate. Delegates are used to pass methods as arguments to other methods.

Event handlers are nothing more than methods that are invoked through delegates. For more information about using delegates in event handling, see Events.

To create a delegate:

To create a reference to a method that matches the signature specified by the delegate:

For more information, see:

Delegates

https://docs.microsoft.com/en-us/dotnet/standard/generics/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


See also

Delegate Statement

AddressOf Operator

Visual Basic Programming Guide

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/index


     

Reflection (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

' Using GetType to obtain type information:  
Dim i As Integer = 42  
Dim type As System.Type = i.GetType()  
System.Console.WriteLine(type)  

' Using Reflection to get information from an Assembly:  
Dim info As System.Reflection.Assembly = GetType(System.Int32).Assembly  
System.Console.WriteLine(info)  

Reflection Overview

Related Sections

See Also

Reflection provides objects (of type Type) that describe assemblies, modules and types. You can use reflection to dynamically create an instance of a
type, bind the type to an existing object, or get the type from an existing object and invoke its methods or access its fields and properties. If you are
using attributes in your code, reflection enables you to access them. For more information, see Attributes.

Here's a simple example of reflection using the static method GetType  - inherited by all types from the Object  base class - to obtain the type of a
variable:

The output is:

System.Int32

The following example uses reflection to obtain the full name of the loaded assembly.

The output is:

mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Reflection is useful in the following situations:

When you have to access attributes in your program's metadata. For more information, see Retrieving Information Stored in Attributes.

For examining and instantiating types in an assembly.

For building new types at runtime. Use classes in System.Reflection.Emit.

For performing late binding, accessing methods on types created at run time. See the topic Dynamically Loading and Using Types.

For more information:

Reflection

Viewing Type Information

Reflection and Generic Types

System.Reflection.Emit

Retrieving Information Stored in Attributes

Visual Basic Programming Guide
Assemblies in the Common Language Runtime

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/reflection.md
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://docs.microsoft.com/dotnet/api/system.reflection.emit
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamically-loading-and-using-types
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/viewing-type-information
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection-and-generic-types
https://docs.microsoft.com/dotnet/api/system.reflection.emit
https://docs.microsoft.com/en-us/dotnet/standard/attributes/retrieving-information-stored-in-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/index
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/assemblies-in-the-common-language-runtime


 

Serialization (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

How Serialization Works

Uses for SerializationUses for Serialization

Making an Object SerializableMaking an Object Serializable

Binary and XML Serialization

Binary SerializationBinary Serialization

XML SerializationXML Serialization

Basic and Custom Serialization

Basic SerializationBasic Serialization

Custom SerializationCustom Serialization

Serialization is the process of converting an object into a stream of bytes in order to store the object or transmit it to memory, a database, or a file. Its
main purpose is to save the state of an object in order to be able to recreate it when needed. The reverse process is called deserialization.

This illustration shows the overall process of serialization.

The object is serialized to a stream, which carries not just the data, but information about the object's type, such as its version, culture, and assembly
name. From that stream, it can be stored in a database, a file, or memory.

Serialization allows the developer to save the state of an object and recreate it as needed, providing storage of objects as well as data exchange.
Through serialization, a developer can perform actions like sending the object to a remote application by means of a Web Service, passing an object
from one domain to another, passing an object through a firewall as an XML string, or maintaining security or user-specific information across
applications.

To serialize an object, you need the object to be serialized, a stream to contain the serialized object, and a Formatter. System.Runtime.Serialization
contains the classes necessary for serializing and deserializing objects.

Apply the SerializableAttribute attribute to a type to indicate that instances of this type can be serialized. A SerializationException exception is thrown if
you attempt to serialize but the type does not have the SerializableAttribute attribute.

If you do not want a field within your class to be serializable, apply the NonSerializedAttribute attribute. If a field of a serializable type contains a pointer,
a handle, or some other data structure that is specific to a particular environment, and the field cannot be meaningfully reconstituted in a different
environment, then you may want to make it nonserializable.

If a serialized class contains references to objects of other classes that are marked SerializableAttribute, those objects will also be serialized.

Either binary or XML serialization can be used. In binary serialization, all members, even those that are read-only, are serialized, and performance is
enhanced. XML serialization provides more readable code, as well as greater flexibility of object sharing and usage for interoperability purposes.

Binary serialization uses binary encoding to produce compact serialization for uses such as storage or socket-based network streams.

XML serialization serializes the public fields and properties of an object, or the parameters and return values of methods, into an XML stream that
conforms to a specific XML Schema definition language (XSD) document. XML serialization results in strongly typed classes with public properties and
fields that are converted to XML. System.Xml.Serialization contains the classes necessary for serializing and deserializing XML.

You can apply attributes to classes and class members in order to control the way the XmlSerializer serializes or deserializes an instance of the class.

Serialization can be performed in two ways, basic and custom. Basic serialization uses the .NET Framework to automatically serialize the object.

The only requirement in basic serialization is that the object has the SerializableAttribute attribute applied. The NonSerializedAttribute can be used to
keep specific fields from being serialized.

When you use basic serialization, the versioning of objects may create problems, in which case custom serialization may be preferable. Basic
serialization is the easiest way to perform serialization, but it does not provide much control over the process.

In custom serialization, you can specify exactly which objects will be serialized and how it will be done. The class must be marked SerializableAttribute
and implement the ISerializable interface.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/serialization/index.md
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.formatter
https://docs.microsoft.com/dotnet/api/system.runtime.serialization
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.serializationexception
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.nonserializedattribute
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.xml.serialization
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.nonserializedattribute
https://docs.microsoft.com/dotnet/api/system.serializableattribute
https://docs.microsoft.com/dotnet/api/system.runtime.serialization.iserializable


Designer Serialization

Related Topics and Examples

If you want your object to be deserialized in a custom manner as well, you must use a custom constructor.

Designer serialization is a special form of serialization that involves the kind of object persistence usually associated with development tools. Designer
serialization is the process of converting an object graph into a source file that can later be used to recover the object graph. A source file can contain
code, markup, or even SQL table information.

Walkthrough: Persisting an Object in Visual Studio (Visual Basic)
Demonstrates how serialization can be used to persist an object's data between instances, allowing you to store values and retrieve them the next time
the object is instantiated.

How to: Read Object Data from an XML File (Visual Basic)
Shows how to read object data that was previously written to an XML file using the XmlSerializer class.

How to: Write Object Data to an XML File (Visual Basic)
Shows how to write the object from a class to an XML file using the XmlSerializer class.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/serialization/walkthrough-persisting-an-object-in-visual-studio
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/serialization/how-to-read-object-data-from-an-xml-file
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/serialization/how-to-write-object-data-to-an-xml-file
https://docs.microsoft.com/dotnet/api/system.xml.serialization.xmlserializer


    

Threading (Visual Basic)
7/14/2018 • 2 minutes to read • Edit Online

NOTENOTE

Related Topics
TITLE DESCRIPTION

Multithreaded Applications (Visual Basic) Describes how to create and use threads.

Thread Synchronization (Visual Basic) Describes how to control the interactions of threads.

Thread Pooling (Visual Basic) Describes how to use a pool of worker threads that are managed by the system.

How to: Use a Thread Pool (Visual Basic) Demonstrates synchronized use of multiple threads in the thread pool.

Threading Describes how to implement threading in the .NET Framework.

Threading enables your Visual Basic program to perform concurrent processing so that you can do more than one operation at a time. For example, you
can use threading to monitor input from the user, perform background tasks, and handle simultaneous streams of input.

Threads have the following properties:

Threads enable your program to perform concurrent processing.

The .NET Framework System.Threading namespace makes using threads easier.

Threads share the application's resources. For more information, see Using Threads and Threading.

By default, a Visual Basic program has one thread. However, auxiliary threads can be created and used to execute code in parallel with the primary
thread. These threads are often called worker threads.

Worker threads can be used to perform time-consuming or time-critical tasks without tying up the primary thread. For example, worker threads are
often used in server applications to fulfill incoming requests without waiting for the previous request to be completed. Worker threads are also used to
perform "background" tasks in desktop applications so that the main thread--which drives user interface elements--remains responsive to user actions.

Threading solves problems with throughput and responsiveness, but it can also introduce resource-sharing issues such as deadlocks and race
conditions. Multiple threads are best for tasks that require different resources such as file handles and network connections. Assigning multiple threads
to a single resource is likely to cause synchronization issues, and having threads frequently blocked when waiting for other threads defeats the purpose
of using multiple threads.

A common strategy is to use worker threads to perform time-consuming or time-critical tasks that do not require many of the resources used by other
threads. Naturally, some resources in your program must be accessed by multiple threads. For these cases, the System.Threading namespace provides
classes for synchronizing threads. These classes include Mutex, Monitor, Interlocked, AutoResetEvent, and ManualResetEvent.

You can use some or all these classes to synchronize the activities of multiple threads, but some support for threading is supported by the Visual Basic
language. For example, the SyncLock Statement provides synchronization features through implicit use of Monitor.

Beginning with the .NET Framework 4, multithreaded programming is greatly simplified with the System.Threading.Tasks.Parallel and System.Threading.Tasks.Task
classes, Parallel LINQ (PLINQ), new concurrent collection classes in the System.Collections.Concurrent namespace, and a new programming model that is based on the
concept of tasks rather than threads. For more information, see Parallel Programming.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/concepts/threading/index.md
https://docs.microsoft.com/dotnet/api/system.threading
https://docs.microsoft.com/en-us/dotnet/standard/threading/using-threads-and-threading
https://docs.microsoft.com/dotnet/api/system.threading
https://docs.microsoft.com/dotnet/api/system.threading.mutex
https://docs.microsoft.com/dotnet/api/system.threading.monitor
https://docs.microsoft.com/dotnet/api/system.threading.interlocked
https://docs.microsoft.com/dotnet/api/system.threading.autoresetevent
https://docs.microsoft.com/dotnet/api/system.threading.manualresetevent
https://docs.microsoft.com/dotnet/api/system.threading.monitor
https://docs.microsoft.com/dotnet/api/system.threading.tasks.parallel
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://msdn.microsoft.com/library/dd460688
https://docs.microsoft.com/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/threading/multithreaded-applications
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/threading/thread-synchronization
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/threading/thread-pooling
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/threading/how-to-use-a-thread-pool


           

Program Structure and Code Conventions (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section introduces the typical Visual Basic program structure, provides a simple Visual Basic program, "Hello, World", and discusses Visual Basic
code conventions. Code conventions are suggestions that focus not on a program's logic but on its physical structure and appearance. Following them
makes your code easier to read, understand, and maintain. Code conventions can include, among others:

Standardized formats for labeling and commenting code.

Guidelines for spacing, formatting, and indenting code.

Naming conventions for objects, variables, and procedures.

The following topics present a set of programming guidelines for Visual Basic programs, along with examples of good usage.

Structure of a Visual Basic Program
Provides an overview of the elements that make up a Visual Basic program.

Main Procedure in Visual Basic
Discusses the procedure that serves as the starting point and overall control for your application.

References and the Imports Statement
Discusses how to reference objects in other assemblies.

Namespaces in Visual Basic
Describes how namespaces organize objects within assemblies.

Visual Basic Naming Conventions
Includes general guidelines for naming procedures, constants, variables, arguments, and objects.

Visual Basic Coding Conventions
Reviews the guidelines used in developing the samples in this documentation.

Conditional Compilation
Describes how to compile particular blocks of code selectively while directing the compiler to ignore others.

How to: Break and Combine Statements in Code
Shows how to divide long statements into multiple lines and combine short statements on one line.

How to: Collapse and Hide Sections of Code
Shows how to collapse and hide sections of code in the Visual Basic code editor.

How to: Label Statements
Shows how to mark a line of code to identify it for use with statements such as On Error Goto .

Special Characters in Code
Shows how and where to use non-numeric and non-alphabetic characters.

Comments in Code
Discusses how to add descriptive comments to your code.

Keywords as Element Names in Code
Describes how to use brackets ( [] ) to delimit variable names that are also Visual Basic keywords.

Me, My, MyBase, and MyClass
Describes various ways to refer to elements of a Visual Basic program.

Visual Basic Limitations
Discusses the removal of known coding limits within Visual Basic.

Typographic and Code Conventions
Provides standard coding conventions for Visual Basic.

Writing Code
Describes features that make it easier for you to write and manage your code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/program-structure-and-code-conventions.md
https://docs.microsoft.com/visualstudio/ide/writing-code-in-the-code-and-text-editor


   

Structure of a Visual Basic Program
5/4/2018 • 3 minutes to read • Edit Online

File-Level Programming Elements

Option StatementsOption Statements

Imports StatementsImports Statements

Namespace StatementsNamespace Statements

Conditional Compilation StatementsConditional Compilation Statements

Namespace-Level Programming Elements

Module-Level Programming Elements

A Visual Basic program is built up from standard building blocks. A solution comprises one or more projects. A project in turn can contain one or more
assemblies. Each assembly is compiled from one or more source files. A source file provides the definition and implementation of classes, structures,
modules, and interfaces, which ultimately contain all your code.

For more information about these building blocks of a Visual Basic program, see Solutions and Projects and Assemblies and the Global Assembly
Cache.

When you start a project or file and open the code editor, you see some code already in place and in the correct order. Any code that you write should
follow the following sequence:

1. Option  statements

2. Imports  statements

3. Namespace  statements and namespace-level elements

If you enter statements in a different order, compilation errors can result.

A program can also contain conditional compilation statements. You can intersperse these in the source file among the statements of the preceding
sequence.

Option  statements establish ground rules for subsequent code, helping prevent syntax and logic errors. The Option Explicit Statement ensures that all
variables are declared and spelled correctly, which reduces debugging time. The Option Strict Statement helps to minimize logic errors and data loss
that can occur when you work between variables of different data types. The Option Compare Statement specifies the way strings are compared to each
other, based on either their Binary  or Text  values.

You can include an Imports Statement (.NET Namespace and Type) to import names defined outside your project. An Imports  statement allows your
code to refer to classes and other types defined within the imported namespace, without having to qualify them. You can use as many Imports

statements as appropriate. For more information, see References and the Imports Statement.

Namespaces help you organize and classify your programming elements for ease of grouping and accessing. You use the Namespace Statement to
classify the following statements within a particular namespace. For more information, see Namespaces in Visual Basic.

Conditional compilation statements can appear almost anywhere in your source file. They cause parts of your code to be included or excluded at
compile time depending on certain conditions. You can also use them for debugging your application, because conditional code runs in debugging
mode only. For more information, see Conditional Compilation.

Classes, structures, and modules contain all the code in your source file. They are namespace-level elements, which can appear within a namespace or at
the source file level. They hold the declarations of all other programming elements. Interfaces, which define element signatures but provide no
implementation, also appear at module level. For more information on the module-level elements, see the following:

Class Statement

Structure Statement

Module Statement

Interface Statement

Data elements at namespace level are enumerations and delegates.

Procedures, operators, properties, and events are the only programming elements that can hold executable code (statements that perform actions at run
time). They are the module-level elements of your program. For more information on the procedure-level elements, see the following:

Function Statement

Sub Statement

Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/structure-of-a-visual-basic-program.md
https://docs.microsoft.com/visualstudio/ide/solutions-and-projects-in-visual-studio


Procedure-Level Programming Elements

The Main Procedure

See Also

Operator Statement

Property Statement

Event Statement

Data elements at module level are variables, constants, enumerations, and delegates.

Most of the contents of procedure-level elements are executable statements, which constitute the run-time code of your program. All executable code
must be in some procedure ( Function , Sub , Operator , Get , Set , AddHandler , RemoveHandler , RaiseEvent ). For more information, see Statements.

Data elements at procedure level are limited to local variables and constants.

The Main  procedure is the first code to run when your application has been loaded. Main  serves as the starting point and overall control for your
application. There are four varieties of Main :

Sub Main()

Sub Main(ByVal cmdArgs() As String)

Function Main() As Integer

Function Main(ByVal cmdArgs() As String) As Integer

The most common variety of this procedure is Sub Main() . For more information, see Main Procedure in Visual Basic.

Main Procedure in Visual Basic
Visual Basic Naming Conventions
Visual Basic Limitations



       

Main Procedure in Visual Basic
5/4/2018 • 3 minutes to read • Edit Online

Requirements for the Main Procedure

Declaring the Main Procedure

NOTENOTE

Every Visual Basic application must contain a procedure called Main . This procedure serves as the starting point and overall control for your
application. The .NET Framework calls your Main  procedure when it has loaded your application and is ready to pass control to it. Unless you are
creating a Windows Forms application, you must write the Main  procedure for applications that run on their own.

Main  contains the code that runs first. In Main , you can determine which form is to be loaded first when the program starts, find out if a copy of your
application is already running on the system, establish a set of variables for your application, or open a database that the application requires.

A file that runs on its own (usually with extension .exe) must contain a Main  procedure. A library (for example with extension .dll) does not run on its
own and does not require a Main  procedure. The requirements for the different types of projects you can create are as follows:

Console applications run on their own, and you must supply at least one Main  procedure. .

Windows Forms applications run on their own. However, the Visual Basic compiler automatically generates a Main  procedure in such an
application, and you do not need to write one.

Class libraries do not require a Main  procedure. These include Windows Control Libraries and Web Control Libraries. Web applications are
deployed as class libraries.

There are four ways to declare the Main  procedure. It can take arguments or not, and it can return a value or not.

If you declare Main  in a class, you must use the Shared  keyword. In a module, Main  does not need to be Shared .

Module mainModule  
    Sub Main()  
        MsgBox("The Main procedure is starting the application.")  
        ' Insert call to appropriate starting place in your code.  
        MsgBox("The application is terminating.")  
    End Sub  
End Module  

Module mainModule  
    Function Main() As Integer  
        MsgBox("The Main procedure is starting the application.")  
        Dim returnValue As Integer = 0  
        ' Insert call to appropriate starting place in your code.  
        ' On return, assign appropriate value to returnValue.  
        ' 0 usually means successful completion.  
        MsgBox("The application is terminating with error level " &  
             CStr(returnValue) & ".")  
        Return returnValue  
    End Function  
End Module  

The simplest way is to declare a Sub  procedure that does not take arguments or return a value.

Main  can also return an Integer  value, which the operating system uses as the exit code for your program. Other programs can test this code
by examining the Windows ERRORLEVEL value. To return an exit code, you must declare Main  as a Function  procedure instead of a Sub

procedure.

Main  can also take a String  array as an argument. Each string in the array contains one of the command-line arguments used to invoke your
program. You can take different actions depending on their values.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/main-procedure.md


See Also

Module mainModule  
    Function Main(ByVal cmdArgs() As String) As Integer  
        MsgBox("The Main procedure is starting the application.")  
        Dim returnValue As Integer = 0  
        ' See if there are any arguments.  
        If cmdArgs.Length > 0 Then  
            For argNum As Integer = 0 To UBound(cmdArgs, 1)  
                ' Insert code to examine cmdArgs(argNum) and take  
                ' appropriate action based on its value.  
            Next argNum  
        End If  
        ' Insert call to appropriate starting place in your code.  
        ' On return, assign appropriate value to returnValue.  
        ' 0 usually means successful completion.  
        MsgBox("The application is terminating with error level " &  
             CStr(returnValue) & ".")  
        Return returnValue  
    End Function  
End Module  

Module mainModule  
    Sub Main(ByVal cmdArgs() As String)  
        MsgBox("The Main procedure is starting the application.")  
        Dim returnValue As Integer = 0  
        ' See if there are any arguments.  
        If cmdArgs.Length > 0 Then  
            For argNum As Integer = 0 To UBound(cmdArgs, 1)  
                ' Insert code to examine cmdArgs(argNum) and take  
                ' appropriate action based on its value.  
            Next argNum  
        End If  
        ' Insert call to appropriate starting place in your code.  
        MsgBox("The application is terminating.")  
    End Sub  
End Module  

You can declare Main  to examine the command-line arguments but not return an exit code, as follows.

MsgBox
Length
UBound
Structure of a Visual Basic Program
/main
Shared
Sub Statement
Function Statement
Integer Data Type
String Data Type

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox
https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.ubound


      

References and the Imports Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

The Imports Statement

NOTENOTE

Using Aliases with the Imports Statement

MsgBox("Some text" & Microsoft.VisualBasic.ControlChars.CrLf &
       "Some more text")

Imports CtrlChrs = Microsoft.VisualBasic.ControlChars

MsgBox("Some text" & CtrlChrs.CrLf & "Some more text")

See Also

You can make external objects available to your project by choosing the Add Reference command on the Project menu. References in Visual Basic can
point to assemblies, which are like type libraries but contain more information.

Assemblies include one or more namespaces. When you add a reference to an assembly, you can also add an Imports  statement to a module that
controls the visibility of that assembly's namespaces within the module. The Imports  statement provides a scoping context that lets you use only the
portion of the namespace necessary to supply a unique reference.

The Imports  statement has the following syntax:

Imports  [ |``Aliasname  =] Namespace

Aliasname  refers to a short name you can use within code to refer to an imported namespace. Namespace  is a namespace available through either a
project reference, through a definition within the project, or through a previous Imports  statement.

A module may contain any number of Imports  statements. They must appear after any Option  statements, if present, but before any other code.

Do not confuse project references with the Imports  statement or the Declare  statement. Project references make external objects, such as objects in assemblies,
available to Visual Basic projects. The Imports  statement is used to simplify access to project references, but does not provide access to these objects. The Declare

statement is used to declare a reference to an external procedure in a dynamic-link library (DLL).

The Imports  statement makes it easier to access methods of classes by eliminating the need to explicitly type the fully qualified names of references.
Aliases let you assign a friendlier name to just one part of a namespace. For example, the carriage return/line feed sequence that causes a single piece of
text to be displayed on multiple lines is part of the ControlChars module in the Microsoft.VisualBasic namespace. To use this constant in a program
without an alias, you would need to type the following code:

Imports  statements must always be the first lines immediately following any Option  statements in a module. The following code fragment shows how
to import and assign an alias to the Microsoft.VisualBasic.ControlChars module:

Future references to this namespace can be considerably shorter :

If an Imports  statement does not include an alias name, elements defined within the imported namespace can be used in the module without
qualification. If the alias name is specified, it must be used as a qualifier for names contained within that namespace.

ControlChars
Microsoft.VisualBasic

Namespaces in Visual Basic
Assemblies and the Global Assembly Cache
How to: Create and Use Assemblies Using the Command Line
Imports Statement (.NET Namespace and Type)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/references-and-the-imports-statement.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic
http://msdn.microsoft.com/library/70f65026-3687-4e9c-ab79-c18b97dd8be4


                

Namespaces in Visual Basic
5/4/2018 • 5 minutes to read • Edit Online

Dim LBox As System.Windows.Forms.ListBox

Avoiding Name Collisions

' Define a new object based on your ListBox class.
Dim LBC As New ListBox
' Define a new Windows.Forms ListBox control.
Dim MyLB As New System.Windows.Forms.ListBox

Fully Qualified Names

Dim LBC As New ListBoxProject.Form1.ListBox

Imports LBControl = System.Windows.Forms.ListBox
Imports MyListBox = ListBoxProject.Form1.ListBox

Dim LBC As LBControl
Dim MyLB As MyListBox

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can in turn contain other namespaces.
Namespaces prevent ambiguity and simplify references when using large groups of objects such as class libraries.

For example, the .NET Framework defines the ListBox class in the System.Windows.Forms namespace. The following code fragment shows how to
declare a variable using the fully qualified name for this class:

.NET Framework namespaces address a problem sometimes called namespace pollution, in which the developer of a class library is hampered by the
use of similar names in another library. These conflicts with existing components are sometimes called name collisions.

For example, if you create a new class named ListBox , you can use it inside your project without qualification. However, if you want to use the .NET
Framework ListBox class in the same project, you must use a fully qualified reference to make the reference unique. If the reference is not unique, Visual
Basic produces an error stating that the name is ambiguous. The following code example demonstrates how to declare these objects:

The following illustration shows two namespace hierarchies, both containing an object named ListBox .

By default, every executable file you create with Visual Basic contains a namespace with the same name as your project. For example, if you define an
object within a project named ListBoxProject , the executable file ListBoxProject.exe contains a namespace called ListBoxProject .

Multiple assemblies can use the same namespace. Visual Basic treats them as a single set of names. For example, you can define classes for a
namespace called SomeNameSpace  in an assembly named Assemb1 , and define additional classes for the same namespace from an assembly named 
Assemb2 .

Fully qualified names are object references that are prefixed with the name of the namespace in which the object is defined. You can use objects defined
in other projects if you create a reference to the class (by choosing Add Reference from the Project menu) and then use the fully qualified name for
the object in your code. The following code fragment shows how to use the fully qualified name for an object from another project's namespace:

Fully qualified names prevent naming conflicts because they make it possible for the compiler to determine which object is being used. However, the
names themselves can get long and cumbersome. To get around this, you can use the Imports  statement to define an alias—an abbreviated name you
can use in place of a fully qualified name. For example, the following code example creates aliases for two fully qualified names, and uses these aliases
to define two objects.

If you use the Imports  statement without an alias, you can use all the names in that namespace without qualification, provided they are unique to the
project. If your project contains Imports  statements for namespaces that contain items with the same name, you must fully qualify that name when you
use it. Suppose, for example, your project contained the following two Imports  statements:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/namespaces.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/dotnet/api/system.windows.forms
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox


' This namespace contains a class called Class1.
Imports MyProj1
' This namespace also contains a class called Class1.
Imports MyProj2

Namespace Level Statements

Global Keyword in Fully Qualified Names

Namespace SpecialSpace  
    Namespace System  
        Class abc  
            Function getValue() As System.Int32  
                Dim n As System.Int32  
                Return n  
            End Function  
        End Class  
    End Namespace  
End Namespace  

Namespace SpecialSpace  
    Namespace System  
        Class abc  
            Function getValue() As Global.System.Int32  
                Dim n As Global.System.Int32  
                Return n  
            End Function  
        End Class  
    End Namespace  
End Namespace  

Global Keyword in Namespace Statements

Namespace Global.Magnetosphere

End Namespace

Namespace Global
    Namespace Magnetosphere

    End Namespace
End Namespace

If you attempt to use Class1  without fully qualifying it, Visual Basic produces an error stating that the name Class1  is ambiguous.

Within a namespace, you can define items such as modules, interfaces, classes, delegates, enumerations, structures, and other namespaces. You cannot
define items such as properties, procedures, variables and events at the namespace level. These items must be declared within containers such as
modules, structures, or classes.

If you have defined a nested hierarchy of namespaces, code inside that hierarchy might be blocked from accessing the System namespace of the .NET
Framework. The following example illustrates a hierarchy in which the SpecialSpace.System  namespace blocks access to System.

As a result, the Visual Basic compiler cannot successfully resolve the reference to System.Int32, because SpecialSpace.System  does not define Int32 .
You can use the Global  keyword to start the qualification chain at the outermost level of the .NET Framework class library. This allows you to specify
the System namespace or any other namespace in the class library. The following example illustrates this.

You can use Global  to access other root-level namespaces, such as Microsoft.VisualBasic, and any namespace associated with your project.

You can also use the Global  keyword in a Namespace Statement. This lets you define a namespace out of the root namespace of your project.

All namespaces in your project are based on the root namespace for the project. Visual Studio assigns your project name as the default root namespace
for all code in your project. For example, if your project is named ConsoleApplication1 , its programming elements belong to namespace 
ConsoleApplication1 . If you declare Namespace Magnetosphere , references to Magnetosphere  in the project will access ConsoleApplication1.Magnetosphere .

The following examples use the Global  keyword to declare a namespace out of the root namespace for the project.

In a namespace declaration, Global  cannot be nested in another namespace.

You can use the Application Page, Project Designer (Visual Basic) to view and modify the Root Namespace of the project. For new projects, the Root
Namespace defaults to the project name. To cause Global  to be the top-level namespace, you can clear the Root Namespace entry so that the box is
empty. Clearing Root Namespace removes the need for the Global  keyword in namespace declarations.

If a Namespace  statement declares a name that is also a namespace in the .NET Framework, the .NET Framework namespace becomes unavailable if the
Global  keyword is not used in a fully qualified name. To enable access to that .NET Framework namespace without using the Global  keyword, you can

https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


Module Module1
    Sub Main()
        Dim encoding As New System.Text.TitanEncoding

        ' If the namespace defined below is System.Text
        ' instead of Global.System.Text, then this statement
        ' causes a compile-time error.
        Dim sb As New System.Text.StringBuilder
    End Sub
End Module

Namespace Global.System.Text
    Class TitanEncoding

    End Class
End Namespace

See Also

include the Global  keyword in the Namespace  statement.

The following example has the Global  keyword in the System.Text  namespace declaration.

If the Global  keyword was not present in the namespace declaration, StringBuilder could not be accessed without specifying 
Global.System.Text.StringBuilder . For a project named ConsoleApplication1 , references to System.Text  would access ConsoleApplication1.System.Text

if the Global  keyword was not used.

ListBox
System.Windows.Forms
Assemblies and the Global Assembly Cache
How to: Create and Use Assemblies Using the Command Line
References and the Imports Statement
Imports Statement (.NET Namespace and Type)
Writing Code in Office Solutions

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/system.windows.forms.listbox
https://docs.microsoft.com/dotnet/api/system.windows.forms
http://msdn.microsoft.com/library/70f65026-3687-4e9c-ab79-c18b97dd8be4
https://msdn.microsoft.com/library/bb608596


         

Visual Basic Naming Conventions
5/4/2018 • 2 minutes to read • Edit Online

See Also

When you name an element in your Visual Basic application, the first character of that name must be an alphabetic character or an underscore. Note,
however, that names beginning with an underscore are not compliant with the Language Independence and Language-Independent Components
(CLS).

The following suggestions apply to naming.

Begin each separate word in a name with a capital letter, as in FindLastRecord  and RedrawMyForm .

Begin function and method names with a verb, as in InitNameArray  or CloseDialog .

Begin class, structure, module, and property names with a noun, as in EmployeeName  or CarAccessory .

Begin interface names with the prefix "I", followed by a noun or a noun phrase, like IComponent , or with an adjective describing the interface's
behavior, like IPersistable . Do not use the underscore, and use abbreviations sparingly, because abbreviations can cause confusion.

Begin event handler names with a noun describing the type of event followed by the " EventHandler " suffix, as in " MouseEventHandler ".

In names of event argument classes, include the " EventArgs " suffix.

If an event has a concept of "before" or "after," use a suffix in present or past tense, as in " ControlAdd " or " ControlAdded ".

For long or frequently used terms, use abbreviations to keep name lengths reasonable, for example, "HTML", instead of "Hypertext Markup
Language". In general, variable names greater than 32 characters are difficult to read on a monitor set to a low resolution. Also, make sure your
abbreviations are consistent throughout the entire application. Randomly switching in a project between "HTML" and "Hypertext Markup
Language" can lead to confusion.

Avoid using names in an inner scope that are the same as names in an outer scope. Errors can result if the wrong variable is accessed. If a conflict
occurs between a variable and the keyword of the same name, you must identify the keyword by preceding it with the appropriate type library.
For example, if you have a variable called Date , you can use the intrinsic Date  function only by calling DateTime.Date.

Keywords as Element Names in Code
Me, My, MyBase, and MyClass
Declared Element Names
Program Structure and Code Conventions
Visual Basic Language Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/naming-conventions.md
https://docs.microsoft.com/dotnet/api/system.datetime.date
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


 

Visual Basic Coding Conventions
5/4/2018 • 6 minutes to read • Edit Online

Naming Conventions

Layout Conventions

Commenting Conventions

Program Structure

Language Guidelines
String Data TypeString Data Type

Microsoft develops samples and documentation that follow the guidelines in this topic. If you follow the same coding conventions, you may gain the
following benefits:

Your code will have a consistent look, so that readers can better focus on content, not layout.

Readers understand your code more quickly because they can make assumptions based on previous experience.

You can copy, change, and maintain the code more easily.

You help ensure that your code demonstrates "best practices" for Visual Basic.

For information about naming guidelines, see Naming Guidelines topic.

Do not use "My" or "my" as part of a variable name. This practice creates confusion with the My  objects.

You do not have to change the names of objects in auto-generated code to make them fit the guidelines.

a As Integer,  
b As Integer  

Insert tabs as spaces, and use smart indenting with four-space indents.

Use Pretty listing (reformatting) of code to reformat your code in the code editor. For more information, see Options, Text Editor, Basic
(Visual Basic).

Use only one statement per line. Don't use the Visual Basic line separator character (:).

Avoid using the explicit line continuation character "_" in favor of implicit line continuation wherever the language allows it.

Use only one declaration per line.

If Pretty listing (reformatting) of code doesn't format continuation lines automatically, manually indent continuation lines one tab stop.
However, always left-align items in a list.

Add at least one blank line between method and property definitions.

' Here is a comment.

Put comments on a separate line instead of at the end of a line of code.

Start comment text with an uppercase letter, and end comment text with a period.

Insert one space between the comment delimiter (') and the comment text.

Do not surround comments with formatted blocks of asterisks.

Sub Main()
  For Each argument As String In My.Application.CommandLineArgs
    ' Add code here to use the string variable.
  Next
End Sub

When you use the Main  method, use the default construct for new console applications, and use My  for command-line arguments.

To concatenate strings, use an ampersand (&).

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/coding-conventions.md
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/visualstudio/ide/reference/options-text-editor-basic-visual-basic


Relaxed Delegates in Event HandlersRelaxed Delegates in Event Handlers

Public Sub Form1_Load() Handles Form1.Load
End Sub

Unsigned Data TypeUnsigned Data Type

ArraysArrays

Use the With KeywordUse the With Keyword

With orderLog
  .Log = "Application"
  .Source = "Application Name"
  .MachineName = "Computer Name"
End With

Use the Try...Catch and Using Statements when you use Exception HandlingUse the Try...Catch and Using Statements when you use Exception Handling

Use the IsNot KeywordUse the IsNot Keyword

New KeywordNew Keyword

MsgBox("hello" & vbCrLf & "goodbye")

Dim longString As New System.Text.StringBuilder
For count As Integer = 1 To 1000
  longString.Append(count)
Next

To append strings in loops, use the StringBuilder object.

Do not explicitly qualify the arguments (Object and EventArgs) to event handlers. If you are not using the event arguments that are passed to an event
(for example, sender as Object, e as EventArgs), use relaxed delegates, and leave out the event arguments in your code:

Use Integer  rather than unsigned types, except where they are necessary.

Dim letters1 As String() = {"a", "b", "c"}

Dim letters2() As String = New String() {"a", "b", "c"}

Dim letters4 As String() = {"a", "b", "c"}

Dim letters3() As String = {"a", "b", "c"}

Dim letters5 As String() = {"a", "b", "c"}

Dim letters6(2) As String
letters6(0) = "a"
letters6(1) = "b"
letters6(2) = "c"

Use the short syntax when you initialize arrays on the declaration line. For example, use the following syntax.

Do not use the following syntax.

Put the array designator on the type, not on the variable. For example, use the following syntax:

Do not use the following syntax:

Use the { } syntax when you declare and initialize arrays of basic data types. For example, use the following syntax:

Do not use the following syntax:

When you make a series of calls to one object, consider using the With  keyword:

Do not use On Error Goto .

Use the IsNot  keyword instead of Not...Is Nothing .

Use short instantiation. For example, use the following syntax:

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder


Event HandlingEvent Handling

Using Shared MembersUsing Shared Members

Use XML LiteralsUse XML Literals

LINQ QueriesLINQ Queries

Dim employees As New List(Of String)

Dim employees2 As List(Of String) = New List(Of String)

Dim orderLog As New EventLog With { 
    .Log = "Application", 
    .Source = "Application Name", 
    .MachineName = "Computer Name"}

The preceding line is equivalent to this:

Use object initializers for new objects instead of the parameterless constructor :

Private Sub ToolStripMenuItem1_Click() Handles ToolStripMenuItem1.Click
End Sub

Dim closeItem As New ToolStripMenuItem( 
    "Close", Nothing, AddressOf ToolStripMenuItem1_Click)
Me.MainMenuStrip.Items.Add(closeItem)

Public Event SampleEvent As EventHandler(Of SampleEventArgs)
' or
Public Event SampleEvent(ByVal source As Object, 
                          ByVal e As SampleEventArgs)

Use Handles  rather than AddHandler :

Use AddressOf , and do not instantiate the delegate explicitly:

When you define an event, use the short syntax, and let the compiler define the delegate:

Do not verify whether an event is Nothing  (null) before you call the RaiseEvent  method. RaiseEvent  checks for Nothing  before it raises the
event.

Call Shared  members by using the class name, not from an instance variable.

XML literals simplify the most common tasks that you encounter when you work with XML (for example, load, query, and transform). When you
develop with XML, follow these guidelines:

Private Function GetHtmlDocument( 
    ByVal items As IEnumerable(Of XElement)) As String

  Dim htmlDoc = <html>
                  <body>
                    <table border="0" cellspacing="2">
                      <%= 
                        From item In items 
                        Select <tr>
                                 <td style="width:480">
                                   <%= item.<title>.Value %>
                                 </td>
                                 <td><%= item.<pubDate>.Value %></td>
                               </tr> 
                      %>
                    </table>
                  </body>
                </html>

  Return htmlDoc.ToString()
End Function

Use XML literals to create XML documents and fragments instead of calling XML APIs directly.

Import XML namespaces at the file or project level to take advantage of the performance optimizations for XML literals.

Use the XML axis properties to access elements and attributes in an XML document.

Use embedded expressions to include values and to create XML from existing values instead of using API calls such as the Add  method:



See Also

Dim seattleCustomers = From cust In customers 
                       Where cust.City = "Seattle"

Dim customerOrders = From customer In customers 
                     Join order In orders 
                       On customer.CustomerID Equals order.CustomerID 
                     Select Customer = customer, Order = order

Dim customerOrders2 = From cust In customers 
                      Join ord In orders
                        On cust.CustomerID Equals ord.CustomerID 
                      Select CustomerName = cust.Name, 
                             OrderID = ord.ID

Dim customerList = From cust In customers

Dim newyorkCustomers = From cust In customers 
                       Where cust.City = "New York" 
                       Select cust.LastName, cust.CompanyName

Dim newyorkCustomers2 = From cust In customers 
                        Where cust.City = "New York" 
                        Order By cust.LastName

Dim customerList2 = From cust In customers 
                    Join order In orders 
                      On cust.CustomerID Equals order.CustomerID 
                    Select cust, order

Use meaningful names for query variables:

Provide names for elements in a query to make sure that property names of anonymous types are correctly capitalized using Pascal casing:

Rename properties when the property names in the result would be ambiguous. For example, if your query returns a customer name and an
order ID, rename them instead of leaving them as Name  and ID  in the result:

Use type inference in the declaration of query variables and range variables:

Align query clauses under the From  statement:

Use Where  clauses before other query clauses so that later query clauses operate on the filtered set of data:

Use the Join  clause to explicitly define a join operation instead of using the Where  clause to implicitly define a join operation:

Secure Coding Guidelines

https://docs.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines


            

Conditional Compilation in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

#If FrenchVersion Then
   ' <code specific to the French language version>.
#ElseIf GermanVersion Then
   ' <code specific to the German language version>.
#Else
        ' <code specific to other versions>.
#End If

NOTENOTE

Declaring Conditional Compilation Constants

HOW CONSTANT IS SET SCOPE OF CONSTANT

Project Designer Public to all files in the project

Command line Public to all files passed to the command-line compiler

#Const  statement in code Private to the file in which it is declared

TO SET CONSTANTS IN THE PROJECT DESIGNER

- Before creating your executable file, set constants in the Project Designer by following the steps provided in Managing Project and Solution Properties.

TO SET CONSTANTS AT THE COMMAND LINE

- Use the /d switch to enter conditional compilation constants, as in the following example:
vbc MyProj.vb /d:conFrenchVersion=–1:conANSI=0

No space is required between the /d switch and the first constant. For more information, see /define (Visual Basic).
Command-line declarations override declarations entered in the Project Designer, but do not erase them. Arguments set in Project Designer remain in effect for
subsequent compilations.
When writing constants in the code itself, there are no strict rules as to their placement, since their scope is the entire module in which they are declared.

TO SET CONSTANTS IN YOUR CODE

- Place the constants in the declaration block of the module in which they are used. This helps keep your code organized and easier to read.

Related Topics

In conditional compilation, particular blocks of code in a program are compiled selectively while others are ignored.

For example, you may want to write debugging statements that compare the speed of different approaches to the same programming task, or you may
want to localize an application for multiple languages. Conditional compilation statements are designed to run during compile time, not at run time.

You denote blocks of code to be conditionally compiled with the #If...Then...#Else  directive. For example, to create French- and German-language
versions of the same application from the same source code, you embed platform-specific code segments in #If...Then  statements using the
predefined constants FrenchVersion  and GermanVersion . The following example demonstrates how:

If you set the value of the FrenchVersion  conditional compilation constant to True  at compile time, the conditional code for the French version is
compiled. If you set the value of the GermanVersion  constant to True , the compiler uses the German version. If neither is set to True , the code in the
last Else  block runs.

Autocompletion will not function when editing code and using conditional compilation directives if the code is not part of the current branch.

You can set conditional compilation constants in one of three ways:

In the Project Designer

At the command line when using the command-line compiler

In your code

Conditional compilation constants have a special scope and cannot be accessed from standard code. The scope of a conditional compilation constant is
dependent on the way it is set. The following table lists the scope of constants declared using each of the three ways mentioned above.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/conditional-compilation.md
https://docs.microsoft.com/visualstudio/ide/managing-project-and-solution-properties


TITLE DESCRIPTION

Program Structure and Code Conventions Provides suggestions for making your code easy to read and maintain.

Reference
#Const Directive

#If...Then...#Else Directives

/define (Visual Basic)



         

How to: Break and Combine Statements in Code (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To break a single statement into multiple linesTo break a single statement into multiple lines

To place multiple statements on the same lineTo place multiple statements on the same line

See Also

When writing your code, you might at times create lengthy statements that necessitate horizontal scrolling in the Code Editor. Although this doesn't
affect the way your code runs, it makes it difficult for you or anyone else to read the code as it appears on the monitor. In such cases, you should
consider breaking the single long statement into several lines.

NOTENOTE

cmd.CommandText = _
    "SELECT * FROM Titles JOIN Publishers " _
    & "ON Publishers.PubId = Titles.PubID " _
    & "WHERE Publishers.State = 'CA'"

Use the line-continuation character, which is an underscore ( _ ), at the point at which you want the line to break. The underscore must be
immediately preceded by a space and immediately followed by a line terminator (carriage return).

In some cases, if you omit the line-continuation character, the Visual Basic compiler will implicitly continue the statement on the next line of code. For a list of
syntax elements for which you can omit the line-continuation character, see "Implicit Line Continuation" in Statements.

In the following example, the statement is broken into four lines with line-continuation characters terminating all but the last line.

Using this sequence makes your code easier to read, both online and when printed.

The line-continuation character must be the last character on a line. You can't follow it with anything else on the same line.

Some limitations exist as to where you can use the line-continuation character ; for example, you can't use it in the middle of an argument name.
You can break an argument list with the line-continuation character, but the individual names of the arguments must remain intact.

You can't continue a comment by using a line-continuation character. The compiler doesn't examine the characters in a comment for special
meaning. For a multiple-line comment, repeat the comment symbol ( ' ) on each line.

Although placing each statement on a separate line is the recommended method, Visual Basic also allows you to place multiple statements on the same
line.

text1.Text = "Hello" : text1.BackColor = System.Drawing.Color.Red

Separate the statements with a colon ( : ), as in the following example.

Program Structure and Code Conventions
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/how-to-break-and-combine-statements-in-code.md


  

How to: Collapse and Hide Sections of Code (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To collapse and hide a section of codeTo collapse and hide a section of code

See Also

The #Region  directive enables you to collapse and hide sections of code in Visual Basic files. The #Region  directive lets you specify a block of code that
you can expand or collapse when using the Visual Studio code editor. The ability to hide code selectively makes your files more manageable and easier
to read. For more information, see Outlining.

#Region  directives support code block semantics such as #If...#End If . This means they cannot begin in one block and end in another ; the start and
end must be in the same block. #Region  directives are not supported within functions.

#Region "This is the code to be collapsed"
    Private components As System.ComponentModel.Container
    Dim WithEvents Form1 As System.Windows.Forms.Form

    Private Sub InitializeComponent()
        components = New System.ComponentModel.Container
        Me.Text = "Form1"
    End Sub
#End Region

NOTENOTE

Place the section of code between the #Region  and #End Region  statements, as in the following example:

The #Region  block can be used multiple times in a code file; thus, users can define their own blocks of procedures and classes that can, in turn, be
collapsed. #Region  blocks can also be nested within other #Region  blocks.

Hiding code does not prevent it from being compiled and does not affect #If...#End If  statements.

Conditional Compilation
#Region Directive
#If...Then...#Else Directives
Outlining

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/how-to-collapse-and-hide-sections-of-code.md
https://docs.microsoft.com/visualstudio/ide/outlining
https://docs.microsoft.com/visualstudio/ide/outlining


    

How to: Label Statements (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To label a line of codeTo label a line of code

See Also

Statement blocks are made up of lines of code delimited by colons. Lines of code preceded by an identifying string or integer are said to be labeled.
Statement labels are used to mark a line of code to identify it for use with statements such as On Error Goto .

Labels may be either valid Visual Basic identifiers—such as those that identify programming elements—or integer literals. A label must appear at the
beginning of a line of source code and must be followed by a colon, regardless of whether it is followed by a statement on the same line.

The compiler identifies labels by checking whether the beginning of the line matches any already-defined identifier. If it does not, the compiler assumes
it is a label.

Labels have their own declaration space and do not interfere with other identifiers. A label's scope is the body of the method. Label declaration takes
precedence in any ambiguous situation.

Labels can be used only on executable statements inside methods.

Jump:   FileOpen(1, "testFile", OpenMode.Input)
        ' ...
120:    FileClose(1)

Place an identifier, followed by a colon, at the beginning of the line of source code.

For example, the following lines of code are labeled with Jump  and 120 , respectively:

Statements
Declared Element Names
Program Structure and Code Conventions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/how-to-label-statements.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


  

Special Characters in Code (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Parentheses

Dim a, b, c, d, e As Double
a = 3.2
b = 7.6
c = 2
d = b + c / a
e = (b + c) / a

Separators

a = 3.2 : b = 7.6 : c = 2

Concatenation

var1 = "10.01"
var2 = 11
resultA = var1 + var2
resultB = var1 & var2

Member Access Operators

Dot (.) OperatorDot (.) Operator

Dim nextForm As New System.Windows.Forms.Form
' Access Text member (property) of Form class (on nextForm object).
nextForm.Text = "This is the next form"
' Access Close member (method) on nextForm.
nextForm.Close()

Exclamation Point (!) OperatorExclamation Point (!) Operator

Sometimes you have to use special characters in your code, that is, characters that are not alphabetical or numeric. The punctuation and special
characters in the Visual Basic character set have various uses, from organizing program text to defining the tasks that the compiler or the compiled
program performs. They do not specify an operation to be performed.

Use parentheses when you define a procedure, such as a Sub  or Function . You must enclose all procedure argument lists in parentheses. You also use
parentheses for putting variables or arguments into logical groups, especially to override the default order of operator precedence in a complex
expression. The following example illustrates this.

Following execution of the previous code, the value of d  is 8.225 and the value of e  is 3. The calculation for d  uses the default precedence of /  over
+  and is equivalent to d = b + (c / a) . The parentheses in the calculation for e  override the default precedence.

Separators do what their name suggests: they separate sections of code. In Visual Basic, the separator character is the colon ( : ). Use separators when
you want to include multiple statements on a single line instead of separate lines. This saves space and improves the readability of your code. The
following example shows three statements separated by colons.

For more information, see How to: Break and Combine Statements in Code.

The colon ( : ) character is also used to identify a statement label. For more information, see How to: Label Statements.

Use the &  operator for concatenation, or linking strings together. Do not confuse it with the +  operator, which adds together numeric values. If you
use the +  operator to concatenate when you operate on numeric values, you can obtain incorrect results. The following example demonstrates this.

Following execution of the previous code, the value of resultA  is 21.01 and the value of resultB  is "10.0111".

To access a member of a type, you use the dot ( . ) or exclamation point ( ! ) operator between the type name and the member name.

Use the .  operator on a class, structure, interface, or enumeration as a member access operator. The member can be a field, property, event, or
method. The following example illustrates this.

Use the !  operator only on a class or interface as a dictionary access operator. The class or interface must have a default property that accepts a single 
String  argument. The identifier immediately following the !  operator becomes the argument value passed to the default property as a string. The

following example demonstrates this.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/special-characters-in-code.md


Public Class hasDefault
  Default Public ReadOnly Property index(ByVal s As String) As Integer
    Get
      Return 32768 + AscW(s)
    End Get
  End Property
End Class
Public Class testHasDefault
  Public Sub compareAccess()
    Dim hD As hasDefault = New hasDefault()
    MsgBox("Traditional access returns " & hD.index("X") & vbCrLf & 
      "Default property access returns " & hD("X") & vbCrLf & 
      "Dictionary access returns " & hD!X)
  End Sub
End Class

NOTENOTE

See Also

The three output lines of MsgBox  all display the value 32856 . The first line uses the traditional access to property index , the second makes use of the
fact that index  is the default property of class hasDefault , and the third uses dictionary access to the class.

Note that the second operand of the !  operator must be a valid Visual Basic identifier not enclosed in double quotation marks ( " " ). In other words,
you cannot use a string literal or string variable. The following change to the last line of the MsgBox  call generates an error because "X"  is an enclosed
string literal.

"Dictionary access returns " & hD!"X")

References to default collections must be explicit. In particular, you cannot use the !  operator on a late-bound variable.

The !  character is also used as the Single  type character.

Program Structure and Code Conventions
Type Characters

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


   

Comments in Code (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

' This is a comment beginning at the left edge of the screen.
text1.Text = "Hi!"   ' This is an inline comment.

' This comment is too long to fit on a single line, so we break 
' it into two lines. Some comments might need three or more lines.

Commenting Guidelines

Comment type Comment description

Purpose Describes what the procedure does (not how it does it)

Assumptions Lists each external variable, control, open file, or other element accessed by the
procedure

Effects Lists each affected external variable, control, or file, and the effect it has (only if it is
not obvious)

Inputs Specifies the purpose of the argument

Returns Explains the values returned by the procedure

NOTENOTE

See Also

As you read the code examples, you often encounter the comment symbol ( ' ). This symbol tells the Visual Basic compiler to ignore the text following
it, or the comment. Comments are brief explanatory notes added to code for the benefit of those reading it.

It is good programming practice to begin all procedures with a brief comment describing the functional characteristics of the procedure (what it does).
This is for your own benefit and the benefit of anyone else who examines the code. You should separate the implementation details (how the procedure
does it) from comments that describe the functional characteristics. When you include implementation details in the description, remember to update
them when you update the function.

Comments can follow a statement on the same line, or occupy an entire line. Both are illustrated in the following code.

If your comment requires more than one line, use the comment symbol on each line, as the following example illustrates.

The following table provides general guidelines for what types of comments can precede a section of code. These are suggestions; Visual Basic does not
enforce rules for adding comments. Write what works best, both for you and for anyone else who reads your code.

Remember the following points:

Every important variable declaration should be preceded by a comment describing the use of the variable being declared.

Variables, controls, and procedures should be named clearly enough that commenting is needed only for complex implementation details.

Comments cannot follow a line-continuation sequence on the same line.

You can add or remove comment symbols for a block of code by selecting one or more lines of code and choosing the Comment ( ) and
Uncomment ( ) buttons on the Edit toolbar.

You can also add comments to your code by preceding the text with the REM  keyword. However, the '  symbol and the Comment/Uncomment buttons are easier
to use and require less space and memory.

Documenting Your Code With XML Comments
How to: Create XML Documentation
XML Comment Tags
Program Structure and Code Conventions
REM Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/comments-in-code.md
http://msdn.microsoft.com/magazine/dd722812.aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/how-to-create-xml-documentation


  

Keywords as Element Names in Code (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

' The following statement precedes Loop with a full qualification string.
sampleForm.Loop.Visible = True
' The following statement encloses Loop in square brackets.
 [Loop].Visible = True

NOTENOTE

See Also

Any program element — such as a variable, class, or member — can have the same name as a restricted keyword. For example, you can create a
variable named Loop . However, to refer to your version of it — which has the same name as the restricted Loop  keyword — you must either precede it
with a full qualification string or enclose it in square brackets ( [ ] ), as the following example shows.

If you do not do either of these, then Visual Basic assumes use of the intrinsic Loop  keyword and produces an error, as in the following example:

' The following statement causes a compiler error.

Loop.Visible = True

You can use square brackets when referring to forms and controls, and when declaring a variable or defining a procedure with the same name as a
restricted keyword. It can be easy to forget to qualify names or include square brackets, and thus introduce errors into your code and make it harder to
read. For this reason, we recommend that you not use restricted keywords as the names of program elements. However, if a future version of Visual
Basic defines a new keyword that conflicts with an existing form or control name, then you can use this technique when updating your code to work
with the new version.

Your program also might include element names provided by other referenced assemblies. If these names conflict with restricted keywords, then placing square
brackets around them causes Visual Basic to interpret them as your defined elements.

Visual Basic Naming Conventions
Program Structure and Code Conventions
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/keywords-as-element-names-in-code.md


       

Me, My, MyBase, and MyClass in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

Me

Sub ChangeFormColor(FormName As Form)  
   Randomize()  
   FormName.BackColor = Color.FromArgb(Rnd() * 256, Rnd() * 256, Rnd() * 256)  
End Sub  

ChangeFormColor(Me)  

My

MyBase

MyClass

See Also

Me , My , MyBase , and MyClass  in Visual Basic have similar names, but different purposes. This topic describes each of these entities in order to
distinguish them.

The Me  keyword provides a way to refer to the specific instance of a class or structure in which the code is currently executing. Me  behaves like either
an object variable or a structure variable referring to the current instance. Using Me  is particularly useful for passing information about the currently
executing instance of a class or structure to a procedure in another class, structure, or module.

For example, suppose you have the following procedure in a module.

You can call this procedure and pass the current instance of the Form class as an argument by using the following statement.

The My  feature provides easy and intuitive access to a number of .NET Framework classes, enabling the Visual Basic user to interact with the computer,
application, settings, resources, and so on.

The MyBase  keyword behaves like an object variable referring to the base class of the current instance of a class. MyBase  is commonly used to access
base class members that are overridden or shadowed in a derived class. MyBase.New  is used to explicitly call a base class constructor from a derived
class constructor.

The MyClass  keyword behaves like an object variable referring to the current instance of a class as originally implemented. MyClass  is similar to Me ,
but all method calls on it are treated as if the method were NotOverridable .

Inheritance Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/me-my-mybase-and-myclass.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


  

Visual Basic Limitations
5/4/2018 • 2 minutes to read • Edit Online

See Also

Earlier versions of Visual Basic enforced boundaries in code, such as the length of variable names, the number of variables allowed in modules, and
module size. In Visual Basic .NET, these restrictions have been relaxed, giving you greater freedom in writing and arranging your code.

Physical limits are dependent more on run-time memory than on compile-time considerations. If you use prudent programming practices, and divide
large applications into multiple classes and modules, then there is very little chance of encountering an internal Visual Basic limitation.

The following are some limitations that you might encounter in extreme cases:

Name Length. There is a maximum number of characters for the name of every declared programming element. This maximum applies to an
entire qualification string if the element name is qualified. See Declared Element Names.

Line Length. There is a maximum of 65535 characters in a physical line of source code. The logical source code line can be longer if you use line
continuation characters. See How to: Break and Combine Statements in Code.

Array Dimensions. There is a maximum number of dimensions you can declare for an array. This limits how many indexes you can use to
specify an array element. See Array Dimensions in Visual Basic.

String Length. There is a maximum number of Unicode characters you can store in a single string. See String Data Type.

Environment String Length. There is a maximum of 32768 characters for any environment string used as a command-line argument. This is a
limitation on all platforms.

Program Structure and Code Conventions
Visual Basic Naming Conventions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/program-structure/limitations.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/array-dimensions


   

Visual Basic Language Features
5/4/2018 • 2 minutes to read • Edit Online

In This Section

The following topics introduce and discuss the essential components of Visual Basic, an object-oriented programming language. After creating the user
interface for your application using forms and controls, you need to write the code that defines the application's behavior. As with any modern
programming language, Visual Basic supports a number of common programming constructs and language elements.

If you have programmed in other languages, much of the material covered in this section might seem familiar. While most of the constructs are similar
to those in other languages, the event-driven nature of Visual Basic introduces some subtle differences.

If you are new to programming, the material in this section serves as an introduction to the basic building blocks for writing code. Once you understand
the basics, you can create powerful applications using Visual Basic.

Arrays
Discusses making your code more compact and powerful by declaring and using arrays, which hold multiple related values.

Collection Initializers
Describes collection initializers, which enable you to create a collection and populate it with an initial set of values.

Constants and Enumerations
Discusses storing unchanging values for repeated use, including sets of related constant values.

Control Flow
Shows how to regulate the flow of your program's execution.

Data Types
Describes what kinds of data a programming element can hold and how that data is stored.

Declared Elements
Covers programming elements you can declare, their names and characteristics, and how the compiler resolves references to them.

Delegates
Provides an introduction to delegates and how they are used in Visual Basic.

Early and Late Binding
Describes binding, which is performed by the compiler when an object is assigned to an object variable, and the differences between early-bound and
late-bound objects.

Error Types
Provides an overview of syntax errors, run-time errors, and logic errors.

Events
Shows how to declare and use events.

Interfaces
Describes what interfaces are and how you can use them in your applications.

L INQ
Provides links to topics that introduce Language-Integrated Query (L INQ) features and programming.

Objects and Classes
Provides an overview of objects and classes, how they are used, their relationships to each other, and the properties, methods, and events they expose.

Operators and Expressions
Describes the code elements that manipulate value-holding elements, how to use them efficiently, and how to combine them to yield new values.

Procedures
Describes Sub , Function , Property , and Operator  procedures, as well as advanced topics such as recursive and overloaded procedures.

Statements
Describes declaration and executable statements.

Strings
Provides links to topics that describe the basic concepts about using strings in Visual Basic.

Variables
Introduces variables and describes how to use them in Visual Basic.

XML
Provides links to topics that describe how to use XML in Visual Basic.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/index.md


Related Sections
Collections
Describes some of the types of collections that are provided by the .NET Framework. Demonstrates how to use simple collections and collections of
key/value pairs.

Visual Basic Language Reference
Provides reference information on various aspects of Visual Basic programming.

http://msdn.microsoft.com/library/e76533a9-5033-4a0b-b003-9c2be60d185b


                    

 

Arrays in Visual Basic
5/30/2018 • 28 minutes to read • Edit Online

' Declare a single-dimension array of 5 numbers.  
Dim numbers(4) As Integer   

'Declare a single-dimension array and set its 4 values.  
Dim numbers = New Integer() {1, 2, 4, 8}  

' Change the size of an existing array to 16 elements and retain the current values.
ReDim Preserve numbers(15)

' Redefine the size of an existing array and reset the values.
ReDim numbers(15)  

' Declare a 6 x 6 multidimensional array.
Dim matrix(5, 5) As Double  

' Declare a 4 x 3 multidimensional array and set array element values.  
Dim matrix = New Integer(3, 2) {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}}  

' Declare a jagged array  
Dim sales()() As Double = New Double(11)() {}  

In this article

Array elements in a simple array

An array is a set of values, which are termed elements, that are logically related to each other. For example, an array may consist of the number of
students in each grade in a grammar school; each element of the array is the number of students in a single grade. Similarly, an array may consist of a
student's grades for a class; each element of the array is a single grade.

It is possible individual variables to store each of our data items. For example, if our application analyzes student grades, we can use a separate variable
for each student's grade, such as englishGrade1 , englishGrade2 , etc. This approach has three major limitations:

We have to know at design time exactly how many grades we have to handle.
Handling large numbers of grades quickly becomes unwieldy. This in turn makes an application much more likely to have serious bugs.
It is difficult to maintain. Each new grade that we add requires that the application be modified, recompiled, and redeployed.

By using an array, you can refer to these related values by the same name, and use a number that’s called an index or subscript to identify an individual
element based on its position in the array. The indexes of an array range from 0 to one less than the total number of elements in the array. When you
use Visual Basic syntax to define the size of an array, you specify its highest index, not the total number of elements in the array. You can work with the
array as a unit, and the ability to iterate its elements frees you from needing to know exactly how many elements it contains at design time.

Some quick examples before explanation:

Array elements in a simple array

Creating an array

Storing values in an array

Populating an array with array literals

Iterating through an array

Array size

The array type

Arrays as return values and parameters

Jagged arrays

Zero-length arrays

Splitting an array

Collections as an alternative to arrays

Let's create an array named students  to store the number of students in each grade in a grammar school. The indexes of the elements range from 0
through 6. Using this array is simpler than declaring seven variables.

The following illustration shows the students  array. For each element of the array:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/arrays/index.md


 

Module SimpleArray
   Public Sub Main()
      ' Declare an array with 7 elements.
      Dim students(6) As Integer

      ' Assign values to each element.
      students(0) = 23
      students(1) = 19
      students(2) = 21
      students(3) = 17
      students(4) = 19
      students(5) = 20
      students(6) = 22
      
      ' Display the value of each element.
      For ctr As Integer = 0 To 6
         Dim grade As String = If(ctr = 0, "kindergarten", $"grade {ctr}")
         Console.WriteLine($"Students in {grade}: {students(ctr)}")
      Next
   End Sub
End Module
' The example displays the following output:
'     Students in kindergarten: 23
'     Students in grade 1: 19
'     Students in grade 2: 21
'     Students in grade 3: 17
'     Students in grade 4: 19
'     Students in grade 5: 20
'     Students in grade 6: 22

Creating an Array

The index of the element represents the grade (index 0 represents kindergarten).

The value that’s contained in the element represents the number of students in that grade.

Elements of the "students" array

The following example contains the Visual Basic code that creates and uses the array:

The example does three things:

It declares a students  array with seven elements. The number 6  in the array declaration indicates the last index in the array; it is one less than the
number of elements in the array.
It assigns values to each element in the array. Array elements are accessed by using the array name and including the index of the individual element
in parentheses.
It lists each value of the array. The example uses a For  statement to access each element of the array by its index number.

The students  array in the preceding example is a one-dimensional array because it uses one index. An array that uses more than one index or subscript
is called multidimensional. For more information, see the rest of this article and Array Dimensions in Visual Basic.

You can define the size of an array in several ways:

' Declare an array with 10 elements.
Dim cargoWeights(9) As Double               
' Declare a 24 x 2 array.
Dim hourlyTemperatures(23, 1) As Integer
' Declare a jagged array with 31 elements.
Dim januaryInquiries(30)() As String

You can specify the size when the array is declared:

' Declare an array with 10 elements.
Dim cargoWeights() As Double = New Double(9) {} 
' Declare a 24 x 2 array.
Dim hourlyTemperatures(,) As Integer = New Integer(23, 1) {}
' Declare a jagged array with 31 elements. 
Dim januaryInquiries()() As String = New String(30)() {}

You can use a New  clause to supply the size of an array when it’s created:

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/array-dimensions


 

 

' Assign a new array size and retain the current values.
ReDim Preserve cargoWeights(20)
' Assign a new array size and retain only the first five values.
ReDim Preserve cargoWeights(4)
' Assign a new array size and discard all current element values.
ReDim cargoWeights(15)

Storing Values in an Array

Module Example
   Public Sub Main()
      ' Create a 10-element integer array.
      Dim numbers(9) As Integer
      Dim value As Integer = 2
        
      ' Write values to it.
      For ctr As Integer = 0 To 9
         numbers(ctr) = value
         value *= 2
      Next
        
      ' Read and sum the array values.  
      Dim sum As Integer
      For ctr As Integer = 0 To 9
         sum += numbers(ctr)
      Next
      Console.WriteLine($"The sum of the values is {sum:N0}")
    End Sub
End Module
' The example displays the following output:
'     The sum of the values is 2,046

Populating an array with array literals

' Array literals with explicit type definition.
Dim numbers = New Integer() {1, 2, 4, 8}
' Array literals with type inference.
Dim doubles = {1.5, 2, 9.9, 18}
' Array literals with explicit type definition.
Dim articles() As String = { "the", "a", "an" }

' Array literals with explicit widening type definition.
Dim values() As Double = { 1, 2, 3, 4, 5 }

NOTENOTE

If you have an existing array, you can redefine its size by using the Redim  statement. You can specify that the Redim  statement keep the values that are
in the array, or you can specify that it create an empty array. The following example shows different uses of the Redim  statement to modify the size of
an existing array.

For more information, see the ReDim Statement.

You can access each location in an array by using an index of type Integer . You can store and retrieve values in an array by referencing each array
location by using its index enclosed in parentheses. Indexes for multidimensional arrays are separated by commas (,). You need one index for each array
dimension.

The following example shows some statements that store and retrieve values in arrays.

By using an array literal, you can populate an array with an initial set of values at the same time that you create it. An array literal consists of a list of
comma-separated values that are enclosed in braces ( {} ).

When you create an array by using an array literal, you can either supply the array type or use type inference to determine the array type. The following
example shows both options.

When you use type inference, the type of the array is determined by the dominant type in the list of literal values. The dominant type is the type to
which all other types in the array can widen. If this unique type can’t be determined, the dominant type is the unique type to which all other types in the
array can narrow. If neither of these unique types can be determined, the dominant type is Object . For example, if the list of values that’s supplied to
the array literal contains values of type Integer , Long , and Double , the resulting array is of type Double . Because Integer  and Long  widen only to 
Double , Double  is the dominant type. For more information, see Widening and Narrowing Conversions.

You can use type inference only for arrays that are defined as local variables in a type member. If an explicit type definition is absent, arrays defined with array literals at
the class level are of type Object[] . For more information, see Local type inference.

Note that the previous example defines values  as an array of type Double  even though all the array literals are of type Integer . You can create this

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


 

' Create and populate a 2 x 2 array.
Dim grid1 = {{1, 2}, {3, 4}}
' Create and populate a 2 x 2 array with 3 elements.
Dim grid2(,) = {{1, 2}, {3, 4}, {5, 6}}

Dim arr = {{1, 2.0}, {3, 4}, {5, 6}, {7, 8}}

Iterating through an array

Module IterateArray
   Public Sub Main()
      Dim numbers = {10, 20, 30}

      For index = 0 To numbers.GetUpperBound(0)
         Console.WriteLine(numbers(index))
      Next
   End Sub
End Module
' The example displays the following output:
'  10
'  20
'  30

Module IterateArray
   Public Sub Main()
      Dim numbers = {{1, 2}, {3, 4}, {5, 6}}

      For index0 = 0 To numbers.GetUpperBound(0)
         For index1 = 0 To numbers.GetUpperBound(1)
            Console.Write($"{numbers(index0, index1)} ")
         Next
         Console.WriteLine()
      Next
   End Sub
End Module
' The example displays the following output:
' Output 
'  1 2 
'  3 4 
'  5 6

array because the values in the array literal can widen to Double  values.

You can also create and populate a multidimensional array by using nested array literals. Nested array literals must have a number of dimensions that’s
consistent with the resulting array. The following example creates a two-dimensional array of integers by using nested array literals.

When using nested array literals to create and populate an array, an error occurs if the number of elements in the nested array literals don't match. An
error also occurs if you explicitly declare the array variable to have a different number of dimensions than the array literals.

Just as you can for one-dimensional arrays, you can rely on type inference when creating a multidimensional array with nested array literals. The
inferred type is the dominant type for all the values in all the array literals for all nesting level. The following example creates a two-dimensional array of
type Double[,]  from values that are of type Integer  and Double .

For additional examples, see How to: Initialize an Array Variable in Visual Basic.

When you iterate through an array, you access each element in the array from the lowest index to the highest or from the highest to the lowest.
Typically, use use either the For...Next Statement or the For Each...Next Statement to iterate through the elements of an array. When you don't know the
upper bounds of the array, you can call the Array.GetUpperBound method to get the highest value of the index. Although lowest index value is almost
always 0, you can call the Array.GetLowerBound method to get the lowest value of the index.

The following example iterates through a one-dimensional array by using the For...Next  statement.

The following example iterates through a multidimensional array by using a For...Next  statement. The GetUpperBound method has a parameter that
specifies the dimension. GetUpperBound(0)  returns the highest index of the first dimension, and GetUpperBound(1)  returns the highest index of the
second dimension.

The following example uses a For Each...Next Statementto iterate through a one-dimensional array and a two-dimensional array.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/how-to-initialize-an-array-variable
https://docs.microsoft.com/dotnet/api/system.array.getupperbound
https://docs.microsoft.com/dotnet/api/system.array.getlowerbound
https://docs.microsoft.com/dotnet/api/system.array.getupperbound


Module IterateWithForEach
   Public Sub Main()
      ' Declare and iterate through a one-dimensional array.
      Dim numbers1 = {10, 20, 30}
      
      For Each number In numbers1
         Console.WriteLine(number)
      Next
      Console.WriteLine()
      
      Dim numbers = {{1, 2}, {3, 4}, {5, 6}}

      For Each number In numbers
         Console.WriteLine(number)
      Next
   End Sub
End Module
' The example displays the following output:
'  10
'  20
'  30
'
'  1
'  2
'  3
'  4
'  5
'  6

Array Size

Module Example
   Public Sub Main()
      Dim arr(3, 3) As Integer
      Console.WriteLine(arr.Length)     
   End Sub
End Module
' The example displays the following output:
'     16

NOTENOTE

Module Example
   Public Sub Main()
      Dim arr(99) As Integer
      Console.WriteLine(arr.Length)
      
      Redim arr(50)
      Console.WriteLine(arr.Length)
   End Sub
End Module
' The example displays the following output:
'     100
'     51

 

The size of an array is the product of the lengths of all its dimensions. It represents the total number of elements currently contained in the array. For
example, the following example declares a 2-dimensional array with four elements in each dimension. As the output from the example shows, the
array's size is 16 (or (3 + 1) * (3 + 1).

This discussion of array size does not apply to jagged arrays. For information on jagged arrays and determining the size of a jagged array, see the Jagged arrays
section.

You can find the size of an array by using the Array.Length property. You can find the length of each dimension of a multidimensional array by using the
Array.GetLength method.

You can resize an array variable by assigning a new array object to it or by using the ReDim  Statement statement. The following example uses the 
ReDim  statement to change a 100-element array to a 51-element array.

There are several things to keep in mind when dealing with the size of an array.

https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/system.array.getlength


 

Dimension Length The index of each dimension is 0-based, which means it ranges from 0 to its upper
bound. Therefore, the length of a given dimension is one greater than the declared
upper bound of that dimension.

Length Limits The length of every dimension of an array is limited to the maximum value of the 
Integer  data type, which is Int32.MaxValue or (2 ^ 31) - 1. However, the total

size of an array is also limited by the memory available on your system. If you
attempt to initialize an array that exceeds the amount of available memory, the
runtime throws an OutOfMemoryException.

Size and Element Size An array's size is independent of the data type of its elements. The size always
represents the total number of elements, not the number of bytes that they
consume in memory.

Memory Consumption It is not safe to make any assumptions regarding how an array is stored in
memory. Storage varies on platforms of different data widths, so the same array
can consume more memory on a 64-bit system than on a 32-bit system.
Depending on system configuration when you initialize an array, the common
language runtime (CLR) can assign storage either to pack elements as close
together as possible, or to align them all on natural hardware boundaries. Also, an
array requires a storage overhead for its control information, and this overhead
increases with each added dimension.

The array type

Module Example
   Public Sub Main()
      Dim arr As Array = Array.CreateInstance(GetType(Object), 19)
      Console.WriteLine(arr.Length)
      Console.WriteLine(arr.GetType().Name)
   End Sub
End Module
' The example displays the following output:
'     19
'     Object[]

Module Example
   Public Sub Main()
      Dim bytes(9,9) As Byte
      Console.WriteLine($"Type of {nameof(bytes)} array: {bytes.GetType().Name}")
      Console.WriteLine($"Base class of {nameof(bytes)}: {bytes.GetType().BaseType.Name}")
      Console.WriteLine()
      Console.WriteLine($"Type of {nameof(bytes)} array: {TypeName(bytes)}")
   End Sub
End Module
' The example displays the following output:
' Type of bytes array: Byte[,]
' Base class of bytes: Array
' 
' Type of bytes array: Byte(,)

Every array has a data type, which differs from the data type of its elements. There is no single data type for all arrays. Instead, the data type of an array
is determined by the number of dimensions, or rank, of the array, and the data type of the elements in the array. Two array variables are of the same
data type only when they have the same rank and their elements have the same data type. The lengths of the dimensions of an array do not influence
the array data type.

Every array inherits from the System.Array class, and you can declare a variable to be of type Array , but you cannot create an array of type Array . For
example, although the following code declares the arr  variable to be of type Array  and calls the Array.CreateInstance method to instantiate the array,
the array's type proves to be Object[].

Also, the ReDim Statement cannot operate on a variable declared as type Array . For these reasons, and for type safety, it is advisable to declare every
array as a specific type.

You can find out the data type of either an array or its elements in several ways.

You can call the GetType method on the variable to get a Type object that represents the run-time type of the variable. The Type object holds
extensive information in its properties and methods.

You can pass the variable to the TypeName function to get a String  with the name of run-time type.

The following example calls the both the GetType  method and the TypeName  function to determine the type of an array. The array type is Byte(,) . Note
that the Type.BaseType property also indicates that the base type of the byte array is the Array class.

https://docs.microsoft.com/dotnet/api/system.int32.maxvalue
https://docs.microsoft.com/dotnet/api/system.outofmemoryexception
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.array.createinstance
https://docs.microsoft.com/dotnet/api/system.object.gettype
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.typename
https://docs.microsoft.com/dotnet/api/system.type.basetype
https://docs.microsoft.com/dotnet/api/system.array


 

  

Arrays as return values and parameters

Module ReturnValuesAndParams
   Public Sub Main()
      Dim numbers As Integer() = GetNumbers()
      ShowNumbers(numbers)
   End Sub

   Private Function GetNumbers() As Integer()
      Dim numbers As Integer() = {10, 20, 30}
      Return numbers
   End Function

   Private Sub ShowNumbers(numbers As Integer())
      For index = 0 To numbers.GetUpperBound(0)
         Console.WriteLine($"{numbers(index)} ")
      Next
   End Sub
End Module
' The example displays the following output:
'   10
'   20
'   30
    

Module Example
   Public Sub Main()
      Dim numbers As Integer(,) = GetNumbersMultidim()
      ShowNumbersMultidim(numbers)
   End Sub

   Private Function GetNumbersMultidim() As Integer(,)
      Dim numbers As Integer(,) = {{1, 2}, {3, 4}, {5, 6}}
      Return numbers
   End Function

   Private Sub ShowNumbersMultidim(numbers As Integer(,))
      For index0 = 0 To numbers.GetUpperBound(0)
         For index1 = 0 To numbers.GetUpperBound(1)
            Console.Write($"{numbers(index0, index1)} ")
         Next
         Console.WriteLine()
      Next
   End Sub
End Module
' The example displays the following output:
'     1 2
'     3 4
'     5 6

Jagged Arrays

To return an array from a Function  procedure, specify the array data type and the number of dimensions as the return type of the Function Statement.
Within the function, declare a local array variable with same data type and number of dimensions. In the Return Statement, include the local array
variable without parentheses.

To specify an array as a parameter to a Sub  or Function  procedure, define the parameter as an array with a specified data type and number of
dimensions. In the call to the procedure, pass an array variable with the same data type and number of dimensions.

In the following example, the GetNumbers  function returns an Integer() , a one-dimensional array of type Integer . The ShowNumbers  procedure accepts
an Integer()  argument.

In the following example, the GetNumbersMultiDim  function returns an Integer(,) , a two-dimensional array of type Integer . The ShowNumbersMultiDim

procedure accepts an Integer(,)  argument.

Sometimes the data structure in your application is two-dimensional but not rectangular. For example, you might use an array to store data about the
high temperature of each day of the month. The first dimension of the array represents the month, but the second dimension represents the number of
days, and the number of days in a month is not uniform. A jagged array, which is also called an array of arrays, is designed for such scenarios. A jagged
array is an array whose elements are also arrays. A jagged array and each element in a jagged array can have one or more dimensions.

The following example uses an array of months, each element of which is an array of days. The example uses a jagged array because different months
have different numbers of days. The example shows how to create a jagged array, assign values to it, and retrieve and display its values.



Imports System.Globalization

Module JaggedArray
   Public Sub Main()
      ' Declare the jagged array of 12 elements. Each element is an array of Double.
      Dim sales(11)() As Double
      ' Set each element of the sales array to a Double array of the appropriate size.
      For month As Integer = 0 To 11
         ' The number of days in the month determines the appropriate size.
         Dim daysInMonth As Integer =
            DateTime.DaysInMonth(Year(Now), month + 1)
         sales(month) = New Double(daysInMonth - 1) {}
      Next 

      ' Store values in each element.
      For month As Integer = 0 To 11
         For dayOfMonth = 0 To sales(month).GetUpperBound(0)
            sales(month)(dayOfMonth) = (month * 100) + dayOfMonth
         Next
      Next

      ' Retrieve and display the array values.
      Dim monthNames = DateTimeFormatInfo.CurrentInfo.AbbreviatedMonthNames
      ' Display the month names.
      Console.Write("    ")
      For ctr = 0 To sales.GetUpperBound(0)
         Console.Write($" {monthNames(ctr)}   ")
      Next   
      Console.WriteLine()
      ' Display data for each day in each month.
      For dayInMonth = 0 To 30
         Console.Write($"{dayInMonth + 1,2}.  ")
         For monthNumber = 0 To sales.GetUpperBound(0)
            If dayInMonth > sales(monthNumber).GetUpperBound(0) Then 
               Console.Write("       ")
            Else
               Console.Write($"{sales(monthNumber)(dayInMonth),-5}  ")
            End If
         Next   
         Console.WriteLine()
      Next
   End Sub
End Module
' The example displays the following output:
'      Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct    Nov    Dec
'  1.  0      100    200    300    400    500    600    700    800    900    1000   1100
'  2.  1      101    201    301    401    501    601    701    801    901    1001   1101
'  3.  2      102    202    302    402    502    602    702    802    902    1002   1102
'  4.  3      103    203    303    403    503    603    703    803    903    1003   1103
'  5.  4      104    204    304    404    504    604    704    804    904    1004   1104
'  6.  5      105    205    305    405    505    605    705    805    905    1005   1105
'  7.  6      106    206    306    406    506    606    706    806    906    1006   1106
'  8.  7      107    207    307    407    507    607    707    807    907    1007   1107
'  9.  8      108    208    308    408    508    608    708    808    908    1008   1108
' 10.  9      109    209    309    409    509    609    709    809    909    1009   1109
' 11.  10     110    210    310    410    510    610    710    810    910    1010   1110
' 12.  11     111    211    311    411    511    611    711    811    911    1011   1111
' 13.  12     112    212    312    412    512    612    712    812    912    1012   1112
' 14.  13     113    213    313    413    513    613    713    813    913    1013   1113
' 15.  14     114    214    314    414    514    614    714    814    914    1014   1114
' 16.  15     115    215    315    415    515    615    715    815    915    1015   1115
' 17.  16     116    216    316    416    516    616    716    816    916    1016   1116
' 18.  17     117    217    317    417    517    617    717    817    917    1017   1117
' 19.  18     118    218    318    418    518    618    718    818    918    1018   1118
' 20.  19     119    219    319    419    519    619    719    819    919    1019   1119
' 21.  20     120    220    320    420    520    620    720    820    920    1020   1120
' 22.  21     121    221    321    421    521    621    721    821    921    1021   1121
' 23.  22     122    222    322    422    522    622    722    822    922    1022   1122
' 24.  23     123    223    323    423    523    623    723    823    923    1023   1123
' 25.  24     124    224    324    424    524    624    724    824    924    1024   1124
' 26.  25     125    225    325    425    525    625    725    825    925    1025   1125
' 27.  26     126    226    326    426    526    626    726    826    926    1026   1126
' 28.  27     127    227    327    427    527    627    727    827    927    1027   1127
' 29.  28            228    328    428    528    628    728    828    928    1028   1128
' 30.  29            229    329    429    529    629    729    829    929    1029   1129
' 31.  30            230           430           630    730           930           1130

The previous example assigns values to the jagged array on an element-by-element basis by using a For...Next  loop. You can also assign values to the
elements of a jagged array by using nested array literals. However, the attempt to use nested array literals (for example, 
Dim valuesjagged = {{1, 2}, {2, 3, 4}} ) generates compiler error BC30568. To correct the error, enclose the inner array literals in parentheses. The

parentheses force the array literal expression to be evaluated, and the resulting values are used with the outer array literal, as the following example
shows.

https://docs.microsoft.com/en-us/dotnet/visual-basic/misc/bc30568


 

 

Module Example
   Public Sub Main()
      Dim values1d = { 1, 2, 3 }
      Dim values2d = {{1, 2}, {2, 3}, {3, 4}}
      Dim valuesjagged = {({1, 2}), ({2, 3, 4})}
   End Sub
End Module

Module Example
   Public Sub Main()
      Dim jagged = { ({1, 2}), ({2, 3, 4}), ({5, 6}), ({7, 8, 9, 10}) }
      Console.WriteLine($"The value of jagged.Length: {jagged.Length}.")
      Dim total = jagged.Length
      For ctr As Integer = 0 To jagged.GetUpperBound(0)
         Console.WriteLine($"Element {ctr + 1} has {jagged(ctr).Length} elements.") 
         total += jagged(ctr).Length 
      Next
      Console.WriteLine($"The total number of elements in the jagged array: {total}")
   End Sub
End Module
' The example displays the following output:
'     The value of jagged.Length: 4.
'     Element 1 has 2 elements.
'     Element 2 has 3 elements.
'     Element 3 has 2 elements.
'     Element 4 has 4 elements.
'     The total number of elements in the jagged array: 15

Zero-length arrays

Dim arr() As String

Dim arrZ(-1) As String

Splitting an array

NOTENOTE

A jagged array is a one-dimensional array whose elements contain arrays. Therefore, the Array.Length property and the Array.GetLength(0)  method
return the number of elements in the one-dimensional array, and Array.GetLength(1)  throws an IndexOutOfRangeException because a jagged array is
not multidimensional. You determine the number of elements in each subarray by retrieving the value of each subarray's Array.Length property. The
following example illustrates how to determine the number of elements in a jagged array.

Visual Basic differentiates between a uninitialized array (an array whose value is Nothing ) and a zero-length array or empty array (an array that has no
elements.) An uninitialized array is one that has not been dimensioned or had any values assigned to it. For example:

A zero-length array is declared with a dimension of -1. For example:

You might need to create a zero-length array under the following circumstances:

Without risking a NullReferenceException exception, your code must access members of the Array class, such as Length or Rank, or call a Visual
Basic function such as UBound.

You want to keep your code simple by not having to check for Nothing  as a special case.

Your code interacts with an application programming interface (API) that either requires you to pass a zero-length array to one or more
procedures or returns a zero-length array from one or more procedures.

In some cases, you may need to split a single array into multiple arrays. This involves identifying the point or points at which the array is to be split, and
then spitting the array into two or more separate arrays.

This section does not discuss splitting a single string into a string array based on some delimiter. For information on splitting a string, see the String.Split method.

The most common criteria for splitting an array are:

The number of elements in the array. For example, you might want to split an array of more than a specified number of elements into a number
of approximately equal parts. For this purpose, you can use the value returned by either the Array.Length or Array.GetLength method.

The value of an element, which serves as a delimiter that indicates where the array should be split. You can search for a specific value by calling
the Array.FindIndex and Array.FindLastIndex methods.

https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/system.indexoutofrangeexception
https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/system.array.rank
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.ubound
https://docs.microsoft.com/dotnet/api/system.string.split
https://docs.microsoft.com/dotnet/api/system.array.length
https://docs.microsoft.com/dotnet/api/system.array.getlength
https://docs.microsoft.com/dotnet/api/system.array.findindex
https://docs.microsoft.com/dotnet/api/system.array.findlastindex


Module Example
   Public Sub Main()
      ' Create an array of 100 elements.
      Dim arr(99) As Integer
      ' Populate the array.
      Dim rnd As new Random()
      For ctr = 0 To arr.GetUpperBound(0)
         arr(ctr) = rnd.Next()
      Next
      
      ' Determine how many elements should be in each array.
      Dim divisor = 2
      Dim remainder As Integer
      Dim boundary = Math.DivRem(arr.GetLength(0), divisor, remainder)
            
      ' Copy the array.
      Dim arr1(boundary - 1 + remainder), arr2(boundary - 1) as Integer
      Array.Copy(arr, 0, arr1, 0, boundary + remainder)
      Array.Copy(arr, boundary + remainder, arr2, 0, arr.Length - boundary) 
   End Sub
End Module

Module Example
   Public Sub Main()
      Dim rnd As New Random()
      
      ' Create an array of 100 elements.
      Dim arr(99) As String
      ' Populate each element with an arbitrary ASCII character.
      For ctr = 0 To arr.GetUpperBound(0)
         arr(ctr) = ChrW(Rnd.Next(&h21, &h7F))
      Next
      ' Get a random number that will represent the point to insert the delimiter.
      arr(rnd.Next(0, arr.GetUpperBound(0))) = "zzz"

      ' Find the delimiter.
      Dim location = Array.FindIndex(arr, Function(x) x = "zzz")

      ' Create the arrays.
      Dim arr1(location - 1) As String
      Dim arr2(arr.GetUpperBound(0) - location - 1) As String
      
      ' Populate the two arrays.
      Array.Copy(arr, 0, arr1, 0, location)
      Array.Copy(arr, location + 1, arr2, 0, arr.GetUpperBound(0) - location)
   End Sub
End Module

Joining arrays

NOTENOTE

Once you've determined the index or indexes at which the array should be split, you can then create the individual arrays by calling the Array.Copy
method.

The following example splits an array into two arrays of approximately equal size. (If the total number of array elements is odd, the first array has one
more element than the second.)

The following example splits a string array into two arrays based on the presence of an element whose value is "zzz", which serves as the array delimiter.
The new arrays do not include the element that contains the delimiter.

You can also combine a number of arrays into a single larger array. To do this, you also use the Array.Copy method.

This section does not discuss joining a string array into a single string. For information on joining a string array, see the String.Join method.

Before copying the elements of each array into the new array, you must first ensure that you have initialized the array so that it is large enough to
accompodate the new array. You can do this in one of two ways:

Use the ReDim Preserve  statement to dynamically expand the array before adding new elements to it. This is the easiest technique, but it can result in
performance degradation and excessive memory consumption when you are copying large arrays.
Calculate the total number of elements needed for the new large array, then add the elements of each source array to it.

The following example uses the second approach to add four arrays with ten elements each to a single array.

https://docs.microsoft.com/dotnet/api/system.array.copy
https://docs.microsoft.com/dotnet/api/system.array.copy
https://docs.microsoft.com/dotnet/api/system.string.join


 

Imports System.Collections.Generic
Imports System.Threading.Tasks

Module Example
   Public Sub Main()
      Dim tasks As New List(Of Task(Of Integer()))
      ' Generate four arrays.
      For ctr = 0 To 3
         Dim value = ctr
         tasks.Add(Task.Run(Function()
                               Dim arr(9) As Integer
                               For ndx = 0 To arr.GetUpperBound(0)
                                  arr(ndx) = value
                               Next
                               Return arr
                            End Function))   
       Next
       Task.WaitAll(tasks.ToArray())
       ' Compute the number of elements in all arrays.
       Dim elements = 0
       For Each task In tasks
          elements += task.Result.Length
       Next
       Dim newArray(elements - 1) As Integer
       Dim index = 0
       For Each task In tasks
          Dim n = task.Result.Length
          Array.Copy(task.Result, 0, newArray, index, n)
          index += n
       Next 
      Console.WriteLine($"The new array has {newArray.Length} elements.")
   End Sub
End Module
' The example displays the following output:
'     The new array has 40 elements.

Imports System.Collections.Generic
Imports System.Threading.Tasks

Module Example
   Public Sub Main()
      Dim tasks As New List(Of Task(Of Integer()))
      ' Generate four arrays.
      For ctr = 0 To 3
         Dim value = ctr
         tasks.Add(Task.Run(Function()
                               Dim arr(9) As Integer
                               For ndx = 0 To arr.GetUpperBound(0)
                                  arr(ndx) = value
                               Next
                               Return arr
                            End Function))   
       Next
       Task.WaitAll(tasks.ToArray())

       ' Dimension the target array and copy each element of each source array to it.
       Dim newArray() As Integer = {}
       ' Define the next position to copy to in newArray.
       Dim index = 0
       For Each task In tasks
          Dim n = Task.Result.Length
          ReDim Preserve newArray(newArray.GetUpperBound(0) + n)
          Array.Copy(task.Result, 0, newArray, index, n)
          index += n
       Next 
      Console.WriteLine($"The new array has {newArray.Length} elements.")
   End Sub
End Module
' The example displays the following output:
'     The new array has 40 elements.

Collections as an alternative to arrays

Since in this case the source arrays are all small, we can also dynamically expand the array as we add the elements of each new array to it. The following
example does that.

Arrays are most useful for creating and working with a fixed number of strongly typed objects. Collections provide a more flexible way to work with
groups of objects. Unlike arrays, which require that you explicitly change the size of an array with the ReDim  Statement, collections grow and shrink
dynamically as the needs of an application change.

When you use ReDim  to redimension an array, Visual Basic creates a new array and releases the previous one. This takes execution time. Therefore, if



Related Topics
TERM DEFINITION

Array Dimensions in Visual Basic Explains rank and dimensions in arrays.

How to: Initialize an Array Variable in Visual Basic Describes how to populate arrays with initial values.

How to: Sort An Array in Visual Basic Shows how to sort the elements of an array alphabetically.

How to: Assign One Array to Another Array Describes the rules and steps for assigning an array to another array variable.

Troubleshooting Arrays Discusses some common problems that arise when working with arrays.

See Also

the number of items you are working with changes frequently, or you cannot predict the maximum number of items you need, you'll usually obtain
better performance by using a collection.

For some collections, you can assign a key to any object that you put into the collection so that you can quickly retrieve the object by using the key.

If your collection contains elements of only one data type, you can use one of the classes in the System.Collections.Generic namespace. A generic
collection enforces type safety so that no other data type can be added to it.

For more information about collections, see Collections.

System.Array
Dim Statement
ReDim Statement

https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/collections
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/array-dimensions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/how-to-initialize-an-array-variable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/how-to-sort-an-array
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/how-to-assign-one-array-to-another-array
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/troubleshooting-arrays
https://docs.microsoft.com/dotnet/api/system.array


    

Collection Initializers (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

' Create an array of type String().
Dim winterMonths = {"December", "January", "February"}

' Create an array of type Integer()
Dim numbers = {1, 2, 3, 4, 5}

' Create a list of menu options. (Requires an extension method
' named Add for List(Of MenuOption)
Dim menuOptions = New List(Of MenuOption) From {{1, "Home"},
                                                {2, "Products"},
                                                {3, "News"},
                                                {4, "Contact Us"}}

NOTENOTE

Syntax

Dim names As New List(Of String) From {"Christa", "Brian", "Tim"}

Public Class AppMenu
    Public Property Items As List(Of String) =
        New List(Of String) From {"Home", "About", "Contact"}
End Class

NOTENOTE

Creating a Collection by Using a Collection Intializer

Collection initializers provide a shortened syntax that enables you to create a collection and populate it with an initial set of values. Collection initializers
are useful when you are creating a collection from a set of known values, for example, a list of menu options or categories, an initial set of numeric
values, a static list of strings such as day or month names, or geographic locations such as a list of states that is used for validation.

For more information about collections, see Collections.

You identify a collection initializer by using the From  keyword followed by braces ( {} ). This is similar to the array literal syntax that is described in
Arrays. The following examples show various ways to use collection initializers to create collections.

C# also provides collection initializers. C# collection initializers provide the same functionality as Visual Basic collection initializers. For more information about C#
collection initializers, see Object and Collection Initializers.

A collection initializer consists of a list of comma-separated values that are enclosed in braces ( {} ), preceded by the From  keyword, as shown in the
following code.

When you create a collection, such as a List<T> or a Dictionary<TKey,TValue>, you must supply the collection type before the collection initializer, as
shown in the following code.

You cannot combine both a collection initializer and an object initializer to initialize the same collection object. You can use object initializers to initialize objects in a
collection initializer.

When you create a collection by using a collection initializer, each value that is supplied in the collection initializer is passed to the appropriate Add

method of the collection. For example, if you create a List<T> by using a collection initializer, each string value in the collection initializer is passed to the
Add method. If you want to create a collection by using a collection initializer, the specified type must be valid collection type. Examples of valid
collection types include classes that implement the IEnumerable<T> interface or inherit the CollectionBase class. The specified type must also expose an
Add  method that meets the following criteria.

The Add  method must be available from the scope in which the collection initializer is being called. The Add  method does not have to be public
if you are using the collection initializer in a scenario where non-public methods of the collection can be accessed.

The Add  method must be an instance member or Shared  member of the collection class, or an extension method.

An Add  method must exist that can be matched, based on overload resolution rules, to the types that are supplied in the collection initializer.

For example, the following code example shows how to create a List(Of Customer)  collection by using a collection initializer. When the code is run, each
Customer  object is passed to the Add(Customer)  method of the generic list.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/collection-initializers/index.md
http://msdn.microsoft.com/library/e76533a9-5033-4a0b-b003-9c2be60d185b
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/object-and-collection-initializers
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.add
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.collectionbase


Dim customers = New List(Of Customer) From
    {
        New Customer("City Power & Light", "http://www.cpandl.com/"),
        New Customer("Wide World Importers", "http://www.wideworldimporters.com/"),
        New Customer("Lucerne Publishing", "http://www.lucernepublishing.com/")
    }

Dim customers = New List(Of Customer) 
customers.Add(New Customer("City Power & Light", "http://www.cpandl.com/"))
customers.Add(New Customer("Wide World Importers", "http://www.wideworldimporters.com/"))
customers.Add(New Customer("Lucerne Publishing", "http://www.lucernepublishing.com/"))

Nesting Collection Initializers

Dim days = New Dictionary(Of Integer, String) From
    {{0, "Sunday"}, {1, "Monday"}}

Dim days = New Dictionary(Of Integer, String)
days.Add(0, "Sunday")
days.Add(1, "Monday")

Related Topics
TITLE DESCRIPTION

How to: Create an Add Extension Method Used by a Collection Initializer Shows how to create an extension method called Add  that can be used to
populate a collection with values from a collection initializer.

How to: Create a Collection Used by a Collection Initializer Shows how to enable use of a collection initializer by including an Add  method in
a collection class that implements IEnumerable .

See Also

The following code example shows equivalent code that does not use a collection initializer.

If the collection has an Add  method that has parameters that match the constructor for the Customer  object, you could nest parameter values for the 
Add  method within collection initializers, as discussed in the next section. If the collection does not have such an Add  method, you can create one as an

extension method. For an example of how to create an Add  method as an extension method for a collection, see How to: Create an Add Extension
Method Used by a Collection Initializer. For an example of how to create a custom collection that can be used with a collection initializer, see How to:
Create a Collection Used by a Collection Initializer.

You can nest values within a collection initializer to identify a specific overload of an Add  method for the collection that is being created. The values
passed to the Add  method must be separated by commas and enclosed in braces ( {} ), like you would do in an array literal or collection initializer.

When you create a collection by using nested values, each element of the nested value list is passed as an argument to the Add  method that matches
the element types. For example, the following code example creates a Dictionary<TKey,TValue> in which the keys are of type Integer  and the values
are of type String . Each of the nested value lists is matched to the Add method for the Dictionary .

The previous code example is equivalent to the following code.

Only nested value lists from the first level of nesting are sent to the Add  method for the collection type. Deeper levels of nesting are treated as array
literals and the nested value lists are not matched to the Add  method of any collection.

Collections
Arrays
Object Initializers: Named and Anonymous Types
New Operator
Auto-Implemented Properties
How to: Initialize an Array Variable in Visual Basic
Local Type Inference
Anonymous Types
Introduction to L INQ in Visual Basic
How to: Create a List of Items

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/collection-initializers/how-to-create-an-add-extension-method-used-by-a-collection-initializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/collection-initializers/how-to-create-a-collection-used-by-a-collection-initializer
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2
https://docs.microsoft.com/dotnet/api/system.collections.generic.dictionary-2.add
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/collection-initializers/how-to-create-an-add-extension-method-used-by-a-collection-initializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/collection-initializers/how-to-create-a-collection-used-by-a-collection-initializer
http://msdn.microsoft.com/library/e76533a9-5033-4a0b-b003-9c2be60d185b
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/auto-implemented-properties
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/arrays/how-to-initialize-an-array-variable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/how-to-create-a-list-of-items


  

Constants and Enumerations in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section
TERM DEFINITION

Constants Overview Topics in this section describe constants and their uses.

Enumerations Overview Topics in this section describe enumerations and their uses.

Related Sections
TERM DEFINITION

Const Statement Describes the Const  statement, which is used to declare constants.

Enum Statement Describes the Enum  statement, which is used to create enumerations.

Option Explicit Statement Describes the Option Explicit  statement, which is used at module level to force
explicit declaration of all variables in that module.

Option Infer Statement Describes the Option Infer  statement, which enables the use of local type
inference in declaring variables.

Option Strict Statement Describes the Option Strict  statement, which restricts implicit data type
conversions to only widening conversions, disallows late binding, and disallows
implicit typing that results in an Object  type.

Constants are a way to use meaningful names in place of a value that does not change. Constants store values that, as the name implies, remain
constant throughout the execution of an application. You can use constants to provide meaningful names, instead of numbers, making your code more
readable.

Enumerations provide a convenient way to work with sets of related constants, and to associate constant values with names. For example, you can
declare an enumeration for a set of integer constants associated with the days of the week, and then use the names of the days rather than their integer
values in your code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/constants-enums/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/constants-enums/constants-overview
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/constants-enums/enumerations-overview


  

Control Flow in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

Left unregulated, a program proceeds through its statements from beginning to end. Some very simple programs can be written with only this
unidirectional flow. However, much of the power and utility of any programming language comes from the ability to change execution order with
control statements and loops.

Control structures allow you to regulate the flow of your program's execution. Using control structures, you can write Visual Basic code that makes
decisions or that repeats actions. Other control structures let you guarantee disposal of a resource or run a series of statements on the same object
reference.

Decision Structures
Describes control structures used for branching.

Loop Structures
Discusses control structures used to repeat processes.

Other Control Structures
Describes control structures used for resource disposal and object access.

Nested Control Structures
Covers control structures inside other control structures.

Control Flow Summary
Provides links to language reference pages on this subject.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/control-flow/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/decision-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/loop-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/other-control-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


   

Data Types in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

Declared Data Types

PROGRAMMING ELEMENT DATA TYPE DECLARATION

Variable In a Dim Statement

Dim  amount As Double

Static  yourName As String

Public  billsPaid As Decimal = 0

Literal With a literal type character; see "Literal Type Characters" in Type Characters

Dim searchChar As Char = "."  C

Constant In a Const Statement

Const  modulus As Single = 4.17825F

Enumeration In an Enum Statement

Public  Enum  colors

Property In a Property Statement

Property  region() As String

Procedure parameter In a Sub Statement, Function Statement, or Operator Statement

Sub addSale(ByVal  amount  As Double)

Procedure argument In the calling code; each argument is a programming element that has already
been declared, or an expression containing declared elements

subString = Left(  inputString  ,  5  )

Procedure return value In a Function Statement or Operator Statement

Function convert(ByVal b As Byte)  As String

See Also

The data type of a programming element refers to what kind of data it can hold and how it stores that data. Data types apply to all values that can be
stored in computer memory or participate in the evaluation of an expression. Every variable, literal, constant, enumeration, property, procedure
parameter, procedure argument, and procedure return value has a data type.

You define a programming element with a declaration statement, and you specify its data type with the As  clause. The following table shows the
statements you use to declare various elements.

For a list of Visual Basic data types, see Data Types.

Type Characters
Elementary Data Types
Composite Data Types
Generic Types in Visual Basic
Value Types and Reference Types
Type Conversions in Visual Basic
Structures
Tuples
Troubleshooting Data Types
Data Types
Efficient Use of Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/data-types/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/elementary-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/composite-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/value-types-and-reference-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/tuples
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


  

Declared Elements in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

A declared element is a programming element that is defined in a declaration statement. Declared elements include variables, constants, enumerations,
classes, structures, modules, interfaces, procedures, procedure parameters, function returns, external procedure references, operators, properties, events,
and delegates.

Declaration statements include the following:

Dim Statement

Const Statement

Enum Statement

Class Statement

Structure Statement

Module Statement

Interface Statement

Function Statement

Sub Statement

Declare Statement

Operator Statement

Property Statement

Event Statement

Delegate Statement

Declared Element Names
Describes how to name elements and use alphabetic case.

Declared Element Characteristics
Covers characteristics, such as scope, possessed by declared elements.

References to Declared Elements
Describes how the compiler matches a reference to a declaration and how to qualify a name.

Program Structure and Code Conventions
Presents guidelines for making your code easier to read, understand, and maintain.

Statements
Describes statements that name and define procedures, variables, arrays, and constants.

Declaration Contexts and Default Access Levels
Lists the types of declared elements and shows for each one its declaration statement, in what context you can declare it, and its default access level.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/declared-elements/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-characteristics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


         

Delegates (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

Delegates and Events

AddHandler Button1.Click, New EventHandler(AddressOf Button1_Click)
' The following line of code is shorthand for the previous line.
AddHandler Button1.Click, AddressOf Me.Button1_Click

Declaring Events that Use an Existing Delegate Type

Delegate Sub DelegateType()
Event AnEvent As DelegateType

Delegate Variables and Parameters

AddressOf and Lambda Expressions

Delegates are objects that refer to methods. They are sometimes described as type-safe function pointers because they are similar to function pointers
used in other programming languages. But unlike function pointers, Visual Basic delegates are a reference type based on the class System.Delegate.
Delegates can reference both shared methods — methods that can be called without a specific instance of a class — and instance methods.

Delegates are useful in situations where you need an intermediary between a calling procedure and the procedure being called. For example, you might
want an object that raises events to be able to call different event handlers under different circumstances. Unfortunately, the object raising the events
cannot know ahead of time which event handler is handling a specific event. Visual Basic lets you dynamically associate event handlers with events by
creating a delegate for you when you use the AddHandler  statement. At run time, the delegate forwards calls to the appropriate event handler.

Although you can create your own delegates, in most cases Visual Basic creates the delegate and takes care of the details for you. For example, an 
Event  statement implicitly defines a delegate class named <EventName>EventHandler  as a nested class of the class containing the Event  statement, and

with the same signature as the event. The AddressOf  statement implicitly creates an instance of a delegate that refers to a specific procedure. The
following two lines of code are equivalent. In the first line, you see the explicit creation of an instance of Eventhandler , with a reference to method 
Button1_Click  sent as the argument. The second line is a more convenient way to do the same thing.

You can use the shorthand way of creating delegates anywhere the compiler can determine the delegate's type by the context.

In some situations, you may want to declare an event to use an existing delegate type as its underlying delegate. The following syntax demonstrates
how:

This is useful when you want to route multiple events to the same handler.

You can use delegates for other, non-event related tasks, such as free threading or with procedures that need to call different versions of functions at run
time.

For example, suppose you have a classified-ad application that includes a list box with the names of cars. The ads are sorted by title, which is normally
the make of the car. A problem you may face occurs when some cars include the year of the car before the make. The problem is that the built-in sort
functionality of the list box sorts only by character codes; it places all the ads starting with dates first, followed by the ads starting with the make.

To fix this, you can create a sort procedure in a class that uses the standard alphabetic sort on most list boxes, but is able to switch at run time to the
custom sort procedure for car ads. To do this, you pass the custom sort procedure to the sort class at run time, using delegates.

Each delegate class defines a constructor that is passed the specification of an object method. An argument to a delegate constructor must be a
reference to a method, or a lambda expression.

To specify a reference to a method, use the following syntax:

AddressOf  [ expression .] methodName

The compile-time type of the expression  must be the name of a class or an interface that contains a method of the specified name whose signature
matches the signature of the delegate class. The methodName  can be either a shared method or an instance method. The methodName  is not optional, even
if you create a delegate for the default method of the class.

To specify a lambda expression, use the following syntax:

Function  ([ parm  As type , parm2  As type2 , ...]) expression

The following example shows both AddressOf  and lambda expressions used to specify the reference for a delegate.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/delegates/index.md
https://docs.microsoft.com/dotnet/api/system.delegate


Module Module1

    Sub Main()
        ' Create an instance of InOrderClass and assign values to the properties.
        ' InOrderClass method ShowInOrder displays the numbers in ascending 
        ' or descending order, depending on the comparison method you specify.
        Dim inOrder As New InOrderClass
        inOrder.Num1 = 5
        inOrder.Num2 = 4

        ' Use AddressOf to send a reference to the comparison function you want
        ' to use.
        inOrder.ShowInOrder(AddressOf GreaterThan)
        inOrder.ShowInOrder(AddressOf LessThan)

        ' Use lambda expressions to do the same thing.
        inOrder.ShowInOrder(Function(m, n) m > n)
        inOrder.ShowInOrder(Function(m, n) m < n)
    End Sub

    Function GreaterThan(ByVal num1 As Integer, ByVal num2 As Integer) As Boolean
        Return num1 > num2
    End Function

    Function LessThan(ByVal num1 As Integer, ByVal num2 As Integer) As Boolean
        Return num1 < num2
    End Function

    Class InOrderClass
        ' Define the delegate function for the comparisons.
        Delegate Function CompareNumbers(ByVal num1 As Integer, ByVal num2 As Integer) As Boolean
        ' Display properties in ascending or descending order.
        Sub ShowInOrder(ByVal compare As CompareNumbers)
            If compare(_num1, _num2) Then
                Console.WriteLine(_num1 & "  " & _num2)
            Else
                Console.WriteLine(_num2 & "  " & _num1)
            End If
        End Sub

        Private _num1 As Integer
        Property Num1() As Integer
            Get
                Return _num1
            End Get
            Set(ByVal value As Integer)
                _num1 = value
            End Set
        End Property

        Private _num2 As Integer
        Property Num2() As Integer
            Get
                Return _num2
            End Get
            Set(ByVal value As Integer)
                _num2 = value
            End Set
        End Property
    End Class
End Module

Related Topics
TITLE DESCRIPTION

How to: Invoke a Delegate Method Provides an example that shows how to associate a method with a delegate and
then invoke that method through the delegate.

How to: Pass Procedures to Another Procedure in Visual Basic Demonstrates how to use delegates to pass one procedure to another procedure.

Relaxed Delegate Conversion Describes how you can assign subs and functions to delegates or handlers even
when their signatures are not identical

Events Provides an overview of events in Visual Basic.

The signature of the function must match that of the delegate type. For more information about lambda expressions, see Lambda Expressions. For more
examples of lambda expression and AddressOf  assignments to delegates, see Relaxed Delegate Conversion.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/how-to-invoke-a-delegate-method
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/how-to-pass-procedures-to-another-procedure
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion


   

Early and Late Binding (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

'  Create a variable to hold a new object.
Dim FS As System.IO.FileStream
' Assign a new object to the variable.
FS = New System.IO.FileStream("C:\tmp.txt", 
    System.IO.FileMode.Open)

' To use this example, you must have Microsoft Excel installed on your computer.
' Compile with Option Strict Off to allow late binding.
Sub TestLateBinding()
    Dim xlApp As Object
    Dim xlBook As Object
    Dim xlSheet As Object
    xlApp = CreateObject("Excel.Application")
    ' Late bind an instance of an Excel workbook.
    xlBook = xlApp.Workbooks.Add
    ' Late bind an instance of an Excel worksheet.
    xlSheet = xlBook.Worksheets(1)
    xlSheet.Activate()
    ' Show the application.
    xlSheet.Application.Visible = True
    ' Place some text in the second row of the sheet.
    xlSheet.Cells(2, 2) = "This is column B row 2"
End Sub

Advantages of Early Binding

NOTENOTE

See Also

The Visual Basic compiler performs a process called binding  when an object is assigned to an object variable. An object is early bound when it is
assigned to a variable declared to be of a specific object type. Early bound objects allow the compiler to allocate memory and perform other
optimizations before an application executes. For example, the following code fragment declares a variable to be of type FileStream:

Because FileStream is a specific object type, the instance assigned to FS  is early bound.

By contrast, an object is late bound when it is assigned to a variable declared to be of type Object . Objects of this type can hold references to any
object, but lack many of the advantages of early-bound objects. For example, the following code fragment declares an object variable to hold an object
returned by the CreateObject  function:

You should use early-bound objects whenever possible, because they allow the compiler to make important optimizations that yield more efficient
applications. Early-bound objects are significantly faster than late-bound objects and make your code easier to read and maintain by stating exactly
what kind of objects are being used. Another advantage to early binding is that it enables useful features such as automatic code completion and
Dynamic Help because the Visual Studio integrated development environment (IDE) can determine exactly what type of object you are working with as
you edit the code. Early binding reduces the number and severity of run-time errors because it allows the compiler to report errors when a program is
compiled.

Late binding can only be used to access type members that are declared as Public . Accessing members declared as Friend  or Protected Friend  results in a run-
time error.

CreateObject
Object Lifetime: How Objects Are Created and Destroyed
Object Data Type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/early-late-binding/index.md
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/system.io.filestream
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.createobject
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed


                          

Error Types (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax Errors

NOTENOTE

Run-Time Errors

Logic Errors

See Also

In Visual Basic, errors (also called exceptions) fall into one of three categories: syntax errors, run-time errors, and logic errors.

Syntax errors are those that appear while you write code. Visual Basic checks your code as you type it in the Code Editor window and alerts you if you
make a mistake, such as misspelling a word or using a language element improperly. Syntax errors are the most common type of errors. You can fix
them easily in the coding environment as soon as they occur.

The Option Explicit  statement is one means of avoiding syntax errors. It forces you to declare, in advance, all the variables to be used in the application. Therefore,
when those variables are used in the code, any typographic errors are caught immediately and can be fixed.

Run-time errors are those that appear only after you compile and run your code. These involve code that may appear to be correct in that it has no
syntax errors, but that will not execute. For example, you might correctly write a line of code to open a file. But if the file is corrupted, the application
cannot carry out the Open  function, and it stops running. You can fix most run-time errors by rewriting the faulty code, and then recompiling and
rerunning it.

Logic errors are those that appear once the application is in use. They are most often unwanted or unexpected results in response to user actions. For
example, a mistyped key or other outside influence might cause your application to stop working within expected parameters, or altogether. Logic errors
are generally the hardest type to fix, since it is not always clear where they originate.

Try...Catch...Finally Statement
Debugger Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/error-types.md
https://docs.microsoft.com/visualstudio/debugger/debugger-basics


                

Events (Visual Basic)
5/4/2018 • 6 minutes to read • Edit Online

Event Terms and Concepts

Declaring EventsDeclaring Events

Event AnEvent(ByVal EventNumber As Integer)

Raising EventsRaising Events

RaiseEvent AnEvent(EventNumber)

Event SendersEvent Senders

Event HandlersEvent Handlers

NOTENOTE

Associating Events with Event Handlers

WithEvents and the Handles ClauseWithEvents and the Handles Clause

While you might visualize a Visual Studio project as a series of procedures that execute in a sequence, in reality, most programs are event driven—
meaning the flow of execution is determined by external occurrences called events.

An event is a signal that informs an application that something important has occurred. For example, when a user clicks a control on a form, the form
can raise a Click  event and call a procedure that handles the event. Events also allow separate tasks to communicate. Say, for example, that your
application performs a sort task separately from the main application. If a user cancels the sort, your application can send a cancel event instructing the
sort process to stop.

This section describes the terms and concepts used with events in Visual Basic.

You declare events within classes, structures, modules, and interfaces using the Event  keyword, as in the following example:

An event is like a message announcing that something important has occurred. The act of broadcasting the message is called raising the event. In Visual
Basic, you raise events with the RaiseEvent  statement, as in the following example:

Events must be raised within the scope of the class, module, or structure where they are declared. For example, a derived class cannot raise events
inherited from a base class.

Any object capable of raising an event is an event sender, also known as an event source. Forms, controls, and user-defined objects are examples of
event senders.

Event handlers are procedures that are called when a corresponding event occurs. You can use any valid subroutine with a matching signature as an
event handler. You cannot use a function as an event handler, however, because it cannot return a value to the event source.

Visual Basic uses a standard naming convention for event handlers that combines the name of the event sender, an underscore, and the name of the
event. For example, the Click  event of a button named button1  would be named Sub button1_Click .

We recommend that you use this naming convention when defining event handlers for your own events, but it is not required; you can use any valid subroutine name.

Before an event handler becomes usable, you must first associate it with an event by using either the Handles  or AddHandler  statement.

The WithEvents  statement and Handles  clause provide a declarative way of specifying event handlers. An event raised by an object declared with the 
WithEvents  keyword can be handled by any procedure with a Handles  statement for that event, as shown in the following example:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/events/index.md


' Declare a WithEvents variable.
Dim WithEvents EClass As New EventClass

' Call the method that raises the object's events.
Sub TestEvents()
    EClass.RaiseEvents()
End Sub

' Declare an event handler that handles multiple events.
Sub EClass_EventHandler() Handles EClass.XEvent, EClass.YEvent
    MsgBox("Received Event.")
End Sub

Class EventClass
    Public Event XEvent()
    Public Event YEvent()
    ' RaiseEvents raises both events.
    Sub RaiseEvents()
        RaiseEvent XEvent()
        RaiseEvent YEvent()
    End Sub
End Class

Friend WithEvents Button1 As System.Windows.Forms.Button
Protected Sub Button1_Click() Handles Button1.Click
End Sub

AddHandler and RemoveHandlerAddHandler and RemoveHandler

AddHandler Obj.XEvent, AddressOf Me.XEventHandler

RemoveHandler Obj.XEvent, AddressOf Me.XEventHandler

The WithEvents  statement and the Handles  clause are often the best choice for event handlers because the declarative syntax they use makes event
handling easier to code, read and debug. However, be aware of the following limitations on the use of WithEvents  variables:

You cannot use a WithEvents  variable as an object variable. That is, you cannot declare it as Object —you must specify the class name when you
declare the variable.

Because shared events are not tied to class instances, you cannot use WithEvents  to declaratively handle shared events. Similarly, you cannot use
WithEvents  or Handles  to handle events from a Structure . In both cases, you can use the AddHandler  statement to handle those events.

You cannot create arrays of WithEvents  variables.

WithEvents  variables allow a single event handler to handle one or more kind of event, or one or more event handlers to handle the same kind of event.

Although the Handles  clause is the standard way of associating an event with an event handler, it is limited to associating events with event handlers at
compile time.

In some cases, such as with events associated with forms or controls, Visual Basic automatically stubs out an empty event handler and associates it with
an event. For example, when you double-click a command button on a form in design mode, Visual Basic creates an empty event handler and a 
WithEvents  variable for the command button, as in the following code:

The AddHandler  statement is similar to the Handles  clause in that both allow you to specify an event handler. However, AddHandler , used with 
RemoveHandler , provides greater flexibility than the Handles  clause, allowing you to dynamically add, remove, and change the event handler associated

with an event. If you want to handle shared events or events from a structure, you must use AddHandler .

AddHandler  takes two arguments: the name of an event from an event sender such as a control, and an expression that evaluates to a delegate. You do
not need to explicitly specify the delegate class when using AddHandler , since the AddressOf  statement always returns a reference to the delegate. The
following example associates an event handler with an event raised by an object:

RemoveHandler , which disconnects an event from an event handler, uses the same syntax as AddHandler . For example:

In the following example, an event handler is associated with an event, and the event is raised. The event handler catches the event and displays a
message.

Then the first event handler is removed and a different event handler is associated with the event. When the event is raised again, a different message is
displayed.

Finally, the second event handler is removed and the event is raised for a third time. Because there is no longer an event handler associated with the
event, no action is taken.



Module Module1

    Sub Main()
        Dim c1 As New Class1
        ' Associate an event handler with an event.
        AddHandler c1.AnEvent, AddressOf EventHandler1
        ' Call a method to raise the event.
        c1.CauseTheEvent()
        ' Stop handling the event.
        RemoveHandler c1.AnEvent, AddressOf EventHandler1
        ' Now associate a different event handler with the event.
        AddHandler c1.AnEvent, AddressOf EventHandler2
        ' Call a method to raise the event.
        c1.CauseTheEvent()
        ' Stop handling the event.
        RemoveHandler c1.AnEvent, AddressOf EventHandler2
        ' This event will not be handled.
        c1.CauseTheEvent()
    End Sub

    Sub EventHandler1()
        ' Handle the event.
        MsgBox("EventHandler1 caught event.")
    End Sub

    Sub EventHandler2()
        ' Handle the event.
        MsgBox("EventHandler2 caught event.")
    End Sub

    Public Class Class1
        ' Declare an event.
        Public Event AnEvent()
        Sub CauseTheEvent()
            ' Raise an event.
            RaiseEvent AnEvent()
        End Sub
    End Class

End Module

Handling Events Inherited from a Base Class

To handle events from a base classTo handle events from a base class

Related Sections
TITLE DESCRIPTION

Walkthrough: Declaring and Raising Events Provides a step-by-step description of how to declare and raise events for a class.

Walkthrough: Handling Events Demonstrates how to write an event-handler procedure.

How to: Declare Custom Events To Avoid Blocking Demonstrates how to define a custom event that allows its event handlers to be
called asynchronously.

How to: Declare Custom Events To Conserve Memory Demonstrates how to define a custom event that uses memory only when the
event is handled.

Troubleshooting Inherited Event Handlers in Visual Basic Lists common issues that arise with event handlers in inherited components.

Derived classes—classes that inherit characteristics from a base class—can handle events raised by their base class using the Handles``MyBase

statement.

Public Class BaseClass
    Public Event BaseEvent(ByVal i As Integer)
    ' Place methods and properties here.
End Class

Public Class DerivedClass
    Inherits BaseClass
    Sub EventHandler(ByVal x As Integer) Handles MyBase.BaseEvent
        ' Place code to handle events from BaseClass here.
    End Sub
End Class

Declare an event handler in the derived class by adding a Handles MyBase. eventname statement to the declaration line of your event-handler
procedure, where eventname is the name of the event in the base class you are handling. For example:

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/walkthrough-declaring-and-raising-events
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/walkthrough-handling-events
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-avoid-blocking
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-conserve-memory
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/troubleshooting-inherited-event-handlers


Events Provides an overview of the event model in the .NET Framework.

Creating Event Handlers in Windows Forms Describes how to work with events associated with Windows Forms objects.

Delegates Provides an overview of delegates in Visual Basic.

TITLE DESCRIPTION

https://docs.microsoft.com/en-us/dotnet/framework/winforms/creating-event-handlers-in-windows-forms


               

Interfaces (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

Declaring Interfaces

NOTENOTE

Interface IAsset
    Event ComittedChange(ByVal Success As Boolean)
    Property Division() As String
    Function GetID() As Integer
End Interface

Implementing Interfaces

Implements StatementImplements Statement

Implements KeywordImplements Keyword

Class Class1
    Implements interfaceclass.interface2

    Sub Sub1(ByVal i As Integer) Implements interfaceclass.interface2.Sub1
    End Sub
End Class

Interfaces define the properties, methods, and events that classes can implement. Interfaces allow you to define features as small groups of closely
related properties, methods, and events; this reduces compatibility problems because you can develop enhanced implementations for your interfaces
without jeopardizing existing code. You can add new features at any time by developing additional interfaces and implementations.

There are several other reasons why you might want to use interfaces instead of class inheritance:

Interfaces are better suited to situations in which your applications require many possibly unrelated object types to provide certain functionality.

Interfaces are more flexible than base classes because you can define a single implementation that can implement multiple interfaces.

Interfaces are better in situations in which you do not have to inherit implementation from a base class.

Interfaces are useful when you cannot use class inheritance. For example, structures cannot inherit from classes, but they can implement
interfaces.

Interface definitions are enclosed within the Interface  and End Interface  statements. Following the Interface  statement, you can add an optional 
Inherits  statement that lists one or more inherited interfaces. The Inherits  statements must precede all other statements in the declaration except

comments. The remaining statements in the interface definition should be Event , Sub , Function , Property , Interface , Class , Structure , and Enum

statements. Interfaces cannot contain any implementation code or statements associated with implementation code, such as End Sub  or End Property .

In a namespace, interface statements are Friend  by default, but they can also be explicitly declared as Public  or Friend . Interfaces defined within
classes, modules, interfaces, and structures are Public  by default, but they can also be explicitly declared as Public , Friend , Protected , or Private .

The Shadows  keyword can be applied to all interface members. The Overloads  keyword can be applied to Sub , Function , and Property  statements declared in
an interface definition. In addition, Property  statements can have the Default , ReadOnly , or WriteOnly  modifiers. None of the other modifiers— Public , 
Private , Friend , Protected , Shared , Overrides , MustOverride , or Overridable —are allowed. For more information, see Declaration Contexts and Default

Access Levels.

For example, the following code defines an interface with one function, one property, and one event.

The Visual Basic reserved word Implements  is used in two ways. The Implements  statement signifies that a class or structure implements an interface.
The Implements  keyword signifies that a class member or structure member implements a specific interface member.

If a class or structure implements one or more interfaces, it must include the Implements  statement immediately after the Class  or Structure

statement. The Implements  statement requires a comma-separated list of interfaces to be implemented by a class. The class or structure must
implement all interface members using the Implements  keyword.

The Implements  keyword requires a comma-separated list of interface members to be implemented. Generally, only a single interface member is
specified, but you can specify multiple members. The specification of an interface member consists of the interface name, which must be specified in an
implements statement within the class; a period; and the name of the member function, property, or event to be implemented. The name of a member
that implements an interface member can use any legal identifier, and it is not limited to the InterfaceName_MethodName  convention used in earlier
versions of Visual Basic.

For example, the following code shows how to declare a subroutine named Sub1  that implements a method of an interface:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/interfaces/index.md


Class Class2
    Implements I1, I2

    Protected Sub M1() Implements I1.M1, I1.M2, I2.M3, I2.M4
    End Sub
End Class

Interface Implementation ExamplesInterface Implementation Examples

Interface Interface1
    Sub sub1(ByVal i As Integer)
End Interface

' Demonstrates interface inheritance.
Interface Interface2
    Inherits Interface1
    Sub M1(ByVal y As Integer)
    ReadOnly Property Num() As Integer
End Interface

Public Class ImplementationClass1
    Implements Interface1
    Sub Sub1(ByVal i As Integer) Implements Interface1.sub1
        ' Insert code here to implement this method.
    End Sub
End Class

Public Class ImplementationClass2
    Implements Interface2
    Dim INum As Integer = 0
    Sub sub1(ByVal i As Integer) Implements Interface2.sub1
        ' Insert code here that implements this method.
    End Sub
    Sub M1(ByVal x As Integer) Implements Interface2.M1
        ' Insert code here to implement this method.
    End Sub

    ReadOnly Property Num() As Integer Implements Interface2.Num
        Get
            Num = INum
        End Get
    End Property
End Class

Related Topics
TITLE DESCRIPTION

Walkthrough: Creating and Implementing Interfaces Provides a detailed procedure that takes you through the process of defining and
implementing your own interface.

The parameter types and return types of the implementing member must match the interface property or member declaration in the interface. The
most common way to implement an element of an interface is with a member that has the same name as the interface, as shown in the previous
example.

To declare the implementation of an interface method, you can use any attributes that are legal on instance method declarations, including Overloads , 
Overrides , Overridable , Public , Private , Protected , Friend , Protected Friend , MustOverride , Default , and Static . The Shared  attribute is not

legal since it defines a class rather than an instance method.

Using Implements , you can also write a single method that implements multiple methods defined in an interface, as in the following example:

You can use a private member to implement an interface member. When a private member implements a member of an interface, that member
becomes available by way of the interface even though it is not available directly on object variables for the class.

Classes that implement an interface must implement all its properties, methods, and events.

The following example defines two interfaces. The second interface, Interface2 , inherits Interface1  and defines an additional property and method.

The next example implements Interface1 , the interface defined in the previous example:

The final example implements Interface2 , including a method inherited from Interface1 :

You can implement a readonly property with a readwrite property (that is, you do not have to declare it readonly in the implementing class).
Implementing an interface promises to implement at least the members that the interface declares, but you can offer more functionality, such as
allowing your property to be writable.



Variance in Generic Interfaces Discusses covariance and contravariance in generic interfaces and provides a list of
variant generic interfaces in the .NET Framework.

TITLE DESCRIPTION

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/variance-in-generic-interfaces


  

Walkthrough: Creating and Implementing Interfaces (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To define an interface

Implementation

To implement the interfaceTo implement the interface

Interfaces describe the characteristics of properties, methods, and events, but leave the implementation details up to structures or classes.

This walkthrough demonstrates how to declare and implement an interface.

This walkthrough doesn't provide information about how to create a user interface.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

Property Prop1() As Integer
Sub Method1(ByVal X As Integer)
Event Event1()

1. Open a new Visual Basic Windows Application project.

2. Add a new module to the project by clicking Add Module on the Project menu.

3. Name the new module Module1.vb  and click Add. The code for the new module is displayed.

4. Define an interface named TestInterface  within Module1  by typing Interface TestInterface  between the Module  and End Module  statements,
and then pressing ENTER. The Code Editor indents the Interface  keyword and adds an End Interface  statement to form a code block.

5. Define a property, method, and event for the interface by placing the following code between the Interface  and End Interface  statements:

You may notice that the syntax used to declare interface members is different from the syntax used to declare class members. This difference reflects the
fact that interfaces cannot contain implementation code.

Class ImplementationClass

Implements TestInterface

1. Add a class named ImplementationClass  by adding the following statement to Module1 , after the End Interface  statement but before the 
End Module  statement, and then pressing ENTER:

If you are working within the integrated development environment, the Code Editor supplies a matching End Class  statement when you press
ENTER.

2. Add the following Implements  statement to ImplementationClass , which names the interface the class implements:

When listed separately from other items at the top of a class or structure, the Implements  statement indicates that the class or structure
implements an interface.

If you are working within the integrated development environment, the Code Editor implements the class members required by TestInterface

when you press ENTER, and you can skip the next step.

3. If you are not working within the integrated development environment, you must implement all the members of the interface MyInterface . Add
the following code to ImplementationClass  to implement Event1 , Method1 , and Prop1 :

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/interfaces/walkthrough-creating-and-implementing-interfaces.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


To test the implementation of the interfaceTo test the implementation of the interface

Event Event1() Implements TestInterface.Event1

Public Sub Method1(ByVal X As Integer) Implements TestInterface.Method1
End Sub

Public Property Prop1() As Integer Implements TestInterface.Prop1
    Get
    End Get
    Set(ByVal value As Integer)
    End Set
End Property

' Holds the value of the property.
Private pval As Integer

Return pval

pval = value

MsgBox("The X parameter for Method1 is " & X)
RaiseEvent Event1()

The Implements  statement names the interface and interface member being implemented.

4. Complete the definition of Prop1  by adding a private field to the class that stored the property value:

Return the value of the pval  from the property get accessor.

Set the value of pval  in the property set accessor.

5. Complete the definition of Method1  by adding the following code.

Dim WithEvents testInstance As TestInterface

Sub EventHandler() Handles testInstance.Event1
    MsgBox("The event handler caught the event.")
End Sub

Sub Test()
    '  Create an instance of the class.
    Dim T As New ImplementationClass
    ' Assign the class instance to the interface.
    ' Calls to the interface members are 
    ' executed through the class instance.
    testInstance = T
    ' Set a property.
    testInstance.Prop1 = 9
    ' Read the property.
    MsgBox("Prop1 was set to " & testInstance.Prop1)
    '  Test the method and raise an event.
    testInstance.Method1(5)
End Sub

1. Right-click the startup form for your project in the Solution Explorer, and click View Code. The editor displays the class for your startup form.
By default, the startup form is called Form1 .

2. Add the following testInstance  field to the Form1  class:

By declaring testInstance  as WithEvents , the Form1  class can handle its events.

3. Add the following event handler to the Form1  class to handle events raised by testInstance :

4. Add a subroutine named Test  to the Form1  class to test the implementation class:

The Test  procedure creates an instance of the class that implements MyInterface , assigns that instance to the testInstance  field, sets a
property, and runs a method through the interface.

5. Add code to call the Test  procedure from the Form1 Load  procedure of your startup form:



See also

Private Sub Form1_Load(ByVal sender As System.Object, 
                       ByVal e As System.EventArgs) Handles MyBase.Load
    Test() ' Test the class.
End Sub

6. Run the Test  procedure by pressing F5. The message "Prop1 was set to 9" is displayed. After you click OK, the message "The X parameter for
Method1 is 5" is displayed. Click OK, and the message "The event handler caught the event" is displayed.

Implements Statement
Interfaces
Interface Statement
Event Statement



     

LINQ in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

See Also

This section contains overviews, examples, and background information that will help you understand and use Visual Basic and Language-Integrated
Query (L INQ).

Introduction to L INQ in Visual Basic
Provides an introduction to L INQ providers, operators, query structure, and language features.

How to: Query a Database
Provides an example of how to connect to a SQL Server database and execute a query by using LINQ.

How to: Call a Stored Procedure
Provides an example of how to connect to a SQL Server database and call a stored procedure by using LINQ.

How to: Modify Data in a Database
Provides an example of how to connect to a SQL Server database and retrieve and modify data by using LINQ.

How to: Combine Data with Joins
Provides examples of how to join data in a manner similar to database joins by using LINQ.

How to: Sort Query Results
Provides an example of how to order the results of a query by using LINQ.

How to: Filter Query Results
Provides an example of how to include search criteria in a query by using LINQ.

How to: Count, Sum, or Average Data
Provides examples of how to include aggregate functions to Count, Sum, or Average data returned from a query by using LINQ.

How to: Find the Minimum or Maximum Value in a Query Result
Provides examples of how to include aggregate functions to determine the minimum and maximum values of data returned from a query by using
LINQ.

How to: Return a L INQ Query Result as a Specific Type
Provides an example of how to return the results of a L INQ query as a specific type instead of as an anonymous type.

L INQ (Language-Integrated Query)
Overview of L INQ to XML in Visual Basic
LINQ to DataSet Overview
LINQ to SQL

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/linq/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-query-a-database-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-call-a-stored-procedure-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-modify-data-in-a-database-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-combine-data-with-linq-by-using-joins
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-sort-query-results-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-filter-query-results-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-count-sum-or-average-data-by-using-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-find-the-minimum-or-maximum-value-in-a-query-result
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/how-to-return-a-linq-query-result-as-a-specific-type
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/overview-of-linq-to-xml
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/linq-to-dataset-overview
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/linq/index


                 

Objects and classes in Visual Basic
5/4/2018 • 11 minutes to read • Edit Online

Objects and classes

To create an object from a classTo create an object from a class

NOTENOTE

Multiple instancesMultiple instances

Object members

Member AccessMember Access

warningLabel.Text = "Data not saved"

IntelliSense listing of membersIntelliSense listing of members

An object is a combination of code and data that can be treated as a unit. An object can be a piece of an application, like a control or a form. An entire
application can also be an object.

When you create an application in Visual Basic, you constantly work with objects. You can use objects provided by Visual Basic, such as controls, forms,
and data access objects. You can also use objects from other applications within your Visual Basic application. You can even create your own objects and
define additional properties and methods for them. Objects act like prefabricated building blocks for programs — they let you write a piece of code
once and reuse it over and over.

This topic discusses objects in detail.

Each object in Visual Basic is defined by a class. A class describes the variables, properties, procedures, and events of an object. Objects are instances of
classes; you can create as many objects you need once you have defined a class.

To understand the relationship between an object and its class, think of cookie cutters and cookies. The cookie cutter is the class. It defines the
characteristics of each cookie, for example size and shape. The class is used to create objects. The objects are the cookies.

You must create an object before you can access its members.

Dim nextCustomer As customer

Dim nextCustomer As New customer

nextCustomer.accountNumber = lastAccountNumber + 1  

1. Determine from which class you want to create an object.

2. Write a Dim Statement to create a variable to which you can assign a class instance. The variable should be of the type of the desired class.

3. Add the New Operator keyword to initialize the variable to a new instance of the class.

4. You can now access the members of the class through the object variable.

Whenever possible, you should declare the variable to be of the class type you intend to assign to it. This is called early binding. If you don't know the class type at
compile time, you can invoke late binding by declaring the variable to be of the Object Data Type. However, late binding can make performance slower and limit access
to the run-time object's members. For more information, see Object Variable Declaration.

Objects newly created from a class are often identical to each other. Once they exist as individual objects, however, their variables and properties can be
changed independently of the other instances. For example, if you add three check boxes to a form, each check box object is an instance of the CheckBox
class. The individual CheckBox objects share a common set of characteristics and capabilities (properties, variables, procedures, and events) defined by
the class. However, each has its own name, can be separately enabled and disabled, and can be placed in a different location on the form.

An object is an element of an application, representing an instance of a class. Fields, properties, methods, and events are the building blocks of objects
and constitute their members.

You access a member of an object by specifying, in order, the name of the object variable, a period ( . ), and the name of the member. The following
example sets the Text property of a Label object.

IntelliSense lists members of a class when you invoke its List Members option, for example when you type a period ( . ) as a member-access operator. If
you type the period following the name of a variable declared as an instance of that class, IntelliSense lists all the instance members and none of the
shared members. If you type the period following the class name itself, IntelliSense lists all the shared members and none of the instance members. For

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/objects-and-classes/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/object-variable-declaration
https://docs.microsoft.com/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/dotnet/api/system.windows.forms.checkbox
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.text
https://docs.microsoft.com/dotnet/api/system.windows.forms.label


Fields and propertiesFields and properties

Dim warningWidth As Integer = warningLabel.Width
warningLabel.ForeColor = System.Drawing.Color.Red

MethodsMethods

Dim safetyTimer As New System.Windows.Forms.Timer
safetyTimer.Start()

EventsEvents

Instance members and shared membersInstance members and shared members

Accessing nonshared membersAccessing nonshared members
To  a c c e s s  a  n o n s h a re d  me mb e r  o f  a n  o b j e c tTo  a c c e s s  a  n o n s h a re d  me mb e r  o f  a n  o b j e c t

Accessing shared membersAccessing shared members
To  a c c e s s  a  s h a re d  me mb e r  o f  a n  o b j e c tTo  a c c e s s  a  s h a re d  me mb e r  o f  a n  o b j e c t

more information, see Using IntelliSense.

Fields and properties represent information stored in an object. You retrieve and set their values with assignment statements the same way you retrieve
and set local variables in a procedure. The following example retrieves the Width property and sets the ForeColor property of a Label object.

Note that a field is also called a member variable.

Use property procedures when:

You need to control when and how a value is set or retrieved.

The property has a well-defined set of values that need to be validated.

Setting the value causes some perceptible change in the object's state, such as an IsVisible  property.

Setting the property causes changes to other internal variables or to the values of other properties.

A set of steps must be performed before the property can be set or retrieved.

Use fields when:

The value is of a self-validating type. For example, an error or automatic data conversion occurs if a value other than True  or False  is assigned
to a Boolean  variable.

Any value in the range supported by the data type is valid. This is true of many properties of type Single  or Double .

The property is a String  data type, and there is no constraint on the size or value of the string.

For more information, see Property Procedures.

A method is an action that an object can perform. For example, Add is a method of the ComboBox object that adds a new entry to a combo box.

The following example demonstrates the Start method of a Timer object.

Note that a method is simply a procedure that is exposed by an object.

For more information, see Procedures.

An event is an action recognized by an object, such as clicking the mouse or pressing a key, and for which you can write code to respond. Events can
occur as a result of a user action or program code, or they can be caused by the system. Code that signals an event is said to raise the event, and code
that responds to it is said to handle it.

You can also develop your own custom events to be raised by your objects and handled by other objects. For more information, see Events.

When you create an object from a class, the result is an instance of that class. Members that are not declared with the Shared keyword are instance
members, which belong strictly to that particular instance. An instance member in one instance is independent of the same member in another instance
of the same class. An instance member variable, for example, can have different values in different instances.

Members declared with the Shared  keyword are shared members, which belong to the class as a whole and not to any particular instance. A shared
member exists only once, no matter how many instances of its class you create, or even if you create no instances. A shared member variable, for
example, has only one value, which is available to all code that can access the class.

Dim secondForm As New System.Windows.Forms.Form  

secondForm.Show()

1. Make sure the object has been created from its class and assigned to an object variable.

2. In the statement that accesses the member, follow the object variable name with the member-access operator ( . ) and then the member name.

Follow the class name with the member-access operator ( . ) and then the member name. You should always access a Shared  member of the
object directly through the class name.

https://docs.microsoft.com/visualstudio/ide/using-intellisense
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.width
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.forecolor
https://docs.microsoft.com/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures
https://docs.microsoft.com/dotnet/api/system.windows.forms.combobox.objectcollection.add
https://docs.microsoft.com/dotnet/api/system.windows.forms.combobox
https://docs.microsoft.com/dotnet/api/system.windows.forms.timer.start
https://docs.microsoft.com/dotnet/api/system.windows.forms.timer


Differences between classes and modulesDifferences between classes and modules

NOTENOTE

Reusing classes and objects

Public Sub examineTimeZone()
    Dim tz As System.TimeZone = System.TimeZone.CurrentTimeZone
    Dim s As String = "Current time zone is "
    s &= CStr(tz.GetUtcOffset(Now).Hours) & " hours and "
    s &= CStr(tz.GetUtcOffset(Now).Minutes) & " minutes "
    s &= "different from UTC (coordinated universal time)"
    s &= vbCrLf & "and is currently "
    If tz.IsDaylightSavingTime(Now) = False Then s &= "not "
    s &= "on ""summer time""."
    MsgBox(s)
End Sub

Relationships among objects

Hierarchical relationshipHierarchical relationship

To  d e fi n e  a  c l a ss  i s  d e r i v e d  fr o m  a n  a l r e a d y  e x i s t i n g  c l a ssTo  d e fi n e  a  c l a ss  i s  d e r i v e d  fr o m  a n  a l r e a d y  e x i s t i n g  c l a ss

MsgBox("This computer is called " & Environment.MachineName)  

If you have already created an object from the class, you can alternatively access a Shared  member through the object's variable.

The main difference between classes and modules is that classes can be instantiated as objects while standard modules cannot. Because there is only
one copy of a standard module's data, when one part of your program changes a public variable in a standard module, any other part of the program
gets the same value if it then reads that variable. In contrast, object data exists separately for each instantiated object. Another difference is that unlike
standard modules, classes can implement interfaces.

When the Shared  modifier is applied to a class member, it is associated with the class itself instead of a particular instance of the class. The member is accessed
directly by using the class name, the same way module members are accessed.

Classes and modules also use different scopes for their members. Members defined within a class are scoped within a specific instance of the class and
exist only for the lifetime of the object. To access class members from outside a class, you must use fully qualified names in the format of
Object.Member.

On the other hand, members declared within a module are publicly accessible by default, and can be accessed by any code that can access the module.
This means that variables in a standard module are effectively global variables because they are visible from anywhere in your project, and they exist for
the life of the program.

Objects let you declare variables and procedures once and then reuse them whenever needed. For example, if you want to add a spelling checker to an
application you could define all the variables and support functions to provide spell-checking functionality. If you create your spelling checker as a class,
you can then reuse it in other applications by adding a reference to the compiled assembly. Better yet, you may be able to save yourself some work by
using a spelling checker class that someone else has already developed.

The .NET Framework provides many examples of components that are available for use. The following example uses the TimeZone class in the System
namespace. TimeZone provides members that allow you to retrieve information about the time zone of the current computer system.

In the preceding example, the first Dim Statement declares an object variable of type TimeZone and assigns to it a TimeZone object returned by the
CurrentTimeZone property.

Objects can be related to each other in several ways. The principal kinds of relationship are hierarchical and containment.

When classes are derived from more fundamental classes, they are said to have a hierarchical relationship. Class hierarchies are useful when describing
items that are a subtype of a more general class.

In the following example, suppose you want to define a special kind of Button that acts like a normal Button but also exposes a method that reverses the
foreground and background colors.

Public Class reversibleButton

Inherits System.Windows.Forms.Button

1. Use a Class Statement to define a class from which to create the object you need.

Be sure an End Class  statement follows the last line of code in your class. By default, the integrated development environment (IDE)
automatically generates an End Class  when you enter a Class  statement.

2. Follow the Class  statement immediately with an Inherits Statement. Specify the class from which your new class derives.

https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezone
https://docs.microsoft.com/dotnet/api/system.timezone.currenttimezone
https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/dotnet/api/system.windows.forms.button


Compiling the codeCompiling the code

Containment relationshipContainment relationship

CollectionsCollections

Related topics

Your new class inherits all the members defined by the base class.

Public Class reversibleButton
    Inherits System.Windows.Forms.Button
        Public Sub reverseColors()
            Dim saveColor As System.Drawing.Color = Me.BackColor
            Me.BackColor = Me.ForeColor
            Me.ForeColor = saveColor
       End Sub
End Class

3. Add the code for the additional members your derived class exposes. For example, you might add a reverseColors  method, and your derived
class might look as follows:

If you create an object from the reversibleButton  class, it can access all the members of the Button class, as well as the reverseColors  method
and any other new members you define on reversibleButton .

Derived classes inherit members from the class they are based on, allowing you to add complexity as you progress in a class hierarchy. For more
information, see Inheritance Basics.

Be sure the compiler can access the class from which you intend to derive your new class. This might mean fully qualifying its name, as in the preceding
example, or identifying its namespace in an Imports Statement (.NET Namespace and Type). If the class is in a different project, you might need to add a
reference to that project. For more information, see Managing references in a project.

Another way that objects can be related is a containment relationship. Container objects logically encapsulate other objects. For example, the
OperatingSystem object logically contains a Version object, which it returns through its Version property. Note that the container object does not
physically contain any other object.

One particular type of object containment is represented by collections. Collections are groups of similar objects that can be enumerated. Visual Basic
supports a specific syntax in the For Each...Next Statement that allows you to iterate through the items of a collection. Additionally, collections often
allow you to use an Item[String] to retrieve elements by their index or by associating them with a unique string. Collections can be easier to use than
arrays because they allow you to add or remove items without using indexes. Because of their ease of use, collections are often used to store forms and
controls.

Walkthrough: Defining Classes
Provides a step-by-step description of how to create a class.

Overloaded Properties and Methods
Overloaded Properties and Methods

Inheritance Basics
Covers inheritance modifiers, overriding methods and properties, MyClass, and MyBase.

Object Lifetime: How Objects Are Created and Destroyed
Discusses creating and disposing of class instances.

Anonymous Types
Describes how to create and use anonymous types, which allow you to create objects without writing a class definition for the data type.

Object Initializers: Named and Anonymous Types
Discusses object initializers, which are used to create instances of named and anonymous types by using a single expression.

How to: Infer Property Names and Types in Anonymous Type Declarations
Explains how to infer property names and types in anonymous type declarations. Provides examples of successful and unsuccessful inference.

https://docs.microsoft.com/dotnet/api/system.windows.forms.button
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project
https://docs.microsoft.com/dotnet/api/system.operatingsystem
https://docs.microsoft.com/dotnet/api/system.version
https://docs.microsoft.com/dotnet/api/system.operatingsystem.version
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.item
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/walkthrough-defining-classes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/overloaded-properties-and-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-infer-property-names-and-types-in-anonymous-type-declarations


              

Operators and Expressions in Visual Basic
6/6/2018 • 2 minutes to read • Edit Online

Types of Operators

Evaluation of Expressions

x = 45 + y * z ^ 2

See Also

An operator is a code element that performs an operation on one or more code elements that hold values. Value elements include variables, constants,
literals, properties, returns from Function  and Operator  procedures, and expressions.

An expression is a series of value elements combined with operators, which yields a new value. The operators act on the value elements by performing
calculations, comparisons, or other operations.

Visual Basic provides the following types of operators:

Arithmetic Operators perform familiar calculations on numeric values, including shifting their bit patterns.

Comparison Operators compare two expressions and return a Boolean  value representing the result of the comparison.

Concatenation Operators join multiple strings into a single string.

Logical and Bitwise Operators in Visual Basic combine Boolean  or numeric values and return a result of the same data type as the values.

The value elements that are combined with an operator are called operands of that operator. Operators combined with value elements form
expressions, except for the assignment operator, which forms a statement. For more information, see Statements.

The end result of an expression represents a value, which is typically of a familiar data type such as Boolean , String , or a numeric type.

The following are examples of expressions.

5 + 4

' The preceding expression evaluates to 9.

15 * System.Math.Sqrt(9) + x

' The preceding expression evaluates to 45 plus the value of x.

"Concat" & "ena" & "tion"

' The preceding expression evaluates to "Concatenation".

763 < 23

' The preceding expression evaluates to False.

Several operators can perform actions in a single expression or statement, as the following example illustrates.

In the preceding example, Visual Basic performs the operations in the expression on the right side of the assignment operator ( = ), then assigns the
resulting value to the variable x  on the left. There is no practical limit to the number of operators that can be combined into an expression, but an
understanding of Operator Precedence in Visual Basic is necessary to ensure that you get the results you expect.

For more information and examples, see Operator Overloading in Visual Basic 2005.

Operators
Efficient Combination of Operators
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/operators-and-expressions/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/concatenation-operators
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators
https://msdn.microsoft.com/library/ms379613(v=vs.80).aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/efficient-combination-of-operators


           

Procedures in Visual Basic
5/4/2018 • 3 minutes to read • Edit Online

Calling a Procedure

Returning from a Procedure

Parameters and Arguments

Types of Procedures

Procedures and Structured Code

A procedure is a block of Visual Basic statements enclosed by a declaration statement ( Function , Sub , Operator , Get , Set ) and a matching End

declaration. All executable statements in Visual Basic must be within some procedure.

You invoke a procedure from some other place in the code. This is known as a procedure call. When the procedure is finished running, it returns control
to the code that invoked it, which is known as the calling code. The calling code is a statement, or an expression within a statement, that specifies the
procedure by name and transfers control to it.

A procedure returns control to the calling code when it has finished running. To do this, it can use a Return Statement, the appropriate Exit Statement
statement for the procedure, or the procedure's End <keyword> Statement statement. Control then passes to the calling code following the point of the
procedure call.

With a Return  statement, control returns immediately to the calling code. Statements following the Return  statement do not run. You can have
more than one Return  statement in the same procedure.

With an Exit Sub  or Exit Function  statement, control returns immediately to the calling code. Statements following the Exit  statement do not
run. You can have more than one Exit  statement in the same procedure, and you can mix Return  and Exit  statements in the same procedure.

If a procedure has no Return  or Exit  statements, it concludes with an End Sub  or End Function , End Get , or End Set  statement following the
last statement of the procedure body. The End  statement returns control immediately to the calling code. You can have only one End  statement
in a procedure.

In most cases, a procedure needs to operate on different data each time you call it. You can pass this information to the procedure as part of the
procedure call. The procedure defines zero or more parameters, each of which represents a value it expects you to pass to it. Corresponding to each
parameter in the procedure definition is an argument in the procedure call. An argument represents the value you pass to the corresponding parameter
in a given procedure call.

Visual Basic uses several types of procedures:

Sub Procedures perform actions but do not return a value to the calling code.

Event-handling procedures are Sub  procedures that execute in response to an event raised by user action or by an occurrence in a program.

Function Procedures return a value to the calling code. They can perform other actions before returning.

Some functions written in C# return a reference return value. Function callers can modify the return value, and this modification is reflected in
the state of the called object. Starting with Visual Basic 2017, Visual Basic code can consume reference return values, although it cannot return a
value by reference. For more information, see Reference return values.

Property Procedures return and assign values of properties on objects or modules.

Operator Procedures define the behavior of a standard operator when one or both of the operands is a newly-defined class or structure.

Generic Procedures in Visual Basic define one or more type parameters in addition to their normal parameters, so the calling code can pass
specific data types each time it makes a call.

Every line of executable code in your application must be inside some procedure, such as Main , calculate , or Button1_Click . If you subdivide large
procedures into smaller ones, your application is more readable.

Procedures are useful for performing repeated or shared tasks, such as frequently used calculations, text and control manipulation, and database
operations. You can call a procedure from many different places in your code, so you can use procedures as building blocks for your application.

Structuring your code with procedures gives you the following benefits:

Procedures allow you to break your programs into discrete logical units. You can debug separate units more easily than you can debug an entire
program without procedures.

After you develop procedures for use in one program, you can use them in other programs, often with little or no modification. This helps you
avoid code duplication.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/procedures/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/sub-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/function-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/ref-return-values
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-procedures


See Also
How to: Create a Procedure
Sub Procedures
Function Procedures
Property Procedures
Operator Procedures
Procedure Parameters and Arguments
Recursive Procedures
Procedure Overloading
Generic Procedures in Visual Basic
Objects and Classes

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-create-a-procedure
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/sub-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/function-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-parameters-and-arguments
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/recursive-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-overloading
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-procedures


                    

Statements in Visual Basic
7/21/2018 • 12 minutes to read • Edit Online

Declaration statements

Public Sub applyFormat()
    Const limit As Integer = 33
    Dim thisWidget As New widget
    ' Insert code to implement the procedure.
End Sub

Initial ValuesInitial Values

Dim m As Integer = 45
' The preceding declaration creates m and assigns the value 45 to it.

Dim f As New System.Windows.Forms.Form()

Executable statements

A statement in Visual Basic is a complete instruction. It can contain keywords, operators, variables, constants, and expressions. Each statement belongs
to one of the following categories:

Declaration Statements, which name a variable, constant, or procedure, and can also specify a data type.

Executable Statements, which initiate actions. These statements can call a method or function, and they can loop or branch through blocks of
code. Executable statements include Assignment Statements, which assign a value or expression to a variable or constant.

This topic describes each category. Also, this topic describes how to combine multiple statements on a single line and how to continue a statement over
multiple lines.

You use declaration statements to name and define procedures, variables, properties, arrays, and constants. When you declare a programming element,
you can also define its data type, access level, and scope. For more information, see Declared Element Characteristics.

The following example contains three declarations.

The first declaration is the Sub  statement. Together with its matching End Sub  statement, it declares a procedure named applyFormat . It also specifies
that applyFormat  is Public , which means that any code that can refer to it can call it.

The second declaration is the Const  statement, which declares the constant limit , specifying the Integer  data type and a value of 33.

The third declaration is the Dim  statement, which declares the variable thisWidget . The data type is a specific object, namely an object created from the
Widget  class. You can declare a variable to be of any elementary data type or of any object type that is exposed in the application you are using.

When the code containing a declaration statement runs, Visual Basic reserves the memory required for the declared element. If the element holds a
value, Visual Basic initializes it to the default value for its data type. For more information, see "Behavior" in Dim Statement.

You can assign an initial value to a variable as part of its declaration, as the following example illustrates.

If a variable is an object variable, you can explicitly create an instance of its class when you declare it by using the New Operator keyword, as the
following example illustrates.

Note that the initial value you specify in a declaration statement is not assigned to a variable until execution reaches its declaration statement. Until that
time, the variable contains the default value for its data type.

An executable statement performs an action. It can call a procedure, branch to another place in the code, loop through several statements, or evaluate an
expression. An assignment statement is a special case of an executable statement.

The following example uses an If...Then...Else  control structure to run different blocks of code based on the value of a variable. Within each block of
code, a For...Next  loop runs a specified number of times.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/statements.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-characteristics


Public Sub startWidget(ByVal aWidget As widget,
    ByVal clockwise As Boolean, ByVal revolutions As Integer)
    Dim counter As Integer
    If clockwise = True Then
        For counter = 1 To revolutions
            aWidget.spinClockwise()
        Next counter
    Else
        For counter = 1 To revolutions
            aWidget.spinCounterClockwise()
        Next counter
    End If
End Sub

Assignment statements

v = 42

Eligible programming elementsEligible programming elements

x = y + z + findResult(3)

Data types in assignment statementsData types in assignment statements

Dim a, b As String
a = "String variable assignment"
b = "Con" & "cat" & "enation"
' The preceding statement assigns the value "Concatenation" to b.

Dim r, s, t As Boolean
r = True
s = 45 > 1003
t = 45 > 1003 Or 45 > 17
' The preceding statements assign False to s and True to t.

Compound assignment statementsCompound assignment statements

n += 1

n = n + 1

The If  statement in the preceding example checks the value of the parameter clockwise . If the value is True , it calls the spinClockwise  method of 
aWidget . If the value is False , it calls the spinCounterClockwise  method of aWidget . The If...Then...Else  control structure ends with End If .

The For...Next  loop within each block calls the appropriate method a number of times equal to the value of the revolutions  parameter.

Assignment statements carry out assignment operations, which consist of taking the value on the right side of the assignment operator ( = ) and storing
it in the element on the left, as in the following example.

In the preceding example, the assignment statement stores the literal value 42 in the variable v .

The programming element on the left side of the assignment operator must be able to accept and store a value. This means it must be a variable or
property that is not ReadOnly, or it must be an array element. In the context of an assignment statement, such an element is sometimes called an lvalue,
for "left value."

The value on the right side of the assignment operator is generated by an expression, which can consist of any combination of literals, constants,
variables, properties, array elements, other expressions, or function calls. The following example illustrates this.

The preceding example adds the value held in variable y  to the value held in variable z , and then adds the value returned by the call to function 
findResult . The total value of this expression is then stored in variable x .

In addition to numeric values, the assignment operator can also assign String  values, as the following example illustrates.

You can also assign Boolean  values, using either a Boolean  literal or a Boolean  expression, as the following example illustrates.

Similarly, you can assign appropriate values to programming elements of the Char , Date , or Object  data type. You can also assign an object instance
to an element declared to be of the class from which that instance is created.

Compound assignment statements first perform an operation on an expression before assigning it to a programming element. The following example
illustrates one of these operators, += , which increments the value of the variable on the left side of the operator by the value of the expression on the
right.

The preceding example adds 1 to the value of n , and then stores that new value in n . It is a shorthand equivalent of the following statement:



Dim q As String = "Sample "
q &= "String"
' q now contains "Sample String".

Type Conversions in Assignment StatementsType Conversions in Assignment Statements

Putting multiple statements on one line

Dim sampleString As String = "Hello World" : MsgBox(sampleString)

Continuing a statement over multiple lines

Public Sub demoBox()
    Dim nameVar As String
    nameVar = "John"
    MsgBox("Hello " & nameVar _
        & ". How are you?")
End Sub

Implicit line continuationImplicit line continuation

SYNTAX ELEMENT EXAMPLE

After a comma ( , ).
Public Function GetUsername(ByVal username As String,
                            ByVal delimiter As Char,
                            ByVal position As Integer) As String

    Return username.Split(delimiter)(position)
End Function

After an open parenthesis ( ( ) or before a closing parenthesis ( ) ).
Dim username = GetUsername(
    Security.Principal.WindowsIdentity.GetCurrent().Name,
    CChar("\"),
    1
  )

A variety of compound assignment operations can be performed using operators of this type. For a list of these operators and more information about
them, see Assignment Operators.

The concatenation assignment operator ( &= ) is useful for adding a string to the end of already existing strings, as the following example illustrates.

The value you assign to a variable, property, or array element must be of a data type appropriate to that destination element. In general, you should try
to generate a value of the same data type as that of the destination element. However, some types can be converted to other types during assignment.

For information on converting between data types, see Type Conversions in Visual Basic. In brief, Visual Basic automatically converts a value of a given
type to any other type to which it widens. A widening conversion is one in that always succeeds at run time and does not lose any data. For example,
Visual Basic converts an Integer  value to Double  when appropriate, because Integer  widens to Double . For more information, see Widening and
Narrowing Conversions.

Narrowing conversions (those that are not widening) carry a risk of failure at run time, or of data loss. You can perform a narrowing conversion
explicitly by using a type conversion function, or you can direct the compiler to perform all conversions implicitly by setting Option Strict Off . For
more information, see Implicit and Explicit Conversions.

You can have multiple statements on a single line separated by the colon ( : ) character. The following example illustrates this.

Though occasionally convenient, this form of syntax makes your code hard to read and maintain. Thus, it is recommended that you keep one statement
to a line.

A statement usually fits on one line, but when it is too long, you can continue it onto the next line using a line-continuation sequence, which consists of a
space followed by an underscore character ( _ ) followed by a carriage return. In the following example, the MsgBox  executable statement is continued
over two lines.

In many cases, you can continue a statement on the next consecutive line without using the underscore character (_). The following table lists the syntax
elements that implicitly continue the statement on the next line of code.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


After an open curly brace ( { ) or before a closing curly brace ( } ).
Dim customer = New Customer With {
  .Name = "Terry Adams",
  .Company = "Adventure Works",
  .Email = "terry@www.adventure-works.com"
}

For more information, see Object Initializers: Named and Anonymous Types or
Collection Initializers.

After an open embedded expression ( <%= ) or before the close of an embedded
expression ( %> ) within an XML literal. Dim customerXml = <Customer>

                      <Name>
                          <%=
                              customer.Name
                          %>
                      </Name>
                      <Email>
                          <%=
                              customer.Email
                          %>
                      </Email>
                  </Customer>

For more information, see Embedded Expressions in XML.

After the concatenation operator ( & ).
cmd.CommandText = 
    "SELECT * FROM Titles JOIN Publishers " &
    "ON Publishers.PubId = Titles.PubID " &
    "WHERE Publishers.State = 'CA'"

For more information, see Operators Listed by Functionality.

After assignment operators ( = , &= , := , += , -= , *= , /= , \= , ^= , <<= , 
>>= ). Dim fileStream =

  My.Computer.FileSystem.
    OpenTextFileReader(filePath)

For more information, see Operators Listed by Functionality.

After binary operators ( + , - , / , * , Mod , <> , < , > , <= , >= , ^ , >> , 
<< , And , AndAlso , Or , OrElse , Like , Xor ) within an expression. Dim memoryInUse =

  My.Computer.Info.TotalPhysicalMemory +
  My.Computer.Info.TotalVirtualMemory -
  My.Computer.Info.AvailablePhysicalMemory -
  My.Computer.Info.AvailableVirtualMemory

For more information, see Operators Listed by Functionality.

After the Is  and IsNot  operators.
If TypeOf inStream Is 
  IO.FileStream AndAlso
  inStream IsNot
  Nothing Then

    ReadFile(inStream)

End If

For more information, see Operators Listed by Functionality.

SYNTAX ELEMENT EXAMPLE

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml


After a member qualifier character ( . ) and before the member name. However,
you must include a line-continuation character (_) following a member qualifier
character when you are using the With  statement or supplying values in the
initialization list for a type. Consider breaking the line after the assignment operator
(for example, = ) when you are using With  statements or object initialization lists.

Dim fileStream =
  My.Computer.FileSystem.
    OpenTextFileReader(filePath)

' Not allowed:
' Dim aType = New With { .
'    PropertyName = "Value"

' Allowed:
Dim aType = New With {.PropertyName =
    "Value"}

Dim log As New EventLog()

' Not allowed:
' With log
'    .
'      Source = "Application"
' End With

' Allowed:
With log
    .Source =
      "Application"
End With

For more information, see With...End With Statement or Object Initializers: Named
and Anonymous Types.

After an XML axis property qualifier ( .  or .@  or ... ). However, you must
include a line-continuation character (_) when you specify a member qualifier when
you are using the With  keyword.

Dim customerName = customerXml.
  <Name>.Value

Dim customerEmail = customerXml...
  <Email>.Value

For more information, see XML Axis Properties.

After a less-than sign (<) or before a greater-than sign ( > ) when you specify an
attribute. Also after a greater-than sign ( > ) when you specify an attribute.
However, you must include a line-continuation character (_) when you specify
assembly-level or module-level attributes.

<
Serializable()
>
Public Class Customer
    Public Property Name As String
    Public Property Company As String
    Public Property Email As String
End Class

For more information, see Attributes overview.

Before and after query operators ( Aggregate , Distinct , From , Group By , 
Group Join , Join , Let , Order By , Select , Skip , Skip While , Take , 
Take While , Where , In , Into , On , Ascending , and Descending ). You

cannot break a line between the keywords of query operators that are made up of
multiple keywords ( Order By , Group Join , Take While , and Skip While ).

Dim vsProcesses = From proc In
                    Process.GetProcesses
                  Where proc.MainWindowTitle.Contains("Visual 
Studio")
                  Select proc.ProcessName, proc.Id,
                         proc.MainWindowTitle

For more information, see Queries.

SYNTAX ELEMENT EXAMPLE

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types


After the In  keyword in a For Each  statement.
For Each p In
  vsProcesses

    Console.WriteLine("{0}" & vbTab & "{1}" & vbTab & "{2}",
      p.ProcessName,
      p.Id,
      p.MainWindowTitle)
Next

For more information, see For Each...Next Statement.

After the From  keyword in a collection initializer.
Dim days = New List(Of String) From
  {
   "Mo", "Tu", "We", "Th", "F", "Sa", "Su"
  }

For more information, see Collection Initializers.

SYNTAX ELEMENT EXAMPLE

Adding comments

' This is a comment on a separate code line.
REM This is another comment on a separate code line.
x += a(i) * b(i) ' Add this amount to total.
MsgBox(statusMessage) REM Inform operator of status.

Checking compilation errors

Related sections
TERM DEFINITION

Assignment Operators Provides links to language reference pages covering assignment operators such as 
= , *= , and &= .

Operators and Expressions Shows how to combine elements with operators to yield new values.

How to: Break and Combine Statements in Code Shows how to break a single statement into multiple lines and how to place
multiple statements on the same line.

How to: Label Statements Shows how to label a line of code.

Source code is not always self-explanatory, even to the programmer who wrote it. To help document their code, therefore, most programmers make
liberal use of embedded comments. Comments in code can explain a procedure or a particular instruction to anyone reading or working with it later.
Visual Basic ignores comments during compilation, and they do not affect the compiled code.

Comment lines begin with an apostrophe ( ' ) or REM  followed by a space. They can be added anywhere in code, except within a string. To append a
comment to a statement, insert an apostrophe or REM  after the statement, followed by the comment. Comments can also go on their own separate line.
The following example demonstrates these possibilities.

If, after you type a line of code, the line is displayed with a wavy blue underline (an error message may appear as well), there is a syntax error in the
statement. You must find out what is wrong with the statement (by looking in the task list, or hovering over the error with the mouse pointer and
reading the error message) and correct it. Until you have fixed all syntax errors in your code, your program will fail to compile correctly.



    

Strings in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In This Section

See Also

This section describes the basic concepts behind using strings in Visual Basic.

Introduction to Strings in Visual Basic
Lists topics that describe the basic concepts behind using strings in Visual Basic.

How to: Create Strings Using a StringBuilder in Visual Basic
Demonstrates how to efficiently create a long string from many smaller strings.

How to: Search Within a String
Demonstrates how to determine the index of the first occurrence of a substring.

Converting Between Strings and Other Data Types in Visual Basic
Lists topics that describe how to convert strings into other data types.

Validating Strings in Visual Basic
Lists topics that discuss how to validate strings.

Walkthrough: Encrypting and Decrypting Strings in Visual Basic
Demonstrates how to encrypt and decrypt strings by using the cryptographic service provider version of the Triple Data Encryption Standard algorithm.

Visual Basic Language Features

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/strings/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/introduction-to-strings
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/how-to-create-strings-using-a-stringbuilder
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/how-to-search-within-a-string
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/converting-between-strings-and-other-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/validating-strings
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/walkthrough-encrypting-and-decrypting-strings


 

Variables in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

Usage

Assigning Values

' The following statement assigns the value 10 to the variable.
applesSold = 10
' The following statement increments the variable.
applesSold = applesSold + 1
' The variable now holds the value 11.

NOTENOTE

Variables and Properties

See Also

You often have to store values when you perform calculations with Visual Basic. For example, you might want to calculate several values, compare them,
and perform different operations on them, depending on the result of the comparison. You have to retain the values if you want to compare them.

Visual Basic, just like most programming languages, uses variables for storing values. A variable has a name (the word that you use to refer to the value
that the variable contains). A variable also has a data type (which determines the kind of data that the variable can store). A variable can represent an
array if it has to store an indexed set of closely related data items.

Local type inference enables you to declare variables without explicitly stating a data type. Instead, the compiler infers the type of the variable from the
type of the initialization expression. For more information, see Local Type Inference and Option Infer Statement.

You use assignment statements to perform calculations and assign the result to a variable, as the following example shows.

The equal sign ( = ) in this example is an assignment operator, not an equality operator. The value is being assigned to the variable applesSold .

For more information, see How to: Move Data Into and Out of a Variable.

Like a variable, a property represents a value that you can access. However, it is more complex than a variable. A property uses code blocks that control
how to set and retrieve its value. For more information, see Differences Between Properties and Variables in Visual Basic.

Variable Declaration
Object Variables
Troubleshooting Variables
How to: Move Data Into and Out of a Variable
Differences Between Properties and Variables in Visual Basic
Local Type Inference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/variables/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-move-data-into-and-out-of-a-variable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/differences-between-properties-and-variables
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/object-variables
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/troubleshooting-variables
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-move-data-into-and-out-of-a-variable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/differences-between-properties-and-variables
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


          

XML in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

In this section

TOPIC DESCRIPTION

Overview of LINQ to XML in Visual Basic Describes how Visual Basic supports LINQ to XML.

Creating XML in Visual Basic Describes how to create XML literal objects by using LINQ to XML.

Manipulating XML in Visual Basic Describes how to load and parse XML by using Visual Basic.

Accessing XML in Visual Basic Describes the XML axis properties and LINQ to XML methods for accessing XML
elements and attributes.

See also

Visual Basic provides integrated language support that enables it to interact with L INQ to XML.

The topics in this section introduce using LINQ to XML with Visual Basic.

System.Xml.Linq
XML Literals
XML Axis Properties
LINQ to XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/language-features/xml/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/overview-of-linq-to-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/manipulating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/accessing-xml
https://docs.microsoft.com/dotnet/api/system.xml.linq
http://msdn.microsoft.com/library/f0fe21e9-ee43-4a55-b91a-0800e5782c13


         

COM Interop (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The Component Object Model (COM) allows an object to expose its functionality to other components and to host applications. Most of today's
software includes COM objects. Although .NET assemblies are the best choice for new applications, you may at times need to employ COM objects.
This section covers some of the issues associated with creating and using COM objects with Visual Basic.

Introduction to COM Interop
Provides an overview of COM interoperability.

How to: Reference COM Objects from Visual Basic
Covers how to add references to COM objects that have type libraries.

How to: Work with ActiveX Controls
Demonstrates how to use existing ActiveX controls to add features to the Visual Studio Toolbox.

Walkthrough: Calling Windows APIs
Steps you through the process of calling the APIs that are part of the Windows operating system.

How to: Call Windows APIs
Demonstrates how to define and call the MessageBox  function in User32.dll.

How to: Call a Windows Function that Takes Unsigned Types
Demonstrates how to call a Windows function that has a parameter of an unsigned type.

Walkthrough: Creating COM Objects with Visual Basic
Steps you through the process of creating COM objects with and without the COM class template.

Troubleshooting Interoperability
Covers some of the problems you may encounter when using COM.

COM Interoperability in .NET Framework Applications
Provides an overview of how to use COM objects and .NET Framework objects in the same application.

Walkthrough: Implementing Inheritance with COM Objects
Describes using existing COM objects as the basis for new objects.

Interoperating with Unmanaged Code
Describes interoperability services provided by the common language runtime.

Exposing COM Components to the .NET Framework
Describes the process of calling COM types through COM interop.

Exposing .NET Framework Components to COM
Describes the preparation and use of managed types from COM.

Applying Interop Attributes
Covers attributes you can use when working with unmanaged code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/index.md
http://msdn.microsoft.com/library/e78b14f1-e487-43cd-9c6d-1a07483f1730
http://msdn.microsoft.com/library/e42a65f7-1e61-411f-b09a-aca1bbce24c6
https://docs.microsoft.com/en-us/dotnet/framework/interop/applying-interop-attributes


  

Introduction to COM Interop (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Managed Code and Data

Assemblies

Type Libraries and Assembly Manifests

Importing and Exporting Type LibrariesImporting and Exporting Type Libraries

Interop Assemblies

Interoperability Marshaling

See Also

The Component Object Model (COM) lets an object expose its functionality to other components and to host applications. While COM objects have
been fundamental to Windows programming for many years, applications designed for the common language runtime (CLR) offer many advantages.

.NET Framework applications will eventually replace those developed with COM. Until then, you may have to use or create COM objects by using
Visual Studio. Interoperability with COM, or COM interop, enables you to use existing COM objects while transitioning to the .NET Framework at your
own pace.

By using the .NET Framework to create COM components, you can use registration-free COM interop. This lets you control which DLL version is
enabled when more than one version is installed on a computer, and lets end users use XCOPY or FTP to copy your application to an appropriate
directory on their computer where it can be run. For more information, see Registration-Free COM Interop.

Code developed for the .NET Framework is referred to as managed code, and contains metadata that is used by the CLR. Data used by .NET
Framework applications is called managed data because the runtime manages data-related tasks such as allocating and reclaiming memory and
performing type checking. By default, Visual Basic .NET uses managed code and data, but you can access the unmanaged code and data of COM
objects using interop assemblies (described later on this page).

An assembly is the primary building block of a .NET Framework application. It is a collection of functionality that is built, versioned, and deployed as a
single implementation unit containing one or more files. Each assembly contains an assembly manifest.

Type libraries describe characteristics of COM objects, such as member names and data types. Assembly manifests perform the same function for .NET
Framework applications. They include information about the following:

Assembly identity, version, culture, and digital signature.

Files that make up the assembly implementation.

Types and resources that make up the assembly. This includes those that are exported from it.

Compile-time dependencies on other assemblies.

Permissions required for the assembly to run correctly.

For more information about assemblies and assembly manifests, see Assemblies and the Global Assembly Cache.

Visual Studio contains a utility, Tlbimp, that lets you import information from a type library into a .NET Framework application. You can generate type
libraries from assemblies by using the Tlbexp utility.

For information about Tlbimp and Tlbexp, see Tlbimp.exe (Type Library Importer) and Tlbexp.exe (Type Library Exporter).

Interop assemblies are .NET Framework assemblies that bridge between managed and unmanaged code, mapping COM object members to equivalent
.NET Framework managed members. Interop assemblies created by Visual Basic .NET handle many of the details of working with COM objects, such as
interoperability marshaling.

All .NET Framework applications share a set of common types that enable interoperability of objects, regardless of the programming language that is
used. The parameters and return values of COM objects sometimes use data types that differ from those used in managed code. Interoperability
marshaling is the process of packaging parameters and return values into equivalent data types as they move to and from COM objects. For more
information, see Interop Marshaling.

COM Interop
Walkthrough: Implementing Inheritance with COM Objects
Interoperating with Unmanaged Code
Troubleshooting Interoperability
Assemblies and the Global Assembly Cache
Tlbimp.exe (Type Library Importer)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/introduction-to-com-interop.md
http://msdn.microsoft.com/library/90f308b9-82dc-414a-bce1-77e0155e56bd
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer
http://msdn.microsoft.com/library/a487d61b-d166-467b-a7ca-d8b52fbff42d
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer


Tlbexp.exe (Type Library Exporter)
Interop Marshaling
Registration-Free COM Interop

http://msdn.microsoft.com/library/a487d61b-d166-467b-a7ca-d8b52fbff42d
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling
http://msdn.microsoft.com/library/90f308b9-82dc-414a-bce1-77e0155e56bd


 

How to: Reference COM Objects from Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

To add references to COM objectsTo add references to COM objects

To create an interop assembly using TlbimpTo create an interop assembly using Tlbimp

See Also

In Visual Basic, adding references to COM objects that have type libraries requires the creation of an interop assembly for the COM library. References
to the members of the COM object are routed to the interop assembly and then forwarded to the actual COM object. Responses from the COM object
are routed to the interop assembly and forwarded to your .NET Framework application.

You can reference a COM object without using an interop assembly by embedding the type information for the COM object in a .NET assembly. To
embed type information, set the Embed Interop Types  property to True  for the reference to the COM object. If you are compiling by using the
command-line compiler, use the /link  option to reference the COM library. For more information, see /link (Visual Basic).

Visual Basic automatically creates interop assemblies when you add a reference to a type library from the integrated development environment (IDE).
When working from the command line, you can use the Tlbimp utility to manually create interop assemblies.

Imports INKEDLib

Class Sample
    Private s As IInkCursor

End Class

1. On the Project menu, choose Add Reference and then click the COM tab in the dialog box.

2. Select the component you want to use from the list of COM objects.

3. To simplify access to the interop assembly, add an Imports  statement to the top of the class or module in which you will use the COM object. For
example, the following code example imports the namespace INKEDLib  for objects referenced in the Microsoft InkEdit Control 1.0  library.

Tlbimp test3.dll /out:NameSpace1 /out:Interop1.dll  

1. Add the location of Tlbimp to the search path, if it is not already part of the search path and you are not currently in the directory where it is
located.

2. Call Tlbimp from a command prompt, providing the following information:

Name and location of the DLL that contains the type library

Name and location of the namespace where the information should be placed

Name and location of the target interop assembly

The following code provides an example:

You can use Tlbimp to create interop assemblies for type libraries, even for unregistered COM objects. However, the COM objects referred to by
interop assemblies must be properly registered on the computer where they are to be used. You can register a COM object by using the
Regsvr32 utility included with the Windows operating system.

COM Interop
Tlbimp.exe (Type Library Importer)
Tlbexp.exe (Type Library Exporter)
Walkthrough: Implementing Inheritance with COM Objects
Troubleshooting Interoperability
Imports Statement (.NET Namespace and Type)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/how-to-reference-com-objects.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer
http://msdn.microsoft.com/library/a487d61b-d166-467b-a7ca-d8b52fbff42d


 

How to: Work with ActiveX Controls (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To add ActiveX controls to the toolboxTo add ActiveX controls to the toolbox

See Also

ActiveX controls are COM components or objects you can insert into a Web page or other application to reuse packaged functionality someone else has
programmed. You can use ActiveX controls developed for Visual Basic 6.0 and earlier versions to add features to the Toolbox of Visual Studio.

NOTENOTE

1. On the Tools menu, click Choose Toolbox Items.

The Choose Toolbox dialog box appears.

2. Click the COM Components tab.

3. Select the check box next to the ActiveX control you want to use, and then click OK.

The new control appears with the other tools in the Toolbox.

You can use the Aximp utility to manually create an interop assembly for ActiveX controls. For more information, see Aximp.exe (Windows Forms ActiveX
Control Importer).

COM Interop
How to: Add ActiveX Controls to Windows Forms
Aximp.exe (Windows Forms ActiveX Control Importer)
Considerations When Hosting an ActiveX Control on a Windows Form
Troubleshooting Interoperability

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/how-to-work-with-activex-controls.md
http://msdn.microsoft.com/library/482c0d83-7144-4497-b626-87d2351b78d0
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/how-to-add-activex-controls-to-windows-forms
http://msdn.microsoft.com/library/482c0d83-7144-4497-b626-87d2351b78d0
https://docs.microsoft.com/en-us/dotnet/framework/winforms/controls/considerations-when-hosting-an-activex-control-on-a-windows-form


       

Walkthrough: Calling Windows APIs (Visual Basic)
5/4/2018 • 9 minutes to read • Edit Online

NOTENOTE

API Calls Using Declare

To declare a DLL procedureTo declare a DLL procedure

Parts of the Declare StatementParts of the Declare Statement

Auto modifierAuto modifier

Lib and Alias keywordsLib and Alias keywords

Argument and Data Type DeclarationsArgument and Data Type Declarations

Windows APIs are dynamic-link libraries (DLLs) that are part of the Windows operating system. You use them to perform tasks when it is difficult to
write equivalent procedures of your own. For example, Windows provides a function named FlashWindowEx  that lets you make the title bar for an
application alternate between light and dark shades.

The advantage of using Windows APIs in your code is that they can save development time because they contain dozens of useful functions that are
already written and waiting to be used. The disadvantage is that Windows APIs can be difficult to work with and unforgiving when things go wrong.

Windows APIs represent a special category of interoperability. Windows APIs do not use managed code, do not have built-in type libraries, and use
data types that are different than those used with Visual Studio. Because of these differences, and because Windows APIs are not COM objects,
interoperability with Windows APIs and the .NET Framework is performed using platform invoke, or PInvoke. Platform invoke is a service that enables
managed code to call unmanaged functions implemented in DLLs. For more information, see Consuming Unmanaged DLL Functions. You can use
PInvoke in Visual Basic by using either the Declare  statement or applying the DllImport  attribute to an empty procedure.

Windows API calls were an important part of Visual Basic programming in the past, but are seldom necessary with Visual Basic .NET. Whenever
possible, you should use managed code from the .NET Framework to perform tasks, instead of Windows API calls. This walkthrough provides
information for those situations in which using Windows APIs is necessary.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

The most common way to call Windows APIs is by using the Declare  statement.

NOTENOTE

Declare Auto Function MBox Lib "user32.dll" Alias "MessageBox" (
    ByVal hWnd As Integer,
    ByVal txt As String,
    ByVal caption As String,
    ByVal Typ As Integer) As Integer

1. Determine the name of the function you want to call, plus its arguments, argument types, and return value, as well as the name and location of
the DLL that contains it.

For complete information about the Windows APIs, see the Win32 SDK documentation in the Platform SDK Windows API. For more information about the
constants that Windows APIs use, examine the header files such as Windows.h included with the Platform SDK.

2. Open a new Windows Application project by clicking New on the File menu, and then clicking Project. The New Project dialog box appears.

3. Select Windows Application from the list of Visual Basic project templates. The new project is displayed.

4. Add the following Declare  function either to the class or module in which you want to use the DLL:

The Declare  statement includes the following elements.

The Auto  modifier instructs the runtime to convert the string based on the method name according to common language runtime rules (or alias name
if specified).

The name following the Function  keyword is the name your program uses to access the imported function. It can be the same as the real name of the
function you are calling, or you can use any valid procedure name and then employ the Alias  keyword to specify the real name of the function you are
calling.

Specify the Lib  keyword, followed by the name and location of the DLL that contains the function you are calling. You do not need to specify the path
for files located in the Windows system directories.

Use the Alias  keyword if the name of the function you are calling is not a valid Visual Basic procedure name, or conflicts with the name of other items
in your application. Alias  indicates the true name of the function being called.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/walkthrough-calling-windows-apis.md
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


NOTENOTE

Windows API ConstantsWindows API Constants

To  d e c l a re  c o n s t a n t s  f o r  W i n d o w s  A P I  c a l l sTo  d e c l a re  c o n s t a n t s  f o r  W i n d o w s  A P I  c a l l s

To  c a l l  t h e  DL L  p ro c e d u reTo  c a l l  t h e  DL L  p ro c e d u re

Data MarshalingData Marshaling

To  u s e  De c l a re  a n d  M a rs h a l A s  i n  a n  A P I  c a l lTo  u s e  De c l a re  a n d  M a rs h a l A s  i n  a n  A P I  c a l l

Declare the arguments and their data types. This part can be challenging because the data types that Windows uses do not correspond to Visual Studio
data types. Visual Basic does a lot of the work for you by converting arguments to compatible data types, a process called marshaling. You can explicitly
control how arguments are marshaled by using the MarshalAsAttribute attribute defined in the System.Runtime.InteropServices namespace.

Previous versions of Visual Basic allowed you to declare parameters As Any , meaning that data of any data type could be used. Visual Basic requires that you use a
specific data type for all Declare  statements.

Some arguments are combinations of constants. For example, the MessageBox  API shown in this walkthrough accepts an integer argument called Typ

that controls how the message box is displayed. You can determine the numeric value of these constants by examining the #define  statements in the
file WinUser.h. The numeric values are generally shown in hexadecimal, so you may want to use a calculator to add them and convert to decimal. For
example, if you want to combine the constants for the exclamation style MB_ICONEXCLAMATION  0x00000030 and the Yes/No style MB_YESNO  0x00000004,
you can add the numbers and get a result of 0x00000034, or 52 decimal. Although you can use the decimal result directly, it is better to declare these
values as constants in your application and combine them using the Or  operator.

Const MB_ICONQUESTION As Integer = &H20
Const MB_YESNO As Integer = &H4
Const IDYES As Integer = 6
Const IDNO As Integer = 7

1. Consult the documentation for the Windows function you are calling. Determine the name of the constants it uses and the name of the .h file that
contains the numeric values for these constants.

2. Use a text editor, such as Notepad, to view the contents of the header (.h) file, and find the values associated with the constants you are using. For
example, the MessageBox  API uses the constant MB_ICONQUESTION  to show a question mark in the message box. The definition for 
MB_ICONQUESTION  is in WinUser.h and appears as follows:

#define MB_ICONQUESTION 0x00000020L

3. Add equivalent Const  statements to your class or module to make these constants available to your application. For example:

Private Sub Button1_Click(ByVal sender As System.Object,
    ByVal e As System.EventArgs) Handles Button1.Click

    ' Stores the return value.
    Dim RetVal As Integer
    RetVal = MBox(0, "Declare DLL Test", "Windows API MessageBox",
        MB_ICONQUESTION Or MB_YESNO)

    ' Check the return value.
    If RetVal = IDYES Then
        MsgBox("You chose Yes")
    Else
        MsgBox("You chose No")
    End If
End Sub

1. Add a button named Button1  to the startup form for your project, and then double-click it to view its code. The event handler for the button is
displayed.

2. Add code to the Click  event handler for the button you added, to call the procedure and provide the appropriate arguments:

3. Run the project by pressing F5. The message box is displayed with both Yes and No response buttons. Click either one.

Visual Basic automatically converts the data types of parameters and return values for Windows API calls, but you can use the MarshalAs  attribute to
explicitly specify unmanaged data types that an API expects. For more information about interop marshaling, see Interop Marshaling.

Imports System.Runtime.InteropServices

1. Determine the name of the function you want to call, plus its arguments, data types, and return value.

2. To simplify access to the MarshalAs  attribute, add an Imports  statement to the top of the code for the class or module, as in the following
example:

3. Add a function prototype for the imported function to the class or module you are using, and apply the MarshalAs  attribute to the parameters or
return value. In the following example, an API call that expects the type void*  is marshaled as AsAny :

https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices
https://docs.microsoft.com/en-us/dotnet/framework/interop/interop-marshaling


API Calls Using DllImport

To call a Windows API using the DllImport attributeTo call a Windows API using the DllImport attribute

See Also

Declare Sub SetData Lib "..\LIB\UnmgdLib.dll" (
    ByVal x As Short,
    <MarshalAsAttribute(UnmanagedType.AsAny)>
        ByVal o As Object)

The DllImport  attribute provides a second way to call functions in DLLs without type libraries. DllImport  is roughly equivalent to using a Declare

statement but provides more control over how functions are called.

You can use DllImport  with most Windows API calls as long as the call refers to a shared (sometimes called static) method. You cannot use methods
that require an instance of a class. Unlike Declare  statements, DllImport  calls cannot use the MarshalAs  attribute.

Imports System.Runtime.InteropServices

Public Shared Function MoveFile(
    ByVal src As String,
    ByVal dst As String) As Boolean
    ' Leave the body of the function empty.
End Function

<DllImport("KERNEL32.DLL", EntryPoint:="MoveFileW", SetLastError:=True,
    CharSet:=CharSet.Unicode, ExactSpelling:=True,
    CallingConvention:=CallingConvention.StdCall)>
Public Shared Function MoveFile(
    ByVal src As String,
    ByVal dst As String) As Boolean
    ' Leave the body of the function empty.
End Function

Private Sub Button2_Click(ByVal sender As System.Object,
    ByVal e As System.EventArgs) Handles Button2.Click

    Dim RetVal As Boolean = MoveFile("c:\tmp\Test.txt", "c:\Test.txt")
    If RetVal = True Then
        MsgBox("The file was moved successfully.")
    Else
        MsgBox("The file could not be moved.")
    End If
End Sub

1. Open a new Windows Application project by clicking New on the File menu, and then clicking Project. The New Project dialog box appears.

2. Select Windows Application from the list of Visual Basic project templates. The new project is displayed.

3. Add a button named Button2  to the startup form.

4. Double-click Button2  to open the code view for the form.

5. To simplify access to DllImport , add an Imports  statement to the top of the code for the startup form class:

6. Declare an empty function preceding the End Class  statement for the form, and name the function MoveFile .

7. Apply the Public  and Shared  modifiers to the function declaration and set parameters for MoveFile  based on the arguments the Windows API
function uses:

Your function can have any valid procedure name; the DllImport  attribute specifies the name in the DLL. It also handles interoperability
marshaling for the parameters and return values, so you can choose Visual Studio data types that are similar to the data types the API uses.

8. Apply the DllImport  attribute to the empty function. The first parameter is the name and location of the DLL containing the function you are
calling. You do not need to specify the path for files located in the Windows system directories. The second parameter is a named argument that
specifies the name of the function in the Windows API. In this example, the DllImport  attribute forces calls to MoveFile  to be forwarded to 
MoveFileW  in KERNEL32.DLL. The MoveFileW  method copies a file from the path src  to the path dst .

9. Add code to the Button2_Click  event handler to call the function:

10. Create a file named Test.txt and place it in the C:\Tmp directory on your hard drive. Create the Tmp directory if necessary.

11. Press F5 to start the application. The main form appears.

12. Click Button2. The message "The file was moved successfully" is displayed if the file can be moved.



DllImportAttribute
MarshalAsAttribute
Declare Statement
Auto
Alias
COM Interop
Creating Prototypes in Managed Code
Marshaling a Delegate as a Callback Method

https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://docs.microsoft.com/en-us/dotnet/framework/interop/creating-prototypes-in-managed-code
https://docs.microsoft.com/en-us/dotnet/framework/interop/marshaling-a-delegate-as-a-callback-method


 

How to: Call Windows APIs (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Example
' Defines the MessageBox function.
Public Class Win32
    Declare Auto Function MessageBox Lib "user32.dll" (
        ByVal hWnd As Integer, ByVal txt As String,
        ByVal caption As String, ByVal Type As Integer
        ) As Integer
End Class

' Calls the MessageBox function.
Public Class DemoMessageBox
    Public Shared Sub Main()
        Win32.MessageBox(0, "Here's a MessageBox", "Platform Invoke Sample", 0)
    End Sub
End Class

Compiling the Code

Robust Programming

See Also

This example defines and calls the MessageBox  function in user32.dll and then passes a string to it.

This example requires:

A reference to the System namespace.

The following conditions may cause an exception:

The method is not static, is abstract, or has been previously defined. The parent type is an interface, or the length of name or dllName is zero.
(ArgumentException)

The name or dllName is Nothing . (ArgumentNullException)

The containing type has been previously created using CreateType . (InvalidOperationException)

A Closer Look at Platform Invoke
Platform Invoke Examples
Consuming Unmanaged DLL Functions
Defining a Method with Reflection Emit
Walkthrough: Calling Windows APIs
COM Interop

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/how-to-call-windows-apis.md
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.argumentnullexception
https://docs.microsoft.com/dotnet/api/system.invalidoperationexception
http://msdn.microsoft.com/library/ba9dd55b-2eaa-45cd-8afd-75cb8d64d243
https://docs.microsoft.com/en-us/dotnet/framework/interop/platform-invoke-examples
https://docs.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
http://msdn.microsoft.com/library/84fd3bf6-628f-41aa-83d9-b990cf926e81


      

How to: Call a Windows Function that Takes Unsigned Types (Visual
Basic)
5/4/2018 • 2 minutes to read • Edit Online

To call a Windows function that takes an unsigned typeTo call a Windows function that takes an unsigned type

See Also

If you are consuming a class, module, or structure that has members of unsigned integer types, you can access these members with Visual Basic.

Public Class windowsMessage  
    Private Declare Auto Function mb Lib "user32.dll" Alias "MessageBox" (  
        ByVal hWnd As Integer,   
        ByVal lpText As String,   
        ByVal lpCaption As String,   
        ByVal uType As UInteger) As Integer  
    Private Const MB_OK As UInteger = 0  
    Private Const MB_ICONEXCLAMATION As UInteger = &H30  
    Private Const IDOK As UInteger = 1  
    Private Const IDCLOSE As UInteger = 8  
    Private Const c As UInteger = MB_OK Or MB_ICONEXCLAMATION  
    Public Function messageThroughWindows() As String  
        Dim r As Integer = mb(0, "Click OK if you see this!",   
            "Windows API call", c)  
        Dim s As String = "Windows API MessageBox returned " &  
             CStr(r)& vbCrLf & "(IDOK = " & CStr(IDOK) &  
             ", IDCLOSE = " & CStr(IDCLOSE) & ")"  
        Return s  
    End Function  
End Class  

Public Sub consumeWindowsMessage()  
    Dim w As New windowsMessage  
    w.messageThroughWindows()  
End Sub  

C a u t i o nC a u t i o n

IMPORTANTIMPORTANT

IMPORTANTIMPORTANT

1. Use a Declare Statement to tell Visual Basic which library holds the function, what its name is in that library, what its calling sequence is, and how
to convert strings when calling it.

2. In the Declare  statement, use UInteger , ULong , UShort , or Byte  as appropriate for each parameter with an unsigned type.

3. Consult the documentation for the Windows function you are calling to find the names and values of the constants it uses. Many of these are
defined in the WinUser.h file.

4. Declare the necessary constants in your code. Many Windows constants are 32-bit unsigned values, and you should declare these As``UInteger .

5. Call the function in the normal way. The following example calls the Windows function MessageBox , which takes an unsigned integer argument.

You can test the function messageThroughWindows  with the following code.

The UInteger , ULong , UShort , and SByte  data types are not part of the Language Independence and Language-Independent Components
(CLS), so CLS-compliant code cannot consume a component that uses them.

Making a call to unmanaged code, such as the Windows application programming interface (API), exposes your code to potential security risks.

Calling the Windows API requires unmanaged code permission, which might affect its execution in partial-trust situations. For more information, see
SecurityPermission and Code Access Permissions.

Data Types
Integer Data Type
UInteger Data Type
Declare Statement
Walkthrough: Calling Windows APIs

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/how-to-call-a-windows-function-that-takes-unsigned-types.md
https://docs.microsoft.com/dotnet/api/system.security.permissions.securitypermission
http://msdn.microsoft.com/library/e5ae402f-6dda-4732-bbe8-77296630f675


  

Walkthrough: Creating COM Objects with Visual Basic
5/4/2018 • 4 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To create a COM object by using the COM class templateTo create a COM object by using the COM class template

Creating COM Objects without the COM Class Template

To set up your project to generate a COM objectTo set up your project to generate a COM object

To set up the code in your class to create a COM objectTo set up the code in your class to create a COM object

When creating new applications or components, it is best to create .NET Framework assemblies. However, Visual Basic also makes it easy to expose a
.NET Framework component to COM. This enables you to provide new components for earlier application suites that require COM components. This
walkthrough demonstrates how to use Visual Basic to expose .NET Framework objects as COM objects, both with and without the COM class template.

The easiest way to expose COM objects is by using the COM class template. The COM class template creates a new class, and then configures your
project to generate the class and interoperability layer as a COM object and register it with the operating system.

Although you can also expose a class created in Visual Basic as a COM object for unmanaged code to use, it is not a true COM object and cannot be used by Visual
Basic. For more information, see COM Interoperability in .NET Framework Applications.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

1. Open a new Windows Application project from the File menu by clicking New Project.

2. In the New Project dialog box under the Project Types field, check that Windows is selected. Select Class Library from the Templates list, and
then click OK. The new project is displayed.

3. Select Add New Item from the Project menu. The Add New Item dialog box is displayed.

4. Select COM Class from the Templates list, and then click Add. Visual Basic adds a new class and configures the new project for COM interop.

5. Add code such as properties, methods, and events to the COM class.

6. Select Build ClassLibrary1 from the Build menu. Visual Basic builds the assembly and registers the COM object with the operating system.

You can also create a COM class manually instead of using the COM class template. This procedure is helpful when you are working from the
command line or when you want more control over how COM objects are defined.

1. Open a new Windows Application project from the File menu by clicking NewProject.

2. In the New Project dialog box under the Project Types field, check that Windows is selected. Select Class Library from the Templates list, and
then click OK. The new project is displayed.

3. In Solution Explorer, right-click your project, and then click Properties. The Project Designer is displayed.

4. Click the Compile tab.

5. Select the Register for COM Interop check box.

Public Const ClassId As String = ""
Public Const InterfaceId As String = ""
Public Const EventsId As String = ""

Public Const ClassId As String = "2C8B0AEE-02C9-486e-B809-C780A11530FE"

1. In Solution Explorer, double-click Class1.vb to display its code.

2. Rename the class to ComClass1 .

3. Add the following constants to ComClass1 . They will store the Globally Unique Identifier (GUID) constants that the COM objects are required to
have.

4. On the Tools menu, click Create Guid. In the Create GUID dialog box, click Registry Format and then click Copy. Click Exit.

5. Replace the empty string for the ClassId  with the GUID, removing the leading and trailing braces. For example, if the GUID provided by
Guidgen is "{2C8B0AEE-02C9-486e-B809-C780A11530FE}"  then your code should appear as follows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/walkthrough-creating-com-objects.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


See Also

Public Const InterfaceId As String = "3D8B5BA4-FB8C-5ff8-8468-11BF6BD5CF91"
Public Const EventsId As String = "2B691787-6ED7-401e-90A4-B3B9C0360E31"

NOTENOTE

<ComClass(ComClass1.ClassId, ComClass1.InterfaceId, ComClass1.EventsId)>
Public Class ComClass1

Public Sub New()
    MyBase.New()
End Sub

NOTENOTE

6. Repeat the previous steps for the InterfaceId  and EventsId  constants, as in the following example.

Make sure that the GUIDs are new and unique; otherwise, your COM component could conflict with other COM components.

7. Add the ComClass  attribute to ComClass1 , specifying the GUIDs for the Class ID, Interface ID, and Events ID as in the following example:

8. COM classes must have a parameterless Public Sub New()  constructor, or the class will not register correctly. Add a parameterless constructor to
the class:

9. Add properties, methods, and events to the class, ending it with an End Class  statement. Select Build Solution from the Build menu. Visual
Basic builds the assembly and registers the COM object with the operating system.

The COM objects you generate with Visual Basic cannot be used by other Visual Basic applications because they are not true COM objects. Attempts to add
references to such COM objects will raise an error. For details, see COM Interoperability in .NET Framework Applications.

ComClassAttribute
COM Interop
Walkthrough: Implementing Inheritance with COM Objects
#Region Directive
COM Interoperability in .NET Framework Applications
Troubleshooting Interoperability

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute


     

Troubleshooting Interoperability (Visual Basic)
5/4/2018 • 9 minutes to read • Edit Online

Interop Marshaling

Exporting Fixed-Length Strings to Unmanaged Code

Exporting Inheritance Hierarchies

Overloaded Methods

Use of COM Objects Through Interop Assemblies

Classes Exposed as Both Interfaces and Classes

Creating Instances of a .NET Framework Class

Dim cmd As New ADODB.Command

When you interoperate between COM and the managed code of the .NET Framework, you may encounter one or more of the following common
issues.

At times, you may have to use data types that are not part of the .NET Framework. Interop assemblies handle most of the work for COM objects, but
you may have to control the data types that are used when managed objects are exposed to COM. For example, structures in class libraries must specify
the BStr  unmanaged type on strings sent to COM objects created by Visual Basic 6.0 and earlier versions. In such cases, you can use the
MarshalAsAttribute attribute to cause managed types to be exposed as unmanaged types.

In Visual Basic 6.0 and earlier versions, strings are exported to COM objects as sequences of bytes without a null termination character. For
compatibility with other languages, Visual Basic .NET includes a termination character when exporting strings. The best way to address this
incompatibility is to export strings that lack the termination character as arrays of Byte  or Char .

Managed class hierarchies flatten out when exposed as COM objects. For example, if you define a base class with a member, and then inherit the base
class in a derived class that is exposed as a COM object, clients that use the derived class in the COM object will not be able to use the inherited
members. Base class members can be accessed from COM objects only as instances of a base class, and then only if the base class is also created as a
COM object.

Although you can create overloaded methods with Visual Basic, they are not supported by COM. When a class that contains overloaded methods is
exposed as a COM object, new method names are generated for the overloaded methods.

For example, consider a class that has two overloads of the Synch  method. When the class is exposed as a COM object, the new generated method
names could be Synch  and Synch_2 .

The renaming can cause two problems for consumers of the COM object.

1. Clients might not expect the generated method names.

2. The generated method names in the class exposed as a COM object can change when new overloads are added to the class or its base class. This
can cause versioning problems.

To solve both problems, give each method a unique name, instead of using overloading, when you develop objects that will be exposed as COM objects.

You use interop assemblies almost as if they are managed code replacements for the COM objects they represent. However, because they are wrappers
and not actual COM objects, there are some differences between using interop assemblies and standard assemblies. These areas of difference include
the exposure of classes, and data types for parameters and return values.

Unlike classes in standard assemblies, COM classes are exposed in interop assemblies as both an interface and a class that represents the COM class.
The interface's name is identical to that of the COM class. The name of the interop class is the same as that of the original COM class, but with the word
"Class" appended. For example, suppose you have a project with a reference to an interop assembly for a COM object. If the COM class is named 
MyComClass , IntelliSense and the Object Browser show an interface named MyComClass  and a class named MyComClassClass .

Generally, you create an instance of a .NET Framework class using the New  statement with a class name. Having a COM class represented by an
interop assembly is the one case in which you can use the New  statement with an interface. Unless you are using the COM class with an Inherits

statement, you can use the interface just as you would a class. The following code demonstrates how to create a Command  object in a project that has a
reference to the Microsoft ActiveX Data Objects 2.8 Library COM object:

However, if you are using the COM class as the base for a derived class, you must use the interop class that represents the COM class, as in the
following code:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/troubleshooting-interoperability.md
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute


Class DerivedCommand
    Inherits ADODB.CommandClass
End Class

NOTENOTE

Data Types for Parameters and Return Values

Module level COM methods

Dim db As DAO.Database  
' Open the database.  
Set db = DBEngine.OpenDatabase("C:\nwind.mdb")  
' Use the database object.  

' Class level variable.
Shared DBEngine As New DAO.DBEngine

Sub DAOOpenRecordset()
    Dim db As DAO.Database
    Dim rst As DAO.Recordset
    Dim fld As DAO.Field
    ' Open the database.
    db = DBEngine.OpenDatabase("C:\nwind.mdb")

    ' Open the Recordset.
    rst = db.OpenRecordset(
        "SELECT * FROM Customers WHERE Region = 'WA'",
        DAO.RecordsetTypeEnum.dbOpenForwardOnly,
        DAO.RecordsetOptionEnum.dbReadOnly)
    ' Print the values for the fields in the debug window.
    For Each fld In rst.Fields
        Debug.WriteLine(fld.Value.ToString & ";")
    Next
    Debug.WriteLine("")
    ' Close the Recordset.
    rst.Close()
End Sub

Unhandled Errors in Event Handlers

Interop assemblies implicitly implement interfaces that represent COM classes. You should not try to use the Implements  statement to implement these interfaces or
an error will result.

Unlike members of standard assemblies, interop assembly members may have data types that differ from those used in the original object declaration.
Although interop assemblies implicitly convert COM types to compatible common language runtime types, you should pay attention to the data types
that are used by both sides to prevent runtime errors. For example, in COM objects created in Visual Basic 6.0 and earlier versions, values of type 
Integer  assume the .NET Framework equivalent type, Short . It is recommended that you use the Object Browser to examine the characteristics of

imported members before you use them.

Most COM objects are used by creating an instance of a COM class using the New  keyword and then calling methods of the object. One exception to
this rule involves COM objects that contain AppObj  or GlobalMultiUse  COM classes. Such classes resemble module level methods in Visual Basic .NET
classes. Visual Basic 6.0 and earlier versions implicitly create instances of such objects for you the first time that you call one of their methods. For
example, in Visual Basic 6.0 you can add a reference to the Microsoft DAO 3.6 Object Library and call the DBEngine  method without first creating an
instance:

Visual Basic .NET requires that you always create instances of COM objects before you can use their methods. To use these methods in Visual Basic,
declare a variable of the desired class and use the new keyword to assign the object to the object variable. The Shared  keyword can be used when you
want to make sure that only one instance of the class is created.

One common interop problem involves errors in event handlers that handle events raised by COM objects. Such errors are ignored unless you
specifically check for errors using On Error  or Try...Catch...Finally  statements. For example, the following example is from a Visual Basic .NET
project that has a reference to the Microsoft ActiveX Data Objects 2.8 Library COM object.



' To use this example, add a reference to the 
'     Microsoft ActiveX Data Objects 2.8 Library  
' from the COM tab of the project references page.
Dim WithEvents cn As New ADODB.Connection
Sub ADODBConnect()
    cn.ConnectionString =
    "Provider=Microsoft.Jet.OLEDB.4.0;" &
    "Data Source=C:\NWIND.MDB"
    cn.Open()
    MsgBox(cn.ConnectionString)
End Sub

Private Sub Form1_Load(ByVal sender As System.Object,
    ByVal e As System.EventArgs) Handles MyBase.Load

    ADODBConnect()
End Sub

Private Sub cn_ConnectComplete(
    ByVal pError As ADODB.Error,
    ByRef adStatus As ADODB.EventStatusEnum,
    ByVal pConnection As ADODB.Connection) Handles cn.ConnectComplete

    '  This is the event handler for the cn_ConnectComplete event raised 
    '  by the ADODB.Connection object when a database is opened.
    Dim x As Integer = 6
    Dim y As Integer = 0
    Try
        x = CInt(x / y) ' Attempt to divide by zero.
        ' This procedure would fail silently without exception handling.
    Catch ex As Exception
        MsgBox("There was an error: " & ex.Message)
    End Try
End Sub

Understanding COM interop errorsUnderstanding COM interop errors

Try
    ' Place call to COM object here.
Catch ex As Exception
    ' Display information about the failed call.
End Try

ActiveX Control Issues

Passing ReadOnly Properties of Controls ByRef

This example raises an error as expected. However, if you try the same example without the Try...Catch...Finally  block, the error is ignored as if you
used the OnError Resume Next  statement. Without error handling, the division by zero silently fails. Because such errors never raise unhandled exception
errors, it is important that you use some form of exception handling in event handlers that handle events from COM objects.

Without error handling, interop calls often generate errors that provide little information. Whenever possible, use structured error handling to provide
more information about problems when they occur. This can be especially helpful when you debug applications. For example:

You can find information such as the error description, HRESULT, and the source of COM errors by examining the contents of the exception object.

Most ActiveX controls that work with Visual Basic 6.0 work with Visual Basic .NET without trouble. The main exceptions are container controls, or
controls that visually contain other controls. Some examples of older controls that do not work correctly with Visual Studio are as follows:

Microsoft Forms 2.0 Frame control

Up-Down control, also known as the spin control

Sheridan Tab Control

There are only a few workarounds for unsupported ActiveX control problems. You can migrate existing controls to Visual Studio if you own the original
source code. Otherwise, you can check with software vendors for updated .NET-compatible versions of controls to replace unsupported ActiveX
controls.

Visual Basic .NET sometimes raises COM errors such as, "Error 0x800A017F CTL_E_SETNOTSUPPORTED", when you pass ReadOnly  properties of
some older ActiveX controls as ByRef  parameters to other procedures. Similar procedure calls from Visual Basic 6.0 do not raise an error, and the
parameters are treated as if you passed them by value. The Visual Basic .NET error message indicates that you are trying to change a property that does
not have a property Set  procedure.

If you have access to the procedure being called, you can prevent this error by using the ByVal  keyword to declare parameters that accept ReadOnly

properties. For example:



Sub ProcessParams(ByVal c As Object)
    'Use the arguments here.
End Sub

Sub PassByVal(ByVal pError As ADODB.Error)
    ' The extra set of parentheses around the arguments
    ' forces them to be passed by value.
    ProcessParams((pError.Description))
End Sub

Deploying Assemblies That Expose Interop

See Also

If you do not have access to the source code for the procedure being called, you can force the property to be passed by value by adding an extra set of
brackets around the calling procedure. For example, in a project that has a reference to the Microsoft ActiveX Data Objects 2.8 Library COM object, you
can use:

Deploying assemblies that expose COM interfaces presents some unique challenges. For example, a potential problem occurs when separate
applications reference the same COM assembly. This situation is common when a new version of an assembly is installed and another application is still
using the old version of the assembly. If you uninstall an assembly that shares a DLL, you can unintentionally make it unavailable to the other
assemblies.

To avoid this problem, you should install shared assemblies to the Global Assembly Cache (GAC) and use a MergeModule for the component. If you
cannot install the application in the GAC, it should be installed to CommonFilesFolder in a version-specific subdirectory.

Assemblies that are not shared should be located side by side in the directory with the calling application.

MarshalAsAttribute
COM Interop
Tlbimp.exe (Type Library Importer)
Tlbexp.exe (Type Library Exporter)
Walkthrough: Implementing Inheritance with COM Objects
Inherits Statement
Global Assembly Cache

https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer
http://msdn.microsoft.com/library/a487d61b-d166-467b-a7ca-d8b52fbff42d
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac


      

COM Interoperability in .NET Framework Applications (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Related Sections

When you want to use COM objects and .NET Framework objects in the same application, you need to address the differences in how the objects exist
in memory. A .NET Framework object is located in managed memory—the memory controlled by the common language runtime—and may be moved
by the runtime as needed. A COM object is located in unmanaged memory and is not expected to move to another memory location. Visual Studio and
the .NET Framework provide tools to control the interaction of these managed and unmanaged components. For more information about managed
code, see Common Language Runtime.

In addition to using COM objects in .NET applications, you may also want to use Visual Basic to develop objects accessible from unmanaged code
through COM.

The links on this page provide details on the interactions between COM and .NET Framework objects.

COM Interop
Provides links to topics covering COM interoperability in Visual Basic, including COM objects, ActiveX controls, Win32 DLLs, managed objects, and
inheritance of COM objects.

COM Interop Wrapper Error
Describes the consequences and options if the project system cannot create a COM interoperability wrapper for a particular component.

Interoperating with Unmanaged Code
Briefly describes some of the interaction issues between managed and unmanaged code, and provides links for further study.

COM Wrappers
Discusses runtime callable wrappers, which allow managed code to call COM methods, and COM callable wrappers, which allow COM clients to call
.NET object methods.

Advanced COM Interoperability
Provides links to topics covering COM interoperability with respect to wrappers, exceptions, inheritance, threading, events, conversions, and marshaling.

Tlbimp.exe (Type Library Importer)
Discusses the tool you can use to convert the type definitions found within a COM type library into equivalent definitions in a common language
runtime assembly.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/com-interoperability-in-net-framework-applications.md
https://docs.microsoft.com/cpp/misc/com-interop-wrapper-error
https://docs.microsoft.com/en-us/dotnet/framework/interop/com-wrappers
https://docs.microsoft.com/en-us/dotnet/framework/tools/tlbimp-exe-type-library-importer


      

Walkthrough: Implementing Inheritance with COM Objects (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

NOTENOTE

To build the COM object that is used in this walkthroughTo build the COM object that is used in this walkthrough

Interop Assemblies

To use a COM object with Visual Basic 2005 and later versionsTo use a COM object with Visual Basic 2005 and later versions

You can derive Visual Basic classes from Public  classes in COM objects, even those created in earlier versions of Visual Basic. The properties and
methods of classes inherited from COM objects can be overridden or overloaded just as properties and methods of any other base class can be
overridden or overloaded. Inheritance from COM objects is useful when you have an existing class library that you do not want to recompile.

The following procedure shows how to use Visual Basic 6.0 to create a COM object that contains a class, and then use it as a base class.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

' Local variable to hold property value  
Private mvarProp1 As Integer  

Public Property Let Prop1(ByVal vData As Integer)  
   'Used when assigning a value to the property.  
   mvarProp1 = vData  
End Property  
Public Property Get Prop1() As Integer  
   'Used when retrieving a property's value.  
   Prop1 = mvarProp1  
End Property  

Function AddNumbers(   
   ByVal SomeNumber As Integer,   
   ByVal AnotherNumber As Integer) As Integer  

   AddNumbers = SomeNumber + AnotherNumber  
End Function  

NOTENOTE

1. In Visual Basic 6.0, open a new ActiveX DLL project. A project named Project1  is created. It has a class named Class1 .

2. In the Project Explorer, right-click Project1, and then click Project1 Properties. The Project Properties dialog box is displayed.

3. On the General tab of the Project Properties dialog box, change the project name by typing ComObject1  in the Project Name field.

4. In the Project Explorer, right-click Class1 , and then click Properties. The Properties window for the class is displayed.

5. Change the Name  property to MathFunctions .

6. In the Project Explorer, right-click MathFunctions , and then click View Code. The Code Editor is displayed.

7. Add a local variable to hold the property value:

8. Add Property Let  and Property Get  property procedures:

9. Add a function:

10. Create and register the COM object by clicking Make ComObject1.dll on the File menu.

Although you can also expose a class created with Visual Basic as a COM object, it is not a true COM object and cannot be used in this walkthrough. For
details, see COM Interoperability in .NET Framework Applications.

In the following procedure, you will create an interop assembly, which acts as a bridge between unmanaged code (such as a COM object) and the
managed code Visual Studio uses. The interop assembly that Visual Basic creates handles many of the details of working with COM objects, such as
interop marshaling, the process of packaging parameters and return values into equivalent data types as they move to and from COM objects. The
reference in the Visual Basic application points to the interop assembly, not the actual COM object.

1. Open a new Visual Basic Windows Application project.

2. On the Project menu, click Add Reference.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/programming-guide/com-interop/walkthrough-implementing-inheritance-with-com-objects.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


To test the inherited classTo test the inherited class

Next Steps

' The inherited class is called MathFunctions in the base class,
' but the interop assembly appends the word Class to the name.
Inherits ComObject1.MathFunctionsClass

'  This method overloads the method AddNumbers from the base class.
Overloads Function AddNumbers(
    ByVal SomeNumber As Integer,
    ByVal AnotherNumber As Integer) As Integer

    Return SomeNumber + AnotherNumber
End Function

'  The following function extends the inherited class.
Function SubtractNumbers(
    ByVal SomeNumber As Integer,
    ByVal AnotherNumber As Integer) As Integer

    Return AnotherNumber - SomeNumber
End Function

The Add Reference dialog box is displayed.

3. On the COM tab, double-click ComObject1  in the Component Name list and click OK.

4. On the Project menu, click Add New Item.

The Add New Item dialog box is displayed.

5. In the Templates pane, click Class.

The default file name, Class1.vb , appears in the Name field. Change this field to MathClass.vb and click Add. This creates a class named 
MathClass , and displays its code.

6. Add the following code to the top of MathClass  to inherit from the COM class.

7. Overload the public method of the base class by adding the following code to MathClass :

8. Extend the inherited class by adding the following code to MathClass :

The new class inherits the properties of the base class in the COM object, overloads a method, and defines a new method to extend the class.

Dim Result1 As Short
Dim Result2 As Integer
Dim Result3 As Integer
Dim MathObject As New MathClass
Result1 = MathObject.AddNumbers(4S, 2S) ' Add two Shorts.
Result2 = MathObject.AddNumbers(4, 2) 'Add two Integers.
Result3 = MathObject.SubtractNumbers(2, 4) ' Subtract 2 from 4.
MathObject.Prop1 = 6 ' Set an inherited property.

MsgBox("Calling the AddNumbers method in the base class " &
       "using Short type numbers 4 and 2 = " & Result1)
MsgBox("Calling the overloaded AddNumbers method using " &
       "Integer type numbers 4 and 2 = " & Result2)
MsgBox("Calling the SubtractNumbers method " &
       "subtracting 2 from 4 = " & Result3)
MsgBox("The value of the inherited property is " &
        MathObject.Prop1)

1. Add a button to your startup form, and then double-click it to view its code.

2. In the button's Click  event handler procedure, add the following code to create an instance of MathClass  and call the overloaded methods:

3. Run the project by pressing F5.

When you click the button on the form, the AddNumbers  method is first called with Short  data type numbers, and Visual Basic chooses the appropriate
method from the base class. The second call to AddNumbers  is directed to the overload method from MathClass . The third call calls the SubtractNumbers

method, which extends the class. The property in the base class is set, and the value is displayed.

You may have noticed that the overloaded AddNumbers  function appears to have the same data type as the method inherited from the base class of the
COM object. This is because the arguments and parameters of the base class method are defined as 16-bit integers in Visual Basic 6.0, but they are
exposed as 16-bit integers of type Short  in later versions of Visual Basic. The new function accepts 32-bit integers, and overloads the base class
function.

When working with COM objects, make sure that you verify the size and data types of parameters. For example, when you are using a COM object that



See Also

accepts a Visual Basic 6.0 collection object as an argument, you cannot provide a collection from a later version of Visual Basic.

Properties and methods inherited from COM classes can be overridden, meaning that you can declare a local property or method that replaces a
property or method inherited from a base COM class. The rules for overriding inherited COM properties are similar to the rules for overriding other
properties and methods with the following exceptions:

If you override any property or method inherited from a COM class, you must override all the other inherited properties and methods.

Properties that use ByRef  parameters cannot be overridden.

COM Interoperability in .NET Framework Applications
Inherits Statement
Short Data Type



                   

Visual Basic Language Reference
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section provides reference information for various aspects of the Visual Basic language.

Typographic and Code Conventions
Summarizes the way that keywords, placeholders, and other elements of the language are formatted in the Visual Basic documentation.

Visual Basic Runtime Library Members
Lists the classes and modules of the Microsoft.VisualBasic namespace, with links to their member functions, methods, properties, constants, and
enumerations.

Keywords
Lists all Visual Basic keywords and provides links to more information.

Attributes (Visual Basic)
Documents the attributes available in Visual Basic.

Constants and Enumerations
Documents the constants and enumerations available in Visual Basic.

Data Types
Documents the data types available in Visual Basic.

Directives
Documents the compiler directives available in Visual Basic.

Functions
Documents the run-time functions available in Visual Basic.

Modifiers
Lists the Visual Basic run-time modifiers and provides links to more information.

Modules
Documents the modules available in Visual Basic and their members.

Nothing
Describes the default value of any data type.

Objects
Documents the objects available in Visual Basic and their members.

Operators
Documents the operators available in Visual Basic.

Properties
Documents the properties available in Visual Basic.

Queries
Provides reference information about using Language-Integrated Query (L INQ) expressions in your code.

Statements
Documents the declaration and executable statements available in Visual Basic.

XML Comment Tags
Describes the documentation comments for which IntelliSense is provided in the Visual Basic Code Editor.

XML Axis Properties
Provides links to information about using XML axis properties to access XML directly in your code.

XML Literals
Provides links to information about using XML literals to incorporate XML directly in your code.

Error Messages
Provides a listing of Visual Basic compiler and run-time error messages and help on how to handle them.

Visual Basic
Provides comprehensive help on all areas of the Visual Basic language.

Visual Basic Command-Line Compiler

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/index.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic


Describes how to use the command-line compiler as an alternative to compiling programs from within the Visual Studio integrated development
environment (IDE).



         

 

 

 

Select the Visual Basic language version
5/30/2018 • 2 minutes to read • Edit Online

Edit the vbproj file

<PropertyGroup>
   <LangVersion>latest</LangVersion>
</PropertyGroup>

VALUE MEANING

default The compiler accepts all valid language syntax from the latest major version that it
can support.

9 The compiler accepts only syntax that is included in Visual Basic 9.0 or lower.

10 The compiler accepts only syntax that is included in Visual Basic 10.0 or lower.

11 The compiler accepts only syntax that is included in Visual Basic 11.0 or lower.

12 The compiler accepts only syntax that is included in Visual Basic 12.0 or lower.

14 The compiler accepts only syntax that is included in Visual Basic 14.0 or lower.

15 The compiler accepts only syntax that is included in Visual Basic 15.0 or lower.

15.3 The compiler accepts only syntax that is included in Visual Basic 15.3 or lower.

15.5 The compiler accepts only syntax that is included in Visual Basic 15.5 or lower.

latest The compiler accepts all valid language syntax that it can support.

Configure multiple projects

<Project>
 <PropertyGroup>
   <LangVersion>15.5</LangVersion>
 </PropertyGroup>
</Project>

Set the langversion compiler option

The Visual Basic compiler defaults to the latest major version of the language that has been released. You may choose to compile any project using a
new point release of the language. Choosing a newer version of the language enables your project to make use of the latest language features. In other
scenarios, you may need to validate that a project compiles cleanly when using an older version of the language.

This capability decouples the decision to install new versions of the SDK and tools in your development environment from the decision to incorporate
new language features in a project. You can install the latest SDK and tools on your build machine. Each project can be configured to use a specific
version of the language for its build.

There are three ways to set the language version:

Manually edit your .vbproj file
Set the language version for multiple projects in a subdirectory
Configure the -langversion  compiler option

You can set the language version in your .vbproj file. Add the following element:

The value latest  uses the latest minor version of the Visual Basic language. Valid values are:

The special strings default  and latest  resolve to the latest major and minor language versions installed on the build machine, respectively.

You can create a Directory.build.props file that contains the <LangVersion>  element to configure multiple directories. You typically do that in your
solution directory. Add the following to a Directory.build.props file in your solution directory:

Now, builds in every subdirectory of the directory containing that file will use Visual Basic version 15.5 syntax. For more information, see the article on
Customize your build.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/configure-language-version.md
https://docs.microsoft.com/visualstudio/msbuild/customize-your-build.md


You can use the -langversion  command-line option. For more information, see the article on the -langversion compiler option. You can see a list of the
valid values by typing vbc -langversion:?  .



  

Typographic and Code Conventions (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Typographic Conventions
EXAMPLE DESCRIPTION

Sub , If , ChDir , Print , True , Debug Language-specific keywords and runtime members have initial uppercase letters
and are formatted as shown in this example.

SmallProject, ButtonCollection Words and phrases you are instructed to type are formatted as shown in this
example.

Module Statement Links you can click to go to another Help page are formatted as shown in this
example.

object, variableName, argumentList Placeholders for information that you supply are formatted as shown in this
example.

[ Shadows ], [ expressionList ] In syntax, optional items are enclosed in brackets.

{ Public  | Friend  | Private  } In syntax, when you must make a choice between two or more items, the items are
enclosed in braces and separated by vertical bars.

You must select one, and only one, of the items.

[ Protected  | Friend  ] In syntax, when you have the option of selecting between two or more items, the
items are enclosed in square brackets and separated by vertical bars.

You can select any combination of the items, or no item.

[{ ByVal  | ByRef  }] In syntax, when you can select no more than one item, but you can also omit the
items completely, the items are enclosed in square brackets surrounded by braces
and separated by vertical bars.

memberName1, memberName2, memberName3 Multiple instances of the same placeholder are differentiated by subscripts, as
shown in the example.

memberName1

...

memberNameN

In syntax, an ellipsis (...) is used to indicate an indefinite number of items of the kind
immediately in front of the ellipsis.

In code, ellipses signify code omitted for the sake of clarity.

ESC, ENTER Key names and key sequences on the keyboard appear in all uppercase letters.

ALT+F1 When plus signs (+) appear between key names, you must hold down one key
while pressing the other. For example, ALT+F1 means hold down the ALT key while
pressing the F1 key.

Code Conventions
EXAMPLE DESCRIPTION

sampleString = "Hello, world!" Code samples appear in a fixed-pitch font and are formatted as shown in this
example.

The previous statement sets the value of sampleString  to "Hello, world!" Code elements in explanatory text appear in a fixed-pitch font, as shown in this
example.

' This is a comment.

REM This is also a comment.

Code comments are introduced by an apostrophe (') or the REM keyword.

Visual Basic documentation uses the following typographic and code conventions.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/typographic-and-code-conventions.md


sampleVar = "This is an " _

& "example" _

& " of how to continue code."

A space followed by an underscore ( _) at the end of a line indicates that the
statement continues on the following line.

EXAMPLE DESCRIPTION

See Also
Visual Basic Language Reference
Keywords
Visual Basic Runtime Library Members
Visual Basic Naming Conventions
How to: Break and Combine Statements in Code
Comments in Code



                         

Visual Basic Runtime Library Members
5/4/2018 • 2 minutes to read • Edit Online

Microsoft.VisualBasic.Collection Class

Add Clear Contains Count

GetEnumerator Item[String] Remove

Microsoft.VisualBasic.ComClassAttribute Class

ClassID EventID InterfaceID InterfaceShadows

Microsoft.VisualBasic.ControlChars Class

Back Cr CrLf FormFeed

Lf NewLine NullChar Quote

Tab VerticalTab

Microsoft.VisualBasic.Constants Class

vbAbort vbAbortRetryIgnore vbApplicationModal vbArchive

vbArray vbBack vbBinaryCompare vbBoolean

vbByte vbCancel vbCr vbCritical

vbCrLf vbCurrency vbDate vbDecimal

vbDefaultButton1 vbDefaultButton2 vbDefaultButton3 vbDirectory

vbDouble vbEmpty vbExclamation vbFalse

vbFirstFourDays vbFirstFullWeek vbFirstJan1 vbFormFeed

vbFriday vbGeneralDate vbGet vbHidden

vbHide vbHiragana vbIgnore vbInformation

vbInteger vbKatakana vbLet vbLf

vbLinguisticCasing vbLong vbLongDate vbLongTime

vbLowerCase vbMaximizedFocus vbMethod vbMinimizedFocus

vbMinimizedNoFocus vbMonday vbMsgBoxHelp vbMsgBoxRight

vbMsgBoxRtlReading vbMsgBoxSetForeground vbNarrow vbNewLine

vbNo vbNormal vbNormalFocus vbNormalNoFocus

The Microsoft.VisualBasic  namespace contains the classes, modules, constants, and enumerations that constitute the Visual Basic runtime library.
These library members provide procedures, properties, and constant values you can use in your code. Each module and class represents a particular
category of functionality.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/runtime-library-members.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.add
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.clear
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.contains
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.count
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.getenumerator
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.item
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.remove
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute.classid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute.eventid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute.interfaceid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute.interfaceshadows
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.back
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.cr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.crlf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.formfeed
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.lf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.newline
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.nullchar
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.quote
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.tab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.verticaltab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbabort
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbabortretryignore
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbapplicationmodal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbarchive
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbarray
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbback
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbbinarycompare
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbboolean
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbbyte
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcancel
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcritical
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcrlf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcurrency
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdecimal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdefaultbutton1
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdefaultbutton2
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdefaultbutton3
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdirectory
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbdouble
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbempty
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbexclamation
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbfalse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbfirstfourdays
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbfirstfullweek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbfirstjan1
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbformfeed
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbfriday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbgeneraldate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbget
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbhidden
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbhide
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbhiragana
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbignore
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbinformation
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbinteger
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbkatakana
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblet
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblinguisticcasing
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblong
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblongdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblongtime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblowercase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmaximizedfocus
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmethod
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbminimizedfocus
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbminimizednofocus
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmonday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmsgboxhelp
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmsgboxright
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmsgboxrtlreading
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbmsgboxsetforeground
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnarrow
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnewline
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbno
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnormal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnormalfocus
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnormalnofocus


vbNull vbNullChar vbNullString vbObject

vbObjectError vbOK vbOKCancel vbOKOnly

vbProperCase vbQuestion vbReadOnly vbRetry

vbRetryCancel vbSaturday vbSet vbShortDate

vbShortTime vbSimplifiedChinese vbSingle vbString

vbSunday vbSystem vbSystemModal vbTab

vbTextCompare vbThursday vbTraditionalChinese vbTrue

vbTuesday vbUpperCase vbUseDefault vbUserDefinedType

vbUseSystem vbUseSystemDayOfWeek vbVariant vbVerticalTab

vbVolume vbWednesday vbWide vbYes

vbYesNo vbYesNoCancel

Microsoft.VisualBasic.Conversion Module

ErrorToString Fix Hex Int

Oct Str Val

Microsoft.VisualBasic.DateAndTime Module

DateAdd DateDiff DatePart DateSerial

DateString DateValue Day Hour

Minute Month MonthName Now

Second TimeOfDay Timer TimeSerial

TimeString TimeValue Today Weekday

WeekdayName Year

Microsoft.VisualBasic.ErrObject Class

Clear Description Erl GetException

HelpContext HelpFile LastDllError Number

Raise Raise

Microsoft.VisualBasic.FileSystem Module

ChDir ChDrive CurDir Dir

EOF FileAttr FileClose FileCopy

FileDateTime FileGet FileGetObject FileLen

FileOpen FilePut FilePutObject FileWidth

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnull
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnullchar
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnullstring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbobjecterror
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbok
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbokcancel
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbokonly
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbpropercase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbquestion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbreadonly
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbretry
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbretrycancel
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsaturday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbshortdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbshorttime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsimplifiedchinese
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsingle
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbstring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsunday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbsystemmodal
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtextcompare
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbthursday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtraditionalchinese
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtrue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtuesday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbuppercase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbusedefault
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbuserdefinedtype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbusesystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbusesystemdayofweek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbvariant
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbverticaltab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbvolume
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbwednesday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbwide
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbyes
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbyesno
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbyesnocancel
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.errortostring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.hex
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.oct
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.str
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.val
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.dateadd
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datediff
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datepart
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.dateserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datevalue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.day
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.hour
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.minute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.month
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.monthname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.now
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.second
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeofday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timevalue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.today
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.weekday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.weekdayname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.year
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.clear
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.description
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.erl
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.getexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.helpcontext
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.helpfile
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.lastdllerror
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.number
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.raise
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.raise
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.chdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.chdrive
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.curdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.dir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.eof
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileclose
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filecopy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filedatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileget
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filegetobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filelen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileopen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileput
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileputobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filewidth


FreeFile GetAttr Input InputString

Kill LineInput Loc Lock

LOF MkDir Print PrintLine

Rename Reset RmDir Seek

SetAttr SPC TAB Unlock

Write WriteLine

Microsoft.VisualBasic.Financial Module

DDB FV IPmt IRR

MIRR NPer NPV Pmt

PPmt PV Rate SLN

SYD

Microsoft.VisualBasic.Globals Module

ScriptEngine ScriptEngineBuildVersion ScriptEngineMajorVersion ScriptEngineMinorVersion

Microsoft.VisualBasic.HideModuleNameAttribute Class

HideModuleNameAttribute

Microsoft.VisualBasic.Information Module

Erl Err IsArray IsDate

IsDBNull IsError IsNothing IsNumeric

IsReference LBound QBColor RGB

SystemTypeName TypeName UBound VarType

VbTypeName

Microsoft.VisualBasic.Interaction Module

AppActivate Beep CallByName Choose

Command CreateObject DeleteSetting Environ

GetAllSettings GetObject GetSetting IIf

InputBox MsgBox Partition SaveSetting

Shell Switch

Microsoft.VisualBasic.MyGroupCollectionAttribute Class

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.freefile
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.getattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.input
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.inputstring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.kill
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lineinput
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.loc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lof
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.mkdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.print
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.printline
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.rename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.reset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.rmdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.seek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.setattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.spc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.tab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.unlock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.write
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.writeline
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ddb
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.fv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ipmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.irr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.mirr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.nper
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.npv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.pmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ppmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.pv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.rate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.sln
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.syd
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptengine
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptenginebuildversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptenginemajorversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptengineminorversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.hidemodulenameattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.erl
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isarray
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdbnull
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.iserror
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnothing
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnumeric
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isreference
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.lbound
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.qbcolor
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.rgb
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.systemtypename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.typename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.ubound
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.vartype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.vbtypename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.appactivate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.beep
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.callbyname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.choose
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.command
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.createobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.deletesetting
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.environ
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getallsettings
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getsetting
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.iif
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.inputbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.partition
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.savesetting
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.shell
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.switch


CreateMethod DefaultInstanceAlias DisposeMethod MyGroupName

Microsoft.VisualBasic.Strings Module

Asc Asc Chr ChrW

Filter Format FormatCurrency FormatDateTime

FormatNumber FormatPercent GetChar InStr

InStrRev Join LCase Left

Len LSet LTrim Mid

Replace Right RSet RTrim

Space Split StrComp StrConv

StrDup StrReverse Trim UCase

Microsoft.VisualBasic.VBFixedArrayAttribute Class

Bounds Length

Microsoft.VisualBasic.VBFixedStringAttribute Class

Length

Microsoft.VisualBasic.VbMath Module

Randomize Rnd

Microsoft.VisualBasic Constants and Enumerations

See Also

The Microsoft.VisualBasic  namespace provides constants and enumerations as part of the Visual Basic run-time library. You can use these constant
values in your code. Each enumeration represents a particular category of functionality. For more information, see Constants and Enumerations.

Constants and Enumerations
Keywords

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.mygroupcollectionattribute.createmethod
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.mygroupcollectionattribute.defaultinstancealias
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.mygroupcollectionattribute.disposemethod
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.mygroupcollectionattribute.mygroupname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.filter
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatcurrency
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatdatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatnumber
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatpercent
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.getchar
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instrrev
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.join
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lcase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.left
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.len
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ltrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.replace
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.right
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rtrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.space
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.split
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strdup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strreverse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.trim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ucase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbfixedarrayattribute.bounds
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbfixedarrayattribute.length
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbfixedstringattribute.length
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.randomize
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.rnd


                                               

Keywords (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Reserved Keywords

NOTENOTE

AddHandler AddressOf Alias And

AndAlso As Boolean ByRef

Byte ByVal Call Case

Catch CBool CByte CChar

CDate CDbl CDec Char

CInt Class Constraint Class Statement CLng

CObj Const Continue CSByte

CShort CSng CStr CType

CUInt CULng CUShort Date

Decimal Declare Default Delegate

Dim DirectCast Do Double

Each Else ElseIf End Statement

End <keyword> EndIf Enum Erase

Error Event Exit False

Finally For (in For…Next) For Each…Next Friend

Function Get GetType GetXMLNamespace

Global GoSub GoTo Handles

If If() Implements Implements Statement

Imports (.NET Namespace and Type) Imports (XML Namespace) In In (Generic Modifier)

Inherits Integer Interface Is

IsNot Let Lib Like

Long Loop Me Mod

Module Module Statement MustInherit MustOverride

MyBase MyClass Namespace Narrowing

New Constraint New Operator Next Next (in Resume)

The following tables list all Visual Basic language keywords.

The following keywords are reserved, which means that you cannot use them as names for programming elements such as variables or procedures. You
can bypass this restriction by enclosing the name in brackets ( [] ). For more information, see "Escaped Names" in Declared Element Names.

We do not recommend that you use escaped names, because it can make your code hard to read, and it can lead to subtle errors that can be difficult to find.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


Not Nothing NotInheritable NotOverridable

Object Of On Operator

Option Optional Or OrElse

Out (Generic Modifier) Overloads Overridable Overrides

ParamArray Partial Private Property

Protected Public RaiseEvent ReadOnly

ReDim REM RemoveHandler Resume

Return SByte Select Set

Shadows Shared Short Single

Static Step Stop String

Structure Constraint Structure Statement Sub SyncLock

Then Throw To True

Try TryCast TypeOf…Is UInteger

ULong UShort Using Variant

Wend When While Widening

With WithEvents WriteOnly Xor

#Const #Else #ElseIf #End

#If = & &=

* *= / /=

\ \= ^ ^=

+ += - -=

>> Operator >>= Operator << <<=

NOTENOTE

Unreserved Keywords

Aggregate Ansi Assembly Async

Auto Await Binary Compare

Custom Distinct Equals Explicit

From Group By Group Join Into

IsFalse IsTrue Iterator Join

Key Mid Off Order By

EndIf , GoSub , Variant , and Wend  are retained as reserved keywords, although they are no longer used in Visual Basic. The meaning of the Let  keyword has
changed. Let  is now used in LINQ queries. For more information, see Let Clause.

The following keywords are not reserved, which means you can use them as names for your programming elements. However, doing this is not
recommended, because it can make your code hard to read and can lead to subtle errors that can be difficult to find.

https://docs.microsoft.com/en-us/dotnet/visual-basic/misc/on
https://docs.microsoft.com/en-us/dotnet/visual-basic/misc/off


Preserve Skip Skip While Strict

Take Take While Text Unicode

Until Where Yield #ExternalSource

#Region

Related Topics
TITLE DESCRIPTION

Arrays Summary Lists language elements that are used to create, define, and use arrays.

Collection Object Summary Lists language elements that are used for collections.

Control Flow Summary Lists statements that are used for looping and controlling procedure flow.

Conversion Summary Lists functions that are used to convert numbers, dates, times, and strings.

Data Types Summary Lists data types. Also lists functions that are used to convert between data types
and verify data types.

Dates and Times Summary Lists language elements that are used for dates and times.

Declarations and Constants Summary Lists statements that are used to declare variables, constants, classes, modules, and
other programming elements. Also lists language elements that are used to obtain
object information, handle events, and implement inheritance.

Directories and Files Summary Lists functions that are used to control the file system and to process files.

Errors Summary Lists language elements that are used to catch and return run-time error values.

Financial Summary Lists functions that are used to perform financial calculations.

Input and Output Summary Lists functions that are used to read from and write to files, manage files, and print
output.

Information and Interaction Summary Lists functions that are used to run other programs, obtain command-line
arguments, manipulate COM objects, retrieve color information, and use control
dialog boxes.

Math Summary Lists functions that are used to perform trigonometric and other mathematical
calculations.

My Reference Lists the objects contained in My , a feature that provides access to frequently
used methods, properties, and events of the computer on which the application is
running, the current application, the application's resources, the application's
settings, and so on.

Operators Summary Lists assignment and comparison expressions and other operators.

Registry Summary Lists functions that are used to read, save, and delete program settings.

String Manipulation Summary Lists functions that are used to manipulate strings.

See Also
Visual Basic Runtime Library Members



 

Arrays Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Verify an array. IsArray

Declare and initialize an array. Dim, Private, Public, ReDim

Find the limits of an array. LBound, UBound

Reinitialize an array Erase, ReDim

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/arrays-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isarray
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.lbound
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.ubound


 

Collection Object Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Create a Collection  object. Collection

Add an item to a collection. Add

Remove an object from a collection. Remove

Reference an item in a collection. Item[String]

Return a reference to an IEnumerator interface. IEnumerable.GetEnumerator

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/collection-object-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.add
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.remove
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.item
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.system-collections-ienumerable-getenumerator


  

Control Flow Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Branch. GoTo, On Error

Exit or pause the program. End, Exit, Stop

Loop. Do...Loop, For...Next, For Each...Next, While...End While, With

Make decisions. Choose, If...Then...Else, Select Case, Switch

Use procedures. Call, Function, Property, Sub

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/control-flow-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.choose
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.switch


                   

Conversion Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Convert ANSI value to string. Chr, ChrW

Convert string to lowercase or uppercase. Format, LCase,UCase

Convert date to serial number. DateSerial, DateValue

Convert decimal number to other bases. Hex, Oct

Convert number to string. Format, Str

Convert one data type to another. CBool, CByte, CDate, CDbl, CDec, CInt, CLng, CSng, CShort, CStr, CType, Fix, Int

Convert date to day, month, weekday, or year. Day, Month, Weekday, Year

Convert time to hour, minute, or second. Hour, Minute, Second

Convert string to ASCII value. Asc, AscW

Convert string to number. Val

Convert time to serial number. TimeSerial, TimeValue

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/conversion-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lcase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ucase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.dateserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datevalue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.hex
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.oct
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.str
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.day
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.month
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.weekday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.year
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.hour
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.minute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.second
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.val
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timevalue


 

Data Types Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Convert between data types CBool, CByte, CChar, CDate, CDbl, CDec, CInt, CLng, CObj, CShort, CSng, CStr, Fix,
Int

Set intrinsic data types Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object, Short, Single,
String

Verify data types IsArray, IsDate, IsDBNull, IsError, IsNothing, IsNumeric, IsReference

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/data-types-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isarray
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdbnull
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.iserror
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnothing
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnumeric
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isreference


 

Dates and Times Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Get the current date or time. Now, Today, TimeOfDay

Perform date calculations. DateAdd, DateDiff, DatePart

Return a date. DateSerial, DateValue, MonthName, WeekdayName

Return a time. TimeSerial, TimeValue

Set the date or time. DateString, TimeOfDay, TimeString, Today

Time a process. Timer

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/dates-and-times-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.now
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.today
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeofday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.dateadd
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datediff
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datepart
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.dateserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datevalue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.monthname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.weekdayname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeserial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timevalue
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeofday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.today
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timer


  

Declarations and Constants Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Assign a value. Get, Property

Declare variables or constants. Const, Dim, Private, Protected, Public, Shadows, Shared, Static

Declare a class, delegate, enumeration, module, namespace, or structure. Class, Delegate, Enum, Module, Namespace, Structure

Create objects. CreateObject, GetObject, New

Get information about an object. GetType, IsArray, IsDate, IsDBNull, IsError, IsNothing, IsNumeric, IsReference,
SystemTypeName, TypeName, VarType, VbTypeName

Refer to the current object. Me

Require explicit variable declarations. Option Explicit, Option Strict

Handle events. AddHandler, Event, RaiseEvent, RemoveHandler

Implement inheritance. Inherits, MustInherit, MustOverride, MyBase, MyClass, New, NotInheritable,
NotOverridable, Overloads, Overridable, Overrides

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/declarations-and-constants-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.createobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isarray
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdbnull
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.iserror
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnothing
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isnumeric
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isreference
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.systemtypename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.typename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.vartype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.vbtypename
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


 

Directories and Files Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Change a directory or folder. ChDir

Change the drive. ChDrive

Copy a file. FileCopy

Make a directory or folder. MkDir

Remove a directory or folder. RmDir

Rename a file, directory, or folder. Rename

Return the current path. CurDir

Return a file's date/time stamp. FileDateTime

Return file, directory, or label attributes. GetAttr

Return a file's length. FileLen

Return a file's name or volume label. Dir

Set attribute information for a file. SetAttr

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Using the My  feature gives you greater productivity and performance in file I/O operations than using these members. For more information, see
FileSystem.

Keywords
Visual Basic Runtime Library Members
Reading from Files
Writing to Files
Creating, Deleting, and Moving Files and Directories
Parsing Text Files with the TextFieldParser Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/directories-and-files-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.chdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.chdrive
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filecopy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.mkdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.rmdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.rename
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.curdir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filedatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.getattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filelen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.dir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.setattr
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/reading-from-files
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/writing-to-files
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/creating-deleting-and-moving-files-and-directories
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/parsing-text-files-with-the-textfieldparser-object


 

Errors Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Generate run-time errors. Clear, Error, Raise

Get exceptions. GetException

Provide error information. Err

Trap errors during run time. On Error, Resume, Try...Catch...Finally

Provide line number of error. Erl

Provide system error code. LastDllError

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/errors-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection.clear
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.raise
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.getexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.erl
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.lastdllerror


 

Financial Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Calculate depreciation. DDB, SLN, SYD

Calculate future value. FV

Calculate interest rate. Rate

Calculate internal rate of return. IRR, MIRR

Calculate number of periods. NPer

Calculate payments. IPmt, Pmt, PPmt

Calculate present value. NPV, PV

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/financial-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ddb
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.sln
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.syd
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.fv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.rate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.irr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.mirr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.nper
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ipmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.pmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.ppmt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.npv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial.pv


 

Information and Interaction Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Run other programs. AppActivate, Shell

Call a method or property. CallByName

Sound a beep from computer. Beep

Provide a command-line string. Command

Manipulate COM objects. CreateObject, GetObject

Retrieve color information. QBColor, RGB

Control dialog boxes InputBox, MsgBox

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/information-and-interaction-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.appactivate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.shell
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.callbyname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.beep
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.command
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.createobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.qbcolor
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.rgb
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.inputbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox


 

Input and Output Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Access or create a file. FileOpen

Close files. FileClose, Reset

Control output appearance. Format, Print, SPC, TAB, FileWidth

Copy a file. FileCopy

Get information about a file. EOF, FileAttr, FileDateTime, FileLen, FreeFile, GetAttr, Loc, LOF, Seek

Get or provide information from/to the user by means of a control dialog box. InputBox, MsgBox

Manage files. Dir, Kill, Lock, Unlock

Read from a file. FileGet, FileGetObject, Input, InputString, LineInput

Return length of a file. FileLen

Set or get file attributes. FileAttr, GetAttr, SetAttr

Set read-write position in a file. Seek

Write to a file. FilePut, FilePutObject, Print, Write, WriteLine

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/input-and-output-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileopen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileclose
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.reset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.print
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.spc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.tab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filewidth
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filecopy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.eof
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filedatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filelen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.freefile
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.getattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.loc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lof
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.seek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.inputbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.dir
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.kill
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.unlock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileget
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filegetobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.input
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.inputstring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.lineinput
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filelen
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.getattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.setattr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.seek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileput
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileputobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.print
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.write
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.writeline


 

Math Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Derive trigonometric functions. Atan, Cos, Sin, Tan

General calculations. Exp, Log, Sqrt

Generate random numbers. Randomize, Rnd

Get absolute value. Abs

Get the sign of an expression. Sign

Perform numeric conversions. Fix, Int

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Derived Math Functions
Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/math-summary.md
https://docs.microsoft.com/dotnet/api/system.math.atan
https://docs.microsoft.com/dotnet/api/system.math.cos
https://docs.microsoft.com/dotnet/api/system.math.sin
https://docs.microsoft.com/dotnet/api/system.math.tan
https://docs.microsoft.com/dotnet/api/system.math.exp
https://docs.microsoft.com/dotnet/api/system.math.log
https://docs.microsoft.com/dotnet/api/system.math.sqrt
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.randomize
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.rnd
https://docs.microsoft.com/dotnet/api/system.math.abs
https://docs.microsoft.com/dotnet/api/system.math.sign
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int


  

Derived Math Functions (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

FUNCTION DERIVED EQUIVALENTS

Secant (Sec(x)) 1 / Cos(x)

Cosecant (Csc(x)) 1 / Sin(x)

Cotangent (Ctan(x)) 1 / Tan(x)

Inverse sine (Asin(x)) Atan(x / Sqrt(-x * x + 1))

Inverse cosine (Acos(x)) Atan(-x / Sqrt(-x * x + 1)) + 2 * Atan(1)

Inverse secant (Asec(x)) 2 * Atan(1) – Atan(Sign(x) / Sqrt(x * x – 1))

Inverse cosecant (Acsc(x)) Atan(Sign(x) / Sqrt(x * x – 1))

Inverse cotangent (Acot(x)) 2 * Atan(1) - Atan(x)

Hyperbolic sine (Sinh(x)) (Exp(x) – Exp(-x)) / 2

Hyperbolic cosine (Cosh(x)) (Exp(x) + Exp(-x)) / 2

Hyperbolic tangent (Tanh(x)) (Exp(x) – Exp(-x)) / (Exp(x) + Exp(-x))

Hyperbolic secant (Sech(x)) 2 / (Exp(x) + Exp(-x))

Hyperbolic cosecant (Csch(x)) 2 / (Exp(x) – Exp(-x))

Hyperbolic cotangent (Coth(x)) (Exp(x) + Exp(-x)) / (Exp(x) – Exp(-x))

Inverse hyperbolic sine (Asinh(x)) Log(x + Sqrt(x * x + 1))

Inverse hyperbolic cosine (Acosh(x)) Log(x + Sqrt(x * x – 1))

Inverse hyperbolic tangent (Atanh(x)) Log((1 + x) / (1 – x)) / 2

Inverse hyperbolic secant (AsecH(x)) Log((Sqrt(-x * x + 1) + 1) / x)

Inverse hyperbolic cosecant (Acsch(x)) Log((Sign(x) * Sqrt(x * x + 1) + 1) / x)

Inverse hyperbolic cotangent (Acoth(x)) Log((x + 1) / (x – 1)) / 2

See Also

The following table shows non-intrinsic math functions that can be derived from the intrinsic math functions of the System.Math object. You can access
the intrinsic math functions by adding Imports System.Math  to your file or project.

Math Functions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/derived-math-functions.md
https://docs.microsoft.com/dotnet/api/system.math


  

My Reference (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION OBJECT

Accessing application information and services. The My.Application  object consists of the following classes:

ApplicationBase provides members that are available in all projects.

WindowsFormsApplicationBase provides members available in Windows Forms
applications.

ConsoleApplicationBase provides members available in console applications.

Accessing the host computer and its resources, services, and data. My.Computer  (Computer)

Accessing the forms in the current project. My.Forms Object

Accessing the application log. My.Application.Log  (Log)

Accessing the current web request. My.Request Object

Accessing resource elements. My.Resources Object

Accessing the current web response. My.Response Object

Accessing user and application level settings. My.Settings Object

Accessing the current user's security context. My.User  (User)

Accessing XML Web services referenced by the current project. My.WebServices Object

See Also

The My  feature makes programming faster and easier by giving you intuitive access to commonly used methods, properties, and events. This table lists
the objects contained in My , and the actions that can be performed with each.

Overview of the Visual Basic Application Model
Development with My

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/my-reference.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.consoleapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase.log
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user


 

Operators Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Arithmetic ^, –, *, /, \, Mod, +, =

Assignment =, ^=, *=, /=, \=, +=, -=, &=

Comparison =, <>, <, >, <=, >=, Like, Is

Concatenation &, +

Logical/bitwise operations Not, And, Or, Xor, AndAlso, OrElse

Miscellaneous operations AddressOf, Await, GetType

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/operators-summary.md


 

Registry Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Delete program settings. DeleteSetting

Read program settings. GetSetting, GetAllSettings

Save program settings. SaveSetting

See Also

Visual Studio language keywords and run-time library members are organized by purpose and use.

Using the My  feature provides you with greater productivity and performance in registry operations than these elements. For more information, see
RegistryProxy.

Keywords
Visual Basic Runtime Library Members
Reading from and Writing to the Registry

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/registry-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.deletesetting
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getsetting
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.getallsettings
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.savesetting
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/reading-from-and-writing-to-the-registry


   

String Manipulation Summary (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ACTION LANGUAGE ELEMENT

Compare two strings. StrComp

Convert strings. StrConv

Reverse a string. InStrRev, StrReverse

Convert to lowercase or uppercase. Format, LCase, UCase

Create a string of repeating characters. Space, StrDup

Find the length of a string. Len

Format a string. Format, FormatCurrency, FormatDateTime, FormatNumber, FormatPercent

Manipulate strings. InStr, Left, LTrim, Mid, Right, RTrim, Trim

Set string comparison rules. Option Compare

Work with ASCII and ANSI values. Asc, AscW, Chr, ChrW

Replace a specified substring. Replace

Return a filter-based string array. Filter

Return a specified number of substrings. Split, Join

See Also

Visual Basic language keywords and run-time library members are organized by purpose and use.

Keywords
Visual Basic Runtime Library Members

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/keywords/string-manipulation-summary.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instrrev
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strreverse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lcase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ucase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.space
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strdup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.len
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatcurrency
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatdatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatnumber
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatpercent
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.left
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ltrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.right
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rtrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.trim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.replace
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.filter
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.split
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.join


 

Attributes (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

ComClassAttribute Instructs the compiler to add metadata that allows a class to be exposed as a COM
object.

HideModuleNameAttribute Allows the module members to be accessed using only the qualification needed for
the module.

VBFixedArrayAttribute Indicates that an array in a structure or non-local variable should be treated as a
fixed-length array.

VBFixedStringAttribute Indicates that a string should be treated as if it were fixed length.

See Also

Visual Basic provides several attributes that allow objects interoperate with unmanaged code, and one attribute that enables module members to be
accessed without the module name. The following table lists the attributes used by Visual Basic.

Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/attributes.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comclassattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.hidemodulenameattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbfixedarrayattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbfixedstringattribute


       

Constants and Enumerations (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Constants
Conditional Compilation ConstantsConditional Compilation Constants

CONSTANT DESCRIPTION

CONFIG A string that corresponds to the current setting of the Active Solution
Configuration box in the Configuration Manager.

DEBUG A Boolean  value that can be set in the Project Properties dialog box. By default,
the Debug configuration for a project defines DEBUG . When DEBUG  is defined,
Debug class methods generate output to the Output window. When it is not
defined, Debug class methods are not compiled and no Debug output is generated.

TARGET A string representing the output type for the project or the setting of the
command-line /target option. The possible values of TARGET  are:

- "winexe" for a Windows application.
- "exe" for a console application.
- "library" for a class library.
- "module" for a module.
- The /target option may be set in the Visual Studio integrated development
environment. For more information, see /target (Visual Basic).

TRACE A Boolean  value that can be set in the Project Properties dialog box. By default,
all configurations for a project define TRACE . When TRACE  is defined, Trace class
methods generate output to the Output window. When it is not defined, Trace class
methods are not compiled and no Trace  output is generated.

VBC_VER A number representing the Visual Basic version, in major.minor format. The version
number for Visual Basic 2005 is 8.0.

Print and Display ConstantsPrint and Display Constants

CONSTANT DESCRIPTION

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for calling external procedures.

vbObjectError Error number. User-defined error numbers should be greater than this value. For
example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

vbFormFeed Not used in Microsoft Windows.

Visual Basic supplies a number of predefined constants and enumerations for developers. Constants store values that remain constant throughout the
execution of an application. Enumerations provide a convenient way to work with sets of related constants, and to associate constant values with names.

The following table lists the predefined constants available for conditional compilation.

When you call print and display functions, you can use the following constants in your code in place of the actual values.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/constants-and-enumerations.md
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/dotnet/api/system.diagnostics.debug
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace
https://docs.microsoft.com/dotnet/api/system.diagnostics.trace


vbVerticalTab Not useful in Microsoft Windows.

CONSTANT DESCRIPTION

Enumerations

ENUMERATION DESCRIPTION

AppWinStyle Indicates the window style to use for the invoked program when calling the Shell
function.

AudioPlayMode Indicates how to play sounds when calling audio methods.

BuiltInRole Indicates the type of role to check when calling the IsInRole method.

CallType Indicates the type of procedure being invoked when calling the CallByName
function.

CompareMethod Indicates how to compare strings when calling comparison functions.

DateFormat Indicates how to display dates when calling the FormatDateTime function.

DateInterval Indicates how to determine and format date intervals when calling date-related
functions.

DeleteDirectoryOption Specifies what should be done when a directory that is to be deleted contains files
or directories.

DueDate Indicates when payments are due when calling financial methods.

FieldType Indicates whether text fields are delimited or fixed-width.

FileAttribute Indicates the file attributes to use when calling file-access functions.

FirstDayOfWeek Indicates the first day of the week to use when calling date-related functions.

FirstWeekOfYear Indicates the first week of the year to use when calling date-related functions.

MsgBoxResult Indicates which button was pressed on a message box, returned by the MsgBox
function.

MsgBoxStyle Indicates which buttons to display when calling the MsgBox function.

OpenAccess Indicates how to open a file when calling file-access functions.

OpenMode Indicates how to open a file when calling file-access functions.

OpenShare Indicates how to open a file when calling file-access functions.

RecycleOption Specifies whether a file should be deleted permanently or placed in the Recycle Bin.

SearchOption Specifies whether to search all or only top-level directories.

TriState Indicates a Boolean  value or whether the default should be used when calling
number-formatting functions.

UICancelOption Specifies what should be done if the user clicks Cancel during an operation.

UIOption Specifies whether or not to show a progress dialog when copying, deleting, or
moving files or directories.

VariantType Indicates the type of a variant object, returned by the VarType function.

VbStrConv Indicates which type of conversion to perform when calling the StrConv function.

See Also

The following table lists and describes the enumerations provided by Visual Basic.

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.appwinstyle
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.shell
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.audioplaymode
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.builtinrole
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user.isinrole
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.calltype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.callbyname
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.comparemethod
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateformat
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatdatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateinterval
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.deletedirectoryoption
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.duedate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.fieldtype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileattribute
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.firstdayofweek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.firstweekofyear
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.msgboxresult
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.msgboxstyle
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.msgbox
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.openaccess
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.openmode
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.openshare
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.recycleoption
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.searchoption
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.tristate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.uicanceloption
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.uioption
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.varianttype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.vartype
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbstrconv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv


Visual Basic Language Reference
Visual Basic
Constants Overview
Enumerations Overview

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/constants-enums/constants-overview
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/constants-enums/enumerations-overview


                           

Data Type Summary (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

VISUAL BASIC TYPE
COMMON LANGUAGE RUNTIME TYPE
STRUCTURE NOMINAL STORAGE ALLOCATION VALUE RANGE

Boolean Boolean Depends on implementing platform True  or False

Byte Byte 1 byte 0 through 255 (unsigned)

Char (single character) Char 2 bytes 0 through 65535 (unsigned)

Date DateTime 8 bytes 0:00:00 (midnight) on January 1, 0001
through 11:59:59 PM on December
31, 9999

Decimal Decimal 16 bytes 0 through +/-
79,228,162,514,264,337,593,543,950,
335 (+/-7.9...E+28)  with no decimal
point; 0 through +/-
7.9228162514264337593543950335
with 28 places to the right of the
decimal;

smallest nonzero number is +/-
0.0000000000000000000000000001
(+/-1E-28) 

Double (double-precision floating-
point)

Double 8 bytes -1.79769313486231570E+308
through -4.94065645841246544E-
324  for negative values;

4.94065645841246544E-324 through
1.79769313486231570E+308  for
positive values

Integer Int32 4 bytes -2,147,483,648 through
2,147,483,647 (signed)

Long (long integer) Int64 8 bytes -9,223,372,036,854,775,808 through
9,223,372,036,854,775,807 (9.2...E+18
) (signed)

Object Object (class) 4 bytes on 32-bit platform

8 bytes on 64-bit platform

Any type can be stored in a variable of
type Object

SByte SByte 1 byte -128 through 127 (signed)

Short (short integer) Int16 2 bytes -32,768 through 32,767 (signed)

Single (single-precision floating-point) Single 4 bytes -3.4028235E+38 through -
1.401298E-45  for negative values;

1.401298E-45 through
3.4028235E+38  for positive values

String (variable-length) String (class) Depends on implementing platform 0 to approximately 2 billion Unicode
characters

UInteger UInt32 4 bytes 0 through 4,294,967,295 (unsigned)

ULong UInt64 8 bytes 0 through
18,446,744,073,709,551,615
(1.8...E+19 ) (unsigned)

The following table shows the Visual Basic data types, their supporting common language runtime types, their nominal storage allocation, and their
value ranges.

†

†

†

†

†

†

†

†

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/data-type-summary.md
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint64


User-Defined (structure) (inherits from ValueType) Depends on implementing platform Each member of the structure has a
range determined by its data type and
independent of the ranges of the other
members

UShort UInt16 2 bytes 0 through 65,535 (unsigned)

VISUAL BASIC TYPE
COMMON LANGUAGE RUNTIME TYPE
STRUCTURE NOMINAL STORAGE ALLOCATION VALUE RANGE

NOTENOTE

Memory Consumption

Composite Data TypesComposite Data Types

Object OverheadObject Overhead

See Also

 In scientific notation, "E" refers to a power of 10. So 3.56E+2 signifies 3.56 x 10  or 356, and 3.56E-2 signifies 3.56 / 10  or 0.0356.† 2 2

For strings containing text, use the StrConv function to convert from one text format to another.

In addition to specifying a data type in a declaration statement, you can force the data type of some programming elements by using a type character.
See Type Characters.

When you declare an elementary data type, it is not safe to assume that its memory consumption is the same as its nominal storage allocation. This is
due to the following considerations:

Storage Assignment. The common language runtime can assign storage based on the current characteristics of the platform on which your
application is executing. If memory is nearly full, it might pack your declared elements as closely together as possible. In other cases it might
align their memory addresses to natural hardware boundaries to optimize performance.

Platform Width. Storage assignment on a 64-bit platform is different from assignment on a 32-bit platform.

The same considerations apply to each member of a composite data type, such as a structure or an array. You cannot rely on simply adding together the
nominal storage allocations of the type's members. Furthermore, there are other considerations, such as the following:

Overhead. Some composite types have additional memory requirements. For example, an array uses extra memory for the array itself and also
for each dimension. On a 32-bit platform, this overhead is currently 12 bytes plus 8 bytes for each dimension. On a 64-bit platform this
requirement is doubled.

Storage Layout. You cannot safely assume that the order of storage in memory is the same as your order of declaration. You cannot even make
assumptions about byte alignment, such as a 2-byte or 4-byte boundary. If you are defining a class or structure and you need to control the
storage layout of its members, you can apply the StructLayoutAttribute attribute to the class or structure.

An Object  referring to any elementary or composite data type uses 4 bytes in addition to the data contained in the data type.

StrConv
StructLayoutAttribute
Type Conversion Functions
Conversion Summary
Type Characters
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://msdn.microsoft.com/library/system.runtime.interopservices.structlayoutattribute(v=vs.110).aspx
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv
https://msdn.microsoft.com/library/system.runtime.interopservices.structlayoutattribute(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


                 

Boolean Data Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Type Conversions

Programming Tips

Example

Dim runningVB As Boolean  
' Check to see if program is running on Visual Basic engine.  
If scriptEngine = "VB" Then  
    runningVB = True  
End If  

See Also

Holds values that can be only True  or False . The keywords True  and False  correspond to the two states of Boolean  variables.

Use the Boolean Data Type (Visual Basic) to contain two-state values such as true/false, yes/no, or on/off.

The default value of Boolean  is False .

Boolean  values are not stored as numbers, and the stored values are not intended to be equivalent to numbers. You should never write code that relies
on equivalent numeric values for True  and False . Whenever possible, you should restrict usage of Boolean  variables to the logical values for which
they are designed.

When Visual Basic converts numeric data type values to Boolean , 0 becomes False  and all other values become True . When Visual Basic converts 
Boolean  values to numeric types, False  becomes 0 and True  becomes -1.

When you convert between Boolean  values and numeric data types, keep in mind that the .NET Framework conversion methods do not always
produce the same results as the Visual Basic conversion keywords. This is because the Visual Basic conversion retains behavior compatible with
previous versions. For more information, see "Boolean Type Does Not Convert to Numeric Type Accurately" in Troubleshooting Data Types.

Negative Numbers. Boolean  is not a numeric type and cannot represent a negative value. In any case, you should not use Boolean  to hold
numeric values.

Type Characters. Boolean  has no literal type character or identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.Boolean structure.

In the following example, runningVB  is a Boolean  variable, which stores a simple yes/no setting.

System.Boolean
Data Types
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types
Troubleshooting Data Types
CType Function

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/boolean-data-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/dotnet/api/system.boolean
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types


        

Byte data type (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

Literal assignments

Dim byteValue1 As Byte = 201
Console.WriteLine(byteValue1)

Dim byteValue2 As Byte = &H00C9
Console.WriteLine(byteValue2)

Dim byteValue3 As Byte = &B1100_1001
Console.WriteLine(byteValue3)
' The example displays the following output:
'          201
'          201
'          201

NOTENOTE

Dim byteValue3 As Byte = &B1100_1001
Console.WriteLine(byteValue3)
' The example displays the following output:
'          201

Dim number As Byte = &H_6A

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Programming tips

Holds unsigned 8-bit (1-byte) integers that range in value from 0 through 255.

Use the Byte  data type to contain binary data.

The default value of Byte  is 0.

You can declare and initialize a Byte  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017) a
binary literal. If the integral literal is outside the range of a Byte  (that is, if it is less than Byte.MinValue or greater than Byte.MaxValue), a compilation
error occurs.

In the following example, integers equal to 201 that are represented as decimal, hexadecimal, and binary literals are implicitly converted from Integer to
byte  values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Negative Numbers. Because Byte  is an unsigned type, it cannot represent a negative number. If you use the unary minus ( - ) operator on an
expression that evaluates to type Byte , Visual Basic converts the expression to Short  first.

Format Conversions. When Visual Basic reads or writes files, or when it calls DLLs, methods, and properties, it can automatically convert
between data formats. Binary data stored in Byte  variables and arrays is preserved during such format conversions. You should not use a 
String  variable for binary data, because its contents can be corrupted during conversion between ANSI and Unicode formats.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/byte-data-type.md
https://docs.microsoft.com/dotnet/api/system.byte.minvalue
https://docs.microsoft.com/dotnet/api/system.byte.maxvalue


Example

' The valid range of a Byte variable is 0 through 255.
Dim b As Byte
b = 30
' The following statement causes an error because the value is too large.
'b = 256
' The following statement causes an error because the value is negative.
'b = -5
' The following statement sets b to 6.
b = CByte(5.7)

' The following statements apply bit-shift operators to b.
' The initial value of b is 6.
Console.WriteLine(b)
' Bit shift to the right divides the number in half. In this 
' example, binary 110 becomes 11.
b >>= 1
' The following statement displays 3.
Console.WriteLine(b)
' Now shift back to the original position, and then one more bit
' to the left. Each shift to the left doubles the value. In this
' example, binary 11 becomes 1100.
b <<= 2
' The following statement displays 12.
Console.WriteLine(b)

See Also

Widening. The Byte  data type widens to Short , UShort , Integer , UInteger , Long , ULong , Decimal , Single , or Double . This means you can
convert Byte  to any of these types without encountering a System.OverflowException error.

Type Characters. Byte  has no literal type character or identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.Byte structure.

In the following example, b  is a Byte  variable. The statements demonstrate the range of the variable and the application of bit-shift operators to it.

System.Byte
Data Types
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/dotnet/api/system.byte
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


      

Char Data Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Unicode Characters

Type Conversions

Option Strict On  
Dim charVar As Char  
' The following statement attempts to convert a String literal to Char.  
' Because Option Strict is On, it generates a compiler error.  
charVar = "Z"  
' The following statement succeeds because it specifies a Char literal.  
charVar = "Z"C  

Programming Tips

See Also

Holds unsigned 16-bit (2-byte) code points ranging in value from 0 through 65535. Each code point, or character code, represents a single Unicode
character.

Use the Char  data type when you need to hold only a single character and do not need the overhead of String . In some cases you can use Char() , an
array of Char  elements, to hold multiple characters.

The default value of Char  is the character with a code point of 0.

The first 128 code points (0–127) of Unicode correspond to the letters and symbols on a standard U.S. keyboard. These first 128 code points are the
same as those the ASCII character set defines. The second 128 code points (128–255) represent special characters, such as Latin-based alphabet letters,
accents, currency symbols, and fractions. Unicode uses the remaining code points (256-65535) for a wide variety of symbols, including worldwide
textual characters, diacritics, and mathematical and technical symbols.

You can use methods like IsDigit and IsPunctuation on a Char  variable to determine its Unicode classification.

Visual Basic does not convert directly between Char  and the numeric types. You can use the Asc or AscW function to convert a Char  value to an 
Integer  that represents its code point. You can use the Chr or ChrW function to convert an Integer  value to a Char  that has that code point.

If the type checking switch (Option Strict Statement) is on, you must append the literal type character to a single-character string literal to identify it as
the Char  data type. The following example illustrates this.

Negative Numbers. Char  is an unsigned type and cannot represent a negative value. In any case, you should not use Char  to hold numeric
values.

Interop Considerations. If you interface with components not written for the .NET Framework, for example Automation or COM objects,
remember that character types have a different data width (8 bits) in other environments. If you pass an 8-bit argument to such a component,
declare it as Byte  instead of Char  in your new Visual Basic code.

Widening. The Char  data type widens to String . This means you can convert Char  to String  and will not encounter a
System.OverflowException error.

Type Characters. Appending the literal type character C  to a single-character string literal forces it to the Char  data type. Char  has no
identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.Char structure.

System.Char
Asc
AscW
Chr
ChrW
Data Types
String Data Type
Type Conversion Functions
Conversion Summary
How to: Call a Windows Function that Takes Unsigned Types
Efficient Use of Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/char-data-type.md
https://docs.microsoft.com/dotnet/api/system.char.isdigit
https://docs.microsoft.com/dotnet/api/system.char.ispunctuation
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/system.char
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


       

Date Data Type (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

Format Requirements

Workarounds

MsgBox("The formatted date is " & Format(#5/31/1993#, "dddd, d MMM yyyy"))  

Dim dateInMay As New System.DateTime(1993, 5, 31, 12, 14, 0)  

Hour Format

Date and Time Defaults

Type Conversions

Programming Tips

Example

Holds IEEE 64-bit (8-byte) values that represent dates ranging from January 1 of the year 0001 through December 31 of the year 9999, and times from
12:00:00 AM (midnight) through 11:59:59.9999999 PM. Each increment represents 100 nanoseconds of elapsed time since the beginning of January 1
of the year 1 in the Gregorian calendar. The maximum value represents 100 nanoseconds before the beginning of January 1 of the year 10000.

Use the Date  data type to contain date values, time values, or date and time values.

The default value of Date  is 0:00:00 (midnight) on January 1, 0001.

You can get the current date and time from the DateAndTime class.

You must enclose a Date  literal within number signs ( # # ). You must specify the date value in the format M/d/yyyy, for example #5/31/1993# , or yyyy-
MM-dd, for example #1993-5-31# . You can use slashes when specifying the year first. This requirement is independent of your locale and your
computer's date and time format settings.

The reason for this restriction is that the meaning of your code should never change depending on the locale in which your application is running.
Suppose you hard-code a Date  literal of #3/4/1998#  and intend it to mean March 4, 1998. In a locale that uses mm/dd/yyyy, 3/4/1998 compiles as you
intend. But suppose you deploy your application in many countries. In a locale that uses dd/mm/yyyy, your hard-coded literal would compile to April 3,
1998. In a locale that uses yyyy/mm/dd, the literal would be invalid (April 1998, 0003) and cause a compiler error.

To convert a Date  literal to the format of your locale, or to a custom format, supply the literal to the Format function, specifying either a predefined or
user-defined date format. The following example demonstrates this.

Alternatively, you can use one of the overloaded constructors of the DateTime structure to assemble a date and time value. The following example
creates a value to represent May 31, 1993 at 12:14 in the afternoon.

You can specify the time value in either 12-hour or 24-hour format, for example #1:15:30 PM#  or #13:15:30# . However, if you do not specify either the
minutes or the seconds, you must specify AM or PM.

If you do not include a date in a date/time literal, Visual Basic sets the date part of the value to January 1, 0001. If you do not include a time in a
date/time literal, Visual Basic sets the time part of the value to the start of the day, that is, midnight (0:00:00).

If you convert a Date  value to the String  type, Visual Basic renders the date according to the short date format specified by the run-time locale, and it
renders the time according to the time format (either 12-hour or 24-hour) specified by the run-time locale.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
keep in mind that date/time types in other environments are not compatible with the Visual Basic Date  type. If you are passing a date/time
argument to such a component, declare it as Double  instead of Date  in your new Visual Basic code, and use the conversion methods
DateTime.FromOADate and DateTime.ToOADate.

Type Characters. Date  has no literal type character or identifier type character. However, the compiler treats literals enclosed within number
signs ( # # ) as Date .

Framework Type. The corresponding type in the .NET Framework is the System.DateTime structure.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/date-data-type.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/dotnet/api/system.datetime.fromoadate
https://docs.microsoft.com/dotnet/api/system.datetime.tooadate
https://docs.microsoft.com/dotnet/api/system.datetime


Dim someDateAndTime As Date = #8/13/2002 12:14 PM#  

See Also

A variable or constant of the Date  data type holds both the date and the time. The following example illustrates this.

System.DateTime
Data Types
Standard Date and Time Format Strings
Custom Date and Time Format Strings
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.datetime
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


            

Decimal Data Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Programming Tips

Range

Dim bigDec1 As Decimal = 9223372036854775807   ' No overflow.  
Dim bigDec2 As Decimal = 9223372036854775808   ' Overflow.  
Dim bigDec3 As Decimal = 9223372036854775808D  ' No overflow.  

See Also

Holds signed 128-bit (16-byte) values representing 96-bit (12-byte) integer numbers scaled by a variable power of 10. The scaling factor specifies the
number of digits to the right of the decimal point; it ranges from 0 through 28. With a scale of 0 (no decimal places), the largest possible value is +/-
79,228,162,514,264,337,593,543,950,335 (+/-7.9228162514264337593543950335E+28). With 28 decimal places, the largest value is +/-
7.9228162514264337593543950335, and the smallest nonzero value is +/-0.0000000000000000000000000001 (+/-1E-28).

The Decimal  data type provides the greatest number of significant digits for a number. It supports up to 29 significant digits and can represent values in
excess of 7.9228 x 10^28. It is particularly suitable for calculations, such as financial, that require a large number of digits but cannot tolerate rounding
errors.

The default value of Decimal  is 0.

Dim d1, d2, d3, d4 As Decimal  
d1 = 2.375D  
d2 = 1.625D  
d3 = d1 + d2  
d4 = 4.000D  
MsgBox("d1 = " & CStr(d1) & ", d2 = " & CStr(d2) &  
      ", d3 = " & CStr(d3) & ", d4 = " & CStr(d4))  

Precision. Decimal  is not a floating-point data type. The Decimal  structure holds a binary integer value, together with a sign bit and an integer
scaling factor that specifies what portion of the value is a decimal fraction. Because of this, Decimal  numbers have a more precise representation
in memory than floating-point types ( Single  and Double ).

Performance. The Decimal  data type is the slowest of all the numeric types. You should weigh the importance of precision against performance
before choosing a data type.

Widening. The Decimal  data type widens to Single  or Double . This means you can convert Decimal  to either of these types without
encountering a System.OverflowException error.

Trailing Zeros. Visual Basic does not store trailing zeros in a Decimal  literal. However, a Decimal  variable preserves any trailing zeros acquired
computationally. The following example illustrates this.

The output of MsgBox  in the preceding example is as follows:

d1 = 2.375, d2 = 1.625, d3 = 4.000, d4 = 4

Type Characters. Appending the literal type character D  to a literal forces it to the Decimal  data type. Appending the identifier type character 
@  to any identifier forces it to Decimal .

Framework Type. The corresponding type in the .NET Framework is the System.Decimal structure.

You might need to use the D  type character to assign a large value to a Decimal  variable or constant. This requirement is because the compiler
interprets a literal as Long  unless a literal type character follows the literal, as the following example shows.

The declaration for bigDec1  doesn't produce an overflow because the value that's assigned to it falls within the range for Long . The Long  value can be
assigned to the Decimal  variable.

The declaration for bigDec2  generates an overflow error because the value that's assigned to it is too large for Long . Because the numeric literal can't
first be interpreted as a Long , it can't be assigned to the Decimal  variable.

For bigDec3 , the literal type character D  solves the problem by forcing the compiler to interpret the literal as a Decimal  instead of as a Long .

System.Decimal
Decimal.Decimal
Math.Round

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/decimal-data-type.md
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.decimal
https://docs.microsoft.com/dotnet/api/system.decimal.-ctor
https://docs.microsoft.com/dotnet/api/system.math.round


Data Types
Single Data Type
Double Data Type
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


                

Double Data Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Programming Tips

See Also

Holds signed IEEE 64-bit (8-byte) double-precision floating-point numbers that range in value from -1.79769313486231570E+308 through -
4.94065645841246544E-324 for negative values and from 4.94065645841246544E-324 through 1.79769313486231570E+308 for positive values.
Double-precision numbers store an approximation of a real number.

The Double  data type provides the largest and smallest possible magnitudes for a number.

The default value of Double  is 0.

' Visual Basic expands the 4 in the statement Dim dub As Double = 4R to 4.0:  
Dim dub As Double = 4.0R  

Dim num# = 3  

Precision. When you work with floating-point numbers, remember that they do not always have a precise representation in memory. This could
lead to unexpected results from certain operations, such as value comparison and the Mod  operator. For more information, see Troubleshooting
Data Types.

Trailing Zeros. The floating-point data types do not have any internal representation of trailing zero characters. For example, they do not
distinguish between 4.2000 and 4.2. Consequently, trailing zero characters do not appear when you display or print floating-point values.

Type Characters. Appending the literal type character R  to a literal forces it to the Double  data type. For example, if an integer value is
followed by R , the value is changed to a Double .

Appending the identifier type character #  to any identifier forces it to Double . In the following example, the variable num  is typed as a Double :

Framework Type. The corresponding type in the .NET Framework is the System.Double structure.

System.Double
Data Types
Decimal Data Type
Single Data Type
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types
Troubleshooting Data Types
Type Characters

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/double-data-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


                

Integer data type (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

Literal assignments

Dim intValue1 As Integer = 90946
Console.WriteLine(intValue1)
Dim intValue2 As Integer = &H16342
Console.WriteLine(intValue2)

Dim intValue3 As Integer = &B0001_0110_0011_0100_0010
Console.WriteLine(intValue3)
' The example displays the following output:
'          90946
'          90946
'          90946

NOTENOTE

Dim intValue1 As Integer = 90_946
Console.WriteLine(intValue1)

Dim intValue2 As Integer = &H0001_6342
Console.WriteLine(intValue2)

Dim intValue3 As Integer = &B0001_0110_0011_0100_0010
Console.WriteLine(intValue3)
' The example displays the following output:
'          90946
'          90946
'          90946

Dim number As Integer = &H_C305_F860

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Dim number = &H_035826I

Holds signed 32-bit (4-byte) integers that range in value from -2,147,483,648 through 2,147,483,647.

The Integer  data type provides optimal performance on a 32-bit processor. The other integral types are slower to load and store from and to memory.

The default value of Integer  is 0.

You can declare and initialize an Integer  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic
2017) a binary literal. If the integer literal is outside the range of Integer  (that is, if it is less than Int32.MinValue or greater than Int32.MaxValue, a
compilation error occurs.

In the following example, integers equal to 16,342 that are represented as decimal, hexadecimal, and binary literals are assigned to Integer  values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the I  type character to denote the Integer  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/integer-data-type.md
https://docs.microsoft.com/dotnet/api/system.int32.minvalue
https://docs.microsoft.com/dotnet/api/system.int32.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Programming tips

Range

' The valid range of an Integer variable is -2147483648 through +2147483647.  
Dim k As Integer  
' The following statement causes an error because the value is too large.  
k = 2147483648  
' The following statement sets k to 6.  
k = 5.9  
' The following statement sets k to 4  
k = 4.5  
' The following statement sets k to 6  
' Note, Visual Basic uses banker’s rounding (toward nearest even number)  
k = 5.5  

See also

Interop Considerations. If you are interfacing with components not written for the .NET Framework, such as Automation or COM objects,
remember that Integer  has a different data width (16 bits) in other environments. If you are passing a 16-bit argument to such a component,
declare it as Short  instead of Integer  in your new Visual Basic code.

Widening. The Integer  data type widens to Long , Decimal , Single , or Double . This means you can convert Integer  to any one of these
types without encountering a System.OverflowException error.

Type Characters. Appending the literal type character I  to a literal forces it to the Integer  data type. Appending the identifier type character 
%  to any identifier forces it to Integer .

Framework Type. The corresponding type in the .NET Framework is the System.Int32 structure.

If you try to set a variable of an integral type to a number outside the range for that type, an error occurs. If you try to set it to a fraction, the number is
rounded up or down to the nearest integer value. If the number is equally close to two integer values, the value is rounded to the nearest even integer.
This behavior minimizes rounding errors that result from consistently rounding a midpoint value in a single direction. The following code shows
examples of rounding.

System.Int32
Data Types
Long Data Type
Short Data Type
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/dotnet/api/system.int32
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


              

Long data type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Literal assignments

Dim longValue1 As Long = 4294967296
Console.WriteLine(longValue1)

Dim longValue2 As Long = &H100000000
Console.WriteLine(longValue2)

Dim longValue3 As Long = &B1_0000_0000_0000_0000_0000_0000_0000_0000
Console.WriteLine(longValue3)
' The example displays the following output:
'          4294967296
'          4294967296
'          4294967296

NOTENOTE

Dim longValue1 As Long = 4_294_967_296
Console.WriteLine(longValue1)

Dim longValue2 As Long = &H1_0000_0000
Console.WriteLine(longValue2)

Dim longValue3 As Long = &B1_0000_0000_0000_0000_0000_0000_0000_0000
Console.WriteLine(longValue3)
' The example displays the following output:
'          4294967296
'          4294967296
'          4294967296

Dim number As Long = &H_0FAC_0326_1489_D68C

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Holds signed 64-bit (8-byte) integers ranging in value from -9,223,372,036,854,775,808 through 9,223,372,036,854,775,807 (9.2...E+18).

Use the Long  data type to contain integer numbers that are too large to fit in the Integer  data type.

The default value of Long  is 0.

You can declare and initialize a Long  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017) a
binary literal. If the integer literal is outside the range of Long  (that is, if it is less than Int64.MinValue or greater than Int64.MaxValue, a compilation
error occurs.

In the following example, integers equal to 4,294,967,296 that are represented as decimal, hexadecimal, and binary literals are assigned to Long  values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the L  type character to denote the Long  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/long-data-type.md
https://docs.microsoft.com/dotnet/api/system.int64.minvalue
https://docs.microsoft.com/dotnet/api/system.int64.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Dim number = &H_0FAC_0326_1489_D68CL

Programming tips

See also

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
remember that Long  has a different data width (32 bits) in other environments. If you are passing a 32-bit argument to such a component,
declare it as Integer  instead of Long  in your new Visual Basic code.

Widening. The Long  data type widens to Decimal , Single , or Double . This means you can convert Long  to any one of these types without
encountering a System.OverflowException error.

Type Characters. Appending the literal type character L  to a literal forces it to the Long  data type. Appending the identifier type character &

to any identifier forces it to Long .

Framework Type. The corresponding type in the .NET Framework is the System.Int64 structure.

Int64 Data Types
Integer Data Type
Short Data Type
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/dotnet/api/system.int64
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


          

Object Data Type
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Data Types

Dim myObject As Object  
' Suppose myObject has now had something assigned to it.  
Dim datTyp As Integer  
datTyp = Type.GetTypeCode(myObject.GetType())  

Storage

Programming Tips

Example

Dim objDb As Object  
Dim myCollection As New Collection()  
' Suppose myCollection has now been populated.  
objDb = myCollection.Item(1)  

See Also

Holds addresses that refer to objects. You can assign any reference type (string, array, class, or interface) to an Object  variable. An Object  variable can
also refer to data of any value type (numeric, Boolean , Char , Date , structure, or enumeration).

The Object  data type can point to data of any data type, including any object instance your application recognizes. Use Object  when you do not know
at compile time what data type the variable might point to.

The default value of Object  is Nothing  (a null reference).

You can assign a variable, constant, or expression of any data type to an Object  variable. To determine the data type an Object  variable currently refers
to, you can use the GetTypeCode method of the System.Type class. The following example illustrates this.

The Object  data type is a reference type. However, Visual Basic treats an Object  variable as a value type when it refers to data of a value type.

Whatever data type it refers to, an Object  variable does not contain the data value itself, but rather a pointer to the value. It always uses four bytes in
computer memory, but this does not include the storage for the data representing the value of the variable. Because of the code that uses the pointer to
locate the data, Object  variables holding value types are slightly slower to access than explicitly typed variables.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
keep in mind that pointer types in other environments are not compatible with the Visual Basic Object  type.

Performance. A variable you declare with the Object  type is flexible enough to contain a reference to any object. However, when you invoke a
method or property on such a variable, you always incur late binding (at run time). To force early binding (at compile time) and better
performance, declare the variable with a specific class name, or cast it to the specific data type.

When you declare an object variable, try to use a specific class type, for example OperatingSystem, instead of the generalized Object  type. You
should also use the most specific class available, such as TextBox instead of Control, so that you can access its properties and methods. You can
usually use the Classes list in the Object Browser to find available class names.

Widening. All data types and all reference types widen to the Object  data type. This means you can convert any type to Object  without
encountering a System.OverflowException error.

However, if you convert between value types and Object , Visual Basic performs operations called boxing and unboxing, which make execution
slower.

Type Characters. Object  has no literal type character or identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.Object class.

The following example illustrates an Object  variable pointing to an object instance.

Object
Data Types
Type Conversion Functions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/object-data-type.md
https://docs.microsoft.com/dotnet/api/system.type.gettypecode
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.operatingsystem
https://docs.microsoft.com/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object


Conversion Summary
Efficient Use of Data Types
How to: Determine Whether Two Objects Are Related
How to: Determine Whether Two Objects Are Identical

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-determine-whether-two-objects-are-related
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-determine-whether-two-objects-are-identical


             

SByte data type (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

Literal assignments

Dim sbyteValue1 As SByte = -102
Console.WriteLine(sbyteValue1)

Dim sbyteValue4 As SByte = &H9A
Console.WriteLine(sbyteValue4)

Dim sbyteValue5 As SByte = &B1001_1010
Console.WriteLine(sbyteValue5)
' The example displays the following output:
'          -102
'          -102
'          -102

NOTENOTE

Dim sbyteValue3 As SByte = &B1001_1010
Console.WriteLine(sbyteValue3)
' The example displays the following output:
'          -102

Dim number As SByte = &H_F9

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Holds signed 8-bit (1-byte) integers that range in value from -128 through 127.

Use the SByte  data type to contain integer values that do not require the full data width of Integer  or even the half data width of Short . In some
cases, the common language runtime might be able to pack your SByte  variables closely together and save memory consumption.

The default value of SByte  is 0.

You can declare and initialize an SByte  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017)
a binary literal.

In the following example, integers equal to -102 that are represented as decimal, hexadecimal, and binary literals are assigned to SByte  values. This
example requires that you compile with the /removeintchecks  compiler switch.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

If the integer literal is outside the range of SByte  (that is, if it is less than SByte.MinValue or greater than SByte.MaxValue, a compilation error occurs.
When an integer literal has no suffix, an Integer is inferred. If the integer literal is outside the range of the Integer  type, a Long is inferred. This means
that, in the previous examples, the numeric literals 0x9A  and 0b10011010  are interpreted as 32-bit signed integers with a value of 156, which exceeds
SByte.MaxValue. To successfully compile code like this that assigns a non-decimal integer to an SByte , you can do either of the following:

Disable integer bounds checks by compiling with the /removeintchecks  compiler switch.

Use a type character to explicitly define the literal value that you want to assign to the SByte . The following example assigns a negative literal 
Short  value to an SByte . Note that, for negative numbers, the high-order bit of the high-order word of the numeric literal must be set. In the

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/sbyte-data-type.md
https://docs.microsoft.com/dotnet/api/system.sbyte.minvalue
https://docs.microsoft.com/dotnet/api/system.sbyte.maxvalue
https://docs.microsoft.com/dotnet/api/system.sbyte.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Programming tips

See also

Dim sByteValue1 As SByte = &HFF_9As
Dim sByteValue2 As SByte = &B1111_1111_1001_1010s
Console.WriteLine(sByteValue1)
Console.WriteLine(sByteValue2)

case of our example, this is bit 15 of the literal Short  value.

CLS Compliance. The SByte  data type is not part of the Common Language Specification (CLS), so CLS-compliant code cannot consume a
component that uses it.

Widening. The SByte  data type widens to Short , Integer , Long , Decimal , Single , and Double . This means you can convert SByte  to any of
these types without encountering a System.OverflowException error.

Type Characters. SByte  has no literal type character or identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.SByte structure.

System.SByte
Data Types
Type Conversion Functions
Conversion Summary
Short Data Type
Integer Data Type
Long Data Type
Efficient Use of Data Types

http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/dotnet/api/system.sbyte
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


            

Short data type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Literal assignments

Dim shortValue1 As Short = 1034
Console.WriteLine(shortValue1)

Dim shortValue2 As Short = &H040A
Console.WriteLine(shortValue2)

Dim shortValue3 As Short = &B0100_00001010
Console.WriteLine(shortValue3)
' The example displays the following output:
'          1034
'          1034
'          1034

NOTENOTE

Dim shortValue1 As Short = 1_034
Console.WriteLine(shortValue1)

Dim shortValue3 As Short = &B00000100_00001010
Console.WriteLine(shortValue3)
' The example displays the following output:
'          1034
'          1034

Dim number As Short = &H_3264

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Dim number = &H_3264S

Holds signed 16-bit (2-byte) integers that range in value from -32,768 through 32,767.

Use the Short  data type to contain integer values that do not require the full data width of Integer . In some cases, the common language runtime can
pack your Short  variables closely together and save memory consumption.

The default value of Short  is 0.

You can declare and initialize a Short  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017)
a binary literal. If the integer literal is outside the range of Short  (that is, if it is less than Int16.MinValue or greater than Int16.MaxValue, a compilation
error occurs.

In the following example, integers equal to 1,034 that are represented as decimal, hexadecimal, and binary literals are implicitly converted from Integer
to Short  values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the S  type character to denote the Short  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/short-data-type.md
https://docs.microsoft.com/dotnet/api/system.int16.minvalue
https://docs.microsoft.com/dotnet/api/system.int16.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Programming tips

See also

Widening. The Short  data type widens to Integer , Long , Decimal , Single , or Double . This means you can convert Short  to any one of
these types without encountering a System.OverflowException error.

Type Characters. Appending the literal type character S  to a literal forces it to the Short  data type. Short  has no identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.Int16 structure.

System.Int16
Data Types
Type Conversion Functions
Conversion Summary
Integer Data Type
Long Data Type
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/dotnet/api/system.int16
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


             

Single Data Type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Programming Tips

See Also

Holds signed IEEE 32-bit (4-byte) single-precision floating-point numbers ranging in value from -3.4028235E+38 through -1.401298E-45 for negative
values and from 1.401298E-45 through 3.4028235E+38 for positive values. Single-precision numbers store an approximation of a real number.

Use the Single  data type to contain floating-point values that do not require the full data width of Double . In some cases the common language
runtime might be able to pack your Single  variables closely together and save memory consumption.

The default value of Single  is 0.

Precision. When you work with floating-point numbers, keep in mind that they do not always have a precise representation in memory. This
could lead to unexpected results from certain operations, such as value comparison and the Mod  operator. For more information, see
Troubleshooting Data Types.

Widening. The Single  data type widens to Double . This means you can convert Single  to Double  without encountering a
System.OverflowException error.

Trailing Zeros. The floating-point data types do not have any internal representation of trailing 0 characters. For example, they do not
distinguish between 4.2000 and 4.2. Consequently, trailing 0 characters do not appear when you display or print floating-point values.

Type Characters. Appending the literal type character F  to a literal forces it to the Single  data type. Appending the identifier type character !

to any identifier forces it to Single .

Framework Type. The corresponding type in the .NET Framework is the System.Single structure.

System.Single
Data Types
Decimal Data Type
Double Data Type
Type Conversion Functions
Conversion Summary
Efficient Use of Data Types
Troubleshooting Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/single-data-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/dotnet/api/system.single
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types


         

String Data Type (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

Unicode Characters

Format Requirements

Dim j As String = "Joe said ""Hello"" to me."  
Dim h As String = "Hello"  
' The following messages all display the same thing:  
' "Joe said "Hello" to me."  
MsgBox(j)  
MsgBox("Joe said " & """" & h & """" & " to me.")  
MsgBox("Joe said """ & h & """ to me.")  

String Manipulations

Dim S As String = "Database"  
' The following statement sets S to a new string containing "Data".  
S = Microsoft.VisualBasic.Left(S, 4)  

Programming Tips

See Also

Holds sequences of unsigned 16-bit (2-byte) code points that range in value from 0 through 65535. Each code point, or character code, represents a
single Unicode character. A string can contain from 0 to approximately two billion (2 ^ 31) Unicode characters.

Use the String  data type to hold multiple characters without the array management overhead of Char() , an array of Char  elements.

The default value of String  is Nothing  (a null reference). Note that this is not the same as the empty string (value "" ).

The first 128 code points (0–127) of Unicode correspond to the letters and symbols on a standard U.S. keyboard. These first 128 code points are the
same as those the ASCII character set defines. The second 128 code points (128–255) represent special characters, such as Latin-based alphabet letters,
accents, currency symbols, and fractions. Unicode uses the remaining code points (256-65535) for a wide variety of symbols. This includes worldwide
textual characters, diacritics, and mathematical and technical symbols.

You can use methods such as IsDigit and IsPunctuation on an individual character in a String  variable to determine its Unicode classification.

You must enclose a String  literal within quotation marks ( " " ). If you must include a quotation mark as one of the characters in the string, you use
two contiguous quotation marks ( "" ). The following example illustrates this.

Note that the contiguous quotation marks that represent a quotation mark in the string are independent of the quotation marks that begin and end the 
String  literal.

Once you assign a string to a String  variable, that string is immutable, which means you cannot change its length or contents. When you alter a string
in any way, Visual Basic creates a new string and abandons the previous one. The String  variable then points to the new string.

You can manipulate the contents of a String  variable by using a variety of string functions. The following example illustrates the Left function

A string created by another component might be padded with leading or trailing spaces. If you receive such a string, you can use the Trim, LTrim, and
RTrim functions to remove these spaces.

For more information about string manipulations, see Strings.

Negative Numbers. Remember that the characters held by String  are unsigned and cannot represent negative values. In any case, you should
not use String  to hold numeric values.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
remember that string characters have a different data width (8 bits) in other environments. If you are passing a string argument of 8-bit
characters to such a component, declare it as Byte() , an array of Byte  elements, instead of String  in your new Visual Basic code.

Type Characters. Appending the identifier type character $  to any identifier forces it to the String  data type. String  has no literal type
character. However, the compiler treats literals enclosed in quotation marks ( " " ) as String .

Framework Type. The corresponding type in the .NET Framework is the System.String class.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/string-data-type.md
https://docs.microsoft.com/dotnet/api/system.char.isdigit
https://docs.microsoft.com/dotnet/api/system.char.ispunctuation
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.left
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.trim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ltrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rtrim
https://docs.microsoft.com/dotnet/api/system.string


System.String
Data Types
Char Data Type
Type Conversion Functions
Conversion Summary
How to: Call a Windows Function that Takes Unsigned Types
Efficient Use of Data Types

https://docs.microsoft.com/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


              

UInteger data type
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Literal assignments

Dim uintValue1 As UInteger = 3000000000ui
Console.WriteLine(uintValue1)

Dim uintValue2 As UInteger = &HB2D05E00ui
Console.WriteLine(uintValue2)

Dim uintValue3 As UInteger = &B1011_0010_1101_0000_0101_1110_0000_0000ui
Console.WriteLine(uintValue3)
' The example displays the following output:
'          3000000000
'          3000000000
'          3000000000

NOTENOTE

Dim uintValue1 As UInteger = 3_000_000_000ui
Console.WriteLine(uintValue1)

Dim uintValue2 As UInteger = &HB2D0_5E00ui
Console.WriteLine(uintValue2)

Dim uintValue3 As UInteger = &B1011_0010_1101_0000_0101_1110_0000_0000ui
Console.WriteLine(uintValue3)
' The example displays the following output:
'          3000000000
'          3000000000
'          3000000000

Dim number As UInteger = &H_0F8C_0326

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Holds unsigned 32-bit (4-byte) integers ranging in value from 0 through 4,294,967,295.

The UInteger  data type provides the largest unsigned value in the most efficient data width.

The default value of UInteger  is 0.

You can declare and initialize a UInteger  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic
2017) a binary literal. If the integer literal is outside the range of UInteger  (that is, if it is less than UInt32.MinValue or greater than UInt32.MaxValue, a
compilation error occurs.

In the following example, integers equal to 3,000,000,000 that are represented as decimal, hexadecimal, and binary literals are assigned to UInteger

values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the UI  or ui  type character to denote the UInteger  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/uinteger-data-type.md
https://docs.microsoft.com/dotnet/api/system.uint32.minvalue
https://docs.microsoft.com/dotnet/api/system.uint32.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Dim number = &H_0FAC_14D7ui

Programming tips

See Also

The UInteger  and Integer  data types provide optimal performance on a 32-bit processor, because the smaller integer types ( UShort , Short , Byte ,
and SByte ), even though they use fewer bits, take more time to load, store, and fetch.

Negative Numbers. Because UInteger  is an unsigned type, it cannot represent a negative number. If you use the unary minus ( - ) operator on
an expression that evaluates to type UInteger , Visual Basic converts the expression to Long  first.

CLS Compliance. The UInteger  data type is not part of the Common Language Specification (CLS), so CLS-compliant code cannot consume a
component that uses it.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
keep in mind that types such as uint  can have a different data width (16 bits) in other environments. If you are passing a 16-bit argument to
such a component, declare it as UShort  instead of UInteger  in your managed Visual Basic code.

Widening. The UInteger  data type widens to Long , ULong , Decimal , Single , and Double . This means you can convert UInteger  to any of
these types without encountering a System.OverflowException error.

Type Characters. Appending the literal type characters UI  to a literal forces it to the UInteger  data type. UInteger  has no identifier type
character.

Framework Type. The corresponding type in the .NET Framework is the System.UInt32 structure.

UInt32
Data Types
Type Conversion Functions
Conversion Summary
How to: Call a Windows Function that Takes Unsigned Types
Efficient Use of Data Types

http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/dotnet/api/system.uint32
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


             

ULong data type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Literal assignments

Dim ulongValue1 As ULong = 7934076125
Console.WriteLine(ulongValue1)

Dim ulongValue2 As ULong = &H0001D8e864DD
Console.WriteLine(ulongValue2)

Dim ulongValue3 As ULong = &B0001_1101_1000_1110_1000_0110_0100_1101_1101
Console.WriteLine(ulongValue3)
' The example displays the following output:
'          7934076125
'          7934076125
'          7934076125

NOTENOTE

Dim longValue1 As Long = 4_294_967_296
Console.WriteLine(longValue1)

Dim longValue2 As Long = &H1_0000_0000
Console.WriteLine(longValue2)

Dim longValue3 As Long = &B1_0000_0000_0000_0000_0000_0000_0000_0000
Console.WriteLine(longValue3)
' The example displays the following output:
'          4294967296
'          4294967296
'          4294967296

Dim number As ULong = &H_F9AC_0326_1489_D68C

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Holds unsigned 64-bit (8-byte) integers ranging in value from 0 through 18,446,744,073,709,551,615 (more than 1.84 times 10 ^ 19).

Use the ULong  data type to contain binary data too large for UInteger , or the largest possible unsigned integer values.

The default value of ULong  is 0.

You can declare and initialize a ULong  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017)
a binary literal. If the integer literal is outside the range of ULong  (that is, if it is less than UInt64.MinValue or greater than UInt64.MaxValue, a
compilation error occurs.

In the following example, integers equal to 7,934,076,125 that are represented as decimal, hexadecimal, and binary literals are assigned to ULong

values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the UL  or ul  type character to denote the ULong  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/ulong-data-type.md
https://docs.microsoft.com/dotnet/api/system.uint64.minvalue
https://docs.microsoft.com/dotnet/api/system.uint64.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


Dim number = &H_00_00_0A_96_2F_AC_14_D7ul

Programming tips

See also

Negative Numbers. Because ULong  is an unsigned type, it cannot represent a negative number. If you use the unary minus ( - ) operator on an
expression that evaluates to type ULong , Visual Basic converts the expression to Decimal  first.

CLS Compliance. The ULong  data type is not part of the Common Language Specification (CLS), so CLS-compliant code cannot consume a
component that uses it.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
keep in mind that types such as ulong  can have a different data width (32 bits) in other environments. If you are passing a 32-bit argument to
such a component, declare it as UInteger  instead of ULong  in your managed Visual Basic code.

Furthermore, Automation does not support 64-bit integers on Windows 95, Windows 98, Windows ME, or Windows 2000. You cannot pass a
Visual Basic ULong  argument to an Automation component on these platforms.

Widening. The ULong  data type widens to Decimal , Single , and Double . This means you can convert ULong  to any of these types without
encountering a System.OverflowException error.

Type Characters. Appending the literal type characters UL  to a literal forces it to the ULong  data type. ULong  has no identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.UInt64 structure.

UInt64
Data Types
Type Conversion Functions
Conversion Summary
How to: Call a Windows Function that Takes Unsigned Types
Efficient Use of Data Types

http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/dotnet/api/system.uint64
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


 

User-Defined Data Type
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Declaration Format

Member Access Levels

Programming Tips

Example

[Public | Protected | Friend | Protected Friend | Private] Structure structname  
    {Dim | Public | Friend | Private} member1 As datatype1  
    ' ...  
    {Dim | Public | Friend | Private} memberN As datatypeN  
End Structure  

See Also

Holds data in a format you define. The Structure  statement defines the format.

Previous versions of Visual Basic support the user-defined type (UDT). The current version expands the UDT to a structure. A structure is a
concatenation of one or more members of various data types. Visual Basic treats a structure as a single unit, although you can also access its members
individually.

Define and use a structure data type when you need to combine various data types into a single unit, or when none of the elementary data types serve
your needs.

The default value of a structure data type consists of the combination of the default values of each of its members.

A structure declaration starts with the Structure Statement and ends with the End Structure  statement. The Structure  statement supplies the name of
the structure, which is also the identifier of the data type the structure is defining. Other parts of the code can use this identifier to declare variables,
parameters, and function return values to be of this structure's data type.

The declarations between the Structure  and End Structure  statements define the members of the structure.

You must declare every member using a Dim Statement or a statement that specifies access level, such as Public, Friend, or Private. If you use a Dim

statement, the access level defaults to public.

Memory Consumption. As with all composite data types, you cannot safely calculate the total memory consumption of a structure by adding
together the nominal storage allocations of its members. Furthermore, you cannot safely assume that the order of storage in memory is the
same as your order of declaration. If you need to control the storage layout of a structure, you can apply the StructLayoutAttribute attribute to
the Structure  statement.

Interop Considerations. If you are interfacing with components not written for the .NET Framework, for example Automation or COM objects,
keep in mind that user-defined types in other environments are not compatible with Visual Basic structure types.

Widening. There is no automatic conversion to or from any structure data type. You can define conversion operators on your structure using the
Operator Statement, and you can declare each conversion operator to be Widening  or Narrowing .

Type Characters. Structure data types have no literal type character or identifier type character.

Framework Type. There is no corresponding type in the .NET Framework. All structures inherit from the .NET Framework class
System.ValueType, but no individual structure corresponds to System.ValueType.

The following paradigm shows the outline of the declaration of a structure.

ValueType
StructLayoutAttribute
Data Types
Type Conversion Functions
Conversion Summary
Structure Statement
Widening
Narrowing
Structures

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/user-defined-data-type.md
https://msdn.microsoft.com/library/system.runtime.interopservices.structlayoutattribute(v=vs.110).aspx
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://msdn.microsoft.com/library/system.runtime.interopservices.structlayoutattribute(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


Efficient Use of Data Types

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


             

UShort data type (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Literal assignments

Dim ushortValue1 As UShort = 65034
Console.WriteLine(ushortValue1)

Dim ushortValue2 As UShort = &HFE0A
Console.WriteLine(ushortValue2)

Dim ushortValue3 As UShort = &B1111_1110_0000_1010
Console.WriteLine(ushortValue3)
' The example displays the following output:
'          65034
'          65034
'          65034

NOTENOTE

Dim ushortValue1 As UShort = 65_034
Console.WriteLine(ushortValue1)

Dim ushortValue3 As UShort = &B11111110_00001010
Console.WriteLine(ushortValue3)
' The example displays the following output:
'          65034
'          65034

Dim number As UShort = &H_FF8C

<PropertyGroup>
  <LangVersion>15.5</LangVersion>
</PropertyGroup>

Dim number = &H_5826us

Programming tips

Holds unsigned 16-bit (2-byte) integers ranging in value from 0 through 65,535.

Use the UShort  data type to contain binary data too large for Byte .

The default value of UShort  is 0.

You can declare and initialize a UShort  variable by assigning it a decimal literal, a hexadecimal literal, an octal literal, or (starting with Visual Basic 2017)
a binary literal. If the integer literal is outside the range of UShort  (that is, if it is less than UInt16.MinValue or greater than UInt16.MaxValue, a
compilation error occurs.

In the following example, integers equal to 65,034 that are represented as decimal, hexadecimal, and binary literals are assigned to UShort  values.

You use the prefix &h  or &H  to denote a hexadecimal literal, the prefix &b  or &B  to denote a binary literal, and the prefix &o  or &O  to denote an octal literal.
Decimal literals have no prefix.

Starting with Visual Basic 2017, you can also use the underscore character, _ , as a digit separator to enhance readability, as the following example
shows.

Starting with Visual Basic 15.5, you can also use the underscore character ( _ ) as a leading separator between the prefix and the hexadecimal, binary, or
octal digits. For example:

To use the underscore character as a leading separator, you must add the following element to your Visual Basic project (*.vbproj) file:

For more information see setting the Visual Basic language version.

Numeric literals can also include the US  or us  type character to denote the UShort  data type, as the following example shows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/data-types/ushort-data-type.md
https://docs.microsoft.com/dotnet/api/system.uint16.minvalue
https://docs.microsoft.com/dotnet/api/system.uint16.maxvalue
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters


See Also

Negative Numbers. Because UShort  is an unsigned type, it cannot represent a negative number. If you use the unary minus ( - ) operator on
an expression that evaluates to type UShort , Visual Basic converts the expression to Integer  first.

CLS Compliance. The UShort  data type is not part of the Common Language Specification (CLS), so CLS-compliant code cannot consume a
component that uses it.

Widening. The UShort  data type widens to Integer , UInteger , Long , ULong , Decimal , Single , and Double . This means you can convert 
UShort  to any of these types without encountering a System.OverflowException error.

Type Characters. Appending the literal type characters US  to a literal forces it to the UShort  data type. UShort  has no identifier type character.

Framework Type. The corresponding type in the .NET Framework is the System.UInt16 structure.

UInt16
Data Types
Type Conversion Functions
Conversion Summary
How to: Call a Windows Function that Takes Unsigned Types
Efficient Use of Data Types

http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/dotnet/api/system.uint16
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/efficient-use-of-data-types


  

Directives (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

#Disable Warning BC42356 ' suppress warning about no awaits in this method  
    Async Function TestAsync() As Task  
        Console.WriteLine("testing")  
    End Function  
#Enable Warning BC42356  

Related Sections

The topics in this section document the Visual Basic source code compiler directives.

#Const Directive -- Define a compiler constant

#ExternalSource Directive -- Indicate a mapping between source lines and text external to the source

#If...Then...#Else Directives -- Compile selected blocks of code

#Region Directive -- Collapse and hide sections of code in the Visual Studio editor

#Disable, #Enable -- Disable and enable specific warnings for regions of code.

You can disable and enable a comma-separated list of warning codes too.

Visual Basic Language Reference

Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/directives/directives.md


      

#Const Directive
7/13/2018 • 2 minutes to read • Edit Online

Syntax
#Const constname = expression  

Parts

Remarks

Example

#Const MyLocation = "USA"
#Const Version = "8.0.0012"
#Const CustomerNumber = 36

See Also

Defines conditional compiler constants for Visual Basic.

constname

Required. Name of the constant being defined.

expression

Required. Literal, other conditional compiler constant, or any combination that includes any or all arithmetic or logical operators except Is .

Conditional compiler constants are always private to the file in which they appear. You cannot create public compiler constants using the #Const

directive; you can create them only in the user interface or with the /define  compiler option.

You can use only conditional compiler constants and literals in expression . Using a standard constant defined with Const  causes an error. Conversely,
you can use constants defined with the #Const  keyword only for conditional compilation. Constants can also be undefined, in which case they have a
value of Nothing .

This example uses the #Const  directive.

/define (Visual Basic)
#If...Then...#Else Directives
Const Statement
Conditional Compilation
If...Then...Else Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/directives/const-directive.md


   

#ExternalSource Directive
7/13/2018 • 2 minutes to read • Edit Online

Syntax
#ExternalSource( StringLiteral , IntLiteral )  
    [ LogicalLine+ ]  
#End ExternalSource  

Parts

Remarks

See Also

Indicates a mapping between specific lines of source code and text external to the source.

StringLiteral

The path to the external source.

IntLiteral

The line number of the first line of the external source.

LogicalLine

The line where the error occurs in the external source.

#End ExternalSource

Terminates the #ExternalSource  block.

This directive is used only by the compiler and the debugger.

A source file may include external source directives, which indicate a mapping between specific lines of code in the source file and text external to the
source, such as an .aspx file. If errors are encountered in the designated source code during compilation, they are identified as coming from the external
source.

External source directives have no effect on compilation and cannot be nested. They are intended for internal use by the application only.

Conditional Compilation

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/directives/externalsource-directive.md


               

#If...Then...#Else Directives
7/13/2018 • 2 minutes to read • Edit Online

Syntax
#If expression Then  
   statements  
[ #ElseIf expression Then  
   [ statements ]  
...  
#ElseIf expression Then  
   [ statements ] ]  
[ #Else  
   [ statements ] ]  
#End If  

Parts

Remarks

NOTENOTE

   #If DEBUG Then
   <WebMethod()>
   Public Function SomeFunction() As String
   #Else
   <WebMethod(CacheDuration:=86400)>
   Public Function SomeFunction() As String
   #End If

Example

Conditionally compiles selected blocks of Visual Basic code.

expression

Required for #If  and #ElseIf  statements, optional elsewhere. Any expression, consisting exclusively of one or more conditional compiler constants,
literals, and operators, that evaluates to True  or False .

statements

Required for #If  statement block, optional elsewhere. Visual Basic program lines or compiler directives that are compiled if the associated expression
evaluates to True .

#End If

Terminates the #If  statement block.

On the surface, the behavior of the #If...Then...#Else  directives appears the same as that of the If...Then...Else  statements. However, the 
#If...Then...#Else  directives evaluate what is compiled by the compiler, whereas the If...Then...Else  statements evaluate conditions at run time.

Conditional compilation is typically used to compile the same program for different platforms. It is also used to prevent debugging code from appearing
in an executable file. Code excluded during conditional compilation is completely omitted from the final executable file, so it has no effect on size or
performance.

Regardless of the outcome of any evaluation, all expressions are evaluated using Option Compare Binary . The Option Compare  statement does not affect
expressions in #If  and #ElseIf  statements.

No single-line form of the #If , #Else , #ElseIf , and #End If  directives exists. No other code can appear on the same line as any of the directives.

The statements within a conditional compilation block must be complete logical statements. For example, you cannot conditionally compile only the
attributes of a function, but you can conditionally declare the function along with its attributes:

This example uses the #If...Then...#Else  construct to determine whether to compile certain statements.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/directives/if-then-else-directives.md


#Const CustomerNumber = 36
#If CustomerNumber = 35 Then
        ' Insert code to be compiled for customer # 35.
#ElseIf CustomerNumber = 36 Then
        ' Insert code to be compiled for customer # 36.
#Else
        ' Insert code to be compiled for all other customers.
#End If

See Also
#Const Directive
If...Then...Else Statement
Conditional Compilation
System.Diagnostics.ConditionalAttribute

https://docs.microsoft.com/dotnet/api/system.diagnostics.conditionalattribute


       

#Region Directive
7/13/2018 • 2 minutes to read • Edit Online

Syntax
#Region "identifier_string"  
#End Region  

Parts
TERM DEFINITION

identifier_string Required. String that acts as the title of a region when it is collapsed. Regions are
collapsed by default.

#End Region Terminates the #Region  block.

Remarks

Example

#Region "MathFunctions"
    ' Insert code for the Math functions here.
#End Region

See Also

Collapses and hides sections of code in Visual Basic files.

Use the #Region  directive to specify a block of code to expand or collapse when using the outlining feature of the Visual Studio Code Editor. You can
place, or nest, regions within other regions to group similar regions together.

This example uses the #Region  directive.

#If...Then...#Else Directives
Outlining
How to: Collapse and Hide Sections of Code

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/directives/region-directive.md
https://docs.microsoft.com/visualstudio/ide/outlining


 

Functions (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

Related Sections

The topics in this section contain tables of the Visual Basic run-time member functions.

You can also create functions and call them. For more information, see Function Statement and How to: Create a Procedure that Returns a Value.

Conversion Functions

Math Functions

String Functions

Type Conversion Functions

CType Function

Visual Basic Language Reference

Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/index.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-create-a-procedure-that-returns-a-value


   

Conversion functions (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See also

Asc
AscW
CBool Function
CByte Function
CChar Function
CDate Function
CDbl Function
CDec Function
Chr
ChrW
CInt Function
CLng Function
CObj Function
CSByte Function
CShort Function
CSng Function
CStr Function
CType Function
CUInt Function
CULng Function
CUShort Function
Format
Hex
Oct
Str
Val

Type Conversion Functions
Converting Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/conversion-functions.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.hex
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.oct
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.str
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.val
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/converting-data-types


  

Math Functions (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Remarks

.NET FRAMEWORK METHOD DESCRIPTION

Abs Returns the absolute value of a number.

Acos Returns the angle whose cosine is the specified number.

Asin Returns the angle whose sine is the specified number.

Atan Returns the angle whose tangent is the specified number.

Atan2 Returns the angle whose tangent is the quotient of two specified numbers.

BigMul Returns the full product of two 32-bit numbers.

Ceiling Returns the smallest integral value that's greater than or equal to the specified 
Decimal  or Double .

Cos Returns the cosine of the specified angle.

Cosh Returns the hyperbolic cosine of the specified angle.

DivRem Returns the quotient of two 32-bit or 64-bit signed integers, and also returns the
remainder in an output parameter.

Exp Returns e (the base of natural logarithms) raised to the specified power.

Floor Returns the largest integer that's less than or equal to the specified Decimal  or 
Double  number.

IEEERemainder Returns the remainder that results from the division of a specified number by
another specified number.

Log Returns the natural (base e) logarithm of a specified number or the logarithm of a
specified number in a specified base.

Log10 Returns the base 10 logarithm of a specified number.

Max Returns the larger of two numbers.

Min Returns the smaller of two numbers.

Pow Returns a specified number raised to the specified power.

Round Returns a Decimal  or Double  value rounded to the nearest integral value or to a
specified number of fractional digits.

Sign Returns an Integer  value indicating the sign of a number.

Sin Returns the sine of the specified angle.

Sinh Returns the hyperbolic sine of the specified angle.

Sqrt Returns the square root of a specified number.

Tan Returns the tangent of the specified angle.

Tanh Returns the hyperbolic tangent of the specified angle.

The methods of the System.Math class provide trigonometric, logarithmic, and other common mathematical functions.

The following table lists methods of the System.Math class. You can use these in a Visual Basic program.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/math-functions.md
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.abs
https://docs.microsoft.com/dotnet/api/system.math.acos
https://docs.microsoft.com/dotnet/api/system.math.asin
https://docs.microsoft.com/dotnet/api/system.math.atan
https://docs.microsoft.com/dotnet/api/system.math.atan2
https://docs.microsoft.com/dotnet/api/system.math.bigmul
https://docs.microsoft.com/dotnet/api/system.math.ceiling
https://docs.microsoft.com/dotnet/api/system.math.cos
https://docs.microsoft.com/dotnet/api/system.math.cosh
https://docs.microsoft.com/dotnet/api/system.math.divrem
https://docs.microsoft.com/dotnet/api/system.math.exp
https://docs.microsoft.com/dotnet/api/system.math.floor
https://docs.microsoft.com/dotnet/api/system.math.ieeeremainder
https://docs.microsoft.com/dotnet/api/system.math.log
https://docs.microsoft.com/dotnet/api/system.math.log10
https://docs.microsoft.com/dotnet/api/system.math.max
https://docs.microsoft.com/dotnet/api/system.math.min
https://docs.microsoft.com/dotnet/api/system.math.pow
https://docs.microsoft.com/dotnet/api/system.math.round
https://docs.microsoft.com/dotnet/api/system.math.sign
https://docs.microsoft.com/dotnet/api/system.math.sin
https://docs.microsoft.com/dotnet/api/system.math.sinh
https://docs.microsoft.com/dotnet/api/system.math.sqrt
https://docs.microsoft.com/dotnet/api/system.math.tan
https://docs.microsoft.com/dotnet/api/system.math.tanh


Truncate Calculates the integral part of a specified Decimal  or Double  number.

.NET FRAMEWORK METHOD DESCRIPTION

Imports System.Math  

Example

' Returns 50.3.  
Dim MyNumber1 As Double = Math.Abs(50.3)  
' Returns 50.3.  
Dim MyNumber2 As Double = Math.Abs(-50.3)  

Example

Public Function GetPi() As Double  
    ' Calculate the value of pi.  
    Return 4.0 * Math.Atan(1.0)  
End Function  

Example

Public Function Sec(ByVal angle As Double) As Double  
    ' Calculate the secant of angle, in radians.  
    Return 1.0 / Math.Cos(angle)  
End Function  

Example

Public Function Sinh(ByVal angle As Double) As Double  
    ' Calculate hyperbolic sine of an angle, in radians.  
    Return (Math.Exp(angle) - Math.Exp(-angle)) / 2.0  
End Function  

Example

Public Function Asinh(ByVal value As Double) As Double  
    ' Calculate inverse hyperbolic sine, in radians.  
    Return Math.Log(value + Math.Sqrt(value * value + 1.0))  
End Function  

Example

' Returns 3.  
Dim MyVar2 As Double = Math.Round(2.8)  

Example

To use these functions without qualification, import the System.Math namespace into your project by adding the following code to the top of your
source file:

This example uses the Abs method of the Math class to compute the absolute value of a number.

This example uses the Atan method of the Math class to calculate the value of pi.

This example uses the Cos method of the Math class to return the cosine of an angle.

This example uses the Exp method of the Math class to return e raised to a power.

This example uses the Log method of the Math class to return the natural logarithm of a number.

This example uses the Round method of the Math class to round a number to the nearest integer.

This example uses the Sign method of the Math class to determine the sign of a number.

https://docs.microsoft.com/dotnet/api/system.math.truncate
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.abs
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.atan
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.cos
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.exp
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.log
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.round
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.sign
https://docs.microsoft.com/dotnet/api/system.math


' Returns 1.  
Dim MySign1 As Integer = Math.Sign(12)  
' Returns -1.  
Dim MySign2 As Integer = Math.Sign(-2.4)  
' Returns 0.  
Dim MySign3 As Integer = Math.Sign(0)  

Example

Public Function Csc(ByVal angle As Double) As Double  
    ' Calculate cosecant of an angle, in radians.  
    Return 1.0 / Math.Sin(angle)  
End Function  

Example

' Returns 2.  
Dim MySqr1 As Double = Math.Sqrt(4)  
' Returns 4.79583152331272.  
Dim MySqr2 As Double = Math.Sqrt(23)  
' Returns 0.  
Dim MySqr3 As Double = Math.Sqrt(0)  
' Returns NaN (not a number).  
Dim MySqr4 As Double = Math.Sqrt(-4)  

Example

Public Function Ctan(ByVal angle As Double) As Double  
    ' Calculate cotangent of an angle, in radians.  
    Return 1.0 / Math.Tan(angle)  
End Function  

Requirements

See Also

This example uses the Sin method of the Math class to return the sine of an angle.

This example uses the Sqrt method of the Math class to calculate the square root of a number.

This example uses the Tan method of the Math class to return the tangent of an angle.

Class: Math

Namespace: System

Assembly: mscorlib (in mscorlib.dll)

Rnd
Randomize
NaN
Derived Math Functions
Arithmetic Operators

https://docs.microsoft.com/dotnet/api/system.math.sin
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.sqrt
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math.tan
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system.math
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.rnd
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath.randomize
https://docs.microsoft.com/dotnet/api/system.double.nan


  

String Functions (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

.NET FRAMEWORK METHOD DESCRIPTION

Asc, AscW Returns an Integer  value representing the character code corresponding to a
character.

Chr, ChrW Returns the character associated with the specified character code.

Filter Returns a zero-based array containing a subset of a String  array based on
specified filter criteria.

Format Returns a string formatted according to instructions contained in a format String

expression.

FormatCurrency Returns an expression formatted as a currency value using the currency symbol
defined in the system control panel.

FormatDateTime Returns a string expression representing a date/time value.

FormatNumber Returns an expression formatted as a number.

FormatPercent Returns an expression formatted as a percentage (that is, multiplied by 100) with a
trailing % character.

InStr Returns an integer specifying the start position of the first occurrence of one string
within another.

InStrRev Returns the position of the first occurrence of one string within another, starting
from the right side of the string.

Join Returns a string created by joining a number of substrings contained in an array.

LCase Returns a string or character converted to lowercase.

Left Returns a string containing a specified number of characters from the left side of a
string.

Len Returns an integer that contains the number of characters in a string.

LSet Returns a left-aligned string containing the specified string adjusted to the specified
length.

LTrim Returns a string containing a copy of a specified string with no leading spaces.

Mid Returns a string containing a specified number of characters from a string.

Replace Returns a string in which a specified substring has been replaced with another
substring a specified number of times.

Right Returns a string containing a specified number of characters from the right side of a
string.

RSet Returns a right-aligned string containing the specified string adjusted to the
specified length.

RTrim Returns a string containing a copy of a specified string with no trailing spaces.

Space Returns a string consisting of the specified number of spaces.

Split Returns a zero-based, one-dimensional array containing a specified number of
substrings.

StrComp Returns -1, 0, or 1, based on the result of a string comparison.

The following table lists the functions that Visual Basic provides to search and manipulate strings.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/string-functions.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.filter
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatcurrency
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatdatetime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatnumber
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.formatpercent
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instrrev
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.join
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lcase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.left
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.len
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.lset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ltrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.replace
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.right
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rset
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.rtrim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.space
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.split
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp


StrConv Returns a string converted as specified.

StrDup Returns a string or object consisting of the specified character repeated the
specified number of times.

StrReverse Returns a string in which the character order of a specified string is reversed.

Trim Returns a string containing a copy of a specified string with no leading or trailing
spaces.

UCase Returns a string or character containing the specified string converted to
uppercase.

.NET FRAMEWORK METHOD DESCRIPTION

Example

' String to convert.
Dim LowerCase As String = "Hello World 1234"
' Returns "HELLO WORLD 1234".
Dim UpperCase As String = UCase(LowerCase)

Example

' Initializes string.
Dim TestString As String = "  <-Trim->  "
Dim TrimString As String
' Returns "<-Trim->  ".
TrimString = LTrim(TestString)
' Returns "  <-Trim->".
TrimString = RTrim(TestString)
' Returns "<-Trim->".
TrimString = LTrim(RTrim(TestString))
' Using the Trim function alone achieves the same result.
' Returns "<-Trim->".
TrimString = Trim(TestString)

Example

' Creates text string.
Dim TestString As String = "Mid Function Demo"
' Returns "Mid".
Dim FirstWord As String = Mid(TestString, 1, 3)
' Returns "Demo".
Dim LastWord As String = Mid(TestString, 14, 4)
' Returns "Function Demo".
Dim MidWords As String = Mid(TestString, 5)

Example

' Initializes variable.
Dim TestString As String = "Hello World"
' Returns 11.
Dim TestLen As Integer = Len(TestString)

Example

You can use the Option Compare statement to set whether strings are compared using a case-insensitive text sort order determined by your system's
locale ( Text ) or by the internal binary representations of the characters ( Binary ). The default text comparison method is Binary .

This example uses the UCase  function to return an uppercase version of a string.

This example uses the LTrim  function to strip leading spaces and the RTrim  function to strip trailing spaces from a string variable. It uses the Trim

function to strip both types of spaces.

This example uses the Mid  function to return a specified number of characters from a string.

This example uses Len  to return the number of characters in a string.

This example uses the InStr  function to return the position of the first occurrence of one string within another.

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strconv
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strdup
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strreverse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.trim
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ucase


' String to search in.
Dim SearchString As String = "XXpXXpXXPXXP"
' Search for "P".
Dim SearchChar As String = "P"

Dim TestPos As Integer
' A textual comparison starting at position 4. Returns 6.
TestPos = InStr(4, SearchString, SearchChar, CompareMethod.Text)

' A binary comparison starting at position 1. Returns 9.
TestPos = InStr(1, SearchString, SearchChar, CompareMethod.Binary)

' If Option Compare is not set, or set to Binary, return 9.
' If Option Compare is set to Text, returns 3.
TestPos = InStr(SearchString, SearchChar)

' Returns 0.
TestPos = InStr(1, SearchString, "W")

Example

NOTENOTE

Dim TestDateTime As Date = #1/27/2001 5:04:23 PM#
Dim TestStr As String
' Returns current system time in the system-defined long time format.
TestStr = Format(Now(), "Long Time")
' Returns current system date in the system-defined long date format.
TestStr = Format(Now(), "Long Date")
' Also returns current system date in the system-defined long date 
' format, using the single letter code for the format.
TestStr = Format(Now(), "D")

' Returns the value of TestDateTime in user-defined date/time formats.
' Returns "5:4:23".
TestStr = Format(TestDateTime, "h:m:s")
' Returns "05:04:23 PM".
TestStr = Format(TestDateTime, "hh:mm:ss tt")
' Returns "Saturday, Jan 27 2001".
TestStr = Format(TestDateTime, "dddd, MMM d yyyy")
' Returns "17:04:23".
TestStr = Format(TestDateTime, "HH:mm:ss")
' Returns "23".
TestStr = Format(23)

' User-defined numeric formats.
' Returns "5,459.40".
TestStr = Format(5459.4, "##,##0.00")
' Returns "334.90".
TestStr = Format(334.9, "###0.00")
' Returns "500.00%".
TestStr = Format(5, "0.00%")

See Also

This example shows various uses of the Format  function to format values using both String  formats and user-defined formats. For the date separator
( / ), time separator ( : ), and the AM/PM indicators ( t  and tt ), the actual formatted output displayed by your system depends on the locale settings
the code is using. When times and dates are displayed in the development environment, the short time format and short date format of the code locale
are used.

For locales that use a 24-hour clock, the AM/PM indicators ( t  and tt ) display nothing.

Keywords
Visual Basic Runtime Library Members
String Manipulation Summary



                                                                                    

Type Conversion Functions (Visual Basic)
5/4/2018 • 10 minutes to read • Edit Online

Syntax
CBool(expression)  
CByte(expression)  
CChar(expression)  
CDate(expression)  
CDbl(expression)  
CDec(expression)  
CInt(expression)  
CLng(expression)  
CObj(expression)  
CSByte(expression)  
CShort(expression)  
CSng(expression)  
CStr(expression)  
CUInt(expression)  
CULng(expression)  
CUShort(expression)  

Part

Return Value Data Type

FUNCTION NAME RETURN DATA TYPE RANGE FOR EXPRESSION  ARGUMENT

CBool Boolean Data Type Any valid Char  or String  or numeric expression.

CByte Byte Data Type 0 through 255 (unsigned); fractional parts are
rounded.

CChar Char Data Type Any valid Char  or String  expression; only first
character of a String  is converted; value can be 0
through 65535 (unsigned).

CDate Date Data Type Any valid representation of a date and time.

CDbl Double Data Type -1.79769313486231570E+308 through -
4.94065645841246544E-324 for negative values;
4.94065645841246544E-324 through
1.79769313486231570E+308 for positive values.

CDec Decimal Data Type +/-79,228,162,514,264,337,593,543,950,335 for
zero-scaled numbers, that is, numbers with no
decimal places. For numbers with 28 decimal places,
the range is +/-
7.9228162514264337593543950335. The smallest
possible non-zero number is
0.0000000000000000000000000001 (+/-1E-28).

CInt Integer Data Type -2,147,483,648 through 2,147,483,647; fractional
parts are rounded.

CLng Long Data Type -9,223,372,036,854,775,808 through
9,223,372,036,854,775,807; fractional parts are
rounded.

CObj Object Data Type Any valid expression.

CSByte SByte Data Type -128 through 127; fractional parts are rounded.

These functions are compiled inline, meaning the conversion code is part of the code that evaluates the expression. Sometimes there is no call to a
procedure to accomplish the conversion, which improves performance. Each function coerces an expression to a specific data type.

expression

Required. Any expression of the source data type.

The function name determines the data type of the value it returns, as shown in the following table.

1

1

1

1

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/type-conversion-functions.md


CShort Short Data Type -32,768 through 32,767; fractional parts are
rounded.

CSng Single Data Type -3.402823E+38 through -1.401298E-45 for negative
values; 1.401298E-45 through 3.402823E+38 for
positive values.

CStr String Data Type Returns for CStr  depend on the expression

argument. See Return Values for the CStr Function.

CUInt UInteger Data Type 0 through 4,294,967,295 (unsigned); fractional parts
are rounded.

CULng ULong Data Type 0 through 18,446,744,073,709,551,615 (unsigned);
fractional parts are rounded.

CUShort UShort Data Type 0 through 65,535 (unsigned); fractional parts are
rounded.

FUNCTION NAME RETURN DATA TYPE RANGE FOR EXPRESSION  ARGUMENT

Remarks

Behavior

CType Function

1

1

1

1

 Fractional parts can be subject to a special type of rounding called banker's rounding. See "Remarks" for more information.1

As a rule, you should use the Visual Basic type conversion functions in preference to the .NET Framework methods such as ToString() , either on the
Convert class or on an individual type structure or class. The Visual Basic functions are designed for optimal interaction with Visual Basic code, and they
also make your source code shorter and easier to read. In addition, the .NET Framework conversion methods do not always produce the same results as
the Visual Basic functions, for example when converting Boolean  to Integer . For more information, see Troubleshooting Data Types.

Coercion. In general, you can use the data type conversion functions to coerce the result of an operation to a particular data type rather than the
default data type. For example, use CDec  to force decimal arithmetic in cases where single-precision, double-precision, or integer arithmetic
would normally take place.

Failed Conversions. If the expression  passed to the function is outside the range of the data type to which it is to be converted, an
OverflowException occurs.

Fractional Parts. When you convert a nonintegral value to an integral type, the integer conversion functions ( CByte , CInt , CLng , CSByte , 
CShort , CUInt , CULng , and CUShort ) remove the fractional part and round the value to the closest integer.

If the fractional part is exactly 0.5, the integer conversion functions round it to the nearest even integer. For example, 0.5 rounds to 0, and 1.5 and
2.5 both round to 2. This is sometimes called banker's rounding, and its purpose is to compensate for a bias that could accumulate when adding
many such numbers together.

CInt  and CLng  differ from the Int and Fix functions, which truncate, rather than round, the fractional part of a number. Also, Fix  and Int

always return a value of the same data type as you pass in.

Date/Time Conversions. Use the IsDate function to determine if a value can be converted to a date and time. CDate  recognizes date literals
and time literals but not numeric values. To convert a Visual Basic 6.0 Date  value to a Date  value in Visual Basic 2005 or later versions, you can
use the DateTime.FromOADate method.

Neutral Date/Time Values. The Date Data Type always contains both date and time information. For purposes of type conversion, Visual Basic
considers 1/1/0001 (January 1 of the year 1) to be a neutral value for the date, and 00:00:00 (midnight) to be a neutral value for the time. If you
convert a Date  value to a string, CStr  does not include neutral values in the resulting string. For example, if you convert 
#January 1, 0001 9:30:00#  to a string, the result is "9:30:00 AM"; the date information is suppressed. However, the date information is still

present in the original Date  value and can be recovered with functions such as DatePart function.

Culture Sensitivity. The type conversion functions involving strings perform conversions based on the current culture settings for the
application. For example, CDate  recognizes date formats according to the locale setting of your system. You must provide the day, month, and
year in the correct order for your locale, or the date might not be interpreted correctly. A long date format is not recognized if it contains a day-of-
the-week string, such as "Wednesday".

If you need to convert to or from a string representation of a value in a format other than the one specified by your locale, you cannot use the
Visual Basic type conversion functions. To do this, use the ToString(IFormatProvider)  and Parse(String, IFormatProvider)  methods of that
value's type. For example, use Double.Parse when converting a string to a Double , and use Double.ToString when converting a value of type 
Double  to a string.

The CType Function takes a second argument, typename , and coerces expression  to typename , where typename  can be any data type, structure, class,
or interface to which there exists a valid conversion.

https://docs.microsoft.com/dotnet/api/system.convert
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.isdate
https://docs.microsoft.com/dotnet/api/system.datetime.fromoadate
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datepart
https://docs.microsoft.com/dotnet/api/system.double.parse
https://docs.microsoft.com/dotnet/api/system.double.tostring


CBool Example

Dim a, b, c As Integer
Dim check As Boolean
a = 5
b = 5
' The following line of code sets check to True.
check = CBool(a = b)
c = 0
' The following line of code sets check to False.
check = CBool(c)

CByte Example

Dim aDouble As Double
Dim aByte As Byte
aDouble = 125.5678
' The following line of code sets aByte to 126.
aByte = CByte(aDouble)

CChar Example

Dim aString As String
Dim aChar As Char
' CChar converts only the first character of the string.
aString = "BCD"
' The following line of code sets aChar to "B".
aChar = CChar(aString)

Dim someDigits As String
Dim codePoint As Integer
Dim thisChar As Char
someDigits = InputBox("Enter code point of character:")
codePoint = CInt(someDigits)
' The following line of code sets thisChar to the Char value of codePoint.
thisChar = ChrW(codePoint)

CDate Example

Dim aDateString, aTimeString As String
Dim aDate, aTime As Date
aDateString = "February 12, 1969"
aTimeString = "4:35:47 PM"
' The following line of code sets aDate to a Date value.
aDate = CDate(aDateString)
' The following line of code sets aTime to Date value.
aTime = CDate(aTimeString)

CDbl Example

For a comparison of CType  with the other type conversion keywords, see DirectCast Operator and TryCast Operator.

The following example uses the CBool  function to convert expressions to Boolean  values. If an expression evaluates to a nonzero value, CBool  returns 
True ; otherwise, it returns False .

The following example uses the CByte  function to convert an expression to a Byte .

The following example uses the CChar  function to convert the first character of a String  expression to a Char  type.

The input argument to CChar  must be of data type Char  or String . You cannot use CChar  to convert a number to a character, because CChar  cannot
accept a numeric data type. The following example obtains a number representing a code point (character code) and converts it to the corresponding
character. It uses the InputBox function to obtain the string of digits, CInt  to convert the string to type Integer , and ChrW  to convert the number to
type Char .

The following example uses the CDate  function to convert strings to Date  values. In general, hard-coding dates and times as strings (as shown in this
example) is not recommended. Use date literals and time literals, such as #Feb 12, 1969# and #4:45:23 PM#, instead.

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.inputbox


Dim aDec As Decimal
Dim aDbl As Double
' The following line of code uses the literal type character D to make aDec a Decimal.
aDec = 234.456784D
' The following line of code sets aDbl to 1.9225456288E+1.
aDbl = CDbl(aDec * 8.2D * 0.01D)

CDec Example

Dim aDouble As Double
Dim aDecimal As Decimal
aDouble = 10000000.0587
' The following line of code sets aDecimal to 10000000.0587.
aDecimal = CDec(aDouble)

CInt Example

Dim aDbl As Double
Dim anInt As Integer
aDbl = 2345.5678
' The following line of code sets anInt to 2346.
anInt = CInt(aDbl)

CLng Example

Dim aDbl1, aDbl2 As Double
Dim aLng1, aLng2 As Long
aDbl1 = 25427.45
aDbl2 = 25427.55
' The following line of code sets aLng1 to 25427.
aLng1 = CLng(aDbl1)
' The following line of code sets aLng2 to 25428.
aLng2 = CLng(aDbl2)

CObj Example

Dim aDouble As Double
Dim anObject As Object
aDouble = 2.7182818284
' The following line of code sets anObject to a pointer to aDouble.
anObject = CObj(aDouble)

CSByte Example

Dim aDouble As Double
Dim anSByte As SByte
aDouble = 39.501
' The following line of code sets anSByte to 40.
anSByte = CSByte(aDouble)

CShort Example

Dim aByte As Byte
Dim aShort As Short
aByte = 100
' The following line of code sets aShort to 100.
aShort = CShort(aByte)

The following example uses the CDec  function to convert a numeric value to Decimal .

The following example uses the CInt  function to convert a value to Integer .

The following example uses the CLng  function to convert values to Long .

The following example uses the CObj  function to convert a numeric value to Object . The Object  variable itself contains only a four-byte pointer, which
points to the Double  value assigned to it.

The following example uses the CSByte  function to convert a numeric value to SByte .

The following example uses the CShort  function to convert a numeric value to Short .



CSng Example

Dim aDouble1, aDouble2 As Double
Dim aSingle1, aSingle2 As Single
aDouble1 = 75.3421105
aDouble2 = 75.3421567
' The following line of code sets aSingle1 to 75.34211.
aSingle1 = CSng(aDouble1)
' The following line of code sets aSingle2 to 75.34216.
aSingle2 = CSng(aDouble2)

CStr Example

Dim aDouble As Double
Dim aString As String
aDouble = 437.324
' The following line of code sets aString to "437.324".
aString = CStr(aDouble)

Dim aDate As Date
Dim aString As String
' The following line of code generates a COMPILER ERROR because of invalid format.
' aDate = #February 12, 1969 00:00:00#
' Date literals must be in the format #m/d/yyyy# or they are invalid.
' The following line of code sets the time component of aDate to midnight.
aDate = #2/12/1969#
' The following conversion suppresses the neutral time value of 00:00:00.
' The following line of code sets aString to "2/12/1969".
aString = CStr(aDate)
' The following line of code sets the time component of aDate to one second past midnight.
aDate = #2/12/1969 12:00:01 AM#
' The time component becomes part of the converted value.
' The following line of code sets aString to "2/12/1969 12:00:01 AM".
aString = CStr(aDate)

CUInt Example

Dim aDouble As Double
Dim aUInteger As UInteger
aDouble = 39.501
' The following line of code sets aUInteger to 40.
aUInteger = CUInt(aDouble)

CULng Example

Dim aDouble As Double
Dim aULong As ULong
aDouble = 39.501
' The following line of code sets aULong to 40.
aULong = CULng(aDouble)

CUShort Example

The following example uses the CSng  function to convert values to Single .

The following example uses the CStr  function to convert a numeric value to String .

The following example uses the CStr  function to convert Date  values to String  values.

CStr  always renders a Date  value in the standard short format for the current locale, for example, "6/15/2003 4:35:47 PM". However, CStr

suppresses the neutral values of 1/1/0001 for the date and 00:00:00 for the time.

For more detail on the values returned by CStr , see Return Values for the CStr Function.

The following example uses the CUInt  function to convert a numeric value to UInteger .

The following example uses the CULng  function to convert a numeric value to ULong .

The following example uses the CUShort  function to convert a numeric value to UShort .



Dim aDouble As Double
Dim aUShort As UShort
aDouble = 39.501
' The following line of code sets aUShort to 40.
aUShort = CUShort(aDouble)

See Also
Asc
AscW
Chr
ChrW
Int
Fix
Format
Hex
Oct
Str
Val
Conversion Functions
Type Conversions in Visual Basic

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.format
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.hex
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.oct
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.str
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.val
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions


  

Return Values for the CStr Function (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

IF EXPRESSION  TYPE IS CSTR  RETURNS

Boolean Data Type A string containing "True" or "False".

Date Data Type A string containing a Date  value (date and time) in the short date format of your
system.

Numeric Data Types A string representing the number.

CStr and Date

NOTENOTE

See Also

The following table describes the return values for CStr  for different data types of expression .

The Date  type always contains both date and time information. For purposes of type conversion, Visual Basic considers 1/1/0001 (January 1 of the
year 1) to be a neutral value for the date, and 00:00:00 (midnight) to be a neutral value for the time. CStr  does not include neutral values in the
resulting string. For example, if you convert #January 1, 0001 9:30:00#  to a string, the result is "9:30:00 AM"; the date information is suppressed.
However, the date information is still present in the original Date  value and can be recovered with functions such as DatePart.

The CStr  function performs its conversion based on the current culture settings for the application. To get the string representation of a number in a particular
culture, use the number's ToString(IFormatProvider)  method. For example, use Double.ToString when converting a value of type Double  to a String .

DatePart
Type Conversion Functions
Boolean Data Type
Date Data Type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/return-values-for-the-cstr-function.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/numeric-data-types
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datepart
https://docs.microsoft.com/dotnet/api/system.double.tostring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datepart


            

CType Function (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
CType(expression, typename)  

Parts

Remarks

TIPTIP

Overloading

Converting Dynamic Objects

Example

Dim testNumber As Long = 1000
' The following line of code sets testNewType to 1000.0.
Dim testNewType As Single = CType(testNumber, Single)

See Also

Returns the result of explicitly converting an expression to a specified data type, object, structure, class, or interface.

expression

Any valid expression. If the value of expression  is outside the range allowed by typename , Visual Basic throws an exception.

typename

Any expression that is legal within an As  clause in a Dim  statement, that is, the name of any data type, object, structure, class, or interface.

You can also use the following functions to perform a type conversion:

Type conversion functions such as CByte , CDbl , and CInt  that perform a conversion to a specific data type. For more information, see Type Conversion
Functions.

DirectCast Operator or TryCast Operator. These operators require that one type inherit from or implement the other type. They can provide somewhat
better performance than CType  when converting to and from the Object  data type.

CType  is compiled inline, which means that the conversion code is part of the code that evaluates the expression. In some cases, the code runs faster
because no procedures are called to perform the conversion.

If no conversion is defined from expression  to typename  (for example, from Integer  to Date ), Visual Basic displays a compile-time error message.

If a conversion fails at run time, the appropriate exception is thrown. If a narrowing conversion fails, an OverflowException is the most common result. If
the conversion is undefined, an InvalidCastException in thrown. For example, this can happen if expression  is of type Object  and its run-time type has
no conversion to typename .

If the data type of expression  or typename  is a class or structure you've defined, you can define CType  on that class or structure as a conversion
operator. This makes CType  act as an overloaded operator. If you do this, you can control the behavior of conversions to and from your class or
structure, including the exceptions that can be thrown.

The CType  operator can also be overloaded on a class or structure defined outside your code. If your code converts to or from such a class or structure,
be sure you understand the behavior of its CType  operator. For more information, see Operator Procedures.

Type conversions of dynamic objects are performed by user-defined dynamic conversions that use the TryConvert or BindConvert methods. If you're
working with dynamic objects, use the CTypeDynamic method to convert the dynamic object.

The following example uses the CType  function to convert an expression to the Single  data type.

For additional examples, see Implicit and Explicit Conversions.

OverflowException
InvalidCastException
Type Conversion Functions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/functions/ctype-function.md
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/dotnet/api/system.dynamic.dynamicobject.tryconvert
https://docs.microsoft.com/dotnet/api/system.dynamic.dynamicmetaobject.bindconvert
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.ctypedynamic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception


Conversion Functions
Operator Statement
How to: Define a Conversion Operator
Type Conversion in the .NET Framework

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator
https://docs.microsoft.com/en-us/dotnet/standard/base-types/type-conversion


   

Modifiers (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The topics in this section document Visual Basic run-time modifiers.

Ansi

Assembly

Async

Auto

ByRef

ByVal

Default

Friend

In

Iterator

Key

Module <keyword>

MustInherit

MustOverride

Narrowing

NotInheritable

NotOverridable

Optional

Out

Overloads

Overridable

Overrides

ParamArray

Partial

Private

Protected

Public

ReadOnly

Shadows

Shared

Static

Unicode

Widening

WithEvents

WriteOnly

Visual Basic Language Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/index.md


Visual Basic



      

Ansi (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Smart Device Developer Notes

See Also

Specifies that Visual Basic should marshal all strings to American National Standards Institute (ANSI) values regardless of the name of the external
procedure being declared.

When you call a procedure defined outside your project, the Visual Basic compiler does not have access to the information it needs to call the procedure
correctly. This information includes where the procedure is located, how it is identified, its calling sequence and return type, and the string character set
it uses. The Declare Statement creates a reference to an external procedure and supplies this necessary information.

The charsetmodifier  part in the Declare  statement supplies the character set information for marshaling strings during a call to the external
procedure. It also affects how Visual Basic searches the external file for the external procedure name. The Ansi  modifier specifies that Visual Basic
should marshal all strings to ANSI values and should look up the procedure without modifying its name during the search.

If no character set modifier is specified, Ansi  is the default.

The Ansi  modifier can be used in this context:

Declare Statement

This keyword is not supported.

Auto
Unicode
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/ansi.md


      

Assembly (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Specifies that an attribute at the beginning of a source file applies to the entire assembly.

Many attributes pertain to an individual programming element, such as a class or property. You apply such an attribute by attaching the attribute block,
within angle brackets ( < > ), directly to the declaration statement.

If an attribute pertains not only to the following element but to the entire assembly, you place the attribute block at the beginning of the source file and
identify the attribute with the Assembly  keyword. If it applies to the current assembly module, you use the Module keyword.

You can also apply an attribute to an assembly in the AssemblyInfo.vb file, in which case you do not have to use an attribute block in your main source-
code file.

Module <keyword>
Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/assembly.md


                  

Async (Visual Basic)
6/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Public Async Function ExampleMethodAsync() As Task(Of Integer)  
    ' . . .  

    ' At the Await expression, execution in this method is suspended and,  
    ' if AwaitedProcessAsync has not already finished, control returns  
    ' to the caller of ExampleMethodAsync. When the awaited task is   
    ' completed, this method resumes execution.   
    Dim exampleInt As Integer = Await AwaitedProcessAsync()  

    ' . . .  

    ' The return statement completes the task. Any method that is   
    ' awaiting ExampleMethodAsync can now get the integer result.  
    Return exampleInt  
End Function  

Return Types

Example

The Async  modifier indicates that the method or lambda expression that it modifies is asynchronous. Such methods are referred to as async methods.

An async method provides a convenient way to do potentially long-running work without blocking the caller's thread. The caller of an async method can
resume its work without waiting for the async method to finish.

The Async  and Await  keywords were introduced in Visual Studio 2012. For an introduction to async programming, see Asynchronous Programming with Async and
Await.

The following example shows the structure of an async method. By convention, async method names end in "Async."

Typically, a method modified by the Async  keyword contains at least one Await expression or statement. The method runs synchronously until it
reaches the first Await , at which point it suspends until the awaited task completes. In the meantime, control is returned to the caller of the method. If
the method doesn’t contain an Await  expression or statement, the method isn’t suspended and executes as a synchronous method does. A compiler
warning alerts you to any async methods that don't contain Await  because that situation might indicate an error. For more information, see the
compiler error.

The Async  keyword is an unreserved keyword. It is a keyword when it modifies a method or a lambda expression. In all other contexts, it is interpreted
as an identifier.

An async method is either a Sub procedure, or a Function procedure that has a return type of Task or Task<TResult>. The method cannot declare any
ByRef parameters.

You specify Task(Of TResult)  for the return type of an async method if the Return statement of the method has an operand of type TResult. You use 
Task  if no meaningful value is returned when the method is completed. That is, a call to the method returns a Task , but when the Task  is completed,

any Await  statement that's awaiting the Task  doesn’t produce a result value.

Async subroutines are used primarily to define event handlers where a Sub  procedure is required. The caller of an async subroutine can't await it and
can't catch exceptions that the method throws.

For more information and examples, see Async Return Types.

The following examples show an async event handler, an async lambda expression, and an async method. For a full example that uses these elements,
see Walkthrough: Accessing the Web by Using Async and Await. You can download the walkthrough code from Developer Code Samples.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/async.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/sub-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/function-procedures
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/async-return-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f


' An event handler must be a Sub procedure.  
Async Sub button1_Click(sender As Object, e As RoutedEventArgs) Handles button1.Click  
    textBox1.Clear()  
    ' SumPageSizesAsync is a method that returns a Task.  
    Await SumPageSizesAsync()  
    textBox1.Text = vbCrLf & "Control returned to button1_Click."  
End Sub  

' The following async lambda expression creates an equivalent anonymous  
' event handler.  
AddHandler button1.Click, Async Sub(sender, e)  
                              textBox1.Clear()  
                              ' SumPageSizesAsync is a method that returns a Task.  
                              Await SumPageSizesAsync()  
                              textBox1.Text = vbCrLf & "Control returned to button1_Click."  
                          End Sub  

' The following async method returns a Task(Of T).  
' A typical call awaits the Byte array result:  
'      Dim result As Byte() = Await GetURLContents("http://msdn.com")  
Private Async Function GetURLContentsAsync(url As String) As Task(Of Byte())  

    ' The downloaded resource ends up in the variable named content.  
    Dim content = New MemoryStream()  

    ' Initialize an HttpWebRequest for the current URL.  
    Dim webReq = CType(WebRequest.Create(url), HttpWebRequest)  

    ' Send the request to the Internet resource and wait for  
    ' the response.  
    Using response As WebResponse = Await webReq.GetResponseAsync()  
        ' Get the data stream that is associated with the specified URL.  
        Using responseStream As Stream = response.GetResponseStream()  
            ' Read the bytes in responseStream and copy them to content.    
            ' CopyToAsync returns a Task, not a Task<T>.  
            Await responseStream.CopyToAsync(content)  
        End Using  
    End Using  

    ' Return the result as a byte array.  
    Return content.ToArray()  
End Function  

See Also
AsyncStateMachineAttribute
Await Operator
Asynchronous Programming with Async and Await
Walkthrough: Accessing the Web by Using Async and Await

https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.asyncstatemachineattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await


       

Auto (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Smart Device Developer Notes

See Also

Specifies that Visual Basic should marshal strings according to .NET Framework rules based on the external name of the external procedure being
declared.

When you call a procedure defined outside your project, the Visual Basic compiler does not have access to the information it must have to call the
procedure correctly. This information includes where the procedure is located, how it is identified, its calling sequence and return type, and the string
character set it uses. The Declare Statement creates a reference to an external procedure and supplies this necessary information.

The charsetmodifier  part in the Declare  statement supplies the character set information for marshaling strings during a call to the external
procedure. It also affects how Visual Basic searches the external file for the external procedure name. The Auto  modifier specifies that Visual Basic
should marshal strings according to .NET Framework rules, and that it should determine the base character set of the run-time platform and possibly
modify the external procedure name if the initial search fails. For more information, see "Character Sets" in Declare Statement.

If no character set modifier is specified, Ansi  is the default.

The Auto  modifier can be used in this context:

Declare Statement

This keyword is not supported.

Ansi
Unicode
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/auto.md


         

ByRef (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Specifies that an argument is passed in such a way that the called procedure can change the value of a variable underlying the argument in the calling
code.

The ByRef  modifier can be used in these contexts:

Declare Statement

Function Statement

Sub Statement

Keywords
Passing Arguments by Value and by Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/byref.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-value-and-by-reference


        

ByVal (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Example

Module Module1

    Sub Main()

        ' Declare an instance of the class and assign a value to its field.
        Dim c1 As Class1 = New Class1()
        c1.Field = 5
        Console.WriteLine(c1.Field)
        ' Output: 5

        ' ByVal does not prevent changing the value of a field or property.
        ChangeFieldValue(c1)
        Console.WriteLine(c1.Field)
        ' Output: 500

        ' ByVal does prevent changing the value of c1 itself. 
        ChangeClassReference(c1)
        Console.WriteLine(c1.Field)
        ' Output: 500

        Console.ReadKey()
    End Sub

    Public Sub ChangeFieldValue(ByVal cls As Class1)
        cls.Field = 500
    End Sub

    Public Sub ChangeClassReference(ByVal cls As Class1)
        cls = New Class1()
        cls.Field = 1000
    End Sub

    Public Class Class1
        Public Field As Integer
    End Class

End Module

See Also

Specifies that an argument is passed in such a way that the called procedure or property cannot change the value of a variable underlying the argument
in the calling code.

The ByVal  modifier can be used in these contexts:

Declare Statement

Function Statement

Operator Statement

Property Statement

Sub Statement

The following example demonstrates the use of the ByVal  parameter passing mechanism with a reference type argument. In the example, the
argument is c1 , an instance of class Class1 . ByVal  prevents the code in the procedures from changing the underlying value of the reference
argument, c1 , but does not protect the accessible fields and properties of c1 .

Keywords
Passing Arguments by Value and by Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/byval.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-value-and-by-reference


          

Default (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Identifies a property as the default property of its class, structure, or interface.

A class, structure, or interface can designate at most one of its properties as the default property, provided that property takes at least one parameter. If
code makes a reference to a class or structure without specifying a member, Visual Basic resolves that reference to the default property.

Default properties can result in a small reduction in source code-characters, but they can make your code more difficult to read. If the calling code is not
familiar with your class or structure, when it makes a reference to the class or structure name it cannot be certain whether that reference accesses the
class or structure itself, or a default property. This can lead to compiler errors or subtle run-time logic errors.

You can somewhat reduce the chance of default property errors by always using the Option Strict Statement to set compiler type checking to On .

If you are planning to use a predefined class or structure in your code, you must determine whether it has a default property, and if so, what its name is.

Because of these disadvantages, you should consider not defining default properties. For code readability, you should also consider always referring to
all properties explicitly, even default properties.

The Default  modifier can be used in this context:

Property Statement

How to: Declare and Call a Default Property in Visual Basic
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/default.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-declare-and-call-a-default-property


                             

Friend (Visual Basic)
5/16/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

NOTENOTE

Example

Class CustomerInfo

    Private p_CustomerID As Integer

    Public ReadOnly Property CustomerID() As Integer
        Get
            Return p_CustomerID
        End Get
    End Property

    ' Allow friend access to the empty constructor.
    Friend Sub New()

    End Sub

    ' Require that a customer identifier be specified for the public constructor.
    Public Sub New(ByVal customerID As Integer)
        p_CustomerID = customerID
    End Sub

    ' Allow friend programming elements to set the customer identifier.
    Friend Sub SetCustomerID(ByVal customerID As Integer)
        p_CustomerID = customerID
    End Sub
End Class

Usage

Specifies that one or more declared programming elements are accessible only from within the assembly that contains their declaration.

In many cases, you want programming elements such as classes and structures to be used by the entire assembly, not only by the component that
declares them. However, you might not want them to be accessible by code outside the assembly (for example, if the application is proprietary). If you
want to limit access to an element in this way, you can declare it by using the Friend  modifier.

Code in other classes, structures, and modules that are compiled to the same assembly can access all the Friend  elements in that assembly.

Friend  access is often the preferred level for an application's programming elements, and Friend  is the default access level of an interface, a module, a
class, or a structure.

You can use Friend  only at the module, interface, or namespace level. Therefore, the declaration context for a Friend  element must be a source file, a
namespace, an interface, a module, a class, or a structure; it can't be a procedure.

You can also use the Protected Friend access modifier, which makes a class member accessible from within that class, from derived classes, and from the same assembly
in which the class is defined. To restrict access to a member from within its class and from derived classes in the same assembly, you use the Private Protected access
modifier.

For a comparison of Friend  and the other access modifiers, see Access levels in Visual Basic.

You can specify that another assembly is a friend assembly, which allows it to access all types and members that are marked as Friend . For more information, see
Friend Assemblies.

The following class uses the Friend  modifier to allow other programming elements within the same assembly to access certain members.

You can use the Friend  modifier in these contexts:

Class Statement

Const Statement

Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/friend.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/friend-assemblies


See Also

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Module Statement

Property Statement

Structure Statement

Sub Statement

InternalsVisibleToAttribute
Public
Protected
Private
Private Protected
Protected Friend
Access levels in Visual Basic
Procedures
Structures
Objects and Classes

https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.internalsvisibletoattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


        

In (Generic Modifier) (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

Behavior

Example

' Contravariant interface.
Interface IContravariant(Of In A)
End Interface

' Extending contravariant interface.
Interface IExtContravariant(Of In A)
    Inherits IContravariant(Of A)
End Interface

' Implementing contravariant interface.
Class Sample(Of A)
    Implements IContravariant(Of A)
End Class

Sub Main()
    Dim iobj As IContravariant(Of Object) = New Sample(Of Object)()
    Dim istr As IContravariant(Of String) = New Sample(Of String)()

    ' You can assign iobj to istr, because
    ' the IContravariant interface is contravariant.
    istr = iobj
End Sub

Example

For generic type parameters, the In  keyword specifies that the type parameter is contravariant.

Contravariance enables you to use a less derived type than that specified by the generic parameter. This allows for implicit conversion of classes that
implement variant interfaces and implicit conversion of delegate types.

For more information, see Covariance and Contravariance.

You can use the In  keyword in generic interfaces and delegates.

A type parameter can be declared contravariant in a generic interface or delegate if it is used only as a type of method arguments and not used as a
method return type. ByRef  parameters cannot be covariant or contravariant.

Covariance and contravariance are supported for reference types and not supported for value types.

In Visual Basic, you cannot declare events in contravariant interfaces without specifying the delegate type. Also, contravariant interfaces cannot have
nested classes, enums, or structures, but they can have nested interfaces.

An interface that has a contravariant type parameter allows its methods to accept arguments of less derived types than those specified by the interface
type parameter. For example, because in .NET Framework 4, in the IComparer<T> interface, type T is contravariant, you can assign an object of the 
IComparer(Of Person)  type to an object of the IComparer(Of Employee)  type without using any special conversion methods if Person  inherits Employee .

A contravariant delegate can be assigned another delegate of the same type, but with a less derived generic type parameter.

The following example shows how to declare, extend, and implement a contravariant generic interface. It also shows how you can use implicit
conversion for classes that implement this interface.

The following example shows how to declare, instantiate, and invoke a contravariant generic delegate. It also shows how you can implicitly convert a
delegate type.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/in-generic-modifier.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/dotnet/api/system.collections.generic.icomparer-1


' Contravariant delegate.
Public Delegate Sub DContravariant(Of In A)(ByVal argument As A)

' Methods that match the delegate signature.
Public Shared Sub SampleControl(ByVal control As Control)
End Sub

Public Shared Sub SampleButton(ByVal control As Button)
End Sub

Private Sub Test()

    ' Instantiating the delegates with the methods.
    Dim dControl As DContravariant(Of Control) =
        AddressOf SampleControl
    Dim dButton As DContravariant(Of Button) =
        AddressOf SampleButton

    ' You can assign dControl to dButton
    ' because the DContravariant delegate is contravariant.
    dButton = dControl

    ' Invoke the delegate.
    dButton(New Button())
End Sub

See Also
Variance in Generic Interfaces
Out

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/variance-in-generic-interfaces


        

Iterator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Usage

Example

Sub Main()
    For Each number In Power(2, 8)
        Console.Write(number & " ")
    Next
    ' Output: 2 4 8 16 32 64 128 256
    Console.ReadKey()
End Sub

Private Iterator Function Power(
ByVal base As Integer, ByVal highExponent As Integer) _
As System.Collections.Generic.IEnumerable(Of Integer)

    Dim result = 1

    For counter = 1 To highExponent
        result = result * base
        Yield result
    Next
End Function

Example

Specifies that a function or Get  accessor is an iterator.

An iterator performs a custom iteration over a collection. An iterator uses the Yield statement to return each element in the collection one at a time.
When a Yield  statement is reached, the current location in code is retained. Execution is restarted from that location the next time that the iterator
function is called.

An iterator can be implemented as a function or as a Get  accessor of a property definition. The Iterator  modifier appears in the declaration of the
iterator function or Get  accessor.

You call an iterator from client code by using a For Each...Next Statement.

The return type of an iterator function or Get  accessor can be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.

An iterator cannot have any ByRef  parameters.

An iterator cannot occur in an event, instance constructor, static constructor, or static destructor.

An iterator can be an anonymous function. For more information, see Iterators.

The Iterator  modifier can be used in these contexts:

Function Statement

Property Statement

The following example demonstrates an iterator function. The iterator function has a Yield  statement that is inside a For…Next loop. Each iteration of
the For Each statement body in Main  creates a call to the Power  iterator function. Each call to the iterator function proceeds to the next execution of the
Yield  statement, which occurs during the next iteration of the For…Next  loop.

The following example demonstrates a Get  accessor that is an iterator. The Iterator  modifier is in the property declaration.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/iterator.md
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1


Sub Main()
    Dim theGalaxies As New Galaxies
    For Each theGalaxy In theGalaxies.NextGalaxy
        With theGalaxy
            Console.WriteLine(.Name & "  " & .MegaLightYears)
        End With
    Next
    Console.ReadKey()
End Sub

Public Class Galaxies
    Public ReadOnly Iterator Property NextGalaxy _
    As System.Collections.Generic.IEnumerable(Of Galaxy)
        Get
            Yield New Galaxy With {.Name = "Tadpole", .MegaLightYears = 400}
            Yield New Galaxy With {.Name = "Pinwheel", .MegaLightYears = 25}
            Yield New Galaxy With {.Name = "Milky Way", .MegaLightYears = 0}
            Yield New Galaxy With {.Name = "Andromeda", .MegaLightYears = 3}
        End Get
    End Property
End Class

Public Class Galaxy
    Public Property Name As String
    Public Property MegaLightYears As Integer
End Class

See Also

For additional examples, see Iterators.

IteratorStateMachineAttribute
Iterators
Yield Statement

https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.iteratorstatemachineattribute


  

Key (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Dim flight1 = New With {Key .Airline = "Blue Yonder Airlines",
                        Key .FlightNo = 3554, .Gate = "C33"}

Equality

Dim flight2 = New With {Key .Airline = "Blue Yonder Airlines",
                        Key .FlightNo = 3554, .Gate = "D14"}
' The following statement displays True. The values of the non-key 
' property, Gate, do not have to be equal.
Console.WriteLine(flight1.Equals(flight2))

Dim flight3 = New With {Key .Airline = "Blue Yonder Airlines",
                        Key .FlightNo = 431, .Gate = "C33"}
' The following statement displays False, because flight3 has a
' different value for key property FlightNo.
Console.WriteLine(flight1.Equals(flight3))

Dim flight4 = New With {Key .Airline = "Blue Yonder Airlines",
                        .FlightNo = 3554, .Gate = "C33"}
' The following statement displays False. Instance flight4 is not the 
' same type as flight1 because they have different key properties. 
' FlightNo is a key property of flight1 but not of flight4.
Console.WriteLine(flight1.Equals(flight4))

Hash Code Calculation

Console.WriteLine(flight1.GetHashCode = flight2.GetHashCode)

Console.WriteLine(flight1.GetHashCode = flight3.GetHashCode)

Console.WriteLine(flight1.GetHashCode = flight4.GetHashCode)

The Key  keyword enables you to specify behavior for properties of anonymous types. Only properties you designate as key properties participate in
tests of equality between anonymous type instances, or calculation of hash code values. The values of key properties cannot be changed.

You designate a property of an anonymous type as a key property by placing the keyword Key  in front of its declaration in the initialization list. In the
following example, Airline  and FlightNo  are key properties, but Gate  is not.

When a new anonymous type is created, it inherits directly from Object. The compiler overrides three inherited members: Equals, GetHashCode, and
ToString. The override code that is produced for Equals and GetHashCode is based on key properties. If there are no key properties in the type,
GetHashCode and Equals are not overridden.

Two anonymous type instances are equal if they are instances of the same type and if the values of their key properties are equal. In the following
examples, flight2  is equal to flight1  from the previous example because they are instances of the same anonymous type and they have matching
values for their key properties. However, flight3  is not equal to flight1  because it has a different value for a key property, FlightNo . Instance 
flight4  is not the same type as flight1  because they designate different properties as key properties.

If two instances are declared with only non-key properties, identical in name, type, order, and value, the two instances are not equal. An instance without
key properties is equal only to itself.

For more information about the conditions under which two anonymous type instances are instances of the same anonymous type, see Anonymous
Types.

Like Equals, the hash function that is defined in GetHashCode for an anonymous type is based on the key properties of the type. The following
examples show the interaction between key properties and hash code values.

Instances of an anonymous type that have the same values for all key properties have the same hash code value, even if non-key properties do not have
matching values. The following statement returns True .

Instances of an anonymous type that have different values for one or more key properties have different hash code values. The following statement
returns False .

Instances of anonymous types that designate different properties as key properties are not instances of the same type. They have different hash code
values even when the names and values of all properties are the same. The following statement returns False .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/key.md
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/dotnet/api/system.object.gethashcode
https://docs.microsoft.com/dotnet/api/system.object.tostring
https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/dotnet/api/system.object.gethashcode
https://docs.microsoft.com/dotnet/api/system.object.gethashcode
https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/dotnet/api/system.object.equals
https://docs.microsoft.com/dotnet/api/system.object.gethashcode


Read-Only Values

' The following statement will not compile, because FlightNo is a key
' property and cannot be changed.
' flight1.FlightNo = 1234
'
' Gate is not a key property. Its value can be changed.
flight1.Gate = "C5"

See Also

The values of key properties cannot be changed. For example, in flight1  in the earlier examples, the Airline  and FlightNo  fields are read-only, but 
Gate  can be changed.

Anonymous Type Definition
How to: Infer Property Names and Types in Anonymous Type Declarations
Anonymous Types

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-type-definition
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-infer-property-names-and-types-in-anonymous-type-declarations
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types


      

Module <keyword> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Specifies that an attribute at the beginning of a source file applies to the current assembly module.

Many attributes pertain to an individual programming element, such as a class or property. You apply such an attribute by attaching the attribute block,
within angle brackets ( < > ), directly to the declaration statement.

If an attribute pertains not only to the following element but to the current assembly module, you place the attribute block at the beginning of the
source file and identify the attribute with the Module  keyword. If it applies to the entire assembly, you use the Assembly keyword.

The Module  modifier is not the same as the Module Statement.

Assembly
Module Statement
Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/module-keyword.md


          

MustInherit (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

Example

Public MustInherit Class shape
    Public acrossLine As Double
    Public MustOverride Function area() As Double
End Class
Public Class circle : Inherits shape
    Public Overrides Function area() As Double
        Return Math.PI * acrossLine
    End Function
End Class
Public Class square : Inherits shape
    Public Overrides Function area() As Double
        Return acrossLine * acrossLine
    End Function
End Class
Public Class consumeShapes
    Public Sub makeShapes()
        Dim shape1, shape2 As shape
        shape1 = New circle
        shape2 = New square
    End Sub
End Class

Usage

See Also

Specifies that a class can be used only as a base class and that you cannot create an object directly from it.

The purpose of a base class (also known as an abstract class) is to define functionality that is common to all the classes derived from it. This saves the
derived classes from having to redefine the common elements. In some cases, this common functionality is not complete enough to make a usable
object, and each derived class defines the missing functionality. In such a case, you want the consuming code to create objects only from the derived
classes. You use MustInherit  on the base class to enforce this.

Another use of a MustInherit  class is to restrict a variable to a set of related classes. You can define a base class and derive all these related classes from
it. The base class does not need to provide any functionality common to all the derived classes, but it can serve as a filter for assigning values to
variables. If your consuming code declares a variable as the base class, Visual Basic allows you to assign only an object from one of the derived classes
to that variable.

The .NET Framework defines several MustInherit  classes, among them Array, Enum, and ValueType. ValueType is an example of a base class that
restricts a variable. All value types derive from ValueType. If you declare a variable as ValueType, you can assign only value types to that variable.

Declaration Context. You can use MustInherit  only in a Class  statement.

Combined Modifiers. You cannot specify MustInherit  together with NotInheritable  in the same declaration.

The following example illustrates both forced inheritance and forced overriding. The base class shape  defines a variable acrossLine . The classes 
circle  and square  derive from shape . They inherit the definition of acrossLine , but they must define the function area  because that calculation is

different for each kind of shape.

You can declare shape1  and shape2  to be of type shape . However, you cannot create an object from shape  because it lacks the functionality of the
function area  and is marked MustInherit .

Because they are declared as shape , the variables shape1  and shape2  are restricted to objects from the derived classes circle  and square . Visual
Basic does not allow you to assign any other object to these variables, which gives you a high level of type safety.

The MustInherit  modifier can be used in this context:

Class Statement

Inherits Statement
NotInheritable
Keywords
Inheritance Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/mustinherit.md
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics




            

MustOverride (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

See Also

Specifies that a property or procedure is not implemented in this class and must be overridden in a derived class before it can be used.

You can use MustOverride  only in a property or procedure declaration statement. The property or procedure that specifies MustOverride  must be a
member of a class, and the class must be marked MustInherit.

Incomplete Declaration. When you specify MustOverride , you do not supply any additional lines of code for the property or procedure, not
even the End Function , End Property , or End Sub  statement.

Combined Modifiers. You cannot specify MustOverride  together with NotOverridable , Overridable , or Shared  in the same declaration.

Shadowing and Overriding. Both shadowing and overriding redefine an inherited element, but there are significant differences between the
two approaches. For more information, see Shadowing in Visual Basic.

Alternate Terms. An element that cannot be used except in an override is sometimes called a pure virtual element.

The MustOverride  modifier can be used in these contexts:

Function Statement

Property Statement

Sub Statement

NotOverridable
Overridable
Overrides
MustInherit
Keywords
Shadowing in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/mustoverride.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing


      

Narrowing (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Converting with the Narrowing Keyword

See Also

Indicates that a conversion operator ( CType ) converts a class or structure to a type that might not be able to hold some of the possible values of the
original class or structure.

The conversion procedure must specify Public Shared  in addition to Narrowing .

Narrowing conversions do not always succeed at run time, and can fail or incur data loss. Examples are Long  to Integer , String  to Date , and a base
type to a derived type. This last conversion is narrowing because the base type might not contain all the members of the derived type and thus is not an
instance of the derived type.

If Option Strict  is On , the consuming code must use CType  for all narrowing conversions.

The Narrowing  keyword can be used in this context:

Operator Statement

Operator Statement
Widening
Widening and Narrowing Conversions
How to: Define an Operator
CType Function
Option Strict Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/narrowing.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator


        

NotInheritable (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Specifies that a class cannot be used as a base class.

Alternate Terms. A class that cannot be inherited is sometimes called a sealed class.

The NotInheritable  modifier can be used in this context:

Class Statement

Inherits Statement
MustInherit
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/notinheritable.md


              

NotOverridable (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Combined Modifiers

Usage

See Also

Specifies that a property or procedure cannot be overridden in a derived class.

The NotOverridable  modifier prevents a property or method from being overridden in a derived class. The Overridable modifier allows a property or
method in a class to be overridden in a derived class. For more information, see Inheritance Basics.

If the Overridable  or NotOverridable  modifier is not specified, the default setting depends on whether the property or method overrides a base class
property or method. If the property or method overrides a base class property or method, the default setting is Overridable ; otherwise, it is 
NotOverridable .

An element that cannot be overridden is sometimes called a sealed element.

You can use NotOverridable  only in a property or procedure declaration statement. You can specify NotOverridable  only on a property or procedure
that overrides another property or procedure, that is, only in combination with Overrides .

You cannot specify Overridable  or NotOverridable  for a Private  method.

You cannot specify NotOverridable  together with MustOverride , Overridable , or Shared  in the same declaration.

The NotOverridable  modifier can be used in these contexts:

Function Statement

Property Statement

Sub Statement

Modifiers
Inheritance Basics
MustOverride
Overridable
Overrides
Keywords
Shadowing in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/notoverridable.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing


    

Optional (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

NOTENOTE

Example

Public Function FindMatches(ByRef values As List(Of String),  
                            ByVal searchString As String,  
                            Optional ByVal matchCase As Boolean = False) As List(Of String)  

    Dim results As IEnumerable(Of String)  

    If matchCase Then  
        results = From v In values  
                  Where v.Contains(searchString)  
    Else  
        results = From v In values  
                  Where UCase(v).Contains(UCase(searchString))  
    End If  

    Return results.ToList()  
End Function  

Example

Specifies that a procedure argument can be omitted when the procedure is called.

For each optional parameter, you must specify a constant expression as the default value of that parameter. If the expression evaluates to Nothing, the
default value of the value data type is used as the default value of the parameter.

If the parameter list contains an optional parameter, every parameter that follows it must also be optional.

The Optional  modifier can be used in these contexts:

Declare Statement

Function Statement

Property Statement

Sub Statement

When calling a procedure with or without optional parameters, you can pass arguments by position or by name. For more information, see Passing Arguments by
Position and by Name.

You can also define a procedure with optional parameters by using overloading. If you have one optional parameter, you can define two overloaded versions of the
procedure, one that accepts the parameter and one that doesn’t. For more information, see Procedure Overloading.

The following example defines a procedure that has an optional parameter.

The following example demonstrates how to call a procedure with arguments passed by position and with arguments passed by name. The procedure
has two optional parameters.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/optional.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-position-and-by-name
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-overloading


Private Sub TestParameters()
    ' Call the procedure with its arguments passed by position,
    studentInfo("Mary", 19, #9/21/1981#)

    ' Omit one optional argument by holding its place with a comma.
    studentInfo("Mary", , #9/21/1981#)

    ' Call the procedure with its arguments passed by name.
    studentInfo(age:=19, birth:=#9/21/1981#, name:="Mary")

    ' Supply an argument by position and an argument by name.
    studentInfo("Mary", birth:=#9/21/1981#)
End Sub

Private Sub studentInfo(ByVal name As String,
   Optional ByVal age As Short = 0,
   Optional ByVal birth As Date = #1/1/2000#)

    Console.WriteLine("name: " & name)
    Console.WriteLine("age: " & age)
    Console.WriteLine("birth date: " & birth)
    Console.WriteLine()
End Sub

See Also
Parameter List
Optional Parameters
Keywords

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/optional-parameters


        

Out (Generic Modifier) (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

Behavior

Example

' Covariant interface.
Interface ICovariant(Of Out R)
End Interface

' Extending covariant interface.
Interface IExtCovariant(Of Out R)
    Inherits ICovariant(Of R)
End Interface

' Implementing covariant interface.
Class Sample(Of R)
    Implements ICovariant(Of R)
End Class

Sub Main()
    Dim iobj As ICovariant(Of Object) = New Sample(Of Object)()
    Dim istr As ICovariant(Of String) = New Sample(Of String)()

    ' You can assign istr to iobj because
    ' the ICovariant interface is covariant.
    iobj = istr
End Sub

Example

For generic type parameters, the Out  keyword specifies that the type is covariant.

Covariance enables you to use a more derived type than that specified by the generic parameter. This allows for implicit conversion of classes that
implement variant interfaces and implicit conversion of delegate types.

For more information, see Covariance and Contravariance.

You can use the Out  keyword in generic interfaces and delegates.

In a generic interface, a type parameter can be declared covariant if it satisfies the following conditions:

NOTENOTE

The type parameter is used only as a return type of interface methods and not used as a type of method arguments.

There is one exception to this rule. If in a covariant interface you have a contravariant generic delegate as a method parameter, you can use the covariant type
as a generic type parameter for this delegate. For more information about covariant and contravariant generic delegates, see Variance in Delegates and Using
Variance for Func and Action Generic Delegates.

The type parameter is not used as a generic constraint for the interface methods.

In a generic delegate, a type parameter can be declared covariant if it is used only as a method return type and not used for method arguments.

Covariance and contravariance are supported for reference types, but they are not supported for value types.

In Visual Basic, you cannot declare events in covariant interfaces without specifying the delegate type. Also, covariant interfaces cannot have nested
classes, enums, or structures, but they can have nested interfaces.

An interface that has a covariant type parameter enables its methods to return more derived types than those specified by the type parameter. For
example, because in .NET Framework 4, in IEnumerable<T>, type T is covariant, you can assign an object of the IEnumerabe(Of String)  type to an
object of the IEnumerable(Of Object)  type without using any special conversion methods.

A covariant delegate can be assigned another delegate of the same type, but with a more derived generic type parameter.

The following example shows how to declare, extend, and implement a covariant generic interface. It also shows how to use implicit conversion for
classes that implement a covariant interface.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/out-generic-modifier.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/variance-in-delegates
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/using-variance-for-func-and-action-generic-delegates
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1


' Covariant delegate.
Public Delegate Function DCovariant(Of Out R)() As R

' Methods that match the delegate signature.
Public Shared Function SampleControl() As Control
    Return New Control()
End Function

Public Shared Function SampleButton() As Button
    Return New Button()
End Function

Private Sub Test()

    ' Instantiating the delegates with the methods.
    Dim dControl As DCovariant(Of Control) =
        AddressOf SampleControl
    Dim dButton As DCovariant(Of Button) =
        AddressOf SampleButton

    ' You can assign dButton to dControl
    ' because the DCovariant delegate is covariant.
    dControl = dButton

    ' Invoke the delegate.
    dControl()
End Sub

See Also

The following example shows how to declare, instantiate, and invoke a covariant generic delegate. It also shows how you can use implicit conversion for
delegate types.

Variance in Generic Interfaces
In

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/variance-in-generic-interfaces


           

Overloads (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

See Also

Specifies that a property or procedure redeclares one or more existing properties or procedures with the same name.

Overloading is the practice of supplying more than one definition for a given property or procedure name in the same scope. Redeclaring a property or
procedure with a different signature is sometimes called hiding by signature.

Declaration Context. You can use Overloads  only in a property or procedure declaration statement.

Combined Modifiers. You cannot specify Overloads  together with Shadows in the same procedure declaration.

Required Differences. The signature in this declaration must be different from the signature of every property or procedure that it overloads.
The signature comprises the property or procedure name together with the following:

the number of parameters

the order of the parameters

the data types of the parameters

the number of type parameters (for a generic procedure)

the return type (only for a conversion operator procedure)

All overloads must have the same name, but each must differ from all the others in one or more of the preceding respects. This allows the
compiler to distinguish which version to use when code calls the property or procedure.

Disallowed Differences. Changing one or more of the following is not valid for overloading a property or procedure, because they are not part
of the signature:

whether or not it returns a value (for a procedure)

the data type of the return value (except for a conversion operator)

the names of the parameters or type parameters

the constraints on the type parameters (for a generic procedure)

parameter modifier keywords (such as ByRef  or Optional )

property or procedure modifier keywords (such as Public  or Shared )

Optional Modifier. You do not have to use the Overloads  modifier when you are defining multiple overloaded properties or procedures in the
same class. However, if you use Overloads  in one of the declarations, you must use it in all of them.

Shadowing and Overloading. Overloads  can also be used to shadow an existing member, or set of overloaded members, in a base class.
When you use Overloads  in this way, you declare the property or method with the same name and the same parameter list as the base class
member, and you do not supply the Shadows  keyword.

If you use Overrides , the compiler implicitly adds Overloads  so that your library APIs work with C# more easily.

The Overloads  modifier can be used in these contexts:

Function Statement

Operator Statement

Property Statement

Sub Statement

Shadows
Procedure Overloading
Generic Types in Visual Basic
Operator Procedures
How to: Define a Conversion Operator

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/overloads.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-overloading
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator


              

Overridable (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Combined Modifiers

Usage

See Also

Specifies that a property or procedure can be overridden by an identically named property or procedure in a derived class.

The Overridable  modifier allows a property or method in a class to be overridden in a derived class. The NotOverridable modifier prevents a property
or method from being overridden in a derived class. For more information, see Inheritance Basics.

If the Overridable  or NotOverridable  modifier is not specified, the default setting depends on whether the property or method overrides a base class
property or method. If the property or method overrides a base class property or method, the default setting is Overridable ; otherwise, it is 
NotOverridable .

You can shadow or override to redefine an inherited element, but there are significant differences between the two approaches. For more information,
see Shadowing in Visual Basic.

An element that can be overridden is sometimes referred to as a virtual element. If it can be overridden, but does not have to be, it is sometimes also
called a concrete element.

You can use Overridable  only in a property or procedure declaration statement.

You cannot specify Overridable  or NotOverridable  for a Private  method.

You cannot specify Overridable  together with MustOverride , NotOverridable , or Shared  in the same declaration.

Because an overriding element is implicitly overridable, you cannot combine Overridable  with Overrides .

The Overridable  modifier can be used in these contexts:

Function Statement

Property Statement

Sub Statement

Modifiers
Inheritance Basics
MustOverride
NotOverridable
Overrides
Keywords
Shadowing in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/overridable.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing


             

Overrides (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

See Also

Specifies that a property or procedure overrides an identically named property or procedure inherited from a base class.

Declaration Context. You can use Overrides  only in a property or procedure declaration statement.

Combined Modifiers. You cannot specify Overrides  together with Shadows  or Shared  in the same declaration. Because an overriding element
is implicitly overridable, you cannot combine Overridable  with Overrides .

Matching Signatures. The signature of this declaration must exactly match the signature of the property or procedure that it overrides. This
means the parameter lists must have the same number of parameters, in the same order, with the same data types.

In addition to the signature, the overriding declaration must also exactly match the following:

The access level

The return type, if any

Generic Signatures. For a generic procedure, the signature includes the number of type parameters. Therefore, the overriding declaration must
match the base class version in that respect as well.

Additional Matching. In addition to matching the signature of the base class version, this declaration must also match it in the following
respects:

Access-level modifier (such as Public)

Passing mechanism of each parameter (ByVal or ByRef)

Constraint lists on each type parameter of a generic procedure

Shadowing and Overriding. Both shadowing and overriding redefine an inherited element, but there are significant differences between the
two approaches. For more information, see Shadowing in Visual Basic.

If you use Overrides , the compiler implicitly adds Overloads  so that your library APIs work with C# more easily.

The Overrides  modifier can be used in these contexts:

Function Statement

Property Statement

Sub Statement

MustOverride
NotOverridable
Overridable
Keywords
Shadowing in Visual Basic
Generic Types in Visual Basic
Type List

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/overrides.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


  

ParamArray (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

IMPORTANTIMPORTANT

See Also

Specifies that a procedure parameter takes an optional array of elements of the specified type. ParamArray  can be used only on the last parameter of a
parameter list.

ParamArray  allows you to pass an arbitrary number of arguments to the procedure. A ParamArray  parameter is always declared using ByVal.

You can supply one or more arguments to a ParamArray  parameter by passing an array of the appropriate data type, a comma-separated list of values,
or nothing at all. For details, see "Calling a ParamArray" in Parameter Arrays.

Whenever you deal with an array which can be indefinitely large, there is a risk of overrunning some internal capacity of your application. If you accept a parameter
array from the calling code, you should test its length and take appropriate steps if it is too large for your application.

The ParamArray  modifier can be used in these contexts:

Declare Statement

Function Statement

Property Statement

Sub Statement

Keywords
Parameter Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/paramarray.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/parameter-arrays
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/parameter-arrays


      

Partial (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Syntax
[ <attrlist> ] [ accessmodifier ] [ Shadows ] [ MustInherit | NotInheritable ] _  
Partial { Class | Structure | Interface | Module } name [ (Of typelist) ]  
    [ Inherits classname ]  
    [ Implements interfacenames ]  
    [ variabledeclarations ]  
    [ proceduredeclarations ]  
{ End Class | End Structure }  

Parts
TERM DEFINITION

attrlist Optional. List of attributes that apply to this type. You must enclose the Attribute
List in angle brackets ( < > ).

accessmodifier Optional. Specifies what code can access this type. See Access levels in Visual Basic.

Shadows Optional. See Shadows.

MustInherit Optional. See MustInherit.

NotInheritable Optional. See NotInheritable.

name Required. Name of this type. Must match the name defined in all other partial
declarations of the same type.

Of Optional. Specifies that this is a generic type. See Generic Types in Visual Basic.

typelist Required if you use Of. See Type List.

Inherits Optional. See Inherits Statement.

classname Required if you use Inherits . The name of the class or interface from which this
class derives.

Implements Optional. See Implements Statement.

interfacenames Required if you use Implements . The names of the interfaces this type
implements.

variabledeclarations Optional. Statements which declare additional variables and events for the type.

proceduredeclarations Optional. Statements which declare and define additional procedures for the type.

End Class  or End Structure Ends this partial Class  or Structure  definition.

Remarks

Indicates that a type declaration is a partial definition of the type.

You can divide the definition of a type among several declarations by using the Partial  keyword. You can use as many partial declarations as you want,
in as many different source files as you want. However, all the declarations must be in the same assembly and the same namespace.

Visual Basic supports partial methods, which are typically implemented in partial classes. For more information, see Partial Methods and Sub Statement.

Visual Basic uses partial-class definitions to separate generated code from user-authored code in separate source files. For example, the Windows
Form Designer defines partial classes for controls such as Form. You should not modify the generated code in these controls.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/partial.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/partial-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/dotnet/api/system.windows.forms.form


Best Practices

Behavior

Example

Partial Public Class sampleClass
    Public Sub sub1()
    End Sub
End Class
Partial Public Class sampleClass
    Public Sub sub2()
    End Sub
End Class

See Also

All the rules for class, structure, interface, and module creation, such as those for modifier usage and inheritance, apply when creating a partial type.

Under normal circumstances, you should not split the development of a single type across two or more declarations. Therefore, in most cases
you do not need the Partial  keyword.

For readability, every partial declaration of a type should include the Partial  keyword. The compiler allows at most one partial declaration to
omit the keyword; if two or more omit it the compiler signals an error.

Union of Declarations. The compiler treats the type as the union of all its partial declarations. Every modifier from every partial definition
applies to the entire type, and every member from every partial definition is available to the entire type.

Type Promotion Not Allowed For Partial Types in Modules. If a partial definition is inside a module, type promotion of that type is
automatically defeated. In such a case, a set of partial definitions can cause unexpected results and even compiler errors. For more information,
see Type Promotion.

The compiler merges partial definitions only when their fully qualified paths are identical.

The Partial  keyword can be used in these contexts:

Class Statement

Structure Statement

The following example splits the definition of class sampleClass  into two declarations, each of which defines a different Sub  procedure.

The two partial definitions in the preceding example could be in the same source file or in two different source files.

Class Statement
Structure Statement
Type Promotion
Shadows
Generic Types in Visual Basic
Partial Methods

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/type-promotion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/type-promotion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/partial-methods


                                   

Private (Visual Basic)
5/16/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Rules

Behavior

See Also

Specifies that one or more declared programming elements are accessible only from within their declaration context, including from within any
contained types.

If a programming element represents proprietary functionality, or contains confidential data, you usually want to limit access to it as strictly as possible.
You achieve the maximum limitation by allowing only the module, class, or structure that defines it to access it. To limit access to an element in this way,
you can declare it with Private .

You can also use the Private Protected access modifier, which makes a member accessible from within that class and from derived classes located in its containing
assembly.

Declaration Context. You can use Private  only at module level. This means the declaration context for a Private  element must be a module,
class, or structure, and cannot be a source file, namespace, interface, or procedure.

Access Level. All code within a declaration context can access its Private  elements. This includes code within a contained type, such as a nested
class or an assignment expression in an enumeration. No code outside of the declaration context can access its Private  elements.

Access Modifiers. The keywords that specify access level are called access modifiers. For a comparison of the access modifiers, see Access levels
in Visual Basic.

The Private  modifier can be used in these contexts:

Class Statement

Const Statement

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Property Statement

Structure Statement

Sub Statement

Public
Protected
Friend
Private Protected
Protected Friend Access levels in Visual Basic
Procedures
Structures
Objects and Classes

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/private.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


                        

Protected (Visual Basic)
5/16/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Rules

Behavior

See Also

A member access modifier that specifies that one or more declared programming elements are accessible only from within their own class or from a
derived class.

Sometimes a programming element declared in a class contains sensitive data or restricted code, and you want to limit access to the element. However,
if the class is inheritable and you expect a hierarchy of derived classes, it might be necessary for these derived classes to access the data or code. In such
a case, you want the element to be accessible both from the base class and from all derived classes. To limit access to an element in this manner, you can
declare it with Protected .

The Protected  access modifier can be combined with two other modifiers:

The Protected Friend modifier makes a class member accessible from within that class, from derived classes, and from the same assembly in which the class is
defined.
The Private Protected modifier makes a class member accessible by derived types, but only within its containing assembly.

Declaration Context. You can use Protected  only at the class level. This means the declaration context for a Protected  element must be a class,
and cannot be a source file, namespace, interface, module, structure, or procedure.

Access Level. All code in a class can access its elements. Code in any class that derives from a base class can access all the Protected  elements
of the base class. This is true for all generations of derivation. This means that a class can access Protected  elements of the base class of the base
class, and so on.

Protected access is not a superset or subset of friend access.

Access Modifiers. The keywords that specify access level are called access modifiers. For a comparison of the access modifiers, see Access levels
in Visual Basic.

The Protected  modifier can be used in these contexts:

Class Statement

Const Statement

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Property Statement

Structure Statement

Sub Statement

Public
Friend
Private
Private Protected
Protected Friend
Access levels in Visual Basic
Procedures

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/protected.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Structures
Objects and Classes

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


                                 

Public (Visual Basic)
5/16/2018 • 2 minutes to read • Edit Online

Remarks

Rules

Behavior

See Also

Specifies that one or more declared programming elements have no access restrictions.

If you are publishing a component or set of components, such as a class library, you usually want the programming elements to be accessible by any
code that interoperates with your assembly. To confer such unlimited access on an element, you can declare it with Public .

Public access is the normal level for a programming element when you do not need to limit access to it. Note that the access level of an element
declared within an interface, module, class, or structure defaults to Public  if you do not declare it otherwise.

Declaration Context. You can use Public  only at module, interface, or namespace level. This means the declaration context for a Public  element
must be a source file, namespace, interface, module, class, or structure, and cannot be a procedure.

Access Level. All code that can access a module, class, or structure can access its Public  elements.

Default Access. Local variables inside a procedure default to public access, and you cannot use any access modifiers on them.

Access Modifiers. The keywords that specify access level are called access modifiers. For a comparison of the access modifiers, see Access levels
in Visual Basic.

The Public  modifier can be used in these contexts:

Class Statement

Const Statement

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Module Statement

Operator Statement

Property Statement

Structure Statement

Sub Statement

Protected
Friend
Private
Private Protected
Protected Friend
Access levels in Visual Basic
Procedures
Structures
Objects and Classes

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/public.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


                    

ReadOnly (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

When to Use a ReadOnly Variable

IMPORTANTIMPORTANT

Example

Class employee
    ' Only code inside class employee can change the value of hireDateValue.
    Private hireDateValue As Date
    ' Any code that can access class employee can read property dateHired.
    Public ReadOnly Property dateHired() As Date
        Get
            Return hireDateValue
        End Get
    End Property
End Class

See Also

Specifies that a variable or property can be read but not written.

Declaration Context. You can use ReadOnly  only at module level. This means the declaration context for a ReadOnly  element must be a class,
structure, or module, and cannot be a source file, namespace, or procedure.

Combined Modifiers. You cannot specify ReadOnly  together with Static  in the same declaration.

Assigning a Value. Code consuming a ReadOnly  property cannot set its value. But code that has access to the underlying storage can assign or
change the value at any time.

You can assign a value to a ReadOnly  variable only in its declaration or in the constructor of a class or structure in which it is defined.

There are situations in which you cannot use a Const Statement to declare and assign a constant value. For example, the Const  statement might not
accept the data type you want to assign, or you might not be able to compute the value at compile time with a constant expression. You might not even
know the value at compile time. In these cases, you can use a ReadOnly  variable to hold a constant value.

If the data type of the variable is a reference type, such as an array or a class instance, its members can be changed even if the variable itself is ReadOnly . The
following example illustrates this.

ReadOnly characterArray() As Char = {"x"c, "y"c, "z"c}

Sub changeArrayElement()

characterArray(1) = "M"c

End Sub

When initialized, the array pointed to by characterArray()  holds "x", "y", and "z". Because the variable characterArray  is ReadOnly , you cannot change
its value once it is initialized; that is, you cannot assign a new array to it. However, you can change the values of one or more of the array members.
Following a call to the procedure changeArrayElement , the array pointed to by characterArray()  holds "x", "M", and "z".

Note that this is similar to declaring a procedure parameter to be ByVal, which prevents the procedure from changing the calling argument itself but
allows it to change its members.

The following example defines a ReadOnly  property for the date on which an employee was hired. The class stores the property value internally as a 
Private  variable, and only code inside the class can change that value. However, the property is Public , and any code that can access the class can

read the property.

The ReadOnly  modifier can be used in these contexts:

Dim Statement

Property Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/readonly.md


WriteOnly
Keywords



                        

Shadows (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

See Also

Specifies that a declared programming element redeclares and hides an identically named element, or set of overloaded elements, in a base class.

The main purpose of shadowing (which is also known as hiding by name) is to preserve the definition of your class members. The base class might
undergo a change that creates an element with the same name as one you have already defined. If this happens, the Shadows  modifier forces references
through your class to be resolved to the member you defined, instead of to the new base class element.

Both shadowing and overriding redefine an inherited element, but there are significant differences between the two approaches. For more information,
see Shadowing in Visual Basic.

Declaration Context. You can use Shadows  only at class level. This means the declaration context for a Shadows  element must be a class, and
cannot be a source file, namespace, interface, module, structure, or procedure.

You can declare only one shadowing element in a single declaration statement.

Combined Modifiers. You cannot specify Shadows  together with Overloads , Overrides , or Static  in the same declaration.

Element Types. You can shadow any kind of declared element with any other kind. If you shadow a property or procedure with another
property or procedure, the parameters and the return type do not have to match those in the base class property or procedure.

Accessing. The shadowed element in the base class is normally unavailable from within the derived class that shadows it. However, the following
considerations apply.

If the shadowing element is not accessible from the code referring to it, the reference is resolved to the shadowed element. For example, if
a Private  element shadows a base class element, code that does not have permission to access the Private  element accesses the base
class element instead.

If you shadow an element, you can still access the shadowed element through an object declared with the type of the base class. You can
also access it through MyBase .

The Shadows  modifier can be used in these contexts:

Class Statement

Const Statement

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

Function Statement

Interface Statement

Property Statement

Structure Statement

Sub Statement

Shared
Static
Private
Me, My, MyBase, and MyClass
Inheritance Basics
MustOverride
NotOverridable
Overloads
Overridable

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/shadows.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


Overrides
Shadowing in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing


                       

Shared (Visual Basic)
7/2/2018 • 3 minutes to read • Edit Online

Remarks

When to Use Shared

Rules

Behavior

Specifies that one or more declared programming elements are associated with a class or structure at large, and not with a specific instance of the class
or structure.

Sharing a member of a class or structure makes it available to every instance, rather than nonshared, where each instance keeps its own copy. This is
useful, for example, if the value of a variable applies to the entire application. If you declare that variable to be Shared , then all instances access the
same storage location, and if one instance changes the variable's value, all instances access the updated value.

Sharing does not alter the access level of a member. For example, a class member can be shared and private (accessible only from within the class), or
nonshared and public. For more information, see Access levels in Visual Basic.

Declaration Context. You can use Shared  only at module level. This means the declaration context for a Shared  element must be a class or
structure, and cannot be a source file, namespace, or procedure.

Combined Modifiers. You cannot specify Shared  together with Overrides, Overridable, NotOverridable, MustOverride, or Static in the same
declaration.

Accessing. You access a shared element by qualifying it with its class or structure name, not with the variable name of a specific instance of its
class or structure. You do not even have to create an instance of a class or structure to access its shared members.

The following example calls the shared procedure IsNaN exposed by the Double structure.

If Double.IsNaN(result) Then MsgBox("Result is mathematically undefined.")

Implicit Sharing. You cannot use the Shared  modifier in a Const Statement, but constants are implicitly shared. Similarly, you cannot declare a
member of a module or an interface to be Shared , but they are implicitly shared.

Sub main()  
    shareTotal.total = 10  
    ' The preceding line is the preferred way to access total.  
    Dim instanceVar As New shareTotal  
    instanceVar.total += 100  
    ' The preceding line generates a compiler warning message and  
    ' accesses total through class shareTotal instead of through  
    ' the variable instanceVar. This works as expected and adds  
    ' 100 to total.  
    returnClass().total += 1000  
    ' The preceding line generates a compiler warning message and  
    ' accesses total through class shareTotal instead of calling  
    ' returnClass(). This adds 1000 to total but does not work as  
    ' expected, because the MsgBox in returnClass() does not run.  
    MsgBox("Value of total is " & CStr(shareTotal.total))  
End Sub  
Public Function returnClass() As shareTotal  
    MsgBox("Function returnClass() called")  
    Return New shareTotal  
End Function  
Public Class shareTotal  
    Public Shared total As Integer  
End Class  

Storage. A shared variable or event is stored in memory only once, no matter how many or few instances you create of its class or structure.
Similarly, a shared procedure or property holds only one set of local variables.

Accessing through an Instance Variable. It is possible to access a shared element by qualifying it with the name of a variable that contains a
specific instance of its class or structure. Although this usually works as expected, the compiler generates a warning message and makes the
access through the class or structure name instead of the variable.

Accessing through an Instance Expression. If you access a shared element through an expression that returns an instance of its class or
structure, the compiler makes the access through the class or structure name instead of evaluating the expression. This produces unexpected
results if you intended the expression to perform other actions as well as returning the instance. The following example illustrates this.

In the preceding example, the compiler generates a warning message both times the code accesses the shared variable total  through an

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/shared.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/dotnet/api/system.double.isnan
https://docs.microsoft.com/dotnet/api/system.double


See Also

instance. In each case it makes the access directly through the class shareTotal  and does not make use of any instance. In the case of the
intended call to the procedure returnClass , this means it does not even generate a call to returnClass , so the additional action of displaying
"Function returnClass() called" is not performed.

The Shared  modifier can be used in these contexts:

Dim Statement

Event Statement

Function Statement

Operator Statement

Property Statement

Sub Statement

Shadows
Static
Lifetime in Visual Basic
Procedures
Structures
Objects and Classes

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/lifetime
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


       

Static (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

Behavior

Example

Function updateSales(ByVal thisSale As Decimal) As Decimal
    Static totalSales As Decimal = 0
    totalSales += thisSale
    Return totalSales
End Function

See Also

Specifies that one or more declared local variables are to continue to exist and retain their latest values after termination of the procedure in which they
are declared.

Normally, a local variable in a procedure ceases to exist as soon as the procedure stops. A static variable continues to exist and retains its most recent
value. The next time your code calls the procedure, the variable is not reinitialized, and it still holds the latest value that you assigned to it. A static
variable continues to exist for the lifetime of the class or module that it is defined in.

Declaration Context. You can use Static  only on local variables. This means the declaration context for a Static  variable must be a
procedure or a block in a procedure, and it cannot be a source file, namespace, class, structure, or module.

You cannot use Static  inside a structure procedure.

The data types of Static  local variables cannot be inferred. For more information, see Local Type Inference.

Combined Modifiers. You cannot specify Static  together with ReadOnly , Shadows , or Shared  in the same declaration.

When you declare a static variable in a Shared  procedure, only one copy of the static variable is available for the whole application. You call a Shared

procedure by using the class name, not a variable that points to an instance of the class.

When you declare a static variable in a procedure that isn't Shared , only one copy of the variable is available for each instance of the class. You call a
non-shared procedure by using a variable that points to a specific instance of the class.

The following example demonstrates the use of Static .

The Static  variable totalSales  is initialized to 0 only one time. Each time that you enter updateSales , totalSales  still has the most recent value that
you calculated for it.

The Static  modifier can be used in this context:

Dim Statement

Shadows
Shared
Lifetime in Visual Basic
Variable Declaration
Structures
Local Type Inference
Objects and Classes

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/static.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/lifetime
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


      

Unicode (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Smart Device Developer Notes

See Also

Specifies that Visual Basic should marshal all strings to Unicode values regardless of the name of the external procedure being declared.

When you call a procedure defined outside your project, the Visual Basic compiler does not have access to the information it must have in order to call
the procedure correctly. This information includes where the procedure is located, how it is identified, its calling sequence and return type, and the string
character set it uses. The Declare Statement creates a reference to an external procedure and supplies this necessary information.

The charsetmodifier  part in the Declare  statement supplies the character set information to marshal strings during a call to the external procedure. It
also affects how Visual Basic searches the external file for the external procedure name. The Unicode  modifier specifies that Visual Basic should
marshal all strings to Unicode values and should look up the procedure without modifying its name during the search.

If no character set modifier is specified, Ansi  is the default.

The Unicode  modifier can be used in this context:

Declare Statement

This keyword is not supported.

Ansi
Auto
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/unicode.md


       

Widening (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Converting with the Widening Keyword

See Also

Indicates that a conversion operator ( CType ) converts a class or structure to a type that can hold all possible values of the original class or structure.

The conversion procedure must specify Public Shared  in addition to Widening .

Widening conversions always succeed at run time and never incur data loss. Examples are Single  to Double , Char  to String , and a derived type to its
base type. This last conversion is widening because the derived type contains all the members of the base type and thus is an instance of the base type.

The consuming code does not have to use CType  for widening conversions, even if Option Strict  is On .

The Widening  keyword can be used in this context:

Operator Statement

For example definitions of widening and narrowing conversion operators, see How to: Define a Conversion Operator.

Operator Statement
Narrowing
Widening and Narrowing Conversions
How to: Define an Operator
CType Function
Option Strict Statement
How to: Define a Conversion Operator

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/widening.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator


       

WithEvents (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

See Also

Specifies that one or more declared member variables refer to an instance of a class that can raise events.

When a variable is defined using WithEvents , you can declaratively specify that a method handles the variable's events using the Handles  keyword.

You can use WithEvents  only at class or module level. This means the declaration context for a WithEvents  variable must be a class or module and
cannot be a source file, namespace, structure, or procedure.

You cannot use WithEvents  on a structure member.

You can declare only individual variables—not arrays—with WithEvents .

Element Types. You must declare WithEvents  variables to be object variables so that they can accept class instances. However, you cannot declare
them as Object . You must declare them as the specific class that can raise the events.

The WithEvents  modifier can be used in this context: Dim Statement

Handles
Keywords
Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/withevents.md


      

WriteOnly (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Rules

When to Use WriteOnly

IMPORTANTIMPORTANT

See Also

Specifies that a property can be written but not read.

Declaration Context. You can use WriteOnly  only at module level. This means the declaration context for a WriteOnly  property must be a class,
structure, or module, and cannot be a source file, namespace, or procedure.

You can declare a property as WriteOnly , but not a variable.

Sometimes you want the consuming code to be able to set a value but not discover what it is. For example, sensitive data, such as a social registration
number or a password, needs to be protected from access by any component that did not set it. In these cases, you can use a WriteOnly  property to set
the value.

When you define and use a WriteOnly  property, consider the following additional protective measures:

Overriding. If the property is a member of a class, allow it to default to NotOverridable, and do not declare it Overridable  or MustOverride .
This prevents a derived class from making undesired access through an override.

Access Level. If you hold the property's sensitive data in one or more variables, declare them Private so that no other code can access them.

Encryption. Store all sensitive data in encrypted form rather than in plain text. If malicious code somehow gains access to that area of memory,
it is more difficult to make use of the data. Encryption is also useful if it is necessary to serialize the sensitive data.

Resetting. When the class, structure, or module defining the property is being terminated, reset the sensitive data to default values or to other
meaningless values. This gives extra protection when that area of memory is freed for general access.

Persistence. Do not persist any sensitive data, for example on disk, if you can avoid it. Also, do not write any sensitive data to the Clipboard.

The WriteOnly  modifier can be used in this context:

Property Statement

ReadOnly
Private
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modifiers/writeonly.md


 

Modules (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Constants Contains miscellaneous constants. These constants can be used anywhere in your
code.

ControlChars Contains constant control characters for printing and displaying text.

Conversion Contains members that convert decimal numbers to other bases, numbers to
strings, strings to numbers, and one data type to another.

DateAndTime Contains members that get the current date or time, perform date calculations,
return a date or time, set the date or time, or time the duration of a process.

ErrObject Contains information about run-time errors and methods to raise or clear an error.

FileSystem Contains members that perform file, directory or folder, and system operations.

Financial Contains procedures that are used to perform financial calculations.

Globals Contains information about the current scripting engine version.

Information Contains the members that return, test for, or verify information such as array size,
type names, and so on.

Interaction Contains members interact with objects, applications, and systems.

Strings Contains members that perform string operations such as reformatting strings,
searching a string, getting the length of a string, and so on.

VBMath Contains members perform mathematical operations.

See Also

Visual Basic provides several modules that enable you to simplify common tasks in your code, including manipulating strings, performing mathematical
calculations, getting system information, performing file and directory operations, and so on. The following table lists the modules provided by Visual
Basic.

Visual Basic Language Reference
Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/modules.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.financial
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.vbmath


                        

Nothing (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

NOTENOTE

Remarks

Module Module1

    Sub Main()
        Dim ts As TestStruct
        Dim i As Integer
        Dim b As Boolean

        ' The following statement sets ts.Name to Nothing and ts.Number to 0.
        ts = Nothing

        ' The following statements set i to 0 and b to False.
        i = Nothing
        b = Nothing

        Console.WriteLine("ts.Name: " & ts.Name)
        Console.WriteLine("ts.Number: " & ts.Number)
        Console.WriteLine("i: " & i)
        Console.WriteLine("b: " & b)

        Console.ReadKey()
    End Sub

    Public Structure TestStruct
        Public Name As String
        Public Number As Integer
    End Structure
End Module

Represents the default value of any data type. For reference types, the default value is the null  reference. For value types, the default value depends on
whether the value type is nullable.

For non-nullable value types, Nothing  in Visual Basic differs from null  in C#. In Visual Basic, if you set a variable of a non-nullable value type to Nothing , the
variable is set to the default value for its declared type. In C#, if you assign a variable of a non-nullable value type to null , a compile-time error occurs.

Nothing  represents the default value of a data type. The default value depends on whether the variable is of a value type or of a reference type.

A variable of a value type directly contains its value. Value types include all numeric data types, Boolean , Char , Date , all structures, and all
enumerations. A variable of a reference type stores a reference to an instance of the object in memory. Reference types include classes, arrays,
delegates, and strings. For more information, see Value Types and Reference Types.

If a variable is of a value type, the behavior of Nothing  depends on whether the variable is of a nullable data type. To represent a nullable value type,
add a ?  modifier to the type name. Assigning Nothing  to a nullable variable sets the value to null . For more information and examples, see Nullable
Value Types.

If a variable is of a value type that is not nullable, assigning Nothing  to it sets it to the default value for its declared type. If that type contains variable
members, they are all set to their default values. The following example illustrates this for scalar types.

If a variable is of a reference type, assigning Nothing  to the variable sets it to a null  reference of the variable's type. A variable that is set to a null

reference is not associated with any object. The following example demonstrates this.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/nothing.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/value-types-and-reference-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


Module Module1

    Sub Main()

        Dim testObject As Object
        ' The following statement sets testObject so that it does not refer to
        ' any instance.
        testObject = Nothing

        Dim tc As New TestClass
        tc = Nothing
        ' The fields of tc cannot be accessed. The following statement causes 
        ' a NullReferenceException at run time. (Compare to the assignment of
        ' Nothing to structure ts in the previous example.)
        'Console.WriteLine(tc.Field1)

    End Sub

    Class TestClass
        Public Field1 As Integer
        ' . . .
    End Class
End Module

Module Module1
    Sub Main()

        Dim testObject As Object
        testObject = Nothing
        Console.WriteLine(testObject Is Nothing)
        ' Output: True

        Dim tc As New TestClass
        tc = Nothing
        Console.WriteLine(tc IsNot Nothing)
        ' Output: False

        ' Declare a nullable value type.
        Dim n? As Integer
        Console.WriteLine(n Is Nothing)
        ' Output: True

        n = 4
        Console.WriteLine(n Is Nothing)
        ' Output: False

        n = Nothing
        Console.WriteLine(n IsNot Nothing)
        ' Output: False

        Console.ReadKey()
    End Sub

    Class TestClass
        Public Field1 As Integer
        Private field2 As Boolean
    End Class
End Module

See Also

When checking whether a reference (or nullable value type) variable is null , do not use = Nothing  or <> Nothing . Always use Is Nothing  or 
IsNot Nothing .

For strings in Visual Basic, the empty string equals Nothing . Therefore, "" = Nothing  is true.

The following example shows comparisons that use the Is  and IsNot  operators.

If you declare a variable without using an As  clause and set it to Nothing , the variable has a type of Object . An example of this is 
Dim something = Nothing . A compile-time error occurs in this case when Option Strict  is on and Option Infer  is off.

When you assign Nothing  to an object variable, it no longer refers to any object instance. If the variable had previously referred to an instance, setting it
to Nothing  does not terminate the instance itself. The instance is terminated, and the memory and system resources associated with it are released, only
after the garbage collector (GC) detects that there are no active references remaining.

Nothing  differs from the DBNull object, which represents an uninitialized variant or a nonexistent database column.

Dim Statement
Object Lifetime: How Objects Are Created and Destroyed
Lifetime in Visual Basic
Is Operator

https://docs.microsoft.com/dotnet/api/system.dbnull
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/lifetime


IsNot Operator
Nullable Value Types

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


   

Objects (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Visual Basic Run-time Objects

Collection Provides a convenient way to see a related group of items as a single object.

Err Contains information about run-time errors.

The My.Application  object consists of the following classes:

ApplicationBase provides members that are available in all projects.

WindowsFormsApplicationBase provides members available in Windows Forms
applications.

ConsoleApplicationBase provides members available in console applications.

Provides data that is associated only with the current application or DLL. No
system-level information can be altered with My.Application .

Some members are available only for Windows Forms or console applications.

My.Application.Info  (Info) Provides properties for getting the information about an application, such as the
version number, description, loaded assemblies, and so on.

My.Application.Log  (Log) Provides a property and methods to write event and exception information to the
application's log listeners.

My.Computer  (Computer) Provides properties for manipulating computer components such as audio, the
clock, the keyboard, the file system, and so on.

My.Computer.Audio  (Audio) Provides methods for playing sounds.

My.Computer.Clipboard  (Clipboard) Provides methods for manipulating the Clipboard.

My.Computer.Clock  (Clock) Provides properties for accessing the current local time and Universal Coordinated
Time (equivalent to Greenwich Mean Time) from the system clock.

My.Computer.FileSystem  (FileSystem) Provides properties and methods for working with drives, files, and directories.

My.Computer.FileSystem.SpecialDirectories  (SpecialDirectories) Provides properties for accessing commonly referenced directories.

My.Computer.Info  (ComputerInfo) Provides properties for getting information about the computer's memory, loaded
assemblies, name, and operating system.

My.Computer.Keyboard  (Keyboard) Provides properties for accessing the current state of the keyboard, such as what
keys are currently pressed, and provides a method to send keystrokes to the active
window.

My.Computer.Mouse  (Mouse) Provides properties for getting information about the format and configuration of
the mouse that is installed on the local computer.

My.Computer.Network  (Network) Provides a property, an event, and methods for interacting with the network to
which the computer is connected.

My.Computer.Ports  (Ports) Provides a property and a method for accessing the computer's serial ports.

My.Computer.Registry  (RegistryProxy) Provides properties and methods for manipulating the registry.

My.Forms Object Provides properties for accessing an instance of each Windows Form declared in
the current project.

My.Log  (AspLog) Provides a property and methods for writing event and exception information to
the application's log listeners for Web applications.

This topic provides links to other topics that document the Visual Basic run-time objects and contain tables of their member procedures, properties, and
events.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/index.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.consoleapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase.info
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase.log
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.audio
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer.clipboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.clock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.specialdirectories
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computerinfo
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.keyboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.mouse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.network
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.ports
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.asplog


My.Request Object Gets the HttpRequest object for the requested page. The My.Request  object
contains information about the current HTTP request.

The My.Request  object is available only for ASP.NET applications.

My.Resources Object Provides properties and classes for accessing an application's resources.

My.Response Object Gets the HttpResponse object that is associated with the Page. This object allows
you to send HTTP response data to a client and contains information about that
response.

The My.Response  object is available only for ASP.NET applications.

My.Settings Object Provides properties and methods for accessing an application's settings.

My.User  (User) Provides access to information about the current user.

My.WebServices Object Provides properties for creating and accessing a single instance of each Web
service that is referenced by the current project.

TextFieldParser Provides methods and properties for parsing structured text files.

See Also
Visual Basic Language Reference
Visual Basic

https://docs.microsoft.com/dotnet/api/system.web.httprequest
https://docs.microsoft.com/dotnet/api/system.web.httpresponse
https://docs.microsoft.com/dotnet/api/system.web.ui.page
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser


   

My.Application Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties, methods, and events related to the current application.

For information about the methods and properties of the My.Application  object, see the following resources:

ApplicationBase for members that are available in all projects.

WindowsFormsApplicationBase for members that are available in Windows Forms applications.

ConsoleApplicationBase for members that are available in console applications.

Namespace: Microsoft.VisualBasic.ApplicationServices

Class: WindowsFormsApplicationBase (the base class ConsoleApplicationBase provides members available in console applications, and its base class
ApplicationBase provides the members that are available in all projects)

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Application.Info Object
My.Application.Log Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-application-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.consoleapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.consoleapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase


 

My.Application.Info Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides properties for getting the information about the application, such as the version number, description, loaded assemblies, and so on.

For information about the methods and properties of the My.Application.Info  object, see AssemblyInfo.

You can use properties of the System.Diagnostics.FileVersionInfo class to obtain information about a file on disk.

Namespace: Microsoft.VisualBasic.ApplicationServices

Class: AssemblyInfo

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Application Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-application-info-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.assemblyinfo
https://docs.microsoft.com/dotnet/api/system.diagnostics.fileversioninfo
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.assemblyinfo


  

My.Application.Log Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides a property and methods to write event and exception information to the application's log listeners.

For information about the methods and properties of the My.Application.Log  object, see Log.

For more information, see Logging Information from the Application.

You can also use classes in the .NET Framework to log information from your application. For more information, see Tracing and Instrumenting Applications.

Namespace: Microsoft.VisualBasic.Logging

Class: Log

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Application Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-application-log-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/tracing-and-instrumenting-applications
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.log


            

My.Computer Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for manipulating computer components such as audio, the clock, the keyboard, the file system, and so on.

For information about the methods and properties of the My.Computer  object, see Computer. The base class ServerComputer provides the members
that are available in all projects.

Namespace: Microsoft.VisualBasic.Devices

Class: Computer (the base class ServerComputer provides the members that are available in all projects).

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer.Audio Object
My.Computer.Clipboard Object
My.Computer.Clock Object
My.Computer.FileSystem Object
My.Computer.FileSystem.SpecialDirectories Object
My.Computer.Info Object
My.Computer.Keyboard Object
My.Computer.Mouse Object
My.Computer.Network Object
My.Computer.Ports Object
My.Computer.Registry Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.servercomputer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.servercomputer


 

My.Computer.Audio Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides methods for playing sounds.

For information about the methods and properties of the My.Computer.Audio  object, see Audio.

For more information, see Playing Sounds.

Namespace: Microsoft.VisualBasic.Devices

Class: Audio

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-audio-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.audio
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/playing-sounds
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.audio


 

My.Computer.Clipboard Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides methods for manipulating the Clipboard.

For information about the methods and properties of the My.Computer.Clipboard  object, see ClipboardProxy.

For more information, see Storing Data to and Reading from the Clipboard.

You can also use methods of the System.Windows.Forms.Clipboard class to manipulate the Clipboard.

Namespace: Microsoft.VisualBasic.MyServices

Class: ClipboardProxy (provides access to Clipboard)

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

Clipboard
My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-clipboard-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.clipboardproxy
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/storing-data-to-and-reading-from-the-clipboard
https://docs.microsoft.com/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.clipboardproxy
https://docs.microsoft.com/dotnet/api/system.windows.forms.clipboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computer.clipboard


 

My.Computer.Clock Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for accessing the current local time and Universal Coordinated Time (equivalent to Greenwich Mean Time) from the system clock.

For information about the methods and properties of the My.Computer.Clock  object, see Clock.

Namespace: Microsoft.VisualBasic.Devices

Class: Clock

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-clock-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.clock
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.clock


  

My.Computer.FileSystem Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides properties and methods for working with drives, files, and directories.

For information about the methods and properties of the My.Computer.FileSystem  object, see FileSystem.

For more information, see File Access with Visual Basic.

You can also use classes in the System.IO namespace to work with drives, files, and directories.

Namespace: Microsoft.VisualBasic.MyServices

Class: FileSystemProxy (provides access to FileSystem)

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer.FileSystem.SpecialDirectories Object
My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-filesystem-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/file-access
https://docs.microsoft.com/dotnet/api/system.io
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.filesystemproxy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem


  

My.Computer.FileSystem.SpecialDirectories Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for accessing commonly referenced directories.

For information about the methods and properties of the My.Computer.FileSystem.SpecialDirectories  object, see SpecialDirectories.

For more information, see How to: Retrieve the Contents of the My Documents Directory.

Namespace: Microsoft.VisualBasic.MyServices

Class: SpecialDirectoriesProxy (provides access to SpecialDirectories)

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer.FileSystem Object
My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-filesystem-specialdirectories-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.specialdirectories
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/how-to-retrieve-the-contents-of-the-my-documents-directory
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.specialdirectoriesproxy
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.specialdirectories


 

My.Computer.Info Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for getting information about the computer's memory, loaded assemblies, name, and operating system.

For information about the properties of the My.Computer.Info  object, see ComputerInfo.

Namespace: Microsoft.VisualBasic.Devices

Class: ComputerInfo

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-info-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computerinfo
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.computerinfo


 

My.Computer.Keyboard Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for accessing the current state of the keyboard, such as what keys are currently pressed, and provides a method to send keystrokes
to the active window.

For information about the methods and properties of the My.Computer.Keyword  object, see Keyboard.

For more information, see Accessing the Keyboard.

Namespace: Microsoft.VisualBasic.Devices

Class: Keyboard

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-keyboard-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.keyboard
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-keyboard
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.keyboard


 

My.Computer.Mouse Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides properties for getting information about the format and configuration of the mouse installed on the local computer.

For information about the methods and properties of the My.Computer.Mouse  object, see Mouse.

For more information, see Accessing the Mouse.

Namespace: Microsoft.VisualBasic.Devices

Class: Mouse

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-mouse-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.mouse
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-mouse
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.mouse


 

My.Computer.Network Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides a property, event, and methods for interacting with the network to which the computer is connected.

For information about the methods and properties of the My.Computer.Network  object, see Network.

For more information, see Performing Network Operations.

Namespace: Microsoft.VisualBasic.Devices

Class: Network

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-network-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.network
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/performing-network-operations
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.network


 

My.Computer.Ports Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides a property and a method for accessing the computer's serial ports.

For information about the methods and properties of the My.Computer.Ports  object, see Ports.

For more information, see Accessing the Computer's Ports.

You can also use properties and methods of the System.IO.Ports.SerialPort class to access the computer's serial ports.

Namespace: Microsoft.VisualBasic.Devices

Class: Ports

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-ports-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.ports
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/accessing-the-computer-s-ports
https://docs.microsoft.com/dotnet/api/system.io.ports.serialport
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.ports


 

My.Computer.Registry Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

NOTENOTE

Requirements

See Also

Provides properties and methods for manipulating the registry.

For information about the methods and properties of the My.Computer.Registry  object, see RegistryProxy.

For more information, see Reading from and Writing to the Registry.

You can also manipulate the registry by using methods of the Microsoft.Win32.Registry class.

Namespace: Microsoft.VisualBasic.MyServices

Class: RegistryProxy (provides access to Registry)

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

My.Computer Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-computer-registry-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/computer-resources/reading-from-and-writing-to-the-registry
https://docs.microsoft.com/dotnet/api/microsoft.win32.registry
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/dotnet/api/microsoft.win32.registry


          

My.Forms Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Properties

NOTENOTE

NOTENOTE

Example

Sub ShowSidebarMenu(ByVal newTitle As String)
    If My.Forms.SidebarMenu IsNot Nothing Then
        My.Forms.SidebarMenu.Text = newTitle
    End If
End Sub

Requirements
Availability by Project TypeAvailability by Project Type

PROJECT TYPE AVAILABLE

Windows Application Yes

Provides properties for accessing an instance of each Windows form declared in the current project.

The My.Forms  object provides an instance of each form in the current project. The name of the property is the same as the name of the form that the
property accesses.

You can access the forms provided by the My.Forms  object by using the name of the form, without qualification. Because the property name is the same
as the form's type name, this allows you to access a form as if it had a default instance. For example, My.Forms.Form1.Show  is equivalent to Form1.Show .

The My.Forms  object exposes only the forms associated with the current project. It does not provide access to forms declared in referenced DLLs. To
access a form that a DLL provides, you must use the qualified name of the form, written as DllName.FormName.

You can use the OpenForms property to get a collection of all the application's open forms.

The object and its properties are available only for Windows applications.

Each property of the My.Forms  object provides access to an instance of a form in the current project. The name of the property is the same as the name
of the form that the property accesses, and the property type is the same as the form's type.

If there is a name collision, the property name to access a form is RootNamespaceNamespace\FormName. For example, consider two forms named Form1. If one of
these forms is in the root namespace WindowsApplication1  and in the namespace Namespace1 , you would access that form through 
My.Forms.WindowsApplication1_Namespace1_Form1 .

The My.Forms  object provides access to the instance of the application's main form that was created on startup. For all other forms, the My.Forms  object
creates a new instance of the form when it is accessed and stores it. Subsequent attempts to access that property return that instance of the form.

You can dispose of a form by assigning Nothing  to the property for that form. The property setter calls the Close method of the form, and then assigns 
Nothing  to the stored value. If you assign any value other than Nothing  to the property, the setter throws an ArgumentException exception.

You can test whether a property of the My.Forms  object stores an instance of the form by using the Is  or IsNot  operator. You can use those operators
to check if the value of the property is Nothing .

Typically, the Is  or IsNot  operator has to read the value of the property to perform the comparison. However, if the property currently stores Nothing , the
property creates a new instance of the form and then returns that instance. However, the Visual Basic compiler treats the properties of the My.Forms  object
differently and allows the Is  or IsNot  operator to check the status of the property without altering its value.

This example changes the title of the default SidebarMenu  form.

For this example to work, your project must have a form named SidebarMenu .

This code will work only in a Windows Application project.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-forms-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.openforms
https://docs.microsoft.com/dotnet/api/system.windows.forms.form.close
https://docs.microsoft.com/dotnet/api/system.argumentexception


Class Library No

Console Application No

Windows Control Library No

Web Control Library No

Windows Service No

Web Site No

PROJECT TYPE AVAILABLE

See Also
OpenForms
Form
Close
Objects
Is Operator
IsNot Operator
Accessing Application Forms

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.openforms
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.form.close


 

My.Log Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

Provides a property and methods for writing event and exception information to the application's log listeners.

For information about the methods and properties of the My.Log  object, see AspLog.

The My.Log  object is available for ASP.NET applications only. For client applications, use My.Application.Log Object.

Namespace: Microsoft.VisualBasic.Logging

Class: AspLog

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-log-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.asplog
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.logging.asplog


     

My.Request Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Example

<script runat="server">
    Public Sub ShowHeaders()
        ' Load the header collection from the Request object.
        Dim coll As System.Collections.Specialized.NameValueCollection
        coll = My.Request.Headers

        ' Put the names of all keys into a string array.
        For Each key As String In coll.AllKeys
            My.Response.Write("Key: " & key & "<br>")

            ' Get all values under this key.
            For Each value As String In coll.GetValues(key)
                My.Response.Write("Value: " & _
                    Server.HtmlEncode(value) & "<br>")
            Next
        Next
    End Sub
</script>

See Also

Gets the HttpRequest object for the requested page.

The My.Request  object contains information about the current HTTP request.

The My.Request  object is available only for ASP.NET applications.

The following example gets the header collection from the My.Request  object and uses the My.Response  object to write it to the ASP.NET page.

HttpRequest
My.Response Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-request-object.md
https://docs.microsoft.com/dotnet/api/system.web.httprequest
https://docs.microsoft.com/dotnet/api/system.web.httprequest


     

My.Response Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Example

<script runat="server">
    Public Sub ShowHeaders()
        ' Load the header collection from the Request object.
        Dim coll As System.Collections.Specialized.NameValueCollection
        coll = My.Request.Headers

        ' Put the names of all keys into a string array.
        For Each key As String In coll.AllKeys
            My.Response.Write("Key: " & key & "<br>")

            ' Get all values under this key.
            For Each value As String In coll.GetValues(key)
                My.Response.Write("Value: " & _
                    Server.HtmlEncode(value) & "<br>")
            Next
        Next
    End Sub
</script>

See Also

Gets the HttpResponse object associated with the Page. This object allows you to send HTTP response data to a client and contains information about
that response.

The My.Response  object contains the current HttpResponse object associated with the page.

The My.Response  object is only available for ASP.NET applications.

The following example gets the header collection from the My.Request  object and uses the My.Response  object to write it to the ASP.NET page.

HttpResponse
My.Request Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-response-object.md
https://docs.microsoft.com/dotnet/api/system.web.httpresponse
https://docs.microsoft.com/dotnet/api/system.web.ui.page
https://docs.microsoft.com/dotnet/api/system.web.httpresponse
https://docs.microsoft.com/dotnet/api/system.web.httpresponse


    

My.Resources Object
7/13/2018 • 3 minutes to read • Edit Online

Remarks

Properties

CATEGORY PROPERTY DATA TYPE

Strings String

Images Bitmap

Icons Icon

Audio UnmanagedMemoryStream

The UnmanagedMemoryStream class derives from the Stream class, so it can be
used with methods that take streams, such as the Play method.

Files - String for text files.
- Bitmap for image files.
- Icon for icon files.
- UnmanagedMemoryStream for sound files.

Other Determined by the information in the designer's Type column.

Classes

Example

Sub SetFormTitle()
    Me.Text = My.Resources.Form1Title
End Sub

Provides properties and classes for accessing the application's resources.

The My.Resources  object provides access to the application's resources and lets you dynamically retrieve resources for your application. For more
information, see Managing Application Resources (.NET).

The My.Resources  object exposes only global resources. It does not provide access to resource files associated with forms. You must access the form
resources from the form.

You can access the application's culture-specific resource files from the My.Resources  object. By default, the My.Resources  object looks up resources
from the resource file that matches the culture in the UICulture property. However, you can override this behavior and specify a particular culture to use
for the resources. For more information, see Resources in Desktop Apps.

The properties of the My.Resources  object provide read-only access to your application's resources. To add or remove resources, use the Project
Designer. You can access resources added through the Project Designer by using My.Resources.``resourceName .

You can also add or remove resource files by selecting your project in Solution Explorer and clicking Add New Item or Add Existing Item from the
Project menu. You can access resources added in this manner by using My.Resources.``resourceFileName . resourceName .

Each resource has a name, category, and value, and these resource settings determine how the property to access the resource appears in the 
My.Resources  object. For resources added in the Project Designer:

The name determines the name of the property,

The resource data is the value of the property,

The category determines the type of the property:

The My.Resources  object exposes each resource file as a class with shared properties. The class name is the same as the name of the resource file. As
described in the previous section, the resources in a resource file are exposed as properties in the class.

This example sets the title of a form to the string resource named Form1Title  in the application resource file. For the example to work, the application
must have a string named Form1Title  in its resource file.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-resources-object.md
https://docs.microsoft.com/visualstudio/ide/managing-application-resources-dotnet
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase.uiculture
https://docs.microsoft.com/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/dotnet/api/system.drawing.icon
https://docs.microsoft.com/dotnet/api/system.io.unmanagedmemorystream
https://docs.microsoft.com/dotnet/api/system.io.unmanagedmemorystream
https://docs.microsoft.com/dotnet/api/system.io.stream
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.audio.play
https://docs.microsoft.com/dotnet/api/system.drawing.bitmap
https://docs.microsoft.com/dotnet/api/system.drawing.icon
https://docs.microsoft.com/dotnet/api/system.io.unmanagedmemorystream


Example

Sub SetFormIcon()
    Me.Icon = My.Resources.Form1Icon
End Sub

Example

Sub SetFormBackgroundImage()
    Me.BackgroundImage = My.Resources.Form1Background
End Sub

Example

Sub PlayFormGreeting()
    My.Computer.Audio.Play(My.Resources.Form1Greeting, 
        AudioPlayMode.Background)
End Sub

Example

Sub ShowLocalizedMessage()
    Dim culture As String = My.Application.UICulture.Name
    My.Application.ChangeUICulture("fr-FR")
    MsgBox(My.Resources.Message)
    My.Application.ChangeUICulture(culture)
End Sub

See Also

This example sets the icon of the form to the icon named Form1Icon  that is stored in the application's resource file. For the example to work, the
application must have an icon named Form1Icon  in its resource file.

This example sets the background image of a form to the image resource named Form1Background , which is in the application resource file. For this
example to work, the application must have an image resource named Form1Background  in its resource file.

This example plays the sound that is stored as an audio resource named Form1Greeting  in the application's resource file. For the example to work, the
application must have an audio resource named Form1Greeting  in its resource file. The My.Computer.Audio.Play  method is available only for Windows
Forms applications.

This example retrieves the French-culture version of a string resource of the application. The resource is named Message . To change the culture that the 
My.Resources  object uses, the example uses ChangeUICulture.

For this example to work, the application must have a string named Message  in its resource file, and the application should have the French-culture
version of that resource file, Resources.fr-FR.resx. If the application does not have the French-culture version of the resource file, the My.Resource  object
retrieves the resource from the default-culture resource file.

Managing Application Resources (.NET)
Resources in Desktop Apps

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.applicationbase.changeuiculture
https://docs.microsoft.com/visualstudio/ide/managing-application-resources-dotnet


     

My.Settings Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Properties

Methods
METHOD DESCRIPTION

Reload Reloads the user settings from the last saved values.

Save Saves the current user settings.

Tasks

TO SEE

Read an application setting How to: Read Application Settings in Visual Basic

Change a user setting How to: Change User Settings in Visual Basic

Persist user settings How to: Persist User Settings in Visual Basic

Create a property grid for user settings How to: Create Property Grids for User Settings in Visual Basic

Example

Sub ShowNickname()
    MsgBox("Nickname is " & My.Settings.Nickname)
End Sub

See Also

Provides properties and methods for accessing the application's settings.

The My.Settings  object provides access to the application's settings and allows you to dynamically store and retrieve property settings and other
information for your application. For more information, see Managing Application Settings (.NET).

The properties of the My.Settings  object provide access to your application's settings. To add or remove settings, use the Settings Designer.

Each setting has a Name, Type, Scope, and Value, and these settings determine how the property to access each setting appears in the My.Settings

object:

Name determines the name of the property.

Type determines the type of the property.

Scope indicates if the property is read-only. If the value is Application, the property is read-only; if the value is User, the property is read-write.

Value is the default value of the property.

The My.Settings  object also provides advanced properties and methods, inherited from the ApplicationSettingsBase class.

The following table lists examples of tasks involving the My.Settings  object.

This example displays the value of the Nickname  setting.

For this example to work, your application must have a Nickname  setting, of type String .

ApplicationSettingsBase
How to: Read Application Settings in Visual Basic
How to: Change User Settings in Visual Basic
How to: Persist User Settings in Visual Basic
How to: Create Property Grids for User Settings in Visual Basic
Managing Application Settings (.NET)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-settings-object.md
https://docs.microsoft.com/visualstudio/ide/managing-application-settings-dotnet
https://docs.microsoft.com/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-read-application-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-change-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-persist-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-create-property-grids-for-user-settings
https://docs.microsoft.com/dotnet/api/system.configuration.applicationsettingsbase
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-read-application-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-change-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-persist-user-settings
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/app-settings/how-to-create-property-grids-for-user-settings
https://docs.microsoft.com/visualstudio/ide/managing-application-settings-dotnet




 

My.User Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Requirements

See Also

Provides access to information about the current user.

For information about the methods and properties of the My.User  object, see Microsoft.VisualBasic.ApplicationServices.User.

For more information, see Accessing User Data.

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

IPrincipal
CurrentPrincipal
User
Current

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-user-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.user
https://docs.microsoft.com/dotnet/api/system.security.principal.iprincipal
https://docs.microsoft.com/dotnet/api/system.threading.thread.currentprincipal
https://docs.microsoft.com/dotnet/api/system.web.httpcontext.user
https://docs.microsoft.com/dotnet/api/system.web.httpcontext.current


          

My.WebServices Object
7/13/2018 • 2 minutes to read • Edit Online

Remarks

Properties

NOTENOTE

NOTENOTE

Example

Function ConvertFromFahrenheitToCelsius( 
    ByVal dFahrenheit As Double) As Double

    Return My.WebServices.TemperatureConverter.FahrenheitToCelsius(dFahrenheit)
End Function

Requirements
Availability by Project TypeAvailability by Project Type

PROJECT TYPE AVAILABLE

Windows Application Yes

Provides properties for creating and accessing a single instance of each XML Web service referenced by the current project.

The My.WebServices  object provides an instance of each Web service referenced by the current project. Each instance is instantiated on demand. You
can access these Web services through the properties of the My.WebServices  object. The name of the property is the same as the name of the Web
service that the property accesses. Any class that inherits from SoapHttpClientProtocol is a Web service. For information about adding Web services to
a project, see Accessing Application Web Services.

The My.WebServices  object exposes only the Web services associated with the current project. It does not provide access to Web services declared in
referenced DLLs. To access a Web service that a DLL provides, you must use the qualified name of the Web service, in the form
DllName.WebServiceName. For more information, see Accessing Application Web Services.

The object and its properties are not available for Web applications.

Each property of the My.WebServices  object provides access to an instance of a Web service referenced by the current project. The name of the property
is the same as the name of the Web service that the property accesses, and the property type is the same as the Web service's type.

If there is a name collision, the property name for accessing a Web service is RootNamespaceNamespace\ServiceName. For example, consider two Web services
named Service1 . If one of these services is in the root namespace WindowsApplication1  and in the namespace Namespace1 , you would access that service by
using My.WebServices.WindowsApplication1_Namespace1_Service1 .

When you first access one of the My.WebServices  object's properties, it creates a new instance of the Web service and stores it. Subsequent accesses of
that property return that instance of the Web service.

You can dispose of a Web service by assigning Nothing  to the property for that Web service. The property setter assigns Nothing  to the stored value.
If you assign any value other than Nothing  to the property, the setter throws an ArgumentException exception.

You can test whether a property of the My.WebServices  object stores an instance of the Web service by using the Is  or IsNot  operator. You can use
those operators to check if the value of the property is Nothing .

Typically, the Is  or IsNot  operator has to read the value of the property to perform the comparison. However, if the property currently stores Nothing , the
property creates a new instance of the Web service and then returns that instance. However, the Visual Basic compiler treats the properties of the My.WebServices

object specially, and allows the Is  or IsNot  operator to check the status of the property without altering its value.

This example calls the FahrenheitToCelsius  method of the TemperatureConverter  XML Web service, and returns the result.

For this example to work, your project must reference a Web service named Converter , and that Web service must expose the ConvertTemperature

method. For more information, see Accessing Application Web Services.

This code does not work in a Web application project.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/my-webservices-object.md
https://docs.microsoft.com/dotnet/api/system.web.services.protocols.soaphttpclientprotocol
https://docs.microsoft.com/dotnet/api/system.argumentexception


Class Library Yes

Console Application Yes

Windows Control Library Yes

Web Control Library Yes

Windows Service Yes

Web Site No

PROJECT TYPE AVAILABLE

See Also
SoapHttpClientProtocol
ArgumentException
Accessing Application Web Services

https://docs.microsoft.com/dotnet/api/system.web.services.protocols.soaphttpclientprotocol
https://docs.microsoft.com/dotnet/api/system.argumentexception


 

TextFieldParser Object
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Public Class TextFieldParser  

Remarks

Requirements

Provides methods and properties for parsing structured text files.

For information about the methods and properties of the TextFieldParser  object, see TextFieldParser.

For more information, see Reading from Files.

Namespace: Microsoft.VisualBasic.FileIO

Class: TextFieldParser

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/objects/textfieldparser-object.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/reading-from-files
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser


   

Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

Operator Precedence in Visual Basic

Operators Listed by Functionality

Data Types of Operator Results

DirectCast Operator

TryCast Operator

New Operator

Arithmetic Operators

Assignment Operators

Bit Shift Operators

Comparison Operators

Concatenation Operators

Logical/Bitwise Operators

Miscellaneous Operators

Visual Basic Language Reference

Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/index.md


                                       

Operator Precedence in Visual Basic
5/4/2018 • 3 minutes to read • Edit Online

Precedence Rules

Precedence Order

Await OperatorAwait Operator

Arithmetic and Concatenation OperatorsArithmetic and Concatenation Operators

Comparison OperatorsComparison Operators

Logical and Bitwise OperatorsLogical and Bitwise Operators

CommentsComments

Associativity

Dim n1 As Integer = 96 / 8 / 4  
Dim n2 As Integer = (96 / 8) / 4  
Dim n3 As Integer = 96 / (8 / 4)  

When several operations occur in an expression, each part is evaluated and resolved in a predetermined order called operator precedence.

When expressions contain operators from more than one category, they are evaluated according to the following rules:

The arithmetic and concatenation operators have the order of precedence described in the following section, and all have greater precedence
than the comparison, logical, and bitwise operators.

All comparison operators have equal precedence, and all have greater precedence than the logical and bitwise operators, but lower precedence
than the arithmetic and concatenation operators.

The logical and bitwise operators have the order of precedence described in the following section, and all have lower precedence than the
arithmetic, concatenation, and comparison operators.

Operators with equal precedence are evaluated left to right in the order in which they appear in the expression.

Operators are evaluated in the following order of precedence:

Await

Exponentiation ( ^ )

Unary identity and negation ( + , – )

Multiplication and floating-point division ( * , / )

Integer division ( \ )

Modulus arithmetic ( Mod )

Addition and subtraction ( + , – )

String concatenation ( & )

Arithmetic bit shift ( << , >> )

All comparison operators ( = , <> , < , <= , > , >= , Is , IsNot , Like , TypeOf ... Is )

Negation ( Not )

Conjunction ( And , AndAlso )

Inclusive disjunction ( Or , OrElse )

Exclusive disjunction ( Xor )

The =  operator is only the equality comparison operator, not the assignment operator.

The string concatenation operator ( & ) is not an arithmetic operator, but in precedence it is grouped with the arithmetic operators.

The Is  and IsNot  operators are object reference comparison operators. They do not compare the values of two objects; they check only to determine
whether two object variables refer to the same object instance.

When operators of equal precedence appear together in an expression, for example multiplication and division, the compiler evaluates each operation
as it encounters it from left to right. The following example illustrates this.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/operator-precedence.md


Overriding Precedence and Associativity

Dim a, b, c, d, e, f, g As Double  
a = 8.0  
b = 3.0  
c = 4.0  
d = 2.0  
e = 1.0  
f = a - b + c / d * e  
' The preceding line sets f to 7.0. Because of natural operator   
' precedence and associativity, it is exactly equivalent to the   
' following line.  
f = (a - b) + ((c / d) * e)  
' The following line overrides the natural operator precedence   
' and left associativity.  
g = (a - (b + c)) / (d * e)  
' The preceding line sets g to 0.5.  

See Also

The first expression evaluates the division 96 / 8 (which results in 12) and then the division 12 / 4, which results in three. Because the compiler evaluates
the operations for n1  from left to right, the evaluation is the same when that order is explicitly indicated for n2 . Both n1  and n2  have a result of
three. By contrast, n3  has a result of 48, because the parentheses force the compiler to evaluate 8 / 4 first.

Because of this behavior, operators are said to be left associative in Visual Basic.

You can use parentheses to force some parts of an expression to be evaluated before others. This can override both the order of precedence and the left
associativity. Visual Basic always performs operations that are enclosed in parentheses before those outside. However, within parentheses, it maintains
ordinary precedence and associativity, unless you use parentheses within the parentheses. The following example illustrates this.

= Operator
Is Operator
IsNot Operator
Like Operator
TypeOf Operator
Await Operator
Operators Listed by Functionality
Operators and Expressions



                                        

Operators Listed by Functionality (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Categories of Operators
OPERATORS DESCRIPTION

Arithmetic Operators These operators perform mathematical calculations.

Assignment Operators These operators perform assignment operations.

Comparison Operators These operators perform comparisons.

Concatenation Operators These operators combine strings.

Logical/Bitwise Operators These operators perform logical operations.

Bit Shift Operators These operators perform arithmetic shifts on bit patterns.

Miscellaneous Operators These operators perform miscellaneous operations.

See Also

See one of the categories listed below, or open this portion of the Help table of contents to see an alphabetical list of Visual Basic operators.

Operators and Expressions
Operator Precedence in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/operators-listed-by-functionality.md


       

& Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = expression1 & expression2  

Parts

Remarks

NOTENOTE

NOTENOTE

Example

Dim sampleStr As String
sampleStr = "Hello" & " World"
' The preceding statement sets sampleStr to "Hello World".

See Also

Generates a string concatenation of two expressions.

result

Required. Any String  or Object  variable.

expression1

Required. Any expression with a data type that widens to String .

expression2

Required. Any expression with a data type that widens to String .

If the data type of expression1  or expression2  is not String  but widens to String , it is converted to String . If either of the data types does not
widen to String , the compiler generates an error.

The data type of result  is String . If one or both expressions evaluate to Nothing or have a value of DBNull.Value, they are treated as a string with a
value of "".

The &  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The ampersand (&) character can also be used to identify variables as type Long . For more information, see Type Characters.

This example uses the &  operator to force string concatenation. The result is a string value representing the concatenation of the two string operands.

&= Operator
Concatenation Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Concatenation Operators in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/concatenation-operator.md
https://docs.microsoft.com/dotnet/api/system.dbnull.value
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-characters
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/concatenation-operators


     

&= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty &= expression  

Parts

Remarks

Overloading

Example

Dim var1 As String = "Hello "
Dim var2 As String = "World!"
var1 &= var2
' The value of var1 is now "Hello World!".

See Also

Concatenates a String  expression to a String  variable or property and assigns the result to the variable or property.

variableorproperty

Required. Any String  variable or property.

expression

Required. Any String  expression.

The element on the left side of the &=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly. The &=  operator concatenates the String  expression on its right to the String  variable or property on its left, and assigns the result to
the variable or property on its left.

The & Operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the &  operator affects the behavior of the &=  operator. If your code uses &=  on a class or structure that overloads & , be sure
you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the &=  operator to concatenate two String  variables and assign the result to the first variable.

& Operator
+= Operator
Assignment Operators
Concatenation Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/and-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


     

* Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
number1 * number2  

Parts
TERM DEFINITION

number1 Required. Any numeric expression.

number2 Required. Any numeric expression.

Result

Supported Types

Remarks

OPERAND DATA TYPES RESULT DATA TYPE

Both expressions are integral data types (SByte, Byte, Short, UShort, Integer,
UInteger, Long, ULong)

A numeric data type appropriate for the data types of number1  and number2 .
See the "Integer Arithmetic" tables in Data Types of Operator Results.

Both expressions are Decimal Decimal

Both expressions are Single Single

Either expression is a floating-point data type ( Single  or Double) but not both 
Single  (note Decimal  is not a floating-point data type)

Double

Overloading

Example

Dim testValue As Double
testValue = 2 * 2
' The preceding statement sets testValue to 4.
testValue = 459.35 * 334.9
' The preceding statement sets testValue to 153836.315.

See Also

Multiplies two numbers.

The result is the product of number1  and number2 .

All numeric types, including the unsigned and floating-point types and Decimal .

The data type of the result depends on the types of the operands. The following table shows how the data type of the result is determined.

If an expression evaluates to Nothing, it is treated as zero.

The *  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

This example uses the *  operator to multiply two numbers. The result is the product of the two operands.

*= Operator
Arithmetic Operators
Operator Precedence in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/multiplication-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


     

*= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty *= expression  

Parts

Remarks

Overloading

Example

Dim var1 As Integer = 10
Dim var2 As Integer = 3
var1 *= var2
' The value of var1 is now 30.

See Also

Multiplies the value of a variable or property by the value of an expression and assigns the result to the variable or property.

variableorproperty

Required. Any numeric variable or property.

expression

Required. Any numeric expression.

The element on the left side of the *=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The *=  operator first multiplies the value of the expression (on the right-hand side of the operator) by the value of the variable or property (on the left-
hand side of the operator). The operator then assigns the result of that operation to the variable or property.

The * Operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the *  operator affects the behavior of the *=  operator. If your code uses *=  on a class or structure that overloads * , be sure
you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the *=  operator to multiply one Integer  variable by a second and assign the result to the first variable.

* Operator
Assignment Operators
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/multiplication-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


        

+ Operator (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
      expression1 + expression2  
- or -  
+ expression1  

Parts
TERM DEFINITION

expression1 Required. Any numeric or string expression.

expression2 Required unless the +  operator is calculating a negative value. Any numeric or
string expression.

Result

Supported Types

Remarks

DATA TYPES OF EXPRESSIONS ACTION BY COMPILER

Both expressions are numeric data types ( SByte , Byte , Short , UShort , 
Integer , UInteger , Long , ULong , Decimal , Single , or Double )

Add. The result data type is a numeric type appropriate for the data types of 
expression1  and expression2 . See the "Integer Arithmetic" tables in Data

Types of Operator Results.

Both expressions are of type String Concatenate.

One expression is a numeric data type and the other is a string If Option Strict  is On , then generate a compiler error.

If Option Strict  is Off , then implicitly convert the String  to Double  and
add.

If the String  cannot be converted to Double , then throw an
InvalidCastException exception.

One expression is a numeric data type, and the other is Nothing Add, with Nothing  valued as zero.

One expression is a string, and the other is Nothing Concatenate, with Nothing  valued as "".

Adds two numbers or returns the positive value of a numeric expression. Can also be used to concatenate two string expressions.

If expression1  and expression2  are both numeric, the result is their arithmetic sum.

If expression2  is absent, the +  operator is the unary identity operator for the unchanged value of an expression. In this sense, the operation consists of
retaining the sign of expression1 , so the result is negative if expression1  is negative.

If expression1  and expression2  are both strings, the result is the concatenation of their values.

If expression1  and expression2  are of mixed types, the action taken depends on their types, their contents, and the setting of the Option Strict
Statement. For more information, see the tables in "Remarks."

All numeric types, including the unsigned and floating-point types and Decimal , and String .

In general, +  performs arithmetic addition when possible, and concatenates only when both expressions are strings.

If neither expression is an Object , Visual Basic takes the following actions.

If one expression is an Object  expression, Visual Basic takes the following actions.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/addition-operator.md
https://docs.microsoft.com/dotnet/api/system.invalidcastexception


DATA TYPES OF EXPRESSIONS ACTION BY COMPILER

Object  expression holds a numeric value and the other is a numeric data type If Option Strict  is On , then generate a compiler error.

If Option Strict  is Off , then add.

Object  expression holds a numeric value and the other is of type String If Option Strict  is On , then generate a compiler error.

If Option Strict  is Off , then implicitly convert the String  to Double  and
add.

If the String  cannot be converted to Double , then throw an
InvalidCastException exception.

Object  expression holds a string and the other is a numeric data type If Option Strict  is On , then generate a compiler error.

If Option Strict  is Off , then implicitly convert the string Object  to Double

and add.

If the string Object  cannot be converted to Double , then throw an
InvalidCastException exception.

Object  expression holds a string and the other is of type String If Option Strict  is On , then generate a compiler error.

If Option Strict  is Off , then implicitly convert Object  to String  and
concatenate.

DATA TYPES OF EXPRESSIONS ACTION BY COMPILER

Both Object  expressions hold numeric values Add.

Both Object  expressions are of type String Concatenate.

One Object  expression holds a numeric value and the other holds a string Implicitly convert the string Object  to Double  and add.

If the string Object  cannot be converted to a numeric value, then throw an
InvalidCastException exception.

NOTENOTE

Overloading

Example

Dim sumNumber As Integer
sumNumber = 2 + 2
sumNumber = 4257.04 + 98112
' The preceding statements set sumNumber to 4 and 102369.

Option Strict On

If both expressions are Object  expressions, Visual Basic takes the following actions ( Option Strict Off  only).

If either Object  expression evaluates to Nothing or DBNull, the +  operator treats it as a String  with a value of "".

When you use the +  operator, you might not be able to determine whether addition or string concatenation will occur. Use the &  operator for concatenation to
eliminate ambiguity and to provide self-documenting code.

The +  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

The following example uses the +  operator to add numbers. If the operands are both numeric, Visual Basic computes the arithmetic result. The
arithmetic result represents the sum of the two operands.

You can also use the +  operator to concatenate strings. If the operands are both strings, Visual Basic concatenates them. The concatenation result
represents a single string consisting of the contents of the two operands one after the other.

If the operands are of mixed types, the result depends on the setting of the Option Strict Statement. The following example illustrates the result when 
Option Strict  is On .

https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.dbnull
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Dim var1 As String = "34"
Dim var2 As Integer = 6
Dim concatenatedNumber As Integer = var1 + var2

' The preceding statement generates a COMPILER ERROR. 

Option Strict Off

Dim var1 As String = "34"
Dim var2 As Integer = 6
Dim concatenatedNumber As Integer = var1 + var2

' The preceding statement returns 40 after the string in var1 is
' converted to a numeric value. This might be an unexpected result.
' We do not recommend use of Option Strict Off for these operations.

See Also

The following example illustrates the result when Option Strict  is Off .

To eliminate ambiguity, you should use the &  operator instead of +  for concatenation.

& Operator
Concatenation Operators
Arithmetic Operators
Operators Listed by Functionality
Operator Precedence in Visual Basic
Arithmetic Operators in Visual Basic
Option Strict Statement

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


      

+= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty += expression  

Parts

Remarks

NOTENOTE

Overloading

Example

' This part uses numeric variables.
Dim num1 As Integer = 10
Dim num2 As Integer = 3
num1 += num2

' This part uses string variables.
Dim str1 As String = "10"
Dim str2 As String = "3"
str1 += str2

See Also

Adds the value of a numeric expression to the value of a numeric variable or property and assigns the result to the variable or property. Can also be
used to concatenate a String  expression to a String  variable or property and assign the result to the variable or property.

variableorproperty

Required. Any numeric or String  variable or property.

expression

Required. Any numeric or String  expression.

The element on the left side of the +=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The +=  operator adds the value on its right to the variable or property on its left, and assigns the result to the variable or property on its left. The +=

operator can also be used to concatenate the String  expression on its right to the String  variable or property on its left, and assign the result to the
variable or property on its left.

When you use the +=  operator, you might not be able to determine whether addition or string concatenation will occur. Use the &=  operator for concatenation to
eliminate ambiguity and to provide self-documenting code.

This assignment operator implicitly performs widening but not narrowing conversions if the compilation environment enforces strict semantics. For
more information on these conversions, see Widening and Narrowing Conversions. For more information on strict and permissive semantics, see
Option Strict Statement.

If permissive semantics are allowed, the +=  operator implicitly performs a variety of string and numeric conversions identical to those performed by
the +  operator. For details on these conversions, see + Operator.

The +  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the +  operator affects the behavior of the +=  operator. If your code uses +=  on a class or structure that overloads + , be sure
you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the +=  operator to combine the value of one variable with another. The first part uses +=  with numeric variables to add
one value to another. The second part uses +=  with String  variables to concatenate one value with another. In both cases, the result is assigned to the
first variable.

The value of num1  is now 13, and the value of str1  is now "103".

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/addition-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


+ Operator
Assignment Operators
Arithmetic Operators
Concatenation Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements



        

= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty = value  

Parts

Remarks

NOTENOTE

Overloading

Example

Dim testInt As Integer
Dim testString As String
Dim testButton As System.Windows.Forms.Button
Dim testObject As Object
testInt = 42
testString = "This is an example of a string literal."
testButton = New System.Windows.Forms.Button()
testObject = testInt
testObject = testString
testObject = testButton

See Also

Assigns a value to a variable or property.

variableorproperty

Any writable variable or any property.

value

Any literal, constant, or expression.

The element on the left side of the equal sign ( = ) can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly. The =  operator assigns the value on its right to the variable or property on its left.

The =  operator is also used as a comparison operator. For details, see Comparison Operators.

The =  operator can be overloaded only as a relational comparison operator, not as an assignment operator. For more information, see Operator
Procedures.

The following example demonstrates the assignment operator. The value on the right is assigned to the variable on the left.

&= Operator
*= Operator
+= Operator
-= Operator (Visual Basic)
/= Operator (Visual Basic)
\= Operator
^= Operator
Statements
Comparison Operators
ReadOnly
Local Type Inference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


     

- Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
      expression1 – expression2  
- or -  
– expression1  

Parts

Result

Supported Types

Remarks

NOTENOTE

Example

Dim binaryResult As Double = 459.35 - 334.9
Dim unaryResult As Double = -334.9

See Also

Returns the difference between two numeric expressions or the negative value of a numeric expression.

expression1

Required. Any numeric expression.

expression2

Required unless the –  operator is calculating a negative value. Any numeric expression.

The result is the difference between expression1  and expression2 , or the negated value of expression1 .

The result data type is a numeric type appropriate for the data types of expression1  and expression2 . See the "Integer Arithmetic" tables in Data Types
of Operator Results.

All numeric types. This includes the unsigned and floating-point types and Decimal .

In the first usage shown in the syntax shown previously, the –  operator is the binary arithmetic subtraction operator for the difference between two
numeric expressions.

In the second usage shown in the syntax shown previously, the –  operator is the unary negation operator for the negative value of an expression. In
this sense, the negation consists of reversing the sign of expression1  so that the result is positive if expression1  is negative.

If either expression evaluates to Nothing, the –  operator treats it as zero.

The –  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, make sure that you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the –  operator to calculate and return the difference between two numbers, and then to negate a number.

Following the execution of these statements, binaryResult  contains 124.45 and unaryResult  contains –334.90.

-= Operator (Visual Basic) Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/subtraction-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


     

-= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty -= expression  

Parts

Remarks

Overloading

Example

Dim var1 As Integer = 10
Dim var2 As Integer = 3
var1 -= var2
' The value of var1 is now 7.

See Also

Subtracts the value of an expression from the value of a variable or property and assigns the result to the variable or property.

variableorproperty

Required. Any numeric variable or property.

expression

Required. Any numeric expression.

The element on the left side of the -=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The -=  operator first subtracts the value of the expression (on the right-hand side of the operator) from the value of the variable or property (on the
left-hand side of the operator). The operator then assigns the result of that operation to the variable or property.

The - Operator (Visual Basic) can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that
class or structure. Overloading the -  operator affects the behavior of the -=  operator. If your code uses -=  on a class or structure that overloads - ,
be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the -=  operator to subtract one Integer  variable from another and assign the result to the latter variable.

- Operator (Visual Basic)
Assignment Operators
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/subtraction-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


    

<< Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = pattern << amount  

Parts

Remarks

DATA TYPE OF PATTERN SIZE MASK (DECIMAL) SIZE MASK (HEXADECIMAL)

SByte , Byte 7 &H00000007

Short , UShort 15 &H0000000F

Integer , UInteger 31 &H0000001F

Long , ULong 63 &H0000003F

NOTENOTE

Example

Dim pattern As Short = 192
' The bit pattern is 0000 0000 1100 0000.
Dim result1, result2, result3, result4, result5 As Short
result1 = pattern << 0
result2 = pattern << 4
result3 = pattern << 9
result4 = pattern << 17
result5 = pattern << -1

Performs an arithmetic left shift on a bit pattern.

result

Required. Integral numeric value. The result of shifting the bit pattern. The data type is the same as that of pattern .

pattern

Required. Integral numeric expression. The bit pattern to be shifted. The data type must be an integral type ( SByte , Byte , Short , UShort , Integer , 
UInteger , Long , or ULong ).

amount

Required. Numeric expression. The number of bits to shift the bit pattern. The data type must be Integer  or widen to Integer .

Arithmetic shifts are not circular, which means the bits shifted off one end of the result are not reintroduced at the other end. In an arithmetic left shift,
the bits shifted beyond the range of the result data type are discarded, and the bit positions vacated on the right are set to zero.

To prevent a shift by more bits than the result can hold, Visual Basic masks the value of amount  with a size mask that corresponds to the data type of 
pattern . The binary AND of these values is used for the shift amount. The size masks are as follows:

If amount  is zero, the value of result  is identical to the value of pattern . If amount  is negative, it is taken as an unsigned value and masked with the
appropriate size mask.

Arithmetic shifts never generate overflow exceptions.

The <<  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure that you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the <<  operator to perform arithmetic left shifts on integral values. The result always has the same data type as that of the
expression being shifted.

The results of the previous example are as follows:

result1  is 192 (0000 0000 1100 0000).

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/left-shift-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


See Also

result2  is 3072 (0000 1100 0000 0000).

result3  is -32768 (1000 0000 0000 0000).

result4  is 384 (0000 0001 1000 0000).

result5  is 0 (shifted 15 places to the left).

The shift amount for result4  is calculated as 17 AND 15, which equals 1.

Bit Shift Operators
Assignment Operators
<<= Operator
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


   

<<= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty <<= amount  

Parts

Remarks

Overloading

Example

Dim var As Integer = 10
Dim shift As Integer = 3
var <<= shift
' The value of var is now 80.

See Also

Performs an arithmetic left shift on the value of a variable or property and assigns the result back to the variable or property.

variableorproperty

Required. Variable or property of an integral type ( SByte , Byte , Short , UShort , Integer , UInteger , Long , or ULong ).

amount

Required. Numeric expression of a data type that widens to Integer .

The element on the left side of the <<=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The <<=  operator first performs an arithmetic left shift on the value of the variable or property. The operator then assigns the result of that operation
back to that variable or property.

Arithmetic shifts are not circular, which means the bits shifted off one end of the result are not reintroduced at the other end. In an arithmetic left shift,
the bits shifted beyond the range of the result data type are discarded, and the bit positions vacated on the right are set to zero.

The << Operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the <<  operator affects the behavior of the <<=  operator. If your code uses <<=  on a class or structure that overloads << , be
sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the <<=  operator to shift the bit pattern of an Integer  variable left by the specified amount and assign the result to the
variable.

<< Operator
Assignment Operators
Bit Shift Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/left-shift-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


    

>> Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = pattern >> amount  

Parts

Remarks

DATA TYPE OF PATTERN SIZE MASK (DECIMAL) SIZE MASK (HEXADECIMAL)

SByte , Byte 7 &H00000007

Short , UShort 15 &H0000000F

Integer , UInteger 31 &H0000001F

Long , ULong 63 &H0000003F

Overloading

Example

Performs an arithmetic right shift on a bit pattern.

result

Required. Integral numeric value. The result of shifting the bit pattern. The data type is the same as that of pattern .

pattern

Required. Integral numeric expression. The bit pattern to be shifted. The data type must be an integral type ( SByte , Byte , Short , UShort , Integer , 
UInteger , Long , or ULong ).

amount

Required. Numeric expression. The number of bits to shift the bit pattern. The data type must be Integer  or widen to Integer .

Arithmetic shifts are not circular, which means the bits shifted off one end of the result are not reintroduced at the other end. In an arithmetic right shift,
the bits shifted beyond the rightmost bit position are discarded, and the leftmost (sign) bit is propagated into the bit positions vacated at the left. This
means that if pattern  has a negative value, the vacated positions are set to one; otherwise they are set to zero.

Note that the data types Byte , UShort , UInteger , and ULong  are unsigned, so there is no sign bit to propagate. If pattern  is of any unsigned type, the
vacated positions are always set to zero.

To prevent shifting by more bits than the result can hold, Visual Basic masks the value of amount  with a size mask corresponding to the data type of 
pattern . The binary AND of these values is used for the shift amount. The size masks are as follows:

If amount  is zero, the value of result  is identical to the value of pattern . If amount  is negative, it is taken as an unsigned value and masked with the
appropriate size mask.

Arithmetic shifts never generate overflow exceptions.

The >>  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

The following example uses the >>  operator to perform arithmetic right shifts on integral values. The result always has the same data type as that of
the expression being shifted.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/right-shift-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Dim pattern As Short = 2560
' The bit pattern is 0000 1010 0000 0000.
Dim result1, result2, result3, result4, result5 As Short
result1 = pattern >> 0
result2 = pattern >> 4
result3 = pattern >> 10
result4 = pattern >> 18
result5 = pattern >> -1

Dim negPattern As Short = -8192
' The bit pattern is 1110 0000 0000 0000.
Dim negResult1, negResult2 As Short
negResult1 = negPattern >> 4
negResult2 = negPattern >> 13

See Also

The results of the preceding example are as follows:

result1  is 2560 (0000 1010 0000 0000).

result2  is 160 (0000 0000 1010 0000).

result3  is 2 (0000 0000 0000 0010).

result4  is 640 (0000 0010 1000 0000).

result5  is 0 (shifted 15 places to the right).

The shift amount for result4  is calculated as 18 AND 15, which equals 2.

The following example shows arithmetic shifts on a negative value.

The results of the preceding example are as follows:

negresult1  is -512 (1111 1110 0000 0000).

negresult2  is -1 (the sign bit is propagated).

Bit Shift Operators
Assignment Operators
>>= Operator
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


   

>>= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty >>= amount  

Parts

Remarks

Overloading

Example

Dim var As Integer = 10
Dim shift As Integer = 2
var >>= shift
' The value of var is now 2 (two bits were lost off the right end).

See Also

Performs an arithmetic right shift on the value of a variable or property and assigns the result back to the variable or property.

variableorproperty

Required. Variable or property of an integral type ( SByte , Byte , Short , UShort , Integer , UInteger , Long , or ULong ).

amount

Required. Numeric expression of a data type that widens to Integer .

The element on the left side of the >>=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The >>=  operator first performs an arithmetic right shift on the value of the variable or property. The operator then assigns the result of that operation
back to the variable or property.

Arithmetic shifts are not circular, which means the bits shifted off one end of the result are not reintroduced at the other end. In an arithmetic right shift,
the bits shifted beyond the rightmost bit position are discarded, and the leftmost bit is propagated into the bit positions vacated at the left. This means
that if variableorproperty  has a negative value, the vacated positions are set to one. If variableorproperty  is positive, or if its data type is an unsigned
type, the vacated positions are set to zero.

The >> Operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the >>  operator affects the behavior of the >>=  operator. If your code uses >>=  on a class or structure that overloads >> , be
sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the >>=  operator to shift the bit pattern of an Integer  variable right by the specified amount and assign the result to the
variable.

>> Operator
Assignment Operators
Bit Shift Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/right-shift-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


        

/ Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
expression1 / expression2  

Parts

Supported Types

Result

Remarks

OPERAND DATA TYPES RESULT DATA TYPE

Both expressions are integral data types (SByte, Byte, Short, UShort, Integer,
UInteger, Long, ULong)

Double

One expression is a Single data type and the other is not a Double Single

One expression is a Decimal data type and the other is not a Single or a Double Decimal

Either expression is a Double data type Double

Attempted Division by Zero

OPERAND DATA TYPES BEHAVIOR IF EXPRESSION2  IS ZERO

Floating-point ( Single  or Double ) Returns infinity (PositiveInfinity or NegativeInfinity), or NaN (not a number) if 
expression1  is also zero

Decimal Throws DivideByZeroException

Integral (signed or unsigned) Attempted conversion back to integral type throws OverflowException because
integral types cannot accept PositiveInfinity, NegativeInfinity, or NaN

Divides two numbers and returns a floating-point result.

expression1

Required. Any numeric expression.

expression2

Required. Any numeric expression.

All numeric types, including the unsigned and floating-point types and Decimal .

The result is the full quotient of expression1  divided by expression2 , including any remainder.

The \ Operator (Visual Basic) returns the integer quotient, which drops the remainder.

The data type of the result depends on the types of the operands. The following table shows how the data type of the result is determined.

Before division is performed, any integral numeric expressions are widened to Double . If you assign the result to an integral data type, Visual Basic
attempts to convert the result from Double  to that type. This can throw an exception if the result does not fit in that type. In particular, see "Attempted
Division by Zero" on this Help page.

If expression1  or expression2  evaluates to Nothing, it is treated as zero.

If expression2  evaluates to zero, the /  operator behaves differently for different operand data types. The following table shows the possible behaviors.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/floating-point-division-operator.md
https://docs.microsoft.com/dotnet/api/system.double.positiveinfinity
https://docs.microsoft.com/dotnet/api/system.double.negativeinfinity
https://docs.microsoft.com/dotnet/api/system.double.nan
https://docs.microsoft.com/dotnet/api/system.dividebyzeroexception
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.double.positiveinfinity
https://docs.microsoft.com/dotnet/api/system.double.negativeinfinity
https://docs.microsoft.com/dotnet/api/system.double.nan


NOTENOTE

Example

Dim resultValue As Double
resultValue = 10 / 4
resultValue = 10 / 3

See Also

The /  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

This example uses the /  operator to perform floating-point division. The result is the quotient of the two operands.

The expressions in the preceding example return values of 2.5 and 3.333333. Note that the result is always floating-point ( Double ), even though both
operands are integer constants.

/= Operator (Visual Basic)
\ Operator (Visual Basic)
Data Types of Operator Results
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


       

/= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty /= expression  

Parts

Remarks

Overloading

Example

Dim var1 As Integer = 12
Dim var2 As Integer = 3
var1 /= var2
' The value of var1 is now 4.

See Also

Divides the value of a variable or property by the value of an expression and assigns the floating-point result to the variable or property.

variableorproperty

Required. Any numeric variable or property.

expression

Required. Any numeric expression.

The element on the left side of the /=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The /=  operator first divides the value of the variable or property (on the left-hand side of the operator) by the value of the expression (on the right-
hand side of the operator). The operator then assigns the floating-point result of that operation to the variable or property.

This statement assigns a Double  value to the variable or property on the left. If Option Strict  is On , variableorproperty  must be a Double . If 
Option Strict  is Off , Visual Basic performs an implicit conversion and assigns the resulting value to variableorproperty , with a possible error at run

time. For more information, see Widening and Narrowing Conversions and Option Strict Statement.

The / Operator (Visual Basic) can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that
class or structure. Overloading the /  operator affects the behavior of the /=  operator. If your code uses /=  on a class or structure that overloads / ,
be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the /=  operator to divide one Integer  variable by a second and assign the quotient to the first variable.

/ Operator (Visual Basic)
\= Operator
Assignment Operators
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/floating-point-division-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


          

\ Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
expression1 \ expression2  

Parts

Supported Types

Result

Remarks

Attempted Division by Zero

NOTENOTE

Example

Dim resultValue As Integer
resultValue = 11 \ 4
resultValue = 9 \ 3
resultValue = 100 \ 3
resultValue = 67 \ -3

See Also

Divides two numbers and returns an integer result.

expression1

Required. Any numeric expression.

expression2

Required. Any numeric expression.

All numeric types, including the unsigned and floating-point types and Decimal .

The result is the integer quotient of expression1  divided by expression2 , which discards any remainder and retains only the integer portion. This is
known as truncation.

The result data type is a numeric type appropriate for the data types of expression1  and expression2 . See the "Integer Arithmetic" tables in Data Types
of Operator Results.

The / Operator (Visual Basic) returns the full quotient, which retains the remainder in the fractional portion.

Before performing the division, Visual Basic attempts to convert any floating-point numeric expression to Long . If Option Strict  is On , a compiler
error occurs. If Option Strict  is Off , an OverflowException is possible if the value is outside the range of the Long Data Type. The conversion to Long

is also subject to banker's rounding. For more information, see "Fractional Parts" in Type Conversion Functions.

If expression1  or expression2  evaluates to Nothing, it is treated as zero.

If expression2  evaluates to zero, the \  operator throws a DivideByZeroException exception. This is true for all numeric data types of the operands.

The \  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the \  operator to perform integer division. The result is an integer that represents the integer quotient of the two
operands, with the remainder discarded.

The expressions in the preceding example return values of 2, 3, 33, and -22, respectively.

\= Operator
/ Operator (Visual Basic)
Option Strict Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/integer-division-operator.md
https://docs.microsoft.com/dotnet/api/system.overflowexception
https://docs.microsoft.com/dotnet/api/system.dividebyzeroexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


      

\= Operator
7/13/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty \= expression  

Parts

Remarks

Overloading

Example

Dim var1 As Integer = 10
Dim var2 As Integer = 3
var1 \= var2
' The value of var1 is now 3.

See Also

Divides the value of a variable or property by the value of an expression and assigns the integer result to the variable or property.

variableorproperty

Required. Any numeric variable or property.

expression

Required. Any numeric expression.

The element on the left side of the \=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The \=  operator divides the value of a variable or property on its left by the value on its right, and assigns the integer result to the variable or property
on its left

For further information on integer division, see \ Operator (Visual Basic).

The \  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the \  operator affects the behavior of the \=  operator. If your code uses \=  on a class or structure that overloads \ , be sure
you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the \=  operator to divide one Integer  variable by a second and assign the integer result to the first variable.

\ Operator (Visual Basic)
/= Operator (Visual Basic)
Assignment Operators
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/integer-division-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


     

^ Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
number ^ exponent  

Parts

Result

Supported Types

Remarks

NOTENOTE

Example

Dim exp1, exp2, exp3, exp4, exp5, exp6 As Double
exp1 = 2 ^ 2
exp2 = 3 ^ 3 ^ 3
exp3 = (-5) ^ 3
exp4 = (-5) ^ 4
exp5 = 8 ^ (1.0 / 3.0)
exp6 = 8 ^ (-1.0 / 3.0)

Raises a number to the power of another number.

number

Required. Any numeric expression.

exponent

Required. Any numeric expression.

The result is number  raised to the power of exponent , always as a Double  value.

Double . Operands of any different type are converted to Double .

Visual Basic always performs exponentiation in the Double Data Type.

The value of exponent  can be fractional, negative, or both.

When more than one exponentiation is performed in a single expression, the ^  operator is evaluated as it is encountered from left to right.

The ^  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the ^  operator to raise a number to the power of an exponent. The result is the first operand raised to the power of the
second.

The preceding example produces the following results:

exp1  is set to 4 (2 squared).

exp2  is set to 19683 (3 cubed, then that value cubed).

exp3  is set to -125 (-5 cubed).

exp4  is set to 625 (-5 to the fourth power).

exp5  is set to 2 (cube root of 8).

exp6  is set to 0.5 (1.0 divided by the cube root of 8).

Note the importance of the parentheses in the expressions in the preceding example. Because of operator precedence, Visual Basic normally performs
the ^  operator before any others, even the unary –  operator. If exp4  and exp6  had been calculated without parentheses, they would have produced
the following results:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/exponentiation-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


See Also

exp4 = -5 ^ 4  would be calculated as –(5 to the fourth power), which would result in -625.

exp6 = 8 ^ -1.0 / 3.0  would be calculated as (8 to the –1 power, or 0.125) divided by 3.0, which would result in
0.041666666666666666666666666666667.

^= Operator
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


     

^= Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
variableorproperty ^= expression  

Parts

Remarks

Overloading

Example

Dim var1 As Integer = 10
Dim var2 As Integer = 3
var1 ^= var2
' The value of var1 is now 1000.

See Also

Raises the value of a variable or property to the power of an expression and assigns the result back to the variable or property.

variableorproperty

Required. Any numeric variable or property.

expression

Required. Any numeric expression.

The element on the left side of the ^=  operator can be a simple scalar variable, a property, or an element of an array. The variable or property cannot
be ReadOnly.

The ^=  operator first raises the value of the variable or property (on the left-hand side of the operator) to the power of the value of the expression (on
the right-hand side of the operator). The operator then assigns the result of that operation back to the variable or property.

Visual Basic always performs exponentiation in the Double Data Type. Operands of any different type are converted to Double , and the result is always 
Double .

The value of expression  can be fractional, negative, or both.

The ^ Operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. Overloading the ^  operator affects the behavior of the ^=  operator. If your code uses ^=  on a class or structure that overloads ^ , be sure
you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the ^=  operator to raise the value of one Integer  variable to the power of a second variable and assign the result to the
first variable.

^ Operator
Assignment Operators
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/exponentiation-assignment-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


             

AddressOf Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
AddressOf procedurename  

Parts

Remarks

Example

' Add the following line to Sub Form1_Load().
AddHandler Button1.Click, AddressOf Button1_Click

Example

Public Sub CountSheep()
    Dim i As Integer = 1 ' Sheep do not count from 0.
    Do While (True) ' Endless loop.
        Console.WriteLine("Sheep " & i & " Baah")
        i = i + 1
        System.Threading.Thread.Sleep(1000) 'Wait 1 second.
    Loop
End Sub

Sub UseThread()
    Dim t As New System.Threading.Thread(AddressOf CountSheep)
    t.Start()
End Sub

See Also

Creates a procedure delegate instance that references the specific procedure.

procedurename

Required. Specifies the procedure to be referenced by the newly created procedure delegate.

The AddressOf  operator creates a function delegate that points to the function specified by procedurename . When the specified procedure is an instance
method then the function delegate refers to both the instance and the method. Then, when the function delegate is invoked the specified method of the
specified instance is called.

The AddressOf  operator can be used as the operand of a delegate constructor or it can be used in a context in which the type of the delegate can be
determined by the compiler.

This example uses the AddressOf  operator to designate a delegate to handle the Click  event of a button.

The following example uses the AddressOf  operator to designate the startup function for a thread.

Declare Statement
Function Statement
Sub Statement
Delegates

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/addressof-operator.md


     

And Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = expression1 And expression2  

Parts

Remarks

IF EXPRESSION1  IS AND EXPRESSION2  IS THE VALUE OF RESULT  IS

True True True

True False False

False True False

False False False

NOTENOTE

IF BIT IN EXPRESSION1  IS AND BIT IN EXPRESSION2  IS THE BIT IN RESULT  IS

1 1 1

1 0 0

0 1 0

0 0 0

NOTENOTE

Data Types

Performs a logical conjunction on two Boolean  expressions, or a bitwise conjunction on two numeric expressions.

result

Required. Any Boolean  or numeric expression. For Boolean comparison, result  is the logical conjunction of two Boolean  values. For bitwise
operations, result  is a numeric value representing the bitwise conjunction of two numeric bit patterns.

expression1

Required. Any Boolean  or numeric expression.

expression2

Required. Any Boolean  or numeric expression.

For Boolean comparison, result  is True  if and only if both expression1  and expression2  evaluate to True . The following table illustrates how 
result  is determined.

In a Boolean comparison, the And  operator always evaluates both expressions, which could include making procedure calls. The AndAlso Operator performs short-

circuiting, which means that if expression1  is False , then expression2  is not evaluated.

When applied to numeric values, the And  operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result  according to the following table.

Since the logical and bitwise operators have a lower precedence than other arithmetic and relational operators, any bitwise operations should be enclosed in
parentheses to ensure accurate results.

If the operands consist of one Boolean  expression and one numeric expression, Visual Basic converts the Boolean  expression to a numeric value (–1
for True  and 0 for False ) and performs a bitwise operation.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/and-operator.md


NOTENOTE

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck As Boolean
firstCheck = a > b And b > c
secondCheck = b > a And b > c

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstPattern, secondPattern, thirdPattern As Integer
firstPattern = (a And b)
secondPattern = (a And c)
thirdPattern = (b And c)

See Also

For a Boolean comparison, the data type of the result is Boolean . For a bitwise comparison, the result data type is a numeric type appropriate for the
data types of expression1  and expression2 . See the "Relational and Bitwise Comparisons" table in Data Types of Operator Results.

The And  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or structure. If your
code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the And  operator to perform a logical conjunction on two expressions. The result is a Boolean  value that represents
whether both of the expressions are True .

The preceding example produces results of True  and False , respectively.

The following example uses the And  operator to perform logical conjunction on the individual bits of two numeric expressions. The bit in the result
pattern is set if the corresponding bits in the operands are both set to 1.

The preceding example produces results of 8, 2, and 0, respectively.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
AndAlso Operator
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


       

AndAlso Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = expression1 AndAlso expression2  

Parts
TERM DEFINITION

result Required. Any Boolean  expression. The result is the Boolean  result of
comparison of the two expressions.

expression1 Required. Any Boolean  expression.

expression2 Required. Any Boolean  expression.

Remarks

IF EXPRESSION1  IS AND EXPRESSION2  IS THE VALUE OF RESULT  IS

True True True

True False False

False (not evaluated) False

Data Types

Overloading

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck, thirdCheck As Boolean
firstCheck = a > b AndAlso b > c
secondCheck = b > a AndAlso b > c
thirdCheck = a > b AndAlso c > b

Performs short-circuiting logical conjunction on two expressions.

A logical operation is said to be short-circuiting if the compiled code can bypass the evaluation of one expression depending on the result of another
expression. If the result of the first expression evaluated determines the final result of the operation, there is no need to evaluate the second expression,
because it cannot change the final result. Short-circuiting can improve performance if the bypassed expression is complex, or if it involves procedure
calls.

If both expressions evaluate to True , result  is True . The following table illustrates how result  is determined.

The AndAlso  operator is defined only for the Boolean Data Type. Visual Basic converts each operand as necessary to Boolean  and performs the
operation entirely in Boolean . If you assign the result to a numeric type, Visual Basic converts it from Boolean  to that type. This could produce
unexpected behavior. For example, 5 AndAlso 12  results in –1  when converted to Integer .

The And Operator and the IsFalse Operator can be overloaded, which means that a class or structure can redefine their behavior when an operand has
the type of that class or structure. Overloading the And  and IsFalse  operators affects the behavior of the AndAlso  operator. If your code uses AndAlso

on a class or structure that overloads And  and IsFalse , be sure you understand their redefined behavior. For more information, see Operator
Procedures.

The following example uses the AndAlso  operator to perform a logical conjunction on two expressions. The result is a Boolean  value that represents
whether the entire conjoined expression is true. If the first expression is False , the second is not evaluated.

The preceding example produces results of True , False , and False , respectively. In the calculation of secondCheck , the second expression is not

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/andalso-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Example

Public Function findValue(ByVal arr() As Double, 
    ByVal searchValue As Double) As Double
    Dim i As Integer = 0
    While i <= UBound(arr) AndAlso arr(i) <> searchValue
        ' If i is greater than UBound(arr), searchValue is not checked.
        i += 1
    End While
    If i > UBound(arr) Then i = -1
    Return i
End Function

See Also

evaluated because the first is already False . However, the second expression is evaluated in the calculation of thirdCheck .

The following example shows a Function  procedure that searches for a given value among the elements of an array. If the array is empty, or if the array
length has been exceeded, the While  statement does not test the array element against the search value.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
And Operator
IsFalse Operator
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


                 

Await Operator (Visual Basic)
6/6/2018 • 4 minutes to read • Edit Online

NOTENOTE

Private Async Function SumPageSizesAsync() As Task  

    ' To use the HttpClient type in desktop apps, you must include a using directive and add a   
    ' reference for the System.Net.Http namespace.  
    Dim client As HttpClient = New HttpClient()   
    ' . . .   
    Dim getContentsTask As Task(Of Byte()) = client.GetByteArrayAsync(url)  
    Dim urlContents As Byte() = Await getContentsTask  

    ' Equivalently, now that you see how it works, you can write the same thing in a single line.  
    'Dim urlContents As Byte() = Await client.GetByteArrayAsync(url)  
    ' . . .  
End Function  

IMPORTANTIMPORTANT

' Await used with a method that returns a Task(Of TResult).  
Dim result As TResult = Await AsyncMethodThatReturnsTaskTResult()  

' Await used with a method that returns a Task.  
Await AsyncMethodThatReturnsTask()  

Exceptions

You apply the Await  operator to an operand in an asynchronous method or lambda expression to suspend execution of the method until the awaited
task completes. The task represents ongoing work.

The method in which Await  is used must have an Async modifier. Such a method, defined by using the Async  modifier, and usually containing one or
more Await  expressions, is referred to as an async method.

The Async  and Await  keywords were introduced in Visual Studio 2012. For an introduction to async programming, see Asynchronous Programming with Async and
Await.

Typically, the task to which you apply the Await  operator is the return value from a call to a method that implements the Task-Based Asynchronous
Pattern, that is, a Task or a Task<TResult>.

In the following code, the HttpClient method GetByteArrayAsync returns getContentsTask , a Task(Of Byte()) . The task is a promise to produce the
actual byte array when the operation is complete. The Await  operator is applied to getContentsTask  to suspend execution in SumPageSizesAsync  until 
getContentsTask  is complete. In the meantime, control is returned to the caller of SumPageSizesAsync . When getContentsTask  is finished, the Await

expression evaluates to a byte array.

For the complete example, see Walkthrough: Accessing the Web by Using Async and Await. You can download the sample from Developer Code Samples on the
Microsoft website. The example is in the AsyncWalkthrough_HttpClient project.

If Await  is applied to the result of a method call that returns a Task(Of TResult) , the type of the Await  expression is TResult. If Await  is applied to the
result of a method call that returns a Task , the Await  expression doesn't return a value. The following example illustrates the difference.

An Await  expression or statement does not block the thread on which it is executing. Instead, it causes the compiler to sign up the rest of the async
method, after the Await  expression, as a continuation on the awaited task. Control then returns to the caller of the async method. When the task
completes, it invokes its continuation, and execution of the async method resumes where it left off.

An Await  expression can occur only in the body of an immediately enclosing method or lambda expression that is marked by an Async  modifier. The
term Await serves as a keyword only in that context. Elsewhere, it is interpreted as an identifier. Within the async method or lambda expression, an 
Await  expression cannot occur in a query expression, in the catch  or finally  block of a Try…Catch…Finally statement, in the loop control variable

expression of a For  or For Each  loop, or in the body of a SyncLock statement.

Most async methods return a Task or Task<TResult>. The properties of the returned task carry information about its status and history, such as whether
the task is complete, whether the async method caused an exception or was canceled, and what the final result is. The Await  operator accesses those
properties.

If you await a task-returning async method that causes an exception, the Await  operator rethrows the exception.

If you await a task-returning async method that is canceled, the Await  operator rethrows an OperationCanceledException.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/await-operator.md
http://go.microsoft.com/fwlink/?LinkId=204847
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/dotnet/api/system.net.http.httpclient.getbytearrayasync
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await
https://code.msdn.microsoft.com/Async-Sample-Accessing-the-9c10497f
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.operationcanceledexception


Example

Private Async Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click  
    ' Call the method that runs asynchronously.  
    Dim result As String = Await WaitAsynchronouslyAsync()  

    ' Call the method that runs synchronously.  
    'Dim result As String = Await WaitSynchronously()  

    ' Display the result.  
    TextBox1.Text &= result  
End Sub  

' The following method runs asynchronously. The UI thread is not  
' blocked during the delay. You can move or resize the Form1 window   
' while Task.Delay is running.  
Public Async Function WaitAsynchronouslyAsync() As Task(Of String)  
    Await Task.Delay(10000)  
    Return "Finished"  
End Function  

' The following method runs synchronously, despite the use of Async.  
' You cannot move or resize the Form1 window while Thread.Sleep  
' is running because the UI thread is blocked.  
Public Async Function WaitSynchronously() As Task(Of String)  
    ' Import System.Threading for the Sleep method.  
    Thread.Sleep(10000)  
    Return "Finished"  
End Function  

See Also

A single task that is in a faulted state can reflect multiple exceptions. For example, the task might be the result of a call to Task.WhenAll. When you await
such a task, the await operation rethrows only one of the exceptions. However, you can't predict which of the exceptions is rethrown.

For examples of error handling in async methods, see Try...Catch...Finally Statement.

The following Windows Forms example illustrates the use of Await  in an async method, WaitAsynchronouslyAsync . Contrast the behavior of that
method with the behavior of WaitSynchronously . Without an Await  operator, WaitSynchronously  runs synchronously despite the use of the Async

modifier in its definition and a call to Thread.Sleep in its body.

Asynchronous Programming with Async and Await
Walkthrough: Accessing the Web by Using Async and Await
Async

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/dotnet/api/system.threading.thread.sleep
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await


    

Function Expression (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Function ( [ parameterlist ] ) expression  
- or -  
Function ( [ parameterlist ] )  
  [ statements ]  
End Function  

Parts
TERM DEFINITION

parameterlist Optional. A list of local variable names that represent the parameters of this
procedure. The parentheses must be present even when the list is empty. See
Parameter List.

expression Required. A single expression. The type of the expression is the return type of the
function.

statements Required. A list of statements that returns a value by using the Return  statement.
(See Return Statement.) The type of the value returned is the return type of the
function.

Remarks

Lambda Expression Syntax

Example

Dim add1 = Function(num As Integer) num + 1

' The following line prints 6.
Console.WriteLine(add1(5))

Example

Declares the parameters and code that define a function lambda expression.

A lambda expression is a function without a name that calculates and returns a value. You can use a lambda expression anywhere you can use a
delegate type, except as an argument to RemoveHandler . For more information about delegates, and the use of lambda expressions with delegates, see
Delegate Statement and Relaxed Delegate Conversion.

The syntax of a lambda expression resembles that of a standard function. The differences are as follows:

A lambda expression does not have a name.

Lambda expressions cannot have modifiers, such as Overloads  or Overrides .

Lambda expressions do not use an As  clause to designate the return type of the function. Instead, the type is inferred from the value that the
body of a single-line lambda expression evaluates to, or the return value of a multiline lambda expression. For example, if the body of a single-
line lambda expression is Where cust.City = "London" , its return type is Boolean .

The body of a single-line lambda expression must be an expression, not a statement. The body can consist of a call to a function procedure, but
not a call to a sub procedure.

Either all parameters must have specified data types or all must be inferred.

Optional and Paramarray parameters are not permitted.

Generic parameters are not permitted.

The following examples show two ways to create simple lambda expressions. The first uses a Dim  to provide a name for the function. To call the
function, you send in a value for the parameter.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/function-expression.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion


Console.WriteLine((Function(num As Integer) num + 1)(5))

Example

Dim increment1 = Function(x) x + 1
Dim increment2 = Function(x)
                     Return x + 2
                 End Function

' Write the value 2.
Console.WriteLine(increment1(1))

' Write the value 4.
Console.WriteLine(increment2(2))

Example

Dim londonCusts = From cust In db.Customers  
                       Where cust.City = "London"  
                       Select cust  

' This query is compiled to the following code:  
Dim londonCusts = db.Customers.  
                  Where(Function(cust) cust.City = "London").  
                  Select(Function(cust) cust)  

See Also

Alternatively, you can declare and run the function at the same time.

Following is an example of a lambda expression that increments its argument and returns the value. The example shows both the single-line and
multiline lambda expression syntax for a function. For more examples, see Lambda Expressions.

Lambda expressions underlie many of the query operators in Language-Integrated Query (L INQ), and can be used explicitly in method-based queries.
The following example shows a typical L INQ query, followed by the translation of the query into method format.

For more information about query methods, see Queries. For more information about standard query operators, see Standard Query Operators
Overview.

Function Statement
Lambda Expressions
Operators and Expressions
Statements
Value Comparisons
Boolean Expressions
If Operator
Relaxed Delegate Conversion

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/standard-query-operators-overview
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/value-comparisons
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/boolean-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion


     

GetType Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
GetType(typename)  

ParametersParameters

PARAMETER DESCRIPTION

typename The name of the type for which you desire information.

Remarks

Example

' The following statement returns the Type object for Integer.
MsgBox(GetType(Integer).ToString())
' The following statement returns the Type object for one-dimensional string arrays.
MsgBox(GetType(String()).ToString())

See Also

Returns a Type object for the specified type. The Type object provides information about the type such as its properties, methods, and events.

The GetType  operator returns the Type object for the specified typename . You can pass the name of any defined type in typename . This includes the
following:

Any Visual Basic data type, such as Boolean  or Date .

Any .NET Framework class, structure, module, or interface, such as System.ArgumentException or System.Double.

Any class, structure, module, or interface defined by your application.

Any array defined by your application.

Any delegate defined by your application.

Any enumeration defined by Visual Basic, the .NET Framework, or your application.

If you want to get the type object of an object variable, use the Type.GetType method.

The GetType  operator can be useful in the following circumstances:

You must access the metadata for a type at run time. The Type object supplies metadata such as type members and deployment information. You
need this, for example, to reflect over an assembly. For more information, see System.Reflection.

You want to compare two object references to see if they refer to instances of the same type. If they do, GetType  returns references to the same
Type object.

The following examples show the GetType  operator in use.

Operator Precedence in Visual Basic
Operators Listed by Functionality
Operators and Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/gettype-operator.md
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.double
https://docs.microsoft.com/dotnet/api/system.type.gettype
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.reflection
https://docs.microsoft.com/dotnet/api/system.type


  

GetXmlNamespace Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
GetXmlNamespace(xmlNamespacePrefix)  

Parts

Return Value

Remarks

Example

' Place Imports statements at the top of your program.  
Imports <xmlns:ns="http://SomeNamespace">

Module GetXmlNamespaceSample

    Sub RunSample()

        ' Create test by using a global XML namespace prefix. 

        Dim contact = 
            <ns:contact>
                <ns:name>Patrick Hines</ns:name>
                <ns:phone ns:type="home">206-555-0144</ns:phone>
                <ns:phone ns:type="work">425-555-0145</ns:phone>
            </ns:contact>

        ShowName(contact.<ns:phone>(0))
    End Sub

    Sub ShowName(ByVal phone As XElement)
        Dim qualifiedName = GetXmlNamespace(ns) + "contact"
        Dim contact = phone.Ancestors(qualifiedName)(0)
        Console.WriteLine("Name: " & contact.<ns:name>.Value)
    End Sub

End Module

See Also

Gets the XNamespace object that corresponds to the specified XML namespace prefix.

xmlNamespacePrefix

Optional. The string that identifies the XML namespace prefix. If supplied, this string must be a valid XML identifier. For more information, see Names
of Declared XML Elements and Attributes. If no prefix is specified, the default namespace is returned. If no default namespace is specified, the empty
namespace is returned.

The XNamespace object that corresponds to the XML namespace prefix.

The GetXmlNamespace  operator gets the XNamespace object that corresponds to the XML namespace prefix xmlNamespacePrefix .

You can use XML namespace prefixes directly in XML literals and XML axis properties. However, you must use the GetXmlNamespace  operator to convert
a namespace prefix to an XNamespace object before you can use it in your code. You can append an unqualified element name to an XNamespace
object to get a fully qualified XName object, which many LINQ to XML methods require.

The following example imports ns  as an XML namespace prefix. It then uses the prefix of the namespace to create an XML literal and access the first
child node that has the qualified name ns:phone . It then passes that child node to the ShowName  subroutine, which constructs a qualified name by using
the GetXmlNamespace  operator. The ShowName  subroutine then passes the qualified name to the Ancestors method to get the parent ns:contact  node.

When you call TestGetXmlNamespace.RunSample() , it displays a message box that contains the following text:

Name: Patrick Hines

Imports Statement (XML Namespace)
Accessing XML in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/getxmlnamespace-operator.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnamespace
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnamespace
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnamespace
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnamespace
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnamespace
https://docs.microsoft.com/dotnet/api/system.xml.linq.xname
https://docs.microsoft.com/dotnet/api/system.xml.linq.xnode.ancestors
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/accessing-xml


     

If Operator (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
If( [argument1,] argument2, argument3 )  

If Operator Called with Three Arguments

Parts
TERM DEFINITION

argument1 Required. Boolean . Determines which of the other arguments to evaluate and
return.

argument2 Required. Object . Evaluated and returned if argument1  evaluates to True .

argument3 Required. Object . Evaluated and returned if argument1  evaluates to False  or
if argument1  is a Nullable Boolean  variable that evaluates to Nothing.

' This statement prints TruePart, because the first argument is true.
Console.WriteLine(If(True, "TruePart", "FalsePart"))

' This statement prints FalsePart, because the first argument is false.
Console.WriteLine(If(False, "TruePart", "FalsePart"))

Dim number = 3
' With number set to 3, this statement prints Positive.
Console.WriteLine(If(number >= 0, "Positive", "Negative"))

number = -1
' With number set to -1, this statement prints Negative.
Console.WriteLine(If(number >= 0, "Positive", "Negative"))

number = 12

' When the divisor is not 0, both If and IIf return 4.
Dim divisor = 3
Console.WriteLine(If(divisor <> 0, number \ divisor, 0))
Console.WriteLine(IIf(divisor <> 0, number \ divisor, 0))

' When the divisor is 0, IIf causes a run-time error, but If does not.
divisor = 0
Console.WriteLine(If(divisor <> 0, number \ divisor, 0))
' Console.WriteLine(IIf(divisor <> 0, number \ divisor, 0))

Uses short-circuit evaluation to conditionally return one of two values. The If  operator can be called with three arguments or with two arguments.

When If  is called by using three arguments, the first argument must evaluate to a value that can be cast as a Boolean . That Boolean  value will
determine which of the other two arguments is evaluated and returned. The following list applies only when the If  operator is called by using three
arguments.

An If  operator that is called with three arguments works like an IIf  function except that it uses short-circuit evaluation. An IIf  function always
evaluates all three of its arguments, whereas an If  operator that has three arguments evaluates only two of them. The first If  argument is evaluated
and the result is cast as a Boolean  value, True  or False . If the value is True , argument2  is evaluated and its value is returned, but argument3  is not
evaluated. If the value of the Boolean  expression is False , argument3  is evaluated and its value is returned, but argument2  is not evaluated. The
following examples illustrate the use of If  when three arguments are used:

The following example illustrates the value of short-circuit evaluation. The example shows two attempts to divide variable number  by variable divisor

except when divisor  is zero. In that case, a 0 should be returned, and no attempt should be made to perform the division because a run-time error
would result. Because the If  expression uses short-circuit evaluation, it evaluates either the second or the third argument, depending on the value of
the first argument. If the first argument is true, the divisor is not zero and it is safe to evaluate the second argument and perform the division. If the first
argument is false, only the third argument is evaluated and a 0 is returned. Therefore, when the divisor is 0, no attempt is made to perform the division
and no error results. However, because IIf  does not use short-circuit evaluation, the second argument is evaluated even when the first argument is
false. This causes a run-time divide-by-zero error.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/if-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


If Operator Called with Two Arguments

Parts
TERM DEFINITION

argument2 Required. Object . Must be a reference or nullable type. Evaluated and returned
when it evaluates to anything other than Nothing .

argument3 Required. Object . Evaluated and returned if argument2  evaluates to Nothing .

' Variable first is a nullable type.
Dim first? As Integer = 3
Dim second As Integer = 6

' Variable first <> Nothing, so its value, 3, is returned.
Console.WriteLine(If(first, second))

second = Nothing
' Variable first <> Nothing, so the value of first is returned again.
Console.WriteLine(If(first, second))

first = Nothing
second = 6
' Variable first = Nothing, so 6 is returned.
Console.WriteLine(If(first, second))

See Also

The first argument to If  can be omitted. This enables the operator to be called by using only two arguments. The following list applies only when the 
If  operator is called with two arguments.

When the Boolean  argument is omitted, the first argument must be a reference or nullable type. If the first argument evaluates to Nothing , the value of
the second argument is returned. In all other cases, the value of the first argument is returned. The following example illustrates how this evaluation
works.

IIf
Nullable Value Types
Nothing

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.iif
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


          

Is Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = object1 Is object2  

Parts

Remarks

NOTENOTE

Example

Dim myObject As New Object
Dim otherObject As New Object
Dim yourObject, thisObject, thatObject As Object
Dim myCheck As Boolean
yourObject = myObject
thisObject = myObject
thatObject = otherObject
' The following statement sets myCheck to True.
myCheck = yourObject Is thisObject
' The following statement sets myCheck to False.
myCheck = thatObject Is thisObject
' The following statement sets myCheck to False.
myCheck = myObject Is thatObject
thatObject = myObject
' The following statement sets myCheck to True.
myCheck = thisObject Is thatObject

See Also

Compares two object reference variables.

result

Required. Any Boolean  value.

object1

Required. Any Object  name.

object2

Required. Any Object  name.

The Is  operator determines if two object references refer to the same object. However, it does not perform value comparisons. If object1  and 
object2  both refer to the exact same object instance, result  is True ; if they do not, result  is False .

Is  can also be used with the TypeOf  keyword to make a TypeOf ... Is  expression, which tests whether an object variable is compatible with a data
type.

The Is  keyword is also used in the Select...Case Statement.

The following example uses the Is  operator to compare pairs of object references. The results are assigned to a Boolean  value representing whether
the two objects are identical.

As the preceding example demonstrates, you can use the Is  operator to test both early bound and late bound objects.

TypeOf Operator
IsNot Operator
Comparison Operators in Visual Basic
Operator Precedence in Visual Basic
Operators Listed by Functionality
Operators and Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/is-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators


      

IsFalse Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Example

Public Structure p
    Dim a As Double
    Public Shared Operator IsFalse(ByVal w As p) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsFalse of w.
        Return b
    End Operator
    Public Shared Operator IsTrue(ByVal w As p) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsTrue of w.
        Return b
    End Operator
End Structure

See Also

Determines whether an expression is False .

You cannot call IsFalse  explicitly in your code, but the Visual Basic compiler can use it to generate code from AndAlso  clauses. If you define a class or
structure and then use a variable of that type in an AndAlso  clause, you must define IsFalse  on that class or structure.

The compiler considers the IsFalse  and IsTrue  operators as a matched pair. This means that if you define one of them, you must also define the
other one.

The IsFalse  operator can be overloaded, which means that a class or structure can redefine its behavior when its operand has the type of that class or structure. If
your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following code example defines the outline of a structure that includes definitions for the IsFalse  and IsTrue  operators.

IsTrue Operator
How to: Define an Operator
AndAlso Operator

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/isfalse-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator


        

IsNot Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = object1 IsNot object2  

Parts

Remarks

NOTENOTE

Example

Dim o1, o2 As New Object
If Not o1 Is o2 Then MsgBox("o1 and o2 do not refer to the same instance.")
If o1 IsNot o2 Then MsgBox("o1 and o2 do not refer to the same instance.")

See Also

Compares two object reference variables.

result

Required. A Boolean  value.

object1

Required. Any Object  variable or expression.

object2

Required. Any Object  variable or expression.

The IsNot  operator determines if two object references refer to different objects. However, it does not perform value comparisons. If object1  and 
object2  both refer to the exact same object instance, result  is False ; if they do not, result  is True .

IsNot  is the opposite of the Is  operator. The advantage of IsNot  is that you can avoid awkward syntax with Not  and Is , which can be difficult to
read.

You can use the Is  and IsNot  operators to test both early-bound and late-bound objects.

The IsNot  operator cannot be used to compare expressions returned from the TypeOf  operator. Instead, you must use the Not  and Is  operators.

The following code example uses both the Is  operator and the IsNot  operator to accomplish the same comparison.

Is Operator
TypeOf Operator
Operator Precedence in Visual Basic
How to: Test Whether Two Objects Are the Same

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/isnot-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/how-to-test-whether-two-objects-are-the-same


      

IsTrue Operator (Visual Basic)
7/13/2018 • 2 minutes to read • Edit Online

Compiler Use of IsTrue

NOTENOTE

Example

Public Structure p
    Dim a As Double
    Public Shared Operator IsFalse(ByVal w As p) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsFalse of w.
        Return b
    End Operator
    Public Shared Operator IsTrue(ByVal w As p) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsTrue of w.
        Return b
    End Operator
End Structure

See Also

Determines whether an expression is True .

You cannot call IsTrue  explicitly in your code, but the Visual Basic compiler can use it to generate code from OrElse  clauses. If you define a class or
structure and then use a variable of that type in an OrElse  clause, you must define IsTrue  on that class or structure.

The compiler considers the IsTrue  and IsFalse  operators as a matched pair. This means that if you define one of them, you must also define the
other one.

When you have defined a class or structure, you can use a variable of that type in a For , If , Else If , or While  statement, or in a When  clause. If you
do this, the compiler requires an operator that converts your type into a Boolean  value so it can test a condition. It searches for a suitable operator in
the following order :

1. A widening conversion operator from your class or structure to Boolean .

2. A widening conversion operator from your class or structure to Boolean? .

3. The IsTrue  operator on your class or structure.

4. A narrowing conversion to Boolean?  that does not involve a conversion from Boolean  to Boolean? .

5. A narrowing conversion operator from your class or structure to Boolean .

If you have not defined any conversion to Boolean  or an IsTrue  operator, the compiler signals an error.

The IsTrue  operator can be overloaded, which means that a class or structure can redefine its behavior when its operand has the type of that class or structure. If
your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following code example defines the outline of a structure that includes definitions for the IsFalse  and IsTrue  operators.

IsFalse Operator
How to: Define an Operator
OrElse Operator

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/istrue-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator


      

Like Operator (Visual Basic)
7/13/2018 • 5 minutes to read • Edit Online

Syntax
result = string Like pattern  

Parts

Remarks

Comparison Method

Pattern Options

CHARACTERS IN PATTERN MATCHES IN STRING

? Any single character

* Zero or more characters

# Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

Character Lists

Special Characters

Compares a string against a pattern.

result

Required. Any Boolean  variable. The result is a Boolean  value indicating whether or not the string  satisfies the pattern .

string

Required. Any String  expression.

pattern

Required. Any String  expression conforming to the pattern-matching conventions described in "Remarks."

If the value in string  satisfies the pattern contained in pattern , result  is True . If the string does not satisfy the pattern, result  is False . If both 
string  and pattern  are empty strings, the result is True .

The behavior of the Like  operator depends on the Option Compare Statement. The default string comparison method for each source file is 
Option Compare Binary .

Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching features allow you to match each character in string

against a specific character, a wildcard character, a character list, or a character range. The following table shows the characters allowed in pattern  and
what they match.

A group of one or more characters ( charlist ) enclosed in brackets ( [ ] ) can be used to match any single character in string  and can include almost
any character code, including digits.

An exclamation point ( ! ) at the beginning of charlist  means that a match is made if any character except the characters in charlist  is found in 
string . When used outside brackets, the exclamation point matches itself.

To match the special characters left bracket ( [ ), question mark ( ? ), number sign ( # ), and asterisk ( * ), enclose them in brackets. The right bracket ( ]

) cannot be used within a group to match itself, but it can be used outside a group as an individual character.

The character sequence []  is considered a zero-length string ( "" ). However, it cannot be part of a character list enclosed in brackets. If you want to
check whether a position in string  contains one of a group of characters or no character at all, you can use Like  twice. For an example, see How to:
Match a String against a Pattern.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/like-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/how-to-match-a-string-against-a-pattern


Character Ranges

Multiple Character RangesMultiple Character Ranges

Usage of the HyphenUsage of the Hyphen

Collating Sequence

Digraph Characters

Overloading

Example

By using a hyphen ( – ) to separate the lower and upper bounds of the range, charlist  can specify a range of characters. For example, [A–Z]  results in
a match if the corresponding character position in string  contains any character within the range A – Z , and [!H–L]  results in a match if the
corresponding character position contains any character outside the range H – L .

When you specify a range of characters, they must appear in ascending sort order, that is, from lowest to highest. Thus, [A–Z]  is a valid pattern, but 
[Z–A]  is not.

To specify multiple ranges for the same character position, put them within the same brackets without delimiters. For example, [A–CX–Z]  results in a
match if the corresponding character position in string  contains any character within either the range A – C  or the range X – Z .

A hyphen ( – ) can appear either at the beginning (after an exclamation point, if any) or at the end of charlist  to match itself. In any other location, the
hyphen identifies a range of characters delimited by the characters on either side of the hyphen.

The meaning of a specified range depends on the character ordering at run time, as determined by Option Compare  and the locale setting of the system
the code is running on. With Option Compare Binary , the range [A–E]  matches A , B , C , D , and E . With Option Compare Text , [A–E]  matches A , 
a , À , à , B , b , C , c , D , d , E , and e . The range does not match Ê  or ê  because accented characters collate after unaccented characters in the

sort order.

In some languages, there are alphabetic characters that represent two separate characters. For example, several languages use the character æ  to
represent the characters a  and e  when they appear together. The Like  operator recognizes that the single digraph character and the two individual
characters are equivalent.

When a language that uses a digraph character is specified in the system locale settings, an occurrence of the single digraph character in either pattern

or string  matches the equivalent two-character sequence in the other string. Similarly, a digraph character in pattern  enclosed in brackets (by itself, in
a list, or in a range) matches the equivalent two-character sequence in string .

The Like  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

This example uses the Like  operator to compare strings to various patterns. The results go into a Boolean  variable indicating whether each string
satisfies the pattern.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Dim testCheck As Boolean
' The following statement returns True (does "F" satisfy "F"?)
testCheck = "F" Like "F"
' The following statement returns False for Option Compare Binary
'    and True for Option Compare Text (does "F" satisfy "f"?)
testCheck = "F" Like "f"
' The following statement returns False (does "F" satisfy "FFF"?)
testCheck = "F" Like "FFF"
' The following statement returns True (does "aBBBa" have an "a" at the
'    beginning, an "a" at the end, and any number of characters in 
'    between?)
testCheck = "aBBBa" Like "a*a"
' The following statement returns True (does "F" occur in the set of
'    characters from "A" through "Z"?)
testCheck = "F" Like "[A-Z]"
' The following statement returns False (does "F" NOT occur in the 
'    set of characters from "A" through "Z"?)
testCheck = "F" Like "[!A-Z]"
' The following statement returns True (does "a2a" begin and end with
'    an "a" and have any single-digit number in between?)
testCheck = "a2a" Like "a#a"
' The following statement returns True (does "aM5b" begin with an "a",
'    followed by any character from the set "L" through "P", followed
'    by any single-digit number, and end with any character NOT in
'    the character set "c" through "e"?)
testCheck = "aM5b" Like "a[L-P]#[!c-e]"
' The following statement returns True (does "BAT123khg" begin with a
'    "B", followed by any single character, followed by a "T", and end
'    with zero or more characters of any type?)
testCheck = "BAT123khg" Like "B?T*"
' The following statement returns False (does "CAT123khg"?) begin with
'    a "B", followed by any single character, followed by a "T", and
'    end with zero or more characters of any type?)
testCheck = "CAT123khg" Like "B?T*"

See Also
InStr
StrComp
Comparison Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Option Compare Statement
Operators and Expressions
How to: Match a String against a Pattern

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/how-to-match-a-string-against-a-pattern


    

Mod operator (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
number1 Mod number2  

Parts

Supported types

Result

NOTENOTE

Public Module Example
   Public Sub Main()
      Console.WriteLine($" 8 Mod  3 = {8 Mod 3}")
      Console.WriteLine($"-8 Mod  3 = {-8 Mod 3}")
      Console.WriteLine($" 8 Mod -3 = {8 Mod -3}")
      Console.WriteLine($"-8 Mod -3 = {-8 Mod -3}")
   End Sub
End Module
' The example displays the following output:
'       8 Mod  3 = 2
'      -8 Mod  3 = -2
'       8 Mod -3 = 2
'      -8 Mod -3 = -2

Remarks

Attempted division by zero

Equivalent formula

Divides two numbers and returns only the remainder.

number1

Required. Any numeric expression.

number2

Required. Any numeric expression.

All numeric types. This includes the unsigned and floating-point types and Decimal .

The result is the remainder after number1  is divided by number2 . For example, the expression 14 Mod 4  evaluates to 2.

There is a difference between remainder and modulus in mathematics, with different results for negative numbers. The Mod  operator in Visual Basic, the .NET
Framework op_Modulus  operator, and the underlying [rem]Rem IL instruction all perform a remainder operation.

The result of a Mod  operation retains the sign of the dividend, number1 , and so it may be positive or negative. The result is always in the range (-
number2 , number2 ), exclusive. For example:

If either number1  or number2  is a floating-point value, the floating-point remainder of the division is returned. The data type of the result is the smallest
data type that can hold all possible values that result from division with the data types of number1  and number2 .

If number1  or number2  evaluates to Nothing, it is treated as zero.

Related operators include the following:

The \ Operator (Visual Basic) returns the integer quotient of a division. For example, the expression 14 \ 4  evaluates to 3.

The / Operator (Visual Basic) returns the full quotient, including the remainder, as a floating-point number. For example, the expression 14 / 4

evaluates to 3.5.

If number2  evaluates to zero, the behavior of the Mod  operator depends on the data type of the operands. An integral division throws a
DivideByZeroException exception. A floating-point division returns NaN.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/mod-operator.md
https://docs.microsoft.com/dotnet/api/system.reflection.emit.opcodes.rem
https://docs.microsoft.com/dotnet/api/system.dividebyzeroexception
https://docs.microsoft.com/dotnet/api/system.double.nan


Floating-point imprecision

Overloading

Example

Debug.WriteLine(10 Mod 5)
' Output: 0
Debug.WriteLine(10 Mod 3)
' Output: 1
Debug.WriteLine(-10 Mod 3)
' Output: -1
Debug.WriteLine(12 Mod 4.3)
' Output: 3.4
Debug.WriteLine(12.6 Mod 5)
' Output: 2.6
Debug.WriteLine(47.9 Mod 9.35)
' Output: 1.15

Example

firstResult = 2.0 Mod 0.2
' Double operation returns 0.2, not 0.
secondResult = 2D Mod 0.2D
' Decimal operation returns 0.

See also

The expression a Mod b  is equivalent to either of the following formulas:

a - (b * (a \ b))

a - (b * Fix(a / b))

When you work with floating-point numbers, remember that they do not always have a precise decimal representation in memory. This can lead to
unexpected results from certain operations, such as value comparison and the Mod  operator. For more information, see Troubleshooting Data Types.

The Mod  operator can be overloaded, which means that a class or structure can redefine its behavior. If your code applies Mod  to an instance of a class
or structure that includes such an overload, be sure you understand its redefined behavior. For more information, see Operator Procedures.

The following example uses the Mod  operator to divide two numbers and return only the remainder. If either number is a floating-point number, the
result is a floating-point number that represents the remainder.

The following example demonstrates the potential imprecision of floating-point operands. In the first statement, the operands are Double , and 0.2 is an
infinitely repeating binary fraction with a stored value of 0.20000000000000001. In the second statement, the literal type character D  forces both
operands to Decimal , and 0.2 has a precise representation.

Int
Fix
Arithmetic Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Troubleshooting Data Types
Arithmetic Operators in Visual Basic
\ Operator (Visual Basic)

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.int
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.fix
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


   

Not Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = Not expression  

Parts

Remarks

IF EXPRESSION  IS THE VALUE OF RESULT  IS

True False

False True

IF BIT IN EXPRESSION  IS THE BIT IN RESULT  IS

1 0

0 1

NOTENOTE

Data Types

Overloading

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck As Boolean
firstCheck = Not (a > b)
secondCheck = Not (b > a)

Performs logical negation on a Boolean  expression, or bitwise negation on a numeric expression.

result

Required. Any Boolean  or numeric expression.

expression

Required. Any Boolean  or numeric expression.

For Boolean  expressions, the following table illustrates how result  is determined.

For numeric expressions, the Not  operator inverts the bit values of any numeric expression and sets the corresponding bit in result  according to the
following table.

Since the logical and bitwise operators have a lower precedence than other arithmetic and relational operators, any bitwise operations should be enclosed in
parentheses to ensure accurate execution.

For a Boolean negation, the data type of the result is Boolean . For a bitwise negation, the result data type is the same as that of expression . However, if
expression is Decimal , the result is Long .

The Not  operator can be overloaded, which means that a class or structure can redefine its behavior when its operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

The following example uses the Not  operator to perform logical negation on a Boolean  expression. The result is a Boolean  value that represents the
reverse of the value of the expression.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/not-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstPattern, secondPattern, thirdPattern As Integer
firstPattern = (Not a)
secondPattern = (Not b)
thirdPattern = (Not c)

See Also

The preceding example produces results of False  and True , respectively.

The following example uses the Not  operator to perform logical negation of the individual bits of a numeric expression. The bit in the result pattern is
set to the reverse of the corresponding bit in the operand pattern, including the sign bit.

The preceding example produces results of –11, –9, and –7, respectively.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


     

Or Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = expression1 Or expression2  

Parts

Remarks

IF EXPRESSION1  IS AND EXPRESSION2  IS THE VALUE OF RESULT  IS

True True True

True False True

False True True

False False False

NOTENOTE

IF BIT IN EXPRESSION1  IS AND BIT IN EXPRESSION2  IS THE BIT IN RESULT  IS

1 1 1

1 0 1

0 1 1

0 0 0

NOTENOTE

Data Types

Performs a logical disjunction on two Boolean  expressions, or a bitwise disjunction on two numeric expressions.

result

Required. Any Boolean  or numeric expression. For Boolean  comparison, result  is the inclusive logical disjunction of two Boolean  values. For bitwise
operations, result  is a numeric value representing the inclusive bitwise disjunction of two numeric bit patterns.

expression1

Required. Any Boolean  or numeric expression.

expression2

Required. Any Boolean  or numeric expression.

For Boolean  comparison, result  is False  if and only if both expression1  and expression2  evaluate to False . The following table illustrates how 
result  is determined.

In a Boolean  comparison, the Or  operator always evaluates both expressions, which could include making procedure calls. The OrElse Operator performs short-

circuiting, which means that if expression1  is True , then expression2  is not evaluated.

For bitwise operations, the Or  operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result  according to the following table.

Since the logical and bitwise operators have a lower precedence than other arithmetic and relational operators, any bitwise operations should be enclosed in
parentheses to ensure accurate execution.

If the operands consist of one Boolean  expression and one numeric expression, Visual Basic converts the Boolean  expression to a numeric value (–1
for True  and 0 for False ) and performs a bitwise operation.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/or-operator.md


Overloading

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck, thirdCheck As Boolean
firstCheck = a > b Or b > c
secondCheck = b > a Or b > c
thirdCheck = b > a Or c > b

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstPattern, secondPattern, thirdPattern As Integer
firstPattern = (a Or b)
secondPattern = (a Or c)
thirdPattern = (b Or c)

See Also

For a Boolean  comparison, the data type of the result is Boolean . For a bitwise comparison, the result data type is a numeric type appropriate for the
data types of expression1  and expression2 . See the "Relational and Bitwise Comparisons" table in Data Types of Operator Results.

The Or  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, be sure you understand its redefined behavior. For more information, see
Operator Procedures.

The following example uses the Or  operator to perform an inclusive logical disjunction on two expressions. The result is a Boolean  value that
represents whether either of the two expressions is True .

The preceding example produces results of True , True , and False , respectively.

The following example uses the Or  operator to perform inclusive logical disjunction on the individual bits of two numeric expressions. The bit in the
result pattern is set if either of the corresponding bits in the operands is set to 1.

The preceding example produces results of 10, 14, and 14, respectively.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
OrElse Operator
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


       

OrElse Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = expression1 OrElse expression2  

Parts

Remarks

IF EXPRESSION1  IS AND EXPRESSION2  IS THE VALUE OF RESULT  IS

True (not evaluated) True

False True True

False False False

Data Types

Overloading

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck, thirdCheck As Boolean
firstCheck = a > b OrElse b > c
secondCheck = b > a OrElse b > c
thirdCheck = b > a OrElse c > b

Performs short-circuiting inclusive logical disjunction on two expressions.

result

Required. Any Boolean  expression.

expression1

Required. Any Boolean  expression.

expression2

Required. Any Boolean  expression.

A logical operation is said to be short-circuiting if the compiled code can bypass the evaluation of one expression depending on the result of another
expression. If the result of the first expression evaluated determines the final result of the operation, there is no need to evaluate the second expression,
because it cannot change the final result. Short-circuiting can improve performance if the bypassed expression is complex, or if it involves procedure
calls.

If either or both expressions evaluate to True , result  is True . The following table illustrates how result  is determined.

The OrElse  operator is defined only for the Boolean Data Type. Visual Basic converts each operand as necessary to Boolean  and performs the
operation entirely in Boolean . If you assign the result to a numeric type, Visual Basic converts it from Boolean  to that type. This could produce
unexpected behavior. For example, 5 OrElse 12  results in –1  when converted to Integer .

The Or Operator and the IsTrue Operator can be overloaded, which means that a class or structure can redefine their behavior when an operand has the
type of that class or structure. Overloading the Or  and IsTrue  operators affects the behavior of the OrElse  operator. If your code uses OrElse  on a
class or structure that overloads Or  and IsTrue , be sure you understand their redefined behavior. For more information, see Operator Procedures.

The following example uses the OrElse  operator to perform logical disjunction on two expressions. The result is a Boolean  value that represents
whether either of the two expressions is true. If the first expression is True , the second is not evaluated.

The preceding example produces results of True , True , and False  respectively. In the calculation of firstCheck , the second expression is not
evaluated because the first is already True . However, the second expression is evaluated in the calculation of secondCheck .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/orelse-operator.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Example

If testFunction(5) = True OrElse otherFunction(4) = True Then
    ' If testFunction(5) is True, otherFunction(4) is not called.
    ' Insert code to be executed.
End If

See Also

The following example shows an If ... Then  statement containing two procedure calls. If the first call returns True , the second procedure is not called.
This could produce unexpected results if the second procedure performs important tasks that should always be performed when this section of the code
runs.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
Or Operator
IsTrue Operator
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


 

Sub Expression (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Sub ( [ parameterlist ] ) statement  
- or -  
Sub ( [ parameterlist ] )  
  [ statements ]  
End Sub  

Parts
TERM DEFINITION

parameterlist Optional. A list of local variable names that represent the parameters of the
procedure. The parentheses must be present even when the list is empty. For more
information, see Parameter List.

statement Required. A single statement.

statements Required. A list of statements.

Remarks

Lambda Expression Syntax

Example

Dim writeline1 = Sub(x) Console.WriteLine(x)
Dim writeline2 = Sub(x)
                     Console.WriteLine(x)
                 End Sub

' Write "Hello".
writeline1("Hello")

' Write "World"
writeline2("World")

See Also

Declares the parameters and code that define a subroutine lambda expression.

A lambda expression is a subroutine that does not have a name and that executes one or more statements. You can use a lambda expression anywhere
that you can use a delegate type, except as an argument to RemoveHandler . For more information about delegates, and the use of lambda expressions
with delegates, see Delegate Statement and Relaxed Delegate Conversion.

The syntax of a lambda expression resembles that of a standard subroutine. The differences are as follows:

A lambda expression does not have a name.

A lambda expression cannot have a modifier, such as Overloads  or Overrides .

The body of a single-line lambda expression must be a statement, not an expression. The body can consist of a call to a sub procedure, but not a
call to a function procedure.

In a lambda expression, either all parameters must have specified data types or all parameters must be inferred.

Optional and ParamArray  parameters are not permitted in lambda expressions.

Generic parameters are not permitted in lambda expressions.

Following is an example of a lambda expression that writes a value to the console. The example shows both the single-line and multiline lambda
expression syntax for a subroutine. For more examples, see Lambda Expressions.

Sub Statement
Lambda Expressions
Operators and Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/sub-expression.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


Statements
Relaxed Delegate Conversion

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion


      

TypeOf Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
result = TypeOf objectexpression Is typename  

result = TypeOf objectexpression IsNot typename  

Parts

Remarks

TYPE CATEGORY OF TYPENAME COMPATIBILITY CRITERION

Class objectexpression  is of type typename  or inherits from typename

Structure objectexpression  is of type typename

Interface objectexpression  implements typename  or inherits from a class that
implements typename

Example

Dim refInteger As Object = 2
MsgBox("TypeOf Object[Integer] Is Integer? " & TypeOf refInteger Is Integer)
MsgBox("TypeOf Object[Integer] Is Double? " & TypeOf refInteger Is Double)
Dim refForm As Object = New System.Windows.Forms.Form
MsgBox("TypeOf Object[Form] Is Form? " & TypeOf refForm Is System.Windows.Forms.Form)
MsgBox("TypeOf Object[Form] Is Label? " & TypeOf refForm Is System.Windows.Forms.Label)
MsgBox("TypeOf Object[Form] Is Control? " & TypeOf refForm Is System.Windows.Forms.Control)
MsgBox("TypeOf Object[Form] Is IComponent? " & TypeOf refForm Is System.ComponentModel.IComponent)

See Also

Compares an object reference variable to a data type.

result

Returned. A Boolean  value.

objectexpression

Required. Any expression that evaluates to a reference type.

typename

Required. Any data type name.

The TypeOf  operator determines whether the run-time type of objectexpression  is compatible with typename . The compatibility depends on the type
category of typename . The following table shows how compatibility is determined.

If the run-time type of objectexpression  satisfies the compatibility criterion, result  is True . Otherwise, result  is False . If objectexpression  is null,
then TypeOf ... Is  returns False , and ... IsNot  returns True .

TypeOf  is always used with the Is  keyword to construct a TypeOf ... Is  expression, or with the IsNot  keyword to construct a TypeOf ... IsNot
expression.

The following example uses TypeOf ... Is  expressions to test the type compatibility of two object reference variables with various data types.

The variable refInteger  has a run-time type of Integer . It is compatible with Integer  but not with Double . The variable refForm  has a run-time type
of Form. It is compatible with Form because that is its type, with Control because Form inherits from Control, and with IComponent because Form
inherits from Component, which implements IComponent. However, refForm  is not compatible with Label.

Is Operator
IsNot Operator
Comparison Operators in Visual Basic
Operator Precedence in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/typeof-operator.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.componentmodel.component
https://docs.microsoft.com/dotnet/api/system.componentmodel.icomponent
https://docs.microsoft.com/dotnet/api/system.windows.forms.label
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators


Operators Listed by Functionality
Operators and Expressions



   

Xor Operator (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
result = expression1 Xor expression2  

Parts

Remarks

IF EXPRESSION1  IS AND EXPRESSION2  IS THE VALUE OF RESULT  IS

True True False

True False True

False True True

False False False

NOTENOTE

IF BIT IN EXPRESSION1  IS AND BIT IN EXPRESSION2  IS THE BIT IN RESULT  IS

1 1 0

1 0 1

0 1 1

0 0 0

NOTENOTE

Performs a logical exclusion on two Boolean  expressions, or a bitwise exclusion on two numeric expressions.

result

Required. Any Boolean  or numeric variable. For Boolean comparison, result  is the logical exclusion (exclusive logical disjunction) of two Boolean

values. For bitwise operations, result  is a numeric value that represents the bitwise exclusion (exclusive bitwise disjunction) of two numeric bit
patterns.

expression1

Required. Any Boolean  or numeric expression.

expression2

Required. Any Boolean  or numeric expression.

For Boolean comparison, result  is True  if and only if exactly one of expression1  and expression2  evaluates to True . That is, if and only if 
expression1  and expression2  evaluate to opposite Boolean  values. The following table illustrates how result  is determined.

In a Boolean comparison, the Xor  operator always evaluates both expressions, which could include making procedure calls. There is no short-circuiting counterpart to
Xor , because the result always depends on both operands. For short-circuiting logical operators, see AndAlso Operator and OrElse Operator.

For bitwise operations, the Xor  operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result  according to the following table.

Since the logical and bitwise operators have a lower precedence than other arithmetic and relational operators, any bitwise operations should be enclosed in
parentheses to ensure accurate execution.

For example, 5 Xor  3 is 6. To see why this is so, convert 5 and 3 to their binary representations, 101 and 011. Then use the previous table to determine
that 101 Xor 011 is 110, which is the binary representation of the decimal number 6.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/xor-operator.md


Data Types

Overloading

Example

Dim a As Integer = 10
Dim b As Integer = 8
Dim c As Integer = 6
Dim firstCheck, secondCheck, thirdCheck As Boolean
firstCheck = a > b Xor b > c
secondCheck = b > a Xor b > c
thirdCheck = b > a Xor c > b

Example

Dim a As Integer = 10 ' 1010 in binary
Dim b As Integer = 8  ' 1000 in binary
Dim c As Integer = 6  ' 0110 in binary
Dim firstPattern, secondPattern, thirdPattern As Integer
firstPattern = (a Xor b)  '  2, 0010 in binary
secondPattern = (a Xor c) ' 12, 1100 in binary
thirdPattern = (b Xor c)  ' 14, 1110 in binary

See Also

If the operands consist of one Boolean  expression and one numeric expression, Visual Basic converts the Boolean  expression to a numeric value (–1
for True  and 0 for False ) and performs a bitwise operation.

For a Boolean  comparison, the data type of the result is Boolean . For a bitwise comparison, the result data type is a numeric type appropriate for the
data types of expression1  and expression2 . See the "Relational and Bitwise Comparisons" table in Data Types of Operator Results.

The Xor  operator can be overloaded, which means that a class or structure can redefine its behavior when an operand has the type of that class or
structure. If your code uses this operator on such a class or structure, make sure you understand its redefined behavior. For more information, see
Operator Procedures.

The following example uses the Xor  operator to perform logical exclusion (exclusive logical disjunction) on two expressions. The result is a Boolean

value that represents whether exactly one of the expressions is True .

The previous example produces results of False , True , and False , respectively.

The following example uses the Xor  operator to perform logical exclusion (exclusive logical disjunction) on the individual bits of two numeric
expressions. The bit in the result pattern is set if exactly one of the corresponding bits in the operands is set to 1.

The previous example produces results of 2, 12, and 14, respectively.

Logical/Bitwise Operators (Visual Basic)
Operator Precedence in Visual Basic
Operators Listed by Functionality
Logical and Bitwise Operators in Visual Basic

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


         

Data Types of Operator Results (Visual Basic)
5/4/2018 • 7 minutes to read • Edit Online

Data Type Ranges

Decimal Arithmetic

Floating-Point Arithmetic

/ and ^ Operators/ and ^ Operators

Decimal Single Double Any integer type

Decimal Decimal Single Double Decimal

Single Single Single Double Single

Double Double Double Double Double

Any integer type Decimal Single Double Double

Integer Arithmetic

Visual Basic determines the result data type of an operation based on the data types of the operands. In some cases this might be a data type with a
greater range than that of either operand.

The ranges of the relevant data types, in order from smallest to largest, are as follows:

Boolean — two possible values

SByte, Byte — 256 possible integral values

Short, UShort — 65,536 (6.5...E+4) possible integral values

Integer, UInteger — 4,294,967,296 (4.2...E+9) possible integral values

Long, ULong — 18,446,744,073,709,551,615 (1.8...E+19) possible integral values

Decimal — 1.5...E+29 possible integral values, maximum range 7.9...E+28 (absolute value)

Single — maximum range 3.4...E+38 (absolute value)

Double — maximum range 1.7...E+308 (absolute value)

For more information on Visual Basic data types, see Data Types.

If an operand evaluates to Nothing, the Visual Basic arithmetic operators treat it as zero.

Note that the Decimal data type is neither floating-point nor integer.

If either operand of a + , – , * , / , or Mod  operation is Decimal  and the other is not Single  or Double , Visual Basic widens the other operand to 
Decimal . It performs the operation in Decimal , and the result data type is Decimal .

Visual Basic performs most floating-point arithmetic in Double, which is the most efficient data type for such operations. However, if one operand is
Single and the other is not Double , Visual Basic performs the operation in Single . It widens each operand as necessary to the appropriate data type
before the operation, and the result has that data type.

The /  operator is defined only for the Decimal, Single, and Double data types. Visual Basic widens each operand as necessary to the appropriate data
type before the operation, and the result has that data type.

The following table shows the result data types for the /  operator. Note that this table is symmetric; for a given combination of operand data types, the
result data type is the same regardless of the order of the operands.

The ^  operator is defined only for the Double  data type. Visual Basic widens each operand as necessary to Double  before the operation, and the result
data type is always Double .

The result data type of an integer operation depends on the data types of the operands. In general, Visual Basic uses the following policies for
determining the result data type:

If both operands of a binary operator have the same data type, the result has that data type. An exception is Boolean , which is forced to Short .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/data-types-of-operator-results.md


NOTENOTE

Unary + and – OperatorsUnary + and – Operators

Boolean SByte Byte Short UShort Integer UInteger Long ULong

Unary + Short SByte Byte Short UShort Integer UInteger Long ULong

Unary – Short SByte Short Short Integer Integer Long Long Decimal

<< and >> Operators<< and >> Operators

Boolean SByte Byte Short UShort Integer UInteger Long ULong

<< , >> Short SByte Byte Short UShort Integer UInteger Long ULong

Binary +, –, *, and Mod OperatorsBinary +, –, *, and Mod Operators

Boolean SByte Byte Short UShort Integer UInteger Long ULong

Boolean Short SByte Short Short Integer Integer Long Long Decimal

SByte SByte SByte Short Short Integer Integer Long Long Decimal

Byte Short Short Byte Short UShort Integer UInteger Long ULong

Short Short Short Short Short Integer Integer Long Long Decimal

UShort Integer Integer UShort Integer UShort Integer UInteger Long ULong

Integer Integer Integer Integer Integer Integer Integer Long Long Decimal

UInteger Long Long UInteger Long UInteger Long UInteger Long ULong

Long Long Long Long Long Long Long Long Long Decimal

ULong Decimal Decimal ULong Decimal ULong Decimal ULong Decimal ULong

\ Operator\ Operator

Boolean SByte Byte Short UShort Integer UInteger Long ULong

Boolean Short SByte Short Short Integer Integer Long Long Long

If an unsigned operand participates with a signed operand, the result has a signed type with at least as large a range as either operand.

Otherwise, the result usually has the larger of the two operand data types.

Note that the result data type might not be the same as either operand data type.

The result data type is not always large enough to hold all possible values resulting from the operation. An OverflowException exception can occur if the value is too
large for the result data type.

The following table shows the result data types for the two unary operators, +  and – .

The following table shows the result data types for the two bit-shift operators, <<  and >> . Visual Basic treats each bit-shift operator as a unary
operator on its left operand (the bit pattern to be shifted).

If the left operand is Decimal , Single , Double , or String , Visual Basic attempts to convert it to Long  before the operation, and the result data type is 
Long . The right operand (the number of bit positions to shift) must be Integer  or a type that widens to Integer .

The following table shows the result data types for the binary +  and –  operators and the *  and Mod  operators. Note that this table is symmetric; for
a given combination of operand data types, the result data type is the same regardless of the order of the operands.

The following table shows the result data types for the \  operator. Note that this table is symmetric; for a given combination of operand data types, the
result data type is the same regardless of the order of the operands.

https://docs.microsoft.com/dotnet/api/system.overflowexception


SByte SByte SByte Short Short Integer Integer Long Long Long

Byte Short Short Byte Short UShort Integer UInteger Long ULong

Short Short Short Short Short Integer Integer Long Long Long

UShort Integer Integer UShort Integer UShort Integer UInteger Long ULong

Integer Integer Integer Integer Integer Integer Integer Long Long Long

UInteger Long Long UInteger Long UInteger Long UInteger Long ULong

Long Long Long Long Long Long Long Long Long Long

ULong Long Long ULong Long ULong Long ULong Long ULong

Relational and Bitwise Comparisons

=, <>, <, >, <=, and >= Operators=, <>, <, >, <=, and >= Operators

Bitwise Not OperatorBitwise Not Operator

Boolean SByte Byte Short UShort Integer UInteger Long ULong

Not Boolean SByte Byte Short UShort Integer UInteger Long ULong

Bitwise And, Or, and Xor OperatorsBitwise And, Or, and Xor Operators

Boolean SByte Byte Short UShort Integer UInteger Long ULong

Boolean Boolean SByte Short Short Integer Integer Long Long Long

SByte SByte SByte Short Short Integer Integer Long Long Long

Byte Short Short Byte Short UShort Integer UInteger Long ULong

Short Short Short Short Short Integer Integer Long Long Long

UShort Integer Integer UShort Integer UShort Integer UInteger Long ULong

Integer Integer Integer Integer Integer Integer Integer Long Long Long

UInteger Long Long UInteger Long UInteger Long UInteger Long ULong

Long Long Long Long Long Long Long Long Long Long

If either operand of the \  operator is Decimal, Single, or Double, Visual Basic attempts to convert it to Long before the operation, and the result data
type is Long .

The result data type of a relational operation ( = , <> , < , > , <= , >= ) is always Boolean Boolean Data Type. The same is true for logical operations (
And , AndAlso , Not , Or , OrElse , Xor ) on Boolean  operands.

The result data type of a bitwise logical operation depends on the data types of the operands. Note that AndAlso  and OrElse  are defined only for 
Boolean , and Visual Basic converts each operand as necessary to Boolean  before performing the operation.

If both operands are Boolean , Visual Basic considers True  to be less than False . If a numeric type is compared with a String , Visual Basic attempts
to convert the String  to Double  before the operation. A Char  or Date  operand can be compared only with another operand of the same data type.
The result data type is always Boolean .

The following table shows the result data types for the bitwise Not  operator.

If the operand is Decimal , Single , Double , or String , Visual Basic attempts to convert it to Long  before the operation, and the result data type is 
Long .

The following table shows the result data types for the bitwise And , Or , and Xor  operators. Note that this table is symmetric; for a given combination
of operand data types, the result data type is the same regardless of the order of the operands.



ULong Long Long ULong Long ULong Long ULong Long ULong

Miscellaneous Operators

See Also

If an operand is Decimal , Single , Double , or String , Visual Basic attempts to convert it to Long  before the operation, and the result data type is the
same as if that operand had already been Long .

The &  operator is defined only for concatenation of String  operands. Visual Basic converts each operand as necessary to String  before the
operation, and the result data type is always String . For the purposes of the &  operator, all conversions to String  are considered to be widening,
even if Option Strict  is On .

The Is  and IsNot  operators require both operands to be of a reference type. The TypeOf ... Is  expression requires the first operand to be of a
reference type and the second operand to be the name of a data type. In all these cases the result data type is Boolean .

The Like  operator is defined only for pattern matching of String  operands. Visual Basic attempts to convert each operand as necessary to String

before the operation. The result data type is always Boolean .

Data Types
Operators and Expressions
Arithmetic Operators in Visual Basic
Comparison Operators in Visual Basic
Operators
Operator Precedence in Visual Basic
Operators Listed by Functionality
Arithmetic Operators
Comparison Operators
Option Strict Statement

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators


       

DirectCast Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Errors and Failures

Conversion Keywords

KEYWORD DATA TYPES ARGUMENT RELATIONSHIP RUN-TIME FAILURE

CType Function Any data types Widening or narrowing conversion
must be defined between the two data
types

Throws InvalidCastException

DirectCast Any data types One type must inherit from or
implement the other type

Throws InvalidCastException

TryCast Operator Reference types only One type must inherit from or
implement the other type

Returns Nothing

Example

Dim q As Object = 2.37
Dim i As Integer = CType(q, Integer)
' The following conversion fails at run time
Dim j As Integer = DirectCast(q, Integer)
Dim f As New System.Windows.Forms.Form
Dim c As System.Windows.Forms.Control
' The following conversion succeeds.
c = DirectCast(f, System.Windows.Forms.Control)

See Also

Introduces a type conversion operation based on inheritance or implementation.

DirectCast  does not use the Visual Basic run-time helper routines for conversion, so it can provide somewhat better performance than CType  when
converting to and from data type Object .

You use the DirectCast  keyword similar to the way you use the CType Function and the TryCast Operator keyword. You supply an expression as the
first argument and a type to convert it to as the second argument. DirectCast  requires an inheritance or implementation relationship between the data
types of the two arguments. This means that one type must inherit from or implement the other.

DirectCast  generates a compiler error if it detects that no inheritance or implementation relationship exists. But the lack of a compiler error does not
guarantee a successful conversion. If the desired conversion is narrowing, it could fail at run time. If this happens, the runtime throws an
InvalidCastException error.

A comparison of the type conversion keywords is as follows.

The following example demonstrates two uses of DirectCast , one that fails at run time and one that succeeds.

In the preceding example, the run-time type of q  is Double . CType  succeeds because Double  can be converted to Integer . However, the first 
DirectCast  fails at run time because the run-time type of Double  has no inheritance relationship with Integer , even though a conversion exists. The

second DirectCast  succeeds because it converts from type Form to type Control, from which Form inherits.

Convert.ChangeType
Widening and Narrowing Conversions
Implicit and Explicit Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/directcast-operator.md
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.control
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.convert.changetype
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


       

TryCast Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Errors and Failures

Conversion Keywords

KEYWORD DATA TYPES ARGUMENT RELATIONSHIP RUN-TIME FAILURE

CType Function Any data types Widening or narrowing conversion
must be defined between the two data
types

Throws InvalidCastException

DirectCast Operator Any data types One type must inherit from or
implement the other type

Throws InvalidCastException

TryCast Reference types only One type must inherit from or
implement the other type

Returns Nothing

Example

Function PrintTypeCode(ByVal obj As Object) As String
    Dim objAsConvertible As IConvertible = TryCast(obj, IConvertible)
    If objAsConvertible Is Nothing Then
        Return obj.ToString() & " does not implement IConvertible"
    Else
        Return "Type code is " & objAsConvertible.GetTypeCode()
    End If
End Function

See Also

Introduces a type conversion operation that does not throw an exception.

If an attempted conversion fails, CType  and DirectCast  both throw an InvalidCastException error. This can adversely affect the performance of your
application. TryCast  returns Nothing, so that instead of having to handle a possible exception, you need only test the returned result against Nothing .

You use the TryCast  keyword the same way you use the CType Function and the DirectCast Operator keyword. You supply an expression as the first
argument and a type to convert it to as the second argument. TryCast  operates only on reference types, such as classes and interfaces. It requires an
inheritance or implementation relationship between the two types. This means that one type must inherit from or implement the other.

TryCast  generates a compiler error if it detects that no inheritance or implementation relationship exists. But the lack of a compiler error does not
guarantee a successful conversion. If the desired conversion is narrowing, it could fail at run time. If this happens, TryCast  returns Nothing.

A comparison of the type conversion keywords is as follows.

The following example shows how to use TryCast .

Widening and Narrowing Conversions
Implicit and Explicit Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/trycast-operator.md
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


            

New Operator (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

' For customer1, call the constructor that takes no arguments.
Dim customer1 As New Customer()

' For customer2, call the constructor that takes the name of the 
' customer as an argument.
Dim customer2 As New Customer("Blue Yonder Airlines")

' For customer3, declare an instance of Customer in the first line 
' and instantiate it in the second.
Dim customer3 As Customer
customer3 = New Customer()

' With Option Infer set to On, the following declaration declares
' and instantiates a new instance of Customer.
Dim customer4 = New Customer("Coho Winery")

Dim intArray1() As Integer
intArray1 = New Integer() {1, 2, 3, 4}

Dim intArray2() As Integer = {5, 6}

' The following example requires that Option Infer be set to On.
Dim intArray3() = New Integer() {6, 7, 8}

NOTENOTE

See Also

Introduces a New  clause to create a new object instance, specifies a constructor constraint on a type parameter, or identifies a Sub  procedure as a class
constructor.

In a declaration or assignment statement, a New  clause must specify a defined class from which the instance can be created. This means that the class
must expose one or more constructors that the calling code can access.

You can use a New  clause in a declaration statement or an assignment statement. When the statement runs, it calls the appropriate constructor of the
specified class, passing any arguments you have supplied. The following example demonstrates this by creating instances of a Customer  class that has
two constructors, one that takes no parameters and one that takes a string parameter.

Since arrays are classes, New  can create a new array instance, as shown in the following examples.

The common language runtime (CLR) throws an OutOfMemoryException error if there is insufficient memory to create the new instance.

The New  keyword is also used in type parameter lists to specify that the supplied type must expose an accessible parameterless constructor. For more information
about type parameters and constraints, see Type List.

To create a constructor procedure for a class, set the name of a Sub  procedure to the New  keyword. For more information, see Object Lifetime: How
Objects Are Created and Destroyed.

The New  keyword can be used in these contexts:

Dim Statement

Of

Sub Statement

OutOfMemoryException
Keywords
Type List
Generic Types in Visual Basic
Object Lifetime: How Objects Are Created and Destroyed

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/new-operator.md
https://docs.microsoft.com/dotnet/api/system.outofmemoryexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://docs.microsoft.com/dotnet/api/system.outofmemoryexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed


                 

Arithmetic Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are the arithmetic operators defined in Visual Basic.

^ Operator

* Operator

/ Operator

\ Operator

Mod Operator

+ Operator (unary and binary)

- Operator (unary and binary)

Operator Precedence in Visual Basic
Arithmetic Operators in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/arithmetic-operators.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/arithmetic-operators


               

Assignment Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are the assignment operators defined in Visual Basic.

= Operator

^= Operator

*= Operator

/= Operator

\= Operator

+= Operator

-= Operator

<<= Operator

>>= Operator

&= Operator

Operator Precedence in Visual Basic
Operators Listed by Functionality
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/assignment-operators.md


      

Bit Shift Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are the bit shift operators defined in Visual Basic.

<< Operator

>> Operator

Operators Listed by Functionality

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/bit-shift-operators.md


              

Comparison Operators (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

Syntax
      result = expression1 comparisonoperator expression2  
result = object1 [Is | IsNot] object2  
result = string Like pattern  

Parts

Remarks

OPERATOR TRUE  IF FALSE  IF

<  (Less than) expression1  < expression2 expression1  >= expression2

<=  (Less than or equal to) expression1  <= expression2 expression1  > expression2

>  (Greater than) expression1  > expression2 expression1  <= expression2

>=  (Greater than or equal to) expression1  >= expression2 expression1  < expression2

=  (Equal to) expression1  = expression2 expression1  <> expression2

<>  (Not equal to) expression1  <> expression2 expression1  = expression2

The following are the comparison operators defined in Visual Basic.

<  operator

<=  operator

>  operator

>=  operator

=  operator

<>  operator

Is Operator

IsNot Operator

Like Operator

These operators compare two expressions to determine whether or not they are equal, and if not, how they differ. Is , IsNot , and Like  are discussed
in detail on separate Help pages. The relational comparison operators are discussed in detail on this page.

result

Required. A Boolean  value representing the result of the comparison.

expression

Required. Any expression.

comparisonoperator

Required. Any relational comparison operator.

object1 , object2

Required. Any reference object names.

string

Required. Any String  expression.

pattern

Required. Any String  expression or range of characters.

The following table contains a list of the relational comparison operators and the conditions that determine whether result  is True  or False .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/comparison-operators.md


NOTENOTE

Comparing Numbers

Floating-point ImprecisionFloating-point Imprecision

Comparing Strings

Locale DependenceLocale Dependence

Typeless Programming with Relational Comparison Operators

IF OPERANDS ARE COMPARISON IS

Both String Sort comparison based on string sorting characteristics.

Both numeric Objects converted to Double , numeric comparison.

One numeric and one String The String  is converted to a Double  and numeric comparison is performed. If
the String  cannot be converted to Double , an InvalidCastException is thrown.

Either or both are reference types other than String An InvalidCastException is thrown.

Overloading

Example

The = Operator is also used as an assignment operator.

The Is  operator, the IsNot  operator, and the Like  operator have specific comparison functionalities that differ from the operators in the preceding
table.

When you compare an expression of type Single  to one of type Double , the Single  expression is converted to Double . This behavior is opposite to
the behavior found in Visual Basic 6.

Similarly, when you compare an expression of type Decimal  to an expression of type Single  or Double , the Decimal  expression is converted to 
Single  or Double . For Decimal  expressions, any fractional value less than 1E-28 might be lost. Such fractional value loss may cause two values to

compare as equal when they are not. For this reason, you should take care when using equality ( = ) to compare two floating-point variables. It is safer
to test whether the absolute value of the difference between the two numbers is less than a small acceptable tolerance.

When you work with floating-point numbers, keep in mind that they do not always have a precise representation in memory. This could lead to
unexpected results from certain operations, such as value comparison and the Mod Operator. For more information, see Troubleshooting Data Types.

When you compare strings, the string expressions are evaluated based on their alphabetical sort order, which depends on the Option Compare  setting.

Option Compare Binary  bases string comparisons on a sort order derived from the internal binary representations of the characters. The sort order is
determined by the code page. The following example shows a typical binary sort order.

A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø

Option Compare Text  bases string comparisons on a case-insensitive, textual sort order determined by your application's locale. When you set 
Option Compare Text  and sort the characters in the preceding example, the following text sort order applies:

(A=a) < (À= à) < (B=b) < (E=e) < (Ê= ê) < (Ø = ø) < (Z=z)

When you set Option Compare Text , the result of a string comparison can depend on the locale in which the application is running. Two characters might
compare as equal in one locale but not in another. If you are using a string comparison to make important decisions, such as whether to accept an
attempt to log on, you should be alert to locale sensitivity. Consider either setting Option Compare Binary  or calling the StrComp, which takes the locale
into account.

The use of relational comparison operators with Object  expressions is not allowed under Option Strict On . When Option Strict  is Off , and either 
expression1  or expression2  is an Object  expression, the run-time types determine how they are compared. The following table shows how the

expressions are compared and the result from the comparison, depending on the runtime type of the operands.

Numeric comparisons treat Nothing  as 0. String comparisons treat Nothing  as ""  (an empty string).

The relational comparison operators ( < . <= , > , >= , = , <> ) can be overloaded, which means that a class or structure can redefine their behavior
when an operand has the type of that class or structure. If your code uses any of these operators on such a class or structure, be sure you understand
the redefined behavior. For more information, see Operator Procedures.

Notice that the = Operator can be overloaded only as a relational comparison operator, not as an assignment operator.

The following example shows various uses of relational comparison operators, which you use to compare expressions. Relational comparison operators

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures


Dim x As testClass
Dim y As New testClass()
x = y
If x Is y Then
    ' Insert code to run if x and y point to the same instance.
End If

See Also

return a Boolean  result that represents whether or not the stated expression evaluates to True . When you apply the >  and <  operators to strings, the
comparison is made using the normal alphabetical sorting order of the strings. This order can be dependent on your locale setting. Whether the sort is
case-sensitive or not depends on the Option Compare setting.

In the preceding example, the first comparison returns False  and the remaining comparisons return True .

InvalidCastException
= Operator
Operator Precedence in Visual Basic
Operators Listed by Functionality
Troubleshooting Data Types
Comparison Operators in Visual Basic

https://docs.microsoft.com/dotnet/api/system.invalidcastexception
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/troubleshooting-data-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators


      

Concatenation Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are the concatenation operators defined in Visual Basic.

& Operator

+ Operator

System.Text
StringBuilder
Operator Precedence in Visual Basic
Concatenation Operators in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/concatenation-operators.md
https://docs.microsoft.com/dotnet/api/system.text
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/concatenation-operators


        

Logical/Bitwise Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are the logical/bitwise operators defined in Visual Basic.

And Operator

Not Operator

Or Operator

Xor Operator

AndAlso Operator

OrElse Operator

IsFalse Operator

IsTrue Operator

Operator Precedence in Visual Basic
Logical and Bitwise Operators in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/logical-bitwise-operators.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


  

Miscellaneous Operators (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

See Also

The following are miscellaneous operators defined in Visual Basic.

AddressOf Operator

Await Operator

GetType Operator

Function Expression

If Operator

TypeOf Operator

Operators Listed by Functionality

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/operators/miscellaneous-operators.md


 

Properties (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Visual Basic Properties

DateString Returns or sets a String  value representing the current date according to your
system.

Now Returns a Date  value containing the current date and time according to your
system.

ScriptEngine Returns a String  representing the runtime currently in use.

ScriptEngineBuildVersion Returns an Integer  containing the build version number of the runtime currently
in use.

ScriptEngineMajorVersion Returns an Integer  containing the major version number of the runtime
currently in use.

ScriptEngineMinorVersion Returns an Integer  containing the minor version number of the runtime
currently in use.

TimeOfDay Returns or sets a Date  value containing the current time of day according to your
system.

Timer Returns a Double  value representing the number of seconds elapsed since
midnight.

TimeString Returns or sets a String  value representing the current time of day according to
your system.

Today Returns or sets a Date  value containing the current date according to your
system.

See Also

This page lists the properties that are members of Visual Basic modules. Other properties that are members of specific Visual Basic objects are listed in
Objects.

Visual Basic Language Reference
Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/properties.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.datestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.now
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptengine
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptenginebuildversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptenginemajorversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.globals.scriptengineminorversion
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timeofday
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timer
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.timestring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.dateandtime.today


                 

Queries (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

See Also

Visual Basic enables you to create Language-Integrated Query (L INQ) expressions in your code.

Aggregate Clause
Describes the Aggregate  clause, which applies one or more aggregate functions to a collection.

Distinct Clause
Describes the Distinct  clause, which restricts the values of the current range variable to eliminate duplicate values in query results.

From Clause
Describes the From  clause, which specifies a collection and a range variable for a query.

Group By Clause
Describes the Group By  clause, which groups the elements of a query result and can be used to apply aggregate functions to each group.

Group Join Clause
Describes the Group Join  clause, which combines two collections into a single hierarchical collection.

Join Clause
Describes the Join  clause, which combines two collections into a single collection.

Let Clause
Describes the Let  clause, which computes a value and assigns it to a new variable in the query.

Order By Clause
Describes the Order By  clause, which specifies the sort order for columns in a query.

Select Clause
Describes the Select  clause, which declares a set of range variables for a query.

Skip Clause
Describes the Skip  clause, which bypasses a specified number of elements in a collection and then returns the remaining elements.

Skip While Clause
Describes the Skip While  clause, which bypasses elements in a collection as long as a specified condition is true  and then returns the remaining
elements.

Take Clause
Describes the Take  clause, which returns a specified number of contiguous elements from the start of a collection.

Take While Clause
Describes the Take While  clause, which includes elements in a collection as long as a specified condition is true  and bypasses the remaining elements.

Where Clause
Describes the Where  clause, which specifies a filtering condition for a query.

L INQ
Introduction to L INQ in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/queries.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


           

Aggregate Clause (Visual Basic)
5/4/2018 • 6 minutes to read • Edit Online

Syntax
Aggregate element [As type] In collection _  
  [, element2 [As type2] In collection2, [...]]  
  [ clause ]  
  Into expressionList  

Parts
TERM DEFINITION

element Required. Variable used to iterate through the elements of the collection.

type Optional. The type of element . If no type is specified, the type of element  is
inferred from collection .

collection Required. Refers to the collection to operate on.

clause Optional. One or more query clauses, such as a Where  clause, to refine the query
result to apply the aggregate clause or clauses to.

expressionList Required. One or more comma-delimited expressions that identify an aggregate
function to apply to the collection. You can apply an alias to an aggregate function
to specify a member name for the query result. If no alias is supplied, the name of
the aggregate function is used. For examples, see the section about aggregate
functions later in this topic.

Remarks

Aggregate Functions

FUNCTION DESCRIPTION

All Returns true  if all elements in the collection satisfy a specified condition;
otherwise returns false . Following is an example:

Dim customerList1 = Aggregate order In orders
                    Into AllOrdersOver100 = All(order.Total >= 100)

Applies one or more aggregate functions to a collection.

The Aggregate  clause can be used to include aggregate functions in your queries. Aggregate functions perform checks and computations over a set of
values and return a single value. You can access the computed value by using a member of the query result type. The standard aggregate functions that
you can use are the All , Any , Average , Count , LongCount , Max , Min , and Sum  functions. These functions are familiar to developers who are familiar
with aggregates in SQL. They are described in the following section of this topic.

The result of an aggregate function is included in the query result as a field of the query result type. You can supply an alias for the aggregate function
result to specify the name of the member of the query result type that will hold the aggregate value. If no alias is supplied, the name of the aggregate
function is used.

The Aggregate  clause can begin a query, or it can be included as an additional clause in a query. If the Aggregate  clause begins a query, the result is a
single value that is the result of the aggregate function specified in the Into  clause. If more than one aggregate function is specified in the Into  clause,
the query returns a single type with a separate property to reference the result of each aggregate function in the Into  clause. If the Aggregate  clause is
included as an additional clause in a query, the type returned in the query collection will have a separate property to reference the result of each
aggregate function in the Into  clause.

The following list describes the standard aggregate functions that can be used with the Aggregate  clause.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/aggregate-clause.md


Any Returns true  if any element in the collection satisfies a specified condition;
otherwise returns false . Following is an example:

Dim customerList2 = From cust In customers
                    Aggregate order In cust.Orders
                    Into AnyOrderOver500 = Any(order.Total >= 500)

Average Computes the average of all elements in the collection, or a computes supplied
expression for all elements in the collection. Following is an example:

Dim customerOrderAverage = Aggregate order In orders
                           Into Average(order.Total)

Count Counts the number of elements in the collection. You can supply an optional 
Boolean  expression to count only the number of elements in the collection that

satisfy a condition. Following is an example:

Dim customerOrderAfter1996 = From cust In customers
                             Aggregate order In cust.Orders
                             Into Count(order.OrderDate > 
#12/31/1996#)

Group Refers to query results that are grouped as a result of a Group By  or 
Group Join  clause. The Group  function is valid only in the Into  clause of a 
Group By  or Group Join  clause. For more information and examples, see Group

By Clause and Group Join Clause.

LongCount Counts the number of elements in the collection. You can supply an optional 
Boolean  expression to count only the number of elements in the collection that

satisfy a condition. Returns the result as a Long . For an example, see the Count

aggregate function.

Max Computes the maximum value from the collection, or computes a supplied
expression for all elements in the collection. Following is an example:

Dim customerMaxOrder = Aggregate order In orders
                       Into MaxOrder = Max(order.Total)

Min Computes the minimum value from the collection, or computes a supplied
expression for all elements in the collection. Following is an example:

Dim customerMinOrder = From cust In customers
                       Aggregate order In cust.Orders
                       Into MinOrder = Min(order.Total)

Sum Computes the sum of all elements in the collection, or computes a supplied
expression for all elements in the collection. Following is an example:

Dim customerTotals = From cust In customers
                     Aggregate order In cust.Orders
                     Into Sum(order.Total)

FUNCTION DESCRIPTION

Example
The following code example shows how to use the Aggregate  clause to apply aggregate functions to a query result.



Public Sub AggregateSample()
  Dim customers = GetCustomerList()

  Dim customerOrderTotal =
      From cust In customers
      Aggregate order In cust.Orders
      Into Sum(order.Total), MaxOrder = Max(order.Total),
      MinOrder = Min(order.Total), Avg = Average(order.Total)

  For Each customer In customerOrderTotal
    Console.WriteLine(customer.cust.CompanyName & vbCrLf &
                     vbTab & "Sum = " & customer.Sum & vbCrLf &
                     vbTab & "Min = " & customer.MinOrder & vbCrLf &
                     vbTab & "Max = " & customer.MaxOrder & vbCrLf &
                     vbTab & "Avg = " & customer.Avg.ToString("#.##"))
  Next
End Sub

Creating User-Defined Aggregate Functions

Imports System.Runtime.CompilerServices

Module UserDefinedAggregates

    ' Calculate the median value for a collection of type Double.
    <Extension()>
    Function Median(ByVal values As IEnumerable(Of Double)) As Double
        If values.Count = 0 Then
            Throw New InvalidOperationException("Cannot compute median for an empty set.")
        End If

        Dim sortedList = From number In values
                         Order By number

        Dim medianValue As Double

        Dim itemIndex = CInt(Int(sortedList.Count / 2))

        If sortedList.Count Mod 2 = 0 Then
            ' Even number of items in list.
            medianValue = ((sortedList(itemIndex) + sortedList(itemIndex - 1)) / 2)
        Else
            ' Odd number of items in list.
            medianValue = sortedList(itemIndex)
        End If

        Return medianValue
    End Function

    ' "Cast" the collection of generic items as type Double and call the 
    ' Median() method to calculate the median value.
    <Extension()>
    Function Median(Of T)(ByVal values As IEnumerable(Of T),
                          ByVal selector As Func(Of T, Double)) As Double
        Return (From element In values Select selector(element)).Median()
    End Function

End Module

You can include your own custom aggregate functions in a query expression by adding extension methods to the IEnumerable<T> type. Your custom
method can then perform a calculation or operation on the enumerable collection that has referenced your aggregate function. For more information
about extension methods, see Extension Methods.

For example, the following code example shows a custom aggregate function that calculates the median value of a collection of numbers. There are two
overloads of the Median  extension method. The first overload accepts, as input, a collection of type IEnumerable(Of Double) . If the Median  aggregate
function is called for a query field of type Double , this method will be called. The second overload of the Median  method can be passed any generic
type. The generic overload of the Median  method takes a second parameter that references the Func(Of T, Double)  lambda expression to project a
value for a type (from a collection) as the corresponding value of type Double . It then delegates the calculation of the median value to the other
overload of the Median  method. For more information about lambda expressions, see Lambda Expressions.

The following code example shows sample queries that call the Median  aggregate function on a collection of type Integer , and a collection of type 
Double . The query that calls the Median  aggregate function on the collection of type Double  calls the overload of the Median  method that accepts, as

input, a collection of type Double . The query that calls the Median  aggregate function on the collection of type Integer  calls the generic overload of
the Median  method.

https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


Module Module1

    Sub Main()
        Dim numbers1 = {1, 2, 3, 4, 5}

        Dim query1 = Aggregate num In numbers1 Into Median(num)

        Console.WriteLine("Median = " & query1)

        Dim numbers2 = {1.9, 2, 8, 4, 5.7, 6, 7.2, 0}

        Dim query2 = Aggregate num In numbers2 Into Median()

        Console.WriteLine("Median = " & query2)
    End Sub

End Module

See Also
Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Where Clause
Group By Clause

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


   

Distinct Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Distinct  

Remarks

Example

Dim customerOrders = From cust In customers, ord In orders
                     Where cust.CustomerID = ord.CustomerID
                     Select cust.CompanyName, ord.OrderDate
                     Distinct

See Also

Restricts the values of the current range variable to eliminate duplicate values in subsequent query clauses.

You can use the Distinct  clause to return a list of unique items. The Distinct  clause causes the query to ignore duplicate query results. The Distinct

clause applies to duplicate values for all return fields specified by the Select  clause. If no Select  clause is specified, the Distinct  clause is applied to
the range variable for the query identified in the From  clause. If the range variable is not an immutable type, the query will only ignore a query result if
all members of the type match an existing query result.

The following query expression joins a list of customers and a list of customer orders. The Distinct  clause is included to return a list of unique
customer names and order dates.

Introduction to L INQ in Visual Basic
Queries
From Clause
Select Clause
Where Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/distinct-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


 

Equals Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Compares keys from collections being joined.

The Equals  keyword is used in the following contexts:

Group Join Clause

Join Clause

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/equals-clause.md


                  

From Clause (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
From element [ As type ] In collection [ _ ]  
  [, element2 [ As type2 ] In collection2 [, ... ] ]  

Parts
TERM DEFINITION

element Required. A range variable used to iterate through the elements of the collection.
A range variable is used to refer to each member of the collection  as the query
iterates through the collection . Must be an enumerable type.

type Optional. The type of element . If no type  is specified, the type of element  is
inferred from collection .

collection Required. Refers to the collection to be queried. Must be an enumerable type.

Remarks

' Multiple From clauses in a query.
Dim result = From var1 In collection1, var2 In collection2

' Equivalent syntax with a single From clause.
Dim result2 = From var1 In collection1
              From var2 In collection2

Dim allOrders = From cust In GetCustomerList()
                From ord In cust.Orders
                Select ord

Specifies one or more range variables and a collection to query.

The From  clause is used to identify the source data for a query and the variables that are used to refer to an element from the source collection. These
variables are called range variables. The From  clause is required for a query, except when the Aggregate  clause is used to identify a query that returns
only aggregated results. For more information, see Aggregate Clause.

You can specify multiple From  clauses in a query to identify multiple collections to be joined. When multiple collections are specified, they are iterated
over independently, or you can join them if they are related. You can join collections implicitly by using the Select  clause, or explicitly by using the 
Join  or Group Join  clauses. As an alternative, you can specify multiple range variables and collections in a single From  clause, with each related range

variable and collection separated from the others by a comma. The following code example shows both syntax options for the From  clause.

The From  clause defines the scope of a query, which is similar to the scope of a For  loop. Therefore, each element  range variable in the scope of a
query must have a unique name. Because you can specify multiple From  clauses for a query, subsequent From  clauses can refer to range variables in
the From  clause, or they can refer to range variables in a previous From  clause. For example, the following example shows a nested From  clause where
the collection in the second clause is based on a property of the range variable in the first clause.

Each From  clause can be followed by any combination of additional query clauses to refine the query. You can refine the query in the following ways:

Combine multiple collections implicitly by using the From  and Select  clauses, or explicitly by using the Join  or Group Join  clauses.

Use the Where  clause to filter the query result.

Sort the result by using the Order By  clause.

Group similar results together by using the Group By  clause.

Use the Aggregate  clause to identify aggregate functions to evaluate for the whole query result.

Use the Let  clause to introduce an iteration variable whose value is determined by an expression instead of a collection.

Use the Distinct  clause to ignore duplicate query results.

Identify parts of the result to return by using the Skip , Take , Skip While , and Take While  clauses.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/from-clause.md


Example

Sub DisplayCustomersForRegion(ByVal customers As List(Of Customer),
                              ByVal region As String)

  Dim customersForRegion = From cust In customers
                           Where cust.Region = region

  For Each cust In customersForRegion
    Console.WriteLine(cust.CompanyName)
  Next
End Sub

See Also

The following query expression uses a From  clause to declare a range variable cust  for each Customer  object in the customers  collection. The Where

clause uses the range variable to restrict the output to customers from the specified region. The For Each  loop displays the company name for each
customer in the query result.

Queries
Introduction to L INQ in Visual Basic
For Each...Next Statement
For...Next Statement
Select Clause
Where Clause
Aggregate Clause
Distinct Clause
Join Clause
Group Join Clause
Order By Clause
Let Clause
Skip Clause
Take Clause
Skip While Clause
Take While Clause

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


      

Group By Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Group [ listField1 [, listField2 [...] ] By keyExp1 [, keyExp2 [...] ]  
  Into aggregateList  

Parts

Remarks

Example

Groups the elements of a query result. Can also be used to apply aggregate functions to each group. The grouping operation is based on one or more
keys.

Into Group  

Into <alias> = Group  

listField1 , listField2

Optional. One or more fields of the query variable or variables that explicitly identify the fields to be included in the grouped result. If no fields
are specified, all fields of the query variable or variables are included in the grouped result.

keyExp1

Required. An expression that identifies the key to use to determine the groups of elements. You can specify more than one key to specify a
composite key.

keyExp2

Optional. One or more additional keys that are combined with keyExp1  to create a composite key.

aggregateList

Required. One or more expressions that identify how the groups are aggregated. To identify a member name for the grouped results, use the 
Group  keyword, which can be in either of the following forms:

-or-

You can also include aggregate functions to apply to the group.

You can use the Group By  clause to break the results of a query into groups. The grouping is based on a key or a composite key consisting of multiple
keys. Elements that are associated with matching key values are included in the same group.

You use the aggregateList  parameter of the Into  clause and the Group  keyword to identify the member name that is used to reference the group. You
can also include aggregate functions in the Into  clause to compute values for the grouped elements. For a list of standard aggregate functions, see
Aggregate Clause.

The following code example groups a list of customers based on their location (country) and provides a count of the customers in each group. The
results are ordered by country name. The grouped results are ordered by city name.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/group-by-clause.md


Public Sub GroupBySample()
  Dim customers = GetCustomerList()

  Dim customersByCountry = From cust In customers
                           Order By cust.City
                           Group By CountryName = cust.Country
                           Into RegionalCustomers = Group, Count()
                           Order By CountryName

  For Each country In customersByCountry
    Console.WriteLine(country.CountryName &
                      " (" & country.Count & ")" & vbCrLf)

    For Each customer In country.RegionalCustomers
      Console.WriteLine(vbTab & customer.CompanyName &
                        " (" & customer.City & ")")
    Next
  Next
End Sub

See Also
Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Order By Clause
Aggregate Clause
Group Join Clause

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


          

Group Join Clause (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
Group Join element [As type] In collection _  
  On key1 Equals key2 [ And key3 Equals key4 [... ] ] _  
  Into expressionList  

Parts
TERM DEFINITION

element Required. The control variable for the collection being joined.

type Optional. The type of element . If no type  is specified, the type of element  is
inferred from collection .

collection Required. The collection to combine with the collection that is on the left side of the
Group Join  operator. A Group Join  clause can be nested in a Join  clause or

in another Group Join  clause.

key1  Equals  key2 Required. Identifies keys for the collections being joined. You must use the Equals

operator to compare keys from the collections being joined. You can combine join
conditions by using the And  operator to identify multiple keys. The key1

parameter must be from the collection on the left side of the Join  operator. The 
key2  parameter must be from the collection on the right side of the Join

operator.

The keys used in the join condition can be expressions that include more than one
item from the collection. However, each key expression can contain only items from
its respective collection.

expressionList Required. One or more expressions that identify how the groups of elements from
the collection are aggregated. To identify a member name for the grouped results,
use the Group  keyword ( <alias> = Group ). You can also include aggregate
functions to apply to the group.

Remarks

Example

Combines two collections into a single hierarchical collection. The join operation is based on matching keys.

The Group Join  clause combines two collections based on matching key values from the collections being joined. The resulting collection can contain a
member that references a collection of elements from the second collection that match the key value from the first collection. You can also specify
aggregate functions to apply to the grouped elements from the second collection. For information about aggregate functions, see Aggregate Clause.

Consider, for example, a collection of managers and a collection of employees. Elements from both collections have a ManagerID property that
identifies the employees that report to a particular manager. The results from a join operation would contain a result for each manager and employee
with a matching ManagerID value. The results from a Group Join  operation would contain the complete list of managers. Each manager result would
have a member that referenced the list of employees that were a match for the specific manager.

The collection resulting from a Group Join  operation can contain any combination of values from the collection identified in the From  clause and the
expressions identified in the Into  clause of the Group Join  clause. For more information about valid expressions for the Into  clause, see Aggregate
Clause.

A Group Join  operation will return all results from the collection identified on the left side of the Group Join  operator. This is true even if there are no
matches in the collection being joined. This is like a LEFT OUTER JOIN  in SQL.

You can use the Join  clause to combine collections into a single collection. This is equivalent to an INNER JOIN  in SQL.

The following code example joins two collections by using the Group Join  clause.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/group-join-clause.md


Dim customerList = From cust In customers
                   Group Join ord In orders On
                   cust.CustomerID Equals ord.CustomerID
                   Into CustomerOrders = Group,
                        OrderTotal = Sum(ord.Total)
                   Select cust.CompanyName, cust.CustomerID,
                          CustomerOrders, OrderTotal

For Each customer In customerList
  Console.WriteLine(customer.CompanyName &
                    " (" & customer.OrderTotal & ")")

  For Each order In customer.CustomerOrders
    Console.WriteLine(vbTab & order.OrderID & ": " & order.Total)
  Next
Next

See Also
Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Join Clause
Where Clause
Group By Clause

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


      

Join Clause (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
Join element In collection _  
  [ joinClause _ ]   
  [ groupJoinClause ... _ ]   
On key1 Equals key2 [ And key3 Equals key4 [... ]  

Parts

Remarks

Example

Dim customerIDs() = {"ALFKI", "VICTE", "BLAUS", "TRAIH"}

Dim customerList = From cust In customers, custID In customerIDs
                   Where cust.CustomerID = custID
                   Select cust.CompanyName

For Each companyName In customerList
  Console.WriteLine(companyName)
Next

Example

Combines two collections into a single collection. The join operation is based on matching keys and uses the Equals  operator.

element

Required. The control variable for the collection being joined.

collection

Required. The collection to combine with the collection identified on the left side of the Join  operator. A Join  clause can be nested in another Join

clause, or in a Group Join  clause.

joinClause

Optional. One or more additional Join  clauses to further refine the query.

groupJoinClause

Optional. One or more additional Group Join  clauses to further refine the query.

key1  Equals  key2

Required. Identifies keys for the collections being joined. You must use the Equals  operator to compare keys from the collections being joined. You can
combine join conditions by using the And  operator to identify multiple keys. key1  must be from the collection on the left side of the Join  operator. 
key2  must be from the collection on the right side of the Join  operator.

The keys used in the join condition can be expressions that include more than one item from the collection. However, each key expression can contain
only items from its respective collection.

The Join  clause combines two collections based on matching key values from the collections being joined. The resulting collection can contain any
combination of values from the collection identified on the left side of the Join  operator and the collection identified in the Join  clause. The query will
return only results for which the condition specified by the Equals  operator is met. This is equivalent to an INNER JOIN  in SQL.

You can use multiple Join  clauses in a query to join two or more collections into a single collection.

You can perform an implicit join to combine collections without the Join  clause. To do this, include multiple In  clauses in your From  clause and
specify a Where  clause that identifies the keys that you want to use for the join.

You can use the Group Join  clause to combine collections into a single hierarchical collection. This is like a LEFT OUTER JOIN  in SQL.

The following code example performs an implicit join to combine a list of customers with their orders.

The following code example joins two collections by using the Join  clause.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/join-clause.md


Imports System.Diagnostics
Imports System.Security.Permissions

Public Class JoinSample

  <SecurityPermission(SecurityAction.Demand)>
  Public Sub ListProcesses()
    Dim processDescriptions As New List(Of ProcessDescription)
    processDescriptions.Add(New ProcessDescription With {
                                .ProcessName = "explorer",
                                .Description = "Windows Explorer"})
    processDescriptions.Add(New ProcessDescription With {
                                .ProcessName = "winlogon",
                                .Description = "Windows Logon"})
    processDescriptions.Add(New ProcessDescription With {
                                .ProcessName = "cmd",
                                .Description = "Command Window"})
    processDescriptions.Add(New ProcessDescription With {
                                .ProcessName = "iexplore",
                                .Description = "Internet Explorer"})

    Dim processes = From proc In Process.GetProcesses
                    Join desc In processDescriptions
                      On proc.ProcessName Equals desc.ProcessName
                    Select proc.ProcessName, proc.Id, desc.Description

    For Each proc In processes
      Console.WriteLine("{0} ({1}), {2}",
                        proc.ProcessName, proc.Id, proc.Description)
    Next
  End Sub

End Class

Public Class ProcessDescription
  Public ProcessName As String
  Public Description As String
End Class

Example

This example will produce output similar to the following:

winlogon (968), Windows Logon

explorer (2424), File Explorer

cmd (5136), Command Window

The following code example joins two collections by using the Join  clause with two key columns.



Imports System.Diagnostics
Imports System.Security.Permissions

Public Class JoinSample2

  <SecurityPermission(SecurityAction.Demand)>
  Public Sub ListProcesses()
    Dim processDescriptions As New List(Of ProcessDescription2)

    ' 8 = Normal priority, 13 = High priority
    processDescriptions.Add(New ProcessDescription2 With {
                                .ProcessName = "explorer",
                                .Description = "Windows Explorer",
                                .Priority = 8})
    processDescriptions.Add(New ProcessDescription2 With {
                                .ProcessName = "winlogon",
                                .Description = "Windows Logon",
                                .Priority = 13})
    processDescriptions.Add(New ProcessDescription2 With {
                                .ProcessName = "cmd",
                                .Description = "Command Window",
                                .Priority = 8})
    processDescriptions.Add(New ProcessDescription2 With {
                                .ProcessName = "iexplore",
                                .Description = "Internet Explorer",
                                .Priority = 8})

    Dim processes = From proc In Process.GetProcesses
                    Join desc In processDescriptions
                      On proc.ProcessName Equals desc.ProcessName And 
                         proc.BasePriority Equals desc.Priority
                    Select proc.ProcessName, proc.Id, desc.Description,
                           desc.Priority

    For Each proc In processes
      Console.WriteLine("{0} ({1}), {2}, Priority = {3}",
                        proc.ProcessName,
                        proc.Id,
                        proc.Description,
                        proc.Priority)
    Next
  End Sub

End Class

Public Class ProcessDescription2
  Public ProcessName As String
  Public Description As String
  Public Priority As Integer
End Class

See Also

The example will produce output similar to the following:

winlogon (968), Windows Logon, Priority = 13

cmd (700), Command Window, Priority = 8

explorer (2424), File Explorer, Priority = 8

Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Group Join Clause
Where Clause

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


     

Let Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Let variable = expression [, ...]  

Parts
TERM DEFINITION

variable Required. An alias that can be used to reference the results of the supplied
expression.

expression Required. An expression that will be evaluated and assigned to the specified
variable.

Remarks

Example

Dim discountedProducts = From prod In products
                         Let Discount = prod.UnitPrice * 0.1
                         Where Discount >= 50
                         Select prod.ProductName, prod.UnitPrice, Discount

For Each prod In discountedProducts
  Console.WriteLine("Product: {0}, Price: {1}, Discounted Price: {2}",
                    prod.ProductName, prod.UnitPrice.ToString("$#.00"),
                    (prod.UnitPrice - prod.Discount).ToString("$#.00"))
Next

See Also

Computes a value and assigns it to a new variable within the query.

The Let  clause enables you to compute values for each query result and reference them by using an alias. The alias can be used in other clauses, such
as the Where  clause. The Let  clause enables you to create a query statement that is easier to read because you can specify an alias for an expression
clause included in the query and substitute the alias each time the expression clause is used.

You can include any number of variable  and expression  assignments in the Let  clause. Separate each assignment with a comma (,).

The following code example uses the Let  clause to compute a 10 percent discount on products.

Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Where Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/let-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


         

Order By Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Order By orderExp1 [ Ascending | Descending ] [, orderExp2 [...] ]  

Parts

Remarks

Example

Dim titlesAscendingPrice = From book In books
                           Order By book.Price, book.Title
                           Select book.Title, book.Price

Example

Dim titlesDescendingPrice = From book In books
                            Order By book.Price Descending, book.Title
                            Select book.Title, book.Price

Example

Dim bookOrders =
  From book In books
  Select book.Title, book.Price, book.PublishDate, book.Author
  Order By Author, Title, Price

See Also

Specifies the sort order for a query result.

orderExp1

Required. One or more fields from the current query result that identify how to order the returned values. The field names must be separated by
commas (,). You can identify each field as sorted in ascending or descending order by using the Ascending  or Descending  keywords. If no Ascending  or 
Descending  keyword is specified, the default sort order is ascending. The sort order fields are given precedence from left to right.

You can use the Order By  clause to sort the results of a query. The Order By  clause can only sort a result based on the range variable for the current
scope. For example, the Select  clause introduces a new scope in a query expression with new iteration variables for that scope. Range variables
defined before a Select  clause in a query are not available after the Select  clause. Therefore, if you want to order your results by a field that is not
available in the Select  clause, you must put the Order By  clause before the Select  clause. One example of when you would have to do this is when
you want to sort your query by fields that are not returned as part of the result.

Ascending and descending order for a field is determined by the implementation of the IComparable interface for the data type of the field. If the data
type does not implement the IComparable interface, the sort order is ignored.

The following query expression uses a From  clause to declare a range variable book  for the books  collection. The Order By  clause sorts the query
result by price in ascending order (the default). Books with the same price are sorted by title in ascending order. The Select  clause selects the Title

and Price  properties as the values returned by the query.

The following query expression uses the Order By  clause to sort the query result by price in descending order. Books with the same price are sorted by
title in ascending order.

The following query expression uses a Select  clause to select the book title, price, publish date, and author. It then populates the Title , Price , 
PublishDate , and Author  fields of the range variable for the new scope. The Order By  clause orders the new range variable by author name, book title,

and then price. Each column is sorted in the default order (ascending).

Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/order-by-clause.md
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


                

Select Clause (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
Select [ var1 = ] fieldName1 [, [ var2 = ] fieldName2 [...] ]  

Parts

Remarks

' 10% discount 
Dim discount_10 = 0.1
Dim priceList =
  From product In products
  Let DiscountedPrice = product.UnitPrice * (1 - discount_10)
  Select product.ProductName, Price = product.UnitPrice,
  Discount = discount_10, DiscountedPrice

Dim customerList = From cust In customers, ord In cust.Orders
                   Select Name = cust.CompanyName,
                          Total = ord.Total, ord.OrderID
                   Where Total > 500
                   Select Name, OrderID

Dim customerNames = From cust In customers 
                    Select cust.CompanyName

Dim customerInfo As IEnumerable(Of Customer) =
  From cust In customers
  Select New Customer With {.CompanyName = cust.CompanyName,
                             .Address = cust.Address,
                             .City = cust.City,
                             .Region = cust.Region,
                             .Country = cust.Country}

Defines the result of a query.

var1

Optional. An alias that can be used to reference the results of the column expression.

fieldName1

Required. The name of the field to return in the query result.

You can use the Select  clause to define the results to return from a query. This enables you to either define the members of a new anonymous type
that is created by a query, or to target the members of a named type that is returned by a query. The Select  clause is not required for a query. If no 
Select  clause is specified, the query will return a type based on all members of the range variables identified for the current scope. For more

information, see Anonymous Types. When a query creates a named type, it will return a result of type IEnumerable<T> where T  is the created type.

The Select  clause can reference any variables in the current scope. This includes range variables identified in the From  clause (or From  clauses). It also
includes any new variables created with an alias by the Aggregate , Let , Group By , or Group Join  clauses, or variables from a previous Select  clause
in the query expression. The Select  clause can also include static values. For example, the following code example shows a query expression in which
the Select  clause defines the query result as a new anonymous type with four members: ProductName , Price , Discount , and DiscountedPrice . The 
ProductName  and Price  member values are taken from the product range variable that is defined in the From  clause. The DiscountedPrice  member

value is calculated in the Let  clause. The Discount  member is a static value.

The Select  clause introduces a new set of range variables for subsequent query clauses, and previous range variables are no longer in scope. The last 
Select  clause in a query expression determines the return value of the query. For example, the following query returns the company name and order

ID for every customer order for which the total exceeds 500. The first Select  clause identifies the range variables for the Where  clause and the second 
Select  clause. The second Select  clause identifies the values returned by the query as a new anonymous type.

If the Select  clause identifies a single item to return, the query expression returns a collection of the type of that single item. If the Select  clause
identifies multiple items to return, the query expression returns a collection of a new anonymous type, based on the selected items. For example, the
following two queries return collections of two different types based on the Select  clause. The first query returns a collection of company names as
strings. The second query returns a collection of Customer  objects populated with the company names and address information.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/select-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1


Example

Sub SelectCustomerNameAndId(ByVal customers() As Customer)
  Dim nameIds = From cust In customers
                Select cust.CompanyName, cust.CustomerID
  For Each nameId In nameIds
    Console.WriteLine(nameId.CompanyName & ": " & nameId.CustomerID)
  Next
End Sub

See Also

The following query expression uses a From  clause to declare a range variable cust  for the customers  collection. The Select  clause selects the
customer name and ID value and populates the CompanyName  and CustomerID  columns of the new range variable. The For Each  statement loops over
each returned object and displays the CompanyName  and CustomerID  columns for each record.

Introduction to L INQ in Visual Basic
Queries
From Clause
Where Clause
Order By Clause
Anonymous Types

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types


     

Skip Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Skip count  

Parts

Remarks

Example

Public Sub PagingSample()
  Dim pageNumber As Integer = 0
  Dim pageSize As Integer = 10

  Dim customersPage = GetCustomers(pageNumber * pageSize, pageSize)

  Do While customersPage IsNot Nothing
    Console.WriteLine(vbCrLf & "Page: " & pageNumber + 1 & vbCrLf)

    For Each cust In customersPage
      Console.WriteLine(cust.CustomerID & ", " & cust.CompanyName)
    Next

    Console.WriteLine(vbCrLf)

    pageNumber += 1
    customersPage = GetCustomers(pageNumber * pageSize, pageSize)
  Loop
End Sub

Public Function GetCustomers(ByVal startIndex As Integer,
                             ByVal pageSize As Integer) As List(Of Customer)

  Dim customers = GetCustomerList()

  Dim returnCustomers = From cust In customers
                        Skip startIndex Take pageSize

  If returnCustomers.Count = 0 Then Return Nothing

  Return returnCustomers
End Function

See Also

Bypasses a specified number of elements in a collection and then returns the remaining elements.

count

Required. A value or an expression that evaluates to the number of elements of the sequence to skip.

The Skip  clause causes a query to bypass elements at the beginning of a results list and return the remaining elements. The number of elements to
skip is identified by the count  parameter.

You can use the Skip  clause with the Take  clause to return a range of data from any segment of a query. To do this, pass the index of the first element
of the range to the Skip  clause and the size of the range to the Take  clause.

When you use the Skip  clause in a query, you may also need to ensure that the results are returned in an order that will enable the Skip  clause to
bypass the intended results. For more information about ordering query results, see Order By Clause.

You can use the SkipWhile  clause to specify that only certain elements are ignored, depending on a supplied condition.

The following code example uses the Skip  clause together with the Take  clause to return data from a query in pages. The GetCustomers  function uses
the Skip  clause to bypass the customers in the list until the supplied starting index value, and uses the Take  clause to return a page of customers
starting from that index value.

Introduction to L INQ in Visual Basic
Queries
Select Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/skip-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


From Clause
Order By Clause
Skip While Clause
Take Clause



      

Skip While Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Skip While expression  

Parts
TERM DEFINITION

expression Required. An expression that represents a condition to test elements for. The
expression must return a Boolean  value or a functional equivalent, such as an 
Integer  to be evaluated as a Boolean .

Remarks

Example

Public Sub SkipWhileSample()
  Dim customers = GetCustomerList()

  ' Return customers starting from the first U.S. customer encountered.
  Dim customerList = From cust In customers
                     Order By cust.Country
                     Skip While IsInternationalCustomer(cust)

  For Each cust In customerList
    Console.WriteLine(cust.CompanyName & vbTab & cust.Country)
  Next
End Sub

Public Function IsInternationalCustomer(ByVal cust As Customer) As Boolean
  If cust.Country = "USA" Then Return False

  Return True
End Function

See Also

Bypasses elements in a collection as long as a specified condition is true  and then returns the remaining elements.

The Skip While  clause bypasses elements from the beginning of a query result until the supplied expression  returns false . After expression  returns 
false , the query returns all the remaining elements. The expression  is ignored for the remaining results.

The Skip While  clause differs from the Where  clause in that the Where  clause can be used to exclude all elements from a query that do not meet a
particular condition. The Skip While  clause excludes elements only until the first time that the condition is not satisfied. The Skip While  clause is most
useful when you are working with an ordered query result.

You can bypass a specific number of results from the beginning of a query result by using the Skip  clause.

The following code example uses the Skip While  clause to bypass results until the first customer from the United States is found.

Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Skip Clause
Take While Clause
Where Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/skip-while-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


     

Take Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Take count  

Parts

Remarks

Example

Public Sub PagingSample()
  Dim pageNumber As Integer = 0
  Dim pageSize As Integer = 10

  Dim customersPage = GetCustomers(pageNumber * pageSize, pageSize)

  Do While customersPage IsNot Nothing
    Console.WriteLine(vbCrLf & "Page: " & pageNumber + 1 & vbCrLf)

    For Each cust In customersPage
      Console.WriteLine(cust.CustomerID & ", " & cust.CompanyName)
    Next

    Console.WriteLine(vbCrLf)

    pageNumber += 1
    customersPage = GetCustomers(pageNumber * pageSize, pageSize)
  Loop
End Sub

Public Function GetCustomers(ByVal startIndex As Integer,
                             ByVal pageSize As Integer) As List(Of Customer)

  Dim customers = GetCustomerList()

  Dim returnCustomers = From cust In customers
                        Skip startIndex Take pageSize

  If returnCustomers.Count = 0 Then Return Nothing

  Return returnCustomers
End Function

See Also

Returns a specified number of contiguous elements from the start of a collection.

count

Required. A value or an expression that evaluates to the number of elements of the sequence to return.

The Take  clause causes a query to include a specified number of contiguous elements from the start of a results list. The number of elements to include
is specified by the count  parameter.

You can use the Take  clause with the Skip  clause to return a range of data from any segment of a query. To do this, pass the index of the first element
of the range to the Skip  clause and the size of the range to the Take  clause. In this case, the Take  clause must be specified after the Skip  clause.

When you use the Take  clause in a query, you may also need to ensure that the results are returned in an order that will enable the Take  clause to
include the intended results. For more information about ordering query results, see Order By Clause.

You can use the TakeWhile  clause to specify that only certain elements be returned, depending on a supplied condition.

The following code example uses the Take  clause together with the Skip  clause to return data from a query in pages. The GetCustomers function uses
the Skip  clause to bypass the customers in the list until the supplied starting index value, and uses the Take  clause to return a page of customers
starting from that index value.

Introduction to L INQ in Visual Basic
Queries
Select Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/take-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


From Clause
Order By Clause
Take While Clause
Skip Clause



      

Take While Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Take While expression  

Parts
TERM DEFINITION

expression Required. An expression that represents a condition to test elements for. The
expression must return a Boolean  value or a functional equivalent, such as an 
Integer  to be evaluated as a Boolean .

Remarks

Example

Public Sub TakeWhileSample()
  Dim customers = GetCustomerList()

  ' Return customers until the first customer with no orders is found.
  Dim customersWithOrders = From cust In customers
                            Order By cust.Orders.Count Descending
                            Take While HasOrders(cust)

  For Each cust In customersWithOrders
    Console.WriteLine(cust.CompanyName & " (" & cust.Orders.Length & ")")
  Next
End Sub

Public Function HasOrders(ByVal cust As Customer) As Boolean
  If cust.Orders.Length > 0 Then Return True

  Return False
End Function

See Also

Includes elements in a collection as long as a specified condition is true  and bypasses the remaining elements.

The Take While  clause includes elements from the start of a query result until the supplied expression  returns false . After the expression  returns 
false , the query will bypass all remaining elements. The expression  is ignored for the remaining results.

The Take While  clause differs from the Where  clause in that the Where  clause can be used to include all elements from a query that meet a particular
condition. The Take While  clause includes elements only until the first time that the condition is not satisfied. The Take While  clause is most useful
when you are working with an ordered query result.

The following code example uses the Take While  clause to retrieve results until the first customer without any orders is found.

Introduction to L INQ in Visual Basic
Queries
Select Clause
From Clause
Take Clause
Skip While Clause
Where Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/take-while-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


           

Where Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Where condition  

Parts

Remarks

Example

Sub DisplayCustomersForRegion(ByVal customers As List(Of Customer),
                              ByVal region As String)

  Dim customersForRegion = From cust In customers
                           Where cust.Region = region

  For Each cust In customersForRegion
    Console.WriteLine(cust.CompanyName)
  Next
End Sub

Example

Specifies the filtering condition for a query.

condition

Required. An expression that determines whether the values for the current item in the collection are included in the output collection. The expression
must evaluate to a Boolean  value or the equivalent of a Boolean  value. If the condition evaluates to True , the element is included in the query result;
otherwise, the element is excluded from the query result.

The Where  clause enables you to filter query data by selecting only elements that meet certain criteria. Elements whose values cause the Where  clause
to evaluate to True  are included in the query result; other elements are excluded. The expression that is used in a Where  clause must evaluate to a 
Boolean  or the equivalent of a Boolean , such as an Integer that evaluates to False  when its value is zero. You can combine multiple expressions in a 
Where  clause by using logical operators such as And , Or , AndAlso , OrElse , Is , and IsNot .

By default, query expressions are not evaluated until they are accessed—for example, when they are data-bound or iterated through in a For  loop. As a
result, the Where  clause is not evaluated until the query is accessed. If you have values external to the query that are used in the Where  clause, ensure
that the appropriate value is used in the Where  clause at the time the query is executed. For more information about query execution, see Writing Your
First L INQ Query.

You can call functions within a Where  clause to perform a calculation or operation on a value from the current element in the collection. Calling a
function in a Where  clause can cause the query to be executed immediately when it is defined instead of when it is accessed. For more information
about query execution, see Writing Your First L INQ Query.

The following query expression uses a From  clause to declare a range variable cust  for each Customer  object in the customers  collection. The Where

clause uses the range variable to restrict the output to customers from the specified region. The For Each  loop displays the company name for each
customer in the query result.

The following example uses And  and Or  logical operators in the Where  clause.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/queries/where-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/writing-your-first-linq-query
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/writing-your-first-linq-query


Private Sub DisplayElements()
    Dim elements As List(Of Element) = BuildList()

    ' Get a list of elements that have an atomic number from 12 to 14,
    ' or that have a name that ends in "r".
    Dim subset = From theElement In elements
        Where (theElement.AtomicNumber >= 12 And theElement.AtomicNumber < 15) _
        Or theElement.Name.EndsWith("r")
        Order By theElement.Name

    For Each theElement In subset
        Console.WriteLine(theElement.Name & " " & theElement.AtomicNumber)
    Next

    ' Output:
    '  Aluminum 13
    '  Magnesium 12
    '  Silicon 14
    '  Sulfur 16
End Sub

Private Function BuildList() As List(Of Element)
    Return New List(Of Element) From
        {
            {New Element With {.Name = "Sodium", .AtomicNumber = 11}},
            {New Element With {.Name = "Magnesium", .AtomicNumber = 12}},
            {New Element With {.Name = "Aluminum", .AtomicNumber = 13}},
            {New Element With {.Name = "Silicon", .AtomicNumber = 14}},
            {New Element With {.Name = "Phosphorous", .AtomicNumber = 15}},
            {New Element With {.Name = "Sulfur", .AtomicNumber = 16}}
        }
End Function

Public Class Element
    Public Property Name As String
    Public Property AtomicNumber As Integer
End Class

See Also
Introduction to L INQ in Visual Basic
Queries
From Clause
Select Clause
For Each...Next Statement

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


     

Statements (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The topics in this section contain tables of the Visual Basic declaration and executable statements, and of important lists that apply to many statements.

A-E Statements

F-P Statements

Q-Z Statements

Clauses

Declaration Contexts and Default Access Levels

Attribute List

Parameter List

Type List

Visual Basic Language Reference

Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/index.md


   

A-E Statements
7/13/2018 • 2 minutes to read • Edit Online

AddHandler Call Class Const

Continue Declare Delegate Dim

Do...Loop Else End End <keyword>

Enum Erase Error Event

Exit

See Also

The following table contains a listing of Visual Basic language statements.

F-P Statements
Q-Z Statements
Visual Basic Language Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/a-e-statements.md


         

AddHandler Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
AddHandler event, AddressOf eventhandler  

Parts

event The name of the event to handle.

eventhandler The name of a procedure that handles the event.

Remarks

NOTENOTE

Example
Sub TestEvents()
    Dim Obj As New Class1
    ' Associate an event handler with an event.
    AddHandler Obj.Ev_Event, AddressOf EventHandler
    ' Call the method to raise the event.
    Obj.CauseSomeEvent()
    ' Stop handling events.
    RemoveHandler Obj.Ev_Event, AddressOf EventHandler
    ' This event will not be handled.
    Obj.CauseSomeEvent()
End Sub

Sub EventHandler()
    ' Handle the event.
    MsgBox("EventHandler caught event.")
End Sub

Public Class Class1
    ' Declare an event.
    Public Event Ev_Event()
    Sub CauseSomeEvent()
        ' Raise an event.
        RaiseEvent Ev_Event()
    End Sub
End Class

See Also

Associates an event with an event handler at run time.

The AddHandler  and RemoveHandler  statements allow you to start and stop event handling at any time during program execution.

The signature of the eventhandler  procedure must match the signature of the event event .

The Handles  keyword and the AddHandler  statement both allow you to specify that particular procedures handle particular events, but there are
differences. The AddHandler  statement connects procedures to events at run time. Use the Handles  keyword when defining a procedure to specify that
it handles a particular event. For more information, see Handles.

For custom events, the AddHandler  statement invokes the event's AddHandler  accessor. For more information on custom events, see Event Statement.

RemoveHandler Statement
Handles
Event Statement
Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/addhandler-statement.md


          

Call Statement (Visual Basic)
7/10/2018 • 2 minutes to read • Edit Online

Syntax
[ Call ] procedureName [ (argumentList) ]  

Parts

procedureName Required. Name of the procedure to call.

argumentList Optional. List of variables or expressions representing arguments that are passed
to the procedure when it is called. Multiple arguments are separated by commas. If
you include argumentList , you must enclose it in parentheses.

Remarks

Example

Sub TestCall()
    Call (Sub() Console.Write("Hello"))()

    Call New TheClass().ShowText()
End Sub

Class TheClass
    Public Sub ShowText()
        Console.Write(" World")
    End Sub
End Class

See Also

Transfers control to a Function , Sub , or dynamic-link library (DLL) procedure.

You can use the Call  keyword when you call a procedure. For most procedure calls, you aren’t required to use this keyword.

You typically use the Call  keyword when the called expression doesn’t start with an identifier. Use of the Call  keyword for other uses isn’t
recommended.

If the procedure returns a value, the Call  statement discards it.

The following code shows two examples where the Call  keyword is necessary to call a procedure. In both examples, the called expression doesn't start
with an identifier.

Function Statement
Sub Statement
Declare Statement
Lambda Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/call-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


                                

Class Statement (Visual Basic)
5/16/2018 • 4 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ Shadows ] [ MustInherit | NotInheritable ] [ Partial ] _  
Class name [ ( Of typelist ) ]  
    [ Inherits classname ]  
    [ Implements interfacenames ]  
    [ statements ]  
End Class  

Parts
TERM DEFINITION

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

- Public
- Protected
- Friend
- Private
- Protected Friend
- Private Protected

See Access levels in Visual Basic.

Shadows Optional. See Shadows.

MustInherit Optional. See MustInherit.

NotInheritable Optional. See NotInheritable.

Partial Optional. Indicates a partial definition of the class. See Partial.

name Required. Name of this class. See Declared Element Names.

Of Optional. Specifies that this is a generic class.

typelist Required if you use the Of keyword. List of type parameters for this class. See Type
List.

Inherits Optional. Indicates that this class inherits the members of another class. See
Inherits Statement.

classname Required if you use the Inherits  statement. The name of the class from which
this class derives.

Implements Optional. Indicates that this class implements the members of one or more
interfaces. See Implements Statement.

interfacenames Required if you use the Implements  statement. The names of the interfaces this
class implements.

statements Optional. Statements which define the members of this class.

End Class Required. Terminates the Class  definition.

Remarks

Declares the name of a class and introduces the definition of the variables, properties, events, and procedures that the class comprises.

A Class  statement defines a new data type. A class is a fundamental building block of object-oriented programming (OOP). For more information, see
Objects and Classes.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/class-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Rules

Behavior

Classes and Modules

Example

You can use Class  only at namespace or module level. This means the declaration context for a class must be a source file, namespace, class, structure,
module, or interface, and cannot be a procedure or block. For more information, see Declaration Contexts and Default Access Levels.

Each instance of a class has a lifetime independent of all other instances. This lifetime begins when it is created by a New Operator clause or by a
function such as CreateObject. It ends when all variables pointing to the instance have been set to Nothing or to instances of other classes.

Classes default to Friend access. You can adjust their access levels with the access modifiers. For more information, see Access levels in Visual Basic.

Nesting. You can define one class within another. The outer class is called the containing class, and the inner class is called a nested class.

Inheritance. If the class uses the Inherits Statement, you can specify only one base class or interface. A class cannot inherit from more than one
element.

A class cannot inherit from another class with a more restrictive access level. For example, a Public  class cannot inherit from a Friend  class.

A class cannot inherit from a class nested within it.

Implementation. If the class uses the Implements Statement, you must implement every member defined by every interface you specify in 
interfacenames . An exception to this is reimplementation of a base class member. For more information, see "Reimplementation" in Implements.

Default Property. A class can specify at most one property as its default property. For more information, see Default.

Access Level. Within a class, you can declare each member with its own access level. Class members default to Public access, except variables
and constants, which default to Private access. When a class has more restricted access than one of its members, the class access level takes
precedence.

Scope. A class is in scope throughout its containing namespace, class, structure, or module.

The scope of every class member is the entire class.

Lifetime. Visual Basic does not support static classes. The functional equivalent of a static class is provided by a module. For more information,
see Module Statement.

Class members have lifetimes depending on how and where they are declared. For more information, see Lifetime in Visual Basic.

Qualification. Code outside a class must qualify a member's name with the name of that class.

If code inside a nested class makes an unqualified reference to a programming element, Visual Basic searches for the element first in the nested
class, then in its containing class, and so on out to the outermost containing element.

These elements have many similarities, but there are some important differences as well.

Terminology. Previous versions of Visual Basic recognize two types of modules: class modules (.cls files) and standard modules (.bas files). The
current version calls these classes and modules, respectively.

Shared Members. You can control whether a member of a class is a shared or instance member.

Object Orientation. Classes are object-oriented, but modules are not. You can create one or more instances of a class. For more information,
see Objects and Classes.

The following example uses a Class  statement to define a class and several members.

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.createobject
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/lifetime


Class bankAccount
    Shared interestRate As Decimal
    Private accountNumber As String
    Private accountBalance As Decimal
    Public holdOnAccount As Boolean = False

    Public ReadOnly Property balance() As Decimal
        Get
            Return accountBalance
        End Get
    End Property

    Public Sub postInterest()
        accountBalance = accountBalance * (1 + interestRate)
    End Sub

    Public Sub postDeposit(ByVal amountIn As Decimal)
        accountBalance = accountBalance + amountIn
    End Sub

    Public Sub postWithdrawal(ByVal amountOut As Decimal)
        accountBalance = accountBalance - amountOut
    End Sub
End Class

See Also
Objects and Classes
Structures and Classes
Interface Statement
Module Statement
Property Statement
Object Lifetime: How Objects Are Created and Destroyed
Generic Types in Visual Basic
How to: Use a Generic Class

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures-and-classes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-use-a-generic-class


                    

Const Statement (Visual Basic)
5/16/2018 • 4 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ Shadows ]   
Const constantlist  

Parts

PART DESCRIPTION

constantname Required. Name of the constant. See Declared Element Names.

datatype Required if Option Strict  is On . Data type of the constant.

initializer Required. Expression that is evaluated at compile time and assigned to the
constant.

Remarks

Rules

Declares and defines one or more constants.

attributelist

Optional. List of attributes that apply to all the constants declared in this statement. See Attribute List in angle brackets (" < " and " > ").

accessmodifier

Optional. Use this to specify what code can access these constants. Can be Public, Protected, Friend, Protected Friend, Private, or Private Protected.

Shadows

Optional. Use this to redeclare and hide a programming element in a base class. See Shadows.

constantlist

Required. List of constants being declared in this statement.

constant  [ ,  constant  ... ]

Each constant  has the following syntax and parts:

constantname  [ As  datatype  ] =  initializer

If you have a value that never changes in your application, you can define a named constant and use it in place of a literal value. A name is easier to
remember than a value. You can define the constant just once and use it in many places in your code. If in a later version you need to redefine the value,
the Const  statement is the only place you need to make a change.

You can use Const  only at module or procedure level. This means the declaration context for a variable must be a class, structure, module, procedure,
or block, and cannot be a source file, namespace, or interface. For more information, see Declaration Contexts and Default Access Levels.

Local constants (inside a procedure) default to public access, and you cannot use any access modifiers on them. Class and module member constants
(outside any procedure) default to private access, and structure member constants default to public access. You can adjust their access levels with the
access modifiers.

Declaration Context. A constant declared at module level, outside any procedure, is a member constant; it is a member of the class, structure,
or module that declares it.

A constant declared at procedure level is a local constant; it is local to the procedure or block that declares it.

Attributes. You can apply attributes only to member constants, not to local constants. An attribute contributes information to the assembly's
metadata, which is not meaningful for temporary storage such as local constants.

Modifiers. By default, all constants are Shared , Static , and ReadOnly . You cannot use any of these keywords when declaring a constant.

At procedure level, you cannot use Shadows  or any access modifiers to declare local constants.

Multiple Constants. You can declare several constants in the same declaration statement, specifying the constantname  part for each one.
Multiple constants are separated by commas.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/const-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Data Type Rules

Behavior

Example

' The following statements declare constants. 
Const maximum As Long = 459
Public Const helpString As String = "HELP"
Private Const startValue As Integer = 5

Example

Const naturalLogBase As Object = CDec(2.7182818284)
MsgBox("Run-time type of constant naturalLogBase is " &
    naturalLogBase.GetType.ToString())

See Also

Data Types. The Const  statement can declare the data type of a variable. You can specify any data type or the name of an enumeration.

Default Type. If you do not specify datatype , the constant takes the data type of initializer . If you specify both datatype  and initializer ,
the data type of initializer  must be convertible to datatype . If neither datatype  nor initializer  is present, the data type defaults to Object .

Different Types. You can specify different data types for different constants by using a separate As  clause for each variable you declare.
However, you cannot declare several constants to be of the same type by using a common As  clause.

Initialization. You must initialize the value of every constant in constantlist . You use initializer  to supply an expression to be assigned to
the constant. The expression can be any combination of literals, other constants that are already defined, and enumeration members that are
already defined. You can use arithmetic and logical operators to combine such elements.

You cannot use variables or functions in initializer . However, you can use conversion keywords such as CByte  and CShort . You can also use 
AscW  if you call it with a constant String  or Char  argument, since that can be evaluated at compile time.

Scope. Local constants are accessible only from within their procedure or block. Member constants are accessible from anywhere within their
class, structure, or module.

Qualification. Code outside a class, structure, or module must qualify a member constant's name with the name of that class, structure, or
module. Code outside a procedure or block cannot refer to any local constants within that procedure or block.

The following example uses the Const  statement to declare constants for use in place of literal values.

If you define a constant with data type Object , the Visual Basic compiler gives it the type of initializer , instead of Object . In the following example,
the constant naturalLogBase  has the run-time type Decimal .

The preceding example uses the ToString method on the Type object returned by the GetType Operator, because Type cannot be converted to String

using CStr .

Asc
AscW
Enum Statement
#Const Directive
Dim Statement
ReDim Statement
Implicit and Explicit Conversions
Constants and Enumerations
Constants and Enumerations
Type Conversion Functions

https://docs.microsoft.com/dotnet/api/system.type.tostring
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/system.type
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.asc
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


       

Continue Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Continue { Do | For | While }  

Remarks

Example

Dim row, col As Integer
Dim lastrow As Integer = 6
Dim lastcol As Integer = 10
Dim a(,) As Double = New Double(lastrow, lastcol) {}
Dim b(7) As Double
row = -1
While row < lastrow
    row += 1
    col = -1
    While col < lastcol
        col += 1
        a(row, col) = 0
        For i As Integer = 0 To b.GetUpperBound(0)
            If b(i) = col Then
                Continue While
            Else
                a(row, col) += (row + b(i)) / (col - b(i))
            End If
        Next i
    End While
End While

See Also

Transfers control immediately to the next iteration of a loop.

You can transfer from inside a Do , For , or While  loop to the next iteration of that loop. Control passes immediately to the loop condition test, which is
equivalent to transferring to the For  or While  statement, or to the Do  or Loop  statement that contains the Until  or While  clause.

You can use Continue  at any location in the loop that allows transfers. The rules allowing transfer of control are the same as with the GoTo Statement.

For example, if a loop is totally contained within a Try  block, a Catch  block, or a Finally  block, you can use Continue  to transfer out of the loop. If,
on the other hand, the Try ... End Try  structure is contained within the loop, you cannot use Continue  to transfer control out of the Finally  block, and
you can use it to transfer out of a Try  or Catch  block only if you transfer completely out of the Try ... End Try  structure.

If you have nested loops of the same type, for example a Do  loop within another Do  loop, a Continue Do  statement skips to the next iteration of the
innermost Do  loop that contains it. You cannot use Continue  to skip to the next iteration of a containing loop of the same type.

If you have nested loops of different types, for example a Do  loop within a For  loop, you can skip to the next iteration of either loop by using either 
Continue Do  or Continue For .

The following code example uses the Continue While  statement to skip to the next column of an array if a divisor is zero. The Continue While  is inside a
For  loop. It transfers to the While col < lastcol  statement, which is the next iteration of the innermost While  loop that contains the For  loop.

Do...Loop Statement
For...Next Statement
While...End While Statement
Try...Catch...Finally Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/continue-statement.md


                                    

Declare Statement
7/13/2018 • 8 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ Shadows ] [ Overloads ] _  
Declare [ charsetmodifier ] [ Sub ] name Lib "libname" _  
[ Alias "aliasname" ] [ ([ parameterlist ]) ]  
' -or-  
[ <attributelist> ] [ accessmodifier ] [ Shadows ] [ Overloads ] _  
Declare [ charsetmodifier ] [ Function ] name Lib "libname" _  
[ Alias "aliasname" ] [ ([ parameterlist ]) ] [ As returntype ]  

Parts
TERM DEFINITION

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

- Public
- Protected
- Friend
- Private
- Protected Friend
- Private Protected

See Access levels in Visual Basic.

Shadows Optional. See Shadows.

charsetmodifier Optional. Specifies character set and file search information. Can be one of the
following:

- Ansi (default)
- Unicode
- Auto

Sub Optional, but either Sub  or Function  must appear. Indicates that the external
procedure does not return a value.

Function Optional, but either Sub  or Function  must appear. Indicates that the external
procedure returns a value.

name Required. Name of this external reference. For more information, see Declared
Element Names.

Lib Required. Introduces a Lib  clause, which identifies the external file (DLL or code
resource) that contains an external procedure.

libname Required. Name of the file that contains the declared procedure.

Alias Optional. Indicates that the procedure being declared cannot be identified within its
file by the name specified in name . You specify its identification in aliasname .

aliasname Required if you use the Alias  keyword. String that identifies the procedure in one
of two ways:

The entry point name of the procedure within its file, within quotes ( "" )

-or-

A number sign ( # ) followed by an integer specifying the ordinal number of the
procedure's entry point within its file

parameterlist Required if the procedure takes parameters. See Parameter List.

Declares a reference to a procedure implemented in an external file.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/declare-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


returntype Required if Function  is specified and Option Strict  is On . Data type of the
value returned by the procedure.

TERM DEFINITION

Remarks

Rules

Data Type Rules

Sometimes you need to call a procedure defined in a file (such as a DLL or code resource) outside your project. When you do this, the Visual Basic
compiler does not have access to the information it needs to call the procedure correctly, such as where the procedure is located, how it is identified, its
calling sequence and return type, and the string character set it uses. The Declare  statement creates a reference to an external procedure and supplies
this necessary information.

You can use Declare  only at module level. This means the declaration context for an external reference must be a class, structure, or module, and
cannot be a source file, namespace, interface, procedure, or block. For more information, see Declaration Contexts and Default Access Levels.

External references default to Public access. You can adjust their access levels with the access modifiers.

NOTENOTE

Attributes. You can apply attributes to an external reference. Any attribute you apply has effect only in your project, not in the external file.

Modifiers. External procedures are implicitly Shared. You cannot use the Shared  keyword when declaring an external reference, and you cannot
alter its shared status.

An external procedure cannot participate in overriding, implement interface members, or handle events. Accordingly, you cannot use the 
Overrides , Overridable , NotOverridable , MustOverride , Implements , or Handles  keyword in a Declare  statement.

External Procedure Name. You do not have to give this external reference the same name (in name ) as the procedure's entry-point name
within its external file ( aliasname ). You can use an Alias  clause to specify the entry-point name. This can be useful if the external procedure has
the same name as a Visual Basic reserved modifier or a variable, procedure, or any other programming element in the same scope.

Entry-point names in most DLLs are case-sensitive.

External Procedure Number. Alternatively, you can use an Alias  clause to specify the ordinal number of the entry point within the export
table of the external file. To do this, you begin aliasname  with a number sign ( # ). This can be useful if any character in the external procedure
name is not allowed in Visual Basic, or if the external file exports the procedure without a name.

NOTENOTE

NOTENOTE

NOTENOTE

Parameter Data Types. If Option Strict  is On , you must specify the data type of each parameter in parameterlist . This can be any data type
or the name of an enumeration, structure, class, or interface. Within parameterlist , you use an As  clause to specify the data type of the
argument to be passed to each parameter.

If the external procedure was not written for the .NET Framework, you must take care that the data types correspond. For example, if you declare an external
reference to a Visual Basic 6.0 procedure with an Integer  parameter (16 bits in Visual Basic 6.0), you must identify the corresponding argument as Short  in
the Declare  statement, because that is the 16-bit integer type in Visual Basic. Similarly, Long  has a different data width in Visual Basic 6.0, and Date  is
implemented differently.

Return Data Type. If the external procedure is a Function  and Option Strict  is On , you must specify the data type of the value returned to the
calling code. This can be any data type or the name of an enumeration, structure, class, or interface.

The Visual Basic compiler does not verify that your data types are compatible with those of the external procedure. If there is a mismatch, the common
language runtime generates a MarshalDirectiveException exception at run time.

Default Data Types. If Option Strict  is Off  and you do not specify the data type of a parameter in parameterlist , the Visual Basic compiler
converts the corresponding argument to the Object Data Type. Similarly, if you do not specify returntype , the compiler takes the return data
type to be Object .

Because you are dealing with an external procedure that might have been written on a different platform, it is dangerous to make any assumptions about data
types or to allow them to default. It is much safer to specify the data type of every parameter and of the return value, if any. This also improves the readability
of your code.

https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshaldirectiveexception


Behavior

IMPORTANTIMPORTANT

Example

Declare Function getUserName Lib "advapi32.dll" Alias "GetUserNameA" (
    ByVal lpBuffer As String, ByRef nSize As Integer) As Integer
Sub getUser()
    Dim buffer As String = New String(CChar(" "), 25)
    Dim retVal As Integer = getUserName(buffer, 25)
    Dim userName As String = Strings.Left(buffer, InStr(buffer, Chr(0)) - 1)
    MsgBox(userName)
End Sub

Example

' Add an Imports statement at the top of the class, structure, or
' module that uses the DllImport attribute.
Imports System.Runtime.InteropServices

<DllImportAttribute("kernel32.dll", EntryPoint:="MoveFileW",
    SetLastError:=True, CharSet:=CharSet.Unicode,
    ExactSpelling:=True,
    CallingConvention:=CallingConvention.StdCall)>
Public Shared Function moveFile(ByVal src As String,
  ByVal dst As String) As Boolean
    ' This function copies a file from the path src to the path dst.
    ' Leave this function empty. The DLLImport attribute forces calls
    ' to moveFile to be forwarded to MoveFileW in KERNEL32.DLL.
End Function

See Also

Scope. An external reference is in scope throughout its class, structure, or module.

Lifetime. An external reference has the same lifetime as the class, structure, or module in which it is declared.

Calling an External Procedure. You call an external procedure the same way you call a Function  or Sub  procedure—by using it in an
expression if it returns a value, or by specifying it in a Call Statement if it does not return a value.

You pass arguments to the external procedure exactly as specified by parameterlist  in the Declare  statement. Do not take into account how the
parameters were originally declared in the external file. Similarly, if there is a return value, use it exactly as specified by returntype  in the 
Declare  statement.

Character Sets. You can specify in charsetmodifier  how Visual Basic should marshal strings when it calls the external procedure. The Ansi

modifier directs Visual Basic to marshal all strings to ANSI values, and the Unicode  modifier directs it to marshal all strings to Unicode values.
The Auto  modifier directs Visual Basic to marshal strings according to .NET Framework rules based on the external reference name , or 
aliasname  if specified. The default value is Ansi .

charsetmodifier  also specifies how Visual Basic should look up the external procedure within its external file. Ansi  and Unicode  both direct
Visual Basic to look it up without modifying its name during the search. Auto  directs Visual Basic to determine the base character set of the run-
time platform and possibly modify the external procedure name, as follows:

On an ANSI platform, such as Windows 95, Windows 98, or Windows Millennium Edition, first look up the external procedure with no
name modification. If that fails, append "A" to the end of the external procedure name and look it up again.

On a Unicode platform, such as Windows NT, Windows 2000, or Windows XP, first look up the external procedure with no name
modification. If that fails, append "W" to the end of the external procedure name and look it up again.

Mechanism. Visual Basic uses the .NET Framework platform invoke (PInvoke) mechanism to resolve and access external procedures. The 
Declare  statement and the DllImportAttribute class both use this mechanism automatically, and you do not need any knowledge of PInvoke. For

more information, see Walkthrough: Calling Windows APIs.

If the external procedure runs outside the common language runtime (CLR), it is unmanaged code. When you call such a procedure, for example a Win32 API function
or a COM method, you might expose your application to security risks. For more information, see Secure Coding Guidelines for Unmanaged Code.

The following example declares an external reference to a Function  procedure that returns the current user name. It then calls the external procedure 
GetUserNameA  as part of the getUser  procedure.

The DllImportAttribute provides an alternative way of using functions in unmanaged code. The following example declares an imported function
without using a Declare  statement.

https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/framework/security/secure-coding-guidelines-for-unmanaged-code
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx


LastDllError
Imports Statement (.NET Namespace and Type)
AddressOf Operator
Function Statement
Sub Statement
Parameter List
Call Statement
Walkthrough: Calling Windows APIs

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.lastdllerror


                    

Delegate Statement
7/13/2018 • 4 minutes to read • Edit Online

Syntax
[ <attrlist> ] [ accessmodifier ] _  
[ Shadows ] Delegate [ Sub | Function ] name [( Of typeparamlist )] [([ parameterlist ])] [ As type ]  

Parts
TERM DEFINITION

attrlist Optional. List of attributes that apply to this delegate. Multiple attributes are
separated by commas. You must enclose the Attribute List in angle brackets (" < "
and " > ").

accessmodifier Optional. Specifies what code can access the delegate. Can be one of the following:

- Public. Any code that can access the element that declares the delegate can
access it.
- Protected. Only code within the delegate's class or a derived class can access it.
- Friend. Only code within the same assembly can access the delegate.
- Private. Only code within the element that declares the delegate can access it.

- Protected Friend Only code within the delegate's class, a derived class, or the
same assembly can access the delegate. 
- Private Protected Only code within the delegate's class or in a derived class in the
same assembly can access the delegate.

Shadows Optional. Indicates that this delegate redeclares and hides an identically named
programming element, or set of overloaded elements, in a base class. You can
shadow any kind of declared element with any other kind.

A shadowed element is unavailable from within the derived class that shadows it,
except from where the shadowing element is inaccessible. For example, if a 
Private  element shadows a base class element, code that does not have

permission to access the Private  element accesses the base class element
instead.

Sub Optional, but either Sub  or Function  must appear. Declares this procedure as a
delegate Sub  procedure that does not return a value.

Function Optional, but either Sub  or Function  must appear. Declares this procedure as a
delegate Function  procedure that returns a value.

name Required. Name of the delegate type; follows standard variable naming
conventions.

typeparamlist Optional. List of type parameters for this delegate. Multiple type parameters are
separated by commas. Optionally, each type parameter can be declared variant by
using In  and Out  generic modifiers. You must enclose the Type List in
parentheses and introduce it with the Of  keyword.

parameterlist Optional. List of parameters that are passed to the procedure when it is called. You
must enclose the Parameter List in parentheses.

type Required if you specify a Function  procedure. Data type of the return value.

Remarks

Used to declare a delegate. A delegate is a reference type that refers to a Shared  method of a type or to an instance method of an object. Any procedure
with matching parameter and return types can be used to create an instance of this delegate class. The procedure can then later be invoked by means of
the delegate instance.

The Delegate  statement defines the parameter and return types of a delegate class. Any procedure with matching parameters and return types can be
used to create an instance of this delegate class. The procedure can then later be invoked by means of the delegate instance, by calling the delegate's 
Invoke  method.

Delegates can be declared at the namespace, module, class, or structure level, but not within a procedure.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/delegate-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected


Example

Delegate Function MathOperator( 
    ByVal x As Double, 
    ByVal y As Double 
) As Double

Function AddNumbers( 
    ByVal x As Double, 
    ByVal y As Double 
) As Double
    Return x + y
End Function

Function SubtractNumbers( 
    ByVal x As Double, 
    ByVal y As Double
) As Double
    Return x - y
End Function

Sub DelegateTest( 
    ByVal x As Double, 
    ByVal op As MathOperator, 
    ByVal y As Double 
)
    Dim ret As Double
    ret = op.Invoke(x, y) ' Call the method.
    MsgBox(ret)
End Sub

Protected Sub Test()
    DelegateTest(5, AddressOf AddNumbers, 3)
    DelegateTest(9, AddressOf SubtractNumbers, 3)
End Sub

See Also

Each delegate class defines a constructor that is passed the specification of an object method. An argument to a delegate constructor must be a
reference to a method, or a lambda expression.

To specify a reference to a method, use the following syntax:

AddressOf  [ expression .] methodname

The compile-time type of the expression  must be the name of a class or an interface that contains a method of the specified name whose signature
matches the signature of the delegate class. The methodname  can be either a shared method or an instance method. The methodname  is not optional, even
if you create a delegate for the default method of the class.

To specify a lambda expression, use the following syntax:

Function  ([ parm  As type , parm2  As type2 , ...]) expression

The signature of the function must match that of the delegate type. For more information about lambda expressions, see Lambda Expressions.

For more information about delegates, see Delegates.

The following example uses the Delegate  statement to declare a delegate for operating on two numbers and returning a number. The DelegateTest

method takes an instance of a delegate of this type and uses it to operate on pairs of numbers.

AddressOf Operator
Of
Delegates
How to: Use a Generic Class
Generic Types in Visual Basic
Covariance and Contravariance
In
Out

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-use-a-generic-class
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index


                                          

Dim Statement (Visual Basic)
5/16/2018 • 12 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [[ Shared ] [ Shadows ] | [ Static ]] [ ReadOnly ]   
Dim [ WithEvents ] variablelist  

Parts

Declares and allocates storage space for one or more variables.

PART DESCRIPTION

variablename Required. Name of the variable. See Declared Element Names.

boundslist Optional. List of bounds of each dimension of an array variable.

New Optional. Creates a new instance of the class when the Dim  statement runs.

datatype Optional. Data type of the variable.

attributelist

Optional. See Attribute List.

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

Private Protected

See Access levels in Visual Basic.

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Static

Optional. See Static.

ReadOnly

Optional. See ReadOnly.

WithEvents

Optional. Specifies that these are object variables that refer to instances of a class that can raise events. See WithEvents.

variablelist

Required. List of variables being declared in this statement.

variable [ , variable ... ]

Each variable  has the following syntax and parts:

variablename [ ( [ boundslist ] ) ] [ As [ New ] datatype [ With { [ .propertyname = propinitializer [ , ... ] ] } ] ] [ = initializer ]

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/dim-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Remarks

Dim numberOfStudents As Integer  

Dim finished As Boolean  
Dim monitorBox As System.Windows.Forms.Form  

Dim bottomLabel As New System.Windows.Forms.Label  

Public maximumAllowed As Double  
Protected Friend currentUserName As String  
Private salary As Decimal  
Static runningTotal As Integer  

Specifying an Initial Value

Dim quantity As Integer = 10  
Dim message As String = "Just started"  

' Use explicit typing.  
Dim num1 As Integer = 3  

' Use local type inference.  
Dim num2 = 3  

With Optional. Introduces the object initializer list.

propertyname Optional. The name of a property in the class you are making an instance of.

propinitializer Required after propertyname  =. The expression that is evaluated and assigned
to the property name.

initializer Optional if New  is not specified. Expression that is evaluated and assigned to
the variable when it is created.

PART DESCRIPTION

The Visual Basic compiler uses the Dim  statement to determine the variable's data type and other information, such as what code can access the
variable. The following example declares a variable to hold an Integer  value.

You can specify any data type or the name of an enumeration, structure, class, or interface.

For a reference type, you use the New  keyword to create a new instance of the class or structure that is specified by the data type. If you use New , you
do not use an initializer expression. Instead, you supply arguments, if they are required, to the constructor of the class from which you are creating the
variable.

You can declare a variable in a procedure, block, class, structure, or module. You cannot declare a variable in a source file, namespace, or interface. For
more information, see Declaration Contexts and Default Access Levels.

A variable that is declared at module level, outside any procedure, is a member variable or field. Member variables are in scope throughout their class,
structure, or module. A variable that is declared at procedure level is a local variable. Local variables are in scope only within their procedure or block.

The following access modifiers are used to declare variables outside a procedure: Public , Protected , Friend , Protected Friend , and Private . For
more information, see Access levels in Visual Basic.

The Dim  keyword is optional and usually omitted if you specify any of the following modifiers: Public , Protected , Friend , Protected Friend , 
Private , Shared , Shadows , Static , ReadOnly , or WithEvents .

If Option Explicit  is on (the default), the compiler requires a declaration for every variable you use. For more information, see Option Explicit
Statement.

You can assign a value to a variable when it is created. For a value type, you use an initializer to supply an expression to be assigned to the variable. The
expression must evaluate to a constant that can be calculated at compile time.

If an initializer is specified and a data type is not specified in an As  clause, type inference is used to infer the data type from the initializer. In the
following example, both num1  and num2  are strongly typed as integers. In the second declaration, type inference infers the type from the value 3.

Type inference applies at the procedure level. It does not apply outside a procedure in a class, structure, module, or interface. For more information

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Dim student1 As New Student With {.First = "Michael",   
                                  .Last = "Tucker"}  

Declaring Multiple Variables

Dim lastTime, nextTime, allTimes() As Date  

Dim a, b, c As Single, x, y As Double, i As Integer  
' a, b, and c are all Single; x and y are both Double  

Arrays

Dim totals(20) As Integer  
Dim totals(0 To 20) As Integer  

Dim matrix2(3, 5) As Double  

' Declare an array with blank array bounds.  
Dim messages() As String  
' Initialize the array.  
ReDim messages(4)  

Dim oneDimension(), twoDimensions(,), threeDimensions(,,) As Byte  

about type inference, see Option Infer Statement and Local Type Inference.

For information about what happens when a data type or initializer is not specified, see Default Data Types and Values later in this topic.

You can use an object initializer to declare instances of named and anonymous types. The following code creates an instance of a Student  class and
uses an object initializer to initialize properties.

For more information about object initializers, see How to: Declare an Object by Using an Object Initializer, Object Initializers: Named and Anonymous
Types, and Anonymous Types.

You can declare several variables in one declaration statement, specifying the variable name for each one, and following each array name with
parentheses. Multiple variables are separated by commas.

If you declare more than one variable with one As  clause, you cannot supply an initializer for that group of variables.

You can specify different data types for different variables by using a separate As  clause for each variable you declare. Each variable takes the data type
specified in the first As  clause encountered after its variablename  part.

You can declare a variable to hold an array, which can hold multiple values. To specify that a variable holds an array, follow its variablename

immediately with parentheses. For more information about arrays, see Arrays.

You can specify the lower and upper bound of each dimension of an array. To do this, include a boundslist  inside the parentheses. For each dimension,
the boundslist  specifies the upper bound and optionally the lower bound. The lower bound is always zero, whether you specify it or not. Each index can
vary from zero through its upper bound value.

The following two statements are equivalent. Each statement declares an array of 21 Integer  elements. When you access the array, the index can vary
from 0 through 20.

The following statement declares a two-dimensional array of type Double . The array has 4 rows (3 + 1) of 6 columns (5 + 1) each. Note that an upper
bound represents the highest possible value for the index, not the length of the dimension. The length of the dimension is the upper bound plus one.

An array can have from 1 to 32 dimensions.

You can leave all the bounds blank in an array declaration. If you do this, the array has the number of dimensions you specify, but it is uninitialized. It has
a value of Nothing  until you initialize at least some of its elements. The Dim  statement must specify bounds either for all dimensions or for no
dimensions.

If the array has more than one dimension, you must include commas between the parentheses to indicate the number of dimensions.

You can declare a zero-length array by declaring one of the array's dimensions to be -1. A variable that holds a zero-length array does not have the
value Nothing . Zero-length arrays are required by certain common language runtime functions. If you try to access such an array, a runtime exception
occurs. For more information, see Arrays.

You can initialize the values of an array by using an array literal. To do this, surround the initialization values with braces ( {} ).

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-declare-an-object-by-using-an-object-initializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types


Dim longArray() As Long = {0, 1, 2, 3}  

Dim twoDimensions(,) As Integer = {{0, 1, 2}, {10, 11, 12}}  

Default Data Types and Values

DATA TYPE SPECIFIED? INITIALIZER SPECIFIED? EXAMPLE RESULT

No No Dim qty If Option Strict is off (the default), the
variable is set to Nothing .

If Option Strict  is on, a compile-
time error occurs.

No Yes Dim qty = 5 If Option Infer is on (the default), the
variable takes the data type of the
initializer. See Local Type Inference.

If Option Infer  is off and 
Option Strict  is off, the variable

takes the data type of Object .

If Option Infer  is off and 
Option Strict  is on, a compile-time

error occurs.

Yes No Dim qty As Integer The variable is initialized to the default
value for the data type. See the table
later in this section.

Yes Yes Dim qty As Integer = 5 If the data type of the initializer is not
convertible to the specified data type, a
compile-time error occurs.

DATA TYPE DEFAULT VALUE

All numeric types (including Byte  and SByte ) 0

Char Binary 0

All reference types (including Object , String , and all arrays) Nothing

Boolean False

Date 12:00 AM of January 1 of the year 1 (01/01/0001 12:00:00 AM)

Static Local Variable Lifetime

PROCEDURE DECLARATION VARIABLE INITIALIZED VARIABLE STOPS EXISTING

In a module The first time the procedure is called When your program stops execution

In a class or structure, procedure is Shared The first time the procedure is called either on a
specific instance or on the class or structure itself

When your program stops execution

For multidimensional arrays, the initialization for each separate dimension is enclosed in braces in the outer dimension. The elements are specified in
row-major order.

For more information about array literals, see Arrays.

The following table describes the results of various combinations of specifying the data type and initializer in a Dim  statement.

If you specify a data type but do not specify an initializer, Visual Basic initializes the variable to the default value for its data type. The following table
shows the default initialization values.

Each element of a structure is initialized as if it were a separate variable. If you declare the length of an array but do not initialize its elements, each
element is initialized as if it were a separate variable.

A Static  local variable has a longer lifetime than that of the procedure in which it is declared. The boundaries of the variable's lifetime depend on
where the procedure is declared and whether it is Shared .

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


In a class or structure, procedure isn't Shared The first time the procedure is called on a specific
instance

When the instance is released for garbage collection
(GC)

PROCEDURE DECLARATION VARIABLE INITIALIZED VARIABLE STOPS EXISTING

Attributes and Modifiers

NOTENOTE

Releasing Managed Resources

Example

' Declare and initialize a Long variable.
Dim startingAmount As Long = 500

' Declare a variable that refers to a Button object,
' create a Button object, and assign the Button object
' to the variable.
Dim switchButton As New System.Windows.Forms.Button

' Declare a local variable that always retains its value,
' even after its procedure returns to the calling code.
Static totalSales As Double

' Declare a variable that refers to an array.
Dim highTemperature(31) As Integer

' Declare and initialize an array variable that
' holds four Boolean check values.
Dim checkValues() As Boolean = {False, False, True, False}

Example

You can apply attributes only to member variables, not to local variables. An attribute contributes information to the assembly's metadata, which is not
meaningful for temporary storage such as local variables.

At module level, you cannot use the Static  modifier to declare member variables. At procedure level, you cannot use Shared , Shadows , ReadOnly , 
WithEvents , or any access modifiers to declare local variables.

You can specify what code can access a variable by supplying an accessmodifier . Class and module member variables (outside any procedure) default
to private access, and structure member variables default to public access. You can adjust their access levels with the access modifiers. You cannot use
access modifiers on local variables (inside a procedure).

You can specify WithEvents  only on member variables, not on local variables inside a procedure. If you specify WithEvents , the data type of the variable
must be a specific class type, not Object . You cannot declare an array with WithEvents . For more information about events, see Events.

Code outside a class, structure, or module must qualify a member variable's name with the name of that class, structure, or module. Code outside a procedure or block
cannot refer to any local variables within that procedure or block.

The .NET Framework garbage collector disposes of managed resources without any extra coding on your part. However, you can force the disposal of a
managed resource instead of waiting for the garbage collector.

If a class holds onto a particularly valuable and scarce resource (such as a database connection or file handle), you might not want to wait until the next
garbage collection to clean up a class instance that's no longer in use. A class may implement the IDisposable interface to provide a way to release
resources before a garbage collection. A class that implements that interface exposes a Dispose  method that can be called to force valuable resources
to be released immediately.

The Using  statement automates the process of acquiring a resource, executing a set of statements, and then disposing of the resource. However, the
resource must implement the IDisposable interface. For more information, see Using Statement.

The following example declares variables by using the Dim  statement with various options.

The following example lists the prime numbers between 1 and 30. The scope of local variables is described in code comments.

https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.idisposable


Public Sub ListPrimes()
    ' The sb variable can be accessed only
    ' within the ListPrimes procedure.
    Dim sb As New System.Text.StringBuilder()

    ' The number variable can be accessed only
    ' within the For...Next block.  A different
    ' variable with the same name could be declared
    ' outside of the For...Next block.
    For number As Integer = 1 To 30
        If CheckIfPrime(number) = True Then
            sb.Append(number.ToString & " ")
        End If
    Next

    Debug.WriteLine(sb.ToString)
    ' Output: 2 3 5 7 11 13 17 19 23 29
End Sub

Private Function CheckIfPrime(ByVal number As Integer) As Boolean
    If number < 2 Then
        Return False
    Else
        ' The root and highCheck variables can be accessed
        ' only within the Else block.  Different variables
        ' with the same names could be declared outside of
        ' the Else block.
        Dim root As Double = Math.Sqrt(number)
        Dim highCheck As Integer = Convert.ToInt32(Math.Truncate(root))

        ' The div variable can be accessed only within
        ' the For...Next block.
        For div As Integer = 2 To highCheck
            If number Mod div = 0 Then
                Return False
            End If
        Next

        Return True
    End If
End Function

Example

' Create a new instance of a Car.
Dim theCar As New Car()
theCar.Accelerate(30)
theCar.Accelerate(20)
theCar.Accelerate(-5)

Debug.WriteLine(theCar.Speed.ToString)
' Output: 45

Public Class Car
    ' The speedValue variable can be accessed by
    ' any procedure in the Car class.
    Private speedValue As Integer = 0

    Public ReadOnly Property Speed() As Integer
        Get
            Return speedValue
        End Get
    End Property

    Public Sub Accelerate(ByVal speedIncrease As Integer)
        speedValue += speedIncrease
    End Sub
End Class

See Also

In the following example, the speedValue  variable is declared at the class level. The Private  keyword is used to declare the variable. The variable can be
accessed by any procedure in the Car  class.

Const Statement
ReDim Statement
Option Explicit Statement
Option Infer Statement
Option Strict Statement



Compile Page, Project Designer (Visual Basic)
Variable Declaration
Arrays
Object Initializers: Named and Anonymous Types
Anonymous Types
Object Initializers: Named and Anonymous Types
How to: Declare an Object by Using an Object Initializer
Local Type Inference

https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-declare-an-object-by-using-an-object-initializer
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


                

Do...Loop Statement (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
Do { While | Until } condition  
    [ statements ]  
    [ Continue Do ]  
    [ statements ]  
    [ Exit Do ]  
    [ statements ]  
Loop  
-or-  
Do  
    [ statements ]  
    [ Continue Do ]  
    [ statements ]  
    [ Exit Do ]  
    [ statements ]  
Loop { While | Until } condition  

Parts
TERM DEFINITION

Do Required. Starts the definition of the Do  loop.

While Required unless Until  is used. Repeat the loop until condition  is False .

Until Required unless While  is used. Repeat the loop until condition  is True .

condition Optional. Boolean  expression. If condition  is Nothing , Visual Basic treats it as 
False .

statements Optional. One or more statements that are repeated while, or until, condition  is 
True .

Continue Do Optional. Transfers control to the next iteration of the Do  loop.

Exit Do Optional. Transfers control out of the Do  loop.

Loop Required. Terminates the definition of the Do  loop.

Remarks

NOTENOTE

Exit Do

Repeats a block of statements while a Boolean  condition is True  or until the condition becomes True .

Use a Do...Loop  structure when you want to repeat a set of statements an indefinite number of times, until a condition is satisfied. If you want to repeat
the statements a set number of times, the For...Next Statement is usually a better choice.

You can use either While  or Until  to specify condition , but not both.

You can test condition  only one time, at either the start or the end of the loop. If you test condition  at the start of the loop (in the Do  statement), the
loop might not run even one time. If you test at the end of the loop (in the Loop  statement), the loop always runs at least one time.

The condition usually results from a comparison of two values, but it can be any expression that evaluates to a Boolean Data Type value ( True  or 
False ). This includes values of other data types, such as numeric types, that have been converted to Boolean .

You can nest Do  loops by putting one loop within another. You can also nest different kinds of control structures within each other. For more
information, see Nested Control Structures.

The Do...Loop  structure gives you more flexibility than the While...End While Statement because it enables you to decide whether to end the loop when condition

stops being True  or when it first becomes True . It also enables you to test condition  at either the start or the end of the loop.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/do-loop-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


Example

Dim index As Integer = 0
Do
    Debug.Write(index.ToString & " ")
    index += 1
Loop Until index > 10

Debug.WriteLine("")
' Output: 0 1 2 3 4 5 6 7 8 9 10 

Example

Dim index As Integer = 0
Do While index <= 10
    Debug.Write(index.ToString & " ")
    index += 1
Loop

Debug.WriteLine("")
' Output: 0 1 2 3 4 5 6 7 8 9 10 

Example

Dim index As Integer = 0
Do While index <= 100
    If index > 10 Then
        Exit Do
    End If

    Debug.Write(index.ToString & " ")
    index += 1
Loop

Debug.WriteLine("")
' Output: 0 1 2 3 4 5 6 7 8 9 10 

Example

Private Sub ShowText(ByVal textFilePath As String)
    If System.IO.File.Exists(textFilePath) = False Then
        Debug.WriteLine("File Not Found: " & textFilePath)
    Else
        Dim sr As System.IO.StreamReader = System.IO.File.OpenText(textFilePath)

        Do While sr.Peek() >= 0
            Debug.WriteLine(sr.ReadLine())
        Loop

        sr.Close()
    End If
End Sub

The Exit Do statement can provide an alternative way to exit a Do…Loop . Exit Do  transfers control immediately to the statement that follows the Loop

statement.

Exit Do  is often used after some condition is evaluated, for example in an If...Then...Else  structure. You might want to exit a loop if you detect a
condition that makes it unnecessary or impossible to continue iterating, such as an erroneous value or a termination request. One use of Exit Do  is to
test for a condition that could cause an endless loop, which is a loop that could run a large or even infinite number of times. You can use Exit Do  to
escape the loop.

You can include any number of Exit Do  statements anywhere in a Do…Loop .

When used within nested Do  loops, Exit Do  transfers control out of the innermost loop and into the next higher level of nesting.

In the following example, the statements in the loop continue to run until the index  variable is greater than 10. The Until  clause is at the end of the
loop.

The following example uses a While  clause instead of an Until  clause, and condition  is tested at the start of the loop instead of at the end.

In the following example, condition  stops the loop when the index  variable is greater than 100. The If  statement in the loop, however, causes the 
Exit Do  statement to stop the loop when the index variable is greater than 10.

The following example reads all lines in a text file. The OpenText method opens the file and returns a StreamReader that reads the characters. In the 
Do...Loop  condition, the Peek method of the StreamReader  determines whether there are any additional characters.

https://docs.microsoft.com/dotnet/api/system.io.file.opentext
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.io.streamreader.peek


See Also
Loop Structures
For...Next Statement
Boolean Data Type
Nested Control Structures
Exit Statement
While...End While Statement

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/loop-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


  

Else Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Introduces a group of statements to be run or compiled if no other conditional group of statements has been run or compiled.

The Else  keyword can be used in these contexts:

If...Then...Else Statement

Select...Case Statement

#If...Then...#Else Directive

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/else-statement.md


          

End Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
End  

Remarks

NOTENOTE

IMPORTANTIMPORTANT

Example

Sub Form_Load()
  Dim answer As MsgBoxResult
  answer = MsgBox("Do you want to quit now?", MsgBoxStyle.YesNo)
  If answer = MsgBoxResult.Yes Then
      MsgBox("Terminating program")
      End
  End If
End Sub

Smart Device Developer Notes

See Also

Terminates execution immediately.

You can place the End  statement anywhere in a procedure to force the entire application to stop running. End  closes any files opened with an Open

statement and clears all the application's variables. The application closes as soon as there are no other programs holding references to its objects and
none of its code is running.

The End  statement stops code execution abruptly, and does not invoke the Dispose  or Finalize  method, or any other Visual Basic code. Object references held
by other programs are invalidated. If an End  statement is encountered within a Try  or Catch  block, control does not pass to the corresponding Finally  block.

The Stop  statement suspends execution, but unlike End , it does not close any files or clear any variables, unless it is encountered in a compiled
executable (.exe) file.

Because End  terminates your application without attending to any resources that might be open, you should try to close down cleanly before using it.
For example, if your application has any forms open, you should close them before control reaches the End  statement.

You should use End  sparingly, and only when you need to stop immediately. The normal ways to terminate a procedure (Return Statement and Exit
Statement) not only close down the procedure cleanly but also give the calling code the opportunity to close down cleanly. A console application, for
example, can simply Return  from the Main  procedure.

The End  statement calls the Exit method of the Environment class in the System namespace. Exit requires that you have UnmanagedCode  permission. If you do not, a
SecurityException error occurs.

When followed by an additional keyword, End <keyword> Statement delineates the end of the definition of the appropriate procedure or block. For
example, End Function  terminates the definition of a Function  procedure.

The following example uses the End  statement to terminate code execution if the user requests it.

This statement is not supported.

SecurityPermissionFlag
Stop Statement
End <keyword> Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/end-statement.md
https://docs.microsoft.com/dotnet/api/system.environment.exit
https://docs.microsoft.com/dotnet/api/system.environment
https://docs.microsoft.com/dotnet/api/system
https://docs.microsoft.com/dotnet/api/system.environment.exit
https://docs.microsoft.com/dotnet/api/system.security.securityexception
https://docs.microsoft.com/dotnet/api/system.security.permissions.securitypermissionflag


       

End <keyword> Statement (Visual Basic)
7/14/2018 • 2 minutes to read • Edit Online

Syntax
End AddHandler
End Class
End Enum
End Event
End Function
End Get
End If
End Interface
End Module
End Namespace
End Operator
End Property
End RaiseEvent  
End RemoveHandler  
End Select
End Set
End Structure
End Sub
End SyncLock
End Try
End While
End With  

Parts
PART DESCRIPTION

End Required. Terminates the definition of the programming element.

AddHandler Required to terminate an AddHandler  accessor begun by a matching 
AddHandler  statement in a custom Event Statement.

Class Required to terminate a class definition begun by a matching Class Statement.

Enum Required to terminate an enumeration definition begun by a matching Enum
Statement.

Event Required to terminate a Custom  event definition begun by a matching Event
Statement.

Function Required to terminate a Function  procedure definition begun by a matching
Function Statement. If execution encounters an End Function  statement, control
returns to the calling code.

Get Required to terminate a Property  procedure definition begun by a matching Get
Statement. If execution encounters an End Get  statement, control returns to the
statement requesting the property's value.

If Required to terminate an If ... Then ... Else  block definition begun by a
matching If  statement. See If...Then...Else Statement.

Interface Required to terminate an interface definition begun by a matching Interface
Statement.

Module Required to terminate a module definition begun by a matching Module Statement.

Namespace Required to terminate a namespace definition begun by a matching Namespace
Statement.

Operator Required to terminate an operator definition begun by a matching Operator
Statement.

When followed by an additional keyword, terminates the definition of the statement block introduced by that keyword.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/end-keyword-statement.md


Property Required to terminate a property definition begun by a matching Property
Statement.

RaiseEvent Required to terminate a RaiseEvent  accessor begun by a matching RaiseEvent

statement in a custom Event Statement.

RemoveHandler Required to terminate a RemoveHandler  accessor begun by a matching 
RemoveHandler  statement in a custom Event Statement.

Select Required to terminate a Select ... Case  block definition begun by a matching 
Select  statement. See Select...Case Statement.

Set Required to terminate a Property  procedure definition begun by a matching Set
Statement. If execution encounters an End Set  statement, control returns to the
statement setting the property's value.

Structure Required to terminate a structure definition begun by a matching Structure
Statement.

Sub Required to terminate a Sub  procedure definition begun by a matching Sub
Statement. If execution encounters an End Sub  statement, control returns to the
calling code.

SyncLock Required to terminate a SyncLock  block definition begun by a matching 
SyncLock  statement. See SyncLock Statement.

Try Required to terminate a Try ... Catch ... Finally  block definition begun by a
matching Try  statement. See Try...Catch...Finally Statement.

While Required to terminate a While  loop definition begun by a matching While

statement. See While...End While Statement.

With Required to terminate a With  block definition begun by a matching With

statement. See With...End With Statement.

PART DESCRIPTION

Directives

#End ExternalSource
#End If
#End Region

PART DESCRIPTION

#End Required. Terminates the definition of the preprocessing block.

ExternalSource Required to terminate an external source block begun by a matching
#ExternalSource Directive.

If Required to terminate a conditional compilation block begun by a matching #If

directive. See #If...Then...#Else Directives.

Region Required to terminate a source region block begun by a matching #Region
Directive.

Remarks

Smart Device Developer Notes

See also

When preceded by a number sign ( # ), the End  keyword terminates a preprocessing block introduced by the corresponding directive.

The End Statement, without an additional keyword, terminates execution immediately.

The End  statement, without an additional keyword, is not supported.



End Statement



                   

Enum Statement (Visual Basic)
5/16/2018 • 7 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ]  [ Shadows ]   
Enum enumerationname [ As datatype ]   
   memberlist  
End Enum  

Parts

Remarks

Declares an enumeration and defines the values of its members.

PART DESCRIPTION

membername Required. Name of this member.

initializer Optional. Expression that is evaluated at compile time and assigned to this
member.

attributelist

Optional. List of attributes that apply to this enumeration. You must enclose the attribute list in angle brackets (" < " and " > ").

The FlagsAttribute attribute indicates that the value of an instance of the enumeration can include multiple enumeration members, and that each
member represents a bit field in the enumeration value.

accessmodifier

Optional. Specifies what code can access this enumeration. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

Private Protected

Shadows

Optional. Specifies that this enumeration redeclares and hides an identically named programming element, or set of overloaded elements, in a
base class. You can specify Shadows only on the enumeration itself, not on any of its members.

enumerationname

Required. Name of the enumeration. For information on valid names, see Declared Element Names.

datatype

Optional. Data type of the enumeration and all its members.

memberlist

Required. List of member constants being declared in this statement. Multiple members appear on individual source code lines.

Each member  has the following syntax and parts: [<attribute list>] member name [ = initializer ]

End  Enum

Terminates the Enum  block.

If you have a set of unchanging values that are logically related to each other, you can define them together in an enumeration. This provides
meaningful names for the enumeration and its members, which are easier to remember than their values. You can then use the enumeration members
in many places in your code.

The benefits of using enumerations include the following:

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/enum-statement.md
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Data Type

Initializing Members

Modifiers

Assigning Multiple Values

Reduces errors caused by transposing or mistyping numbers.

Makes it easy to change values in the future.

Makes code easier to read, which means it is less likely that errors will be introduced.

Ensures forward compatibility. If you use enumerations, your code is less likely to fail if in the future someone changes the values corresponding
to the member names.

An enumeration has a name, an underlying data type, and a set of members. Each member represents a constant.

An enumeration declared at class, structure, module, or interface level, outside any procedure, is a member enumeration. It is a member of the class,
structure, module, or interface that declares it.

Member enumerations can be accessed from anywhere within their class, structure, module, or interface. Code outside a class, structure, or module
must qualify a member enumeration's name with the name of that class, structure, or module. You can avoid the need to use fully qualified names by
adding an Imports statement to the source file.

An enumeration declared at namespace level, outside any class, structure, module, or interface, is a member of the namespace in which it appears.

The declaration context for an enumeration must be a source file, namespace, class, structure, module, or interface, and cannot be a procedure. For
more information, see Declaration Contexts and Default Access Levels.

You can apply attributes to an enumeration as a whole, but not to its members individually. An attribute contributes information to the assembly's
metadata.

The Enum  statement can declare the data type of an enumeration. Each member takes the enumeration's data type. You can specify Byte , Integer , 
Long , SByte , Short , UInteger , ULong , or UShort .

If you do not specify datatype  for the enumeration, each member takes the data type of its initializer . If you specify both datatype  and 
initializer , the data type of initializer  must be convertible to datatype . If neither datatype  nor initializer  is present, the data type defaults to 
Integer .

The Enum  statement can initialize the contents of selected members in memberlist . You use initializer  to supply an expression to be assigned to the
member.

If you do not specify initializer  for a member, Visual Basic initializes it either to zero (if it is the first member  in memberlist ), or to a value greater by
one than that of the immediately preceding member .

The expression supplied in each initializer  can be any combination of literals, other constants that are already defined, and enumeration members
that are already defined, including a previous member of this enumeration. You can use arithmetic and logical operators to combine such elements.

You cannot use variables or functions in initializer . However, you can use conversion keywords such as CByte  and CShort . You can also use AscW  if
you call it with a constant String  or Char  argument, since that can be evaluated at compile time.

Enumerations cannot have floating-point values. If a member is assigned a floating-point value and Option Strict  is set to on, a compiler error occurs.
If Option Strict  is off, the value is automatically converted to the Enum  type.

If the value of a member exceeds the allowable range for the underlying data type, or if you initialize any member to the maximum value allowed by the
underlying data type, the compiler reports an error.

Class, structure, module, and interface member enumerations default to public access. You can adjust their access levels with the access modifiers.
Namespace member enumerations default to friend access. You can adjust their access levels to public, but not to private or protected. For more
information, see Access levels in Visual Basic.

All enumeration members have public access, and you cannot use any access modifiers on them. However, if the enumeration itself has a more
restricted access level, the specified enumeration access level takes precedence.

By default, all enumerations are types and their fields are constants. Therefore the Shared , Static , and ReadOnly  keywords cannot be used when
declaring an enumeration or its members.

Enumerations typically represent mutually exclusive values. By including the FlagsAttribute attribute in the Enum  declaration, you can instead assign
multiple values to an instance of the enumeration. The FlagsAttribute attribute specifies that the enumeration be treated as a bit field, that is, a set of
flags. These are called bitwise enumerations.

When you declare an enumeration by using the FlagsAttribute attribute, we recommend that you use powers of 2, that is, 1, 2, 4, 8, 16, and so on, for the
values. We also recommend that "None" be the name of a member whose value is 0. For additional guidelines, see FlagsAttribute and Enum.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.enum


Example

Public Class Egg
    Enum EggSizeEnum
        Jumbo
        ExtraLarge
        Large
        Medium
        Small
    End Enum

    Public Sub Poach()
        Dim size As EggSizeEnum

        size = EggSizeEnum.Medium
        ' Continue processing...
    End Sub
End Class

Example

Public Sub Scramble(ByVal size As Egg.EggSizeEnum)
    ' Process for the three largest sizes.
    ' Throw an exception for any other size.
    Select Case size
        Case Egg.EggSizeEnum.Jumbo
            ' Process.
        Case Egg.EggSizeEnum.ExtraLarge
            ' Process.
        Case Egg.EggSizeEnum.Large
            ' Process.
        Case Else
            Throw New ApplicationException("size is invalid: " & size.ToString)
    End Select
End Sub

Example

Public Enum InterfaceColors
    MistyRose = &HE1E4FF&
    SlateGray = &H908070&
    DodgerBlue = &HFF901E&
    DeepSkyBlue = &HFFBF00&
    SpringGreen = &H7FFF00&
    ForestGreen = &H228B22&
    Goldenrod = &H20A5DA&
    Firebrick = &H2222B2&
End Enum

Example

Enum SecurityLevel
    IllegalEntry = -1
    MinimumSecurity = 0
    MaximumSecurity = 1
End Enum

Example

Public Enum MyEnum As Byte
  Zero
  One
  Two
End Enum

The following example shows how to use the Enum  statement. Note that the member is referred to as EggSizeEnum.Medium , and not as Medium .

The method in the following example is outside the Egg  class. Therefore, EggSizeEnum  is fully qualified as Egg.EggSizeEnum .

The following example uses the Enum  statement to define a related set of named constant values. In this case, the values are colors you might choose to
design data entry forms for a database.

The following example shows values that include both positive and negative numbers.

In the following example, an As  clause is used to specify the datatype  of an enumeration.



Example

' Apply the Flags attribute, which allows an instance
' of the enumeration to have multiple values.
<Flags()> Public Enum FilePermissions As Integer
    None = 0
    Create = 1
    Read = 2
    Update = 4
    Delete = 8
End Enum

Public Sub ShowBitwiseEnum()

    ' Declare the non-exclusive enumeration object and
    ' set it to multiple values.
    Dim perm As FilePermissions
    perm = FilePermissions.Read Or FilePermissions.Update

    ' Show the values in the enumeration object.
    Console.WriteLine(perm.ToString)
    ' Output: Read, Update

    ' Show the total integer value of all values
    ' in the enumeration object.
    Console.WriteLine(CInt(perm))
    ' Output: 6

    ' Show whether the enumeration object contains
    ' the specified flag.
    Console.WriteLine(perm.HasFlag(FilePermissions.Update))
    ' Output: True
End Sub

Example

Enum EggSizeEnum
    Jumbo
    ExtraLarge
    Large
    Medium
    Small
End Enum

Public Sub Iterate()
    Dim names = [Enum].GetNames(GetType(EggSizeEnum))
    For Each name In names
        Console.Write(name & " ")
    Next
    Console.WriteLine()
    ' Output: Jumbo ExtraLarge Large Medium Small 

    Dim values = [Enum].GetValues(GetType(EggSizeEnum))
    For Each value In values
        Console.Write(value & " ")
    Next
    Console.WriteLine()
    ' Output: 0 1 2 3 4 
End Sub

See Also

The following example shows how to use a bitwise enumeration. Multiple values can be assigned to an instance of a bitwise enumeration. The Enum

declaration includes the FlagsAttribute attribute, which indicates that the enumeration can be treated as a set of flags.

The following example iterates through an enumeration. It uses the GetNames method to retrieve an array of member names from the enumeration,
and GetValues to retrieve an array of member values.

Enum
AscW
Const Statement
Dim Statement
Implicit and Explicit Conversions
Type Conversion Functions
Constants and Enumerations

https://docs.microsoft.com/dotnet/api/system.flagsattribute
https://docs.microsoft.com/dotnet/api/system.enum.getnames
https://docs.microsoft.com/dotnet/api/system.enum.getvalues
https://docs.microsoft.com/dotnet/api/system.enum
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


    

Erase Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Erase arraylist  

Parts

Remarks

Example

Dim threeDimArray(9, 9, 9), twoDimArray(9, 9) As Integer
Erase threeDimArray, twoDimArray
ReDim threeDimArray(4, 4, 9)

See Also

Used to release array variables and deallocate the memory used for their elements.

arraylist

Required. List of array variables to be erased. Multiple variables are separated by commas.

The Erase  statement can appear only at procedure level. This means you can release arrays inside a procedure but not at class or module level.

The Erase  statement is equivalent to assigning Nothing  to each array variable.

The following example uses the Erase  statement to clear two arrays and free their memory (1000 and 100 storage elements, respectively). The ReDim

statement then assigns a new array instance to the three-dimensional array.

Nothing
ReDim Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/erase-statement.md


    

Error Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Error errornumber  

Parts

Remarks

PROPERTY VALUE

Number Value specified as argument to Error  statement. Can be any valid error number.

Source Name of the current Visual Basic project.

Description String expression corresponding to the return value of the Error  function for the
specified Number , if this string exists. If the string does not exist, Description

contains a zero-length string ("").

HelpFile The fully qualified drive, path, and file name of the appropriate Visual Basic Help file.

HelpContext The appropriate Visual Basic Help file context ID for the error corresponding to the 
Number  property.

LastDLLError Zero.

NOTENOTE

Example

On Error Resume Next   ' Defer error handling.  
Error 11   ' Simulate the "Division by zero" error.  

Requirements

See Also

Simulates the occurrence of an error.

errornumber

Required. Can be any valid error number.

The Error  statement is supported for backward compatibility. In new code, especially when creating objects, use the Err  object's Raise  method to
generate run-time errors.

If errornumber  is defined, the Error  statement calls the error handler after the properties of the Err  object are assigned the following default values:

If no error handler exists, or if none is enabled, an error message is created and displayed from the Err  object properties.

Some Visual Basic host applications cannot create objects. See your host application's documentation to determine whether it can create classes and objects.

This example uses the Error  statement to generate error number 11.

Namespace: Microsoft.VisualBasic

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

Clear
Err
Raise
On Error Statement
Resume Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/error-statement.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.clear
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.raise


Error Messages



                                  

Event Statement
7/13/2018 • 6 minutes to read • Edit Online

Syntax
[ <attrlist> ] [ accessmodifier ] _  
[ Shared ] [ Shadows ] Event eventname[(parameterlist)] _  
[ Implements implementslist ]  
' -or-  
[ <attrlist> ] [ accessmodifier ] _  
[ Shared ] [ Shadows ] Event eventname As delegatename _  
[ Implements implementslist ]  
' -or-  
 [ <attrlist> ] [ accessmodifier ] _  
[ Shared ] [ Shadows ] Custom Event eventname As delegatename _  
[ Implements implementslist ]  
   [ <attrlist> ] AddHandler(ByVal value As delegatename)  
      [ statements ]  
   End AddHandler  
   [ <attrlist> ] RemoveHandler(ByVal value As delegatename)  
      [ statements ]  
   End RemoveHandler  
   [ <attrlist> ] RaiseEvent(delegatesignature)  
      [ statements ]  
   End RaiseEvent  
End Event  

Parts
PART DESCRIPTION

attrlist Optional. List of attributes that apply to this event. Multiple attributes are
separated by commas. You must enclose the Attribute List in angle brackets (" < "
and " > ").

accessmodifier Optional. Specifies what code can access the event. Can be one of the following:

- Public—any code that can access the element that declares it can access it.
- Protected—only code within its class or a derived class can access it.
- Friend—only code in the same assembly can access it.
- Private—only code in the element that declares it can access it.
- Protected Friend-only code in the event's class, a derived class, or the same
assembly can access it. 
- Private Protected-only code in the event's class or a derived class in the same
assembly can access it.

Shared Optional. Specifies that this event is not associated with a specific instance of a class
or structure.

Shadows Optional. Indicates that this event redeclares and hides an identically named
programming element, or set of overloaded elements, in a base class. You can
shadow any kind of declared element with any other kind.

A shadowed element is unavailable from within the derived class that shadows it,
except from where the shadowing element is inaccessible. For example, if a 
Private  element shadows a base-class element, code that does not have

permission to access the Private  element accesses the base-class element
instead.

eventname Required. Name of the event; follows standard variable naming conventions.

parameterlist Optional. List of local variables that represent the parameters of this event. You
must enclose the Parameter List in parentheses.

Implements Optional. Indicates that this event implements an event of an interface.

Declares a user-defined event.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/event-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected


implementslist Required if Implements  is supplied. List of Sub  procedures being implemented.
Multiple procedures are separated by commas:

implementedprocedure [ , implementedprocedure ... ]

Each implementedprocedure  has the following syntax and parts:

interface . definedname

- interface  - Required. Name of an interface that this procedure's containing
class or structure is implementing.
- Definedname  - Required. Name by which the procedure is defined in 
interface . This does not have to be the same as name , the name that this

procedure is using to implement the defined procedure.

Custom Required. Events declared as Custom  must define custom AddHandler , 
RemoveHandler , and RaiseEvent  accessors.

delegatename Optional. The name of a delegate that specifies the event-handler signature.

AddHandler Required. Declares an AddHandler  accessor, which specifies the statements to
execute when an event handler is added, either explicitly by using the AddHandler

statement or implicitly by using the Handles  clause.

End AddHandler Required. Terminates the AddHandler  block.

value Required. Parameter name.

RemoveHandler Required. Declares a RemoveHandler  accessor, which specifies the statements to
execute when an event handler is removed using the RemoveHandler  statement.

End RemoveHandler Required. Terminates the RemoveHandler  block.

RaiseEvent Required. Declares a RaiseEvent  accessor, which specifies the statements to
execute when the event is raised using the RaiseEvent  statement. Typically, this
invokes a list of delegates maintained by the AddHandler  and RemoveHandler

accessors.

End RaiseEvent Required. Terminates the RaiseEvent  block.

delegatesignature Required. List of parameters that matches the parameters required by the 
delegatename  delegate. You must enclose the Parameter List in parentheses.

statements Optional. Statements that contain the bodies of the AddHandler , RemoveHandler

, and RaiseEvent  methods.

End Event Required. Terminates the Event  block.

PART DESCRIPTION

Remarks

Public Class EventSource
    ' Declare an event.
    Public Event LogonCompleted(ByVal UserName As String)
    Sub CauseEvent()
        ' Raise an event on successful logon.
        RaiseEvent LogonCompleted("AustinSteele")
    End Sub
End Class

NOTENOTE

Once the event has been declared, use the RaiseEvent  statement to raise the event. A typical event might be declared and raised as shown in the
following fragments:

You can declare event arguments just as you do arguments of procedures, with the following exceptions: events cannot have named arguments, ParamArray

arguments, or Optional  arguments. Events do not have return values.

To handle an event, you must associate it with an event handler subroutine using either the Handles  or AddHandler  statement. The signatures of the
subroutine and the event must match. To handle a shared event, you must use the AddHandler  statement.



Example

Private WithEvents mText As TimerState

Private Sub Form1_Load() Handles MyBase.Load
    Button1.Text = "Start"
    mText = New TimerState
End Sub
Private Sub Button1_Click() Handles Button1.Click
    mText.StartCountdown(10.0, 0.1)
End Sub

Private Sub mText_ChangeText() Handles mText.Finished
    TextBox1.Text = "Done"
End Sub

Private Sub mText_UpdateTime(ByVal Countdown As Double
  ) Handles mText.UpdateTime

    TextBox1.Text = Format(Countdown, "##0.0")
    ' Use DoEvents to allow the display to refresh.
    My.Application.DoEvents()
End Sub

Class TimerState
    Public Event UpdateTime(ByVal Countdown As Double)
    Public Event Finished()
    Public Sub StartCountdown(ByVal Duration As Double, 
                              ByVal Increment As Double)
        Dim Start As Double = DateAndTime.Timer
        Dim ElapsedTime As Double = 0

        Dim SoFar As Double = 0
        Do While ElapsedTime < Duration
            If ElapsedTime > SoFar + Increment Then
                SoFar += Increment
                RaiseEvent UpdateTime(Duration - SoFar)
            End If
            ElapsedTime = DateAndTime.Timer - Start
        Loop
        RaiseEvent Finished()
    End Sub
End Class

You can use Event  only at module level. This means the declaration context for an event must be a class, structure, module, or interface, and cannot be
a source file, namespace, procedure, or block. For more information, see Declaration Contexts and Default Access Levels.

In most circumstances, you can use the first syntax in the Syntax section of this topic for declaring events. However, some scenarios require that you
have more control over the detailed behavior of the event. The last syntax in the Syntax section of this topic, which uses the Custom  keyword, provides
that control by enabling you to define custom events. In a custom event, you specify exactly what occurs when code adds or removes an event handler
to or from the event, or when code raises the event. For examples, see How to: Declare Custom Events To Conserve Memory and How to: Declare
Custom Events To Avoid Blocking.

The following example uses events to count down seconds from 10 to 0. The code illustrates several of the event-related methods, properties, and
statements. This includes the RaiseEvent  statement.

The class that raises an event is the event source, and the methods that process the event are the event handlers. An event source can have multiple
handlers for the events it generates. When the class raises the event, that event is raised on every class that has elected to handle events for that
instance of the object.

The example also uses a form ( Form1 ) with a button ( Button1 ) and a text box ( TextBox1 ). When you click the button, the first text box displays a
countdown from 10 to 0 seconds. When the full time (10 seconds) has elapsed, the first text box displays "Done".

The code for Form1  specifies the initial and terminal states of the form. It also contains the code executed when events are raised.

To use this example, open a new Windows Forms project. Then add a button named Button1  and a text box named TextBox1  to the main form, named 
Form1 . Then right-click the form and click View Code to open the code editor.

Add a WithEvents  variable to the declarations section of the Form1  class:

Add the following code to the code for Form1 . Replace any duplicate procedures that may exist, such as Form_Load  or Button_Click .

Press F5 to run the previous example, and click the button labeled Start. The first text box starts to count down the seconds. When the full time (10
seconds) has elapsed, the first text box displays "Done".

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-conserve-memory
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-avoid-blocking


NOTENOTE

See Also

The My.Application.DoEvents  method does not process events in the same way the form does. To enable the form to handle the events directly, you can use
multithreading. For more information, see Threading.

RaiseEvent Statement
Implements Statement
Events
AddHandler Statement
RemoveHandler Statement
Handles
Delegate Statement
How to: Declare Custom Events To Conserve Memory
How to: Declare Custom Events To Avoid Blocking
Shared
Shadows

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-conserve-memory
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/how-to-declare-custom-events-to-avoid-blocking


                 

Exit Statement (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
Exit { Do | For | Function | Property | Select | Sub | Try | While }  

Statements

Remarks

Example

Exits a procedure or block and transfers control immediately to the statement following the procedure call or the block definition.

Exit Do

Immediately exits the Do  loop in which it appears. Execution continues with the statement following the Loop  statement. Exit Do  can be used only
inside a Do  loop. When used within nested Do  loops, Exit Do  exits the innermost loop and transfers control to the next higher level of nesting.

Exit For

Immediately exits the For  loop in which it appears. Execution continues with the statement following the Next  statement. Exit For  can be used only
inside a For ... Next  or For Each ... Next  loop. When used within nested For  loops, Exit For  exits the innermost loop and transfers control to the next
higher level of nesting.

Exit Function

Immediately exits the Function  procedure in which it appears. Execution continues with the statement following the statement that called the Function

procedure. Exit Function  can be used only inside a Function  procedure.

To specify a return value, you can assign the value to the function name on a line before the Exit Function  statement. To assign the return value and
exit the function in one statement, you can instead use the Return Statement.

Exit Property

Immediately exits the Property  procedure in which it appears. Execution continues with the statement that called the Property  procedure, that is, with
the statement requesting or setting the property's value. Exit Property  can be used only inside a property's Get  or Set  procedure.

To specify a return value in a Get  procedure, you can assign the value to the function name on a line before the Exit Property  statement. To assign the
return value and exit the Get  procedure in one statement, you can instead use the Return  statement.

In a Set  procedure, the Exit Property  statement is equivalent to the Return  statement.

Exit Select

Immediately exits the Select Case  block in which it appears. Execution continues with the statement following the End Select  statement. Exit Select

can be used only inside a Select Case  statement.

Exit Sub

Immediately exits the Sub  procedure in which it appears. Execution continues with the statement following the statement that called the Sub

procedure. Exit Sub  can be used only inside a Sub  procedure.

In a Sub  procedure, the Exit Sub  statement is equivalent to the Return  statement.

Exit Try

Immediately exits the Try  or Catch  block in which it appears. Execution continues with the Finally  block if there is one, or with the statement
following the End Try  statement otherwise. Exit Try  can be used only inside a Try  or Catch  block, and not inside a Finally  block.

Exit While

Immediately exits the While  loop in which it appears. Execution continues with the statement following the End While  statement. Exit While  can be
used only inside a While  loop. When used within nested While  loops, Exit While  transfers control to the loop that is one nested level above the loop
where Exit While  occurs.

Do not confuse Exit  statements with End  statements. Exit  does not define the end of a statement.

In the following example, the loop condition stops the loop when the index  variable is greater than 100. The If  statement in the loop, however, causes
the Exit Do  statement to stop the loop when the index variable is greater than 10.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/exit-statement.md


Dim index As Integer = 0
Do While index <= 100
    If index > 10 Then
        Exit Do
    End If

    Debug.Write(index.ToString & " ")
    index += 1
Loop

Debug.WriteLine("")
' Output: 0 1 2 3 4 5 6 7 8 9 10 

Example

Function myFunction(ByVal j As Integer) As Double
    myFunction = 3.87 * j
    Exit Function
End Function

Example

Function myFunction(ByVal j As Integer) As Double
    Return 3.87 * j
End Function

See Also

The following example assigns the return value to the function name myFunction , and then uses Exit Function  to return from the function.

The following example uses the Return Statement to assign the return value and exit the function.

Continue Statement
Do...Loop Statement
End Statement
For Each...Next Statement
For...Next Statement
Function Statement
Return Statement
Stop Statement
Sub Statement
Try...Catch...Finally Statement



   

F-P Statements
7/13/2018 • 2 minutes to read • Edit Online

For Each...Next For...Next Function Get

GoTo If...Then...Else Implements Imports (.NET Namespace and Type)

Imports (XML Namespace) Inherits Interface Mid

Module Namespace On Error Operator

Option <keyword> Option Compare Option Explicit Option Infer

Option Strict Property

See Also

The following table contains a listing of Visual Basic language statements.

A-E Statements
Q-Z Statements
Visual Basic Language Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/f-p-statements.md


                            

For Each...Next Statement (Visual Basic)
5/4/2018 • 12 minutes to read • Edit Online

Syntax
For Each element [ As datatype ] In group  
    [ statements ]  
    [ Continue For ]  
    [ statements ]  
    [ Exit For ]  
    [ statements ]  
Next [ element ]  

Parts
TERM DEFINITION

element Required in the For Each  statement. Optional in the Next  statement. Variable.
Used to iterate through the elements of the collection.

datatype Required if element  isn't already declared. Data type of element .

group Required. A variable with a type that's a collection type or Object. Refers to the
collection over which the statements  are to be repeated.

statements Optional. One or more statements between For Each  and Next  that run on
each item in group .

Continue For Optional. Transfers control to the start of the For Each  loop.

Exit For Optional. Transfers control out of the For Each  loop.

Next Required. Terminates the definition of the For Each  loop.

Simple Example

TIPTIP

' Create a list of strings by using a
' collection initializer.
Dim lst As New List(Of String) _
    From {"abc", "def", "ghi"}

' Iterate through the list.
For Each item As String In lst
    Debug.Write(item & " ")
Next
Debug.WriteLine("")
'Output: abc def ghi

Nested Loops

Repeats a group of statements for each element in a collection.

Use a For Each ... Next  loop when you want to repeat a set of statements for each element of a collection or array.

A For...Next Statement works well when you can associate each iteration of a loop with a control variable and determine that variable's initial and final values. However,
when you are dealing with a collection, the concept of initial and final values isn't meaningful, and you don't necessarily know how many elements the collection has. In
this kind of case, a For Each ... Next  loop is often a better choice.

In the following example, the For Each … Next  statement iterates through all the elements of a List collection.

For more examples, see Collections and Arrays.

You can nest For Each  loops by putting one loop within another.

The following example demonstrates nested For Each … Next  structures.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/for-each-next-statement.md


' Create lists of numbers and letters
' by using array initializers.
Dim numbers() As Integer = {1, 4, 7}
Dim letters() As String = {"a", "b", "c"}

' Iterate through the list by using nested loops.
For Each number As Integer In numbers
    For Each letter As String In letters
        Debug.Write(number.ToString & letter & " ")
    Next
Next
Debug.WriteLine("")
'Output: 1a 1b 1c 4a 4b 4c 7a 7b 7c 

Exit For and Continue For

Dim numberSeq() As Integer =
    {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

For Each number As Integer In numberSeq
    ' If number is between 5 and 7, continue
    ' with the next iteration.
    If number >= 5 And number <= 8 Then
        Continue For
    End If

    ' Display the number.
    Debug.Write(number.ToString & " ")

    ' If number is 10, exit the loop.
    If number = 10 Then
        Exit For
    End If
Next
Debug.WriteLine("")
' Output: 1 2 3 4 9 10

Iterators

When you nest loops, each loop must have a unique element  variable.

You can also nest different kinds of control structures within each other. For more information, see Nested Control Structures.

The Exit For statement causes execution to exit the For … Next  loop and transfers control to the statement that follows the Next  statement.

The Continue For  statement transfers control immediately to the next iteration of the loop. For more information, see Continue Statement.

The following example shows how to use the Continue For  and Exit For  statements.

You can put any number of Exit For  statements in a For Each  loop. When used within nested For Each  loops, Exit For  causes execution to exit the
innermost loop and transfers control to the next higher level of nesting.

Exit For  is often used after an evaluation of some condition, for example, in an If ... Then ... Else  structure. You might want to use Exit For  for the
following conditions:

Continuing to iterate is unnecessary or impossible. This might be caused by an erroneous value or a termination request.

An exception is caught in a Try ... Catch ... Finally . You might use Exit For  at the end of the Finally  block.

There an endless loop, which is a loop that could run a large or even infinite number of times. If you detect such a condition, you can use 
Exit For  to escape the loop. For more information, see Do...Loop Statement.

You use an iterator to perform a custom iteration over a collection. An iterator can be a function or a Get  accessor. It uses a Yield  statement to return
each element of the collection one at a time.

You call an iterator by using a For Each...Next  statement. Each iteration of the For Each  loop calls the iterator. When a Yield  statement is reached in
the iterator, the expression in the Yield  statement is returned, and the current location in code is retained. Execution is restarted from that location the
next time that the iterator is called.

The following example uses an iterator function. The iterator function has a Yield  statement that's inside a For…Next loop. In the ListEvenNumbers

method, each iteration of the For Each  statement body creates a call to the iterator function, which proceeds to the next Yield  statement.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


Public Sub ListEvenNumbers()
    For Each number As Integer In EvenSequence(5, 18)
        Debug.Write(number & " ")
    Next
    Debug.WriteLine("")
    ' Output: 6 8 10 12 14 16 18
End Sub

Private Iterator Function EvenSequence(
ByVal firstNumber As Integer, ByVal lastNumber As Integer) _
As System.Collections.Generic.IEnumerable(Of Integer)

    ' Yield even numbers in the range.
    For number = firstNumber To lastNumber
        If number Mod 2 = 0 Then
            Yield number
        End If
    Next
End Function

Technical Implementation

Narrowing ConversionsNarrowing Conversions

For more information, see Iterators, Yield Statement, and Iterator.

When a For Each … Next  statement runs, Visual Basic evaluates the collection only one time, before the loop starts. If your statement block changes 
element  or group , these changes don't affect the iteration of the loop.

When all the elements in the collection have been successively assigned to element , the For Each  loop stops and control passes to the statement
following the Next  statement.

If element  hasn't been declared outside this loop, you must declare it in the For Each  statement. You can declare the type of element  explicitly by
using an As  statement, or you can rely on type inference to assign the type. In either case, the scope of element  is the body of the loop. However, you
cannot declare element  both outside and inside the loop.

You can optionally specify element  in the Next  statement. This improves the readability of your program, especially if you have nested For Each

loops. You must specify the same variable as the one that appears in the corresponding For Each  statement.

You might want to avoid changing the value of element  inside a loop. Doing this can make it more difficult to read and debug your code. Changing the
value of group  doesn't affect the collection or its elements, which were determined when the loop was first entered.

When you're nesting loops, if a Next  statement of an outer nesting level is encountered before the Next  of an inner level, the compiler signals an error.
However, the compiler can detect this overlapping error only if you specify element  in every Next  statement.

If your code depends on traversing a collection in a particular order, a For Each ... Next  loop isn't the best choice, unless you know the characteristics of
the enumerator object the collection exposes. The order of traversal isn't determined by Visual Basic, but by the MoveNext method of the enumerator
object. Therefore, you might not be able to predict which element of the collection is the first to be returned in element , or which is the next to be
returned after a given element. You might achieve more reliable results using a different loop structure, such as For ... Next  or Do ... Loop .

The data type of element  must be such that the data type of the elements of group  can be converted to it.

The data type of group  must be a reference type that refers to a collection or an array that's enumerable. Most commonly this means that group  refers
to an object that implements the IEnumerable interface of the System.Collections  namespace or the IEnumerable<T> interface of the 
System.Collections.Generic  namespace. System.Collections.IEnumerable  defines the GetEnumerator method, which returns an enumerator object for

the collection. The enumerator object implements the System.Collections.IEnumerator  interface of the System.Collections  namespace and exposes the
Current property and the Reset and MoveNext methods. Visual Basic uses these to traverse the collection.

When Option Strict  is set to On , narrowing conversions ordinarily cause compiler errors. In a For Each  statement, however, conversions from the
elements in group  to element  are evaluated and performed at run time, and compiler errors caused by narrowing conversions are suppressed.

In the following example, the assignment of m  as the initial value for n  doesn't compile when Option Strict  is on because the conversion of a Long

to an Integer  is a narrowing conversion. In the For Each  statement, however, no compiler error is reported, even though the assignment to number

requires the same conversion from Long  to Integer . In the For Each  statement that contains a large number, a run-time error occurs when ToInteger
is applied to the large number.

https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.movenext
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.current
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.reset
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.movenext
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.compilerservices.conversions.tointeger


Option Strict On

Module Module1
    Sub Main()
        ' The assignment of m to n causes a compiler error when 
        ' Option Strict is on.
        Dim m As Long = 987
        'Dim n As Integer = m

        ' The For Each loop requires the same conversion but
        ' causes no errors, even when Option Strict is on.
        For Each number As Integer In New Long() {45, 3, 987}
            Console.Write(number & " ")
        Next
        Console.WriteLine()
        ' Output: 45 3 987

        ' Here a run-time error is raised because 9876543210
        ' is too large for type Integer.
        'For Each number As Integer In New Long() {45, 3, 9876543210}
        '    Console.Write(number & " ")
        'Next

        Console.ReadKey()
    End Sub
End Module

IEnumerator CallsIEnumerator Calls

Sub lightBlueBackground(ByVal thisForm As System.Windows.Forms.Form)  
    For Each thisControl As System.Windows.Forms.Control In thisForm.Controls  
        thisControl.BackColor = System.Drawing.Color.LightBlue  
    Next thisControl  
End Sub  

Example

Dim dInfo As New System.IO.DirectoryInfo("c:\")
For Each dir As System.IO.DirectoryInfo In dInfo.GetDirectories()
    Debug.WriteLine(dir.Name)
Next

Example

When execution of a For Each ... Next  loop starts, Visual Basic verifies that group  refers to a valid collection object. If not, it throws an exception.
Otherwise, it calls the MoveNext method and the Current property of the enumerator object to return the first element. If MoveNext  indicates that there
is no next element, that is, if the collection is empty, the For Each  loop stops and control passes to the statement following the Next  statement.
Otherwise, Visual Basic sets element  to the first element and runs the statement block.

Each time Visual Basic encounters the Next  statement, it returns to the For Each  statement. Again it calls MoveNext  and Current  to return the next
element, and again it either runs the block or stops the loop depending on the result. This process continues until MoveNext  indicates that there is no
next element or an Exit For  statement is encountered.

Modifying the Collection. The enumerator object returned by GetEnumerator normally doesn't let you change the collection by adding, deleting,
replacing, or reordering any elements. If you change the collection after you have initiated a For Each ... Next  loop, the enumerator object becomes
invalid, and the next attempt to access an element causes an InvalidOperationException exception.

However, this blocking of modification isn't determined by Visual Basic, but rather by the implementation of the IEnumerable interface. It is possible to
implement IEnumerable  in a way that allows for modification during iteration. If you are considering doing such dynamic modification, make sure that
you understand the characteristics of the IEnumerable  implementation on the collection you are using.

Modifying Collection Elements. The Current property of the enumerator object is ReadOnly, and it returns a local copy of each collection element.
This means that you cannot modify the elements themselves in a For Each ... Next  loop. Any modification you make affects only the local copy from 
Current  and isn't reflected back into the underlying collection. However, if an element is a reference type, you can modify the members of the instance

to which it points. The following example modifies the BackColor  member of each thisControl  element. You cannot, however, modify thisControl

itself.

The previous example can modify the BackColor  member of each thisControl  element, although it cannot modify thisControl  itself.

Traversing Arrays. Because the Array class implements the IEnumerable interface, all arrays expose the GetEnumerator method. This means that you
can iterate through an array with a For Each ... Next  loop. However, you can only read the array elements. You cannot change them.

The following example lists all the folders in the C:\ directory by using the DirectoryInfo class.

The following example illustrates a procedure for sorting a collection. The example sorts instances of a Car  class that are stored in a List<T>. The Car

class implements the IComparable<T> interface, which requires that the CompareTo method be implemented.

https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.movenext
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.current
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.invalidoperationexception
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.current
https://docs.microsoft.com/dotnet/api/system.array
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.array.getenumerator
https://docs.microsoft.com/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/dotnet/api/system.icomparable-1
https://docs.microsoft.com/dotnet/api/system.icomparable-1.compareto


Public Sub ListCars()

    ' Create some new cars.
    Dim cars As New List(Of Car) From
    {
        New Car With {.Name = "car1", .Color = "blue", .Speed = 20},
        New Car With {.Name = "car2", .Color = "red", .Speed = 50},
        New Car With {.Name = "car3", .Color = "green", .Speed = 10},
        New Car With {.Name = "car4", .Color = "blue", .Speed = 50},
        New Car With {.Name = "car5", .Color = "blue", .Speed = 30},
        New Car With {.Name = "car6", .Color = "red", .Speed = 60},
        New Car With {.Name = "car7", .Color = "green", .Speed = 50}
    }

    ' Sort the cars by color alphabetically, and then by speed
    ' in descending order.
    cars.Sort()

    ' View all of the cars.
    For Each thisCar As Car In cars
        Debug.Write(thisCar.Color.PadRight(5) & " ")
        Debug.Write(thisCar.Speed.ToString & " ")
        Debug.Write(thisCar.Name)
        Debug.WriteLine("")
    Next

    ' Output:
    '  blue  50 car4
    '  blue  30 car5
    '  blue  20 car1
    '  green 50 car7
    '  green 10 car3
    '  red   60 car6
    '  red   50 car2
End Sub

Public Class Car
    Implements IComparable(Of Car)

    Public Property Name As String
    Public Property Speed As Integer
    Public Property Color As String

    Public Function CompareTo(ByVal other As Car) As Integer _
        Implements System.IComparable(Of Car).CompareTo
        ' A call to this method makes a single comparison that is
        ' used for sorting.

        ' Determine the relative order of the objects being compared.
        ' Sort by color alphabetically, and then by speed in
        ' descending order.

        ' Compare the colors.
        Dim compare As Integer
        compare = String.Compare(Me.Color, other.Color, True)

        ' If the colors are the same, compare the speeds.
        If compare = 0 Then
            compare = Me.Speed.CompareTo(other.Speed)

            ' Use descending order for speed.
            compare = -compare
        End If

        Return compare
    End Function
End Class

See Also

Each call to the CompareTo method makes a single comparison that's used for sorting. User-written code in the CompareTo  method returns a value for
each comparison of the current object with another object. The value returned is less than zero if the current object is less than the other object, greater
than zero if the current object is greater than the other object, and zero if they are equal. This enables you to define in code the criteria for greater than,
less than, and equal.

In the ListCars  method, the cars.Sort()  statement sorts the list. This call to the Sort method of the List<T> causes the CompareTo  method to be
called automatically for the Car  objects in the List .

Collections
For...Next Statement
Loop Structures
While...End While Statement
Do...Loop Statement

https://docs.microsoft.com/dotnet/api/system.icomparable-1.compareto
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1.sort
https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/loop-structures


Widening and Narrowing Conversions
Object Initializers: Named and Anonymous Types
Collection Initializers
Arrays

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types


                             

For...Next Statement (Visual Basic)
5/4/2018 • 9 minutes to read • Edit Online

Syntax
For counter [ As datatype ] = start To end [ Step step ]  
    [ statements ]  
    [ Continue For ]  
    [ statements ]  
    [ Exit For ]  
    [ statements ]  
Next [ counter ]  

Parts
PART DESCRIPTION

counter Required in the For  statement. Numeric variable. The control variable for the loop.
For more information, see Counter Argument later in this topic.

datatype Optional. Data type of counter . For more information, see Counter Argument
later in this topic.

start Required. Numeric expression. The initial value of counter .

end Required. Numeric expression. The final value of counter .

step Optional. Numeric expression. The amount by which counter  is incremented each
time through the loop.

statements Optional. One or more statements between For  and Next  that run the specified
number of times.

Continue For Optional. Transfers control to the next loop iteration.

Exit For Optional. Transfers control out of the For  loop.

Next Required. Terminates the definition of the For  loop.

NOTENOTE

Simple Examples

For index As Integer = 1 To 5
    Debug.Write(index.ToString & " ")
Next
Debug.WriteLine("")
' Output: 1 2 3 4 5

Repeats a group of statements a specified number of times.

The To  keyword is used in this statement to specify the range for the counter. You can also use this keyword in the Select...Case Statement and in array declarations.
For more information about array declarations, see Dim Statement.

You use a For ... Next  structure when you want to repeat a set of statements a set number of times.

In the following example, the index  variable starts with a value of 1 and is incremented with each iteration of the loop, ending after the value of index

reaches 5.

In the following example, the number  variable starts at 2 and is reduced by 0.25 on each iteration of the loop, ending after the value of number  reaches
0. The Step  argument of -.25  reduces the value by 0.25 on each iteration of the loop.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/for-next-statement.md


For number As Double = 2 To 0 Step -0.25
    Debug.Write(number.ToString & " ")
Next
Debug.WriteLine("")
' Output: 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 

TIPTIP

Nesting Loops

For indexA = 1 To 3
    ' Create a new StringBuilder, which is used
    ' to efficiently build strings.
    Dim sb As New System.Text.StringBuilder()

    ' Append to the StringBuilder every third number
    ' from 20 to 1 descending.
    For indexB = 20 To 1 Step -3
        sb.Append(indexB.ToString)
        sb.Append(" ")
    Next indexB

    ' Display the line.
    Debug.WriteLine(sb.ToString)
Next indexA
' Output:
'  20 17 14 11 8 5 2
'  20 17 14 11 8 5 2
'  20 17 14 11 8 5 2

Exit For and Continue For

For index As Integer = 1 To 100000
    ' If index is between 5 and 7, continue
    ' with the next iteration.
    If index >= 5 AndAlso index <= 8 Then
        Continue For
    End If

    ' Display the index.
    Debug.Write(index.ToString & " ")

    ' If index is 10, exit the loop.
    If index = 10 Then
        Exit For
    End If
Next
Debug.WriteLine("")
' Output: 1 2 3 4 9 10

A While...End While Statement or Do...Loop Statement works well when you don't know in advance how many times to run the statements in the loop. However, when
you expect to run the loop a specific number of times, a For ... Next  loop is a better choice. You determine the number of iterations when you first enter the loop.

You can nest For  loops by putting one loop within another. The following example demonstrates nested For ... Next  structures that have different step
values. The outer loop creates a string for every iteration of the loop. The inner loop decrements a loop counter variable for every iteration of the loop.

When nesting loops, each loop must have a unique counter  variable.

You can also nest different kinds control structures within each other. For more information, see Nested Control Structures.

The Exit For  statement immediately exits the For … Next  loop and transfers control to the statement that follows the Next  statement.

The Continue For  statement transfers control immediately to the next iteration of the loop. For more information, see Continue Statement.

The following example illustrates the use of the Continue For  and Exit For  statements.

You can put any number of Exit For  statements in a For … Next  loop. When used within nested For … Next  loops, Exit For  exits the innermost
loop and transfers control to the next higher level of nesting.

Exit For  is often used after you evaluate some condition (for example, in an If ... Then ... Else  structure). You might want to use Exit For  for the
following conditions:

Continuing to iterate is unnecessary or impossible. An erroneous value or a termination request might create this condition.

A Try ... Catch ... Finally  statement catches an exception. You might use Exit For  at the end of the Finally  block.

You have an endless loop, which is a loop that could run a large or even infinite number of times. If you detect such a condition, you can use 
Exit For  to escape the loop. For more information, see Do...Loop Statement.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


    

Technical Implementation

Step ArgumentStep Argument

STEP VALUE LOOP EXECUTES IF

Positive or zero counter  <= end

Negative counter  >= end

Counter ArgumentCounter Argument

IS DATATYPE  PRESENT? IS COUNTER  ALREADY DEFINED?

RESULT (WHETHER COUNTER  DEFINES A NEW LOCAL
VARIABLE THAT’S SCOPED TO THE ENTIRE FOR...NEXT

LOOP)

No Yes No, because counter  is already defined. If the scope
of counter  isn't local to the procedure, a compile-
time warning occurs.

No No Yes. The data type is inferred from the start , end ,
and step  expressions. For information about type
inference, see Option Infer Statement and Local Type
Inference.

Yes Yes Yes, but only if the existing counter  variable is
defined outside the procedure. That variable remains
separate. If the scope of the existing counter

variable is local to the procedure, a compile-time error
occurs.

Yes No Yes.

When a For ... Next  loop starts, Visual Basic evaluates start , end , and step . Visual Basic evaluates these values only at this time and then assigns 
start  to counter . Before the statement block runs, Visual Basic compares counter  to end . If counter  is already larger than the end  value (or

smaller if step  is negative), the For  loop ends and control passes to the statement that follows the Next  statement. Otherwise, the statement block
runs.

Each time Visual Basic encounters the Next  statement, it increments counter  by step  and returns to the For  statement. Again it compares counter

to end , and again it either runs the block or exits the loop, depending on the result. This process continues until counter  passes end  or an Exit For

statement is encountered.

The loop doesn't stop until counter  has passed end . If counter  is equal to end , the loop continues. The comparison that determines whether to run
the block is counter  <= end  if step  is positive and counter  >= end  if step  is negative.

If you change the value of counter  while inside a loop, your code might be more difficult to read and debug. Changing the value of start , end , or 
step  doesn't affect the iteration values that were determined when the loop was first entered.

If you nest loops, the compiler signals an error if it encounters the Next  statement of an outer nesting level before the Next  statement of an inner
level. However, the compiler can detect this overlapping error only if you specify counter  in every Next  statement.

The value of step  can be either positive or negative. This parameter determines loop processing according to the following table:

The default value of step  is 1.

The following table indicates whether counter  defines a new local variable that’s scoped to the entire For…Next  loop. This determination depends on
whether datatype  is present and whether counter  is already defined.

The data type of counter  determines the type of the iteration, which must be one of the following types:

A Byte , SByte , UShort , Short , UInteger , Integer , ULong , Long , Decimal , Single , or Double .

An enumeration that you declare by using an Enum Statement.

An Object .

A type T  that has the following operators, where B  is a type that can be used in a Boolean  expression.

Public Shared Operator >= (op1 As T, op2 As T) As B

Public Shared Operator <= (op1 As T, op2 As T) As B

Public Shared Operator - (op1 As T, op2 As T) As T

Public Shared Operator + (op1 As T, op2 As T) As T

You can optionally specify the counter  variable in the Next  statement. This syntax improves the readability of your program, especially if you have
nested For  loops. You must specify the variable that appears in the corresponding For  statement.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


Example

Dim lst As New List(Of Integer) From {10, 20, 30, 40}

For index As Integer = lst.Count - 1 To 0 Step -1
    lst.RemoveAt(index)
Next

Debug.WriteLine(lst.Count.ToString)
' Output: 0

Example

Public Enum Mammals
    Buffalo
    Gazelle
    Mongoose
    Rhinoceros
    Whale
End Enum

Public Sub ListSomeMammals()
    For mammal As Mammals = Mammals.Gazelle To Mammals.Rhinoceros
        Debug.Write(mammal.ToString & " ")
    Next
    Debug.WriteLine("")
    ' Output: Gazelle Mongoose Rhinoceros
End Sub

Example

The start , end , and step  expressions can evaluate to any data type that widens to the type of counter . If you use a user-defined type for counter ,
you might have to define the CType  conversion operator to convert the types of start , end , or step  to the type of counter .

The following example removes all elements from a generic list. Instead of a For Each...Next Statement, the example shows a For ... Next  statement that
iterates in descending order. The example uses this technique because the removeAt  method causes elements after the removed element to have a
lower index value.

The following example iterates through an enumeration that's declared by using an Enum Statement.

In the following example, the statement parameters use a class that has operator overloads for the + , - , >= , and <=  operators.



Private Class Distance
    Public Property Number() As Double

    Public Sub New(ByVal number As Double)
        Me.Number = number
    End Sub

    ' Define operator overloads to support For...Next statements.
    Public Shared Operator +(ByVal op1 As Distance, ByVal op2 As Distance) As Distance
        Return New Distance(op1.Number + op2.Number)
    End Operator

    Public Shared Operator -(ByVal op1 As Distance, ByVal op2 As Distance) As Distance
        Return New Distance(op1.Number - op2.Number)
    End Operator

    Public Shared Operator >=(ByVal op1 As Distance, ByVal op2 As Distance) As Boolean
        Return (op1.Number >= op2.Number)
    End Operator

    Public Shared Operator <=(ByVal op1 As Distance, ByVal op2 As Distance) As Boolean
        Return (op1.Number <= op2.Number)
    End Operator
End Class

Public Sub ListDistances()
    Dim distFrom As New Distance(10)
    Dim distTo As New Distance(25)
    Dim distStep As New Distance(4)

    For dist As Distance = distFrom To distTo Step distStep
        Debug.Write(dist.Number.ToString & " ")
    Next
    Debug.WriteLine("")

    ' Output: 10 14 18 22 
End Sub

See Also
List<T>
Loop Structures
While...End While Statement
Do...Loop Statement
Nested Control Structures
Exit Statement
Collections

https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/loop-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/collections


                                                    

Function Statement (Visual Basic)
7/13/2018 • 8 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ proceduremodifiers ] [ Shared ] [ Shadows ] [ Async | Iterator ]  
Function name [ (Of typeparamlist) ] [ (parameterlist) ] [ As returntype ] [ Implements implementslist | Handles eventlist ]  
    [ statements ]  
    [ Exit Function ]  
    [ statements ]  
End Function  

Parts

Declares the name, parameters, and code that define a Function  procedure.

attributelist

Optional. See Attribute List.

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

Private Protected

See Access levels in Visual Basic.

proceduremodifiers

Optional. Can be one of the following:

Overloads

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Async

Optional. See Async.

Iterator

Optional. See Iterator.

name

Required. Name of the procedure. See Declared Element Names.

typeparamlist

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/function-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Remarks

Defining a Function

PART DESCRIPTION

interface Required. Name of an interface implemented by this procedure's containing
class or structure.

definedname Required. Name by which the procedure is defined in interface .

PART DESCRIPTION

eventvariable Required. Object variable declared with the data type of the class or structure
that raises the event.

event Required. Name of the event this procedure handles.

Optional. List of type parameters for a generic procedure. See Type List.

parameterlist

Optional. List of local variable names representing the parameters of this procedure. See Parameter List.

returntype

Required if Option Strict  is On . Data type of the value returned by this procedure.

Implements

Optional. Indicates that this procedure implements one or more Function  procedures, each one defined in an interface implemented by this
procedure's containing class or structure. See Implements Statement.

implementslist

Required if Implements  is supplied. List of Function  procedures being implemented.

implementedprocedure [ , implementedprocedure ... ]

Each implementedprocedure  has the following syntax and parts:

interface.definedname

Handles

Optional. Indicates that this procedure can handle one or more specific events. See Handles.

eventlist

Required if Handles  is supplied. List of events this procedure handles.

eventspecifier [ , eventspecifier ... ]

Each eventspecifier  has the following syntax and parts:

eventvariable.event

statements

Optional. Block of statements to be executed within this procedure.

End Function

Terminates the definition of this procedure.

All executable code must be inside a procedure. Each procedure, in turn, is declared within a class, a structure, or a module that is referred to as the
containing class, structure, or module.

To return a value to the calling code, use a Function  procedure; otherwise, use a Sub  procedure.

You can define a Function  procedure only at the module level. Therefore, the declaration context for a function must be a class, a structure, a module, or
an interface and can't be a source file, a namespace, a procedure, or a block. For more information, see Declaration Contexts and Default Access Levels.

Function  procedures default to public access. You can adjust their access levels with the access modifiers.

A Function  procedure can declare the data type of the value that the procedure returns. You can specify any data type or the name of an enumeration, a
structure, a class, or an interface. If you don't specify the returntype  parameter, the procedure returns Object .

If this procedure uses the Implements  keyword, the containing class or structure must also have an Implements  statement that immediately follows its 



NOTENOTE

Returning from a Function

Function myFunction(ByVal j As Integer) As Double
    Return 3.87 * j
End Function

Function myFunction(ByVal j As Integer) As Double
    myFunction = 3.87 * j
    Exit Function
End Function

Calling a Function

Async Functions

NOTENOTE

Iterator Functions

Class  or Structure  statement. The Implements  statement must include each interface that's specified in implementslist . However, the name by which
an interface defines the Function  (in definedname ) doesn't need to match the name of this procedure (in name ).

You can use lambda expressions to define function expressions inline. For more information, see Function Expression and Lambda Expressions.

When the Function  procedure returns to the calling code, execution continues with the statement that follows the statement that called the procedure.

To return a value from a function, you can either assign the value to the function name or include it in a Return  statement.

The Return  statement simultaneously assigns the return value and exits the function, as the following example shows.

The following example assigns the return value to the function name myFunction  and then uses the Exit Function  statement to return.

The Exit Function  and Return  statements cause an immediate exit from a Function  procedure. Any number of Exit Function  and Return

statements can appear anywhere in the procedure, and you can mix Exit Function  and Return  statements.

If you use Exit Function  without assigning a value to name , the procedure returns the default value for the data type that's specified in returntype . If 
returntype  isn't specified, the procedure returns Nothing , which is the default value for Object .

You call a Function  procedure by using the procedure name, followed by the argument list in parentheses, in an expression. You can omit the
parentheses only if you aren't supplying any arguments. However, your code is more readable if you always include the parentheses.

You call a Function  procedure the same way that you call any library function such as Sqrt , Cos , or ChrW .

You can also call a function by using the Call  keyword. In that case, the return value is ignored. Use of the Call  keyword isn't recommended in most
cases. For more information, see Call Statement.

Visual Basic sometimes rearranges arithmetic expressions to increase internal efficiency. For that reason, you shouldn't use a Function  procedure in an
arithmetic expression when the function changes the value of variables in the same expression.

The Async feature allows you to invoke asynchronous functions without using explicit callbacks or manually splitting your code across multiple
functions or lambda expressions.

If you mark a function with the Async modifier, you can use the Await operator in the function. When control reaches an Await  expression in the Async

function, control returns to the caller, and progress in the function is suspended until the awaited task completes. When the task is complete, execution
can resume in the function.

An Async  procedure returns to the caller when either it encounters the first awaited object that’s not yet complete, or it gets to the end of the Async  procedure,
whichever occurs first.

An Async  function can have a return type of Task<TResult> or Task. An example of an Async  function that has a return type of Task<TResult> is
provided below.

An Async  function cannot declare any ByRef parameters.

A Sub Statement can also be marked with the Async  modifier. This is primarily used for event handlers, where a value cannot be returned. An Async  
Sub  procedure can't be awaited, and the caller of an Async  Sub  procedure can't catch exceptions that are thrown by the Sub  procedure.

For more information about Async  functions, see Asynchronous Programming with Async and Await, Control Flow in Async Programs, and Async
Return Types.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/control-flow-in-async-programs
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/async-return-types


Example

Public Function calcSum(ByVal ParamArray args() As Double) As Double
    calcSum = 0
    If args.Length <= 0 Then Exit Function
    For i As Integer = 0 To UBound(args, 1)
        calcSum += args(i)
    Next i
End Function

Example

Module Module1

    Sub Main()
        ' In the following function call, calcSum's local variables 
        ' are assigned the following values: args(0) = 4, args(1) = 3, 
        ' and so on. The displayed sum is 10.
        Dim returnedValue As Double = calcSum(4, 3, 2, 1)
        Console.WriteLine("Sum: " & returnedValue)
        ' Parameter args accepts zero or more arguments. The sum 
        ' displayed by the following statements is 0.
        returnedValue = calcSum()
        Console.WriteLine("Sum: " & returnedValue)
    End Sub

    Public Function calcSum(ByVal ParamArray args() As Double) As Double
        calcSum = 0
        If args.Length <= 0 Then Exit Function
        For i As Integer = 0 To UBound(args, 1)
            calcSum += args(i)
        Next i
    End Function

End Module

Example

An iterator function performs a custom iteration over a collection, such as a list or array. An iterator function uses the Yield statement to return each
element one at a time. When a Yield statement is reached, the current location in code is remembered. Execution is restarted from that location the next
time the iterator function is called.

You call an iterator from client code by using a For Each…Next statement.

The return type of an iterator function can be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.

For more information, see Iterators.

The following example uses the Function  statement to declare the name, parameters, and code that form the body of a Function  procedure. The 
ParamArray  modifier enables the function to accept a variable number of arguments.

The following example invokes the function declared in the preceding example.

In the following example, DelayAsync  is an Async  Function  that has a return type of Task<TResult>. DelayAsync  has a Return  statement that returns
an integer. Therefore the function declaration of DelayAsync  needs to have a return type of Task(Of Integer) . Because the return type is 
Task(Of Integer) , the evaluation of the Await  expression in DoSomethingAsync  produces an integer. This is demonstrated in this statement: 
Dim result As Integer = Await delayTask .

The startButton_Click  procedure is an example of an Async Sub  procedure. Because DoSomethingAsync  is an Async  function, the task for the call to 
DoSomethingAsync  must be awaited, as the following statement demonstrates: Await DoSomethingAsync() . The startButton_Click  Sub  procedure must

be defined with the Async  modifier because it has an Await  expression.

https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1


' Imports System.Diagnostics
' Imports System.Threading.Tasks

' This Click event is marked with the Async modifier.
Private Async Sub startButton_Click(sender As Object, e As RoutedEventArgs) Handles startButton.Click
    Await DoSomethingAsync()
End Sub

Private Async Function DoSomethingAsync() As Task
    Dim delayTask As Task(Of Integer) = DelayAsync()
    Dim result As Integer = Await delayTask

    ' The previous two statements may be combined into
    ' the following statement.
    ' Dim result As Integer = Await DelayAsync()

    Debug.WriteLine("Result: " & result)
End Function

Private Async Function DelayAsync() As Task(Of Integer)
    Await Task.Delay(100)
    Return 5
End Function

'  Output:
'   Result: 5

See Also
Sub Statement
Function Procedures
Parameter List
Dim Statement
Call Statement
Of
Parameter Arrays
How to: Use a Generic Class
Troubleshooting Procedures
Lambda Expressions
Function Expression

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/function-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/parameter-arrays
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-use-a-generic-class
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/troubleshooting-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


           

Get Statement
7/13/2018 • 3 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] Get()  
    [ statements ]  
End Get  

Parts
TERM DEFINITION

attributelist Optional. See Attribute List.

accessmodifier Optional on at most one of the Get  and Set  statements in this property. Can
be one of the following:

- Protected
- Friend
- Private
- Protected Friend

See Access levels in Visual Basic.

statements Optional. One or more statements that run when the Get  property procedure is
called.

End Get Required. Terminates the definition of the Get  property procedure.

Remarks

Rules

Behavior

Declares a Get  property procedure used to retrieve the value of a property.

Every property must have a Get  property procedure unless the property is marked WriteOnly . The Get  procedure is used to return the current value
of the property.

Visual Basic automatically calls a property's Get  procedure when an expression requests the property's value.

The body of the property declaration can contain only the property's Get  and Set  procedures between the Property Statement and the End Property

statement. It cannot store anything other than those procedures. In particular, it cannot store the property's current value. You must store this value
outside the property, because if you store it inside either of the property procedures, the other property procedure cannot access it. The usual approach
is to store the value in a Private variable declared at the same level as the property. You must define a Get  procedure inside the property to which it
applies.

The Get  procedure defaults to the access level of its containing property unless you use accessmodifier  in the Get  statement.

Mixed Access Levels. If you are defining a read-write property, you can optionally specify a different access level for either the Get  or the Set

procedure, but not both. If you do this, the procedure access level must be more restrictive than the property's access level. For example, if the
property is declared Friend , you can declare the Get  procedure Private , but not Public .

If you are defining a ReadOnly  property, the Get  procedure represents the entire property. You cannot declare a different access level for Get ,
because that would set two access levels for the property.

Return Type. The Property Statement can declare the data type of the value it returns. The Get  procedure automatically returns that data type.
You can specify any data type or the name of an enumeration, structure, class, or interface.

If the Property  statement does not specify returntype , the procedure returns Object .

Returning from a Procedure. When the Get  procedure returns to the calling code, execution continues within the statement that requested
the property value.

Get  property procedures can return a value using either the Return Statement or by assigning the return value to the property name. For more
information, see "Return Value" in Function Statement.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/get-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Example

Class propClass
    ' Define a private local variable to store the property value.
    Private currentTime As String
    ' Define the read-only property.
    Public ReadOnly Property dateAndTime() As String
        Get
            ' The Get procedure is called automatically when the
            ' value of the property is retrieved.
            currentTime = CStr(Now)
            ' Return the date and time As a string.
            Return currentTime
        End Get
    End Property
End Class

See Also

Private quoteValue As String = "No quote assigned yet."

ReadOnly Property quoteForTheDay() As String
    Get
        quoteForTheDay = quoteValue
        Exit Property
    End Get
End Property

ReadOnly Property quoteForTheDay() As String
    Get
        Return quoteValue
    End Get
End Property

The Exit Property  and Return  statements cause an immediate exit from a property procedure. Any number of Exit Property  and Return

statements can appear anywhere in the procedure, and you can mix Exit Property  and Return  statements.

Return Value. To return a value from a Get  procedure, you can either assign the value to the property name or include it in a Return Statement.
The Return  statement simultaneously assigns the Get  procedure return value and exits the procedure.

If you use Exit Property  without assigning a value to the property name, the Get  procedure returns the default value for the property's data
type. For more information, see "Return Value" in Function Statement.

The following example illustrates two ways the read-only property quoteForTheDay  can return the value held in the private variable quoteValue .

The following example uses the Get  statement to return the value of a property.

Set Statement
Property Statement
Exit Statement
Objects and Classes
Walkthrough: Defining Classes

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/walkthrough-defining-classes


     

GoTo Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
GoTo line  

Part

Remarks

NOTENOTE

Branching and Try Constructions

BLOCK OR REGION BRANCHING IN FROM OUTSIDE BRANCHING OUT FROM INSIDE

Try  block Only from a Catch  block of the same construction Only to outside the whole construction

Catch  block Never allowed Only to outside the whole construction, or to the 
Try  block of the same construction 

Finally  block Never allowed Never allowed

Branches unconditionally to a specified line in a procedure.

line

Required. Any line label.

The GoTo  statement can branch only to lines in the procedure in which it appears. The line must have a line label that GoTo  can refer to. For more
information, see How to: Label Statements.

GoTo  statements can make code difficult to read and maintain. Whenever possible, use a control structure instead. For more information, see Control Flow.

You cannot use a GoTo  statement to branch from outside a For ... Next , For Each ... Next , SyncLock ... End SyncLock , Try ... Catch ... Finally , With ...
End With , or Using ... End Using  construction to a label inside.

Within a Try ... Catch ... Finally  construction, the following rules apply to branching with the GoTo  statement.

1

1

 If one Try ... Catch ... Finally  construction is nested within another, a Catch  block can branch into the Try  block at its own nesting level, but not into
any other Try  block. A nested Try ... Catch ... Finally  construction must be contained completely in a Try  or Catch  block of the construction within
which it is nested.

1

The following illustration shows one Try  construction nested within another. Various branches among the blocks of the two constructions are indicated
as valid or invalid.

Valid and invalid branches in Try constructions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/goto-statement.md


Example

    Sub gotoStatementDemo()
        Dim number As Integer = 1
        Dim sampleString As String
        ' Evaluate number and branch to appropriate label.
        If number = 1 Then GoTo Line1 Else GoTo Line2
Line1:
        sampleString = "Number equals 1"
        GoTo LastLine
Line2:
        ' The following statement never gets executed because number = 1.
        sampleString = "Number equals 2"
LastLine:
        ' Write "Number equals 1" in the Debug window.
        Debug.WriteLine(sampleString)
    End Sub

See Also

The following example uses the GoTo  statement to branch to line labels in a procedure.

Do...Loop Statement
For...Next Statement
For Each...Next Statement
If...Then...Else Statement
Select...Case Statement
Try...Catch...Finally Statement
While...End While Statement
With...End With Statement



              

If...Then...Else Statement (Visual Basic)
5/4/2018 • 5 minutes to read • Edit Online

Syntax
' Multiline syntax:  
If condition [ Then ]  
    [ statements ]  
[ ElseIf elseifcondition [ Then ]  
    [ elseifstatements ] ]  
[ Else  
    [ elsestatements ] ]  
End If  

' Single-line syntax:  
If condition Then [ statements ] [ Else [ elsestatements ] ]  

Quick links to example code

Parts

Remarks
Multiline syntaxMultiline syntax

Conditionally executes a group of statements, depending on the value of an expression.

This article includes several examples that illustrate uses of the If ... Then ... Else  statement:

Multiline syntax example
Nested syntax example
Single-line syntax example

condition

Required. Expression. Must evaluate to True  or False , or to a data type that is implicitly convertible to Boolean .

If the expression is a Nullable Boolean  variable that evaluates to Nothing, the condition is treated as if the expression is False  and the Else  block is
executed.

Then

Required in the single-line syntax; optional in the multiline syntax.

statements

Optional. One or more statements following If ... Then  that are executed if condition  evaluates to True .

elseifcondition

Required if ElseIf  is present. Expression. Must evaluate to True  or False , or to a data type that is implicitly convertible to Boolean .

elseifstatements

Optional. One or more statements following ElseIf ... Then  that are executed if elseifcondition  evaluates to True .

elsestatements

Optional. One or more statements that are executed if no previous condition  or elseifcondition  expression evaluates to True .

End If

Terminates the multiline version of If ... Then ... Else  block.

When an If ... Then ... Else  statement is encountered, condition  is tested. If condition  is True , the statements following Then  are executed. If 
condition  is False , each ElseIf  statement (if there are any) is evaluated in order. When a True  elseifcondition  is found, the statements

immediately following the associated ElseIf  are executed. If no elseifcondition  evaluates to True , or if there are no ElseIf  statements, the
statements following Else  are executed. After executing the statements following Then , ElseIf , or Else , execution continues with the statement
following End If .

The ElseIf  and Else  clauses are both optional. You can have as many ElseIf  clauses as you want in an If ... Then ... Else  statement, but no ElseIf

clause can appear after an Else  clause. If ... Then ... Else  statements can be nested within each other.

In the multiline syntax, the If  statement must be the only statement on the first line. The ElseIf , Else , and End If  statements can be preceded only
by a line label. The If ... Then ... Else  block must end with an End If  statement.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/if-then-else-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


TIPTIP

Single-Line syntaxSingle-Line syntax

Multiline syntax example

Module Multiline
    Public Sub Main()
        'Create a Random object to seed our starting value 
        Dim randomizer As New Random()
        'set our variable
        Dim count As Integer = randomizer.Next(0, 5)

        Dim message As String

        'If count is zero, output will be no items
        If count = 0 Then
            message = "There are no items."
        'If count is 1, output will be "There is 1 item.".        
        ElseIf count = 1 Then
            message = "There is 1 item."
        'If count is greater than 1, output will be "There are {count} items.", where {count} is replaced by the value of count. 
        Else
            message = $"There are {count} items."
        End If

        Console.WriteLine(message)
    End Sub
End Module
'This example displays output like the following:
' There are 4 items.

Nested syntax example

The Select...Case Statement might be more useful when you evaluate a single expression that has several possible values.

You can use the single-line syntax for a single condition with code to execute if it's true. However, the multiple-line syntax provides more structure and
flexibility and is easier to read, maintain, and debug.

What follows the Then  keyword is examined to determine whether a statement is a single-line If . If anything other than a comment appears after 
Then  on the same line, the statement is treated as a single-line If  statement. If Then  is absent, it must be the start of a multiple-line If ... Then ...
Else .

In the single-line syntax, you can have multiple statements executed as the result of an If ... Then  decision. All statements must be on the same line and
be separated by colons.

 The following example illustrates the use of the multiline syntax of the If ... Then ... Else  statement.

 The following example contains nested If ... Then ... Else  statements.



Module Nested
    Public Sub Main() 
        ' Run the function as part of the WriteLine output.
        Console.WriteLine("Time Check is " & CheckIfTime() & ".")     
    End Sub

    Private Function CheckIfTime() As Boolean
        ' Determine the current day of week and hour of day.
        Dim dayW As DayOfWeek = DateTime.Now.DayOfWeek
        Dim hour As Integer = DateTime.Now.Hour

        ' Return True if Wednesday from 2 to 3:59 P.M.,
        ' or if Thursday from noon to 12:59 P.M.
        If dayW = DayOfWeek.Wednesday Then
            If hour = 14 Or hour = 15 Then
                Return True
            Else
                Return False
            End If
        ElseIf dayW = DayOfWeek.Thursday Then
            If hour = 12 Then
                Return True
            Else
                Return False
            End If
        Else
            Return False
        End If
    End Function
End Module
'This example displays output like the following:
'Time Check is False.

Single-Line syntax example

Module SingleLine
    Public Sub Main()

        'Create a Random object to seed our starting values 
        Dim randomizer As New Random()

        Dim A As Integer = randomizer.Next(10, 20)
        Dim B As Integer = randomizer.Next(0, 20)
        Dim C As Integer = randomizer.Next(0, 5)

        'Let's display the initial values for comparison
        Console.WriteLine($"A value before If: {A}")
        Console.WriteLine($"B value before If: {B}")
        Console.WriteLine($"C value before If: {C}")

        ' If A > 10, execute the three colon-separated statements in the order
        ' that they appear
        If A > 10 Then A = A + 1 : B = B + A : C = C + B

        'If the condition is true, the values will be different
        Console.WriteLine($"A value after If: {A}")
        Console.WriteLine($"B value after If: {B}")
        Console.WriteLine($"C value after If: {C}")

    End Sub
End Module
'This example displays output like the following:
'A value before If: 11
'B value before If: 6
'C value before If: 3
'A value after If: 12
'B value after If: 18
'C value after If: 21

See also

 The following example illustrates the use of the single-line syntax.

Choose
Switch
#If...Then...#Else Directives
Select...Case Statement
Nested Control Structures
Decision Structures
Logical and Bitwise Operators in Visual Basic
If Operator

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.choose
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.switch
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/decision-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/logical-and-bitwise-operators


                   

Implements Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Implements interfacename [, ...]  
-or-  
Implements interfacename.interfacemember [, ...]  

Parts

Remarks

Example

Public Interface ICustomerInfo
    Event updateComplete()
    Property customerName() As String
    Sub updateCustomerStatus()
End Interface

Public Class customerInfo
    Implements ICustomerInfo
    ' Storage for the property value.
    Private customerNameValue As String
    Public Event updateComplete() Implements ICustomerInfo.updateComplete
    Public Property CustomerName() As String _
        Implements ICustomerInfo.customerName
        Get
            Return customerNameValue
        End Get
        Set(ByVal value As String)
            ' The value parameter is passed to the Set procedure
            ' when the contents of this property are modified.
            customerNameValue = value
        End Set
    End Property

    Public Sub updateCustomerStatus() _
        Implements ICustomerInfo.updateCustomerStatus
        ' Add code here to update the status of this account.
        ' Raise an event to indicate that this procedure is done.
        RaiseEvent updateComplete()
    End Sub
End Class

Specifies one or more interfaces, or interface members, that must be implemented in the class or structure definition in which it appears.

interfacename

Required. An interface whose properties, procedures, and events are to be implemented by corresponding members in the class or structure.

interfacemember

Required. The member of an interface that is being implemented.

An interface is a collection of prototypes representing the members (properties, procedures, and events) the interface encapsulates. Interfaces contain
only the declarations for members; classes and structures implement these members. For more information, see Interfaces.

The Implements  statement must immediately follow the Class  or Structure  statement.

When you implement an interface, you must implement all the members declared in the interface. Omitting any member is considered to be a syntax
error. To implement an individual member, you specify the Implements keyword (which is separate from the Implements  statement) when you declare
the member in the class or structure. For more information, see Interfaces.

Classes can use Private implementations of properties and procedures, but these members are accessible only by casting an instance of the
implementing class into a variable declared to be of the type of the interface.

The following example shows how to use the Implements  statement to implement members of an interface. It defines an interface named 
ICustomerInfo  with an event, a property, and a procedure. The class customerInfo  implements all the members defined in the interface.

Note that the class customerInfo  uses the Implements  statement on a separate source code line to indicate that the class implements all the members
of the ICustomerInfo  interface. Then each member in the class uses the Implements  keyword as part of its member declaration to indicate that it
implements that interface member.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/implements-statement.md


Example

Public Sub testImplements()
    ' This procedure tests the interface implementation by
    ' creating an instance of the class that implements ICustomerInfo.
    Dim cust As ICustomerInfo = New customerInfo()
    ' Associate an event handler with the event that is raised by
    ' the cust object.
    AddHandler cust.updateComplete, AddressOf handleUpdateComplete
    ' Set the customerName Property
    cust.customerName = "Fred"
    ' Retrieve and display the customerName property.
    MsgBox("Customer name is: " & cust.customerName)
    ' Call the updateCustomerStatus procedure, which raises the
    ' updateComplete event.
    cust.updateCustomerStatus()
End Sub

Sub handleUpdateComplete()
    ' This is the event handler for the updateComplete event.
    MsgBox("Update is complete.")
End Sub

See Also

The following two procedures show how you could use the interface implemented in the preceding example. To test the implementation, add these
procedures to your project and call the testImplements  procedure.

Implements
Interface Statement
Interfaces



                 

Imports Statement (.NET Namespace and Type)
7/13/2018 • 4 minutes to read • Edit Online

Syntax
Imports [ aliasname = ] namespace  
-or-  
Imports [ aliasname = ] namespace.element  

Parts
TERM DEFINITION

aliasname Optional. An import alias or name by which code can refer to namespace  instead
of the full qualification string. See Declared Element Names.

namespace Required. The fully qualified name of the namespace being imported. Can be a
string of namespaces nested to any level.

element Optional. The name of a programming element declared in the namespace. Can be
any container element.

Remarks

NOTENOTE

Import Aliases

Element NamesElement Names

Enables type names to be referenced without namespace qualification.

The Imports  statement enables types that are contained in a given namespace to be referenced directly.

You can supply a single namespace name or a string of nested namespaces. Each nested namespace is separated from the next higher level namespace
by a period ( . ), as the following example illustrates.

Imports System.Collections.Generic

Each source file can contain any number of Imports  statements. These must follow any option declarations, such as the Option Strict  statement, and
they must precede any programming element declarations, such as Module  or Class  statements.

You can use Imports  only at file level. This means the declaration context for importation must be a source file, and cannot be a namespace, class,
structure, module, interface, procedure, or block.

Note that the Imports  statement does not make elements from other projects and assemblies available to your project. Importing does not take the
place of setting a reference. It only removes the need to qualify names that are already available to your project. For more information, see "Importing
Containing Elements" in References to Declared Elements.

You can define implicit Imports  statements by using the References Page, Project Designer (Visual Basic). For more information, see How to: Add or Remove Imported
Namespaces (Visual Basic).

An import alias defines the alias for a namespace or type. Import aliases are useful when you need to use items with the same name that are declared in
one or more namespaces. For more information and an example, see "Qualifying an Element Name" in References to Declared Elements.

You should not declare a member at module level with the same name as aliasname . If you do, the Visual Basic compiler uses aliasname  only for the
declared member and no longer recognizes it as an import alias.

Although the syntax used for declaring an import alias is like that used for importing an XML namespace prefix, the results are different. An import alias
can be used as an expression in your code, whereas an XML namespace prefix can be used only in XML literals or XML axis properties as the prefix for a
qualified element or attribute name.

If you supply element , it must represent a container element, that is, a programming element that can contain other elements. Container elements
include classes, structures, modules, interfaces, and enumerations.

The scope of the elements made available by an Imports  statement depends on whether you specify element . If you specify only namespace , all
uniquely named members of that namespace, and members of container elements within that namespace, are available without qualification. If you
specify both namespace  and element , only the members of that element are available without qualification.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/imports-statement-net-namespace-and-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/visualstudio/ide/reference/references-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/how-to-add-or-remove-imported-namespaces-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


Example

Public Function GetFolders() As String
    ' Create a new StringBuilder, which is used
    ' to efficiently build strings.
    Dim sb As New System.Text.StringBuilder

    Dim dInfo As New System.IO.DirectoryInfo("c:\")

    ' Obtain an array of directories, and iterate through
    ' the array.
    For Each dir As System.IO.DirectoryInfo In dInfo.GetDirectories()
        sb.Append(dir.Name)
        sb.Append(Microsoft.VisualBasic.ControlChars.CrLf)
    Next

    Return sb.ToString
End Function

Example

' Place Imports statements at the top of your program.
Imports System.Text
Imports System.IO
Imports Microsoft.VisualBasic.ControlChars

Public Function GetFolders() As String
    Dim sb As New StringBuilder

    Dim dInfo As New DirectoryInfo("c:\")
    For Each dir As DirectoryInfo In dInfo.GetDirectories()
        sb.Append(dir.Name)
        sb.Append(CrLf)
    Next

    Return sb.ToString
End Function

Example

Imports systxt = System.Text
Imports sysio = System.IO
Imports ch = Microsoft.VisualBasic.ControlChars

Public Function GetFolders() As String
    Dim sb As New systxt.StringBuilder

    Dim dInfo As New sysio.DirectoryInfo("c:\")
    For Each dir As sysio.DirectoryInfo In dInfo.GetDirectories()
        sb.Append(dir.Name)
        sb.Append(ch.CrLf)
    Next

    Return sb.ToString
End Function

Example

Imports strbld = System.Text.StringBuilder
Imports dirinf = System.IO.DirectoryInfo

The following example returns all the folders in the C:\ directory by using the DirectoryInfo class.

The code has no Imports  statements at the top of the file. Therefore, the DirectoryInfo , StringBuilder, and CrLf references are all fully qualified with
the namespaces.

The following example includes Imports  statements for the referenced namespaces. Therefore, the types do not have to be fully qualified with the
namespaces.

The following example includes Imports  statements that create aliases for the referenced namespaces. The types are qualified with the aliases.

The following example includes Imports  statements that create aliases for the referenced types. Aliases are used to specify the types.

https://docs.microsoft.com/dotnet/api/system.io.directoryinfo
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.controlchars.crlf


Public Function GetFolders() As String
    Dim sb As New strbld

    Dim dInfo As New dirinf("c:\")
    For Each dir As dirinf In dInfo.GetDirectories()
        sb.Append(dir.Name)
        sb.Append(ControlChars.CrLf)
    Next

    Return sb.ToString
End Function

See Also
Namespace Statement
Namespaces in Visual Basic
References and the Imports Statement
Imports Statement (XML Namespace)
References to Declared Elements

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


          

Imports Statement (XML Namespace)
7/13/2018 • 4 minutes to read • Edit Online

Syntax
Imports <xmlns:xmlNamespacePrefix = "xmlNamespaceName">  

Parts

Remarks

Example

Imports XML namespace prefixes for use in XML literals and XML axis properties.

xmlNamespacePrefix

Optional. The string by which XML elements and attributes can refer to xmlNamespaceName . If no xmlNamespacePrefix  is supplied, the imported XML
namespace is the default XML namespace. Must be a valid XML identifier. For more information, see Names of Declared XML Elements and Attributes.

xmlNamespaceName

Required. The string identifying the XML namespace being imported.

You can use the Imports  statement to define global XML namespaces that you can use with XML literals and XML axis properties, or as parameters
passed to the GetXmlNamespace  operator. (For information about using the Imports  statement to import an alias that can be used where type names are
used in your code, see Imports Statement (.NET Namespace and Type).) The syntax for declaring an XML namespace by using the Imports  statement is
identical to the syntax used in XML. Therefore, you can copy a namespace declaration from an XML file and use it in an Imports  statement.

XML namespace prefixes are useful when you want to repeatedly create XML elements that are from the same namespace. The XML namespace prefix
declared with the Imports  statement is global in the sense that it is available to all code in the file. You can use it when you create XML element literals
and when you access XML axis properties. For more information, see XML Element Literal and XML Axis Properties.

If you define a global XML namespace without a namespace prefix (for example, Imports <xmlns="http://SomeNameSpace>" ), that namespace is
considered the default XML namespace. The default XML namespace is used for any XML element literals or XML attribute axis properties that do not
explicitly specify a namespace. The default namespace is also used if the specified namespace is the empty namespace (that is, xmlns="" ). The default
XML namespace does not apply to XML attributes in XML literals or to XML attribute axis properties that do not have a namespace.

XML namespaces that are defined in an XML literal, which are called local XML namespaces, take precedence over XML namespaces that are defined by
the Imports  statement as global. XML namespaces that are defined by the Imports  statement take precedence over XML namespaces imported for a
Visual Basic project. If an XML literal defines an XML namespace, that local namespace does not apply to embedded expressions.

Global XML namespaces follow the same scoping and definition rules as .NET Framework namespaces. As a result, you can include an Imports

statement to define a global XML namespace anywhere you can import a .NET Framework namespace. This includes both code files and project-level
imported namespaces. For information about project-level imported namespaces, see References Page, Project Designer (Visual Basic).

Each source file can contain any number of Imports  statements. These must follow option declarations, such as the Option Strict  statement, and they
must precede programming element declarations, such as Module  or Class  statements.

The following example imports a default XML namespace and an XML namespace identified with the prefix ns . It then creates XML literals that use
both namespaces.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/imports-statement-xml-namespace.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/visualstudio/ide/reference/references-page-project-designer-visual-basic


' Place Imports statements at the top of your program.  
Imports <xmlns="http://DefaultNamespace">
Imports <xmlns:ns="http://NewNamespace">

Module Module1

  Sub Main()
    ' Create element by using the default global XML namespace. 
    Dim inner = <innerElement/>

    ' Create element by using both the default global XML namespace
    ' and the namespace identified with the "ns" prefix.
    Dim outer = <ns:outer>
                  <ns:innerElement></ns:innerElement>
                  <siblingElement></siblingElement>
                  <%= inner %>
                </ns:outer>

    ' Display element to see its final form. 
    Console.WriteLine(outer)
  End Sub

End Module

<ns:outer xmlns="http://DefaultNamespace"   
          xmlns:ns="http://NewNamespace">  
  <ns:innerElement></ns:innerElement>  
  <siblingElement></siblingElement>  
  <innerElement />  
</ns:outer>  

Example

' Place Imports statements at the top of your program.  
Imports <xmlns:ns="http://SomeNamespace">

Class TestClass1

    Shared Sub TestPrefix()
        ' Create test using a global XML namespace prefix. 
        Dim inner2 = <ns:inner2/>

        Dim test = 
        <ns:outer>
            <ns:middle xmlns:ns="http://NewNamespace">
                <ns:inner1/>
                <%= inner2 %>
            </ns:middle>
        </ns:outer>

        ' Display test to see its final form. 
        Console.WriteLine(test)
    End Sub

End Class

<ns:outer xmlns:ns="http://SomeNamespace">  
  <ns:middle xmlns:ns="http://NewNamespace">  
    <ns:inner1 />  
    <inner2 xmlns="http://SomeNamespace" />  
  </ns:middle>  
</ns:outer>  

Example

This code displays the following text:

The following example imports the XML namespace prefix ns . It then creates an XML literal that uses the namespace prefix and displays the element's
final form.

This code displays the following text:

Notice that the compiler converted the XML namespace prefix from a global prefix to a local prefix definition.

The following example imports the XML namespace prefix ns . It then uses the prefix of the namespace to create an XML literal and access the first
child node with the qualified name ns:name .



Imports <xmlns:ns = "http://SomeNamespace"> 
 
Class TestClass4

    Shared Sub TestPrefix()
        Dim contact = <ns:contact>
                        <ns:name>Patrick Hines</ns:name>
                      </ns:contact>
        Console.WriteLine(contact.<ns:name>.Value)
    End Sub

End Class

See Also

This code displays the following text:

Patrick Hines

XML Element Literal
XML Axis Properties
Names of Declared XML Elements and Attributes
GetXmlNamespace Operator

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes


                 

Inherits Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Inherits basetypenames  

Parts
TERM DEFINITION

basetypenames Required. The name of the class from which this class derives.

-or-

The names of the interfaces from which this interface derives. Use commas to
separate multiple names.

Remarks

Rules

Example

Public Class thisClass
    Inherits anotherClass
    ' Add code to override, overload, or extend members 
    ' inherited from the base class.
    ' Add new variable, property, procedure, and event declarations.
End Class

Example

Causes the current class or interface to inherit the attributes, variables, properties, procedures, and events from another class or set of interfaces.

If used, the Inherits  statement must be the first non-blank, non-comment line in a class or interface definition. It should immediately follow the Class

or Interface  statement.

You can use Inherits  only in a class or interface. This means the declaration context for an inheritance cannot be a source file, namespace, structure,
module, procedure, or block.

Class Inheritance. If a class uses the Inherits  statement, you can specify only one base class.

A class cannot inherit from a class nested within it.

Interface Inheritance. If an interface uses the Inherits  statement, you can specify one or more base interfaces. You can inherit from two
interfaces even if they each define a member with the same name. If you do so, the implementing code must use name qualification to specify
which member it is implementing.

An interface cannot inherit from another interface with a more restrictive access level. For example, a Public  interface cannot inherit from a 
Friend  interface.

An interface cannot inherit from an interface nested within it.

An example of class inheritance in the .NET Framework is the ArgumentException class, which inherits from the SystemException class. This provides to
ArgumentException all the predefined properties and procedures required by system exceptions, such as the Message property and the ToString
method.

An example of interface inheritance in the .NET Framework is the ICollection interface, which inherits from the IEnumerable interface. This causes
ICollection to inherit the definition of the enumerator required to traverse a collection.

The following example uses the Inherits  statement to show how a class named thisClass  can inherit all the members of a base class named 
anotherClass .

The following example shows inheritance of multiple interfaces.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/inherits-statement.md
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.systemexception
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/system.exception.message
https://docs.microsoft.com/dotnet/api/system.exception.tostring
https://docs.microsoft.com/dotnet/api/system.collections.icollection
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.icollection


Public Interface thisInterface
    Inherits IComparable, IDisposable, IFormattable
    ' Add new property, procedure, and event definitions.
End Interface

See Also

The interface named thisInterface  now includes all the definitions in the IComparable, IDisposable, and IFormattable interfaces The inherited
members provide respectively for type-specific comparison of two objects, releasing allocated resources, and expressing the value of an object as a 
String . A class that implements thisInterface  must implement every member of every base interface.

MustInherit
NotInheritable
Objects and Classes
Inheritance Basics
Interfaces

https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/dotnet/api/system.iformattable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


                        

Interface Statement (Visual Basic)
5/16/2018 • 5 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ Shadows ] _  
Interface name [ ( Of typelist ) ]  
    [ Inherits interfacenames ]  
    [ [ modifiers ] Property membername ]  
    [ [ modifiers ] Function membername ]  
    [ [ modifiers ] Sub membername ]  
    [ [ modifiers ] Event membername ]  
    [ [ modifiers ] Interface membername ]  
    [ [ modifiers ] Class membername ]  
    [ [ modifiers ] Structure membername ]  
End Interface  

Parts
TERM DEFINITION

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

- Public
- Protected
- Friend
- Private
- Protected Friend
- Private Protected

See Access levels in Visual Basic.

Shadows Optional. See Shadows.

name Required. Name of this interface. See Declared Element Names.

Of Optional. Specifies that this is a generic interface.

typelist Required if you use the Of keyword. List of type parameters for this interface.
Optionally, each type parameter can be declared variant by using In  and Out

generic modifiers. See Type List.

Inherits Optional. Indicates that this interface inherits the attributes and members of
another interface or interfaces. See Inherits Statement.

interfacenames Required if you use the Inherits  statement. The names of the interfaces from
which this interface derives.

modifiers Optional. Appropriate modifiers for the interface member being defined.

Property Optional. Defines a property that is a member of the interface.

Function Optional. Defines a Function  procedure that is a member of the interface.

Sub Optional. Defines a Sub  procedure that is a member of the interface.

Event Optional. Defines an event that is a member of the interface.

Interface Optional. Defines an interface that is a nested within this interface. The nested
interface definition must terminate with an End Interface  statement.

Class Optional. Defines a class that is a member of the interface. The member class
definition must terminate with an End Class  statement.

Declares the name of an interface and introduces the definitions of the members that the interface comprises.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/interface-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Structure Optional. Defines a structure that is a member of the interface. The member
structure definition must terminate with an End Structure  statement.

membername Required for each property, procedure, event, interface, class, or structure defined
as a member of the interface. The name of the member.

End Interface Terminates the Interface  definition.

TERM DEFINITION

Remarks

Rules

Behavior

An interface defines a set of members, such as properties and procedures, that classes and structures can implement. The interface defines only the
signatures of the members and not their internal workings.

A class or structure implements the interface by supplying code for every member defined by the interface. Finally, when the application creates an
instance from that class or structure, an object exists and runs in memory. For more information, see Objects and Classes and Interfaces.

You can use Interface  only at namespace or module level. This means the declaration context for an interface must be a source file, namespace, class,
structure, module, or interface, and cannot be a procedure or block. For more information, see Declaration Contexts and Default Access Levels.

Interfaces default to Friend access. You can adjust their access levels with the access modifiers. For more information, see Access levels in Visual Basic.

Nesting Interfaces. You can define one interface within another. The outer interface is called the containing interface, and the inner interface is
called a nested interface.

Member Declaration. When you declare a property or procedure as a member of an interface, you are defining only the signature of that
property or procedure. This includes the element type (property or procedure), its parameters and parameter types, and its return type. Because
of this, the member definition uses only one line of code, and terminating statements such as End Function  or End Property  are not valid in an
interface.

In contrast, when you define an enumeration or structure, or a nested class or interface, it is necessary to include their data members.

Member Modifiers. You cannot use any access modifiers when defining module members, nor can you specify Shared or any procedure
modifier except Overloads. You can declare any member with Shadows, and you can use Default when defining a property, as well as ReadOnly
or WriteOnly.

Inheritance. If the interface uses the Inherits Statement, you can specify one or more base interfaces. You can inherit from two interfaces even if
they each define a member with the same name. If you do so, the implementing code must use name qualification to specify which member it is
implementing.

An interface cannot inherit from another interface with a more restrictive access level. For example, a Public  interface cannot inherit from a 
Friend  interface.

An interface cannot inherit from an interface nested within it.

Implementation. When a class uses the Implements statement to implement this interface, it must implement every member defined within the
interface. Furthermore, each signature in the implementing code must exactly match the corresponding signature defined in this interface.
However, the name of the member in the implementing code does not have to match the member name as defined in the interface.

When a class is implementing a procedure, it cannot designate the procedure as Shared .

Default Property. An interface can specify at most one property as its default property, which can be referenced without using the property
name. You specify such a property by declaring it with the Default modifier.

Notice that this means that an interface can define a default property only if it inherits none.

Access Level. All interface members implicitly have Public access. You cannot use any access modifier when defining a member. However, a class
implementing the interface can declare an access level for each implemented member.

If you assign a class instance to a variable, the access level of its members can depend on whether the data type of the variable is the underlying
interface or the implementing class. The following example illustrates this.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Example

Public Interface thisInterface
    Property thisProp(ByVal thisStr As String) As Char
    Function thisFunc(ByVal thisInt As Integer) As Integer
End Interface

See Also

Public Interface IDemo
    Sub doSomething()
End Interface
Public Class implementIDemo
    Implements IDemo
    Private Sub doSomething() Implements IDemo.doSomething
    End Sub
End Class
Dim varAsInterface As IDemo = New implementIDemo()
Dim varAsClass As implementIDemo = New implementIDemo()

If you access class members through varAsInterface , they all have public access. However, if you access members through varAsClass , the Sub

procedure doSomething  has private access.

Scope. An interface is in scope throughout its namespace, class, structure, or module.

The scope of every interface member is the entire interface.

Lifetime. An interface does not itself have a lifetime, nor do its members. When a class implements an interface and an object is created as an
instance of that class, the object has a lifetime within the application in which it is running. For more information, see "Lifetime" in Class
Statement.

The following example uses the Interface  statement to define an interface named thisInterface , which must be implemented with a Property

statement and a Function  statement.

Note that the Property  and Function  statements do not introduce blocks ending with End Property  and End Function  within the interface. The
interface defines only the signatures of its members. The full Property  and Function  blocks appear in a class that implements thisInterface .

Interfaces
Class Statement
Module Statement
Structure Statement
Property Statement
Function Statement
Sub Statement
Generic Types in Visual Basic
Variance in Generic Interfaces
In
Out

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/variance-in-generic-interfaces


  

Mid Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Mid( _  
   ByRef Target As String, _  
   ByVal Start As Integer, _  
   Optional ByVal Length As Integer _  
) = StringExpression  

Parts

Exceptions
EXCEPTION TYPE CONDITION

ArgumentException Start  <= 0 or Length  < 0.

Remarks

NOTENOTE

Example

Dim TestString As String
' Initializes string.
TestString = "The dog jumps"
' Returns "The fox jumps".
Mid(TestString, 5, 3) = "fox"
' Returns "The cow jumps".
Mid(TestString, 5) = "cow"
' Returns "The cow jumpe".
Mid(TestString, 5) = "cow jumped over"
' Returns "The duc jumpe".
Mid(TestString, 5, 3) = "duck"

Requirements

Replaces a specified number of characters in a String  variable with characters from another string.

Target

Required. Name of the String  variable to modify.

Start

Required. Integer  expression. Character position in Target  where the replacement of text begins. Start  uses a one-based index.

Length

Optional. Integer  expression. Number of characters to replace. If omitted, all of String  is used.

StringExpression

Required. String  expression that replaces part of Target .

The number of characters replaced is always less than or equal to the number of characters in Target .

Visual Basic has a Mid function and a Mid  statement. These elements both operate on a specified number of characters in a string, but the Mid

function returns the characters while the Mid  statement replaces the characters. For more information, see Mid.

The MidB  statement of earlier versions of Visual Basic replaces a substring in bytes, rather than characters. It is used primarily for converting strings in double-byte
character set (DBCS) applications. All Visual Basic strings are in Unicode, and MidB  is no longer supported.

This example uses the Mid  statement to replace a specified number of characters in a string variable with characters from another string.

Namespace: Microsoft.VisualBasic

Module: Strings

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/mid-statement.md
https://docs.microsoft.com/dotnet/api/system.argumentexception
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid


See Also

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

Mid
Strings
Introduction to Strings in Visual Basic

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.mid
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/introduction-to-strings


                    

Module Statement
7/13/2018 • 3 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ]  Module name  
    [ statements ]  
End Module  

Parts

Remarks

Classes and Modules

Rules

Declares the name of a module and introduces the definition of the variables, properties, events, and procedures that the module comprises.

attributelist

Optional. See Attribute List.

accessmodifier

Optional. Can be one of the following:

Public

Friend

See Access levels in Visual Basic.

name

Required. Name of this module. See Declared Element Names.

statements

Optional. Statements which define the variables, properties, events, procedures, and nested types of this module.

End Module

Terminates the Module  definition.

A Module  statement defines a reference type available throughout its namespace. A module (sometimes called a standard module)is similar to a class
but with some important distinctions. Every module has exactly one instance and does not need to be created or assigned to a variable. Modules do not
support inheritance or implement interfaces. Notice that a module is not a type in the sense that a class or structure is — you cannot declare a
programming element to have the data type of a module.

You can use Module  only at namespace level. This means the declaration context for a module must be a source file or namespace, and cannot be a
class, structure, module, interface, procedure, or block. You cannot nest a module within another module, or within any type. For more information, see
Declaration Contexts and Default Access Levels.

A module has the same lifetime as your program. Because its members are all Shared , they also have lifetimes equal to that of the program.

Modules default to Friend access. You can adjust their access levels with the access modifiers. For more information, see Access levels in Visual Basic.

All members of a module are implicitly Shared .

These elements have many similarities, but there are some important differences as well.

Terminology. Previous versions of Visual Basic recognize two types of modules: class modules (.cls files) and standard modules (.bas files). The
current version calls these classes and modules, respectively.

Shared Members. You can control whether a member of a class is a shared or instance member.

Object Orientation. Classes are object-oriented, but modules are not. So only classes can be instantiated as objects. For more information, see
Objects and Classes.

Modifiers. All module members are implicitly Shared. You cannot use the Shared  keyword when declaring a member, and you cannot alter the
shared status of any member.

Inheritance. A module cannot inherit from any type other than Object, from which all modules inherit. In particular, one module cannot inherit
from another.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/module-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/dotnet/api/system.object


Behavior

Example
Public Module thisModule
    Sub Main()
        Dim userName As String = InputBox("What is your name?")
        MsgBox("User name is" & userName)
    End Sub
    ' Insert variable, property, procedure, and event declarations.
End Module

See Also

You cannot use the Inherits Statement in a module definition, even to specify Object.

Default Property. You cannot define any default properties in a module. For more information, see Default.

Access Level. Within a module, you can declare each member with its own access level. Module members default to Public access, except
variables and constants, which default to Private access. When a module has more restricted access than one of its members, the specified
module access level takes precedence.

Scope. A module is in scope throughout its namespace.

The scope of every module member is the entire module. Notice that all members undergo type promotion, which causes their scope to be
promoted to the namespace containing the module. For more information, see Type Promotion.

Qualification. You can have multiple modules in a project, and you can declare members with the same name in two or more modules.
However, you must qualify any reference to such a member with the appropriate module name if the reference is from outside that module. For
more information, see References to Declared Elements.

Class Statement
Namespace Statement
Structure Statement
Interface Statement
Property Statement
Type Promotion

https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/type-promotion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/type-promotion


             

Namespace Statement
7/13/2018 • 4 minutes to read • Edit Online

Syntax
Namespace [Global.] { name | name.name }  
    [ componenttypes ]  
End Namespace  

Parts

Remarks

Access Level

Root Namespace

Declares the name of a namespace and causes the source code that follows the declaration to be compiled within that namespace.

Global
Optional. Allows you to define a namespace out of the root namespace of your project. See Namespaces in Visual Basic.

name

Required. A unique name that identifies the namespace. Must be a valid Visual Basic identifier. For more information, see Declared Element Names.

componenttypes

Optional. Elements that make up the namespace. These include, but are not limited to, enumerations, structures, interfaces, classes, modules, delegates,
and other namespaces.

End Namespace

Terminates a Namespace  block.

Namespaces are used as an organizational system. They provide a way to classify and present programming elements that are exposed to other
programs and applications. Note that a namespace is not a type in the sense that a class or structure is—you cannot declare a programming element to
have the data type of a namespace.

All programming elements declared after a Namespace  statement belong to that namespace. Visual Basic continues to compile elements into the last
declared namespace until it encounters either an End Namespace  statement or another Namespace  statement.

If a namespace is already defined, even outside your project, you can add programming elements to it. To do this, you use a Namespace  statement to
direct Visual Basic to compile elements into that namespace.

You can use a Namespace  statement only at the file or namespace level. This means the declaration context for a namespace must be a source file or
another namespace, and cannot be a class, structure, module, interface, or procedure. For more information, see Declaration Contexts and Default
Access Levels.

You can declare one namespace within another. There is no strict limit to the levels of nesting you can declare, but remember that when other code
accesses the elements declared in the innermost namespace, it must use a qualification string that contains all the namespace names in the nesting
hierarchy.

Namespaces are treated as if they have a Public  access level. A namespace can be accessed from code anywhere in the same project, from other
projects that reference the project, and from any assembly built from the project.

Programming elements declared at namespace level, meaning in a namespace but not inside any other element, can have Public  or Friend  access. If
unspecified, the access level of such an element uses Friend  by default. Elements you can declare at namespace level include classes, structures,
modules, interfaces, enumerations, and delegates. For more information, see Declaration Contexts and Default Access Levels.

All namespace names in your project are based on a root namespace. Visual Studio assigns your project name as the default root namespace for all
code in your project. For example, if your project is named Payroll , its programming elements belong to namespace Payroll . If you declare 
Namespace funding , the full name of that namespace is Payroll.funding .

If you want to specify an existing namespace in a Namespace  statement, such as in the generic list class example, you can set your root namespace to a
null value. To do this, click Project Properties from the Project menu and then clear the Root namespace entry so that the box is empty. If you did
not do this in the generic list class example, the Visual Basic compiler would take System.Collections.Generic  as a new namespace within project 
Payroll , with the full name of Payroll.System.Collections.Generic .

Alternatively, you can use the Global  keyword to refer to elements of namespaces defined outside your project. Doing so lets you retain your project
name as the root namespace. This reduces the chance of unintentionally merging your programming elements together with those of existing

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/namespace-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Attributes and Modifiers

Example

Namespace n1
    Namespace n2
        Class a
            ' Insert class definition.
        End Class
    End Namespace
End Namespace

Example

Namespace n1.n2
    Class a
        ' Insert class definition.
    End Class
End Namespace

Example

Dim instance As New n1.n2.a

Example

Namespace System.Collections.Generic  
    Class specialSortedList(Of T)  
        Inherits List(Of T)  
        ' Insert code to define the special generic list class.  
    End Class  
End Namespace  

See Also

namespaces. For more information, see the "Global Keyword in Fully Qualified Names" section in Namespaces in Visual Basic.

The Global  keyword can also be used in a Namespace statement. This lets you define a namespace out of the root namespace of your project. For
more information, see the "Global Keyword in Namespace Statements" section in Namespaces in Visual Basic.

Troubleshooting. The root namespace can lead to unexpected concatenations of namespace names. If you make reference to namespaces defined
outside your project, the Visual Basic compiler can construe them as nested namespaces in the root namespace. In such a case, the compiler does not
recognize any types that have been already defined in the external namespaces. To avoid this, either set your root namespace to a null value as
described in "Root Namespace," or use the Global  keyword to access elements of external namespaces.

You cannot apply attributes to a namespace. An attribute contributes information to the assembly's metadata, which is not meaningful for source
classifiers such as namespaces.

You cannot apply any access or procedure modifiers, or any other modifiers, to a namespace. Because it is not a type, these modifiers are not
meaningful.

The following example declares two namespaces, one nested in the other.

The following example declares multiple nested namespaces on a single line, and it is equivalent to the previous example.

The following example accesses the class defined in the previous examples.

The following example defines the skeleton of a new generic list class and adds it to the System.Collections.Generic namespace.

Imports Statement (.NET Namespace and Type)
Declared Element Names
Namespaces in Visual Basic

https://docs.microsoft.com/dotnet/api/system.collections.generic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


         

On Error Statement (Visual Basic)
5/4/2018 • 7 minutes to read • Edit Online

NOTENOTE

Syntax
On Error { GoTo [ line | 0 | -1 ] | Resume Next }  

Parts
TERM DEFINITION

GoTo  line Enables the error-handling routine that starts at the line specified in the required 
line  argument. The line  argument is any line label or line number. If a run-

time error occurs, control branches to the specified line, making the error handler
active. The specified line must be in the same procedure as the On Error

statement, or a compile-time error will occur.

GoTo  0 Disables enabled error handler in the current procedure and resets it to Nothing .

GoTo  -1 Disables enabled exception in the current procedure and resets it to Nothing .

Resume Next Specifies that when a run-time error occurs, control goes to the statement
immediately following the statement where the error occurred, and execution
continues from that point. Use this form rather than On Error GoTo  when
accessing objects.

Remarks

NOTENOTE

NOTENOTE

Number Property

Enables an error-handling routine and specifies the location of the routine within a procedure; can also be used to disable an error-handling routine.

Without error handling, any run-time error that occurs is fatal: an error message is displayed, and execution stops.

Whenever possible, we suggest you use structured exception handling in your code, rather than using unstructured exception handling and the 
On Error  statement. For more information, see Try...Catch...Finally Statement.

The Error  keyword is also used in the Error Statement, which is supported for backward compatibility.

We recommend that you use structured exception handling in your code whenever possible, rather than using unstructured exception handling and the On Error

statement. For more information, see Try...Catch...Finally Statement.

An "enabled" error handler is one that is turned on by an On Error  statement. An "active" error handler is an enabled handler that is in the process of
handling an error.

If an error occurs while an error handler is active (between the occurrence of the error and a Resume , Exit Sub , Exit Function , or Exit Property

statement), the current procedure's error handler cannot handle the error. Control returns to the calling procedure.

If the calling procedure has an enabled error handler, it is activated to handle the error. If the calling procedure's error handler is also active, control
passes back through previous calling procedures until an enabled, but inactive, error handler is found. If no such error handler is found, the error is fatal
at the point at which it actually occurred.

Each time the error handler passes control back to a calling procedure, that procedure becomes the current procedure. Once an error is handled by an
error handler in any procedure, execution resumes in the current procedure at the point designated by the Resume  statement.

An error-handling routine is not a Sub  procedure or a Function  procedure. It is a section of code marked by a line label or a line number.

Error-handling routines rely on the value in the Number  property of the Err  object to determine the cause of the error. The routine should test or save
relevant property values in the Err  object before any other error can occur or before a procedure that might cause an error is called. The property

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/on-error-statement.md


Throw Statement

    On Error GoTo Handler
    Throw New DivideByZeroException()
Handler:
    If (TypeOf Err.GetException() Is DivideByZeroException) Then
    ' Code for handling the error is entered here.
    End If

On Error Resume Next

NOTENOTE

On Error GoTo 0

On Error GoTo -1

Public Sub InitializeMatrix(ByVal Var1 As Object, ByVal Var2 As Object)
   On Error GoTo ErrorHandler
   ' Insert code that might generate an error here
   Exit Sub
ErrorHandler:
   ' Insert code to handle the error here
   Resume Next
End Sub

Untrapped Errors

Err.Number = vbObjectError + 1052

C a u t i o nC a u t i o n

values in the Err  object reflect only the most recent error. The error message associated with Err.Number  is contained in Err.Description .

An error that is raised with the Err.Raise  method sets the Exception  property to a newly created instance of the Exception class. In order to support
the raising of exceptions of derived exception types, a Throw  statement is supported in the language. This takes a single parameter that is the exception
instance to be thrown. The following example shows how these features can be used with the existing exception handling support:

Notice that the On Error GoTo  statement traps all errors, regardless of the exception class.

On Error Resume Next  causes execution to continue with the statement immediately following the statement that caused the run-time error, or with the
statement immediately following the most recent call out of the procedure containing the On Error Resume Next  statement. This statement allows
execution to continue despite a run-time error. You can place the error-handling routine where the error would occur rather than transferring control to
another location within the procedure. An On Error Resume Next  statement becomes inactive when another procedure is called, so you should execute
an On Error Resume Next  statement in each called routine if you want inline error handling within that routine.

The On Error Resume Next  construct may be preferable to On Error GoTo  when handling errors generated during access to other objects. Checking Err  after
each interaction with an object removes ambiguity about which object was accessed by the code. You can be sure which object placed the error code in Err.Number ,
as well as which object originally generated the error (the object specified in Err.Source ).

On Error GoTo 0  disables error handling in the current procedure. It doesn't specify line 0 as the start of the error-handling code, even if the procedure
contains a line numbered 0. Without an On Error GoTo 0  statement, an error handler is automatically disabled when a procedure is exited.

On Error GoTo -1  disables the exception in the current procedure. It does not specify line -1 as the start of the error-handling code, even if the
procedure contains a line numbered -1. Without an On Error GoTo -1  statement, an exception is automatically disabled when a procedure is exited.

To prevent error-handling code from running when no error has occurred, place an Exit Sub , Exit Function , or Exit Property  statement immediately
before the error-handling routine, as in the following fragment:

Here, the error-handling code follows the Exit Sub  statement and precedes the End Sub  statement to separate it from the procedure flow. You can
place error-handling code anywhere in a procedure.

Untrapped errors in objects are returned to the controlling application when the object is running as an executable file. Within the development
environment, untrapped errors are returned to the controlling application only if the proper options are set. See your host application's documentation
for a description of which options should be set during debugging, how to set them, and whether the host can create classes.

If you create an object that accesses other objects, you should try to handle any unhandled errors they pass back. If you cannot, map the error codes in 
Err.Number  to one of your own errors and then pass them back to the caller of your object. You should specify your error by adding your error code to

the VbObjectError  constant. For example, if your error code is 1052, assign it as follows:

System errors during calls to Windows dynamic-link libraries (DLLs) do not raise exceptions and cannot be trapped with Visual Basic error trapping.
When calling DLL functions, you should check each return value for success or failure (according to the API specifications), and in the event of a failure,

https://docs.microsoft.com/dotnet/api/system.exception


Example

Public Sub OnErrorDemo()
   On Error GoTo ErrorHandler   ' Enable error-handling routine.
   Dim x As Integer = 32
   Dim y As Integer = 0
   Dim z As Integer
   z = x / y   ' Creates a divide by zero error
   On Error GoTo 0   ' Turn off error trapping.
   On Error Resume Next   ' Defer error trapping.
   z = x / y   ' Creates a divide by zero error again
   If Err.Number = 6 Then
      ' Tell user what happened. Then clear the Err object.
      Dim Msg As String
      Msg = "There was an error attempting to divide by zero!"
      MsgBox(Msg, , "Divide by zero error")
      Err.Clear() ' Clear Err object fields.
   End If
Exit Sub      ' Exit to avoid handler.
ErrorHandler:  ' Error-handling routine.
   Select Case Err.Number   ' Evaluate error number.
      Case 6   ' Divide by zero error
         MsgBox("You attempted to divide by zero!")
         ' Insert code to handle this error
      Case Else
         ' Insert code to handle other situations here...
   End Select
   Resume Next  ' Resume execution at the statement immediately 
                ' following the statement where the error occurred.
End Sub

Requirements

See Also

check the value in the Err  object's LastDLLError  property.

This example first uses the On Error GoTo  statement to specify the location of an error-handling routine within a procedure. In the example, an attempt
to divide by zero generates error number 6. The error is handled in the error-handling routine, and control is then returned to the statement that caused
the error. The On Error GoTo 0  statement turns off error trapping. Then the On Error Resume Next  statement is used to defer error trapping so that the
context for the error generated by the next statement can be known for certain. Note that Err.Clear  is used to clear the Err  object's properties after
the error is handled.

Namespace: Microsoft.VisualBasic

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

Err
Number
Description
LastDllError
End Statement
Exit Statement
Resume Statement
Error Messages
Try...Catch...Finally Statement

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.number
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.description
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.errobject.lastdllerror


                       

Operator Statement
7/13/2018 • 5 minutes to read • Edit Online

Syntax
[ <attrlist> ] Public [ Overloads ] Shared [ Shadows ] [ Widening | Narrowing ]   
Operator operatorsymbol ( operand1 [, operand2 ]) [ As [ <attrlist> ] type ]  
    [ statements ]  
    [ statements ]  
    Return returnvalue  
    [ statements ]  
End Operator  

Parts

PART DESCRIPTION

ByVal Optional, but the passing mechanism must be ByVal.

operandname Required. Name of the variable representing this operand. See Declared Element
Names.

operandtype Optional unless Option Strict  is On . Data type of this operand.

Declares the operator symbol, operands, and code that define an operator procedure on a class or structure.

attrlist

Optional. See Attribute List.

Public

Required. Indicates that this operator procedure has Public access.

Overloads

Optional. See Overloads.

Shared

Required. Indicates that this operator procedure is a Shared procedure.

Shadows

Optional. See Shadows.

Widening

Required for a conversion operator unless you specify Narrowing . Indicates that this operator procedure defines a Widening conversion. See "Widening
and Narrowing Conversions" on this Help page.

Narrowing

Required for a conversion operator unless you specify Widening . Indicates that this operator procedure defines a Narrowing conversion. See "Widening
and Narrowing Conversions" on this Help page.

operatorsymbol

Required. The symbol or identifier of the operator that this operator procedure defines.

operand1

Required. The name and type of the single operand of a unary operator (including a conversion operator) or the left operand of a binary operator.

operand2

Required for binary operators. The name and type of the right operand of a binary operator.

operand1  and operand2  have the following syntax and parts:

[ ByVal ] operandname [ As operandtype ]

type

Optional unless Option Strict  is On . Data type of the value the operator procedure returns.

statements

Optional. Block of statements that the operator procedure runs.

returnvalue

Required. The value that the operator procedure returns to the calling code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/operator-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Remarks

TYPE OPERATORS

Unary + , - , IsFalse , IsTrue , Not

Binary + , - , * , / , \ , & , ^ , >> , << , = , <> , > , >= , < , <= , And , Like ,
Mod , Or , Xor

Conversion (unary) CType

Matched Pairs

Data Type Restrictions

Logical and Bitwise Operators

End  Operator

Required. Terminates the definition of this operator procedure.

You can use Operator  only in a class or structure. This means the declaration context for an operator cannot be a source file, namespace, module,
interface, procedure, or block. For more information, see Declaration Contexts and Default Access Levels.

All operators must be Public Shared . You cannot specify ByRef , Optional , or ParamArray  for either operand.

You cannot use the operator symbol or identifier to hold a return value. You must use the Return  statement, and it must specify a value. Any number of 
Return  statements can appear anywhere in the procedure.

Defining an operator in this way is called operator overloading, whether or not you use the Overloads  keyword. The following table lists the operators
you can define.

Note that the =  operator in the binary list is the comparison operator, not the assignment operator.

When you define CType , you must specify either Widening  or Narrowing .

You must define certain operators as matched pairs. If you define either operator of such a pair, you must define the other as well. The matched pairs are
the following:

=  and <>

>  and <

>=  and <=

IsTrue  and IsFalse

Every operator you define must involve the class or structure on which you define it. This means that the class or structure must appear as the data type
of the following:

The operand of a unary operator.

At least one of the operands of a binary operator.

Either the operand or the return type of a conversion operator.

Certain operators have additional data type restrictions, as follows:

If you define the IsTrue  and IsFalse  operators, they must both return the Boolean  type.

If you define the <<  and >>  operators, they must both specify the Integer  type for the operandtype  of operand2 .

The return type does not have to correspond to the type of either operand. For example, a comparison operator such as =  or <>  can return Boolean

even if neither operand is Boolean .

The And , Or , Not , and Xor  operators can perform either logical or bitwise operations in Visual Basic. However, if you define one of these operators
on a class or structure, you can define only its bitwise operation.

You cannot define the AndAlso  operator directly with an Operator  statement. However, you can use AndAlso  if you have fulfilled the following
conditions:

You have defined And  on the same operand types you want to use for AndAlso .

Your definition of And  returns the same type as the class or structure on which you have defined it.

You have defined the IsFalse  operator on the class or structure on which you have defined And .

Similarly, you can use OrElse  if you have defined Or  on the same operands, with the return type of the class or structure, and you have defined 



Widening and Narrowing Conversions

Example

Public Structure abc
    Dim d As Date
    Public Shared Operator And(ByVal x As abc, ByVal y As abc) As abc
        Dim r As New abc
        ' Insert code to calculate And of x and y.
        Return r
    End Operator
    Public Shared Operator Or(ByVal x As abc, ByVal y As abc) As abc
        Dim r As New abc
        ' Insert code to calculate Or of x and y.
        Return r
    End Operator
    Public Shared Operator IsFalse(ByVal z As abc) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsFalse of z.
        Return b
    End Operator
    Public Shared Operator IsTrue(ByVal z As abc) As Boolean
        Dim b As Boolean
        ' Insert code to calculate IsTrue of z.
        Return b
    End Operator
End Structure

See Also

IsTrue  on the class or structure.

A widening conversion always succeeds at run time, while a narrowing conversion can fail at run time. For more information, see Widening and
Narrowing Conversions.

If you declare a conversion procedure to be Widening , your procedure code must not generate any failures. This means the following:

It must always return a valid value of type type .

It must handle all possible exceptions and other error conditions.

It must handle any error returns from any procedures it calls.

If there is any possibility that a conversion procedure might not succeed, or that it might cause an unhandled exception, you must declare it to be 
Narrowing .

The following code example uses the Operator  statement to define the outline of a structure that includes operator procedures for the And , Or , 
IsFalse , and IsTrue  operators. And  and Or  each take two operands of type abc  and return type abc . IsFalse  and IsTrue  each take a single

operand of type abc  and return Boolean . These definitions allow the calling code to use And , AndAlso , Or , and OrElse  with operands of type abc .

IsFalse Operator
IsTrue Operator
Widening
Narrowing
Widening and Narrowing Conversions
Operator Procedures
How to: Define an Operator
How to: Define a Conversion Operator
How to: Call an Operator Procedure
How to: Use a Class that Defines Operators

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-call-an-operator-procedure
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-use-a-class-that-defines-operators


  

Option <keyword> Statement
7/13/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Introduces a statement that specifies a compiler option that applies to the entire source file.

The compiler options can control whether all variables must be explicitly declared, whether narrowing type conversions must be explicit, or whether
strings should be compared as text or as binary quantities.

The Option  keyword can be used in these contexts:

Option Compare Statement

Option Explicit Statement

Option Infer Statement

Option Strict Statement

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/option-keyword-statement.md


                

Option Compare Statement
7/13/2018 • 3 minutes to read • Edit Online

Syntax
Option Compare { Binary | Text }  

Parts
TERM DEFINITION

Binary Optional. Results in string comparisons based on a sort order derived from the
internal binary representations of the characters.

This type of comparison is useful especially if the strings can contain characters that
are not to be interpreted as text. In this case, you do not want to bias comparisons
with alphabetical equivalences, such as case insensitivity.

Text Optional. Results in string comparisons based on a case-insensitive text sort order
determined by your system's locale.

This type of comparison is useful if your strings contain all text characters, and you
want to compare them taking into account alphabetic equivalences such as case
insensitivity and closely related letters. For example, you might want to consider A

and a  to be equal, and Ä  and ä  to come before B  and b .

Remarks

When an Option Compare Statement Is Not Present

NOTENOTE

To set Option Compare in the IDETo set Option Compare in the IDE

To set Option Compare on the command lineTo set Option Compare on the command line

Declares the default comparison method to use when comparing string data.

If used, the Option Compare  statement must appear in a file before any other source code statements.

The Option Compare  statement specifies the string comparison method ( Binary  or Text ). The default text comparison method is Binary .

A Binary  comparison compares the numeric Unicode value of each character in each string. A Text  comparison compares each Unicode character
based on its lexical meaning in the current culture.

In Microsoft Windows, sort order is determined by the code page. For more information, see Code Pages.

In the following example, characters in the English/European code page (ANSI 1252) are sorted by using Option Compare Binary , which produces a
typical binary sort order.

A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø

When the same characters in the same code page are sorted by using Option Compare Text , the following text sort order is produced.

(A=a) < (À = à) < (B=b) < (E=e) < (Ê = ê) < (Z=z) < (Ø = ø)

If the source code does not contain an Option Compare  statement, the Option Compare setting on the Compile Page, Project Designer (Visual Basic) is
used. If you use the command-line compiler, the setting specified by the /optioncompare compiler option is used.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

1. In Solution Explorer, select a project. On the Project menu, click Properties.

2. Click the Compile tab.

3. Set the value in the Option Compare box.

When you create a project, the Option Compare setting on the Compile tab is set to the Option Compare setting in the Options dialog box. To
change this setting, on the Tools menu, click Options. In the Options dialog box, expand Projects and Solutions, and then click VB Defaults. The
initial default setting in VB Defaults is Binary.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/option-compare-statement.md
https://docs.microsoft.com/cpp/c-runtime-library/code-pages
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


Example

' Option Compare Binary

Console.WriteLine("A" < "a")
' Output: True

Example

' Option Compare Text

Console.WriteLine("A" = "a")
' Output: True

See Also

Include the /optioncompare compiler option in the vbc command.

The following example uses the Option Compare  statement to set the binary comparison as the default string comparison method. To use this code,
uncomment the Option Compare Binary  statement, and put it at the top of the source file.

The following example uses the Option Compare  statement to set the case-insensitive text sort order as the default string comparison method. To use
this code, uncomment the Option Compare Text  statement, and put it at the top of the source file.

InStr
InStrRev
Replace
Split
StrComp
/optioncompare
Comparison Operators
Comparison Operators in Visual Basic
Like Operator
String Functions
Option Explicit Statement
Option Strict Statement

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.instrrev
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.replace
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.split
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.strcomp
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/comparison-operators


             

Option Explicit Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Option Explicit { On | Off }  

Parts

Remarks

NOTENOTE

When an Option Explicit Statement Is Not Present

To set Option Explicit in the IDETo set Option Explicit in the IDE

To set Option Explicit on the command lineTo set Option Explicit on the command line

Example

' Force explicit variable declaration.
Option Explicit On

Dim thisVar As Integer
thisVar = 10
' The following assignment produces a COMPILER ERROR because
' the variable is not declared and Option Explicit is On.
thisInt = 10 ' causes ERROR

See Also

Forces explicit declaration of all variables in a file, or allows implicit declarations of variables.

On

Optional. Enables Option Explicit  checking. If On  or Off  is not specified, the default is On .

Off

Optional. Disables Option Explicit  checking.

When Option Explicit On  or Option Explicit  appears in a file, you must explicitly declare all variables by using the Dim  or ReDim  statements. If you
try to use an undeclared variable name, an error occurs at compile time. The Option Explicit Off  statement allows implicit declaration of variables.

If used, the Option Explicit  statement must appear in a file before any other source code statements.

Setting Option Explicit  to Off  is generally not a good practice. You could misspell a variable name in one or more locations, which would cause unexpected
results when the program is run.

If the source code does not contain an Option Explicit  statement, the Option Explicit setting on the Compile Page, Project Designer (Visual Basic) is
used. If the command-line compiler is used, the /optionexplicit compiler option is used.

1. In Solution Explorer, select a project. On the Project menu, click Properties.

2. Click the Compile tab.

3. Set the value in the Option Explicit box.

When you create a new project, the Option Explicit setting on the Compile tab is set to the Option Explicit setting in the VB Defaults dialog box. To
access the VB Defaults dialog box, on the Tools menu, click Options. In the Options dialog box, expand Projects and Solutions, and then click VB
Defaults. The initial default setting in VB Defaults is On .

Include the /optionexplicit compiler option in the vbc command.

The following example uses the Option Explicit  statement to force explicit declaration of all variables. Attempting to use an undeclared variable causes
an error at compile time.

Dim Statement
ReDim Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/option-explicit-statement.md
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


Option Compare Statement
Option Strict Statement
/optioncompare
/optionexplicit
/optionstrict
Visual Basic Defaults, Projects, Options Dialog Box

https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box


             

Option Infer Statement
7/13/2018 • 4 minutes to read • Edit Online

Syntax
Option Infer { On | Off }  

Parts
TERM DEFINITION

On Optional. Enables local type inference.

Off Optional. Disables local type inference.

Remarks

NOTENOTE

When an Option Infer Statement Is Not Present

To set Option Infer in the IDETo set Option Infer in the IDE

Enables the use of local type inference in declaring variables.

To set Option Infer  in a file, type Option Infer On  or Option Infer Off  at the top of the file, before any other source code. If the value set for 
Option Infer  in a file conflicts with the value set in the IDE or on the command line, the value in the file has precedence.

When you set Option Infer  to On , you can declare local variables without explicitly stating a data type. The compiler infers the data type of a variable
from the type of its initialization expression.

In the following illustration, Option Infer  is turned on. The variable in the declaration Dim someVar = 2  is declared as an integer by type inference.

IntelliSense when Option Infer is on

In the following illustration, Option Infer  is turned off. The variable in the declaration Dim someVar = 2  is declared as an Object  by type inference. In
this example, the Option Strict setting is set to Off on the Compile Page, Project Designer (Visual Basic).

IntelliSense when Option Infer is off

When a variable is declared as an Object , the run-time type can change while the program is running. Visual Basic performs operations called boxing and unboxing

to convert between an Object  and a value type, which makes execution slower. For information about boxing and unboxing, see the Visual Basic Language
Specification.

Type inference applies at the procedure level, and does not apply outside a procedure in a class, structure, module, or interface.

For additional information, see Local Type Inference.

If the source code does not contain an Option Infer  statement, the Option Infer setting on the Compile Page, Project Designer (Visual Basic) is used.
If the command-line compiler is used, the /optioninfer compiler option is used.

1. In Solution Explorer, select a project. On the Project menu, click Properties.

2. Click the Compile tab.

3. Set the value in the Option infer box.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/option-infer-statement.md
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


To set Option Infer on the command lineTo set Option Infer on the command line

Default Data Types and Values

DATA TYPE SPECIFIED? INITIALIZER SPECIFIED? EXAMPLE RESULT

No No Dim qty If Option Strict  is off (the default),
the variable is set to Nothing .

If Option Strict  is on, a compile-
time error occurs.

No Yes Dim qty = 5 If Option Infer  is on (the default),
the variable takes the data type of the
initializer. See Local Type Inference.

If Option Infer  is off and 
Option Strict  is off, the variable

takes the data type of Object .

If Option Infer  is off and 
Option Strict  is on, a compile-time

error occurs.

Yes No Dim qty As Integer The variable is initialized to the default
value for the data type. For more
information, see Dim Statement.

Yes Yes Dim qty As Integer = 5 If the data type of the initializer is not
convertible to the specified data type, a
compile-time error occurs.

Example

When you create a new project, the Option Infer setting on the Compile tab is set to the Option Infer setting in the VB Defaults dialog box. To
access the VB Defaults dialog box, on the Tools menu, click Options. In the Options dialog box, expand Projects and Solutions, and then click VB
Defaults. The initial default setting in VB Defaults is On .

Include the /optioninfer compiler option in the vbc command.

The following table describes the results of various combinations of specifying the data type and initializer in a Dim  statement.

The following examples demonstrate how the Option Infer  statement enables local type inference.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


' Enable Option Infer before trying these examples.

' Variable num is an Integer.
Dim num = 5

' Variable dbl is a Double.
Dim dbl = 4.113

' Variable str is a String.
Dim str = "abc"

' Variable pList is an array of Process objects.
Dim pList = Process.GetProcesses()

' Variable i is an Integer.
For i = 1 To 10
    Console.WriteLine(i)
Next

' Variable item is a string.
Dim lst As New List(Of String) From {"abc", "def", "ghi"}

For Each item In lst
    Console.WriteLine(item)
Next

' Variable namedCust is an instance of the Customer class.
Dim namedCust = New Customer With {.Name = "Blue Yonder Airlines",
                                   .City = "Snoqualmie"}

' Variable product is an instance of an anonymous type.
Dim product = New With {Key .Name = "paperclips", .Price = 1.29}

' If customers is a collection of Customer objects in the following 
' query, the inferred type of cust is Customer, and the inferred type
' of custs is IEnumerable(Of Customer).
Dim custs = From cust In customers 
            Where cust.City = "Seattle" 
            Select cust.Name, cust.ID

Example

' Disable Option Infer when trying this example.

Dim someVar = 5
Console.WriteLine(someVar.GetType.ToString)

' If Option Infer is instead enabled, the following
' statement causes a run-time error. This is because
' someVar was implicitly defined as an integer.
someVar = "abc"
Console.WriteLine(someVar.GetType.ToString)

' Output:
'  System.Int32
'  System.String

See Also

The following example demonstrates that the run-time type can differ when a variable is identified as an Object .

Dim Statement
Local Type Inference
Option Compare Statement
Option Explicit Statement
Option Strict Statement
Visual Basic Defaults, Projects, Options Dialog Box
/optioninfer
Boxing and Unboxing

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing


                           

Option Strict Statement
7/13/2018 • 9 minutes to read • Edit Online

Syntax
Option Strict { On | Off }  

Parts
TERM DEFINITION

On Optional. Enables Option Strict  checking.

Off Optional. Disables Option Strict  checking.

Remarks

NOTENOTE

Implicit Narrowing Conversion Errors

Restricts implicit data type conversions to only widening conversions, disallows late binding, and disallows implicit typing that results in an Object  type.

When Option Strict On  or Option Strict  appears in a file, the following conditions cause a compile-time error :

Implicit narrowing conversions

Late binding

Implicit typing that results in an Object  type

In the warning configurations that you can set on the Compile Page, Project Designer (Visual Basic), there are three settings that correspond to the three conditions
that cause a compile-time error. For information about how to use these settings, see To set warning configurations in the IDE later in this topic.

The Option Strict Off  statement turns off error and warning checking for all three conditions, even if the associated IDE settings specify to turn on
these errors or warnings. The Option Strict On  statement turns on error and warning checking for all three conditions, even if the associated IDE
settings specify to turn off these errors or warnings.

If used, the Option Strict  statement must appear before any other code statements in a file.

When you set Option Strict  to On , Visual Basic checks that data types are specified for all programming elements. Data types can be specified
explicitly, or specified by using local type inference. Specifying data types for all your programming elements is recommended, for the following
reasons:

It enables IntelliSense support for your variables and parameters. This enables you to see their properties and other members as you type code.

It enables the compiler to perform type checking. Type checking helps you find statements that can fail at run time because of type conversion
errors. It also identifies calls to methods on objects that do not support those methods.

It speeds up the execution of code. One reason for this is that if you do not specify a data type for a programming element, the Visual Basic
compiler assigns it the Object  type. Compiled code might have to convert back and forth between Object  and other data types, which reduces
performance.

Implicit narrowing conversion errors occur when there is an implicit data type conversion that is a narrowing conversion.

Visual Basic can convert many data types to other data types. Data loss can occur when the value of one data type is converted to a data type that has
less precision or a smaller capacity. A run-time error occurs if such a narrowing conversion fails. Option Strict  ensures compile-time notification of
these narrowing conversions so that you can avoid them. For more information, see Implicit and Explicit Conversions and Widening and Narrowing
Conversions.

Conversions that can cause errors include implicit conversions that occur in expressions. For more information, see the following topics:

+ Operator

+= Operator

\ Operator (Visual Basic)

/= Operator (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/option-strict-statement.md
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions


Late Binding Errors

Implicit Object Type Errors

Default Data Types and ValuesDefault Data Types and Values

DATA TYPE SPECIFIED? INITIALIZER SPECIFIED? EXAMPLE RESULT

No No Dim qty If Option Strict  is off (the default),
the variable is set to Nothing .

If Option Strict  is on, a compile-
time error occurs.

No Yes Dim qty = 5 If Option Infer  is on (the default),
the variable takes the data type of the
initializer. See Local Type Inference.

If Option Infer  is off and 
Option Strict  is off, the variable

takes the data type of Object .

If Option Infer  is off and 
Option Strict  is on, a compile-time

error occurs.

Yes No Dim qty As Integer The variable is initialized to the default
value for the data type. For more
information, see Dim Statement.

Yes Yes Dim qty As Integer = 5 If the data type of the initializer is not
convertible to the specified data type, a
compile-time error occurs.

When an Option Strict Statement Is Not Present

To set Option Strict in the IDETo set Option Strict in the IDE

NOTENOTE

Char Data Type

When you concatenate strings by using the & Operator, all conversions to the strings are considered to be widening. So these conversions do not
generate an implicit narrowing conversion error, even if Option Strict  is on.

When you call a method that has an argument that has a data type different from the corresponding parameter, a narrowing conversion causes a
compile-time error if Option Strict  is on. You can avoid the compile-time error by using a widening conversion or an explicit conversion.

Implicit narrowing conversion errors are suppressed at compile-time for conversions from the elements in a For Each…Next  collection to the loop
control variable. This occurs even if Option Strict  is on. For more information, see the "Narrowing Conversions" section in For Each...Next Statement.

An object is late bound when it is assigned to a property or method of a variable that is declared to be of type Object . For more information, see Early
and Late Binding.

Implicit object type errors occur when an appropriate type cannot be inferred for a declared variable, so a type of Object  is inferred. This primarily
occurs when you use a Dim  statement to declare a variable without using an As  clause, and Option Infer  is off. For more information, see Option
Infer Statement and the Visual Basic Language Specification.

For method parameters, the As  clause is optional if Option Strict  is off. However, if any one parameter uses an As  clause, they all must use it. If 
Option Strict  is on, the As  clause is required for every parameter definition.

If you declare a variable without using an As  clause and set it to Nothing , the variable has a type of Object . No compile-time error occurs in this case
when Option Strict  is on and Option Infer  is on. An example of this is Dim something = Nothing .

The following table describes the results of various combinations of specifying the data type and initializer in a Dim Statement.

If the source code does not contain an Option Strict  statement, the Option strict setting on the Compile Page, Project Designer (Visual Basic) is used.
The Compile Page has settings that provide additional control over the conditions that generate an error.

If you are using the command-line compiler, you can use the /optionstrict compiler option to specify a setting for Option Strict .

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

1. In Solution Explorer, select a project. On the Project menu, click Properties.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


To set warning configurations in the IDETo set warning configurations in the IDE

To set the Option Strict default setting for new projectsTo set the Option Strict default setting for new projects

To set Option Strict on the command lineTo set Option Strict on the command line

Example

' If Option Strict is on, this implicit narrowing
' conversion causes a compile-time error.
' The commented statements below use explicit
' conversions to avoid a compile-time error.
Dim cyclists As Long = 5
Dim bicycles As Integer = cyclists
'Dim bicycles As Integer = CType(cyclists, Integer)
'Dim bicycles As Integer = CInt(cyclists)
'Dim bicycles As Integer = Convert.ToInt32(cyclists)

' If Option Strict is on, this implicit narrowing
' conversion causes a compile-time error.
' The commented statements below use explicit
' conversions to avoid a compile-time error.
Dim charVal As Char = "a"
'Dim charVal As Char = "a"c
'Dim charVal As Char = CType("a", Char)

' If Option Strict is on, a compile-time error occurs.
' If Option Strict is off, the string is implicitly converted
' to a Double, and then is added to the other number.
Dim myAge As Integer = "34" + 6

' If Option Strict is on, a compile-time error occurs.
' If Option Strict is off, the floating-point number
' is implicitly converted to a Long.
Dim num = 123.45 \ 10

Example

' If Option Strict is on, this late binding
' causes a compile-time error. If Option Strict
' is off, the late binding instead causes a
' run-time error.
Dim punchCard As New Object
punchCard.Column = 5

2. On the Compile tab, set the value in the Option Strict box.

When you use the Compile Page, Project Designer (Visual Basic) instead of an Option Strict  statement, you have additional control over the
conditions that generate errors. The Warning configurations section of the Compile Page has settings that correspond to the three conditions that
cause a compile-time error when Option Strict  is on. Following are these settings:

Implicit conversion

Late binding; call could fail at run time

Implicit type; object assumed

When you set Option Strict to On, all three of these warning configuration settings are set to Error. When you set Option Strict to Off, all three
settings are set to None.

You can individually change each warning configuration setting to None, Warning, or Error. If all three warning configuration settings are set to Error, 
On  appears in the Option strict  box. If all three are set to None, Off  appears in this box. For any other combination of these settings, (custom)

appears.

When you create a project, the Option Strict setting on the Compile tab is set to the Option Strict setting in the Options dialog box.

To set Option Strict  in this dialog box, on the Tools menu, click Options. In the Options dialog box, expand Projects and Solutions, and then click
VB Defaults. The initial default setting in VB Defaults is Off .

Include the /optionstrict compiler option in the vbc command.

The following examples demonstrate compile-time errors caused by implicit type conversions that are narrowing conversions. This category of errors
corresponds to the Implicit conversion condition on the Compile Page.

The following example demonstrates a compile-time error caused by late binding. This category of errors corresponds to the Late binding; call could
fail at run time condition on the Compile Page.

https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


Example

' If Option Strict is on and Option Infer is off,
' this Dim statement without an As clause 
' causes a compile-time error.
Dim cardReaders = 5

' If Option Strict is on, a compile-time error occurs.
' If Option Strict is off, the variable is set to Nothing.
Dim dryWall

' If Option Strict is on, this parameter without an
' As clause causes a compile-time error.
Private Sub DetectIntergalacticRange(ByVal photonAttenuation)

End Sub

See Also

The following examples demonstrate errors caused by variables that are declared with an implicit type of Object . This category of errors corresponds
to the Implicit type; object assumed condition on the Compile Page.

Widening and Narrowing Conversions
Implicit and Explicit Conversions
Compile Page, Project Designer (Visual Basic)
Option Explicit Statement
Type Conversion Functions
How to: Access Members of an Object
Embedded Expressions in XML
Relaxed Delegate Conversion
Late Binding in Office Solutions
/optionstrict
Visual Basic Defaults, Projects, Options Dialog Box

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-access-members-of-an-object
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://msdn.microsoft.com/library/3xxe951d
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box


                                             

Property Statement
7/13/2018 • 5 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ Default ] [ accessmodifier ]   
[ propertymodifiers ] [ Shared ] [ Shadows ] [ ReadOnly | WriteOnly ] [ Iterator ]  
Property name ( [ parameterlist ] ) [ As returntype ] [ Implements implementslist ]  
    [ <attributelist> ] [ accessmodifier ] Get  
        [ statements ]  
    End Get  
    [ <attributelist> ] [ accessmodifier ] Set ( ByVal value As returntype [, parameterlist ] )  
        [ statements ]  
    End Set  
End Property  
- or -  
[ <attributelist> ] [ Default ] [ accessmodifier ]   
[ propertymodifiers ] [ Shared ] [ Shadows ] [ ReadOnly | WriteOnly ]   
Property name ( [ parameterlist ] ) [ As returntype ] [ Implements implementslist ]  

Parts

Declares the name of a property, and the property procedures used to store and retrieve the value of the property.

attributelist

Optional. List of attributes that apply to this property or Get  or Set  procedure. See Attribute List.

Default

Optional. Specifies that this property is the default property for the class or structure on which it is defined. Default properties must accept
parameters and can be set and retrieved without specifying the property name. If you declare the property as Default , you cannot use Private

on the property or on either of its property procedures.

accessmodifier

Optional on the Property  statement and on at most one of the Get  and Set  statements. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

Private Protected

See Access levels in Visual Basic.

propertymodifiers

Optional. Can be one of the following:

Overloads

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/property-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Remarks

PART DESCRIPTION

interface Required. Name of an interface implemented by this property's containing class
or structure.

definedname Required. Name by which the property is defined in interface .

ReadOnly

Optional. See ReadOnly.

WriteOnly

Optional. See WriteOnly.

Iterator

Optional. See Iterator.

name

Required. Name of the property. See Declared Element Names.

parameterlist

Optional. List of local variable names representing the parameters of this property, and possible additional parameters of the Set  procedure.
See Parameter List.

returntype

Required if Option Strict  is On . Data type of the value returned by this property.

Implements

Optional. Indicates that this property implements one or more properties, each one defined in an interface implemented by this property's
containing class or structure. See Implements Statement.

implementslist

Required if Implements  is supplied. List of properties being implemented.

implementedproperty [ , implementedproperty ... ]

Each implementedproperty  has the following syntax and parts:

interface.definedname

Get

Optional. Required if the property is marked WriteOnly . Starts a Get  property procedure that is used to return the value of the property.

statements

Optional. Block of statements to run within the Get  or Set  procedure.

End Get

Terminates the Get  property procedure.

Set

Optional. Required if the property is marked ReadOnly . Starts a Set  property procedure that is used to store the value of the property.

End Set

Terminates the Set  property procedure.

End Property

Terminates the definition of this property.

The Property  statement introduces the declaration of a property. A property can have a Get  procedure (read only), a Set  procedure (write only), or
both (read-write). You can omit the Get  and Set  procedure when using an auto-implemented property. For more information, see Auto-Implemented
Properties.

You can use Property  only at class level. This means the declaration context for a property must be a class, structure, module, or interface, and cannot
be a source file, namespace, procedure, or block. For more information, see Declaration Contexts and Default Access Levels.

By default, properties use public access. You can adjust a property's access level with an access modifier on the Property  statement, and you can

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/auto-implemented-properties


Rules

Behavior

Example

optionally adjust one of its property procedures to a more restrictive access level.

Visual Basic passes a parameter to the Set  procedure during property assignments. If you do not supply a parameter for Set , the integrated
development environment (IDE) uses an implicit parameter named value . This parameter holds the value to be assigned to the property. You typically
store this value in a private local variable and return it whenever the Get  procedure is called.

Mixed Access Levels. If you are defining a read-write property, you can optionally specify a different access level for either the Get  or the Set

procedure, but not both. If you do this, the procedure access level must be more restrictive than the property's access level. For example, if the
property is declared Friend , you can declare the Set  procedure Private , but not Public .

If you are defining a ReadOnly  or WriteOnly  property, the single property procedure ( Get  or Set , respectively) represents all of the property.
You cannot declare a different access level for such a procedure, because that would set two access levels for the property.

Return Type. The Property  statement can declare the data type of the value it returns. You can specify any data type or the name of an
enumeration, structure, class, or interface.

If you do not specify returntype , the property returns Object .

Implementation. If this property uses the Implements  keyword, the containing class or structure must have an Implements  statement
immediately following its Class  or Structure  statement. The Implements  statement must include each interface specified in implementslist .
However, the name by which an interface defines the Property  (in definedname ) does not have to be the same as the name of this property (in 
name ).

Private quoteValue As String = "No quote assigned yet."

ReadOnly Property quoteForTheDay() As String
    Get
        quoteForTheDay = quoteValue
        Exit Property
    End Get
End Property

Private quoteValue As String = "No quote assigned yet."

ReadOnly Property quoteForTheDay() As String
    Get
        Return quoteValue
    End Get
End Property

Returning from a Property Procedure. When the Get  or Set  procedure returns to the calling code, execution continues with the statement
following the statement that invoked it.

The Exit Property  and Return  statements cause an immediate exit from a property procedure. Any number of Exit Property  and Return

statements can appear anywhere in the procedure, and you can mix Exit Property  and Return  statements.

Return Value. To return a value from a Get  procedure, you can either assign the value to the property name or include it in a Return

statement. The following example assigns the return value to the property name quoteForTheDay  and then uses the Exit Property  statement to
return.

If you use Exit Property  without assigning a value to name , the Get  procedure returns the default value for the property's data type.

The Return  statement at the same time assigns the Get  procedure return value and exits the procedure. The following example shows this.

The following example declares a property in a class.



Class Class1
    ' Define a local variable to store the property value.
    Private propertyValue As String
    ' Define the property.
    Public Property prop1() As String
        Get
            ' The Get property procedure is called when the value
            ' of a property is retrieved.
            Return propertyValue
        End Get
        Set(ByVal value As String)
            ' The Set property procedure is called when the value 
            ' of a property is modified.  The value to be assigned
            ' is passed in the argument to Set.
            propertyValue = value
        End Set
    End Property
End Class

See Also
Auto-Implemented Properties
Objects and Classes
Get Statement
Set Statement
Parameter List
Default

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/auto-implemented-properties


   

Q-Z Statements
7/13/2018 • 2 minutes to read • Edit Online

RaiseEvent ReDim REM RemoveHandler

Resume Return Select...Case Set

Stop Structure Sub SyncLock

Then Throw Try...Catch...Finally Using

While...End While With...End With Yield

See Also

The following table contains a listing of Visual Basic language statements.

A-E Statements
F-P Statements
Visual Basic Language Reference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/q-z-statements.md


        

RaiseEvent Statement
7/13/2018 • 3 minutes to read • Edit Online

Syntax
RaiseEvent eventname[( argumentlist )]  

Parts

Remarks

' Declare an event at module level.
Event LogonCompleted(ByVal UserName As String)

Sub Logon(ByVal UserName As String)
    ' Raise the event.
    RaiseEvent LogonCompleted(UserName)
End Sub

NOTENOTE

NOTENOTE

Example

Triggers an event declared at module level within a class, form, or document.

eventname

Required. Name of the event to trigger.

argumentlist

Optional. Comma-delimited list of variables, arrays, or expressions. The argumentlist  argument must be enclosed by parentheses. If there are no
arguments, the parentheses must be omitted.

The required eventname  is the name of an event declared within the module. It follows Visual Basic variable naming conventions.

If the event has not been declared within the module in which it is raised, an error occurs. The following code fragment illustrates an event declaration
and a procedure in which the event is raised.

You cannot use RaiseEvent  to raise events that are not explicitly declared in the module. For example, all forms inherit a Click event from
System.Windows.Forms.Form, it cannot be raised using RaiseEvent  in a derived form. If you declare a Click  event in the form module, it shadows the
form's own Click event. You can still invoke the form's Click event by calling the OnClick method.

By default, an event defined in Visual Basic raises its event handlers in the order that the connections are established. Because events can have ByRef

parameters, a process that connects late may receive parameters that have been changed by an earlier event handler. After the event handlers execute,
control is returned to the subroutine that raised the event.

Non-shared events should not be raised within the constructor of the class in which they are declared. Although such events do not cause run-time errors, they may
fail to be caught by associated event handlers. Use the Shared  modifier to create a shared event if you need to raise an event from a constructor.

You can change the default behavior of events by defining a custom event. For custom events, the RaiseEvent  statement invokes the event's RaiseEvent  accessor.
For more information on custom events, see Event Statement.

The following example uses events to count down seconds from 10 to 0. The code illustrates several of the event-related methods, properties, and
statements, including the RaiseEvent  statement.

The class that raises an event is the event source, and the methods that process the event are the event handlers. An event source can have multiple
handlers for the events it generates. When the class raises the event, that event is raised on every class that has elected to handle events for that
instance of the object.

The example also uses a form ( Form1 ) with a button ( Button1 ) and a text box ( TextBox1 ). When you click the button, the first text box displays a
countdown from 10 to 0 seconds. When the full time (10 seconds) has elapsed, the first text box displays "Done".

The code for Form1  specifies the initial and terminal states of the form. It also contains the code executed when events are raised.

To use this example, open a new Windows Application project, add a button named Button1  and a text box named TextBox1  to the main form, named 

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/raiseevent-statement.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.click
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.onclick


Private WithEvents mText As TimerState

Example

Private Sub Form1_Load() Handles MyBase.Load
    Button1.Text = "Start"
    mText = New TimerState
End Sub
Private Sub Button1_Click() Handles Button1.Click
    mText.StartCountdown(10.0, 0.1)
End Sub

Private Sub mText_ChangeText() Handles mText.Finished
    TextBox1.Text = "Done"
End Sub

Private Sub mText_UpdateTime(ByVal Countdown As Double
  ) Handles mText.UpdateTime

    TextBox1.Text = Format(Countdown, "##0.0")
    ' Use DoEvents to allow the display to refresh.
    My.Application.DoEvents()
End Sub

Class TimerState
    Public Event UpdateTime(ByVal Countdown As Double)
    Public Event Finished()
    Public Sub StartCountdown(ByVal Duration As Double, 
                              ByVal Increment As Double)
        Dim Start As Double = DateAndTime.Timer
        Dim ElapsedTime As Double = 0

        Dim SoFar As Double = 0
        Do While ElapsedTime < Duration
            If ElapsedTime > SoFar + Increment Then
                SoFar += Increment
                RaiseEvent UpdateTime(Duration - SoFar)
            End If
            ElapsedTime = DateAndTime.Timer - Start
        Loop
        RaiseEvent Finished()
    End Sub
End Class

NOTENOTE

See Also

Form1 . Then right-click the form and click View Code to open the Code Editor.

Add a WithEvents  variable to the declarations section of the Form1  class.

Add the following code to the code for Form1 . Replace any duplicate procedures that may exist, such as Form_Load , or Button_Click .

Press F5 to run the preceding example, and click the button labeled Start. The first text box starts to count down the seconds. When the full time (10
seconds) has elapsed, the first text box displays "Done".

The My.Application.DoEvents  method does not process events in exactly the same way as the form does. To allow the form to handle the events directly, you can
use multithreading. For more information, see Threading.

Events
Event Statement
AddHandler Statement
RemoveHandler Statement
Handles



                  

ReDim Statement (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
ReDim [ Preserve ] name(boundlist) [ ,  name(boundlist) [, ... ] ]  

Parts
TERM DEFINITION

Preserve Optional. Modifier used to preserve the data in the existing array when you change
the size of only the last dimension.

name Required. Name of the array variable. See Declared Element Names.

boundlist Required. List of bounds of each dimension of the redefined array.

Remarks

Rules

Behavior

Reallocates storage space for an array variable.

You can use the ReDim  statement to change the size of one or more dimensions of an array that has already been declared. If you have a large array and
you no longer need some of its elements, ReDim  can free up memory by reducing the array size. On the other hand, if your array needs more elements, 
ReDim  can add them.

The ReDim  statement is intended only for arrays. It's not valid on scalars (variables that contain only a single value), collections, or structures. Note that
if you declare a variable to be of type Array , the ReDim  statement doesn't have sufficient type information to create the new array.

You can use ReDim  only at procedure level. Therefore, the declaration context for the variable must be a procedure; it can't be a source file, a namespace,
an interface, a class, a structure, a module, or a block. For more information, see Declaration Contexts and Default Access Levels.

Multiple Variables. You can resize several array variables in the same declaration statement and specify the name  and boundlist  parts for each
variable. Multiple variables are separated by commas.

Array Bounds. Each entry in boundlist  can specify the lower and upper bounds of that dimension. The lower bound is always 0 (zero). The
upper bound is the highest possible index value for that dimension, not the length of the dimension (which is the upper bound plus one). The
index for each dimension can vary from 0 through its upper bound value.

The number of dimensions in boundlist  must match the original number of dimensions (rank) of the array.

Data Types. The ReDim  statement cannot change the data type of an array variable or its elements.

Initialization. The ReDim  statement cannot provide new initialization values for the array elements.

Rank. The ReDim  statement cannot change the rank (the number of dimensions) of the array.

Resizing with Preserve. If you use Preserve , you can resize only the last dimension of the array. For every other dimension, you must specify
the bound of the existing array.

For example, if your array has only one dimension, you can resize that dimension and still preserve all the contents of the array, because you are
changing the last and only dimension. However, if your array has two or more dimensions, you can change the size of only the last dimension if
you use Preserve .

Properties. You can use ReDim  on a property that holds an array of values.

Array Replacement. ReDim  releases the existing array and creates a new array with the same rank. The new array replaces the released array in
the array variable.

Initialization without Preserve. If you do not specify Preserve , ReDim  initializes the elements of the new array by using the default value for
their data type.

Initialization with Preserve. If you specify Preserve , Visual Basic copies the elements from the existing array to the new array.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/redim-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Example

Dim intArray(10, 10, 10) As Integer
ReDim Preserve intArray(10, 10, 20)
ReDim Preserve intArray(10, 10, 15)
ReDim intArray(10, 10, 10)

See Also

The following example increases the size of the last dimension of a dynamic array without losing any existing data in the array, and then decreases the
size with partial data loss. Finally, it decreases the size back to its original value and reinitializes all the array elements.

The Dim  statement creates a new array with three dimensions. Each dimension is declared with a bound of 10, so the array index for each dimension
can range from 0 through 10. In the following discussion, the three dimensions are referred to as layer, row, and column.

The first ReDim  creates a new array which replaces the existing array in variable intArray . ReDim  copies all the elements from the existing array into
the new array. It also adds 10 more columns to the end of every row in every layer and initializes the elements in these new columns to 0 (the default
value of Integer , which is the element type of the array).

The second ReDim  creates another new array and copies all the elements that fit. However, five columns are lost from the end of every row in every
layer. This is not a problem if you have finished using these columns. Reducing the size of a large array can free up memory that you no longer need.

The third ReDim  creates another new array and removes another five columns from the end of every row in every layer. This time it does not copy any
existing elements. This statement reverts the array to its original size. Because the statement doesn't include the Preserve  modifier, it sets all array
elements to their original default values.

For additional examples, see Arrays.

IndexOutOfRangeException
Const Statement
Dim Statement
Erase Statement
Nothing
Arrays

https://docs.microsoft.com/dotnet/api/system.indexoutofrangeexception


   

REM Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
REM comment  
' comment  

Parts

Remarks

NOTENOTE

Example

Dim demoStr1, demoStr2 As String
demoStr1 = "Hello" REM Comment after a statement using REM.
demoStr2 = "Goodbye" ' Comment after a statement using the ' character.
REM This entire line is a comment.
' This entire line is also a comment.

See Also

Used to include explanatory remarks in the source code of a program.

comment

Optional. The text of any comment you want to include. A space is required between the REM  keyword and comment .

You can put a REM  statement alone on a line, or you can put it on a line following another statement. The REM  statement must be the last statement on
the line. If it follows another statement, the REM  must be separated from that statement by a space.

You can use a single quotation mark ( ' ) instead of REM . This is true whether your comment follows another statement on the same line or sits alone
on a line.

You cannot continue a REM  statement by using a line-continuation sequence ( _ ). Once a comment begins, the compiler does not examine the characters for special
meaning. For a multiple-line comment, use another REM  statement or a comment symbol ( ' ) on each line.

The following example illustrates the REM  statement, which is used to include explanatory remarks in a program. It also shows the alternative of using
the single quotation-mark character ( ' ) instead of REM .

Comments in Code
How to: Break and Combine Statements in Code

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/rem-statement.md


        

RemoveHandler Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
RemoveHandler event, AddressOf eventhandler  

Parts
TERM DEFINITION

event The name of the event being handled.

eventhandler The name of the procedure currently handling the event.

Remarks

NOTENOTE

Example
Sub TestEvents()
    Dim Obj As New Class1
    ' Associate an event handler with an event.
    AddHandler Obj.Ev_Event, AddressOf EventHandler
    ' Call the method to raise the event.
    Obj.CauseSomeEvent()
    ' Stop handling events.
    RemoveHandler Obj.Ev_Event, AddressOf EventHandler
    ' This event will not be handled.
    Obj.CauseSomeEvent()
End Sub

Sub EventHandler()
    ' Handle the event.
    MsgBox("EventHandler caught event.")
End Sub

Public Class Class1
    ' Declare an event.
    Public Event Ev_Event()
    Sub CauseSomeEvent()
        ' Raise an event.
        RaiseEvent Ev_Event()
    End Sub
End Class

See Also

Removes the association between an event and an event handler.

The AddHandler  and RemoveHandler  statements allow you to start and stop event handling for a specific event at any time during program execution.

For custom events, the RemoveHandler  statement invokes the event's RemoveHandler  accessor. For more information on custom events, see Event Statement.

AddHandler Statement
Handles
Event Statement
Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/removehandler-statement.md


       

Resume Statement
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Resume [ Next | line ]  

Parts

Remarks

NOTENOTE

Example

Sub ResumeStatementDemo()
  On Error GoTo ErrorHandler   ' Enable error-handling routine.
  Dim x As Integer = 32
  Dim y As Integer = 0
  Dim z As Integer
  z = x / y   ' Creates a divide by zero error
  Exit Sub   ' Exit Sub to avoid error handler.
ErrorHandler:     ' Error-handling routine.
  Select Case Err.Number   ' Evaluate error number.
      Case 6   ' "Divide by zero" error.
        y = 1 ' Sets the value of y to 1 and tries the calculation again.
      Case Else
        ' Handle other situations here....
  End Select
  Resume   ' Resume execution at same line
  ' that caused the error.
End Sub

Requirements

See Also

Resumes execution after an error-handling routine is finished.

We suggest that you use structured exception handling in your code whenever possible, rather than using unstructured exception handling and the 
On Error  and Resume  statements. For more information, see Try...Catch...Finally Statement.

Resume

Required. If the error occurred in the same procedure as the error handler, execution resumes with the statement that caused the error. If the error
occurred in a called procedure, execution resumes at the statement that last called out of the procedure containing the error-handling routine.

Next

Optional. If the error occurred in the same procedure as the error handler, execution resumes with the statement immediately following the statement
that caused the error. If the error occurred in a called procedure, execution resumes with the statement immediately following the statement that last
called out of the procedure containing the error-handling routine (or On Error Resume Next  statement).

line

Optional. Execution resumes at the line specified in the required line  argument. The line  argument is a line label or line number and must be in the
same procedure as the error handler.

We recommend that you use structured exception handling in your code whenever possible, rather than using unstructured exception handling and the On Error

and Resume  statements. For more information, see Try...Catch...Finally Statement.

If you use a Resume  statement anywhere other than in an error-handling routine, an error occurs.

The Resume  statement cannot be used in any procedure that contains a Try...Catch...Finally  statement.

This example uses the Resume  statement to end error handling in a procedure and then resume execution with the statement that caused the error.
Error number 55 is generated to illustrate use of the Resume  statement.

Namespace: Microsoft.VisualBasic

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/resume-statement.md


Try...Catch...Finally Statement
Error Statement
On Error Statement



                 

Return Statement (Visual Basic)
7/13/2018 • 2 minutes to read • Edit Online

Syntax
Return  
-or-  
Return expression  

Part

Remarks

NOTENOTE

Example

Public Function getAgePhrase(ByVal age As Integer) As String
    If age > 60 Then Return "Senior"
    If age > 40 Then Return "Middle-aged"
    If age > 20 Then Return "Adult"
    If age > 12 Then Return "Teen-aged"
    If age > 4 Then Return "School-aged"
    If age > 1 Then Return "Toddler"
    Return "Infant"
End Function

See Also

Returns control to the code that called a Function , Sub , Get , Set , or Operator  procedure.

expression

Required in a Function , Get , or Operator  procedure. Expression that represents the value to be returned to the calling code.

In a Sub  or Set  procedure, the Return  statement is equivalent to an Exit Sub  or Exit Property  statement, and expression  must not be supplied.

In a Function , Get , or Operator  procedure, the Return  statement must include expression , and expression  must evaluate to a data type that is
convertible to the return type of the procedure. In a Function  or Get  procedure, you also have the alternative of assigning an expression to the
procedure name to serve as the return value, and then executing an Exit Function  or Exit Property  statement. In an Operator  procedure, you must
use Return expression .

You can include as many Return  statements as appropriate in the same procedure.

The code in a Finally  block runs after a Return  statement in a Try  or Catch  block is encountered, but before that Return  statement executes. A Return

statement cannot be included in a Finally  block.

The following example uses the Return  statement several times to return to the calling code when the procedure does not have to do anything else.

Function Statement
Sub Statement
Get Statement
Set Statement
Operator Statement
Property Statement
Exit Statement
Try...Catch...Finally Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/return-statement.md


            

Select...Case Statement (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
Select [ Case ] testexpression  
    [ Case expressionlist  
        [ statements ] ]  
    [ Case Else  
        [ elsestatements ] ]  
End Select  

Parts
TERM DEFINITION

testexpression Required. Expression. Must evaluate to one of the elementary data types (
Boolean , Byte , Char , Date , Double , Decimal , Integer , Long , Object ,
SByte , Short , Single , String , UInteger , ULong , and UShort ).

expressionlist Required in a Case  statement. List of expression clauses representing match
values for testexpression . Multiple expression clauses are separated by commas.
Each clause can take one of the following forms:

- expression1 To  expression2
- [ Is  ] comparisonoperator expression
- expression

Use the To  keyword to specify the boundaries of a range of match values for 
testexpression . The value of expression1  must be less than or equal to the

value of expression2 .

Use the Is  keyword with a comparison operator ( = , <> , < , <= , > , or >= )
to specify a restriction on the match values for testexpression . If the Is

keyword is not supplied, it is automatically inserted before comparisonoperator.

The form specifying only expression  is treated as a special case of the Is  form
where comparisonoperator is the equal sign ( = ). This form is evaluated as 
testexpression  = expression .

The expressions in expressionlist  can be of any data type, provided they are
implicitly convertible to the type of testexpression  and the appropriate 
comparisonoperator  is valid for the two types it is being used with.

statements Optional. One or more statements following Case  that run if testexpression

matches any clause in expressionlist .

elsestatements Optional. One or more statements following Case Else  that run if 
testexpression  does not match any clause in the expressionlist  of any of

the Case  statements.

End Select Terminates the definition of the Select ... Case  construction.

Remarks

Runs one of several groups of statements, depending on the value of an expression.

If testexpression  matches any Case  expressionlist  clause, the statements following that Case  statement run up to the next Case , Case Else , or 
End Select  statement. Control then passes to the statement following End Select . If testexpression  matches an expressionlist  clause in more than

one Case  clause, only the statements following the first match run.

The Case Else  statement is used to introduce the elsestatements  to run if no match is found between the testexpression  and an expressionlist

clause in any of the other Case  statements. Although not required, it is a good idea to have a Case Else  statement in your Select Case  construction to
handle unforeseen testexpression  values. If no Case  expressionlist  clause matches testexpression  and there is no Case Else  statement, control
passes to the statement following End Select .

You can use multiple expressions or ranges in each Case  clause. For example, the following line is valid.

Case 1 To 4, 7 To 9, 11, 13, Is > maxNumber

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/select-case-statement.md


NOTENOTE

NOTENOTE

Example

Dim number As Integer = 8
Select Case number
    Case 1 To 5
        Debug.WriteLine("Between 1 and 5, inclusive")
        ' The following is the only Case clause that evaluates to True.
    Case 6, 7, 8
        Debug.WriteLine("Between 6 and 8, inclusive")
    Case 9 To 10
        Debug.WriteLine("Equal to 9 or 10")
    Case Else
        Debug.WriteLine("Not between 1 and 10, inclusive")
End Select

See Also

The Is  keyword used in the Case  and Case Else  statements is not the same as the Is Operator, which is used for object reference comparison.

You can specify ranges and multiple expressions for character strings. In the following example, Case  matches any string that is exactly equal to
"apples", has a value between "nuts" and "soup" in alphabetical order, or contains the exact same value as the current value of testItem .

Case "apples", "nuts" To "soup", testItem

The setting of Option Compare  can affect string comparisons. Under Option Compare Text , the strings "Apples" and "apples" compare as equal, but
under Option Compare Binary , they do not.

A Case  statement with multiple clauses can exhibit behavior known as short-circuiting. Visual Basic evaluates the clauses from left to right, and if one produces a
match with testexpression , the remaining clauses are not evaluated. Short-circuiting can improve performance, but it can produce unexpected results if you are
expecting every expression in expressionlist  to be evaluated. For more information on short-circuiting, see Boolean Expressions.

If the code within a Case  or Case Else  statement block does not need to run any more of the statements in the block, it can exit the block by using the 
Exit Select  statement. This transfers control immediately to the statement following End Select .

Select Case  constructions can be nested. Each nested Select Case  construction must have a matching End Select  statement and must be completely
contained within a single Case  or Case Else  statement block of the outer Select Case  construction within which it is nested.

The following example uses a Select Case  construction to write a line corresponding to the value of the variable number . The second Case  statement
contains the value that matches the current value of number , so the statement that writes "Between 6 and 8, inclusive" runs.

Choose
End Statement
If...Then...Else Statement
Option Compare Statement
Exit Statement

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/operators-and-expressions/boolean-expressions
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.interaction.choose


          

Set Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] Set (ByVal value [ As datatype ])  
    [ statements ]  
End Set  

Parts

Remarks

Rules

Declares a Set  property procedure used to assign a value to a property.

attributelist

Optional. See Attribute List.

accessmodifier

Optional on at most one of the Get  and Set  statements in this property. Can be one of the following:

Protected

Friend

Private

Protected Friend

See Access levels in Visual Basic.

value

Required. Parameter containing the new value for the property.

datatype

Required if Option Strict  is On . Data type of the value  parameter. The data type specified must be the same as the data type of the property where
this Set  statement is declared.

statements

Optional. One or more statements that run when the Set  property procedure is called.

End Set

Required. Terminates the definition of the Set  property procedure.

Every property must have a Set  property procedure unless the property is marked ReadOnly . The Set  procedure is used to set the value of the
property.

Visual Basic automatically calls a property's Set  procedure when an assignment statement provides a value to be stored in the property.

Visual Basic passes a parameter to the Set  procedure during property assignments. If you do not supply a parameter for Set , the integrated
development environment (IDE) uses an implicit parameter named value . The parameter holds the value to be assigned to the property. You typically
store this value in a private local variable and return it whenever the Get  procedure is called.

The body of the property declaration can contain only the property's Get  and Set  procedures between the Property Statement and the End Property

statement. It cannot store anything other than those procedures. In particular, it cannot store the property's current value. You must store this value
outside the property, because if you store it inside either of the property procedures, the other property procedure cannot access it. The usual approach
is to store the value in a Private variable declared at the same level as the property. You must define a Set  procedure inside the property to which it
applies.

The Set  procedure defaults to the access level of its containing property unless you use accessmodifier  in the Set  statement.

Mixed Access Levels. If you are defining a read-write property, you can optionally specify a different access level for either the Get  or the Set

procedure, but not both. If you do this, the procedure access level must be more restrictive than the property's access level. For example, if the
property is declared Friend , you can declare the Set  procedure Private , but not Public .

If you are defining a WriteOnly  property, the Set  procedure represents the entire property. You cannot declare a different access level for Set ,
because that would set two access levels for the property.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/set-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


Behavior

Example

Class propClass
    Private propVal As Integer
    Property prop1() As Integer
        Get
            Return propVal
        End Get
        Set(ByVal value As Integer)
            propVal = value
        End Set
    End Property
End Class

See Also

Returning from a Property Procedure. When the Set  procedure returns to the calling code, execution continues following the statement that
provided the value to be stored.

Set  property procedures can return using either the Return Statement or the Exit Statement.

The Exit Property  and Return  statements cause an immediate exit from a property procedure. Any number of Exit Property  and Return

statements can appear anywhere in the procedure, and you can mix Exit Property  and Return  statements.

The following example uses the Set  statement to set the value of a property.

Get Statement
Property Statement
Sub Statement
Property Procedures

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures


     

Stop Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Stop  

Remarks

NOTENOTE

Example

Dim i As Integer
For i = 1 To 10
    Debug.WriteLine(i)
    ' Stop during each iteration and wait for user to resume.
    Stop
Next i

See Also

Suspends execution.

You can place Stop  statements anywhere in procedures to suspend execution. Using the Stop  statement is similar to setting a breakpoint in the code.

The Stop  statement suspends execution, but unlike End , it does not close any files or clear any variables, unless it is encountered in a compiled
executable (.exe) file.

If the Stop  statement is encountered in code that is running outside of the integrated development environment (IDE), the debugger is invoked. This is true
regardless of whether the code was compiled in debug or retail mode.

This example uses the Stop  statement to suspend execution for each iteration through the For...Next  loop.

End Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/stop-statement.md


                           

Structure Statement
7/13/2018 • 5 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ accessmodifier ] [ Shadows ] [ Partial ] _  
Structure name [ ( Of typelist ) ]  
    [ Implements interfacenames ]  
    [ datamemberdeclarations ]  
    [ methodmemberdeclarations ]  
End Structure  

Parts
TERM DEFINITION

attributelist Optional. See Attribute List.

accessmodifier Optional. Can be one of the following:

- Public
- Protected
- Friend
- Private
- Protected Friend
- Private Protected 

See Access levels in Visual Basic.

Shadows Optional. See Shadows.

Partial Optional. Indicates a partial definition of the structure. See Partial.

name Required. Name of this structure. See Declared Element Names.

Of Optional. Specifies that this is a generic structure.

typelist Required if you use the Of keyword. List of type parameters for this structure. See
Type List.

Implements Optional. Indicates that this structure implements the members of one or more
interfaces. See Implements Statement.

interfacenames Required if you use the Implements  statement. The names of the interfaces this
structure implements.

datamemberdeclarations Required. Zero or more Const , Dim , Enum , or Event  statements declaring
data members of the structure.

methodmemberdeclarations Optional. Zero or more declarations of Function , Operator , Property , or 
Sub  procedures, which serve as method members of the structure.

End Structure Required. Terminates the Structure  definition.

Remarks

Declares the name of a structure and introduces the definition of the variables, properties, events, and procedures that the structure comprises.

The Structure  statement defines a composite value type that you can customize. A structure is a generalization of the user-defined type (UDT) of
previous versions of Visual Basic. For more information, see Structures.

Structures support many of the same features as classes. For example, structures can have properties and procedures, they can implement interfaces,
and they can have parameterized constructors. However, there are significant differences between structures and classes in areas such as inheritance,
declarations, and usage. Also, classes are reference types and structures are value types. For more information, see Structures and Classes.

You can use Structure  only at namespace or module level. This means the declaration context for a structure must be a source file, namespace, class,
structure, module, or interface, and cannot be a procedure or block. For more information, see Declaration Contexts and Default Access Levels.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/structure-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures-and-classes


Rules

Behavior

Example

Structures default to Friend access. You can adjust their access levels with the access modifiers. For more information, see Access levels in Visual Basic.

Nesting. You can define one structure within another. The outer structure is called the containing structure, and the inner structure is called a
nested structure. However, you cannot access a nested structure's members through the containing structure. Instead, you must declare a variable
of the nested structure's data type.

Member Declaration. You must declare every member of a structure. A structure member cannot be Protected or Protected Friend  because
nothing can inherit from a structure. The structure itself, however, can be Protected  or Protected Friend .

You can declare zero or more nonshared variables or nonshared, noncustom events in a structure. You cannot have only constants, properties,
and procedures, even if some of them are nonshared.

Initialization. You cannot initialize the value of any nonshared data member of a structure as part of its declaration. You must either initialize
such a data member by means of a parameterized constructor on the structure, or assign a value to the member after you have created an
instance of the structure.

Inheritance. A structure cannot inherit from any type other than ValueType, from which all structures inherit. In particular, one structure cannot
inherit from another.

You cannot use the Inherits Statement in a structure definition, even to specify ValueType.

Implementation. If the structure uses the Implements Statement, you must implement every member defined by every interface you specify in 
interfacenames .

Default Property. A structure can specify at most one property as its default property, using the Default modifier. For more information, see
Default.

Access Level. Within a structure, you can declare each member with its own access level. All structure members default to Public access. Note
that if the structure itself has a more restricted access level, this automatically restricts access to its members, even if you adjust their access levels
with the access modifiers.

Scope. A structure is in scope throughout its containing namespace, class, structure, or module.

The scope of every structure member is the entire structure.

Lifetime. A structure does not itself have a lifetime. Rather, each instance of that structure has a lifetime independent of all other instances.

The lifetime of an instance begins when it is created by a New Operator clause. It ends when the lifetime of the variable that holds it ends.

You cannot extend the lifetime of a structure instance. An approximation to static structure functionality is provided by a module. For more
information, see Module Statement.

Structure members have lifetimes depending on how and where they are declared. For more information, see "Lifetime" in Class Statement.

Qualification. Code outside a structure must qualify a member's name with the name of that structure.

If code inside a nested structure makes an unqualified reference to a programming element, Visual Basic searches for the element first in the
nested structure, then in its containing structure, and so on out to the outermost containing element. For more information, see References to
Declared Elements.

Memory Consumption. As with all composite data types, you cannot safely calculate the total memory consumption of a structure by adding
together the nominal storage allocations of its members. Furthermore, you cannot safely assume that the order of storage in memory is the
same as your order of declaration. If you need to control the storage layout of a structure, you can apply the StructLayoutAttribute attribute to
the Structure  statement.

The following example uses the Structure  statement to define a set of related data for an employee. It shows the use of Public , Friend , and Private

members to reflect the sensitivity of the data items. It also shows procedure, property, and event members.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://msdn.microsoft.com/library/system.runtime.interopservices.structlayoutattribute(v=vs.110).aspx


Public Structure employee
    ' Public members, accessible from throughout declaration region.
    Public firstName As String
    Public middleName As String
    Public lastName As String
    ' Friend members, accessible from anywhere within the same assembly.
    Friend employeeNumber As Integer
    Friend workPhone As Long
    ' Private members, accessible only from within the structure itself.
    Private homePhone As Long
    Private level As Integer
    Private salary As Double
    Private bonus As Double
    ' Procedure member, which can access structure's private members.
    Friend Sub calculateBonus(ByVal rate As Single)
        bonus = salary * CDbl(rate)
    End Sub
    ' Property member to return employee's eligibility.
    Friend ReadOnly Property eligible() As Boolean
        Get
            Return level >= 25
        End Get
    End Property
    ' Event member, raised when business phone number has changed.
    Public Event changedWorkPhone(ByVal newPhone As Long)
End Structure

See Also
Class Statement
Interface Statement
Module Statement
Dim Statement
Const Statement
Enum Statement
Event Statement
Operator Statement
Property Statement
Structures and Classes

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures-and-classes


                                              

Sub Statement (Visual Basic)
7/13/2018 • 6 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ Partial ] [ accessmodifier ] [ proceduremodifiers ] [ Shared ] [ Shadows ] [ Async ]  
Sub name [ (Of typeparamlist) ] [ (parameterlist) ] [ Implements implementslist | Handles eventlist ]  
    [ statements ]  
    [ Exit Sub ]  
    [ statements ]  
End Sub  

Parts

Declares the name, parameters, and code that define a Sub  procedure.

attributelist

Optional. See Attribute List.

Partial

Optional. Indicates definition of a partial method. See Partial Methods.

accessmodifier

Optional. Can be one of the following:

Public

Protected

Friend

Private

Protected Friend

Private Protected

See Access levels in Visual Basic.

proceduremodifiers

Optional. Can be one of the following:

Overloads

Overrides

Overridable

NotOverridable

MustOverride

MustOverride Overrides

NotOverridable Overrides

Shared

Optional. See Shared.

Shadows

Optional. See Shadows.

Async

Optional. See Async.

name

Required. Name of the procedure. See Declared Element Names. To create a constructor procedure for a class, set the name of a Sub  procedure
to the New  keyword. For more information, see Object Lifetime: How Objects Are Created and Destroyed.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/sub-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/partial-methods
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/protected-friend
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private-protected
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed


Remarks

Defining a Sub Procedure

Returning from a Sub Procedure

PART DESCRIPTION

interface Required. Name of an interface implemented by this procedure's containing
class or structure.

definedname Required. Name by which the procedure is defined in interface .

PART DESCRIPTION

eventvariable Required. Object variable declared with the data type of the class or structure
that raises the event.

event Required. Name of the event this procedure handles.

typeparamlist

Optional. List of type parameters for a generic procedure. See Type List.

parameterlist

Optional. List of local variable names representing the parameters of this procedure. See Parameter List.

Implements

Optional. Indicates that this procedure implements one or more Sub  procedures, each one defined in an interface implemented by this
procedure's containing class or structure. See Implements Statement.

implementslist

Required if Implements  is supplied. List of Sub  procedures being implemented.

implementedprocedure [ , implementedprocedure ... ]

Each implementedprocedure  has the following syntax and parts:

interface.definedname

Handles

Optional. Indicates that this procedure can handle one or more specific events. See Handles.

eventlist

Required if Handles  is supplied. List of events this procedure handles.

eventspecifier [ , eventspecifier ... ]

Each eventspecifier  has the following syntax and parts:

eventvariable.event

statements

Optional. Block of statements to run within this procedure.

End Sub

Terminates the definition of this procedure.

All executable code must be inside a procedure. Use a Sub  procedure when you don't want to return a value to the calling code. Use a Function

procedure when you want to return a value.

You can define a Sub  procedure only at the module level. The declaration context for a sub procedure must, therefore, be a class, a structure, a module,
or an interface and can't be a source file, a namespace, a procedure, or a block. For more information, see Declaration Contexts and Default Access
Levels.

Sub  procedures default to public access. You can adjust their access levels by using the access modifiers.

If the procedure uses the Implements  keyword, the containing class or structure must have an Implements  statement that immediately follows its 
Class  or Structure  statement. The Implements  statement must include each interface that's specified in implementslist . However, the name by which

an interface defines the Sub  (in definedname ) doesn't have to match the name of this procedure (in name ).



Sub mySub(ByVal q As String)  
    Return  
End Sub   

Calling a Sub Procedure

Async Sub Procedures

NOTENOTE

Example

Sub computeArea(ByVal length As Double, ByVal width As Double)
    ' Declare local variable.
    Dim area As Double
    If length = 0 Or width = 0 Then
        ' If either argument = 0 then exit Sub immediately.
        Exit Sub
    End If
    ' Calculate area of rectangle.
    area = length * width
    ' Print area to Immediate window.
    Debug.WriteLine(area)
End Sub

Example

When a Sub  procedure returns to the calling code, execution continues with the statement after the statement that called it.

The following example shows a return from a Sub  procedure.

The Exit Sub  and Return  statements cause an immediate exit from a Sub  procedure. Any number of Exit Sub  and Return  statements can appear
anywhere in the procedure, and you can mix Exit Sub  and Return  statements.

You call a Sub  procedure by using the procedure name in a statement and then following that name with its argument list in parentheses. You can omit
the parentheses only if you don't supply any arguments. However, your code is more readable if you always include the parentheses.

A Sub  procedure and a Function  procedure can have parameters and perform a series of statements. However, a Function  procedure returns a value,
and a Sub  procedure doesn't. Therefore, you can't use a Sub  procedure in an expression.

You can use the Call  keyword when you call a Sub  procedure, but that keyword isn't recommended for most uses. For more information, see Call
Statement.

Visual Basic sometimes rearranges arithmetic expressions to increase internal efficiency. For that reason, if your argument list includes expressions that
call other procedures, you shouldn't assume that those expressions will be called in a particular order.

By using the Async feature, you can invoke asynchronous functions without using explicit callbacks or manually splitting your code across multiple
functions or lambda expressions.

If you mark a procedure with the Async modifier, you can use the Await operator in the procedure. When control reaches an Await  expression in the 
Async  procedure, control returns to the caller, and progress in the procedure is suspended until the awaited task completes. When the task is complete,

execution can resume in the procedure.

An Async  procedure returns to the caller when either the first awaited object that’s not yet complete is encountered or the end of the Async  procedure is reached,
whichever occurs first.

You can also mark a Function Statement with the Async  modifier. An Async  function can have a return type of Task<TResult> or Task. An example later
in this topic shows an Async  function that has a return type of Task<TResult>.

Async  Sub  procedures are primarily used for event handlers, where a value can't be returned. An Async  Sub  procedure can't be awaited, and the
caller of an Async  Sub  procedure can't catch exceptions that the Sub  procedure throws.

An Async  procedure can't declare any ByRef parameters.

For more information about Async  procedures, see Asynchronous Programming with Async and Await, Control Flow in Async Programs, and Async
Return Types.

The following example uses the Sub  statement to define the name, parameters, and code that form the body of a Sub  procedure.

In the following example, DelayAsync  is an Async  Function  that has a return type of Task<TResult>. DelayAsync  has a Return  statement that returns
an integer. Therefore, the function declaration of DelayAsync  must have a return type of Task(Of Integer) . Because the return type is Task(Of Integer) ,
the evaluation of the Await  expression in DoSomethingAsync  produces an integer, as the following statement shows: 
Dim result As Integer = Await delayTask .

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/control-flow-in-async-programs
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/async-return-types
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1


' Imports System.Diagnostics
' Imports System.Threading.Tasks

' This Click event is marked with the Async modifier.
Private Async Sub startButton_Click(sender As Object, e As RoutedEventArgs) Handles startButton.Click
    Await DoSomethingAsync()
End Sub

Private Async Function DoSomethingAsync() As Task
    Dim delayTask As Task(Of Integer) = DelayAsync()
    Dim result As Integer = Await delayTask

    ' The previous two statements may be combined into
    ' the following statement.
    ' Dim result As Integer = Await DelayAsync()

    Debug.WriteLine("Result: " & result)
End Function

Private Async Function DelayAsync() As Task(Of Integer)
    Await Task.Delay(100)
    Return 5
End Function

'  Output:
'   Result: 5

See Also

The startButton_Click  procedure is an example of an Async Sub  procedure. Because DoSomethingAsync  is an Async  function, the task for the call to 
DoSomethingAsync  must be awaited, as the following statement shows: Await DoSomethingAsync() . The startButton_Click  Sub  procedure must be

defined with the Async  modifier because it has an Await  expression.

Implements Statement
Function Statement
Parameter List
Dim Statement
Call Statement
Of
Parameter Arrays
How to: Use a Generic Class
Troubleshooting Procedures
Partial Methods

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/parameter-arrays
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-use-a-generic-class
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/troubleshooting-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/partial-methods


     

SyncLock Statement
7/13/2018 • 5 minutes to read • Edit Online

Syntax
SyncLock lockobject  
    [ block ]  
End SyncLock  

Parts

Remarks

Rules

Behavior

Programming Practices

Acquires an exclusive lock for a statement block before executing the block.

lockobject

Required. Expression that evaluates to an object reference.

block

Optional. Block of statements that are to execute when the lock is acquired.

End SyncLock

Terminates a SyncLock  block.

The SyncLock  statement ensures that multiple threads do not execute the statement block at the same time. SyncLock  prevents each thread from
entering the block until no other thread is executing it.

The most common use of SyncLock  is to protect data from being updated by more than one thread simultaneously. If the statements that manipulate
the data must go to completion without interruption, put them inside a SyncLock  block.

A statement block protected by an exclusive lock is sometimes called a critical section.

Branching. You cannot branch into a SyncLock  block from outside the block.

Lock Object Value. The value of lockobject  cannot be Nothing . You must create the lock object before you use it in a SyncLock  statement.

You cannot change the value of lockobject  while executing a SyncLock  block. The mechanism requires that the lock object remain unchanged.

You can't use the Await operator in a SyncLock  block.

Mechanism. When a thread reaches the SyncLock  statement, it evaluates the lockobject  expression and suspends execution until it acquires an
exclusive lock on the object returned by the expression. When another thread reaches the SyncLock  statement, it does not acquire a lock until the
first thread executes the End SyncLock  statement.

Protected Data. If lockobject  is a Shared  variable, the exclusive lock prevents a thread in any instance of the class from executing the SyncLock

block while any other thread is executing it. This protects data that is shared among all the instances.

If lockobject  is an instance variable (not Shared ), the lock prevents a thread running in the current instance from executing the SyncLock  block
at the same time as another thread in the same instance. This protects data maintained by the individual instance.

Acquisition and Release. A SyncLock  block behaves like a Try...Finally  construction in which the Try  block acquires an exclusive lock on 
lockobject  and the Finally  block releases it. Because of this, the SyncLock  block guarantees release of the lock, no matter how you exit the

block. This is true even in the case of an unhandled exception.

Framework Calls. The SyncLock  block acquires and releases the exclusive lock by calling the Enter  and Exit  methods of the Monitor  class in
the System.Threading namespace.

The lockobject  expression should always evaluate to an object that belongs exclusively to your class. You should declare a Private  object variable to
protect data belonging to the current instance, or a Private Shared  object variable to protect data common to all instances.

You should not use the Me  keyword to provide a lock object for instance data. If code external to your class has a reference to an instance of your class,
it could use that reference as a lock object for a SyncLock  block completely different from yours, protecting different data. In this way, your class and the
other class could block each other from executing their unrelated SyncLock  blocks. Similarly locking on a string can be problematic since any other code

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/synclock-statement.md
https://docs.microsoft.com/dotnet/api/system.threading


Examples
DescriptionDescription

CodeCode

Class simpleMessageList
    Public messagesList() As String = New String(50) {}
    Public messagesLast As Integer = -1
    Private messagesLock As New Object
    Public Sub addAnotherMessage(ByVal newMessage As String)
        SyncLock messagesLock
            messagesLast += 1
            If messagesLast < messagesList.Length Then
                messagesList(messagesLast) = newMessage
            End If
        End SyncLock
    End Sub
End Class

DescriptionDescription

CodeCode

in the process using the same string will share the same lock.

You should also not use the Me.GetType  method to provide a lock object for shared data. This is because GetType  always returns the same Type  object
for a given class name. External code could call GetType  on your class and obtain the same lock object you are using. This would result in the two
classes blocking each other from their SyncLock  blocks.

The following example shows a class that maintains a simple list of messages. It holds the messages in an array and the last used element of that array
in a variable. The addAnotherMessage  procedure increments the last element and stores the new message. Those two operations are protected by the 
SyncLock  and End SyncLock  statements, because once the last element has been incremented, the new message must be stored before any other

thread can increment the last element again.

If the simpleMessageList  class shared one list of messages among all its instances, the variables messagesList  and messagesLast  would be declared as 
Shared . In this case, the variable messagesLock  should also be Shared , so that there would be a single lock object used by every instance.

The following example uses threads and SyncLock . As long as the SyncLock  statement is present, the statement block is a critical section and balance

never becomes a negative number. You can comment out the SyncLock  and End SyncLock  statements to see the effect of leaving out the SyncLock

keyword.



Imports System.Threading

Module Module1

    Class Account
        Dim thisLock As New Object
        Dim balance As Integer

        Dim r As New Random()

        Public Sub New(ByVal initial As Integer)
            balance = initial
        End Sub

        Public Function Withdraw(ByVal amount As Integer) As Integer
            ' This condition will never be true unless the SyncLock statement
            ' is commented out:
            If balance < 0 Then
                Throw New Exception("Negative Balance")
            End If

            ' Comment out the SyncLock and End SyncLock lines to see
            ' the effect of leaving out the SyncLock keyword.
            SyncLock thisLock
                If balance >= amount Then
                    Console.WriteLine("Balance before Withdrawal :  " & balance)
                    Console.WriteLine("Amount to Withdraw        : -" & amount)
                    balance = balance - amount
                    Console.WriteLine("Balance after Withdrawal  :  " & balance)
                    Return amount
                Else
                    ' Transaction rejected.
                    Return 0
                End If
            End SyncLock
        End Function

        Public Sub DoTransactions()
            For i As Integer = 0 To 99
                Withdraw(r.Next(1, 100))
            Next
        End Sub
    End Class

    Sub Main()
        Dim threads(10) As Thread
        Dim acc As New Account(1000)

        For i As Integer = 0 To 9
            Dim t As New Thread(New ThreadStart(AddressOf acc.DoTransactions))
            threads(i) = t
        Next

        For i As Integer = 0 To 9
            threads(i).Start()
        Next
    End Sub

End Module

CommentsComments

See Also
System.Threading
Monitor
Thread Synchronization
Threading

https://docs.microsoft.com/dotnet/api/system.threading
https://docs.microsoft.com/dotnet/api/system.threading.monitor
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/threading/thread-synchronization


  

Then Statement
7/13/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Introduces a statement block to be compiled or executed if a tested condition is true.

The Then  keyword can be used in these contexts:

#If...Then...#Else Directive

If...Then...Else Statement

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/then-statement.md


   

Throw Statement (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
Throw [ expression ]  

Part

Remarks

Example

' Throws a new exception.
Throw New System.Exception("An exception has occurred.")

Requirements

See Also

Throws an exception within a procedure.

expression

Provides information about the exception to be thrown. Optional when residing in a Catch  statement, otherwise required.

The Throw  statement throws an exception that you can handle with structured exception-handling code ( Try ... Catch ... Finally ) or unstructured
exception-handling code ( On Error GoTo ). You can use the Throw  statement to trap errors within your code because Visual Basic moves up the call
stack until it finds the appropriate exception-handling code.

A Throw  statement with no expression can only be used in a Catch  statement, in which case the statement rethrows the exception currently being
handled by the Catch  statement.

The Throw  statement resets the call stack for the expression  exception. If expression  is not provided, the call stack is left unchanged. You can access
the call stack for the exception through the StackTrace property.

The following code uses the Throw  statement to throw an exception:

Namespace: Microsoft.VisualBasic

Module: Interaction

Assembly: Visual Basic Runtime Library (in Microsoft.VisualBasic.dll)

Try...Catch...Finally Statement
On Error Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/throw-statement.md
https://docs.microsoft.com/dotnet/api/system.exception.stacktrace


                            

Try...Catch...Finally Statement (Visual Basic)
5/4/2018 • 13 minutes to read • Edit Online

Syntax
Try  
    [ tryStatements ]  
    [ Exit Try ]  
[ Catch [ exception [ As type ] ] [ When expression ]  
    [ catchStatements ]  
    [ Exit Try ] ]  
[ Catch ... ]  
[ Finally  
    [ finallyStatements ] ]  
End Try  

Parts
TERM DEFINITION

tryStatements Optional. Statement(s) where an error can occur. Can be a compound statement.

Catch Optional. Multiple Catch  blocks permitted. If an exception occurs when
processing the Try  block, each Catch  statement is examined in textual order to
determine whether it handles the exception, with exception  representing the
exception that has been thrown.

exception Optional. Any variable name. The initial value of exception  is the value of the
thrown error. Used with Catch  to specify the error caught. If omitted, the Catch

statement catches any exception.

type Optional. Specifies the type of class filter. If the value of exception  is of the type
specified by type  or of a derived type, the identifier becomes bound to the
exception object.

When Optional. A Catch  statement with a When  clause catches exceptions only when 
expression  evaluates to True . A When  clause is applied only after checking the

type of the exception, and expression  may refer to the identifier representing the
exception.

expression Optional. Must be implicitly convertible to Boolean . Any expression that describes
a generic filter. Typically used to filter by error number. Used with When  keyword to
specify circumstances under which the error is caught.

catchStatements Optional. Statement(s) to handle errors that occur in the associated Try  block.
Can be a compound statement.

Exit Try Optional. Keyword that breaks out of the Try...Catch...Finally  structure.
Execution resumes with the code immediately following the End Try  statement.
The Finally  statement will still be executed. Not allowed in Finally  blocks.

Finally Optional. A Finally  block is always executed when execution leaves any part of
the Try...Catch  statement.

finallyStatements Optional. Statement(s) that are executed after all other error processing has
occurred.

End Try Terminates the Try...Catch...Finally  structure.

Remarks

Provides a way to handle some or all possible errors that may occur in a given block of code, while still running code.

If you expect that a particular exception might occur during a particular section of code, put the code in a Try  block and use a Catch  block to retain
control and handle the exception if it occurs.

A Try…Catch  statement consists of a Try  block followed by one or more Catch  clauses, which specify handlers for various exceptions. When an
exception is thrown in a Try  block, Visual Basic looks for the Catch  statement that handles the exception. If a matching Catch  statement is not found,

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/try-catch-finally-statement.md


TIPTIP

Finally Block

TIPTIP

Exception Argument

Considerations When Using a Try…Catch Statement

Visual Basic examines the method that called the current method, and so on up the call stack. If no Catch  block is found, Visual Basic displays an
unhandled exception message to the user and stops execution of the program.

You can use more than one Catch  statement in a Try…Catch  statement. If you do this, the order of the Catch  clauses is significant because they are
examined in order. Catch the more specific exceptions before the less specific ones.

The following Catch  statement conditions are the least specific, and will catch all exceptions that derive from the Exception class. You should ordinarily
use one of these variations as the last Catch  block in the Try...Catch...Finally  structure, after catching all the specific exceptions you expect. Control
flow can never reach a Catch  block that follows either of these variations.

The type  is Exception , for example: Catch ex As Exception

The statement has no exception  variable, for example: Catch

When a Try…Catch…Finally  statement is nested in another Try  block, Visual Basic first examines each Catch  statement in the innermost Try  block. If
no matching Catch  statement is found, the search proceeds to the Catch  statements of the outer Try…Catch…Finally  block.

Local variables from a Try  block are not available in a Catch  block because they are separate blocks. If you want to use a variable in more than one
block, declare the variable outside the Try...Catch...Finally  structure.

The Try…Catch…Finally  statement is available as an IntelliSense code snippet. In the Code Snippets Manager, expand Code Patterns - If, For Each, Try Catch,
Property, etc, and then Error Handling (Exceptions). For more information, see Code Snippets.

If you have one or more statements that must run before you exit the Try  structure, use a Finally  block. Control passes to the Finally  block just
before it passes out of the Try…Catch  structure. This is true even if an exception occurs anywhere inside the Try  structure.

A Finally  block is useful for running any code that must execute even if there is an exception. Control is passed to the Finally  block regardless of
how the Try...Catch  block exits.

The code in a Finally  block runs even if your code encounters a Return  statement in a Try  or Catch  block. Control does not pass from a Try  or 
Catch  block to the corresponding Finally  block in the following cases:

An End Statement is encountered in the Try  or Catch  block.

A StackOverflowException is thrown in the Try  or Catch  block.

It is not valid to explicitly transfer execution into a Finally  block. Transferring execution out of a Finally  block is not valid, except through an
exception.

If a Try  statement does not contain at least one Catch  block, it must contain a Finally  block.

If you do not have to catch specific exceptions, the Using  statement behaves like a Try…Finally  block, and guarantees disposal of the resources, regardless of how
you exit the block. This is true even with an unhandled exception. For more information, see Using Statement.

The Catch  block exception  argument is an instance of the Exception class or a class that derives from the Exception  class. The Exception  class
instance corresponds to the error that occurred in the Try  block.

The properties of the Exception  object help to identify the cause and location of an exception. For example, the StackTrace property lists the called
methods that led to the exception, helping you find where the error occurred in the code. Message returns a message that describes the exception.
HelpLink returns a link to an associated Help file. InnerException returns the Exception  object that caused the current exception, or it returns Nothing  if
there is no original Exception .

Use a Try…Catch  statement only to signal the occurrence of unusual or unanticipated program events. Reasons for this include the following:

Catching exceptions at runtime creates additional overhead, and is likely to be slower than pre-checking to avoid exceptions.

If a Catch  block is not handled correctly, the exception might not be reported correctly to users.

Exception handling makes a program more complex.

You do not always need a Try…Catch  statement to check for a condition that is likely to occur. The following example checks whether a file exists before
trying to open it. This reduces the need for catching an exception thrown by the OpenText method.

https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/visualstudio/ide/code-snippets
https://docs.microsoft.com/dotnet/api/system.stackoverflowexception
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/dotnet/api/system.exception.stacktrace
https://docs.microsoft.com/dotnet/api/system.exception.message
https://docs.microsoft.com/dotnet/api/system.exception.helplink
https://docs.microsoft.com/dotnet/api/system.exception.innerexception
https://docs.microsoft.com/dotnet/api/system.io.file.opentext


Private Sub TextFileExample(ByVal filePath As String)

    ' Verify that the file exists.
    If System.IO.File.Exists(filePath) = False Then
        Console.Write("File Not Found: " & filePath)
    Else
        ' Open the text file and display its contents.
        Dim sr As System.IO.StreamReader =
            System.IO.File.OpenText(filePath)

        Console.Write(sr.ReadToEnd)

        sr.Close()
    End If
End Sub

Async Methods

Iterators

Partial-Trust Situations

Try
    Process.Start("http://www.microsoft.com")
Catch ex As Exception
    MsgBox("Can't load Web page" & vbCrLf & ex.Message)
End Try

Example

Ensure that code in Catch  blocks can properly report exceptions to users, whether through thread-safe logging or appropriate messages. Otherwise,
exceptions might remain unknown.

If you mark a method with the Async modifier, you can use the Await operator in the method. A statement with the Await  operator suspends execution
of the method until the awaited task completes. The task represents ongoing work. When the task that's associated with the Await  operator finishes,
execution resumes in the same method. For more information, see Control Flow in Async Programs.

A task returned by an Async method may end in a faulted state, indicating that it completed due to an unhandled exception. A task may also end in a
canceled state, which results in an OperationCanceledException  being thrown out of the await expression. To catch either type of exception, place the 
Await  expression that's associated with the task in a Try  block, and catch the exception in the Catch  block. An example is provided later in this topic.

A task can be in a faulted state because multiple exceptions were responsible for its faulting. For example, the task might be the result of a call to
Task.WhenAll. When you await such a task, the caught exception is only one of the exceptions, and you can't predict which exception will be caught. An
example is provided later in this topic.

An Await  expression can't be inside a Catch  block or Finally  block.

An iterator function or Get  accessor performs a custom iteration over a collection. An iterator uses a Yield statement to return each element of the
collection one at a time. You call an iterator function by using a For Each...Next Statement.

A Yield  statement can be inside a Try  block. A Try  block that contains a Yield  statement can have Catch  blocks, and can have a Finally  block.
See the "Try Blocks in Visual Basic" section of Iterators for an example.

A Yield  statement cannot be inside a Catch  block or a Finally  block.

If the For Each  body (outside of the iterator function) throws an exception, a Catch  block in the iterator function is not executed, but a Finally  block
in the iterator function is executed. A Catch  block inside an iterator function catches only exceptions that occur inside the iterator function.

In partial-trust situations, such as an application hosted on a network share, Try...Catch...Finally  does not catch security exceptions that occur before
the method that contains the call is invoked. The following example, when you put it on a server share and run from there, produces the error
"System.Security.SecurityException: Request Failed." For more information about security exceptions, see the SecurityException class.

In such a partial-trust situation, you have to put the Process.Start  statement in a separate Sub . The initial call to the Sub  will fail. This enables 
Try...Catch  to catch it before the Sub  that contains Process.Start  is started and the security exception produced.

The following example illustrates the structure of the Try...Catch...Finally  statement.

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/control-flow-in-async-programs
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/dotnet/api/system.security.securityexception


Public Sub TryExample()
    ' Declare variables.
    Dim x As Integer = 5
    Dim y As Integer = 0

    ' Set up structured error handling.
    Try
        ' Cause a "Divide by Zero" exception.
        x = x \ y

        ' This statement does not execute because program
        ' control passes to the Catch block when the
        ' exception occurs.
        MessageBox.Show("end of Try block")
    Catch ex As Exception
        ' Show the exception's message.
        MessageBox.Show(ex.Message)

        ' Show the stack trace, which is a list of methods
        ' that are currently executing.
        MessageBox.Show("Stack Trace: " & vbCrLf & ex.StackTrace)
    Finally
        ' This line executes whether or not the exception occurs.
        MessageBox.Show("in Finally block")
    End Try
End Sub

Example

Public Sub RunSample()
    Try
        CreateException()
    Catch ex As System.IO.IOException
        ' Code that reacts to IOException.
    Catch ex As NullReferenceException
        MessageBox.Show("NullReferenceException: " & ex.Message)
        MessageBox.Show("Stack Trace: " & vbCrLf & ex.StackTrace)
    Catch ex As Exception
        ' Code that reacts to any other exception.
    End Try
End Sub

Private Sub CreateException()
    ' This code throws a NullReferenceException.
    Dim obj = Nothing
    Dim prop = obj.Name

    ' This code also throws a NullReferenceException.
    'Throw New NullReferenceException("Something happened.")
End Sub

Example

Private Sub WhenExample()
    Dim i As Integer = 5

    Try
        Throw New ArgumentException()
    Catch e As OverflowException When i = 5
        Console.WriteLine("First handler")
    Catch e As ArgumentException When i = 4
        Console.WriteLine("Second handler")
    Catch When i = 5
        Console.WriteLine("Third handler")
    End Try
End Sub
' Output: Third handler

Example

In the following example, the CreateException  method throws a NullReferenceException . The code that generates the exception is not in a Try  block.
Therefore, the CreateException  method does not handle the exception. The RunSample  method does handle the exception because the call to the 
CreateException  method is in a Try  block.

The example includes Catch  statements for several types of exceptions, ordered from the most specific to the most general.

The following example shows how to use a Catch When  statement to filter on a conditional expression. If the conditional expression evaluates to True ,
the code in the Catch  block runs.



Private Sub InnerExceptionExample()
    Try
        Try
            ' Set a reference to a StringBuilder.
            ' The exception below does not occur if the commented
            ' out statement is used instead.
            Dim sb As System.Text.StringBuilder
            'Dim sb As New System.Text.StringBuilder

            ' Cause a NullReferenceException.
            sb.Append("text")
        Catch ex As Exception
            ' Throw a new exception that has the inner exception
            ' set to the original exception.
            Throw New ApplicationException("Something happened :(", ex)
        End Try
    Catch ex2 As Exception
        ' Show the exception.
        Console.WriteLine("Exception: " & ex2.Message)
        Console.WriteLine(ex2.StackTrace)

        ' Show the inner exception, if one is present.
        If ex2.InnerException IsNot Nothing Then
            Console.WriteLine("Inner Exception: " & ex2.InnerException.Message)
            Console.WriteLine(ex2.StackTrace)
        End If
    End Try
End Sub

Example

The following example has a Try…Catch  statement that is contained in a Try  block. The inner Catch  block throws an exception that has its 
InnerException  property set to the original exception. The outer Catch  block reports its own exception and the inner exception.

The following example illustrates exception handling for async methods. To catch an exception that applies to an async task, the Await  expression is in a
Try  block of the caller, and the exception is caught in the Catch  block.

Uncomment the Throw New Exception  line in the example to demonstrate exception handling. The exception is caught in the Catch  block, the task's 
IsFaulted  property is set to True , and the task's Exception.InnerException  property is set to the exception.

Uncomment the Throw New OperationCancelledException  line to demonstrate what happens when you cancel an asynchronous process. The exception is
caught in the Catch  block, and the task's IsCanceled  property is set to True . However, under some conditions that don't apply to this example, 
IsFaulted  is set to True  and IsCanceled  is set to False .



Public Async Function DoSomethingAsync() As Task
    Dim theTask As Task(Of String) = DelayAsync()

    Try
        Dim result As String = Await theTask
        Debug.WriteLine("Result: " & result)
    Catch ex As Exception
        Debug.WriteLine("Exception Message: " & ex.Message)
    End Try

    Debug.WriteLine("Task IsCanceled: " & theTask.IsCanceled)
    Debug.WriteLine("Task IsFaulted:  " & theTask.IsFaulted)
    If theTask.Exception IsNot Nothing Then
        Debug.WriteLine("Task Exception Message: " &
            theTask.Exception.Message)
        Debug.WriteLine("Task Inner Exception Message: " &
            theTask.Exception.InnerException.Message)
    End If
End Function

Private Async Function DelayAsync() As Task(Of String)
    Await Task.Delay(100)

    ' Uncomment each of the following lines to
    ' demonstrate exception handling.

    'Throw New OperationCanceledException("canceled")
    'Throw New Exception("Something happened.")
    Return "Done"
End Function

' Output when no exception is thrown in the awaited method:
'   Result: Done
'   Task IsCanceled: False
'   Task IsFaulted:  False

' Output when an Exception is thrown in the awaited method:
'   Exception Message: Something happened.
'   Task IsCanceled: False
'   Task IsFaulted:  True
'   Task Exception Message: One or more errors occurred.
'   Task Inner Exception Message: Something happened.

' Output when an OperationCanceledException or TaskCanceledException
' is thrown in the awaited method:
'   Exception Message: canceled
'   Task IsCanceled: True
'   Task IsFaulted:  False

Example
The following example illustrates exception handling where multiple tasks can result in multiple exceptions. The Try  block has the Await  expression
for the task that Task.WhenAll returned. The task is complete when the three tasks to which Task.WhenAll is applied are complete.

Each of the three tasks causes an exception. The Catch  block iterates through the exceptions, which are found in the Exception.InnerExceptions

property of the task that Task.WhenAll  returned.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task.whenall


Public Async Function DoMultipleAsync() As Task
    Dim theTask1 As Task = ExcAsync(info:="First Task")
    Dim theTask2 As Task = ExcAsync(info:="Second Task")
    Dim theTask3 As Task = ExcAsync(info:="Third Task")

    Dim allTasks As Task = Task.WhenAll(theTask1, theTask2, theTask3)

    Try
        Await allTasks
    Catch ex As Exception
        Debug.WriteLine("Exception: " & ex.Message)
        Debug.WriteLine("Task IsFaulted: " & allTasks.IsFaulted)
        For Each inEx In allTasks.Exception.InnerExceptions
            Debug.WriteLine("Task Inner Exception: " + inEx.Message)
        Next
    End Try
End Function

Private Async Function ExcAsync(info As String) As Task
    Await Task.Delay(100)

    Throw New Exception("Error-" & info)
End Function

' Output:
'   Exception: Error-First Task
'   Task IsFaulted: True
'   Task Inner Exception: Error-First Task
'   Task Inner Exception: Error-Second Task
'   Task Inner Exception: Error-Third Task

See Also
Err
Exception
Exit Statement
On Error Statement
Best Practices for Using Code Snippets
Exception Handling
Throw Statement

https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.information.err
https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/visualstudio/ide/best-practices-for-using-code-snippets
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/exception-handling-task-parallel-library


     

Using Statement (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
Using { resourcelist | resourceexpression }  
    [ statements ]  
End Using  

Parts
TERM DEFINITION

resourcelist Required if you do not supply resourceexpression . List of one or more system
resources that this Using  block controls, separated by commas.

resourceexpression Required if you do not supply resourcelist . Reference variable or expression
referring to a system resource to be controlled by this Using  block.

statements Optional. Block of statements that the Using  block runs.

End Using Required. Terminates the definition of the Using  block and disposes of all the
resources that it controls.

resourcelist Parts
TERM DEFINITION

resourcename Required. Reference variable that refers to a system resource that the Using  block
controls.

New Required if the Using  statement acquires the resource. If you have already
acquired the resource, use the second syntax alternative.

resourcetype Required. The class of the resource. The class must implement the IDisposable
interface.

arglist Optional. List of arguments you are passing to the constructor to create an
instance of resourcetype . See Parameter List.

resourceexpression Required. Variable or expression referring to a system resource satisfying the
requirements of resourcetype . If you use the second syntax alternative, you
must acquire the resource before passing control to the Using  statement.

Remarks

Declares the beginning of a Using  block and optionally acquires the system resources that the block controls.

Each resource in the resourcelist  part has the following syntax and parts:

resourcename As New resourcetype [ ( [ arglist ] ) ]

-or-

resourcename As resourcetype = resourceexpression

Sometimes your code requires an unmanaged resource, such as a file handle, a COM wrapper, or a SQL connection. A Using  block guarantees the
disposal of one or more such resources when your code is finished with them. This makes them available for other code to use.

Managed resources are disposed of by the .NET Framework garbage collector (GC) without any extra coding on your part. You do not need a Using

block for managed resources. However, you can still use a Using  block to force the disposal of a managed resource instead of waiting for the garbage
collector.

A Using  block has three parts: acquisition, usage, and disposal.

Acquisition means creating a variable and initializing it to refer to the system resource. The Using  statement can acquire one or more resources,
or you can acquire exactly one resource before entering the block and supply it to the Using  statement. If you supply resourceexpression , you

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/using-statement.md
https://docs.microsoft.com/dotnet/api/system.idisposable


Behavior

Structured Exception Handling Within a Using Block

Structured Exception Handling Instead of a Using Block

Using resource As New resourceType   
    ' Insert code to work with resource.  
End Using  

' For the acquisition and disposal of resource, the following  
' Try construction is equivalent to the Using block.  
Dim resource As New resourceType  
Try   
    ' Insert code to work with resource.  
Finally   
    If resource IsNot Nothing Then  
        resource.Dispose()   
    End If  
End Try   

NOTENOTE

Example

must acquire the resource before passing control to the Using  statement.

Usage means accessing the resources and performing actions with them. The statements between Using  and End Using  represent the usage of
the resources.

Disposal means calling the Dispose method on the object in resourcename . This allows the object to cleanly terminate its resources. The 
End Using  statement disposes of the resources under the Using  block's control.

A Using  block behaves like a Try ... Finally  construction in which the Try  block uses the resources and the Finally  block disposes of them. Because
of this, the Using  block guarantees disposal of the resources, no matter how you exit the block. This is true even in the case of an unhandled exception,
except for a StackOverflowException.

The scope of every resource variable acquired by the Using  statement is limited to the Using  block.

If you specify more than one system resource in the Using  statement, the effect is the same as if you nested Using  blocks one within another.

If resourcename  is Nothing , no call to Dispose is made, and no exception is thrown.

If you need to handle an exception that might occur within the Using  block, you can add a complete Try ... Finally  construction to it. If you need to
handle the case where the Using  statement is not successful in acquiring a resource, you can test to see if resourcename  is Nothing .

If you need finer control over the acquisition of the resources, or you need additional code in the Finally  block, you can rewrite the Using  block as a 
Try ... Finally  construction. The following example shows skeleton Try  and Using  constructions that are equivalent in the acquisition and disposal of 
resource .

The code inside the Using  block should not assign the object in resourcename  to another variable. When you exit the Using  block, the resource is disposed, and
the other variable cannot access the resource to which it points.

The following example creates a file that is named log.txt and writes two lines of text to the file. The example also reads that same file and displays the
lines of text.

Because the TextWriter and TextReader classes implement the IDisposable interface, the code can use Using  statements to ensure that the file is
correctly closed after the write and read operations.

https://docs.microsoft.com/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/dotnet/api/system.stackoverflowexception
https://docs.microsoft.com/dotnet/api/system.idisposable.dispose
https://docs.microsoft.com/dotnet/api/system.io.textwriter
https://docs.microsoft.com/dotnet/api/system.io.textreader
https://docs.microsoft.com/dotnet/api/system.idisposable


Private Sub WriteFile()
    Using writer As System.IO.TextWriter = System.IO.File.CreateText("log.txt")
        writer.WriteLine("This is line one.")
        writer.WriteLine("This is line two.")
    End Using
End Sub

Private Sub ReadFile()
    Using reader As System.IO.TextReader = System.IO.File.OpenText("log.txt")
        Dim line As String

        line = reader.ReadLine()
        Do Until line Is Nothing
            Console.WriteLine(line)
            line = reader.ReadLine()
        Loop
    End Using
End Sub

See Also
IDisposable
Try...Catch...Finally Statement
How to: Dispose of a System Resource

https://docs.microsoft.com/dotnet/api/system.idisposable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/how-to-dispose-of-a-system-resource


           

While...End While Statement (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
While condition  
    [ statements ]  
    [ Continue While ]  
    [ statements ]  
    [ Exit While ]  
    [ statements ]  
End While  

Parts
TERM DEFINITION

condition Required. Boolean  expression. If condition  is Nothing , Visual Basic treats it as 
False .

statements Optional. One or more statements following While , which run every time 
condition  is True .

Continue While Optional. Transfers control to the next iteration of the While  block.

Exit While Optional. Transfers control out of the While  block.

End While Required. Terminates the definition of the While  block.

Remarks

NOTENOTE

Exit While

Runs a series of statements as long as a given condition is True .

Use a While...End While  structure when you want to repeat a set of statements an indefinite number of times, as long as a condition remains True . If
you want more flexibility with where you test the condition or what result you test it for, you might prefer the Do...Loop Statement. If you want to repeat
the statements a set number of times, the For...Next Statement is usually a better choice.

The While  keyword is also used in the Do...Loop Statement, the Skip While Clause and the Take While Clause.

If condition  is True , all of the statements  run until the End While  statement is encountered. Control then returns to the While  statement, and 
condition  is again checked. If condition  is still True , the process is repeated. If it’s False , control passes to the statement that follows the End While

statement.

The While  statement always checks the condition before it starts the loop. Looping continues while the condition remains True . If condition  is False

when you first enter the loop, it doesn’t run even once.

The condition  usually results from a comparison of two values, but it can be any expression that evaluates to a Boolean Data Type value ( True  or 
False ). This expression can include a value of another data type, such as a numeric type, that has been converted to Boolean .

You can nest While  loops by placing one loop within another. You can also nest different kinds of control structures within one another. For more
information, see Nested Control Structures.

The Exit While statement can provide another way to exit a While  loop. Exit While  immediately transfers control to the statement that follows the 
End While  statement.

You typically use Exit While  after some condition is evaluated (for example, in an If...Then...Else  structure). You might want to exit a loop if you
detect a condition that makes it unnecessary or impossible to continue iterating, such as an erroneous value or a termination request. You can use 
Exit While  when you test for a condition that could cause an endless loop, which is a loop that could run an extremely large or even infinite number of

times. You can then use Exit While  to escape the loop.

You can place any number of Exit While  statements anywhere in the While  loop.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/while-end-while-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


Example

Dim index As Integer = 0
While index <= 10
    Debug.Write(index.ToString & " ")
    index += 1
End While

Debug.WriteLine("")
' Output: 0 1 2 3 4 5 6 7 8 9 10 

Example

Dim index As Integer = 0
While index < 100000
    index += 1

    ' If index is between 5 and 7, continue
    ' with the next iteration.
    If index >= 5 And index <= 8 Then
        Continue While
    End If

    ' Display the index.
    Debug.Write(index.ToString & " ")

    ' If index is 10, exit the loop.
    If index = 10 Then
        Exit While
    End If
End While

Debug.WriteLine("")
' Output: 1 2 3 4 9 10

Example

Private Sub ShowText(ByVal textFilePath As String)
    If System.IO.File.Exists(textFilePath) = False Then
        Debug.WriteLine("File Not Found: " & textFilePath)
    Else
        Dim sr As System.IO.StreamReader = System.IO.File.OpenText(textFilePath)

        While sr.Peek() >= 0
            Debug.WriteLine(sr.ReadLine())
        End While

        sr.Close()
    End If
End Sub

See Also

When used within nested While  loops, Exit While  transfers control out of the innermost loop and into the next higher level of nesting.

The Continue While  statement immediately transfers control to the next iteration of the loop. For more information, see Continue Statement.

In the following example, the statements in the loop continue to run until the index  variable is greater than 10.

The following example illustrates the use of the Continue While  and Exit While  statements.

The following example reads all lines in a text file. The OpenText method opens the file and returns a StreamReader that reads the characters. In the 
While  condition, the Peek method of the StreamReader  determines whether the file contains additional characters.

Loop Structures
Do...Loop Statement
For...Next Statement
Boolean Data Type
Nested Control Structures
Exit Statement
Continue Statement

https://docs.microsoft.com/dotnet/api/system.io.file.opentext
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/dotnet/api/system.io.streamreader.peek
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/loop-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures


        

With...End With Statement (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
With objectExpression  
    [ statements ]  
End With  

Parts
TERM DEFINITION

objectExpression Required. An expression that evaluates to an object. The expression may be
arbitrarily complex and is evaluated only once. The expression can evaluate to any
data type, including elementary types.

statements Optional. One or more statements between With  and End With  that may refer
to members of an object that's produced by the evaluation of objectExpression .

End With Required. Terminates the definition of the With  block.

Remarks

NOTENOTE

Executes a series of statements that repeatedly refer to a single object or structure so that the statements can use a simplified syntax when accessing
members of the object or structure. When using a structure, you can only read the values of members or invoke methods, and you get an error if you
try to assign values to members of a structure used in a With...End With  statement.

By using With...End With , you can perform a series of statements on a specified object without specifying the name of the object multiple times. Within
a With  statement block, you can specify a member of the object starting with a period, as if the With  statement object preceded it.

For example, to change multiple properties on a single object, place the property assignment statements inside the With...End With  block, referring to
the object only once instead of once for each property assignment.

If your code accesses the same object in multiple statements, you gain the following benefits by using the With  statement:

You don't need to evaluate a complex expression multiple times or assign the result to a temporary variable to refer to its members multiple
times.

You make your code more readable by eliminating repetitive qualifying expressions.

The data type of objectExpression  can be any class or structure type or even a Visual Basic elementary type such as Integer . If objectExpression

results in anything other than an object, you can only read the values of its members or invoke methods, and you get an error if you try to assign values
to members of a structure used in a With...End With  statement. This is the same error you would get if you invoked a method that returned a structure
and immediately accessed and assigned a value to a member of the function’s result, such as GetAPoint().x = 1 . The problem in both cases is that the
structure exists only on the call stack, and there is no way a modified structure member in these situations can write to a location such that any other
code in the program can observe the change.

The objectExpression  is evaluated once, upon entry into the block. You can't reassign the objectExpression  from within the With  block.

Within a With  block, you can access the methods and properties of only the specified object without qualifying them. You can use methods and
properties of other objects, but you must qualify them with their object names.

You can place one With...End With  statement within another. Nested With...End With  statements may be confusing if the objects that are being
referred to aren't clear from context. You must provide a fully qualified reference to an object that's in an outer With  block when the object is referenced
from within an inner With  block.

You can't branch into a With  statement block from outside the block.

Unless the block contains a loop, the statements run only once. You can nest different kinds of control structures. For more information, see Nested
Control Structures.

You can use the With  keyword in object initializers also. For more information and examples, see Object Initializers: Named and Anonymous Types and Anonymous
Types.

If you're using a With  block only to initialize the properties or fields of an object that you've just instantiated, consider using an object initializer instead.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/with-end-with-statement.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types


Example

Private Sub AddCustomer()
    Dim theCustomer As New Customer

    With theCustomer
        .Name = "Coho Vineyard"
        .URL = "http://www.cohovineyard.com/"
        .City = "Redmond"
    End With

    With theCustomer.Comments
        .Add("First comment.")
        .Add("Second comment.")
    End With
End Sub

Public Class Customer
    Public Property Name As String
    Public Property City As String
    Public Property URL As String

    Public Property Comments As New List(Of String)
End Class

Example

Dim theWindow As New EntryWindow

With theWindow
    With .InfoLabel
        .Content = "This is a message."
        .Foreground = Brushes.DarkSeaGreen
        .Background = Brushes.LightYellow
    End With

    .Title = "The Form Title"
    .Show()
End With

See Also

In the following example, each With  block executes a series of statements on a single object.

The following example nests With…End With  statements. Within the nested With  statement, the syntax refers to the inner object.

List<T>
Nested Control Structures
Object Initializers: Named and Anonymous Types
Anonymous Types

https://docs.microsoft.com/dotnet/api/system.collections.generic.list-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/nested-control-structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types


          

Yield Statement (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
Yield expression  

ParametersParameters

TERM DEFINITION

expression Required. An expression that is implicitly convertible to the type of the iterator
function or Get  accessor that contains the Yield  statement.

Remarks

Iterator Functions and Get Accessors

Exception Handling

Technical Implementation

Dim elements As IEnumerable(Of String) = MyIteratorFunction()  
    …  
For Each element As String In elements  
Next  

Sends the next element of a collection to a For Each...Next  statement.

The Yield  statement returns one element of a collection at a time. The Yield  statement is included in an iterator function or Get  accessor, which
perform custom iterations over a collection.

You consume an iterator function by using a For Each...Next Statement or a L INQ query. Each iteration of the For Each  loop calls the iterator function.
When a Yield  statement is reached in the iterator function, expression  is returned, and the current location in code is retained. Execution is restarted
from that location the next time that the iterator function is called.

An implicit conversion must exist from the type of expression  in the Yield  statement to the return type of the iterator.

You can use an Exit Function  or Return  statement to end the iteration.

"Yield" is not a reserved word and has special meaning only when it is used in an Iterator  function or Get  accessor.

For more information about iterator functions and Get  accessors, see Iterators.

The declaration of an iterator function or Get  accessor must meet the following requirements:

It must include an Iterator modifier.

The return type must be IEnumerable, IEnumerable<T>, IEnumerator, or IEnumerator<T>.

It cannot have any ByRef  parameters.

An iterator function cannot occur in an event, instance constructor, static constructor, or static destructor.

An iterator function can be an anonymous function. For more information, see Iterators.

A Yield  statement can be inside a Try  block of a Try...Catch...Finally Statement. A Try  block that has a Yield  statement can have Catch  blocks, and
can have a Finally  block.

A Yield  statement cannot be inside a Catch  block or a Finally  block.

If the For Each  body (outside of the iterator function) throws an exception, a Catch  block in the iterator function is not executed, but a Finally  block
in the iterator function is executed. A Catch  block inside an iterator function catches only exceptions that occur inside the iterator function.

The following code returns an IEnumerable (Of String)  from an iterator function and then iterates through the elements of the 
IEnumerable (Of String) .

The call to MyIteratorFunction  doesn't execute the body of the function. Instead the call returns an IEnumerable(Of String)  into the elements  variable.

On an iteration of the For Each  loop, the MoveNext method is called for elements . This call executes the body of MyIteratorFunction  until the next 

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/yield-statement.md
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerator.movenext


Example

Sub Main()
    For Each number In Power(2, 8)
        Console.Write(number & " ")
    Next
    ' Output: 2 4 8 16 32 64 128 256
    Console.ReadKey()
End Sub

Private Iterator Function Power(
ByVal base As Integer, ByVal highExponent As Integer) _
As System.Collections.Generic.IEnumerable(Of Integer)

    Dim result = 1

    For counter = 1 To highExponent
        result = result * base
        Yield result
    Next
End Function

Example

Sub Main()
    Dim theGalaxies As New Galaxies
    For Each theGalaxy In theGalaxies.NextGalaxy
        With theGalaxy
            Console.WriteLine(.Name & "  " & .MegaLightYears)
        End With
    Next
    Console.ReadKey()
End Sub

Public Class Galaxies
    Public ReadOnly Iterator Property NextGalaxy _
    As System.Collections.Generic.IEnumerable(Of Galaxy)
        Get
            Yield New Galaxy With {.Name = "Tadpole", .MegaLightYears = 400}
            Yield New Galaxy With {.Name = "Pinwheel", .MegaLightYears = 25}
            Yield New Galaxy With {.Name = "Milky Way", .MegaLightYears = 0}
            Yield New Galaxy With {.Name = "Andromeda", .MegaLightYears = 3}
        End Get
    End Property
End Class

Public Class Galaxy
    Public Property Name As String
    Public Property MegaLightYears As Integer
End Class

See Also

Yield  statement is reached. The Yield  statement returns an expression that determines not only the value of the element  variable for consumption
by the loop body but also the Current property of elements, which is an IEnumerable (Of String) .

On each subsequent iteration of the For Each  loop, the execution of the iterator body continues from where it left off, again stopping when it reaches a 
Yield  statement. The For Each  loop completes when the end of the iterator function or a Return  or Exit Function  statement is reached.

The following example has a Yield  statement that is inside a For…Next loop. Each iteration of the For Each statement body in Main  creates a call to the
Power  iterator function. Each call to the iterator function proceeds to the next execution of the Yield  statement, which occurs during the next iteration

of the For…Next  loop.

The return type of the iterator method is IEnumerable<T>, an iterator interface type. When the iterator method is called, it returns an enumerable object
that contains the powers of a number.

The following example demonstrates a Get  accessor that is an iterator. The property declaration includes an Iterator  modifier.

For additional examples, see Iterators.

Statements

https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerator-1.current
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1


 

Clauses (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The topics in this section document Visual Basic run-time clauses.

Alias

As

Handles

Implements

In

Into

Of

Visual Basic Language Reference

Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/clauses.md


   

Alias Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Declare Function getUserName Lib "advapi32.dll" Alias "GetUserNameA" (
    ByVal lpBuffer As String, ByRef nSize As Integer) As Integer
Sub getUser()
    Dim buffer As String = New String(CChar(" "), 25)
    Dim retVal As Integer = getUserName(buffer, 25)
    Dim userName As String = Strings.Left(buffer, InStr(buffer, Chr(0)) - 1)
    MsgBox(userName)
End Sub

See Also

Indicates that an external procedure has another name in its DLL.

The Alias  keyword can be used in this context:

Declare Statement

In the following example, the Alias  keyword is used to provide the name of the function in advapi32.dll, GetUserNameA , that getUserName  is used in
place of in this example. Function getUserName  is called in sub getUser , which displays the name of the current user.

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/alias-clause.md


   

As Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Introduces an As  clause, which identifies a data type in a declaration statement or a constraint list on a generic type parameter.

The As  keyword can be used in these contexts:

Aggregate Clause

Class Statement

Const Statement

Declare Statement

Delegate Statement

Dim Statement

Enum Statement

Event Statement

For...Next Statements

For Each...Next Statements

From Clause

Function Statement

Group Join Clause

Interface Statement

Operator Statement

Property Statement

Structure Statement

Sub Statement

Try...Catch...Finally Statements

How to: Create a New Variable
Data Types
Variable Declaration
Type List
Generic Types in Visual Basic
Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/as-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-create-a-new-variable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


            

Handles Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
proceduredeclaration Handles eventlist  

Parts

Remarks

Example
Public Class ContainerClass
    ' Module or class level declaration.
    WithEvents Obj As New Class1

    Public Class Class1
        ' Declare an event.
        Public Event Ev_Event()
        Sub CauseSomeEvent()
            ' Raise an event.
            RaiseEvent Ev_Event()
        End Sub
    End Class

    Sub EventHandler() Handles Obj.Ev_Event
        ' Handle the event.
        MsgBox("EventHandler caught event.")
    End Sub

    ' Call the TestEvents procedure from an instance of the ContainerClass 
    ' class to test the Ev_Event event and the event handler.
    Public Sub TestEvents()
        Obj.CauseSomeEvent()
    End Sub
End Class

Public Class BaseClass
    ' Declare an event.
    Event Ev1()
End Class
Class DerivedClass
    Inherits BaseClass
    Sub TestEvents() Handles MyBase.Ev1
        ' Add code to handle this event.
    End Sub
End Class

Declares that a procedure handles a specified event.

proceduredeclaration

The Sub  procedure declaration for the procedure that will handle the event.

eventlist

List of the events for proceduredeclaration  to handle, separated by commas. The events must be raised by either the base class for the current class, or
by an object declared using the WithEvents  keyword.

Use the Handles  keyword at the end of a procedure declaration to cause it to handle events raised by an object variable declared using the WithEvents

keyword. The Handles  keyword can also be used in a derived class to handle events from a base class.

The Handles  keyword and the AddHandler  statement both allow you to specify that particular procedures handle particular events, but there are
differences. Use the Handles  keyword when defining a procedure to specify that it handles a particular event. The AddHandler  statement connects
procedures to events at run time. For more information, see AddHandler Statement.

For custom events, the application invokes the event's AddHandler  accessor when it adds the procedure as an event handler. For more information on
custom events, see Event Statement.

The following example demonstrates how a derived class can use the Handles  statement to handle an event from a base class.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/handles-clause.md


Example

Private Sub Button1_Click(sender As System.Object, e As System.Windows.RoutedEventArgs) Handles Button1.Click
    MessageBox.Show(sender.Name & " clicked")
End Sub

Private Sub Button2_Click(sender As System.Object, e As System.Windows.RoutedEventArgs) Handles Button2.Click
    MessageBox.Show(sender.Name & " clicked")
End Sub

Example

Private Sub Button_Click(sender As System.Object, e As System.Windows.RoutedEventArgs) Handles Button1.Click, Button2.Click
    MessageBox.Show(sender.Name & " clicked")
End Sub

See Also

The following example contains two button event handlers for a WPF Application project.

The following example is equivalent to the previous example. The eventlist  in the Handles  clause contains the events for both buttons.

WithEvents
AddHandler Statement
RemoveHandler Statement
Event Statement
RaiseEvent Statement
Events



       

Implements Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

Reimplementation

See Also

Indicates that a class or structure member is providing the implementation for a member defined in an interface.

The Implements  keyword is not the same as the Implements Statement. You use the Implements  statement to specify that a class or structure
implements one or more interfaces, and then for each member you use the Implements  keyword to specify which interface and which member it
implements.

If a class or structure implements an interface, it must include the Implements  statement immediately after the Class Statement or Structure Statement,
and it must implement all the members defined by the interface.

In a derived class, you can reimplement an interface member that the base class has already implemented. This is different from overriding the base
class member in the following respects:

The base class member does not need to be Overridable to be reimplemented.
You can reimplement the member with a different name.

The Implements  keyword can be used in the following contexts:

Event Statement
Function Statement
Property Statement
Sub Statement

Implements Statement
Interface Statement
Class Statement
Structure Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/implements-clause.md


  

In Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Specifies the group that the loop variable is to traverse in a For Each  loop, or specifies the collection to query in a From , Join , or Group Join  clause.

The In  keyword can be used in the following contexts:

For Each...Next Statement

From Clause

Join Clause

Group Join Clause

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/in-clause.md


  

Into Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Remarks

See Also

Identifies aggregate functions or groupings to apply to a collection.

The Each  keyword is used in the following contexts:

Aggregate Clause

Group By Clause

Group Join Clause

Keywords

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/into-clause.md


            

Of Clause (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Using the Of Keyword

Public Class Dictionary(Of entryType, keyType As IComparable)  
    Public Sub add(ByVal e As entryType, ByVal k As keyType)  
        Dim dk As keyType  
        If k.CompareTo(dk) = 0 Then  
        End If  
    End Sub  
    Public Function find(ByVal k As keyType) As entryType  
    End Function  
End Class  

Dim d As New dictionary(Of String, Integer)  

See Also

Introduces an Of  clause, which identifies a type parameter on a generic class, structure, interface, delegate, or procedure. For information on generic
types, see Generic Types in Visual Basic.

The following code example uses the Of  keyword to define the outline of a class that takes two type parameters. It constrains the keyType  parameter
by the IComparable interface, which means the consuming code must supply a type argument that implements IComparable. This is necessary so that
the add  procedure can call the IComparable.CompareTo method. For more information on constraints, see Type List.

If you complete the preceding class definition, you can construct a variety of dictionary  classes from it. The types you supply to entryType  and 
keyType  determine what type of entry the class holds and what type of key it associates with each entry. Because of the constraint, you must supply to 
keyType  a type that implements IComparable.

The following code example creates an object that holds String  entries and associates an Integer  key with each one. Integer  implements
IComparable and therefore satisfies the constraint on keyType .

The Of  keyword can be used in these contexts:

Class Statement

Delegate Statement

Function Statement

Interface Statement

Structure Statement

Sub Statement

IComparable
Type List
Generic Types in Visual Basic
In
Out

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/of-clause.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable.compareto
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/dotnet/api/system.icomparable
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


                   

Declaration Contexts and Default Access Levels (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Declaration Context Levels

DECLARED ELEMENT NAMESPACE LEVEL MODULE LEVEL PROCEDURE LEVEL

Variable (Dim Statement) Not allowed Private  ( Public  in Structure ,
not allowed in Interface )

Public

Constant (Const Statement) Not allowed Private  ( Public  in Structure ,
not allowed in Interface )

Public

Enumeration (Enum Statement) Friend Public Not allowed

Class (Class Statement) Friend Public Not allowed

Structure (Structure Statement) Friend Public Not allowed

Module (Module Statement) Friend Not allowed Not allowed

Interface (Interface Statement) Friend Public Not allowed

Procedure (Function Statement, Sub
Statement)

Not allowed Public Not allowed

External reference (Declare Statement) Not allowed Public  (not allowed in Interface ) Not allowed

Operator (Operator Statement) Not allowed Public  (not allowed in Interface

or Module )
Not allowed

Property (Property Statement) Not allowed Public Not allowed

Default property (Default) Not allowed Public  (not allowed in Module ) Not allowed

Event (Event Statement) Not allowed Public Not allowed

Delegate (Delegate Statement) Friend Public Not allowed

See Also

This topic describes which Visual Basic types can be declared within which other types, and what their access levels default to if not specified.

The declaration context of a programming element is the region of code in which it is declared. This is often another programming element, which is
then called the containing element.

The levels for declaration contexts are the following:

Namespace level — within a source file or namespace but not within a class, structure, module, or interface

Module level — within a class, structure, module, or interface but not within a procedure or block

Procedure level — within a procedure or block (such as If  or For )

The following table shows the default access levels for various declared programming elements, depending on their declaration contexts.

For more information, see Access levels in Visual Basic.

Friend
Private
Public

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/declaration-contexts-and-default-access-levels.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


                   

Attribute List (Visual Basic)
7/10/2018 • 2 minutes to read • Edit Online

Syntax
[ attributemodifier ] attributename [ ( attributearguments | attributeinitializer ) ]  

Parts

attributemodifier Required for attributes applied at the beginning of a source file. Can be Assembly
or Module.

attributename Required. Name of the attribute.

attributearguments Optional. List of positional arguments for this attribute. Multiple arguments are
separated by commas.

attributeinitializer Optional. List of variable or property initializers for this attribute. Multiple initializers
are separated by commas.

Remarks

Rules

Example

<DllImportAttribute("kernel32.dll", EntryPoint:="MoveFileW",
    SetLastError:=True, CharSet:=CharSet.Unicode,
    ExactSpelling:=True,
    CallingConvention:=CallingConvention.StdCall)>
Public Shared Function moveFile(ByVal src As String,
  ByVal dst As String) As Boolean
    ' This function copies a file from the path src to the path dst.
    ' Leave this function empty. The DLLImport attribute forces calls
    ' to moveFile to be forwarded to MoveFileW in KERNEL32.DLL.
End Function

See Also

Specifies the attributes to be applied to a declared programming element. Multiple attributes are separated by commas. Following is the syntax for one
attribute.

You can apply one or more attributes to nearly any programming element (types, procedures, properties, and so forth). Attributes appear in your
assembly's metadata, and they can help you annotate your code or specify how to use a particular programming element. You can apply attributes
defined by Visual Basic and the .NET Framework, and you can define your own attributes.

For more information on when to use attributes, see Attributes overview. For information on attribute names, see Declared Element Names.

Placement. You can apply attributes to most declared programming elements. To apply one or more attributes, you place an attribute block at
the beginning of the element declaration. Each entry in the attribute list specifies an attribute you wish to apply, and the modifier and arguments
you are using for this invocation of the attribute.

Angle Brackets. If you supply an attribute list, you must enclose it in angle brackets (" < " and " > ").

Part of the Declaration. The attribute must be part of the element declaration, not a separate statement. You can use the line-continuation
sequence (" _ ") to extend the declaration statement onto multiple source-code lines.

Modifiers. An attribute modifier ( Assembly  or Module ) is required on every attribute applied to a programming element at the beginning of a
source file. Attribute modifiers are not allowed on attributes applied to elements that are not at the beginning of a source file.

Arguments. All positional arguments for an attribute must precede any variable or property initializers.

The following example applies the DllImportAttribute attribute to a skeleton definition of a Function  procedure.

DllImportAttribute indicates that the attributed procedure represents an entry point in an unmanaged dynamic-link library (DLL). The attribute supplies
the DLL name as a positional argument and the other information as variable initializers.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/attribute-list.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx


Assembly
Module <keyword>
Attributes overview
How to: Break and Combine Statements in Code



                

Parameter List (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
[ <attributelist> ] [ Optional ] [{ ByVal | ByRef }] [ ParamArray ]   
parametername[( )] [ As parametertype ] [ = defaultvalue ]  

Parts

Remarks

Rules

Specifies the parameters a procedure expects when it is called. Multiple parameters are separated by commas. The following is the syntax for one
parameter.

attributelist

Optional. List of attributes that apply to this parameter. You must enclose the Attribute List in angle brackets (" < " and " > ").

Optional

Optional. Specifies that this parameter is not required when the procedure is called.

ByVal

Optional. Specifies that the procedure cannot replace or reassign the variable element underlying the corresponding argument in the calling code.

ByRef

Optional. Specifies that the procedure can modify the underlying variable element in the calling code the same way the calling code itself can.

ParamArray

Optional. Specifies that the last parameter in the parameter list is an optional array of elements of the specified data type. This lets the calling code pass
an arbitrary number of arguments to the procedure.

parametername

Required. Name of the local variable representing the parameter.

parametertype

Required if Option Strict  is On . Data type of the local variable representing the parameter.

defaultvalue

Required for Optional  parameters. Any constant or constant expression that evaluates to the data type of the parameter. If the type is Object , or a
class, interface, array, or structure, the default value can only be Nothing .

Parameters are surrounded by parentheses and separated by commas. A parameter can be declared with any data type. If you do not specify 
parametertype , it defaults to Object .

When the calling code calls the procedure, it passes an argument to each required parameter. For more information, see Differences Between
Parameters and Arguments.

The argument the calling code passes to each parameter is a pointer to an underlying element in the calling code. If this element is nonvariable (a
constant, literal, enumeration, or expression), it is impossible for any code to change it. If it is a variable element (a declared variable, field, property,
array element, or structure element), the calling code can change it. For more information, see Differences Between Modifiable and Nonmodifiable
Arguments.

If a variable element is passed ByRef , the procedure can change it as well. For more information, see Differences Between Passing an Argument By
Value and By Reference.

Parentheses. If you specify a parameter list, you must enclose it in parentheses. If there are no parameters, you can still use parentheses
enclosing an empty list. This improves the readability of your code by clarifying that the element is a procedure.

Optional Parameters. If you use the Optional  modifier on a parameter, all subsequent parameters in the list must also be optional and be
declared by using the Optional  modifier.

Every optional parameter declaration must supply the defaultvalue  clause.

For more information, see Optional Parameters.

Parameter Arrays. You must specify ByVal  for a ParamArray  parameter.

You cannot use both Optional  and ParamArray  in the same parameter list.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/parameter-list.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/differences-between-parameters-and-arguments
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/differences-between-modifiable-and-nonmodifiable-arguments
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/differences-between-passing-an-argument-by-value-and-by-reference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/optional-parameters


Example

Public Function howMany(ByVal ch As Char, ByVal st As String) As Integer
End Function
Dim howManyA As Integer = howMany("a"c, "How many a's in this string?")

See Also

For more information, see Parameter Arrays.

Passing Mechanism. The default mechanism for every argument is ByVal , which means the procedure cannot change the underlying variable
element. However, if the element is a reference type, the procedure can modify the contents or members of the underlying object, even though it
cannot replace or reassign the object itself.

Parameter Names. If the parameter's data type is an array, follow parametername  immediately by parentheses. For more information on
parameter names, see Declared Element Names.

The following example shows a Function  procedure that defines two parameters.

DllImportAttribute
Function Statement
Sub Statement
Declare Statement
Structure Statement
Option Strict Statement
Attributes overview
How to: Break and Combine Statements in Code

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/parameter-arrays
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://msdn.microsoft.com/library/system.runtime.interopservices.dllimportattribute(v=vs.110).aspx


                    

Type List (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
[genericmodifier] typename [ As constraintlist ]  

Parts
TERM DEFINITION

genericmodifier Optional. Can be used only in generic interfaces and delegates. You can declare a
type covariant by using the Out keyword or contravariant by using the In keyword.
See Covariance and Contravariance.

typename Required. Name of the type parameter. This is a placeholder, to be replaced by a
defined type supplied by the corresponding type argument.

constraintlist Optional. List of requirements that constrain the data type that can be supplied for 
typename . If you have multiple constraints, enclose them in curly braces ( { } )

and separate them with commas. You must introduce the constraint list with the As
keyword. You use As  only once, at the beginning of the list.

Remarks

Rules

Behavior

Example

Specifies the type parameters for a generic programming element. Multiple parameters are separated by commas. Following is the syntax for one type
parameter.

Every generic programming element must take at least one type parameter. A type parameter is a placeholder for a specific type (a constructed element)
that client code specifies when it creates an instance of the generic type. You can define a generic class, structure, interface, procedure, or delegate.

For more information on when to define a generic type, see Generic Types in Visual Basic. For more information on type parameter names, see
Declared Element Names.

Parentheses. If you supply a type parameter list, you must enclose it in parentheses, and you must introduce the list with the Of keyword. You
use Of  only once, at the beginning of the list.

Constraints. A list of constraints on a type parameter can include the following items in any combination:

Any number of interfaces. The supplied type must implement every interface in this list.

At most one class. The supplied type must inherit from that class.

The New  keyword. The supplied type must expose a parameterless constructor that your generic type can access. This is useful if you
constrain a type parameter by one or more interfaces. A type that implements interfaces does not necessarily expose a constructor, and
depending on the access level of a constructor, the code within the generic type might not be able to access it.

Either the Class  keyword or the Structure  keyword. The Class  keyword constrains a generic type parameter to require that any type
argument passed to it be a reference type, for example a string, array, or delegate, or an object created from a class. The Structure

keyword constrains a generic type parameter to require that any type argument passed to it be a value type, for example a structure,
enumeration, or elementary data type. You cannot include both Class  and Structure  in the same constraintlist .

The supplied type must satisfy every requirement you include in constraintlist .

Constraints on each type parameter are independent of constraints on other type parameters.

Compile-Time Substitution. When you create a constructed type from a generic programming element, you supply a defined type for each
type parameter. The Visual Basic compiler substitutes that supplied type for every occurrence of typename  within the generic element.

Absence of Constraints. If you do not specify any constraints on a type parameter, your code is limited to the operations and members
supported by the Object Data Type for that type parameter.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/statements/type-list.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


Public Class dictionary(Of entryType, keyType As {IComparable, IFormattable, New})
    Public Sub add(ByVal et As entryType, ByVal kt As keyType)
        Dim dk As keyType
        If kt.CompareTo(dk) = 0 Then
        End If
    End Sub
End Class

Example

Dim dictInt As New dictionary(Of String, Integer)

Example

Public Class dictionary
    Public Sub add(ByVal et As String, ByVal kt As Integer)
        Dim dk As Integer
        If kt.CompareTo(dk) = 0 Then
        End If
    End Sub
End Class

See Also

The following example shows a skeleton definition of a generic dictionary class, including a skeleton function to add a new entry to the dictionary.

Because dictionary  is generic, the code that uses it can create a variety of objects from it, each having the same functionality but acting on a different
data type. The following example shows a line of code that creates a dictionary  object with String  entries and Integer  keys.

The following example shows the equivalent skeleton definition generated by the preceding example.

Of
New Operator
Access levels in Visual Basic
Object Data Type
Function Statement
Structure Statement
Sub Statement
How to: Use a Generic Class
Covariance and Contravariance
In
Out

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-use-a-generic-class
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/covariance-contravariance/index


                     

Recommended XML Tags for Documentation Comments (Visual Basic)
7/13/2018 • 2 minutes to read • Edit Online

NOTENOTE

<c> <code> <example>

<exception> <include> <list>

<para> <param> <paramref>

<permission> <remarks> <returns>

<see> <seealso> <summary>

<typeparam> <value>

NOTENOTE

See Also

The Visual Basic compiler can process documentation comments in your code to an XML file. You can use additional tools to process the XML file into
documentation.

XML comments are allowed on code constructs such as types and type members. For partial types, only one part of the type can have XML comments,
although there is no restriction on commenting its members.

Documentation comments cannot be applied to namespaces. The reason is that one namespace can span several assemblies, and not all assemblies have to be loaded
at the same time.

The compiler processes any tag that is valid XML. The following tags provide commonly used functionality in user documentation.

1 1

1

1

1 1

1

(  The compiler verifies syntax.)1

If you want angle brackets to appear in the text of a documentation comment, use &lt;  and &gt; . For example, the string "&lt;text in angle brackets&gt;"

will appear as <text in angle brackets> .

Documenting Your Code with XML
/doc
How to: Create XML Documentation

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/recommended-xml-tags-for-documentation-comments.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/documenting-your-code-with-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/how-to-create-xml-documentation


  

<c> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<c>text</c>  

ParametersParameters

PARAMETER DESCRIPTION

text The text you would like to indicate as code.

Remarks

Example

''' <summary>
''' Resets the value the <c>Counter</c> field.
''' </summary>
Public Sub ResetCounter()
    counterValue = 0
End Sub
Private counterValue As Integer = 0
''' <summary>
''' Returns the number of times Counter was called.
''' </summary>
''' <value>Number of times Counter was called.</value>
Public ReadOnly Property Counter() As Integer
    Get
        counterValue += 1
        Return counterValue
    End Get
End Property

See Also

Indicates that text within a description is code.

The <c>  tag gives you a way to indicate that text within a description should be marked as code. Use <code> to indicate multiple lines as code.

Compile with /doc to process documentation comments to a file.

This example uses the <c>  tag in the summary section to indicate that Counter  is code.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/c.md


   

<code> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<code>content</code>  

ParametersParameters

Remarks

Example

Public Class Employee
    ''' <remarks>
    ''' <example> This sample shows how to set the <c>ID</c> field.
    ''' <code>
    ''' Dim alice As New Employee
    ''' alice.ID = 1234
    ''' </code>
    ''' </example>
    ''' </remarks>
    Public ID As Integer
End Class

See Also

Indicates that the text is multiple lines of code.

content

The text to mark as code.

Use the <code>  tag to indicate multiple lines as code. Use <c> to indicate that text within a description should be marked as code.

Compile with /doc to process documentation comments to a file.

This example uses the <code> tag to include example code for using the ID  field.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/code.md


 

<example> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<example>description</example>  

ParametersParameters

Remarks

Example

Public Class Employee
    ''' <remarks>
    ''' <example> This sample shows how to set the <c>ID</c> field.
    ''' <code>
    ''' Dim alice As New Employee
    ''' alice.ID = 1234
    ''' </code>
    ''' </example>
    ''' </remarks>
    Public ID As Integer
End Class

See Also

Specifies an example for the member.

description

A description of the code sample.

The <example>  tag lets you specify an example of how to use a method or other library member. This commonly involves using the <code> tag.

Compile with /doc to process documentation comments to a file.

This example uses the <example>  tag to include an example for using the ID  field.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/example.md


  

<exception> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<exception cref="member">description</exception>  

ParametersParameters

Remarks

Example

''' <exception cref="System.OverflowException">
''' Thrown when <paramref name="denominator"/><c> = 0</c>.
''' </exception>
Public Function IntDivide( 
        ByVal numerator As Integer, 
        ByVal denominator As Integer 
) As Integer
    Return numerator \ denominator
End Function

See Also

Specifies which exceptions can be thrown.

member

A reference to an exception that is available from the current compilation environment. The compiler checks that the given exception exists and
translates member  to the canonical element name in the output XML. member  must appear within double quotation marks (" ").

description

A description.

Use the <exception>  tag to specify which exceptions can be thrown. This tag is applied to a method definition.

Compile with /doc to process documentation comments to a file.

This example uses the <exception>  tag to describe an exception that the IntDivide  function can throw.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/exception.md


 

<include> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<include file="filename" path="tagpath[@name='id']" />  

ParametersParameters

Remarks

Example

''' <include file="commentFile.xml" 
''' path="Docs/Members[@name='Open']/*" />
Public Sub Open(ByVal filename As String)
    ' Code goes here.
End Sub
''' <include file="commentFile.xml" 
''' path="Docs/Members[@name='Close']/*" />
Public Sub Close(ByVal filename As String)
    ' Code goes here.
End Sub

<Docs>  
<Members name="Open">  
<summary>Opens a file.</summary>  
<param name="filename">File name to open.</param>  
</Members>  
<Members name="Close">  
<summary>Closes a file.</summary>  
<param name="filename">File name to close.</param>  
</Members>  
</Docs>  

See Also

Refers to another file that describes the types and members in your source code.

filename

Required. The name of the file containing the documentation. The file name can be qualified with a path. Enclose filename  in double quotation marks ("
").

tagpath

Required. The path of the tags in filename  that leads to the tag name . Enclose the path in double quotation marks (" ").

name

Required. The name specifier in the tag that precedes the comments. Name  will have an id .

id

Required. The ID for the tag that precedes the comments. Enclose the ID in single quotation marks (' ').

Use the <include>  tag to refer to comments in another file that describe the types and members in your source code. This is an alternative to placing
documentation comments directly in your source code file.

The <include>  tag uses the W3C XML Path Language (XPath) Version 1.0 Recommendation. More information for ways to customize your <include>

use is available at http://www.w3.org/TR/xpath.

This example uses the <include>  tag to import member documentation comments from a file called commentFile.xml .

The format of the commentFile.xml  is as follows.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/include.md
http://www.w3.org/TR/xpath


 

<list> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<list type="type">  
   <listheader>  
      <term>term</term>  
      <description>description</description>  
   </listheader>  
   <item>  
      <term>term</term>  
      <description>description</description>  
   </item>  
</list>  

ParametersParameters

Remarks

Example

''' <remarks>Before calling the <c>Reset</c> method, be sure to:
''' <list type="bullet">
''' <item><description>Close all connections.</description></item>
''' <item><description>Save the object state.</description></item>
''' </list>
''' </remarks>
Public Sub Reset()
    ' Code goes here.
End Sub

See Also

Defines a list or table.

type

The type of the list. Must be a "bullet" for a bulleted list, "number" for a numbered list, or "table" for a two-column table.

term

Only used when type  is "table." A term to define, which is defined in the description tag.

description

When type  is "bullet" or "number," description  is an item in the list When type  is "table," description  is the definition of term .

The <listheader>  block defines the heading of either a table or definition list. When defining a table, you only have to supply an entry for term  in the
heading.

Each item in the list is specified with an <item>  block. When creating a definition list, you must specify both term  and description . However, for a
table, bulleted list, or numbered list, you only have to supply an entry for description .

A list or table can have as many <item>  blocks as needed.

Compile with /doc to process documentation comments to a file.

This example uses the <list>  tag to define a bulleted list in the remarks section.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/list.md


 

<para> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<para>content</para>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Specifies that the content is formatted as a paragraph.

content

The text of the paragraph.

The <para>  tag is for use inside a tag, such as <summary>, <remarks>, or <returns>, and lets you add structure to the text.

Compile with /doc to process documentation comments to a file.

This example uses the <para>  tag to split the remarks section for the UpdateRecord  method into two paragraphs.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/para.md


 

<param> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<param name="name">description</param>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Defines a parameter name and description.

name

The name of a method parameter. Enclose the name in double quotation marks (" ").

description

A description for the parameter.

The <param>  tag should be used in the comment for a method declaration to describe one of the parameters for the method.

The text for the <param>  tag will appear in the following locations:

Parameter Info of IntelliSense. For more information, see Using IntelliSense.

Object Browser. For more information, see Viewing the Structure of Code.

Compile with /doc to process documentation comments to a file.

This example uses the <param>  tag to describe the id  parameter.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/param.md
https://docs.microsoft.com/visualstudio/ide/using-intellisense
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code


 

<paramref> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<paramref name="name"/>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Formats a word as a parameter.

name

The name of the parameter to refer to. Enclose the name in double quotation marks (" ").

The <paramref>  tag gives you a way to indicate that a word is a parameter. The XML file can be processed to format this parameter in some distinct
way.

Compile with /doc to process documentation comments to a file.

This example uses the <paramref>  tag to refer to the id  parameter.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/paramref.md


 

<permission> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<permission cref="member">description</permission>  

ParametersParameters

Remarks

Example

''' <permission cref="System.Security.Permissions.FileIOPermission">
''' Needs full access to the specified file.
''' </permission>
Public Sub ReadFile(ByVal filename As String)
    ' Code goes here.
End Sub

See Also

Specifies a required permission for the member.

member

A reference to a member or field that is available to be called from the current compilation environment. The compiler checks that the given code
element exists and translates member  to the canonical element name in the output XML. Enclose member  in quotation marks (" ").

description

A description of the access to the member.

Use the <permission>  tag to document the access of a member. Use the PermissionSet class to specify access to a member.

Compile with /doc to process documentation comments to a file.

This example uses the <permission>  tag to describe that the FileIOPermission is required by the ReadFile  method.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/permission.md
https://docs.microsoft.com/dotnet/api/system.security.permissionset
https://docs.microsoft.com/dotnet/api/system.security.permissions.fileiopermission


   

<remarks> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<remarks>description</remarks>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Specifies a remarks section for the member.

description

A description of the member.

Use the <remarks>  tag to add information about a type, supplementing the information specified with <summary>.

This information appears in the Object Browser. For information about the Object Browser, see Viewing the Structure of Code.

Compile with /doc to process documentation comments to a file.

This example uses the <remarks>  tag to explain what the UpdateRecord  method does.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/remarks.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code


  

<returns> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<returns>description</returns>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Specifies the return value of the property or function.

description

A description of the return value.

Use the <returns>  tag in the comment for a method declaration to describe the return value.

Compile with /doc to process documentation comments to a file.

This example uses the <returns>  tag to explain what the DoesRecordExist  function returns.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/returns.md


  

<see> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<see cref="member"/>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Specifies a link to another member.

member

A reference to a member or field that is available to be called from the current compilation environment. The compiler checks that the given code
element exists and passes member  to the element name in the output XML. member  must appear within double quotation marks (" ").

Use the <see>  tag to specify a link from within text. Use <seealso> to indicate text that you might want to appear in a "See Also" section.

Compile with /doc to process documentation comments to a file.

This example uses the <see>  tag in the UpdateRecord  remarks section to refer to the DoesRecordExist  method.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/see.md


  

<seealso> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<seealso cref="member"/>  

ParametersParameters

Remarks

Example

''' <param name="id">The ID of the record to update.</param>
''' <remarks>Updates the record <paramref name="id"/>.
''' <para>Use <see cref="DoesRecordExist"/> to verify that
''' the record exists before calling this method.</para>
''' </remarks>
Public Sub UpdateRecord(ByVal id As Integer)
    ' Code goes here.
End Sub
''' <param name="id">The ID of the record to check.</param>
''' <returns><c>True</c> if <paramref name="id"/> exists,
''' <c>False</c> otherwise.</returns>
''' <remarks><seealso cref="UpdateRecord"/></remarks>
Public Function DoesRecordExist(ByVal id As Integer) As Boolean
    ' Code goes here.
End Function

See Also

Specifies a link that appears in the See Also section.

member

A reference to a member or field that is available to be called from the current compilation environment. The compiler checks that the given code
element exists and passes member  to the element name in the output XML. member  must appear within double quotation marks (" ").

Use the <seealso>  tag to specify the text that you want to appear in a See Also section. Use <see> to specify a link from within text.

Compile with /doc to process documentation comments to a file.

This example uses the <seealso>  tag in the DoesRecordExist  remarks section to refer to the UpdateRecord  method.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/seealso.md


    

<summary> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<summary>description</summary>  

ParametersParameters

Remarks

Example

''' <summary>
''' Resets the value the <c>Counter</c> field.
''' </summary>
Public Sub ResetCounter()
    counterValue = 0
End Sub
Private counterValue As Integer = 0
''' <summary>
''' Returns the number of times Counter was called.
''' </summary>
''' <value>Number of times Counter was called.</value>
Public ReadOnly Property Counter() As Integer
    Get
        counterValue += 1
        Return counterValue
    End Get
End Property

See Also

Specifies the summary of the member.

description

A summary of the object.

Use the <summary>  tag to describe a type or a type member. Use <remarks> to add supplemental information to a type description.

The text for the <summary>  tag is the only source of information about the type in IntelliSense, and is also displayed in the Object Browser. For
information about the Object Browser, see Viewing the Structure of Code.

Compile with /doc to process documentation comments to a file.

This example uses the <summary>  tag to describe the ResetCounter  method and Counter  property.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/summary.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code


 

<typeparam> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<typeparam name="name">description</typeparam>  

ParametersParameters

Remarks

Example

''' <typeparam name="T">
''' The base item type. Must implement IComparable.
''' </typeparam>
Public Class itemManager(Of T As IComparable)
    ' Insert code that defines class members.
End Class

See Also

Defines a type parameter name and description.

name

The name of the type parameter. Enclose the name in double quotation marks (" ").

description

A description of the type parameter.

Use the <typeparam>  tag in the comment for a generic type or generic member declaration to describe one of the type parameters.

Compile with /doc to process documentation comments to a file.

This example uses the <typeparam>  tag to describe the id  parameter.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/typeparam.md


 

<value> (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<value>property-description</value>  

ParametersParameters

Remarks

Example

''' <summary>
''' Resets the value the <c>Counter</c> field.
''' </summary>
Public Sub ResetCounter()
    counterValue = 0
End Sub
Private counterValue As Integer = 0
''' <summary>
''' Returns the number of times Counter was called.
''' </summary>
''' <value>Number of times Counter was called.</value>
Public ReadOnly Property Counter() As Integer
    Get
        counterValue += 1
        Return counterValue
    End Get
End Property

See Also

Specifies the description of a property.

property-description

A description for the property.

Use the <value>  tag to describe a property. Note that when you add a property using the code wizard in the Visual Studio development environment, it
will add a <summary> tag for the new property. You should then manually add a <value>  tag to describe the value that the property represents.

Compile with /doc to process documentation comments to a file.

This example uses the <value>  tag to describe what value the Counter  property holds.

XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xmldoc/value.md


            

XML Axis Properties (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section
TOPIC DESCRIPTION

XML Attribute Axis Property Describes how to access the attributes of an XElement object.

XML Child Axis Property Describes how to access the children of an XElement object.

XML Descendant Axis Property Describes how to access the descendants of an XElement object.

Extension Indexer Property Describes how to access individual elements in a collection of XElement or
XAttribute objects.

XML Value Property Describes how to access the value of the first element of a collection of XElement or
XAttribute objects.

See Also

The topics in this section document the syntax of XML axis properties in Visual Basic. The XML axis properties make it easy to access XML directly in
your code.

XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/xml-axis-properties.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute


  

XML Attribute Axis Property (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
      object.@attribute  
-or-  
object.@<attribute>  

Parts

PART DESCRIPTION

prefix Optional. XML namespace prefix for the attribute. Must be a global XML
namespace defined with an Imports  statement.

name Required. Local attribute name. See Names of Declared XML Elements and
Attributes.

Return Value

Remarks

XML Namespaces

Example

Provides access to the value of an attribute for an XElement object or to the first element in a collection of XElement objects.

object

Required. An XElement object or a collection of XElement objects.

.@
Required. Denotes the start of an attribute axis property.

<
Optional. Denotes the beginning of the name of the attribute when attribute  is not a valid identifier in Visual Basic.

attribute

Required. Name of the attribute to access, of the form [ prefix :] name .

>
Optional. Denotes the end of the name of the attribute when attribute  is not a valid identifier in Visual Basic.

A string that contains the value of attribute . If the attribute name does not exist, Nothing  is returned.

You can use an XML attribute axis property to access the value of an attribute by name from an XElement object or from the first element in a collection
of XElement objects. You can retrieve an attribute value by name, or add a new attribute to an element by specifying a new name preceded by the @
identifier.

When you refer to an XML attribute using the @ identifier, the attribute value is returned as a string and you do not need to explicitly specify the Value
property.

The naming rules for XML attributes differ from the naming rules for Visual Basic identifiers. To access an XML attribute that has a name that is not a
valid Visual Basic identifier, enclose the name in angle brackets (< and >).

The name in an attribute axis property can use only XML namespace prefixes declared globally by using the Imports  statement. It cannot use XML
namespace prefixes declared locally within XML element literals. For more information, see Imports Statement (XML Namespace).

The following example shows how to get the values of the XML attributes named type  from a collection of XML elements that are named phone .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/xml-attribute-axis-property.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute.value


' Topic: XML Attribute Axis Property
Dim phones As XElement = 
    <phones>
        <phone type="home">206-555-0144</phone>
        <phone type="work">425-555-0145</phone>
    </phones>

Dim phoneTypes As XElement = 
  <phoneTypes>
      <%= From phone In phones.<phone> 
          Select <type><%= phone.@type %></type> 
      %>
  </phoneTypes>

Console.WriteLine(phoneTypes)

Example

Dim phone2 As XElement = <phone type="home">206-555-0144</phone>
phone2.@owner = "Harris, Phyllis"

Console.WriteLine(phone2)

<phone type="home" owner="Harris, Phyllis">206-555-0144</phone>  

Example

Dim phone As XElement = 
     <phone number-type=" work">425-555-0145</phone>

 Console.WriteLine("Phone type: " & phone.@<number-type>)

Example

Imports <xmlns:ns = "http://SomeNamespace"> 
 
Class TestClass3

    Shared Sub TestPrefix()
        Dim phone = 
            <ns:phone ns:type="home">206-555-0144</ns:phone>

        Console.WriteLine("Phone type: " & phone.@ns:type)
    End Sub

End Class

This code displays the following text:

<phoneTypes>

<type>home</type>

<type>work</type>

</phoneTypes>

The following example shows how to create attributes for an XML element both declaratively, as part of the XML, and dynamically by adding an
attribute to an instance of an XElement object. The type  attribute is created declaratively and the owner  attribute is created dynamically.

This code displays the following text:

The following example uses the angle bracket syntax to get the value of the XML attribute named number-type , which is not a valid identifier in Visual
Basic.

This code displays the following text:

Phone type: work

The following example declares ns  as an XML namespace prefix. It then uses the prefix of the namespace to create an XML literal and access the first
child node with the qualified name " ns:name ".

This code displays the following text:

Phone type: home

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement


See Also
XElement
XML Axis Properties
XML Literals
Creating XML in Visual Basic
Names of Declared XML Elements and Attributes

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes


  

XML Child Axis Property (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
object.<child>  

Parts
TERM DEFINITION

object Required. An XElement object, an XDocument object, a collection of XElement
objects, or a collection of XDocument objects.

.< Required. Denotes the start of a child axis property.

child Required. Name of the child nodes to access, of the form [ prefix``: ] name .

- Prefix  - Optional. XML namespace prefix for the child node. Must be a global
XML namespace defined with an Imports  statement.
- Name  - Required. Local child node name. See Names of Declared XML Elements
and Attributes.

> Required. Denotes the end of a child axis property.

Return Value

Remarks

XML Namespaces

Example

Dim contact As XElement = 
    <contact>
        <name>Patrick Hines</name>
        <phone type="home">206-555-0144</phone>
        <phone type="work">425-555-0145</phone>
    </contact>

Dim homePhone = From hp In contact.<phone> 
                Where contact.<phone>.@type = "home" 
                Select hp

Console.WriteLine("Home Phone = {0}", homePhone(0).Value)

Example

Provides access to the children of one of the following: an XElement object, an XDocument object, a collection of XElement objects, or a collection of
XDocument objects.

A collection of XElement objects.

You can use an XML child axis property to access child nodes by name from an XElement or XDocument object, or from a collection of XElement or
XDocument objects. Use the XML Value  property to access the value of the first child node in the returned collection. For more information, see XML
Value Property.

The Visual Basic compiler converts child axis properties to calls to the Elements method.

The name in a child axis property can use only XML namespace prefixes declared globally with the Imports  statement. It cannot use XML namespace
prefixes declared locally within XML element literals. For more information, see Imports Statement (XML Namespace).

The following example shows how to access the child nodes named phone  from the contact  object.

This code displays the following text:

Home Phone = 206-555-0144

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/xml-child-axis-property.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcontainer.elements


Dim contacts As XElement = 
    <contacts>
        <contact>
            <name>Patrick Hines</name>
            <phone type="home">206-555-0144</phone>
        </contact>
        <contact>
            <name>Lance Tucker</name>
            <phone type="work">425-555-0145</phone>
        </contact>
    </contacts>

Dim homePhone = From contact In contacts.<contact> 
                Where contact.<phone>.@type = "home" 
                Select contact.<phone>

Console.WriteLine("Home Phone = {0}", homePhone(0).Value)

Example

Imports <xmlns:ns = "http://SomeNamespace"> 
 
Class TestClass4

    Shared Sub TestPrefix()
        Dim contact = <ns:contact>
                        <ns:name>Patrick Hines</ns:name>
                      </ns:contact>
        Console.WriteLine(contact.<ns:name>.Value)
    End Sub

End Class

See Also

The following example shows how to access the child nodes named phone  from the collection returned by the contact  child axis property of the 
contacts  object.

This code displays the following text:

Home Phone = 206-555-0144

The following example declares ns  as an XML namespace prefix. It then uses the prefix of the namespace to create an XML literal and access the first
child node with the qualified name ns:name .

This code displays the following text:

Patrick Hines

XElement
XML Axis Properties
XML Literals
Creating XML in Visual Basic
Names of Declared XML Elements and Attributes

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes


 

XML Descendant Axis Property (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
object...<descendant>  

Parts

PART DESCRIPTION

prefix Optional. XML namespace prefix for the descendant node. Must be a global XML
namespace that is defined by using an Imports  statement.

name Required. Local name of the descendant node. See Names of Declared XML
Elements and Attributes.

Return Value

Remarks

XML Namespaces

Example

Provides access to the descendants of the following: an XElement object, an XDocument object, a collection of XElement objects, or a collection of
XDocument objects.

object

Required. An XElement object, an XDocument object, a collection of XElement objects, or a collection of XDocument objects.

...<
Required. Denotes the start of a descendant axis property.

descendant

Required. Name of the descendant nodes to access, of the form [ prefix``: ] name .

>
Required. Denotes the end of a descendant axis property.

A collection of XElement objects.

You can use an XML descendant axis property to access descendant nodes by name from an XElement or XDocument object, or from a collection of
XElement or XDocument objects. Use the XML Value  property to access the value of the first descendant node in the returned collection. For more
information, see XML Value Property.

The Visual Basic compiler converts descendant axis properties into calls to the Descendants method.

The name in a descendant axis property can use only XML namespaces declared globally with the Imports  statement. It cannot use XML namespaces
declared locally within XML element literals. For more information, see Imports Statement (XML Namespace).

The following example shows how to access the value of the first descendant node named name  and the values of all descendant nodes named phone

from the contacts  object.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/xml-descendant-axis-property.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcontainer.descendants


Dim contacts As XElement = 
    <contacts>
        <contact>
            <name>Patrick Hines</name>
            <phone type="home">206-555-0144</phone>
            <phone type="work">425-555-0145</phone>
        </contact>
    </contacts>

Console.WriteLine("Name: " & contacts...<name>.Value)

Dim homePhone = From phone In contacts...<phone> 
                Select phone.Value

Console.WriteLine("Home Phone = {0}", homePhone(0))

Example

Imports <xmlns:ns = "http://SomeNamespace"> 
 
Class TestClass2

    Shared Sub TestPrefix()
        Dim contacts = 
            <ns:contacts>
                <ns:contact>
                    <ns:name>Patrick Hines</ns:name>
                </ns:contact>
            </ns:contacts>

        Console.WriteLine("Name: " & contacts...<ns:name>.Value)
    End Sub

End Class

See Also

This code displays the following text:

Name: Patrick Hines

Home Phone = 206-555-0144

The following example declares ns  as an XML namespace prefix. It then uses the prefix of the namespace to create an XML literal and access the value
of the first child node with the qualified name ns:name .

This code displays the following text:

Name: Patrick Hines

XElement
XML Axis Properties
XML Literals
Creating XML in Visual Basic
Names of Declared XML Elements and Attributes

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes


   

Extension Indexer Property (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
object(index)  

Parts
TERM DEFINITION

object Required. A queryable collection. That is, a collection that implements
IEnumerable<T> or IQueryable<T>.

( Required. Denotes the start of the indexer property.

index Required. An integer expression that specifies the zero-based position of an
element of the collection.

) Required. Denotes the end of the indexer property.

Return Value

Remarks

Example

Dim contact As XElement = 
    <contact>
        <name>Patrick Hines</name>
        <phone type="home">206-555-0144</phone>
        <phone type="work">425-555-0145</phone>
    </contact>

Console.WriteLine("Second phone number: " & contact.<phone>(1).Value)

See Also

Provides access to individual elements in a collection.

The object from the specified location in the collection, or Nothing  if the index is out of range.

You can use the extension indexer property to access individual elements in a collection. This indexer property is typically used on the output of XML
axis properties. The XML child and XML descendent axis properties return collections of XElement objects or an attribute value.

The Visual Basic compiler converts extension indexer properties to calls to the ElementAtOrDefault  method. Unlike an array indexer, the 
ElementAtOrDefault  method returns Nothing  if the index is out of range. This behavior is useful when you cannot easily determine the number of

elements in a collection.

This indexer property is like an extension property for collections that implement IEnumerable<T> or IQueryable<T>: it is used only if the collection
does not have an indexer or a default property.

To access the value of the first element in a collection of XElement or XAttribute objects, you can use the XML Value  property. For more information,
see XML Value Property.

The following example shows how to use the extension indexer to access the second child node in a collection of XElement objects. The collection is
accessed by using the child axis property, which gets all child elements named phone  in the contact  object.

This code displays the following text:

Second phone number: 425-555-0145

XElement
XML Axis Properties
XML Literals
Creating XML in Visual Basic
XML Value Property

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/extension-indexer-property.md
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable-1
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable-1
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml




     

XML Value Property (Visual Basic)
6/28/2018 • 2 minutes to read • Edit Online

Syntax
object.Value  

Parts
TERM DEFINITION

object Required. Collection of XElement objects.

Return Value

Remarks

NOTENOTE

Inheritance

Example

Dim contact As XElement = 
    <contact>
        <name>Patrick Hines</name>
        <phone type="home">206-555-0144</phone>
        <phone type="work">425-555-0145</phone>
    </contact>

Console.WriteLine("Phone number: " & contact.<phone>.Value)

Example

Provides access to the value of the first element of a collection of XElement objects.

A String  that contains the value of the first element of the collection, or Nothing  if the collection is empty.

The Value property makes it easy to access the value of the first element in a collection of XElement objects. This property first checks whether the
collection contains at least one object. If the collection is empty, this property returns Nothing . Otherwise, this property returns the value of the Value
property of the first element in the collection.

When you access the value of an XML attribute using the '@' identifier, the attribute value is returned as a String  and you do not need to explicitly specify the Value
property.

To access other elements in a collection, you can use the XML extension indexer property. For more information, see Extension Indexer Property.

Most users will not have to implement IEnumerable<T>, and can therefore ignore this section.

The Value property is an extension property for types that implement IEnumerable(Of XElement) . The binding of this extension property is like the
binding of extension methods: if a type implements one of the interfaces and defines a property that has the name "Value", that property has
precedence over the extension property. In other words, this Value property can be overridden by defining a new property in a class that implements 
IEnumerable(Of XElement) .

The following example shows how to use the Value property to access the first node in a collection of XElement objects. The example uses the child axis
property to get the collection of all child nodes named phone  that are in the contact  object.

This code displays the following text:

Phone number: 206-555-0144

The following example shows how to get the value of an XML attribute from a collection of XAttribute objects. The example uses the attribute axis
property to display the value of the type  attribute for all of the phone  elements.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-axis/xml-value-property.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.value
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.value
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute.value
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.value
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.value
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.value
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute


Dim contact As XElement = 
    <contact>
      <name>Patrick Hines</name>
      <phone type="home">206-555-0144</phone>
      <phone type="work">425-555-0145</phone>
    </contact>

Dim types = contact.<phone>.Attributes("type")

For Each attr In types
  Console.WriteLine(attr.Value)
Next

See Also

This code displays the following text:

home

work

XElement
IEnumerable<T>
XML Axis Properties
XML Literals
Creating XML in Visual Basic
Extension Methods
Extension Indexer Property
XML Child Axis Property
XML Attribute Axis Property

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods


                

XML Literals (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section
TOPIC DESCRIPTION

XML Element Literal Describes the syntax for literals that represent XElement objects.

XML Document Literal Describes the syntax for literals that represent XDocument objects.

XML CDATA Literal Describes the syntax for literals that represent XCData objects.

XML Comment Literal Describes the syntax for literals that represent XComment objects.

XML Processing Instruction Literal Describes the syntax for literals that represent XProcessingInstruction objects.

See Also

The topics in this section document the syntax of XML literals in Visual Basic. The XML literal syntax enables you to incorporate XML directly in your
code.

XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/index.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcdata
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction


       

XML Element Literal (Visual Basic)
5/4/2018 • 4 minutes to read • Edit Online

Syntax
<name [ attributeList ] />  
-or-  
<name [ attributeList ] > [ elementContents ] </[ name ]>  

Parts

A literal that represents an XElement object.

<

Required. Opens the starting element tag.

name

Required. Name of the element. The format is one of the following:

PART DESCRIPTION

ePrefix Optional. XML namespace prefix for the element. Must be a global XML
namespace that is defined with an Imports  statement in the file or at the
project level, or a local XML namespace that is defined in this element or a
parent element.

eName Required. Name of the element. The format is one of the following:

- Literal text. See Names of Declared XML Elements and Attributes.
- Embedded expression of the form <%= eNameExp %> . The type of 
eNameExp  must be String  or a type that is implicitly convertible to

XName.

Literal text for the element name, of the form [ePrefix:]eName , where:

Embedded expression of the form <%= nameExp %> . The type of nameExp  must be String  or a type implicitly convertible to XName. An
embedded expression is not allowed in a closing tag of an element.

attributeList

Optional. List of attributes declared in the literal.

attribute [ attribute ... ]

Each attribute  has one of the following syntaxes:

PART DESCRIPTION

aPrefix Optional. XML namespace prefix for the attribute. Must be a global XML
namespace that is defined with an Imports  statement, or a local XML
namespace that is defined in this element or a parent element.

aName Required. Name of the attribute. The format is one of the following:

- Literal text. See Names of Declared XML Elements and Attributes.
- Embedded expression of the form <%= aNameExp %> . The type of 
aNameExp  must be String  or a type that is implicitly convertible to

XName.

aValue Optional. Value of the attribute. The format is one of the following:

- Literal text, enclosed in quotation marks.
- Embedded expression of the form <%= aValueExp %> . Any type is
allowed.

Attribute assignment, of the form [aPrefix:]aName=aValue , where:

Embedded expression of the form <%= aExp %> .

/>

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/xml-element-literal.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xname
https://docs.microsoft.com/dotnet/api/system.xml.linq.xname
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes
https://docs.microsoft.com/dotnet/api/system.xml.linq.xname


Return Value

Remarks

NOTENOTE

XML Namespaces

Example

Dim test1 As XElement = 
<outer>
    <inner1></inner1>
    <inner2/>
</outer>

Console.WriteLine(test1)

Optional. Indicates that the element is an empty element, without content.

>

Required. Ends the beginning or empty element tag.

elementContents

Optional. Content of the element.

content [ content ... ]

Each content  can be one of the following:

Literal text. All the white space in elementContents  becomes significant if there is any literal text.

Embedded expression of the form <%= contentExp %> .

XML element literal.

XML comment literal. See XML Comment Literal.

XML processing instruction literal. See XML Processing Instruction Literal.

XML CDATA literal. See XML CDATA Literal.

</[name]>

Optional. Represents the closing tag for the element. The optional name  parameter is not allowed when it is the result of an embedded
expression.

An XElement object.

You can use the XML element literal syntax to create XElement objects in your code.

An XML literal can span multiple lines without using line continuation characters. This feature enables you to copy content from an XML document and paste it directly
into a Visual Basic program.

Embedded expressions of the form <%= exp %>  enable you to add dynamic information to an XML element literal. For more information, see
Embedded Expressions in XML.

The Visual Basic compiler converts the XML element literal into calls to the XElement constructor and, if it is required, the XAttribute constructor.

XML namespace prefixes are useful when you have to create XML literals with elements from the same namespace many times in code. You can use
global XML namespace prefixes, which you define by using the Imports  statement, or local prefixes, which you define by using the 
xmlns:xmlPrefix="xmlNamespace"  attribute syntax. For more information, see Imports Statement (XML Namespace).

In accordance with the scoping rules for XML namespaces, local prefixes take precedence over global prefixes. However, if an XML literal defines an
XML namespace, that namespace is not available to expressions that appear in an embedded expression. The embedded expression can access only the
global XML namespace.

The Visual Basic compiler converts each global XML namespace that is used by an XML literal into a one local namespace definition in the generated
code. Global XML namespaces that are not used do not appear in the generated code.

The following example shows how to create a simple XML element that has two nested empty elements.

The example displays the following text. Notice that the literal preserves the structure of the empty elements.

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement.-ctor
https://docs.microsoft.com/dotnet/api/system.xml.linq.xattribute.-ctor


<outer>  
  <inner1></inner1>  
  <inner2 />  
</outer>  

Example

Dim elementType = "book"
Dim authorName = "My Author"
Dim attributeName1 = "year"
Dim attributeValue1 = 1999
Dim attributeName2 = "title"
Dim attributeValue2 = "My Book"

Dim book As XElement = 
<<%= elementType %>
    isbn="1234"
    author=<%= authorName %>
    <%= attributeName1 %>=<%= attributeValue1 %>
    <%= New XAttribute(attributeName2, attributeValue2) %>
/>

Console.WriteLine(book)

<book isbn="1234" author="My Author" year="1999" title="My Book" />  

Example

' Place Imports statements at the top of your program.  
Imports <xmlns:ns="http://SomeNamespace">

Class TestClass1

    Shared Sub TestPrefix()
        ' Create test using a global XML namespace prefix. 
        Dim inner2 = <ns:inner2/>

        Dim test = 
        <ns:outer>
            <ns:middle xmlns:ns="http://NewNamespace">
                <ns:inner1/>
                <%= inner2 %>
            </ns:middle>
        </ns:outer>

        ' Display test to see its final form. 
        Console.WriteLine(test)
    End Sub

End Class

<ns:outer xmlns:ns="http://SomeNamespace">  
  <ns:middle xmlns:ns="http://NewNamespace">  
    <ns:inner1 />  
    <inner2 xmlns="http://SomeNamespace" />  
  </ns:middle>  
</ns:outer>  

See Also

The following example shows how to use embedded expressions to name an element and create attributes.

This code displays the following text:

The following example declares ns  as an XML namespace prefix. It then uses the prefix of the namespace to create an XML literal and displays the
element's final form.

This code displays the following text:

Notice that the compiler converted the prefix of the global XML namespace into a prefix definition for the XML namespace. The <ns:middle> element
redefines the XML namespace prefix for the <ns:inner1> element. However, the <ns:inner2> element uses the namespace defined by the Imports

statement.

XElement
Names of Declared XML Elements and Attributes

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/names-of-declared-xml-elements-and-attributes


XML Comment Literal
XML CDATA Literal
XML Literals
Creating XML in Visual Basic
Embedded Expressions in XML
Imports Statement (XML Namespace)

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml


   

XML Document Literal (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<?xml version="1.0" [encoding="encoding"] [standalone="standalone"] ?>  
[ piCommentList ]  
rootElement  
[ piCommentList ]  

Parts
TERM DEFINITION

encoding Optional. Literal text declaring which encoding the document uses.

standalone Optional. Literal text. Must be "yes" or "no".

piCommentList Optional. List of XML processing instructions and XML comments. Takes the
following format:

piComment [  piComment  ... ]

Each piComment  can be one of the following:

- XML Processing Instruction Literal.
- XML Comment Literal.

rootElement Required. Root element of the document. The format is one of the following:

For more information, see Embedded Expressions in XML.

Return Value

Remarks

NOTENOTE

Example

A literal representing an XDocument object.

XML Element Literal.
Embedded expression of the form <%=  elementExp  %> . The 
elementExp  returns one of the following:

An XElement object.
A collection that contains one XElement object and any number of
XProcessingInstruction and XComment objects.

An XDocument object.

An XML document literal is identified by the XML declaration at the start of the literal. Although each XML document literal must have exactly one root
XML element, it can have any number of XML processing instructions and XML comments.

An XML document literal cannot appear in an XML element.

An XML literal can span multiple lines without using line continuation characters. This enables you to copy content from an XML document and paste it directly into a
Visual Basic program.

The Visual Basic compiler converts the XML document literal into calls to the XDocument and XDeclaration constructors.

The following example creates an XML document that has an XML declaration, a processing instruction, a comment, and an element that contains
another element.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/xml-document-literal.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument.-ctor
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdeclaration.-ctor


Dim libraryRequest As XDocument = 
    <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
    <?xml-stylesheet type="text/xsl" href="show_book.xsl"?>
    <!-- Tests that the application works. -->
    <books>
        <book/>
    </books>
Console.WriteLine(libraryRequest)

See Also
XElement
XProcessingInstruction
XComment
XDocument
XML Processing Instruction Literal
XML Comment Literal
XML Element Literal
XML Literals
Creating XML in Visual Basic
Embedded Expressions in XML

https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/dotnet/api/system.xml.linq.xdocument
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/embedded-expressions-in-xml


   

XML CDATA Literal (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<![CDATA[content]]>  

Parts

Return Value

Remarks

NOTENOTE

Example

Dim cdata As XCData = <![CDATA[Can contain literal <XML> tags]]>

See Also

A literal representing an XCData object.

<![CDATA[

Required. Denotes the start of the XML CDATA section.

content

Required. Text content to appear in the XML CDATA section.

]]>

Required. Denotes the end of the section.

An XCData object.

XML CDATA sections contain raw text that should be included, but not parsed, with the XML that contains it. A XML CDATA section can contain any
text. This includes reserved XML characters. The XML CDATA section ends with the sequence "]]>". This implies the following points:

You cannot use an embedded expression in an XML CDATA literal because the embedded expression delimiters are valid XML CDATA content.

XML CDATA sections cannot be nested, because content  cannot contain the value "]]>".

You can assign an XML CDATA literal to a variable, or include it in an XML element literal.

An XML literal can span multiple lines but does not use line continuation characters. This enables you to copy content from an XML document and paste it directly into
a Visual Basic program.

The Visual Basic compiler converts the XML CDATA literal to a call to the XCData constructor.

The following example creates a CDATA section that contains the text "Can contain literal <XML> tags".

XCData
XML Element Literal
XML Literals
Creating XML in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/xml-cdata-literal.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcdata
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcdata
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcdata.-ctor
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcdata
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml


     

XML Comment Literal (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<!-- content -->  

Parts
TERM DEFINITION

<!-- Required. Denotes the start of the XML comment.

content Required. Text to appear in the XML comment. Cannot contain a series of two
hyphens (--) or end with a hyphen adjacent to the closing tag.

--> Required. Denotes the end of the XML comment.

Return Value

Remarks

NOTENOTE

Example

Dim com As XComment = <!-- This is a comment -->

See Also

A literal representing an XComment object.

An XComment object.

XML comment literals do not contain document content; they contain information about the document. The XML comment section ends with the
sequence "-->". This implies the following points:

You cannot use an embedded expression in an XML comment literal because the embedded expression delimiters are valid XML comment
content.

XML comment sections cannot be nested, because content  cannot contain the value "-->".

You can assign an XML comment literal to a variable, or you can include it in an XML element literal.

An XML literal can span multiple lines without using line continuation characters. This feature enables you to copy content from an XML document and paste it directly
into a Visual Basic program.

The Visual Basic compiler converts the XML comment literal to a call to the XComment constructor.

The following example creates an XML comment that contains the text "This is a comment".

XComment
XML Element Literal
XML Literals
Creating XML in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/xml-comment-literal.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment.-ctor
https://docs.microsoft.com/dotnet/api/system.xml.linq.xcomment
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml


    

XML Processing Instruction Literal (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
<?piName [ = piData ] ?>  

Parts

Return Value

Remarks

NOTENOTE

NOTENOTE

Example

Dim pi As XProcessingInstruction = 
  <?xml-stylesheet type="text/xsl" href="show_book.xsl"?>

See Also

A literal representing an XProcessingInstruction object.

<?

Required. Denotes the start of the XML processing instruction literal.

piName

Required. Name indicating which application the processing instruction targets. Cannot begin with "xml" or "XML".

piData

Optional. String indicating how the application targeted by piName  should process the XML document.

?>

Required. Denotes the end of the processing instruction.

An XProcessingInstruction object.

XML processing instruction literals indicate how applications should process an XML document. When an application loads an XML document, the
application can check the XML processing instructions to determine how to process the document. The application interprets the meaning of piName

and piData .

The XML document literal uses syntax that is similar to that of the XML processing instruction. For more information, see XML Document Literal.

The piName  element cannot begin with the strings "xml" or "XML", because the XML 1.0 specification reserves those identifiers.

You can assign an XML processing instruction literal to a variable or include it in an XML document literal.

An XML literal can span multiple lines without needing line continuation characters. This enables you to copy content from an XML document and paste it directly into
a Visual Basic program.

The Visual Basic compiler converts the XML processing instruction literal to a call to the XProcessingInstruction constructor.

The following example creates a processing instruction identifying a style-sheet for an XML document.

XProcessingInstruction
XML Document Literal
XML Literals
Creating XML in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/xml-literals/xml-processing-instruction-literal.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction.-ctor
https://docs.microsoft.com/dotnet/api/system.xml.linq.xprocessinginstruction
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/creating-xml


   

Error Messages (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Run Time Errors

Compile Time Errors

When you write, compile, or run a Visual Basic application, the following types of errors can occur :

1. Design-time errors, which occur when you write an application in Visual Studio.

2. Compile-time errors, which occur when you compile an application in Visual Studio or at a command prompt.

3. Run-time errors, which occur when you run an application in Visual Studio or as a stand-alone executable file.

For information about how to troubleshoot a specific error, see Additional Resources for Visual Basic Programmers.

If a Visual Basic application tries to perform an action that the system can't execute, a run-time error occurs, and Visual Basic throws an Exception

object. Visual Basic can generate custom errors of any data type, including Exception  objects, by using the Throw  statement. An application can identify
the error by displaying the error number and message of a caught exception. If an error isn't caught, the application ends.

The code can trap and examine run-time errors. If you enclose the code that produces the error in a Try  block, you can catch any thrown error within a
matching Catch  block. For information about how to trap errors at run time and respond to them in your code, see Try...Catch...Finally Statement.

If the Visual Basic compiler encounters a problem in the code, a compile-time error occurs. In the Code Editor, you can easily identify which line of code
caused the error because a wavy line appears under that line of code. The error message appears if you either point to the wavy underline or open the
Error List, which also shows other messages.

If an identifier has a wavy underline and a short underline appears under the rightmost character, you can generate a stub for the class, constructor,
method, property, field or enum. For more information, see Generate From Usage.

By resolving warnings from the Visual Basic compiler, you might be able to write code that runs faster and has fewer bugs. These warnings identify code
that may cause errors when the application is run. For example, the compiler warns you if you try to invoke a member of an unassigned object variable,
return from a function without setting the return value, or execute a Try  block with errors in the logic to catch exceptions. For more information about
warnings, including how to turn them on and off, see Configuring Warnings in Visual Basic.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/index.md
https://docs.microsoft.com/visualstudio/ide/visual-csharp-intellisense#generate-from-usage
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


 

'#ElseIf' must be preceded by a matching '#If' or '#ElseIf'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

#ElseIf  is a conditional compilation directive. An #ElseIf  clause must be preceded by a matching #If  or #ElseIf  clause.

Error ID: BC30014

1. Check that a preceding #If  or #ElseIf  has not been separated from this #ElseIf  by an intervening conditional compilation block or an
incorrectly placed #End If .

2. If the #ElseIf  is preceded by a #Else  directive, either remove the #Else  or change it to an #ElseIf .

3. If everything else is in order, add an #If  directive to the beginning of the conditional compilation block.

#If...Then...#Else Directives

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/elseif-must-be-preceded-by-a-matching-if-or-elseif.md


 

'#Region' and '#End Region' statements are not valid within method
bodies/multiline lambdas
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The #Region  block must be declared at a class, module, or namespace level. A collapsible region can include one or more procedures, but it cannot
begin or end inside of a procedure.

Error ID: BC32025

1. Ensure that the preceding procedure is properly terminated with an End Function  or End Sub  statement.

2. Ensure that the #Region  and #End Region  directives are in the same code block.

#Region Directive

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/region-and-end-region-are-not-valid-within-method-bodies-multiline-lambdas.md


 

'<attribute>' cannot be applied because the format of the GUID
'<number>' is not correct
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A COMClassAttribute  attribute block specifies a globally unique identifier (GUID) that does not conform to the proper format for a GUID. 
COMClassAttribute  uses GUIDs to uniquely identify the class, the interface, and the creation event.

A GUID consists of 16 bytes, of which the first eight are numeric and the last eight are binary. It is generated by Microsoft utilities such as uuidgen.exe
and is guaranteed to be unique in space and time.

Error ID: BC32500

1. Determine the correct GUID or GUIDs necessary to identify the COM object.

2. Ensure that the GUID strings presented to the COMClassAttribute  attribute block are copied correctly.

Guid
Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/attribute-cannot-be-applied-because-the-format-of-the-guid-is-not-correct.md
https://docs.microsoft.com/dotnet/api/system.guid


 

'<classname>' is not CLS-compliant because the interface
'<interfacename>' it implements is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

A class or interface is marked as <CLSCompliant(True)>  when it derives from or implements a type that is marked as <CLSCompliant(False)>  or is not
marked.

For a class or interface to be compliant with the Language Independence and Language-Independent Components (CLS), its entire inheritance
hierarchy must be compliant. That means every type from which it inherits, directly or indirectly, must be compliant. Similarly, if a class implements one
or more interfaces, they must all be compliant throughout their inheritance hierarchies.

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40029

If you require CLS compliance, define this type within a different inheritance hierarchy or implementation scheme.

If you require that this type remain within its current inheritance hierarchy or implementation scheme, remove the CLSCompliantAttribute from
its definition or mark it as <CLSCompliant(False)> .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/classname-is-not-cls-compliant-because-the-interface-is-not-cls-compliant.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute


 

'<elementname>' is obsolete (Visual Basic Warning)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A statement attempts to access a programming element which has been marked with the ObsoleteAttribute attribute and the directive to treat it as a
warning.

You can mark any programming element as being no longer in use by applying ObsoleteAttribute to it. If you do this, you can set the attribute's IsError
property to either True  or False . If you set it to True , the compiler treats an attempt to use the element as an error. If you set it to False , or let it
default to False , the compiler issues a warning if there is an attempt to use the element.

By default, this message is a warning, because the IsError property of ObsoleteAttribute is False . For more information about hiding warnings or
treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40008

Ensure that the source-code reference is spelling the element name correctly.

Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/elementname-is-obsolete-visual-basic-warning.md
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute.iserror
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute.iserror
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


 

'<eventname>' is an event, and cannot be called directly
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

'< eventname >' is an event, and so cannot be called directly. Use a RaiseEvent  statement to raise an event.

A procedure call specifies an event for the procedure name. An event handler is a procedure, but the event itself is a signaling device, which must be
raised and handled.

Error ID: BC32022

1. Use a RaiseEvent  statement to signal an event and invoke the procedure or procedures that handle it.

RaiseEvent Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/eventname-is-an-event-and-cannot-be-called-directly.md


 

'<expression>' cannot be used as a type constraint
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A constraint list includes an expression that does not represent a valid constraint on a type parameter.

A constraint list imposes requirements on the type argument passed to the type parameter. You can specify the following requirements in any
combination:

The type argument must implement one or more interfaces

The type argument must inherit from at most one class

The type argument must expose a parameterless constructor that the creating code can access (include the New  constraint)

If you do not include any specific class or interface in the constraint list, you can impose a more general requirement by specifying one of the following:

The type argument must be a value type (include the Structure  constraint)

The type argument must be a reference type (include the Class  constraint)

You cannot specify both Structure  and Class  for the same type parameter, and you cannot specify either one more than once.

Error ID: BC32061

Verify that the expression and its elements are spelled correctly.

If the expression does not qualify for the preceding list of requirements, remove it from the constraint list.

If the expression refers to an interface or class, verify that the compiler has access to that interface or class. You might need to qualify its name,
and you might need to add a reference to your project. For more information, see "References to Projects" in References to Declared Elements.

Generic Types in Visual Basic
Value Types and Reference Types
References to Declared Elements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-cannot-be-used-as-a-type-constraint.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/value-types-and-reference-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


 

'<functionname>' is not declared (Smart Device/Visual Basic Compiler
Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

< functionname > is not declared. File I/O functionality is normally available in the Microsoft.VisualBasic  namespace, but the targeted version of the
.NET Compact Framework does not support it.

Error ID: BC30766

Perform file operations with functions defined in the System.IO  namespace.

System.IO
File Access with Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/functionname-is-not-declared-smart-device-visual-basic-compiler-error.md
https://docs.microsoft.com/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/file-access


 

'<interfacename>.<membername>' is already implemented by the base
class '<baseclassname>'. Re-implementation of <type> assumed
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A property, procedure, or event in a derived class uses an Implements  clause specifying an interface member that is already implemented in the base
class.

A derived class can reimplement an interface member that is implemented by its base class. This is not the same as overriding the base class
implementation. For more information, see Implements.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC42015

If you intend to reimplement the interface member, you do not need to take any action. Code in your derived class accesses the reimplemented
member unless you use the MyBase  keyword to access the base class implementation.

If you do not intend to reimplement the interface member, remove the Implements  clause from the property, procedure, or event declaration.

Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/interfacename-membername-is-already-implemented-by-the-base-class.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


 

'<keyword>' is valid only within an instance method
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Me , MyClass , and MyBase  keywords refer to specific class instances. You cannot use them inside a shared Function  or Sub  procedure.

Error ID: BC30043

Remove the keyword from the procedure, or remove the Shared  keyword from the procedure declaration.

Object Variable Assignment
Me, My, MyBase, and MyClass
Inheritance Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/keyword-is-valid-only-within-an-instance-method.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/object-variable-assignment
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


 

'<membername>' cannot expose type '<typename>' outside the project
through <containertype> '<containertypename>'
5/4/2018 • 2 minutes to read • Edit Online

Private Class privateClass  
End Class  
Public Class mainClass  
    Public exposedVar As New privateClass  
End Class  

To correct this error

See Also

A variable, procedure parameter, or function return is exposed outside its container, but it is declared as a type that must not be exposed outside the
container.

The following skeleton code shows a situation that generates this error.

A type that is declared Protected , Friend , Protected Friend , or Private  is intended to have limited access outside its declaration context. Using it as
the data type of a variable with less restricted access would defeat this purpose. In the preceding skeleton code, exposedVar  is Public  and would
expose privateClass  to code that should not have access to it.

Error ID: BC30909

Change the access level of the variable, procedure parameter, or function return to be at least as restrictive as the access level of its data type.

Access levels in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/membername-cannot-expose-type-typename-outside-the-project.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


 

'<membername>' is ambiguous across the inherited interfaces
'<interfacename1>' and '<interfacename2>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The interface inherits two or more members with the same name from multiple interfaces.

Error ID: BC30685

Interface Left  
    Sub MySub()  
End Interface  

Interface Right  
    Sub MySub()  
End Interface  

Interface LeftRight  
    Inherits Left, Right  
End Interface  

Module test  
    Sub Main()  
        Dim x As LeftRight  
        ' x.MySub()  'x is ambiguous.  
        CType(x, Left).MySub() ' Cast to base type.  
        CType(x, Right).MySub() ' Call the other base type.  
    End Sub  
End Module  

Cast the value to the base interface that you want to use; for example:

Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/membername-is-ambiguous-across-the-inherited-interfaces.md


 

<message> This error could also be due to mixing a file reference with a
project reference to assembly '<assemblyname>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

<message> This error could also be due to mixing a file reference with a project reference to assembly '<assemblyname>. In this case, try replacing the
file reference to '<assemblyfilename>' in project '<projectname1>' with a project reference to '<projectname2>'.

Code in your project accesses a member of another project, but the configuration of your solution does not allow the Visual Basic compiler to resolve
the reference.

To access a type defined in another assembly, the Visual Basic compiler must have a reference to that assembly. This must be a single, unambiguous
reference that does not cause circular references among projects.

Error ID: BC30971

1. Determine which project produces the best assembly for your project to reference. For this decision, you might use criteria such as ease of file
access and frequency of updates.

2. In your project properties, add a reference to the project that contains the assembly that defines the type you are using.

Managing references in a project
References to Declared Elements

Managing Project and Solution Properties
Troubleshooting Broken References

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/message-this-error-could-also-be-due-to-mixing-a-file-reference.md
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/visualstudio/ide/managing-project-and-solution-properties
https://docs.microsoft.com/visualstudio/ide/troubleshooting-broken-references


 

'<methodname>' has multiple definitions with identical signatures
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A Function  or Sub  procedure declaration uses the identical procedure name and argument list as a previous declaration. One possible cause is an
attempt to overload the original procedure. Overloaded procedures must have different argument lists.

Error ID: BC30269

Change the procedure name or the argument list, or remove the duplicate declaration.

References to Declared Elements
Considerations in Overloading Procedures

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/methodname-has-multiple-definitions-with-identical-signatures.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/considerations-in-overloading-procedures


 

'<name>' is ambiguous in the namespace '<namespacename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You have provided a name that is ambiguous and therefore conflicts with another name. The Visual Basic compiler does not have any conflict resolution
rules; you must disambiguate names yourself.

Error ID: BC30560

Fully qualify the name.

Namespaces in Visual Basic
Namespace Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/name-is-ambiguous-in-the-namespace-namespacename.md


 

'<name1>' is ambiguous, imported from the namespaces or types
'<name2>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You have provided a name that is ambiguous and therefore conflicts with another name. The Visual Basic compiler does not have any conflict resolution
rules; you must disambiguate names yourself.

Error ID: BC30561

1. Disambiguate the name by removing namespace imports.

2. Fully qualify the name.

Imports Statement (.NET Namespace and Type)
Namespaces in Visual Basic
Namespace Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/name1-is-ambiguous-imported-from-the-namespaces-or-types-name2.md


 

<proceduresignature1> is not CLS-compliant because it overloads
<proceduresignature2> which differs from it only by array of array
parameter types or by the rank of the array parameter types
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A procedure or property is marked as <CLSCompliant(True)>  when it overrides another procedure or property and the only difference between their
parameter lists is the nesting level of a jagged array or the rank of an array.

In the following declarations, the second and third declarations generate this error.

Overloads Sub processArray(ByVal arrayParam() As Integer)

Overloads Sub processArray(ByVal arrayParam()() As Integer)

Overloads Sub processArray(ByVal arrayParam(,) As Integer)

The second declaration changes the original one-dimensional parameter arrayParam  to an array of arrays. The third declaration changes arrayParam  to
a two-dimensional array (rank 2). While Visual Basic allows overloads to differ only by one of these changes, such overloading is not compliant with the
Language Independence and Language-Independent Components (CLS).

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40035

If you require CLS compliance, define your overloads to differ from each other in more ways than only the changes cited on this Help page.

If you require that the overloads differ only by the changes cited on this Help page, remove the CLSCompliantAttribute from their definitions or
mark them as <CLSCompliant(False)> .

Procedure Overloading
Overloads

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/proceduresignature1-not-cls-compliant-because-it-overloads-proceduresignature2.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-overloading


 

<type1>'<typename>' must implement '<membername>' for interface
'<interfacename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

'<typename>' must implement '<membername>' for interface '<interfacename>'. Implementing property must have matching
'ReadOnly'/'WriteOnly' specifiers.

A class or structure claims to implement an interface but does not implement a procedure, property, or event defined by the interface. Every member of
the interface must be implemented.

Error ID: BC30154

Public Event ItHappened() Implements IBaseInterface.ItHappened  

1. Declare a member with the same name and signature as defined in the interface. Be sure to include at least the End Function , End Sub , or 
End Property  statement.

2. Add an Implements  clause to the end of the Function , Sub , Property , or Event  statement. For example:

3. When implementing a property, make sure that ReadOnly  or WriteOnly  is used in the same way as in the interface definition.

4. When implementing a property, declare Get  and Set  procedures, as appropriate.

Implements Statement
Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type1-must-implement-membername-for-interface.md


 

<type1>'<typename>' must implement '<methodname>' for interface
'<interfacename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A class or structure claims to implement an interface but does not implement a procedure defined by the interface. Every member of the interface must
be implemented.

Error ID: BC30149

Public Sub DoSomething() Implements IBaseInterface.DoSomething  

1. Declare a procedure with the same name and signature as defined in the interface. Be sure to include at least the End Function  or End Sub

statement.

2. Add an Implements  clause to the end of the Function  or Sub  statement. For example:

Implements Statement
Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type1-typename-must-implement-methodname-for-interface-interfacename.md


 

'<typename>' cannot inherit from <type> '<basetypename>' because it
expands the access of the base <type> outside the assembly
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A class or interface inherits from a base class or interface but has a less restrictive access level.

For example, a Public  interface inherits from a Friend  interface, or a Protected  class inherits from a Private  class. This exposes the base class or
interface to access beyond the intended level.

Error ID: BC30910

Change the access level of the derived class or interface to be at least as restrictive as that of the base class or interface.

-or-

If you require the less restrictive access level, remove the Inherits  statement. You cannot inherit from a more restricted base class or interface.

Class Statement
Interface Statement
Inherits Statement
Access levels in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/typename-cannot-inherit-from-type-basetypename.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/access-levels


 

'<typename>' is a delegate type
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

'<typename>' is a delegate type. Delegate construction permits only a single AddressOf expression as an argument list. Often an AddressOf expression
can be used instead of a delegate construction.

A New  clause creating an instance of a delegate class supplies an invalid argument list to the delegate constructor.

You can supply only a single AddressOf  expression when creating a new delegate instance.

This error can result if you do not pass any arguments to the delegate constructor, if you pass more than one argument, or if you pass a single argument
that is not a valid AddressOf  expression.

Error ID: BC32008

Use a single AddressOf  expression in the argument list for the delegate class in the New  clause.

New Operator
AddressOf Operator
Delegates
How to: Invoke a Delegate Method

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/typename-is-a-delegate-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/how-to-invoke-a-delegate-method


 

'<typename>' is a type and cannot be used as an expression
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A type name occurs where an expression is required. An expression must consist of some combination of variables, constants, literals, properties, and 
Function  procedure calls.

Error ID: BC30108

Remove the type name and construct the expression using valid elements.

Operators and Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/typename-is-a-type-and-cannot-be-used-as-an-expression.md


 

A double quote is not a valid comment token for delimited fields where
EscapeQuote is set to True
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A quotation mark has been supplied as the delimiter for the TextFieldParser , but EscapeQuotes  is set to True .

Set EscapeQuotes  to False .

SetDelimiters
Delimiters
TextFieldParser
How to: Read From Comma-Delimited Text Files

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/a-double-quote-is-not-a-valid-comment-token-for-delimited-fields.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser.setdelimiters
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser.delimiters
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/how-to-read-from-comma-delimited-text-files


 

A property or method call cannot include a reference to a private object,
either as an argument or as a return value
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Among the possible causes of this error are:

A client invoked a property or method of an out-of-process component and attempted to pass a reference to a private object as one of the
arguments.

An out-of-process component invoked a call-back method on its client and attempted to pass a reference to a private object.

An out-of-process component attempted to pass a reference to a private object as an argument of an event it was raising.

A client attempted to assign a private object reference to a ByRef  argument of an event it was handling.

1. Remove the reference.

Private

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/a-property-or-method-call-cannot-include-a-reference-to-a-private-object.md


 

A reference was created to embedded interop assembly '<assembly1>'
because of an indirect reference to that assembly from assembly
'<assembly2>'
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To address this warningTo address this warning

See Also

A reference was created to embedded interop assembly '<assembly1>' because of an indirect reference to that assembly from assembly
'<assembly2>'. Consider changing the 'Embed Interop Types' property on either assembly.

You have added a reference to an assembly (assembly1) that has the Embed Interop Types  property set to True . This instructs the compiler to embed
interop type information from that assembly. However, the compiler cannot embed interop type information from that assembly because another
assembly that you have referenced (assembly2) also references that assembly (assembly1) and has the Embed Interop Types  property set to False .

Setting the Embed Interop Types  property on an assembly reference to True  is equivalent to referencing the assembly by using the /link  option for the
command-line compiler.

Error ID: BC40059

To embed interop type information for both assemblies, set the Embed Interop Types  property on all references to assembly1 to True .

To remove the warning, you can set the Embed Interop Types  property of assembly1 to False . In this case, interop type information is provided
by a primary interop assembly (PIA).

/link (Visual Basic)
Interoperating with Unmanaged Code

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/a-reference-was-created-to-embedded-interop-assembly-assembly1.md


 

A startup form has not been specified
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The application uses the WindowsFormsApplicationBase class but does not specify the startup form.

This can occur if the Enable application framework check box is selected in the project designer but the Startup form is not specified. For more
information, see Application Page, Project Designer (Visual Basic).

1. Specify a startup object for the application.

For more information, see Application Page, Project Designer (Visual Basic).

2. Override the OnCreateMainForm method to set the MainForm property to the startup form.

WindowsFormsApplicationBase
OnCreateMainForm
MainForm
Overview of the Visual Basic Application Model

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/a-startup-form-has-not-been-specified.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatemainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.mainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.oncreatemainform
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.applicationservices.windowsformsapplicationbase.mainform


 

Access of shared member through an instance; qualifying expression will
not be evaluated
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Public Class testClass  
    Public Shared Sub sayHello()  
        MsgBox("Hello")  
    End Sub  
End Class  

Module testModule  
    Public Sub Main()  
        ' Access a shared method through an instance variable.  
        ' This generates a warning.  
        Dim tc As New testClass  
        tc.sayHello()  

        ' Access a shared method by using the class name.  
        ' This does not generate a warning.  
        testClass.sayHello()  
    End Sub  
End Module  

NOTENOTE

See Also

An instance variable of a class or structure is used to access a Shared  variable, property, procedure, or event defined in that class or structure. This
warning can also occur if an instance variable is used to access an implicitly shared member of a class or structure, such as a constant or enumeration,
or a nested class or structure.

The purpose of sharing a member is to create only a single copy of that member and make that single copy available to every instance of the class or
structure in which it is declared. It is consistent with this purpose to access a Shared  member through the name of its class or structure, rather than
through a variable that holds an individual instance of that class or structure.

Accessing a Shared  member through an instance variable can make your code more difficult to understand by obscuring the fact that the member is 
Shared . Furthermore, if such access is part of an expression that performs other actions, such as a Function  procedure that returns an instance of the

shared member, Visual Basic bypasses the expression and any other actions it would otherwise perform.

For more information and an example, see Shared.

By default, this message is a warning. For more information about hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42025

Use the name of the class or structure that defines the Shared  member to access it, as shown in the following example.

Be alert for the effects of scope when two programming elements have the same name. In the previous example, if you declare an instance by using 
Dim testClass as testClass = Nothing , the compiler treats a call to testClass.sayHello()  as an access of the method through the class name, and no warning

occurs.

Shared
Scope in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/access-of-shared-member-through-an-instance-qualifying-expression.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/scope


 

'AddressOf' operand must be the name of a method (without
parentheses)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The AddressOf  operator creates a procedure delegate instance that references a specific procedure. The syntax is as follows.

AddressOf  procedurename

You inserted parentheses around the argument following AddressOf , where none are needed.

Error ID: BC30577

1. Remove the parentheses around the argument following AddressOf .

2. Make sure the argument is a method name.

AddressOf Operator
Delegates

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/addressof-operand-must-be-the-name-of-a-method-without-parentheses.md


 

An unexpected error has occurred because an operating system resource
required for single instance startup cannot be acquired
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The application could not acquire a necessary operating system resource. Some of the possible causes for this problem are:

The application does not have permissions to create named operating-system objects.

The common language runtime does not have permissions to create memory-mapped files.

The application needs to access an operating-system object, but another process is using it.

1. Check that the application has sufficient permissions to create named operating-system objects.

2. Check that the common language runtime has sufficient permissions to create memory-mapped files.

3. Restart the computer to clear any process that may be using the resource needed to connect to the original instance application.

4. Note the circumstances under which the error occurred, and call Microsoft Product Support Services

Application Page, Project Designer (Visual Basic)
Debugger Basics
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/an-unexpected-error-has-occurred.md
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/debugger/debugger-basics
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Anonymous type member name can be inferred only from a simple or
qualified name with no arguments
5/4/2018 • 2 minutes to read • Edit Online

Dim numbers() As Integer = {1, 2, 3, 4, 5}  
' Not valid.  
' Dim instanceName1 = New With {numbers(3)}  

To correct this error

See Also

You cannot infer an anonymous type member name from a complex expression.

For more information about sources from which anonymous types can and cannot infer member names and types, see How to: Infer Property Names
and Types in Anonymous Type Declarations.

Error ID: BC36556

Dim instanceName2 = New With {.number = numbers(3)}  

Assign the expression to a member name, as shown in the following code:

Anonymous Types
How to: Infer Property Names and Types in Anonymous Type Declarations

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/anonymous-type-member-name-can-be-inferred-only-from-a-simple-or-qualified-name.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-infer-property-names-and-types-in-anonymous-type-declarations
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-infer-property-names-and-types-in-anonymous-type-declarations


 

Argument not optional (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The number and types of arguments must match those expected. Either there is an incorrect number of arguments, or an omitted argument is not
optional. An argument can only be omitted from a call to a user-defined procedure if it was declared Optional  in the procedure definition.

1. Supply all necessary arguments.

2. Make sure omitted arguments are optional. If they are not, either supply the argument in the call, or declare the parameter Optional  in the
definition.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/argument-not-optional.md


 

Array bounds cannot appear in type specifiers
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Array sizes cannot be declared as part of a data type specifier.

Error ID: BC30638

Dim Array(8) As Integer   

Dim Array2() As Integer = New Integer(8) {}  

Specify the size of the array immediately following the variable name instead of placing the array size after the type, as shown in the following
example.

Define an array and initialize it with the desired number of elements, as shown in the following example.

Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/array-bounds-cannot-appear-in-type-specifiers.md


 

Array declared as for loop control variable cannot be declared with an
initial size
5/4/2018 • 2 minutes to read • Edit Online

Dim arrayList As New List(Of Integer())  
For Each listElement() As Integer In arrayList  
For Each listElement(1) As Integer In arrayList  

To correct this error

See Also

A For Each  loop uses an array as its element iteration variable but initializes that array.

The following statements show how this error can be generated.

The first For Each  statement is the correct way to access elements of arrayList . The second For Each  statement generates this error.

Error ID: BC32039

Remove the initialization from the declaration of the element iteration variable.

For...Next Statement
Arrays
Collections

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/array-declared-as-for-loop-control-variable-cannot-be-declared.md


 

Array subscript expression missing
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An array initialization leaves out one or more of the subscripts that define the array bounds. For example, the statement might contain the expression 
myArray (5,5,,10) , which leaves out the third subscript.

Error ID: BC30306

Supply the missing subscript.

Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/array-subscript-expression-missing.md


 

Arrays declared as structure members cannot be declared with an initial
size
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An array in a structure is declared with an initial size. You cannot initialize any structure element, and declaring an array size is one form of initialization.

Error ID: BC31043

Structure demoStruct  
    Public demoArray() As Integer  
End Structure  
Sub useStruct()  
    Dim struct As demoStruct  
    ReDim struct.demoArray(9)  
    Struct.demoArray(2) = 777  
End Sub  

1. Define the array in your structure as dynamic (no initial size).

2. If you require a certain size of array, you can redimension a dynamic array with a ReDim Statement when your code is running. The following
example illustrates this.

Arrays
How to: Declare a Structure

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/arrays-declared-as-structure-members-cannot-be-declared-with-an-initial-size.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-declare-a-structure


 

'As Any' is not supported in 'Declare' statements
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Any  data type was used with Declare  statements in Visual Basic 6.0 and earlier versions to permit the use of arguments that could contain any
type of data. Visual Basic supports overloading, however, and so makes the Any  data type obsolete.

Error ID: BC30828

Declare Function GetUserName Lib "advapi32.dll" Alias "GetUserNameA" (
    ByVal lpBuffer As String,
    ByRef nSize As Integer) As Integer

Declare Sub SetData Lib "..\LIB\UnmgdLib.dll" (
    ByVal x As Short,
    <System.Runtime.InteropServices.MarshalAsAttribute(
        System.Runtime.InteropServices.UnmanagedType.AsAny)>
        ByVal o As Object)

1. Declare parameters of the specific type you want to use; for example.

2. Use the MarshalAsAttribute attribute to specify As Any  when Void*  is expected by the procedure being called.

MarshalAsAttribute
Walkthrough: Calling Windows APIs
Declare Statement
Creating Prototypes in Managed Code

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/as-any-is-not-supported-in-declare-statements.md
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://docs.microsoft.com/dotnet/api/system.runtime.interopservices.marshalasattribute
https://docs.microsoft.com/en-us/dotnet/framework/interop/creating-prototypes-in-managed-code


 

Attribute '<attributename>' cannot be applied multiple times
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

<AttributeUsage(AllowMultiple := True)>  

See Also

The attribute can only be applied once. The AttributeUsage  attribute determines whether an attribute can be applied more than once.

Error ID: BC30663

1. Make sure the attribute is only applied once.

2. If you are using custom attributes you developed, consider changing their AttributeUsage  attribute to allow multiple attribute usage, as with the
following example.

AttributeUsageAttribute
Creating Custom Attributes
AttributeUsage

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/attribute-attributename-cannot-be-applied-multiple-times.md
https://docs.microsoft.com/dotnet/api/system.attributeusageattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/creating-custom-attributes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/attributes/attributeusage


 

Automation error
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An error occurred while executing a method or getting or setting a property of an object variable. The error was reported by the application that created
the object.

1. Check the properties of the Err  object to determine the source and nature of the error.

2. Use the On Error Resume Next  statement immediately before the accessing statement, and then check for errors immediately after the accessing
statement.

Error Types
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/automation-error.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Bad checksum value, non hex digits or odd number of hex digits
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A checksum value contains invalid hexadecimal digits or has an odd number of digits.

When ASP.NET generates a Visual Basic source file (extension .vb), it calculates a checksum and places it in a hidden source file identified by 
#externalchecksum . It is possible for a user generating a .vb file to do this also, but this process is best left to internal use.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC42033

1. If ASP.NET is generating the Visual Basic source file, restart the project build.

2. If this warning persists after restarting, reinstall ASP.NET and try the build again.

3. If the warning still persists, or if you are not using ASP.NET, gather information about the circumstances and notify Microsoft Product Support
Services.

ASP.NET Overview
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/bad-checksum-value-non-hex-digits-or-odd-number-of-hex-digits.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://msdn.microsoft.com/library/4w3ex9c2.aspx
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Bad DLL calling convention
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Arguments passed to a dynamic-link library (DLL) must exactly match those expected by the routine. Calling conventions deal with number, type, and
order of arguments. Your program may be calling a routine in a DLL that is being passed the wrong type or number of arguments.

1. Make sure all argument types agree with those specified in the declaration of the routine that you are calling.

2. Make sure you are passing the same number of arguments indicated in the declaration of the routine that you are calling.

3. If the DLL routine expects arguments by value, make sure ByVal  is specified for those arguments in the declaration for the routine.

Error Types
Call Statement
Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/bad-dll-calling-convention.md


 

Bad file mode
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Statements used in manipulating file contents must be appropriate to the mode in which the file was opened. Possible causes include:

A FilePutObject  or FileGetObject  statement specifies a sequential file.

A Print  statement specifies a file opened for an access mode other than Output  or Append .

An Input  statement specifies a file opened for an access mode other than Input

An attempt to write to a read-only file.

Make sure FilePutObject  and FileGetObject  are only referring to files open for Random  or Binary  access.

Make sure Print  specifies a file opened for either Output  or Append  access mode. If not, use a different statement to place data in the file, or
reopen the file in an appropriate mode.

Make sure Input  specifies a file opened for Input . If not, use a different statement to place data in the file or reopen the file in an appropriate
mode.

If you are writing to a read-only file, change the read/write status of the file or do not try to write to it.

Use the functionality available in the My.Computer.FileSystem  object.

FileSystem
Troubleshooting: Reading from and Writing to Text Files

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/bad-file-mode.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/troubleshooting-reading-from-and-writing-to-text-files


 

Bad file name or number
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An error occurred while trying to access the specified file. Among the possible causes for this error are:

A statement refers to a file with a file name or number that was not specified in the FileOpen  statement or that was specified in a FileOpen

statement but was subsequently closed.

A statement refers to a file with a number that is out of the range of file numbers.

A statement refers to a file name or number that is not valid.

1. Make sure the file name is specified in a FileOpen  statement. Note that if you invoked the FileClose  statement without arguments, you may
have inadvertently closed all open files.

2. If your code is generating file numbers algorithmically, make sure the numbers are valid.

3. Check the file names to make sure they conform to operating system conventions.

FileOpen
Visual Basic Naming Conventions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/bad-file-name-or-number.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileopen


 

Bad record length
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Among the possible causes of this error are:

The length of a record variable specified in a FileGet , FileGetObject , FilePut  or FilePutObject  statement differs from the length specified in
the corresponding FileOpen  statement.

The variable in a FilePut  or FilePutObject  statement is or includes a variable-length string.

The variable in a FilePut  or FilePutObject  is or includes a Variant  type.

1. Make sure the sum of the sizes of fixed-length variables in the user-defined type defining the record variable's type is the same as the value
stated in the FileOpen  statement's Len  clause.

2. If the variable in a FilePut  or FilePutObject  statement is or includes a variable-length string, make sure the variable-length string is at least 2
characters shorter than the record length specified in the Len  clause of the FileOpen  statement.

3. If the variable in a FilePut  or FilePutObject  is or includes a Variant  make sure the variable-length string is at least 4 bytes shorter than the
record length specified in the Len  clause of the FileOpen  statement.

FileGet
FileGetObject
FilePut
FilePutObject

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/bad-record-length.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileget
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.filegetobject
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileput
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileputobject


 

Because this call is not awaited, the current method continues to run
before the call is completed
5/4/2018 • 6 minutes to read • Edit Online

To address this warningTo address this warning

Because this call is not awaited, execution of the current method continues before the call is completed. Consider applying the 'Await' operator to the
result of the call.

The current method calls an async method that returns a Task or a Task<TResult> and doesn’t apply the Await operator to the result. The call to the
async method starts an asynchronous task. However, because no Await  operator is applied, the program continues without waiting for the task to
complete. In most cases, that behavior isn't expected. Usually other aspects of the calling method depend on the results of the call or, minimally, the
called method is expected to complete before you return from the method that contains the call.

An equally important issue is what happens with exceptions that are raised in the called async method. An exception that’s raised in a method that
returns a Task or Task<TResult> is stored in the returned task. If you don't await the task or explicitly check for exceptions, the exception is lost. If you
await the task, its exception is rethrown.

As a best practice, you should always await the call.

By default, this message is a warning. For more information about hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42358

Async Function CallingMethodAsync() As Task  

    ResultsTextBox.Text &= vbCrLf & "  Entering calling method."  

    ' Variable delay is used to slow down the called method so that you  
    ' can distinguish between awaiting and not awaiting in the program's output.   
    ' You can adjust the value to produce the output that this topic shows   
    ' after the code.  
    Dim delay = 5000  

    ' Call #1.  
    ' Call an async method. Because you don't await it, its completion isn't   
    ' coordinated with the current method, CallingMethodAsync.  
    ' The following line causes the warning.  
    CalledMethodAsync(delay)  

    ' Call #2.  
    ' To suppress the warning without awaiting, you can assign the   
    ' returned task to a variable. The assignment doesn't change how  
    ' the program runs. However, the recommended practice is always to  
    ' await a call to an async method.  
    ' Replace Call #1 with the following line.  
    'Task delayTask = CalledMethodAsync(delay)  

    ' Call #3  
    ' To contrast with an awaited call, replace the unawaited call   
    ' (Call #1 or Call #2) with the following awaited call. The best   
    ' practice is to await the call.  

    'Await CalledMethodAsync(delay)  

    ' If the call to CalledMethodAsync isn't awaited, CallingMethodAsync  
    ' continues to run and, in this example, finishes its work and returns  
    ' to its caller.  
    ResultsTextBox.Text &= vbCrLf & "  Returning from calling method."  
End Function  

Async Function CalledMethodAsync(howLong As Integer) As Task  

    ResultsTextBox.Text &= vbCrLf & "    Entering called method, starting and awaiting Task.Delay."  
    ' Slow the process down a little so you can distinguish between awaiting  
    ' and not awaiting. Adjust the value for howLong if necessary.  
    Await Task.Delay(howLong)  
    ResultsTextBox.Text &= vbCrLf & "    Task.Delay is finished--returning from called method."  
End Function  

You should consider suppressing the warning only if you're sure that you don't want to wait for the asynchronous call to complete and that the
called method won't raise any exceptions. In that case, you can suppress the warning by assigning the task result of the call to a variable.

The following example shows how to cause the warning, how to suppress it, and how to await the call.

In the example, if you choose Call #1 or Call #2, the unawaited async method ( CalledMethodAsync ) finishes after both its caller (

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/because-this-call-is-not-awaited-the-current-method-continues-to-run.md
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


Example

Entering the Click event handler.  
  Entering calling method.  
    Entering called method, starting and awaiting Task.Delay.  
  Returning from calling method.  
Exiting the Click event handler.  
    Task.Delay is finished--returning from called method.  

CallingMethodAsync ) and the caller's caller ( StartButton_Click ) are complete. The last line in the following output shows you when the called
method finishes. Entry to and exit from the event handler that calls CallingMethodAsync  in the full example are marked in the output.

The following Windows Presentation Foundation (WPF) application contains the methods from the previous example. The following steps set up the
application.

<Window x:Class="MainWindow"  
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  
        Title="MainWindow" Height="350" Width="525">  
    <Grid>  
        <Button x:Name="StartButton" Content="Start" HorizontalAlignment="Left" Margin="214,28,0,0" VerticalAlignment="Top" Width="75" 
HorizontalContentAlignment="Center" FontWeight="Bold" FontFamily="Aharoni" Click="StartButton_Click" />  
        <TextBox x:Name="ResultsTextBox" Margin="0,80,0,0" TextWrapping="Wrap" FontFamily="Lucida Console"/>  
    </Grid>  
</Window>  

1. Create a WPF application, and name it AsyncWarning .

2. In the Visual Studio Code Editor, choose the MainWindow.xaml tab.

If the tab isn't visible, open the shortcut menu for MainWindow.xaml in Solution Explorer, and then choose View Code.

3. Replace the code in the XAML view of MainWindow.xaml with the following code.

A simple window that contains a button and a text box appears in the Design view of MainWindow.xaml.

For more information about the XAML Designer, see Creating a UI by using XAML Designer. For information about how to build your own
simple UI, see the "To create a WPF application" and "To design a simple WPF MainWindow" sections of Walkthrough: Accessing the Web by
Using Async and Await.

4. Replace the code in MainWindow.xaml.vb with the following code.

https://docs.microsoft.com/visualstudio/designers/creating-a-ui-by-using-xaml-designer-in-visual-studio
http://msdn.microsoft.com/library/25879a6d-fdee-4a38-bc98-bb8c24d16042


See Also

Class MainWindow   

    Private Async Sub StartButton_Click(sender As Object, e As RoutedEventArgs)  

        ResultsTextBox.Text &= vbCrLf & "Entering the Click event handler."  
        Await CallingMethodAsync()  
        ResultsTextBox.Text &= vbCrLf & "Exiting the Click event handler."  
    End Sub  

    Async Function CallingMethodAsync() As Task  

        ResultsTextBox.Text &= vbCrLf & "  Entering calling method."  

        ' Variable delay is used to slow down the called method so that you  
        ' can distinguish between awaiting and not awaiting in the program's output.   
        ' You can adjust the value to produce the output that this topic shows   
        ' after the code.  
        Dim delay = 5000  

        ' Call #1.  
        ' Call an async method. Because you don't await it, its completion isn't   
        ' coordinated with the current method, CallingMethodAsync.  
        ' The following line causes the warning.  
        CalledMethodAsync(delay)  

        ' Call #2.  
        ' To suppress the warning without awaiting, you can assign the   
        ' returned task to a variable. The assignment doesn't change how  
        ' the program runs. However, the recommended practice is always to  
        ' await a call to an async method.  

        ' Replace Call #1 with the following line.  
        'Task delayTask = CalledMethodAsync(delay)  

        ' Call #3  
        ' To contrast with an awaited call, replace the unawaited call   
        ' (Call #1 or Call #2) with the following awaited call. The best   
        ' practice is to await the call.  

        'Await CalledMethodAsync(delay)  

        ' If the call to CalledMethodAsync isn't awaited, CallingMethodAsync  
        ' continues to run and, in this example, finishes its work and returns  
        ' to its caller.  
        ResultsTextBox.Text &= vbCrLf & "  Returning from calling method."  
    End Function  

    Async Function CalledMethodAsync(howLong As Integer) As Task  

        ResultsTextBox.Text &= vbCrLf & "    Entering called method, starting and awaiting Task.Delay."  
        ' Slow the process down a little so you can distinguish between awaiting  
        ' and not awaiting. Adjust the value for howLong if necessary.  
        Await Task.Delay(howLong)  
        ResultsTextBox.Text &= vbCrLf & "    Task.Delay is finished--returning from called method."  
    End Function  

End Class  

' Output  

' Entering the Click event handler.  
'   Entering calling method.  
'     Entering called method, starting and awaiting Task.Delay.  
'   Returning from calling method.  
' Exiting the Click event handler.  
'     Task.Delay is finished--returning from called method.  

' Output  

' Entering the Click event handler.  
'   Entering calling method.  
'     Entering called method, starting and awaiting Task.Delay.  
'     Task.Delay is finished--returning from called method.  
'   Returning from calling method.  
' Exiting the Click event handler.  

5. Choose the F5 key to run the program, and then choose the Start button.

The expected output appears at the end of the code.

Await Operator
Asynchronous Programming with Async and Await



 

Cannot convert anonymous type to expression tree because it contains a
field that is used in the initialization of another field
7/10/2018 • 2 minutes to read • Edit Online

Module M2  

    Sub ExpressionExample(Of T)(ByVal x As Expressions.Expression(Of Func(Of T)))  
    End Sub  

    Sub Main()  
        ' The following line causes the error.  
        ' ExpressionExample(Function() New With {.Prop1 = 2, .Prop2 = .Prop1})  

    End Sub  
End Module  

To correct this error

See also

The compiler does not accept conversion of an anonymous to an expression tree when one property of the anonymous type is used to initialize another
property of the anonymous type. For example, in the following code, Prop1  is declared in the initialization list and then used as the initial value for 
Prop2 .

Error ID: BC36548

Sub Main()  

    Dim temp = 2  
    ExpressionExample(Function() New With {.Prop1 = temp, .Prop2 = temp})  

End Sub  

Assign the initial value for Prop1  to a local variable. Assign that variable to both Prop1  and Prop2 , as shown in the following code.

Anonymous Types (Visual Basic)
Expression Trees (Visual Basic)
How to: Use Expression Trees to Build Dynamic Queries (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/cannot-convert-anonymous-type-to-expression-tree.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/expression-trees/how-to-use-expression-trees-to-build-dynamic-queries


 

Cannot create ActiveX Component
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You tried to place an ActiveX control on a form at design time or add a form to a project with an ActiveX control on it, but the associated information in
the registry could not be found.

The information in the registry may have been deleted or corrupted. Reinstall the ActiveX control or contact the control vendor.

Error Types
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/cannot-create-activex-component.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Cannot refer to '<name>' because it is a member of the value-typed
field '<name>' of class '<classname>' which has
'System.MarshalByRefObject' as a base class
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The System.MarshalByRefObject  class enables applications that support remote access to objects across application domain boundaries. Types must
inherit from the MarshalByRejectObject  class when the type is used across application domain boundaries. The state of the object must not be copied
because the members of the object are not usable outside the application domain in which they were created.

Error ID: BC30310

1. Check the reference to make sure the member being referred to is valid.

2. Explicitly qualify the member with the Me  keyword.

MarshalByRefObject
Dim Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/cannot-refer-to-name-because-it-is-member-of-value-typed-field-name-of-class.md
https://docs.microsoft.com/dotnet/api/system.marshalbyrefobject


 

Cannot refer to an instance member of a class from within a shared
method or shared member initializer without an explicit instance of the
class
5/4/2018 • 2 minutes to read • Edit Online

Class sample  
    Public x as Integer  
    Public Shared Sub setX()  
        x = 10  
    End Sub  
End Class  

To correct this error

See Also

You have tried to refer to a non-shared member of a class from within a shared procedure. The following example demonstrates such a situation.

In the preceding example, the assignment statement x = 10  generates this error message. This is because a shared procedure is attempting to access
an instance variable.

The variable x  is an instance member because it is not declared as Shared. Each instance of class sample  contains its own individual variable x .
When one instance sets or changes the value of x , it does not affect the value of x  in any other instance.

However, the procedure setX  is Shared  among all instances of class sample . This means it is not associated with any one instance of the class, but
rather operates independently of individual instances. Because it has no connection with a particular instance, setX  cannot access an instance variable.
It must operate only on Shared  variables. When setX  sets or changes the value of a shared variable, that new value is available to all instances of the
class.

Error ID: BC30369

1. Decide whether you want the member to be shared among all instances of the class, or kept individual for each instance.

2. If you want a single copy of the member to be shared among all instances, add the Shared  keyword to the member declaration. Retain the 
Shared  keyword in the procedure declaration.

3. If you want each instance to have its own individual copy of the member, do not specify Shared  for the member declaration. Remove the Shared

keyword from the procedure declaration.

Shared

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/cannot-refer-to-an-instance-member-of-a-class.md


 

Can't create necessary temporary file
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Either the drive is full that contains the directory specified by the TEMP environment variable, or the TEMP environment variable specifies an invalid or
read-only drive or directory.

1. Delete files from the drive, if full.

2. Specify a different drive in the TEMP environment variable.

3. Specify a valid drive for the TEMP environment variable.

4. Remove the read-only restriction from the currently specified drive or directory.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/can-t-create-necessary-temporary-file.md


 

Can't open '<filename>' for writing
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The specified file cannot be opened for writing, perhaps because it has already been opened.

Error ID: BC2012

1. Close the file and reopen it.

2. Check the file's permissions.

WriteAllText
WriteAllBytes
Writing to Files

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/can-t-open-filename-for-writing.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem.writealltext
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem.writeallbytes
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/writing-to-files


 

Class '<classname>' cannot be found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Class '<classname>' cannot be found. This condition is usually the result of a mismatched 'Microsoft.VisualBasic.dll'.

A defined member could not be located.

Error ID: BC31098

1. Compile the program again to see if the error recurs.

2. If the error recurs, save your work and restart Visual Studio.

3. If the error persists, reinstall Visual Basic.

4. If the error persists after reinstallation, notify Microsoft Product Support Services.

Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/class-classname-cannot-be-found.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Class does not support Automation or does not support expected
interface
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Either the class you specified in the GetObject  or CreateObject  function call has not exposed a programmability interface, or you changed a project
from .dll to .exe, or vice versa.

1. Check the documentation of the application that created the object for limitations on the use of automation with this class of object.

2. If you changed a project from .dll to .exe or vice versa, you must manually unregister the old .dll or .exe.

Error Types
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/class-does-not-support-automation-or-does-not-support-expected-interface.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

'Class' statement must end with a matching 'End Class'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Class  is used to initiate a Class  block; hence it can only appear at the beginning of the block, with a matching End Class  statement ending the block.
Either you have a redundant Class  statement, or you have not ended your Class  block with End Class .

Error ID: BC30481

Locate and remove the unnecessary Class  statement.

Conclude the Class  block with a matching End Class .

End <keyword> Statement
Class Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/class-statement-must-end-with-a-matching-end-class.md


 

Clipboard format is not valid
7/13/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The specified Clipboard format is incompatible with the method being executed. Among the possible causes for this error are:

Using the Clipboard's GetText  or SetText  method with a Clipboard format other than vbCFText  or vbCFLink .

Using the Clipboard's GetData  or SetData  method with a Clipboard format other than vbCFBitmap , vbCFDIB , or vbCFMetafile .

Using the GetData  or SetData  methods of a DataObject  with a Clipboard format in the range reserved by Microsoft Windows for registered
formats (&HC000-&HFFFF), when that Clipboard format has not been registered with Microsoft Windows.

Remove the invalid format and specify a valid one.

Clipboard: Adding Other Formats

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/clipboard-format-is-not-valid.md
https://docs.microsoft.com/cpp/mfc/clipboard-adding-other-formats


 

Constant expression not representable in type '<typename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You are trying to evaluate a constant that will not fit into the target type, usually because it is overflowing the range.

Error ID: BC30439

1. Change the target type to one that can handle the constant.

Constants Overview
Constants and Enumerations

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/constant-expression-not-representable-in-type-typename.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/constants-enums/constants-overview


 

Constants must be of an intrinsic or enumerated type, not a class,
structure, type parameter, or array type
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You have attempted to declare a constant as a class, structure, or array type, or as a type parameter defined by a containing generic type.

Constants must be of an intrinsic type ( Boolean , Byte , Date , Decimal , Double , Integer , Long , Object , SByte , Short , Single , String , UInteger , 
ULong , or UShort ), or an Enum  type based on one of the integral types.

Error ID: BC30424

1. Declare the constant as an intrinsic or Enum  type.

2. A constant can also be a special value such as True , False , or Nothing . The compiler considers these predefined values to be of the appropriate
intrinsic type.

Constants and Enumerations
Data Types
Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/constants-must-be-of-an-intrinsic-or-enumerated-type.md


 

Constructor '<name>' cannot call itself
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A Sub New  procedure in a class or structure calls itself.

The purpose of a constructor is to initialize an instance of a class or structure when it is first created. A class or structure can have several constructors,
provided they all have different parameter lists. A constructor is permitted to call another constructor to perform its functionality in addition to its own.
But it is meaningless for a constructor to call itself, and in fact it would result in infinite recursion if permitted.

Error ID: BC30298

1. Check the parameter list of the constructor being called. It should be different from that of the constructor making the call.

2. If you do not intend to call a different constructor, remove the Sub New  call entirely.

Object Lifetime: How Objects Are Created and Destroyed

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/constructor-name-cannot-call-itself.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed


 

Copying the value of 'ByRef' parameter '<parametername>' back to the
matching argument narrows from type '<typename1>' to type
'<typename2>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A procedure is called with an argument that widens to the corresponding parameter type, and the conversion from the parameter to the argument is
narrowing.

When you define a class or structure, you can define one or more conversion operators to convert that class or structure type to other types. You can
also define reverse conversion operators to convert those other types back to your class or structure type. When you use your class or structure type in
a procedure call, Visual Basic can use these conversion operators to convert the type of an argument to the type of its corresponding parameter.

If you pass the argument ByRef, Visual Basic sometimes copies the argument value into a local variable in the procedure instead of passing a reference.
In such a case, when the procedure returns, Visual Basic must then copy the local variable value back into the argument in the calling code.

If a ByRef  argument value is copied into the procedure and the argument and parameter are of the same type, no conversion is necessary. But if the
types are different, Visual Basic must convert in both directions. If one of the types is your class or structure type, Visual Basic must convert it both to
and from the other type. If one of these conversions is widening, the reverse conversion might be narrowing.

Error ID: BC32053

If possible, use a calling argument of the same type as the procedure parameter, so Visual Basic does not need to do any conversion.

If you need to call the procedure with an argument type different from the parameter type but do not need to return a value into the calling
argument, define the parameter to be ByVal instead of ByRef .

If you need to return a value into the calling argument, define the reverse conversion operator as Widening, if possible.

Procedures
Procedure Parameters and Arguments
Passing Arguments by Value and by Reference
Operator Procedures
Operator Statement
How to: Define an Operator
How to: Define a Conversion Operator
Type Conversions in Visual Basic
Widening and Narrowing Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/copying-the-value-of-byref-parameter-back-to-the-matching-argument-narrows.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-parameters-and-arguments
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-value-and-by-reference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions


 

'Custom' modifier is not valid on events declared without explicit
delegate types
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Example

Delegate Sub TestDelegate(ByVal sender As Object, ByVal i As Integer)
Custom Event Test As TestDelegate
    AddHandler(ByVal value As TestDelegate)
        ' Code for adding an event handler goes here.
    End AddHandler

    RemoveHandler(ByVal value As TestDelegate)
        ' Code for removing an event handler goes here.
    End RemoveHandler

    RaiseEvent(ByVal sender As Object, ByVal i As Integer)
        ' Code for raising an event goes here.
    End RaiseEvent
End Event

See Also

Unlike a non-custom event, a Custom Event  declaration requires an As  clause following the event name that explicitly specifies the delegate type for
the event.

Non-custom events can be defined either with an As  clause and an explicit delegate type, or with a parameter list immediately following the event
name.

Error ID: BC31122

Delegate Sub TestDelegate(ByVal sender As Object, ByVal i As Integer)

Custom Event Test As TestDelegate

1. Define a delegate with the same parameter list as the custom event.

For example, if the Custom Event  was defined by Custom Event Test(ByVal sender As Object, ByVal i As Integer) , then the corresponding
delegate would be the following.

2. Replace the parameter list of the custom event with an As  clause specifying the delegate type.

Continuing with the example, Custom Event  declaration would be rewritten as follows.

This example declares a Custom Event  and specifies the required As  clause with a delegate type.

Event Statement
Delegate Statement
Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/custom-modifier-is-not-valid-on-events-declared-without-explicit-delegate-types.md


 

Data type(s) of the type parameter(s) cannot be inferred from these
arguments
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Module Module1  

    Sub Main()  

        '' Not Valid.  
        'OverloadedGenericMethod("Hello", "World")  

    End Sub  

    Sub OverloadedGenericMethod(Of T)(ByVal x As String,   
                                      ByVal y As InterfaceExample(Of T))  
    End Sub  

    Sub OverloadedGenericMethod(Of T, R)(ByVal x As T,   
                                         ByVal y As InterfaceExample(Of R))  
    End Sub  

End Module  

Interface InterfaceExample(Of T)  
End Interface  

To correct this error

See Also

Data type(s) of the type parameter(s) cannot be inferred from these arguments. Specifying the data type(s) explicitly might correct this error.

This error occurs when overload resolution has failed. It occurs as a subordinate message that states why a particular overload candidate has been
eliminated. The error message explains that the compiler cannot use type inference to find data types for the type parameters.

When specifying arguments is not an option (for example, for query operators in query expressions), the error message appears without the second sentence.

The following code demonstrates the error.

Error ID: BC36647 and BC36644

You may be able to specify a data type for the type parameter or parameters instead of relying on type inference.

Relaxed Delegate Conversion
Generic Procedures in Visual Basic
Type Conversions in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/data-type-s-of-the-type-parameter-s-cannot-be-inferred-from-these-arguments.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions


 

Declaration expected
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A nondeclarative statement, such as an assignment or loop statement, occurs outside any procedure. Only declarations are allowed outside procedures.

Alternatively, a programming element is declared without a declaration keyword such as Dim  or Const .

Error ID: BC30188

Move the nondeclarative statement to the body of a procedure.

Begin the declaration with an appropriate declaration keyword.

Ensure that a declaration keyword is not misspelled.

Procedures
Dim Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/declaration-expected.md


 

Default property '<propertyname1>' conflicts with default property
'<propertyname2>' in '<classname>' and so should be declared
'Shadows'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A property is declared with the same name as a property defined in the base class. In this situation, the property in this class should shadow the base
class property.

This message is a warning. Shadows  is assumed by default. For more information about hiding warnings or treating warnings as errors, see Configuring
Warnings in Visual Basic.

Error ID: BC40007

Add the Shadows  keyword to the declaration, or change the name of the property being declared.

Shadows
Shadowing in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/default-property-propertyname1-conflicts-with-default-property-propertyname2.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/shadowing


 

Default property access is ambiguous between the inherited interface
members '<defaultpropertyname>' of interface '<interfacename1>' and
'<defaultpropertyname>' of interface '<interfacename2>'
5/4/2018 • 2 minutes to read • Edit Online

Public Interface Iface1  
    Default Property prop(ByVal arg As Integer) As Integer  
End Interface  
Public Interface Iface2  
    Default Property prop(ByVal arg As Integer) As Integer  
End Interface  
Public Interface Iface3  
    Inherits Iface1, Iface2  
End Interface  
Public Class testClass  
    Public Sub accessDefaultProperty()  
        Dim testObj As Iface3  
        Dim testInt As Integer = testObj(1)  
    End Sub  
End Class  

To correct this error

See Also

An interface inherits from two interfaces, each of which declares a default property with the same name. The compiler cannot resolve an access to this
default property without qualification. The following example illustrates this.

When you specify testObj(1) , the compiler tries to resolve it to the default property. However, there are two possible default properties because of the
inherited interfaces, so the compiler signals this error.

Error ID: BC30686

Dim testObj As Iface1  

Public Class useIface3  
    Implements Iface3  
    Default Public Property prop1(ByVal arg As Integer) As Integer Implements Iface1.prop  
        ' Insert code to define Get and Set procedures for prop1.  
    End Property  
    Public Property prop2(ByVal arg As Integer) As Integer Implements Iface2.prop  
        ' Insert code to define Get and Set procedures for prop2.  
    End Property  
End Class  

Avoid inheriting any members with the same name. In the preceding example, if testObj  does not need any of the members of, say, Iface2 ,
then declare it as follows:

-or-

Implement the inheriting interface in a class. Then you can implement each of the inherited properties with different names. However, only one of
them can be the default property of the implementing class. The following example illustrates this.

Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/default-property-access-is-ambiguous.md


 

Delegate class '<classname>' has no Invoke method, so an expression of
this type cannot be the target of a method call
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A call to Invoke  through a delegate has failed because Invoke  is not implemented on the delegate class.

Error ID: BC30220

1. Ensure that an instance of the delegate class has been created with a Dim  statement and that a procedure has been assigned to the delegate
instance with the AddressOf  operator.

2. Locate the code that implements the delegate class and make sure it implements the Invoke  procedure.

Delegates
Delegate Statement
AddressOf Operator
Dim Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/delegate-class-classname-has-no-invoke-method.md


 

Derived classes cannot raise base class events
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An event can be raised only from the declaration space in which it is declared. Therefore, a class cannot raise events from any other class, even one from
which it is derived.

Error ID: BC30029

Move the Event  statement or the RaiseEvent  statement so they are in the same class.

Event Statement
RaiseEvent Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/derived-classes-cannot-raise-base-class-events.md


 

Device I/O error
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An input or output error occurred while your program was using a device such as a printer or disk drive.

Make sure the device is operating properly, and then retry the operation.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/device-i-o-error.md


 

'Dir' function must first be called with a 'PathName' argument
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An initial call to the Dir  function does not include the PathName  argument. The first call to Dir  must include a PathName , but subsequent calls to Dir

do not need to include parameters to retrieve the next item.

1. Supply a PathName  argument in the function call.

Dir

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/dir-function-must-first-be-called-with-a-pathname-argument.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.dir


 

End of statement expected
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The statement is syntactically complete, but an additional programming element follows the element that completes the statement. A line terminator is
required at the end of every statement.

A line terminator divides the characters of a Visual Basic source file into lines. Examples of line terminators are the Unicode carriage return character
(&HD), the Unicode linefeed character (&HA), and the Unicode carriage return character followed by the Unicode linefeed character. For more
information about line terminators, see the Visual Basic Language Specification.

Error ID: BC30205

1. Check to see if two different statements have inadvertently been put on the same line.

2. Insert a line terminator after the element that completes the statement.

How to: Break and Combine Statements in Code
Statements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/end-of-statement-expected.md


 

Error creating assembly manifest: <error message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest. The linker has reported an
error in the pre-emission stage of creating the assembly.

This can occur if there are problems with the key file or the key container specified. To fully sign an assembly, you must provide a valid key file that
contains information about the public and private keys. To delay sign an assembly, you must select the Delay sign only check box and provide a valid
key file that contains information about the public key information. The private key is not necessary when an assembly is delay-signed. For more
information, see How to: Sign an Assembly with a Strong Name.

Error ID: BC30140

1. Examine the quoted error message and consult the topic Al.exe. for error AL1019 further explanation and advice

2. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

How to: Sign an Assembly with a Strong Name
Signing Page, Project Designer
Al.exe.
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/error-creating-assembly-manifest-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-sign-an-assembly-with-a-strong-name
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-sign-an-assembly-with-a-strong-name
https://docs.microsoft.com/visualstudio/ide/reference/signing-page-project-designer
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Error creating Win32 resources: <error message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest. The linker has reported an
error creating an in-memory resource. This might be a problem with the environment, or your computer might be low on memory.

Error ID: BC30136

1. Examine the quoted error message and consult the topic Al.exe. for further explanation and advice.

2. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

Al.exe.
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/error-creating-win32-resources-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Error in loading DLL (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A dynamic-link library (DLL) is a library specified in the Lib  clause of a Declare  statement. Possible causes for this error include:

The file is not DLL executable.

The file is not a Microsoft Windows DLL.

The DLL references another DLL that is not present.

The DLL or referenced DLL is not in a directory specified in the path.

If the file is a source-text file and therefore not DLL executable, it must be compiled and linked to a DLL-executable form.

If the file is not a Microsoft Windows DLL, obtain the Microsoft Windows equivalent.

If the DLL references another DLL that is not present, obtain the referenced DLL and make it available.

If the DLL or referenced DLL is not in a directory specified by the path, move the DLL to a referenced directory.

Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/error-in-loading-dll.md


 

Error saving temporary Win32 resource file '<filename>': <error
message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest. The linker reported an error
obtaining a file name for use in writing an in-memory resource.

Error ID: BC30137

1. Examine the quoted error message and consult the topic Al.exe. for further explanation and advice.

2. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

Al.exe.
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/error-saving-temporary-win32-resource-file-filename-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Errors occurred while compiling the XML schemas in the project
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Errors occurred while compiling the XML schemas in the project. Because of this, XML IntelliSense is not available.

There is an error in an XML Schema Definition (XSD) schema included in the project. This error occurs when you add an XSD schema (.xsd) file that
conflicts with the existing XSD schema set for the project.

Error ID: BC36810

Double-click the warning in the Errors List window. Visual Basic will take you to the location in the XSD file that is the source of the warning.
Correct the error in the XSD schema.

Ensure that all required XSD schema (.xsd) files are included in the project. You may need to click Show All Files on the Project menu to see
your .xsd files in Solution Explorer. Right-click an .xsd file and then click Include In Project to include the file in your project.

If you are using the XML to Schema Wizard, this error can occur if you infer schemas more than one time from the same source. In this case, you
can remove the existing XSD schema files from the project, add a new XML to Schema item template, and then provide the XML to Schema
Wizard with all the applicable XML sources for your project.

If no error is identified in your XSD schema, the XML compiler may not have enough information to provide a detailed error message. You may
be able to get more detailed error information if you ensure that the XML namespaces for the .xsd files included in your project match the XML
namespaces identified for the XML Schema set in Visual Studio.

Error List Window
XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/errors-occurred-while-compiling-the-xml-schemas-in-the-project.md
https://docs.microsoft.com/visualstudio/ide/reference/error-list-window


 

Evaluation of expression or statement timed out
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The evaluation of an expression did not complete in a timely manner.

Error ID: BC30722

1. Verify that the entered code is correct.

2. Simplify your expression so that it takes less time to execute.

Debugging in Visual Studio

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/evaluation-of-expression-or-statement-timed-out.md
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio


 

Event '<eventname1>' cannot implement event '<eventname2>' on
interface '<interface>' because their delegate types '<delegate1>' and
'<delegate2>' do not match
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Visual Basic cannot implement an event because the delegate type of the event does not match the delegate type of the event in the interface. This error
can occur when you define multiple events in an interface and then attempt to implement them together with the same event. An event can implement
two or more events only if all implemented events are declared using the As  syntax and specify the same delegate type.

Error ID: BC31423

Implement the events separately.

—or—

Define the events in the interface using the As  syntax and specify the same delegate type.

Event Statement
Delegate Statement
Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/event-eventname1-cannot-implement-event-eventname2-on-interface.md


 

Events cannot be declared with a delegate type that has a return type
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A delegate was specified for a function procedure.

Error ID: BC31084

Specify a delegate for a Sub  procedure.

Events

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/events-cannot-be-declared-with-a-delegate-type-that-has-a-return-type.md


 

Events of shared WithEvents variables cannot be handled by non-shared
methods
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A variable declared with the Shared  modifier is a shared variable. A shared variable identifies exactly one storage location. A variable declared with the 
WithEvents  modifier asserts that the type to which the variable belongs handles the set of events the variable raises. When a value is assigned to the

variable, the property created by the WithEvents  declaration unhooks any existing event handler and hooks up the new event handler via the Add

method.

Error ID: BC30594

Declare your event handler Shared .

Shared
WithEvents

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/events-of-shared-withevents-variables-cannot-be-handled-by-non-shared-methods.md


 

Expression does not produce a value
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You have tried to use an expression that does not produce a value in a value-producing context, such as calling a Sub  in a context where a Function  is
expected.

Error ID: BC30491

Change the expression to one that produces a value.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-does-not-produce-a-value.md


 

Expression has the type '<typename>' which is a restricted type and
cannot be used to access members inherited from 'Object' or 'ValueType'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An expression evaluates to a type that cannot be boxed by the common language runtime (CLR) but accesses a member that requires boxing.

Boxing refers to the processing necessary to convert a type to Object  or, on occasion, to ValueType. The common language runtime cannot box certain
structure types, for example ArgIterator, RuntimeArgumentHandle, and TypedReference.

This expression attempts to use the restricted type to call a method inherited from Object or ValueType, such as GetHashCode or ToString. To access
this method, Visual Basic has attempted an implicit boxing conversion that causes this error.

Error ID: BC31393

1. Locate the expression that evaluates to the cited type.

2. Locate the part of your statement that attempts to call the method inherited from Object or ValueType.

3. Rewrite the statement to avoid the method call.

Implicit and Explicit Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-has-the-type-typename-which-is-a-restricted-type.md
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.argiterator
https://docs.microsoft.com/dotnet/api/system.runtimeargumenthandle
https://docs.microsoft.com/dotnet/api/system.typedreference
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/dotnet/api/system.object.gethashcode
https://docs.microsoft.com/dotnet/api/system.object.tostring
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/dotnet/api/system.valuetype
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


 

Expression is a value and therefore cannot be the target of an
assignment
5/4/2018 • 2 minutes to read • Edit Online

Dim yesterday As Integer  
ReadOnly maximum As Integer = 45  
yesterday + 1 = DatePart(DateInterval.Day, Now)  
' The preceding line is an ERROR because of an expression on the left.  
maximum = 50  
' The preceding line is an ERROR because maximum is declared ReadOnly.  

' Assume this code runs inside Form1.  
Dim exitButton As New System.Windows.Forms.Button()  
exitButton.Text = "Exit this form"  
exitButton.Location.X = 140  
' The preceding line is an ERROR because of no storage for Location.  

Dim exitLocation as New System.Drawing.Point(140, exitButton.Location.Y)  
exitButton.Location = exitLocation  

To correct this error

See Also

A statement attempts to assign a value to an expression. You can assign a value only to a writable variable, property, or array element at run time. The
following example illustrates how this error can occur.

Similar examples could apply to properties and array elements.

Indirect Access. Indirect access through a value type can also generate this error. Consider the following code example, which attempts to set the value
of Point by accessing it indirectly through Location.

The last statement of the preceding example fails because it creates only a temporary allocation for the Point structure returned by the Location
property. A structure is a value type, and the temporary structure is not retained after the statement runs. The problem is resolved by declaring and
using a variable for Location, which creates a more permanent allocation for the Point structure. The following example shows code that can replace the
last statement of the preceding example.

Error ID: BC30068

If the statement assigns a value to an expression, replace the expression with a single writable variable, property, or array element.

If the statement makes indirect access through a value type (usually a structure), create a variable to hold the value type.

Assign the appropriate structure (or other value type) to the variable.

Use the variable to access the property to assign it a value.

Operators and Expressions
Statements
Troubleshooting Procedures

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-is-a-value-and-therefore-cannot-be-the-target-of-an-assignment.md
https://docs.microsoft.com/dotnet/api/system.drawing.point
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.location
https://docs.microsoft.com/dotnet/api/system.drawing.point
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.location
https://docs.microsoft.com/dotnet/api/system.windows.forms.control.location
https://docs.microsoft.com/dotnet/api/system.drawing.point
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/troubleshooting-procedures


 

Expression of type <type> is not queryable
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Expression of type <type> is not queryable. Make sure you are not missing an assembly reference and/or namespace import for the L INQ provider.

Queryable types are defined in the System.Linq, System.Data.Linq, and System.Xml.Linq namespaces. You must import one or more of these
namespaces to perform LINQ queries.

The System.Linq namespace enables you to query objects such as collections and arrays by using LINQ.

The System.Data.Linq namespace enables you to query ADO.NET Datasets and SQL Server databases by using LINQ.

The System.Xml.Linq namespace enables you to query XML by using LINQ and to use XML features in Visual Basic.

Error ID: BC36593

1. Add an Import  statement for the System.Linq, System.Data.Linq, or System.Xml.Linq namespace to your code file. You can also import
namespaces for your project by using the References page of the Project Designer (My Project).

2. Ensure that the type that you have identified as the source of your query is a queryable type. That is, a type that implements IEnumerable<T> or
IQueryable<T>.

System.Linq
System.Data.Linq
System.Xml.Linq
Introduction to L INQ in Visual Basic
LINQ
XML
References and the Imports Statement
Imports Statement (.NET Namespace and Type)
References Page, Project Designer (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-of-type-type-is-not-queryable.md
https://docs.microsoft.com/dotnet/api/system.linq
https://docs.microsoft.com/dotnet/api/system.data.linq
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://docs.microsoft.com/dotnet/api/system.linq
https://docs.microsoft.com/dotnet/api/system.data.linq
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://docs.microsoft.com/dotnet/api/system.linq
https://docs.microsoft.com/dotnet/api/system.data.linq
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.linq.iqueryable-1
https://docs.microsoft.com/dotnet/api/system.linq
https://docs.microsoft.com/dotnet/api/system.data.linq
https://docs.microsoft.com/dotnet/api/system.xml.linq
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq
https://docs.microsoft.com/visualstudio/ide/reference/references-page-project-designer-visual-basic


 

Expression recursively calls the containing property '<propertyname>'
5/4/2018 • 2 minutes to read • Edit Online

Public Class illustrateProperties  
' The code in the following property causes this error.  
    Public Property badProp() As Char  
        Get  
            Dim charValue As Char  
            ' Insert code to update charValue.  
            badProp = charValue  
        End Get  
        Set(ByVal Value As Char)  
            ' The following statement causes this error.  
            badProp = Value  
            ' The value stored in the local variable badProp  
            ' is not used by the Get procedure in this property.  
        End Set  
    End Property  
' The following code uses the recommended approach.  
    Private propValue As Char  
    Public Property goodProp() As Char  
        Get  
            ' Insert code to update propValue.  
            Return propValue  
        End Get  
        Set(ByVal Value As Char)  
            propValue = Value  
        End Set  
    End Property  
End Class  

To correct this error

See Also

A statement in the Set  procedure of a property definition stores a value into the name of the property.

The recommended approach to holding the value of a property is to define a Private  variable in the property's container and use it in both the Get

and Set  procedures. The Set  procedure should then store the incoming value in this Private  variable.

The Get  procedure behaves like a Function  procedure, so it can assign a value to the property name and return control by encountering the End Get

statement. The recommended approach, however, is to include the Private  variable as the value in a Return Statement.

The Set  procedure behaves like a Sub  procedure, which does not return a value. Therefore, the procedure or property name has no special meaning
within a Set  procedure, and you cannot store a value into it.

The following example illustrates the approach that can cause this error, followed by the recommended approach.

By default, this message is a warning. For more information about hiding warnings or treating warnings as errors, please see Configuring Warnings in
Visual Basic.

Error ID: BC42026

Rewrite the property definition to use the recommended approach as illustrated in the preceding example.

Property Procedures
Property Statement
Set Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-recursively-calls-the-containing-property-propertyname.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures


 

Expression too complex
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A floating-point expression contains too many nested subexpressions.

Break the expression into as many separate expressions as necessary to prevent the error from occurring.

Operators and Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/expression-too-complex.md


 

'Extension' attribute can be applied only to 'Module', 'Sub', or 'Function'
declarations
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Example

Imports StringUtility  
Imports System.Runtime.CompilerServices  
Namespace StringUtility  
    <Extension()>   
    Module StringExtensions  
        <Extension()>   
        Public Sub Print (ByVal str As String)  
            Console.WriteLine(str)  
        End Sub  
    End Module  
End Namespace  

See Also

The only way to extend a data type in Visual Basic is to define an extension method inside a standard module. The extension method can be a Sub

procedure or a Function  procedure. All extension methods must be marked with the extension attribute, <Extension()> , from the
System.Runtime.CompilerServices namespace. Optionally, a module that contains an extension method may be marked in the same way. No other use
of the extension attribute is valid.

Error ID: BC36550

Remove the extension attribute.

Redesign your extension as a method, defined in an enclosing module.

The following example defines a Print  method for the String  data type.

Attributes overview
Extension Methods
Module Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/extension-attribute-can-be-applied-only-to-module-sub-or-function-declarations.md
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods


 

File already open
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Sometimes a file must be closed before another FileOpen  or other operation can occur. Among the possible causes of this error are:

A sequential output mode FileOpen  operation was executed for a file that is already open

A statement refers to an open file.

1. Close the file before executing the statement.

FileOpen

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/file-already-open.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.fileopen


 

File is too large to read into a byte array
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The size of the file you are attempting to read into a byte array exceeds 4 GB. The My.Computer.FileSystem.ReadAllBytes  method cannot read a file that
exceeds this size.

Use a StreamReader to read the file. For more information, see Basics of .NET Framework File I/O and the File System (Visual Basic).

ReadAllBytes
StreamReader
File Access with Visual Basic
How to: Read Text from Files with a StreamReader

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/file-is-too-large-to-read-into-a-byte-array.md
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/basics-of-net-framework-file-io-and-the-file-system
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem.readallbytes
https://docs.microsoft.com/dotnet/api/system.io.streamreader
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/file-access
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/how-to-read-text-from-files-with-a-streamreader


 

File name or class name not found during Automation operation (Visual
Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The name specified for file name or class in a call to the GetObject  function could not be found.

Check the names and try again. Make sure the name used for the class  parameter matches that registered with the system.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/file-name-or-class-name-not-found-during-automation-operation.md


 

File not found (Visual Basic Run-Time Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The file was not found where specified. The error has the following possible causes:

A statement refers to a file that does not exist.

An attempt was made to call a procedure in a dynamic-link library (DLL), but the library specified in the Lib  clause of the Declare  statement
cannot be found.

You attempted to open a project or load a text file that does not exist.

1. Check the spelling of the file name and the path specification.

Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/file-not-found-visual-basic-run-time-error.md


 

First operand in a binary 'If' expression must be nullable or a reference
type
5/4/2018 • 2 minutes to read • Edit Online

' firstChoice is a nullable value type.  
Dim firstChoice? As Integer = Nothing  
Dim secondChoice As Integer = 1128  
' If expression with three arguments.  
Console.WriteLine(If(firstChoice IsNot Nothing, firstChoice, secondChoice))  
' If expression with two arguments.  
Console.WriteLine(If(firstChoice, secondChoice))  

Dim choice1 = 4  
Dim choice2 = 5  
Dim booleanVar = True  

' Not valid.  
'Console.WriteLine(If(choice1 < choice2, 1))  
' Not valid.  
'Console.WriteLine(If(booleanVar, "Test returns True."))  

To correct this error

Console.WriteLine(If(choice1 < choice2, 1, 2))  
Console.WriteLine(If(booleanVar, "Test returns True.", "Test returns False."))  

See Also

An If  expression can take either two or three arguments. When you send only two arguments, the first argument must be a reference type or a
nullable type. If the first argument evaluates to anything other than Nothing , its value is returned. If the first argument evaluates to Nothing , the second
argument is evaluated and returned.

For example, the following code contains two If  expressions, one with three arguments and one with two arguments. The expressions calculate and
return the same value.

The following expressions cause this error :

Error ID: BC33107

If you cannot change the code so that the first argument is a nullable type or reference type, consider converting to a three-argument If

expression, or to an If...Then...Else  statement.

If Operator
If...Then...Else Statement
Nullable Value Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/first-operand-in-a-binary-if-expression-must-be-nullable-or-a-reference-type.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


 

First statement of this 'Sub New' must be a call to 'MyBase.New' or
'MyClass.New' (No Accessible Constructor Without Parameters)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

First statement of this 'Sub New' must be a call to 'MyBase.New' or 'MyClass.New' because base class '<basename>' of '<derivedname>' does not
have an accessible 'Sub New' that can be called with no arguments.

In a derived class, every constructor must call a base class constructor ( MyBase.New ). If the base class has a constructor with no parameters that is
accessible to derived classes, MyBase.New  can be called automatically. If not, a base class constructor must be called with parameters, and this cannot be
done automatically. In this case, the first statement of every derived class constructor must call a parameterized constructor on the base class, or call
another constructor in the derived class that makes a base class constructor call.

Error ID: BC30148

Either call MyBase.New  supplying the required parameters, or call a peer constructor that makes such a call.

For example, if the base class has a constructor that’s declared as Public Sub New(ByVal index as Integer) , the first statement in the derived class
constructor might be MyBase.New(100) .

Inheritance Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/first-statement-of-this-sub-new-must-be-a-call-to-mybase-new-or-myclass-new.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/inheritance-basics


 

First statement of this 'Sub New' must be an explicit call to
'MyBase.New' or 'MyClass.New' because the '<constructorname>' in the
base class '<baseclassname>' of '<derivedclassname>' is marked
obsolete: '<errormessage>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A class constructor does not explicitly call a base class constructor, and the implicit base class constructor is marked with the ObsoleteAttribute attribute
and the directive to treat it as an error.

When a derived class constructor does not call a base class constructor, Visual Basic attempts to generate an implicit call to a parameterless base class
constructor. If there is no accessible constructor in the base class that can be called without arguments, Visual Basic cannot generate an implicit call. In
this case, the required constructor is marked with the ObsoleteAttribute attribute, so Visual Basic cannot call it.

You can mark any programming element as being no longer in use by applying ObsoleteAttribute to it. If you do this, you can set the attribute's IsError
property to either True  or False . If you set it to True , the compiler treats an attempt to use the element as an error. If you set it to False , or let it
default to False , the compiler issues a warning if there is an attempt to use the element.

Error ID: BC30920

1. Examine the quoted error message and take appropriate action.

2. Include a call to MyBase.New()  or MyClass.New()  as the first statement of the Sub New  in the derived class.

Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/first-statement-of-sub-new-must-be-explicit-call-to-mybase-new-or-myclass-new.md
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute
https://docs.microsoft.com/dotnet/api/system.obsoleteattribute.iserror


 

'For Each' on type '<typename>' is ambiguous because the type
implements multiple instantiations of
'System.Collections.Generic.IEnumerable(Of T)'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A For Each  statement specifies an iterator variable that has more than one GetEnumerator method.

The iterator variable must be of a type that implements the System.Collections.IEnumerable or System.Collections.Generic.IEnumerable<T> interface in
one of the Collections  namespaces of the .NET Framework. It is possible for a class to implement more than one constructed generic interface, using a
different type argument for each construction. If a class that does this is used for the iterator variable, that variable has more than one GetEnumerator
method. In such a case, Visual Basic cannot choose which method to call.

Error ID: BC32096

Use DirectCast Operator or TryCast Operator to cast the iterator variable type to the interface defining the GetEnumerator method you want to use.

For Each...Next Statement
Interfaces

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/for-each-on-type-typename-is-ambiguous.md
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable
https://docs.microsoft.com/dotnet/api/system.collections.generic.ienumerable-1
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator
https://docs.microsoft.com/dotnet/api/system.collections.ienumerable.getenumerator


 

Friend assembly reference <reference> is invalid
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Friend assembly reference <reference> is invalid. Strong-name signed assemblies must specify a public key in their InternalsVisibleTo declarations.

The assembly name passed to the InternalsVisibleToAttribute attribute constructor identifies a strong-named assembly, but it does not include a 
PublicKey  attribute.

Error ID: BC31535

1. Determine the public key for the strong-named friend assembly. Include the public key as part of the assembly name passed to the
InternalsVisibleToAttribute attribute constructor by using the PublicKey  attribute.

AssemblyName
Friend Assemblies

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/friend-assembly-reference-reference-is-invalid.md
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.internalsvisibletoattribute
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.internalsvisibletoattribute
https://docs.microsoft.com/dotnet/api/system.reflection.assemblyname
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/assemblies-gac/friend-assemblies


 

Function '<procedurename>' doesn't return a value on all code paths
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Function '<procedurename>' doesn't return a value on all code paths. Are you missing a 'Return' statement?

A Function  procedure has at least one possible path through its code that does not return a value.

You can return a value from a Function  procedure in any of the following ways:

Include the value in a Return Statement.

Assign the value to the Function  procedure name and then perform an Exit Function  statement.

Assign the value to the Function  procedure name and then perform the End Function  statement.

If control passes to Exit Function  or End Function  and you have not assigned any value to the procedure name, the procedure returns the default
value of the return data type. For more information, see "Behavior" in Function Statement.

By default, this message is a warning. For more information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42105

Check your control flow logic and make sure you assign a value before every statement that causes a return.

It is easier to guarantee that every return from the procedure returns a value if you always use the Return  statement. If you do this, the last
statement before End Function  should be a Return  statement.

Function Procedures
Function Statement
Compile Page, Project Designer (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/function-procedurename-doesn-t-return-a-value-on-all-code-paths.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/function-procedures
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


 

Function evaluation is disabled because a previous function evaluation
timed out
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Function evaluation is disabled because a previous function evaluation timed out. To re-enable function evaluation, step again or restart debugging.

In the Visual Studio debugger, an expression specifies a procedure call, but another evaluation has timed out.

Possible causes for a procedure call to time out include an infinite loop or endless loop. For more information, see For...Next Statement.

A special case of an infinite loop is recursion. For more information, see Recursive Procedures.

Error ID: BC30957

1. If possible, determine what the previous function evaluation was and what caused it to time out. Otherwise, you might encounter this error again.

2. Either step the debugger again, or terminate and restart debugging.

Debugging in Visual Studio
Navigating through Code with the Debugger

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/function-evaluation-is-disabled.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/recursive-procedures
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio
https://docs.microsoft.com/visualstudio/debugger/navigating-through-code-with-the-debugger


 

Generic parameters used as optional parameter types must be class
constrained
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A procedure is declared with an optional parameter that uses a type parameter that is not constrained to be a reference type.

You must always supply a default value for each optional parameter. If the parameter is of a reference type, the optional value must be Nothing , which
is a valid value for any reference type. However, if the parameter is of a value type, that type must be an elementary data type predefined by Visual
Basic. This is because a composite value type, such as a user-defined structure, has no valid default value.

When you use a type parameter for an optional parameter, you must guarantee that it is of a reference type to avoid the possibility of a value type with
no valid default value. This means you must constrain the type parameter either with the Class  keyword or with the name of a specific class.

Error ID: BC32124

Constrain the type parameter to accept only a reference type, or do not use it for the optional parameter.

Generic Types in Visual Basic
Type List
Class Statement
Optional Parameters
Structures
Nothing

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/generic-parameters-used-as-optional-parameter-types-must-be-class-constrained.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/optional-parameters
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures


 

'Get' accessor of property '<propertyname>' is not accessible
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A statement attempts to retrieve the value of a property when it does not have access to the property's Get  procedure.

If the Get Statement is marked with a more restrictive access level than its Property Statement, an attempt to read the property value could fail in the
following cases:

The Get  statement is marked Private and the calling code is outside the class or structure in which the property is defined.

The Get  statement is marked Protected and the calling code is not in the class or structure in which the property is defined, nor in a derived
class.

The Get  statement is marked Friend and the calling code is not in the same assembly in which the property is defined.

Error ID: BC31103

If you have control of the source code defining the property, consider declaring the Get  procedure with the same access level as the property
itself.

If you do not have control of the source code defining the property, or you must restrict the Get  procedure access level more than the property
itself, try to move the statement that reads the property value to a region of code that has better access to the property.

Property Procedures
How to: Declare a Property with Mixed Access Levels

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/get-accessor-of-property-propertyname-is-not-accessible.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-declare-a-property-with-mixed-access-levels


 

Handles clause requires a WithEvents variable defined in the containing
type or one of its base types
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You did not supply a WithEvents  variable in your Handles  clause. The Handles  keyword at the end of a procedure declaration causes it to handle
events raised by an object variable declared using the WithEvents  keyword.

Error ID: BC30506

Supply the necessary WithEvents  variable.

Handles

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/handles-clause-requires-a-withevents-variable-defined.md


 

Identifier expected
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A programming element that is not a recognizable declared element name occurs where the context requires an element name. One possible cause is
that an attribute has been specified somewhere other than at the beginning of the statement.

Error ID: BC30203

Verify that any attributes in the statement are all placed at the beginning.

Verify that all element names in the statement are spelled correctly.

Declared Element Names
Attributes overview

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/identifier-expected.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


 

Identifier is too long
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The name, or identifier, of every programming element is limited to 1023 characters. In addition, a fully qualified name cannot exceed 1023 characters.
This means that the entire identifier string ( <namespace>.<...>.<namespace>.<class>.<element> ) cannot be more than 1023 characters long, including the
member-access operator ( . ) characters.

Error ID: BC30033

Reduce the length of the identifier.

Declared Element Names

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/identifier-is-too-long.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


 

Initializer expected
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You have tried to declare an instance of a class by using an object initializer in which the initialization list is empty, as shown in the following example.

' Not valid.

' Dim aStudent As New Student With {}

At least one field or property must be initialized in the initializer list, as shown in the following example.

Dim aStudent As New Student With {.year = "Senior"}

Error ID: BC30996

1. Initialize at least one field or property in the initializer, or do not use an object initializer.

Object Initializers: Named and Anonymous Types
How to: Declare an Object by Using an Object Initializer

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/initializer-expected.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-initializers-named-and-anonymous-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/how-to-declare-an-object-by-using-an-object-initializer


 

Input past end of file
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Either an Input  statement is reading from a file that is empty or one in which all the data is used, or you used the EOF  function with a file opened for
binary access.

1. Use the EOF  function immediately before the Input  statement to detect the end of the file.

2. If the file is opened for binary access, use Seek  and Loc .

Input
EOF
Seek
Loc

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/input-past-end-of-file.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.input
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.eof
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.seek
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.filesystem.loc


 

Internal error happened at <location>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An internal error has occurred. The line at which it occurred is contained in the error message.

Make sure this error was not generated by the Error  statement or Raise  method; if it was not, contact Microsoft Product Support Services to
report the conditions under which the message appeared.

Debugger Basics

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/internal-error-happened-at-location.md
https://docs.microsoft.com/visualstudio/debugger/debugger-basics


 

Implicit conversion from '<typename1>' to '<typename2>' in copying
the value of 'ByRef' parameter '<parametername>' back to the
matching argument.
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A procedure is called with a ByRef argument of a different type than that of its corresponding parameter.

If you pass an argument ByRef , Visual Basic sometimes copies the argument value into a local variable in the procedure instead of passing a reference.
In such a case, when the procedure returns, Visual Basic must then copy the local variable value back into the argument in the calling code.

If a ByRef  argument value is copied into the procedure and the argument and parameter are of the same type, no conversion is necessary. But if the
types are different, Visual Basic must convert in both directions. Because you cannot use CType  or any of the other conversion keywords on a
procedure argument or parameter, such a conversion is always implicit.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC41999

If possible, use a calling argument of the same type as the procedure parameter, so Visual Basic does not need to do any conversion.

If you need to call the procedure with an argument type different from the parameter type but do not need to return a value into the calling
argument, define the parameter to be ByVal instead of ByRef .

Procedures
Procedure Parameters and Arguments
Passing Arguments by Value and by Reference
Implicit and Explicit Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/implicit-conversion-from-typename1-to-typename2-in-copying.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-parameters-and-arguments
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/passing-arguments-by-value-and-by-reference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions


 

'Is' requires operands that have reference types, but this operand has the
value type '<typename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Is  comparison operator determines whether two object variables refer to the same instance. This comparison is not defined for value types.

Error ID: BC30020

Use the appropriate arithmetic comparison operator or the Like  operator to compare two value types.

Is Operator
Like Operator
Comparison Operators

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/is-requires-operands-that-have-reference-types.md


 

'IsNot' operand of type 'typename' can only be compared to 'Nothing',
because 'typename' is a nullable type
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Dim number? As Integer = 5  

If number IsNot Nothing Then  
  If number.GetType() IsNot Type.GetType("System.Int32") Then   

  End If  
End If  

See Also

A variable declared as nullable has been compared to an expression other than Nothing  using the IsNot  operator.

Error ID: BC32128

1. To compare a nullable type to an expression other than Nothing  by using the IsNot  operator, call the GetType  method on the nullable type and
compare the result to the expression, as shown in the following example.

Nullable Value Types
IsNot Operator

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/isnot-operand-of-type-can-only-be-compared-to-nothing.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types


 

Labels that are numbers must be followed by colons
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Line numbers follow the same rules as other kinds of labels, and must contain a colon.

Error ID: BC30801

400:    X += 1  

Place the number followed by a colon at the start of a line of code; for example:

GoTo Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/labels-that-are-numbers-must-be-followed-by-colons.md


 

Lambda expression will not be removed from this event handler
5/4/2018 • 2 minutes to read • Edit Online

Module Module1  

    Sub Main()  
        Dim fun1 As ChangeInteger = Function(p As Integer) p + 1  
        Dim fun2 As ChangeInteger = Function(p As Integer) p + 1  
        Console.WriteLine(fun1 = fun2)  
    End Sub  

    Delegate Function ChangeInteger(ByVal x As Integer) As Integer  

End Module  

Module Module1  

    Event ProcessInteger(ByVal x As Integer)  

    Sub Main()  

        ' The following line adds one listener to the event.  
        AddHandler ProcessInteger, Function(m As Integer) m  

        ' The following statement searches the current listeners   
        ' for a match to remove. However, this lambda is not the same  
        ' as the previous one, so nothing is removed.  
        RemoveHandler ProcessInteger, Function(m As Integer) m  

    End Sub  
End Module  

To correct this error

Module Module1  

    Event ProcessInteger(ByVal x As Integer)  

    Dim PrintHandler As ProcessIntegerEventHandler  

    Sub Main()  

        ' Assign the lambda expression to a variable.  
        PrintHandler = Function(m As Integer) m  

        ' Use the variable to add the listener.  
        AddHandler ProcessInteger, PrintHandler  

        ' Use the variable again when you want to remove the listener.  
        RemoveHandler ProcessInteger, PrintHandler  

    End Sub  
End Module  

See Also

Lambda expression will not be removed from this event handler. Assign the lambda expression to a variable and use the variable to add and remove the
event.

When lambda expressions are used with event handlers, you may not see the behavior you expect. The compiler generates a new method for each
lambda expression definition, even if they are identical. Therefore, the following code displays False .

When lambda expressions are used with event handlers, this may cause unexpected results. In the following example, the lambda expression added by 
AddHandler  is not removed by the RemoveHandler  statement.

By default, this message is a warning. For more information about how to hide warnings or treat warnings as errors, see Configuring Warnings in
Visual Basic.

Error ID: BC42326

To avoid the warning and remove the lambda expression, assign the lambda expression to a variable and use the variable in both the AddHandler

and RemoveHandler  statements, as shown in the following example.

Lambda Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/lambda-expression-will-not-be-removed-from-this-event-handler.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


Relaxed Delegate Conversion
Events

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion


 

Lambda expressions are not valid in the first expression of a 'Select Case'
statement
5/4/2018 • 2 minutes to read • Edit Online

' Select Case (Function(arg) arg Is Nothing)  
    ' List of the cases.  
' End Select  

To correct this error

Dim num? As Integer  
Select Case ((Function(arg? As Integer) arg Is Nothing)(num))  
    ' List of the cases  
End Select  

See Also

You cannot use a lambda expression for the test expression in a Select Case  statement. Lambda expression definitions return functions, and the test
expression of a Select Case  statement must be an elementary data type.

The following code causes this error :

Error ID: BC36635

Examine your code to determine whether a different conditional construction, such as an If...Then...Else  statement, would work for you.

You may have intended to call the function, as shown in the following code:

Lambda Expressions
If...Then...Else Statement
Select...Case Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/lambda-expressions-are-not-valid-in-the-first-expression-of-select-case.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


 

Late bound resolution; runtime errors could occur
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An object is assigned to a variable declared to be of the Object Data Type.

When you declare a variable as Object , the compiler must perform late binding, which causes extra operations at run time. It also exposes your
application to potential run-time errors. For example, if you assign a Form to the Object  variable and then try to access the XmlDocument.NameTable
property, the runtime throws a MemberAccessException because the Form class does not expose a NameTable  property.

If you declare the variable to be of a specific type, the compiler can perform early binding at compile time. This results in improved performance,
controlled access to the members of the specific type, and better readability of your code.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC42017

If possible, declare the variable to be of a specific type.

Early and Late Binding
Object Variable Declaration

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/late-bound-resolution;-runtime-errors-could-occur.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/dotnet/api/system.xml.xmldocument.nametable
https://docs.microsoft.com/dotnet/api/system.memberaccessexception
https://docs.microsoft.com/dotnet/api/system.windows.forms.form
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/object-variable-declaration


 

Latebound overload resolution cannot be applied to
'<procedurename>' because the accessing instance is an interface type
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Example

Module m1  
    Interface i1  
        Sub s1(ByVal p1 As Integer)  
        Sub s1(ByVal p1 As Double)  
    End Interface  
    Class c1  
        Implements i1  
        Public Overloads Sub s1(ByVal p1 As Integer) Implements i1.s1  
        End Sub  
        Public Overloads Sub s2(ByVal p1 As Double) Implements i1.s1  
        End Sub  
    End Class  
    Sub Main()  
        Dim refer As i1 = New c1  
        Dim o1 As Object = 3.1415  
        ' The following reference is INVALID and causes a compiler error.  
        refer.s1(o1)   
    End Sub  
End Module  

refer.s1(CType(o1, Integer))  
refer.s1(CType(o1, Double))  

See Also

The compiler is attempting to resolve a reference to an overloaded property or procedure, but the reference fails because an argument is of type 
Object  and the referring object has the data type of an interface. The Object  argument forces the compiler to resolve the reference as late-bound.

In these circumstances, the compiler resolves the overload through the implementing class instead of through the underlying interface. If the class
renames one of the overloaded versions, the compiler does not consider that version to be an overload because its name is different. This in turn causes
the compiler to ignore the renamed version when it might have been the correct choice to resolve the reference.

Error ID: BC30933

Use CType  to cast the argument from Object  to the type specified by the signature of the overload you want to call.

Note that it does not help to cast the referring object to the underlying interface. You must cast the argument to avoid this error.

The following example shows a call to an overloaded Sub  procedure that causes this error at compile time.

In the preceding example, if the compiler allowed the call to s1  as written, the resolution would take place through the class c1  instead of the interface
i1 . This would mean that the compiler would not consider s2  because its name is different in c1 , even though it is the correct choice as defined by 
i1 .

You can correct the error by changing the call to either of the following lines of code:

Each of the preceding lines of code explicitly casts the Object  variable o1  to one of the parameter types defined for the overloads.

Procedure Overloading
Overload Resolution
CType Function

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/latebound-overload-resolution-cannot-be-applied.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/procedure-overloading
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/overload-resolution


 

Leading '.' or '!' can only appear inside a 'With' statement
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A period (.) or exclamation point (!) that is not inside a With  block occurs without an expression on the left. Member access ( . ) and dictionary member
access ( ! ) require an expression specifying the element that contains the member. This must appear immediately to the left of the accessor or as the
target of a With  block containing the member access.

Error ID: BC30157

1. Ensure that the With  block is correctly formatted.

2. If there is no With  block, add an expression to the left of the accessor that evaluates to a defined element containing the member.

Special Characters in Code
With...End With Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/leading-period-or-exclamation-point-can-only-appear-inside-a-with-statement.md


 

Line is too long
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Source text lines cannot exceed 65535 characters.

Error ID: BC30494

Shorten the length of the line to 65535 characters or fewer.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/line-is-too-long.md


 

'Line' statements are no longer supported (Visual Basic Compiler Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Line statements are no longer supported. File I/O functionality is available as Microsoft.VisualBasic.FileSystem.LineInput  and graphics functionality is
available as System.Drawing.Graphics.DrawLine .

Error ID: BC30830

1. If performing file access, use Microsoft.VisualBasic.FileSystem.LineInput .

2. If performing graphics, use System.Drawing.Graphics.Drawline .

System.IO
System.Drawing
File Access with Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/line-statements-are-no-longer-supported-visual-basic-compiler-error.md
https://docs.microsoft.com/dotnet/api/system.io
https://docs.microsoft.com/dotnet/api/system.drawing
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/file-access


 

Method does not have a signature compatible with the delegate
5/4/2018 • 2 minutes to read • Edit Online

See Also

There is an incompatibility between the signatures of the method and the delegate you are trying to use. The Delegate  statement defines the parameter
types and return types of a delegate class. Any procedure that has matching parameters of compatible types and return types can be used to create an
instance of this delegate type.

Error ID : BC36563

AddressOf Operator
Delegate Statement
Overload Resolution
Generic Types in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/method-does-not-have-a-signature-compatible-with-the-delegate.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/overload-resolution
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


 

Methods of 'System.Nullable(Of T)' cannot be used as operands of the
'AddressOf' operator
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Module Module1  

    Delegate Function Deleg() As Integer  

    Sub Main()  
        Dim nullInstance As New Nullable(Of Integer)(1)  

        Dim del As Deleg  

        ' GetValueOrDefault is a method of the Nullable generic  
        ' type. It cannot be used as an operand of AddressOf.  
        ' del = AddressOf nullInstance.GetValueOrDefault  

        ' The following line uses the GetValueOrDefault method  
        ' defined in the NullableWrapper class.  
        del = AddressOf (New NullableWrapper(  
            Of Integer)(nullInstance)).GetValueOrDefault  

        Console.WriteLine(del.Invoke())  
    End Sub  

    Class NullableWrapper(Of T As Structure)  
        Private m_Value As Nullable(Of T)  

        Sub New(ByVal Value As Nullable(Of T))  
            m_Value = Value  
        End Sub  

        Public Function GetValueOrDefault() As T  
            Return m_Value.Value  
        End Function  
    End Class  
End Module  

See Also

A statement uses the AddressOf  operator with an operand that represents a procedure of the Nullable<T> structure.

Error ID: BC32126

Replace the procedure name in the AddressOf  clause with an operand that is not a member of Nullable<T>.

Write a class that wraps the method of Nullable<T> that you want to use. In the following example, the NullableWrapper  class defines a new
method named GetValueOrDefault . Because this new method is not a member of Nullable<T>, it can be applied to nullInstance , an instance of
a nullable type, to form an argument for AddressOf .

Nullable<T>
AddressOf Operator
Nullable Value Types
Generic Types in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/methods-of-system-nullable-of-t-cannot-be-used-as-operands-of-the-addressof.md
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/dotnet/api/system.nullable-1
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


 

'Module' statements can occur only at file or namespace level
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Module  statements must appear at the top of your source file immediately after Option  and Imports  statements, global attributes, and namespace
declarations, but before all other declarations.

Error ID: BC30617

Move the Module  statement to the top of your namespace declaration or source file.

Module Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/module-statements-can-occur-only-at-file-or-namespace-level.md


 

Name <membername> is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An assembly is marked as <CLSCompliant(True)>  but exposes a member with a name that begins with an underscore ( _ ).

A programming element can contain one or more underscores, but to be compliant with the Language Independence and Language-Independent
Components (CLS), it must not begin with an underscore. See Declared Element Names.

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40031

If you have control over the source code, change the member name so that it does not begin with an underscore.

If you require that the member name remain unchanged, remove the CLSCompliantAttribute from its definition or mark it as 
<CLSCompliant(False)> . You can still mark the assembly as <CLSCompliant(True)> .

Declared Element Names
Visual Basic Naming Conventions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/name-membername-is-not-cls-compliant.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


 

Name '<name>' is not declared
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A statement refers to a programming element, but the compiler cannot find an element with that exact name.

Error ID: BC30451

1. Check the spelling of the name in the referring statement. Visual Basic is case-insensitive, but any other variation in the spelling is regarded as a
completely different name. Note that the underscore ( _ ) is part of the name and therefore part of the spelling.

2. Check that you have the member access operator ( . ) between an object and its member. For example, if you have a TextBox control named 
TextBox1 , to access its Text property you should type TextBox1.Text . If instead you type TextBox1Text , you have created a different name.

3. If the spelling is correct and the syntax of any object member access is correct, verify that the element has been declared. For more information,
see Declared Elements.

4. If the programming element has been declared, check that it is in scope. If the referring statement is outside the region declaring the
programming element, you might need to qualify the element name. For more information, see Scope in Visual Basic.

Declarations and Constants Summary
Visual Basic Naming Conventions
Declared Element Names
References to Declared Elements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/name-name-is-not-declared.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.textbox
https://docs.microsoft.com/dotnet/api/system.windows.forms.textboxbase.text
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/scope
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


 

Name <namespacename> in the root namespace
<fullnamespacename> is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An assembly is marked as <CLSCompliant(True)> , but an element of the root namespace name begins with an underscore ( _ ).

A programming element can contain one or more underscores, but to be compliant with the Language Independence and Language-Independent
Components (CLS), it must not begin with an underscore. See Declared Element Names.

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40039

If you require CLS compliance, change the root namespace name so that none of its elements begins with an underscore.

If you require that the namespace name remain unchanged, then remove the CLSCompliantAttribute from the assembly or mark it as 
<CLSCompliant(False)> .

Namespace Statement
Namespaces in Visual Basic
/rootnamespace
Application Page, Project Designer (Visual Basic)
Declared Element Names
Visual Basic Naming Conventions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/name-namespacename-in-the-root-namespace-fullnamespacename-is-not-cls-compliant.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/declared-element-names


 

Namespace or type specified in the Imports '<qualifiedelementname>'
doesn't contain any public member or cannot be found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Namespace or type specified in the Imports '<qualifiedelementname>' doesn't contain any public member or cannot be found. Make sure the
namespace or the type is defined and contains at least one public member. Make sure the alias name doesn't contain other aliases.

An Imports  statement specifies a containing element that either cannot be found or does not define any Public  members.

A containing element can be a namespace, class, structure, module, interface, or enumeration. The containing element contains members, such as
variables, procedures, or other containing elements.

The purpose of importing is to allow your code to access namespace or type members without having to qualify them. Your project might also need to
add a reference to the namespace or type. For more information, see "Importing Containing Elements" in References to Declared Elements.

If the compiler cannot find the specified containing element, then it cannot resolve references that use it. If it finds the element but the element does not
expose any Public  members, then no reference can be successful. In either case it is meaningless to import the element.

Keep in mind that if you import a containing element and assign an import alias to it, then you cannot use that import alias to import another element.
The following code generates a compiler error.

Imports  winfrm  = System.Windows.Forms

' The following statement is  INVALID  because it reuses an import alias.

Imports behav =  winfrm  .Design.Behavior

Error ID: BC40056

1. Verify that the containing element is accessible from your project.

2. Verify that the specification of the containing element does not include any import alias from another import.

3. Verify that the containing element exposes at least one Public  member.

Imports Statement (.NET Namespace and Type)
Namespace Statement
Public
Namespaces in Visual Basic
References to Declared Elements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/namespace-or-type-specified-in-the-imports-qualifiedelementname.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


 

Namespace or type specified in the project-level Imports
'<qualifiedelementname>' doesn't contain any public member or cannot
be found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Namespace or type specified in the project-level Imports '<qualifiedelementname>' doesn't contain any public member or cannot be found. Make sure
the namespace or the type is defined and contains at least one public member. Make sure the alias name doesn't contain other aliases.

An import property of a project specifies a containing element that either cannot be found or does not define any Public  members.

A containing element can be a namespace, class, structure, module, interface, or enumeration. The containing element contains members, such as
variables, procedures, or other containing elements.

The purpose of importing is to allow your code to access namespace or type members without having to qualify them. Your project might also need to
add a reference to the namespace or type. For more information, see "Importing Containing Elements" in References to Declared Elements.

If the compiler cannot find the specified containing element, then it cannot resolve references that use it. If it finds the element but the element does not
expose any Public  members, then no reference can be successful. In either case it is meaningless to import the element.

You use the Project Designer to specify elements to import. Use the Imported namespaces section of the References page. You can get to the
Project Designer by double-clicking the My Project icon in Solution Explorer.

Error ID: BC40057

1. Open the Project Designer and switch to the Reference page.

2. In the Imported namespaces section, verify that the containing element is accessible from your project.

3. Verify that the containing element exposes at least one Public  member.

References Page, Project Designer (Visual Basic)
Managing Project and Solution Properties
Public
Namespaces in Visual Basic
References to Declared Elements

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/namespace-or-type-specified-in-the-project-level-imports-qualifiedelementname.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/visualstudio/ide/reference/references-page-project-designer-visual-basic
https://docs.microsoft.com/visualstudio/ide/managing-project-and-solution-properties
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements


 

Need property array index
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

This property value consists of an array rather than a single value. You did not specify the index for the property array you tried to access.

Check the component's documentation to find the range for the indexes appropriate for the array. Specify an appropriate index in your property
access statement.

Error Types
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/need-property-array-index.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Nested function does not have a signature that is compatible with
delegate '<delegatename>'
5/4/2018 • 2 minutes to read • Edit Online

Delegate Function Del(ByVal p As Integer, ByVal q As Integer) As Integer  

' Neither of these is valid.   
' Dim lambda1 As Del = Function(n As Integer) n + 1  
' Dim lambda2 As Del = Function(n) n + 1  

To correct this error

See Also

A lambda expression has been assigned to a delegate that has an incompatible signature. For example, in the following code, delegate Del  has two
integer parameters.

The error is raised if a lambda expression with one argument is declared as type Del :

Error ID: BC36532

Adjust either the delegate definition or the assigned lambda expression so that the signatures are compatible.

Relaxed Delegate Conversion
Lambda Expressions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/nested-function-does-not-have-a-signature-that-is-compatible-with-delegate.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/delegates/relaxed-delegate-conversion
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


 

No accessible 'Main' method with an appropriate signature was found in
'<name>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Command-line applications must have a Sub Main  defined. Main  must be declared as Public Shared  if it is defined in a class, or as Public  if defined
in a module.

Error ID: BC30737

Define a Public Sub Main  procedure for your project. Declare it as Shared  if and only if you define it inside a class.

Structure of a Visual Basic Program
Procedures

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/no-accessible-main-method-with-an-appropriate-signature-was-found-in-name.md


 

Non-CLS-compliant <membername> is not allowed in a CLS-compliant
interface
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A property, procedure, or event in an interface is marked as <CLSCompliant(True)>  when the interface itself is marked as <CLSCompliant(False)>  or is not
marked.

For an interface to be compliant with the Language Independence and Language-Independent Components (CLS), all its members must be compliant.

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40033

If you require CLS compliance and have control over the interface source code, mark the interface as <CLSCompliant(True)>  if all its members are
compliant.

If you require CLS compliance and do not have control over the interface source code, or if it does not qualify to be compliant, define this
member within a different interface.

If you require that this member remain within its current interface, remove the CLSCompliantAttribute from its definition or mark it as 
<CLSCompliant(False)> .

Interface Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/non-cls-compliant-membername-is-not-allowed-in-a-cls-compliant-interface.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute


 

Nullable type inference is not supported in this context
5/4/2018 • 2 minutes to read • Edit Online

Dim a? As Integer  
Dim b As Integer?  

' Not valid.  
' Dim c? = 10  
' Dim d? = a  

To correct this error

See Also

Value types and structures can be declared nullable.

However, you cannot use the nullable declaration in combination with type inference. The following examples cause this error.

Error ID: BC36629

Use an As  clause to declare the variable as nullable.

Nullable Value Types
Local Type Inference

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/nullable-type-inference-is-not-supported-in-this-context.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/nullable-value-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


 

Number of indices exceeds the number of dimensions of the indexed
array
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The number of indices used to access an array element must be exactly the same as the rank of the array, that is, the number of dimensions declared for
it.

Error ID: BC30106

Dim gameBoard(3, 3) As String  

' Incorrect code. The array has two dimensions.  
gameBoard(1, 1, 1) = "X"  
gameBoard(2, 1, 1) = "O"  

' Correct code.  
gameBoard(0, 0) = "X"  
gameBoard(1, 0) = "O"  

Remove subscripts from the array reference until the total number of subscripts equals the rank of the array. For example:

Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/number-of-indices-exceeds-the-number-of-dimensions-of-the-indexed-array.md


 

Object or class does not support the set of events
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You tried to use a WithEvents  variable with a component that cannot work as an event source for the specified set of events. For example, you wanted
to sink the events of an object, then create another object that Implements  the first object. Although you might think you could sink the events from the
implemented object, this is not always the case. Implements  only implements an interface for methods and properties. WithEvents  is not supported for
private UserControls , because the type info needed to raise the ObjectEvent  is not available at run time.

1. You cannot sink events for a component that does not source events.

WithEvents
Implements Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/object-or-class-does-not-support-the-set-of-events.md


 

Object required (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

References to properties and methods often require an explicit object qualifier. This is such a case.

1. Check that references to an object property or method have valid object qualifier. Specify an object qualifier if you didn't provide one.

2. Check the spelling of the object qualifier and make sure the object is visible in the part of the program in which you are referencing it.

3. If a path is supplied to a host application's File Open command, check that the arguments in it are correct.

4. Check the object's documentation and make sure the action is valid.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/object-required.md


 

Object variable or With block variable not set
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To correct this error

Option Strict On  

 When you run the project, a compiler error will appear in the **Error List** for any variable that was specified without a type.  

See Also

An invalid object variable is being referenced. This error can occur for several reasons:

TIPTIP

A variable was declared without specifying a type. If a variable is declared without specifying a type, it defaults to type Object .

For example, a variable declared with Dim x  would be of type Object;  a variable declared with Dim x As String  would be of type String .

The Option Strict  statement disallows implicit typing that results in an Object  type. If you omit the type, a compile-time error will occur. See Option Strict
Statement.

You are attempting to reference an object that has been set to Nothing

.

You are attempting to access an element of an array variable that wasn't properly declared.

For example, an array declared as products() As String  will trigger the error if you try to reference an element of the array 
products(3) = "Widget" . The array has no elements and is treated as an object.

You are attempting to access code within a With...End With  block before the block has been initialized. A With...End With  block must be
initialized by executing the With  statement entry point.

In earlier versions of Visual Basic or VBA this error was also triggered by assigning a value to a variable without using the Set  keyword ( x = "name"  instead of 
Set x = "name" ). The Set  keyword is no longer valid in Visual Basic .Net.

1. Set Option Strict  to On  by adding the following code to the beginning of the file:

2. If you don't want to enable Option Strict , search your code for any variables that were specified without a type ( Dim x  instead of 
Dim x As String ) and add the intended type to the declaration.

3. Make sure you aren't referring to an object variable that has been set to Nothing . Search your code for the keyword Nothing , and revise your
code so that the object isn't set to Nothing  until after you have referenced it.

4. Make sure that any array variables are dimensioned before you access them. You can either assign a dimension when you first create the array (
Dim x(5) As String  instead of Dim x() As String ), or use the ReDim  keyword to set the dimensions of the array before you first access it.

5. Make sure your With  block is initialized by executing the With  statement entry point.

Object Variable Declaration
ReDim Statement
With...End With Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/object-variable-or-with-block-variable-not-set.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/object-variable-declaration


 

Operator declaration must be one of: +,-,*,,/,^, &, Like, Mod, And, Or,
Xor, Not, <<, >>...
5/4/2018 • 2 minutes to read • Edit Online

TYPE OPERATORS

Unary + , - , IsFalse , IsTrue , Not

Binary + , - , * , / , \ , & , ^ , >> , << , = , <> , > , >= , < , <= , And , Like ,
Mod , Or , Xor

Conversion (unary) CType

To correct this error

See Also

You can declare only an operator that is eligible for overloading. The following table lists the operators you can declare.

Note that the =  operator in the binary list is the comparison operator, not the assignment operator.

Error ID: BC33000

1. Select an operator from the set of overloadable operators.

2. If you need the functionality of overloading an operator that you cannot overload directly, create a Function  procedure that takes the
appropriate parameters and returns the appropriate value.

Operator Statement
Operator Procedures
How to: Define an Operator
How to: Define a Conversion Operator
Function Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/operator-declaration-must-be-one-of.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/operator-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-an-operator
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-define-a-conversion-operator


 

'Optional' expected
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An optional argument in a procedure declaration is followed by a required argument. Every argument following an optional argument must also be
optional.

Error ID: BC30202

1. If the argument is intended to be required, move it to precede the first optional argument in the argument list.

2. If the argument is intended to be optional, use the Optional  keyword.

Optional Parameters

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/optional-expected.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/optional-parameters


 

Optional parameters must specify a default value
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Optional parameters must provide default values that can be used if no parameter is supplied by a calling procedure.

Error ID: BC30812

Sub Proc1(ByVal X As Integer,   
      Optional ByVal Y As String = "Default Value")  
   MsgBox("Default argument is: " & Y)  
End Sub  

Specify default values for optional parameters; for example:

Optional

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/optional-parameters-must-specify-a-default-value.md


 

Ordinal is not valid
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Your call to a dynamic-link library (DLL) indicated to use a number instead of a procedure name, using the #num  syntax. This error has the following
possible causes:

An attempt to convert the #num  expression to an ordinal failed.

The #num  specified does not specify any function in the DLL.

A type library has an invalid declaration resulting in internal use of an invalid ordinal number.

1. Make sure the expression represents a valid number, or call the procedure by name.

2. Make sure #num  identifies a valid function in the DLL.

3. Isolate the procedure call causing the problem by commenting out the code. Write a Declare  statement for the procedure, and report the
problem to the type library vendor.

Declare Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/ordinal-is-not-valid.md


 

Out of memory (Visual Basic Compiler Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

More memory was required than is available.

Error ID: BC2004

Close unnecessary applications, documents and source files.

Eliminate unnecessary controls and forms so fewer are loaded at one time

Reduce the number of Public  variables.

Check available disk space.

Increase the available RAM by installing additional memory or reallocating memory.

Make sure that memory is freed when it is no longer needed.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/out-of-memory-visual-basic-compiler-error.md


 

Out of stack space (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The stack is a working area of memory that grows and shrinks dynamically with the demands of your executing program. Its limits have been exceeded.

1. Check that procedures are not nested too deeply.

2. Make sure recursive procedures terminate properly.

3. If local variables require more local variable space than is available, try declaring some variables at the module level. You can also declare all
variables in the procedure static by preceding the Property , Sub , or Function  keyword with Static . Or you can use the Static  statement to
declare individual static variables within procedures.

4. Redefine some of your fixed-length strings as variable-length strings, as fixed-length strings use more stack space than variable-length strings.
You can also define the string at module level where it requires no stack space.

5. Check the number of nested DoEvents  function calls, by using the Calls  dialog box to view which procedures are active on the stack.

6. Make sure you did not cause an "event cascade" by triggering an event that calls an event procedure already on the stack. An event cascade is
similar to an unterminated recursive procedure call, but it is less obvious, since the call is made by Visual Basic rather than an explicit call in the
code. Use the Calls  dialog box to view which procedures are active on the stack.

Memory Windows

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/out-of-stack-space.md
https://docs.microsoft.com/visualstudio/debugger/memory-windows


 

Out of string space (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

With Visual Basic, you can use very large strings. However, the requirements of other programs and the way you work with your strings can still cause
this error.

1. Make sure that an expression requiring temporary string creation during evaluation is not causing the error.

2. Remove any unnecessary applications from memory to create more space.

Error Types
String Manipulation Summary

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/out-of-string-space.md


 

Overflow (Visual Basic Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A literal represents a value outside the limits of the data type to which it is being assigned.

Error ID: BC30036

Consult the value range for the target data type and rewrite the literal to conform to that range.

Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/overflow-visual-basic-error.md


 

Overflow (Visual Basic Run-Time Error)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An overflow results when you attempt an assignment that exceeds the limits of the assignment's target.

1. Make sure that results of assignments, calculations, and data type conversions are not too large to be represented within the range of variables
allowed for that type of value, and assign the value to a variable of a type that can hold a larger range of values, if necessary.

2. Make sure assignments to properties fit the range of the property to which they are made.

3. Make sure that numbers used in calculations that are coerced into integers do not have results larger than integers.

Int32.MaxValue
Double.MaxValue
Data Types
Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/overflow-visual-basic-run-time-error.md
https://docs.microsoft.com/dotnet/api/system.int32.maxvalue
https://docs.microsoft.com/dotnet/api/system.double.maxvalue


 

Path not found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

During a file-access or disk-access operation, the operating system was unable to find the specified path. The path to a file includes the drive
specification plus the directories and subdirectories that must be traversed to locate the file. A path can be relative or absolute.

Verify and respecify the path.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/path-not-found.md


 

Path/File access error
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

During a file-access or disk-access operation, the operating system could not make a connection between the path and the file name.

1. Make sure the file specification is correctly formatted. A file name can contain a fully qualified (absolute) or relative path. A fully qualified path
starts with the drive name (if the path is on another drive) and lists the explicit path from the root to the file. Any path that is not fully qualified is
relative to the current drive and directory.

2. Make sure that you did not attempt to save a file that would replace an existing read-only file. If this is the case, change the read-only attribute of
the target file, or save the file with a different file name.

3. Make sure you did not attempt to open a read-only file in sequential Output  or Append  mode. If this is the case, open the file in Input  mode or
change the read-only attribute of the file.

4. Make sure you did not attempt to change a Visual Basic project within a database or document.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/path-file-access-error.md


 

Permission denied (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An attempt was made to write to a write-protected disk or to access a locked file.

1. To open a write-protected file, change the write-protection attribute of the file.

2. Make sure that another process has not locked the file, and wait to open the file until the other process releases it.

3. To access the registry, check that your user permissions include this type of registry access.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/permission-denied.md


 

Procedure call or argument is not valid (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Some part of the call cannot be completed.

Check the permitted ranges for arguments to make sure no arrangement exceeds the permitted values.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/procedure-call-or-argument-is-not-valid.md


 

Property '<propertyname>' doesn't return a value on all code paths
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Property '<propertyname>' doesn't return a value on all code paths. A null reference exception could occur at run time when the result is used.

A property Get  procedure has at least one possible path through its code that does not return a value.

You can return a value from a property Get  procedure in any of the following ways:

Assign the value to the property name and then perform an Exit Property  statement.

Assign the value to the property name and then perform the End Get  statement.

Include the value in a Return Statement.

If control passes to Exit Property  or End Get  and you have not assigned any value to the property name, the Get  procedure returns the default value
of the property's data type. For more information, see "Behavior" in Function Statement.

By default, this message is a warning. For more information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42107

Check your control flow logic and make sure you assign a value before every statement that causes a return.

It is easier to guarantee that every return from the procedure returns a value if you always use the Return  statement. If you do this, the last
statement before End Get  should be a Return  statement.

Property Procedures
Property Statement
Get Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/property-propertyname-doesn-t-return-a-value-on-all-code-paths.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures


 

Property array index is not valid
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The supplied value is not valid for a property array index.

Check the component's documentation to make sure your index is within the valid range for the specified property.

Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/property-array-index-is-not-valid.md


 

Property let procedure not defined and property get procedure did not
return an object
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Certain properties, methods, and operations can only apply to Collection  objects. You specified an operation or property that is exclusive to
collections, but the object is not a collection.

1. Check the spelling of the object or property name, or verify that the object is a Collection  object.

2. Look at the Add  method used to add the object to the collection to be sure the syntax is correct and that any identifiers were spelled correctly.

Collection

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/property-let-procedure-not-defined-and-property-get-procedure-did-not-return.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.collection


 

Property not found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

This object does not support the specified property.

1. Check the spelling of the property's name.

2. Check the object's documentation to make sure you are not trying to access something like a "text" property when the object actually supports a
"caption" or similarly named property.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/property-not-found.md


 

Property or method not found
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The referenced object method or object property is not defined.

You may have misspelled the name of the object. To see what properties and methods are defined for an object, display the Object Browser. Select
the appropriate object library to view a list of available properties and methods.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/property-or-method-not-found.md


 

Range variable <variable> hides a variable in an enclosing block, a
previously defined range variable, or an implicitly declared variable in a
query expression
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A range variable name specified in a Select , From , Aggregate , or Let  clause duplicates the name of a range variable already specified previously in
the query, or the name of a variable that is implicitly declared by the query, such as a field name or the name of an aggregate function.

Error ID: BC36633

Ensure that all range variables in a particular query scope have unique names. You can enclose a query in parentheses to ensure that nested queries
have a unique scope.

Introduction to L INQ in Visual Basic
From Clause
Let Clause
Aggregate Clause
Select Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/range-variable-variable-hides-a-variable-in-an-enclosing-block.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


 

Range variable name can be inferred only from a simple or qualified
name with no arguments
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

Dim query = From var1 In collection1   
            Select VariableAlias= SampleFunction(var1), var1  

See Also

A programming element that takes one or more arguments is included in a L INQ query. The compiler is unable to infer a range variable from that
programming element.

Error ID: BC36599

1. Supply an explicit variable name for the programming element, as shown in the following code:

Introduction to L INQ in Visual Basic
Select Clause

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/range-variable-name-can-be-inferred.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/linq/introduction-to-linq


 

Reference required to assembly '<assemblyidentity>' containing type
'<typename>', but a suitable reference could not be found due to
ambiguity between projects '<projectname1>' and '<projectname2>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An expression uses a type, such as a class, structure, interface, enumeration, or delegate, that is defined outside your project. However, you have project
references to more than one assembly defining that type.

The cited projects produce assemblies with the same name. Therefore, the compiler cannot determine which assembly to use for the type you are
accessing.

To access a type defined in another assembly, the Visual Basic compiler must have a reference to that assembly. This must be a single, unambiguous
reference that does not cause circular references among projects.

Error ID: BC30969

1. Determine which project produces the best assembly for your project to reference. For this decision, you might use criteria such as ease of file
access and frequency of updates.

2. In your project properties, add a reference to the file that contains the assembly that defines the type you are using.

Managing references in a project
References to Declared Elements

Managing Project and Solution Properties
Troubleshooting Broken References

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/reference-required-to-assembly-containing-type-but-suitable-reference-not-found.md
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/visualstudio/ide/managing-project-and-solution-properties
https://docs.microsoft.com/visualstudio/ide/troubleshooting-broken-references


 

Reference required to assembly '<assemblyname>' containing the base
class '<classname>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Reference required to assembly '<assemblyname>' containing the base class '<classname>'. Add one to your project.

The class is defined in a dynamic-link library (DLL) or assembly that is not directly referenced in your project. The Visual Basic compiler requires a
reference to avoid ambiguity in case the class is defined in more than one DLL or assembly.

Error ID: BC30007

Include the name of the unreferenced DLL or assembly in your project references.

Managing references in a project
Troubleshooting Broken References

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/reference-required-to-assembly-assemblyname-containing-the-base-class-classname.md
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project
https://docs.microsoft.com/visualstudio/ide/troubleshooting-broken-references


 

Resume without error
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A Resume  statement appeared outside error-handling code, or the code jumped into an error handler even though there was no error.

1. Move the Resume  statement into an error handler, or delete it.

2. Jumps to labels cannot occur across procedures, so search the procedure for the label that identifies the error handler. If you find a duplicate label
specified as the target of a GoTo  statement that isn't an On Error GoTo  statement, change the line label to agree with its intended target.

Resume Statement
On Error Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/resume-without-error.md


 

Return type of function '<procedurename>' is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

A Function  procedure is marked as <CLSCompliant(True)>  but returns a type that is marked as <CLSCompliant(False)> , is not marked, or does not
qualify because it is a noncompliant type.

For a procedure to be compliant with the Language Independence and Language-Independent Components (CLS), it must use only CLS-compliant
types. This applies to the types of the parameters, the return type, and the types of all its local variables.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40027

If the Function  procedure must return this particular type, remove the CLSCompliantAttribute. The procedure cannot be CLS-compliant.

If the Function  procedure must be CLS-compliant, change the return type to the closest CLS-compliant type. For example, in place of UInteger

you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the extended range, you can replace 
UInteger  with Long .

If you are interfacing with Automation or COM objects, keep in mind that some types have different data widths than in the .NET Framework.
For example, int  is often 16 bits in other environments. If you are returning a 16-bit integer to such a component, declare it as Short  instead of
Integer  in your managed Visual Basic code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/return-type-of-function-procedurename-is-not-cls-compliant.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute


 

'Set' accessor of property '<propertyname>' is not accessible
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A statement attempts to store the value of a property when it does not have access to the property's Set  procedure.

If the Set Statement is marked with a more restrictive access level than its Property Statement, an attempt to set the property value could fail in the
following cases:

The Set  statement is marked Private and the calling code is outside the class or structure in which the property is defined.

The Set  statement is marked Protected and the calling code is not in the class or structure in which the property is defined, nor in a derived
class.

The Set  statement is marked Friend and the calling code is not in the same assembly in which the property is defined.

Error ID: BC31102

If you have control of the source code defining the property, consider declaring the Set  procedure with the same access level as the property
itself.

If you do not have control of the source code defining the property, or you must restrict the Set  procedure access level more than the property
itself, try to move the statement that sets the property value to a region of code that has better access to the property.

Property Procedures
How to: Declare a Property with Mixed Access Levels

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/set-accessor-of-property-propertyname-is-not-accessible.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/property-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/how-to-declare-a-property-with-mixed-access-levels


 

Some subkeys cannot be deleted
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An attempt has been made to delete a registry key, but the operation failed because some subkeys cannot be deleted. Usually this is due to a lack of
permissions.

Make sure you have sufficient permissions to delete the specified subkeys.

Microsoft.VisualBasic.MyServices.RegistryProxy
DeleteSubKey
DeleteSubKey
RegistryPermission

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/some-subkeys-cannot-be-deleted.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.myservices.registryproxy
https://docs.microsoft.com/dotnet/api/microsoft.win32.registrykey.deletesubkey
https://docs.microsoft.com/dotnet/api/microsoft.win32.registrykey.deletesubkey
https://docs.microsoft.com/dotnet/api/system.security.permissions.registrypermission


 

Statement cannot end a block outside of a line 'If' statement
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A single-line If  statement contains several statements separated by colons (:), one of which is an End  statement for a control block outside the single-
line If . Single-line If  statements do not use the End If  statement.

Error ID: BC32005

Move the single-line If  statement outside the control block that contains the End If  statement.

If...Then...Else Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/statement-cannot-end-a-block-outside-of-a-line-if-statement.md


 

Statement is not valid in a namespace
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The statement cannot appear at the level of a namespace. The only declarations allowed at namespace level are module, interface, class, delegate,
enumeration, and structure declarations.

Error ID: BC30001

Move the statement to a location within a module, class, interface, structure, enumeration, or delegate definition.

Scope in Visual Basic
Namespaces in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/statement-is-not-valid-in-a-namespace.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/scope


 

Statement is not valid inside a method/multiline lambda
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The statement is not valid within a Sub , Function , property Get , or property Set  procedure. Some statements can be placed at the module or class
level. Others, such as Option Strict , must be at namespace level and precede all other declarations.

Error ID: BC30024

Remove the statement from the procedure.

Sub Statement
Function Statement
Get Statement
Set Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/statement-is-not-valid-inside-a-method-multiline-lambda.md


 

String constants must end with a double quote
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

String constants must begin and end with quotation marks.

ErrorID: BC30648

Make sure the string literal ends with a quotation mark ("). If you paste values from other text editors, make sure the pasted character is a valid
quotation mark and not one of the characters that resemble it, such as "smart" or "curly" quotation marks (" or ") or two single quotation marks ('').

Strings

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/string-constants-must-end-with-a-double-quote.md


 

Structure '<structurename>' must contain at least one instance member
variable or at least one instance event declaration not marked 'Custom'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A structure definition does not include any nonshared variables or nonshared noncustom events.

Every structure must have either a variable or an event that applies to each specific instance (nonshared) instead of to all instances collectively (Shared).
Nonshared constants, properties, and procedures do not satisfy this requirement. In addition, if there are no nonshared variables and only one
nonshared event, that event cannot be a Custom  event.

Error ID: BC30941

Define at least one variable or event that is not Shared . If you define only one event, it must be noncustom as well as nonshared.

Structures
How to: Declare a Structure
Structure Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/structure-structurename-must-contain.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/structures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/how-to-declare-a-structure


 

'Sub Main' was not found in '<name>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Sub Main  is missing, or the wrong location has been specified for it.

Error ID: BC30420

1. Supply the missing Sub Main  statement, or if it exists, move it to the appropriate location in the code. For more information on Sub Main , see
Main Procedure in Visual Basic.

2. Specify the location of the project's startup object in the Startup form box of the Project Designer.

Sub Statement
Main Procedure in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/sub-main-was-not-found-in-name.md


 

Sub or Function not defined (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A Sub  or Function  must be defined in order to be called. Possible causes of this error include:

Misspelling the procedure name.

Trying to call a procedure from another project without explicitly adding a reference to that project in the References dialog box.

Specifying a procedure that is not visible to the calling procedure.

Declaring a Windows dynamic-link library (DLL) routine or Macintosh code-resource routine that is not in the specified library or code resource.

1. Make sure that the procedure name is spelled correctly.

2. Find the name of the project containing the procedure you want to call in the References dialog box. If it does not appear, click the Browse
button to search for it. Select the check box to the left of the project name, and then click OK.

3. Check the name of the routine.

Error Types
Managing references in a project
Sub Statement
Function Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/sub-or-function-not-defined.md
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project


 

Subscript out of range (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An array subscript is not valid because it falls outside the allowable range. The lowest subscript value for a dimension is always 0, and the highest
subscript value is returned by the GetUpperBound  method for that dimension.

Change the subscript so it falls within the valid range.

Array.GetUpperBound
Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/subscript-out-of-range.md
https://docs.microsoft.com/dotnet/api/system.array.getupperbound


 

TextFieldParser is unable to complete the read operation because
maximum buffer size has been exceeded
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The operation cannot be completed because the maximum buffer size (10,000,000 bytes) has been exceeded.

Make sure there are no malformed fields in the file.

OpenTextFieldParser
TextFieldParser
How to: Read From Text Files with Multiple Formats
Parsing Text Files with the TextFieldParser Object

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/textfieldparser-is-unable-to-complete-read-operation.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.filesystem.opentextfieldparser
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.fileio.textfieldparser
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/how-to-read-from-text-files-with-multiple-formats
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/parsing-text-files-with-the-textfieldparser-object


 

The type for variable '<variablename>' will not be inferred because it is
bound to a field in an enclosing scope
5/4/2018 • 2 minutes to read • Edit Online

Class Customer  

    ' The class has a field named Index.  
    Private Index As Integer  

    Sub Main()  

    ' The following line will raise this warning.  
        For Index = 1 To 10  
            ' ...  
        Next  

    End Sub  
End Class  

To address this warningTo address this warning

Example

Class Customer  

    ' The class has a field named Index.  
    Private Index As Integer  

    Sub Main()  

        For I = 1 To 10  
            ' ...  
        Next  

    End Sub  
End Class  

See Also

The type for variable '<variablename>' will not be inferred because it is bound to a field in an enclosing scope. Either change the name of
'<variablename>', or use the fully qualified name (for example, 'Me.variablename' or 'MyBase.variablename').

A loop control variable in your code has the same name as a field of the class or other enclosing scope. Because the control variable is used without an 
As  clause, it is bound to the field in the enclosing scope, and the compiler does not create a new variable for it or infer its type.

In the following example, Index , the control variable in the For  statement, is bound to the Index  field in the Customer  class. The compiler does not
create a new variable for the control variable Index  or infer its type.

By default, this message is a warning. For information about how to hide warnings or how to treat warnings as errors, see Configuring Warnings in
Visual Basic.

Error ID: BC42110

For I = 1 To 10  

For Me.Index = 1 To 10  

For Index As Integer = 1 To 10  

Make the loop control variable local by changing its name to an identifier that is not also the name of a field of the class.

Clarify that the loop control variable binds to the class field by prefixing Me.  to the variable name.

Instead of relying on local type inference, use an As  clause to specify a type for the loop control variable.

The following code shows the earlier example with the first correction in place.

Option Infer Statement
For Each...Next Statement

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/the-type-for-variable-variablename-will-not-be-inferred.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


For...Next Statement
How to: Refer to the Current Instance of an Object
Local Type Inference
Me, My, MyBase, and MyClass

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/how-to-refer-to-the-current-instance-of-an-object
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference


 

This array is fixed or temporarily locked (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

This error has the following possible causes:

Using ReDim  to change the number of elements of a fixed-size array.

Redimensioning a module-level dynamic array, in which one element has been passed as an argument to a procedure. If an element is passed,
the array is locked to prevent deallocating memory for the reference parameter within the procedure.

Attempting to assign a value to a Variant  variable containing an array, but the Variant  is currently locked.

1. Make the original array dynamic rather than fixed by declaring it with ReDim  (if the array is declared within a procedure), or by declaring it
without specifying the number of elements (if the array is declared at the module level.

2. Determine whether you really need to pass the element, since it is visible within all procedures in the module.

3. Determine what is locking the Variant  and remedy it.

Arrays

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/this-array-is-fixed-or-temporarily-locked.md


 

This key is already associated with an element of this collection
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The specified a key for a collection member already identifies another member of the collection. A key is a string specified in the Add  method that
uniquely identifies a specific member of a collection.

Use a different key for this member.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/this-key-is-already-associated-with-an-element-of-this-collection.md


 

Too many files
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Either more files have been created in the root directory than the operating system permits, or more files have been opened than the number specified
in the files= setting in your CONFIG.SYS file.

1. If your program is opening, closing, or saving files in the root directory, change your program so that it uses a subdirectory.

2. Increase the number of files specified in your files= setting in your CONFIG.SYS file, and restart your computer.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/too-many-files.md


 

Type '<typename>' has no constructors
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A type does not support a call to Sub New() . One possible cause is a corrupted compiler or binary file.

Error ID: BC30251

1. If the type is in a different project or in a referenced file, reinstall the project or file.

2. If the type is in the same project, recompile the assembly containing the type.

3. If the error recurs, reinstall the Visual Basic compiler.

4. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

Objects and Classes
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-typename-has-no-constructors.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Type <typename> is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

A variable, property, or function return is declared with a data type that is not CLS-compliant.

For an application to be compliant with the Language Independence and Language-Independent Components (CLS), it must use only CLS-compliant
types.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

Error ID: BC40041

If your application needs to be CLS-compliant, change the data type of this element to the closest CLS-compliant type. For example, in place of 
UInteger  you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the extended range, you can

replace UInteger  with Long .

If your application does not need to be CLS-compliant, you do not need to change anything. You should be aware of its noncompliance, however.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-typename-is-not-cls-compliant.md


 

Type '<typename>' is not defined
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The statement has made reference to a type that has not been defined. You can define a type in a declaration statement such as Enum , Structure , 
Class , or Interface .

Error ID: BC30002

Ensure that the type definition and its reference both use the same spelling.

Ensure that the type definition is accessible to the reference. For example, if the type is in another module and has been declared Private , move
the type definition to the referencing module or declare it Public .

Ensure that the namespace of the type is not redefined within your project. If it is, use the Global  keyword to fully qualify the type name. For
example, if a project defines a namespace named System , the System.Object type cannot be accessed unless it is fully qualified with the Global

keyword: Global.System.Object .

If the type is defined, but the object library or type library in which it is defined is not registered in Visual Basic, click Add Reference on the
Project menu, and then select the appropriate object library or type library.

Ensure that the type is in an assembly that is part of the targeted .NET Framework profile. For more information, see Troubleshooting .NET
Framework Targeting Errors.

Namespaces in Visual Basic
Enum Statement
Structure Statement
Class Statement
Interface Statement
Managing references in a project

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-typename-is-not-defined.md
https://docs.microsoft.com/dotnet/api/system.object
https://docs.microsoft.com/visualstudio/msbuild/troubleshooting-dotnet-framework-targeting-errors
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project


 

Type arguments could not be inferred from the delegate
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An assignment statement uses AddressOf  to assign the address of a generic procedure to a delegate, but it does not supply any type arguments to the
generic procedure.

Normally, when you invoke a generic type, you supply a type argument for each type parameter that the generic type defines. If you do not supply any
type arguments, the compiler attempts to infer the types to be passed to the type parameters. If the context does not provide enough information for
the compiler to infer the types, an error is generated.

Error ID: BC36564

Specify the type arguments for the generic procedure in the AddressOf  expression.

Generic Types in Visual Basic
AddressOf Operator
Generic Procedures in Visual Basic
Type List
Extension Methods

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-arguments-could-not-be-inferred-from-the-delegate.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-procedures
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/extension-methods


 

Type mismatch (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You attempted to convert a value to another type in a way that is not valid.

1. Check the assignment to make sure it is valid.

2. Make sure you did not pass an object to a procedure that expects a single property or value.

3. Make sure you did not use a module or project name where an expression was expected.

Error Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-mismatch.md


 

Type of '<variablename>' cannot be inferred because the loop bounds
and the step variable do not widen to the same type
5/4/2018 • 2 minutes to read • Edit Online

Dim stepVar = "1"c  
Dim m = 0  
Dim n = 20  

' Not valid.  
' For i = 1 To 10 Step stepVar  
    ' Loop processing  
' Next  

To correct this error

See Also

You have written a For...Next  loop in which the compiler cannot infer a data type for the loop control variable because the following conditions are
true:

The data type of the loop control variable is not specified with an As  clause.

The loop bounds and step variable contain at least two data types.

No standard conversions exist between the data types.

Therefore, the compiler cannot infer the data type of a loop's control variable.

In the following example, the step variable is a character and the loop bounds are both integers. Because there is no standard conversion between
characters and integers, this error is reported.

Error ID: BC30982

Dim stepVar = 1  

Dim stepVar As Integer = 1  

For i = 1 To 10 Step Val(stepVar)  
    ' Loop processing  
Next  

Change the types of the loop bounds and step variable as necessary so that at least one of them is a type that the others widen to. In the
preceding example, change the type of stepVar  to Integer .

—or—

Use explicit conversion functions to convert the loop bounds and step variable to the appropriate types. In the preceding example, apply the Val

function to stepVar .

Val
For...Next Statement
Implicit and Explicit Conversions
Local Type Inference
Option Infer Statement
Type Conversion Functions
Widening and Narrowing Conversions

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-of-variablename-cannot-be-inferred.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.conversion.val
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/implicit-and-explicit-conversions
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/widening-and-narrowing-conversions


 

Type of member '<membername>' is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The data type specified for this member is not part of the Language Independence and Language-Independent Components (CLS). This is not an error
within your component, because the .NET Framework and Visual Basic support this data type. However, another component written in strictly CLS-
compliant code might not support this data type. Such a component might not be able to interact successfully with your component.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

By default, this message is a warning. For more information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC40025

If your component interfaces only with other .NET Framework components, or does not interface with any other components, you do not need to
change anything.

If you are interfacing with a component not written for the .NET Framework, you might be able to determine, either through reflection or from
documentation, whether it supports this data type. If it does, you do not need to change anything.

If you are interfacing with a component that does not support this data type, you must replace it with the closest CLS-compliant type. For
example, in place of UInteger  you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the
extended range, you can replace UInteger  with Long .

If you are interfacing with Automation or COM objects, keep in mind that some types have different data widths than in the .NET Framework.
For example, uint  is often 16 bits in other environments. If you are passing a 16-bit argument to such a component, declare it as UShort

instead of UInteger  in your managed Visual Basic code.

Reflection

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-of-member-membername-is-not-cls-compliant.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection


 

Type of optional value for optional parameter <parametername> is not
CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

A procedure is marked as <CLSCompliant(True)>  but declares an Optional parameter with default value of a noncompliant type.

For a procedure to be compliant with the Language Independence and Language-Independent Components (CLS), it must use only CLS-compliant
types. This applies to the types of the parameters, the return type, and the types of all its local variables. It also applies to the default values of optional
parameters.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

When you apply the CLSCompliantAttribute attribute to a programming element, you set the attribute's isCompliant  parameter to either True  or 
False  to indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40042

If the optional parameter must have a default value of this particular type, remove CLSCompliantAttribute. The procedure cannot be CLS-
compliant.

If the procedure must be CLS-compliant, change the type of this default value to the closest CLS-compliant type. For example, in place of 
UInteger  you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the extended range, you can

replace UInteger  with Long .

If you are interfacing with Automation or COM objects, keep in mind that some types have different data widths than in the .NET Framework.
For example, int  is often 16 bits in other environments. If you are accepting a 16-bit integer from such a component, declare it as Short

instead of Integer  in your managed Visual Basic code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-of-optional-value-for-optional-parameter-is-not-cls-compliant.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute


 

Type of parameter '<parametername>' is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

A procedure is marked as <CLSCompliant(True)>  but declares a parameter with a type that is marked as <CLSCompliant(False)> , is not marked, or does
not qualify because it is a noncompliant type.

For a procedure to be compliant with the Language Independence and Language-Independent Components (CLS), it must use only CLS-compliant
types. This applies to the types of the parameters, the return type, and the types of all its local variables.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

When you apply the CLSCompliantAttribute to a programming element, you set the attribute's isCompliant  parameter to either True  or False  to
indicate compliance or noncompliance. There is no default for this parameter, and you must supply a value.

If you do not apply the CLSCompliantAttribute to an element, it is considered to be noncompliant.

By default, this message is a warning. For information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual Basic.

Error ID: BC40028

If the procedure must take a parameter of this particular type, remove the CLSCompliantAttribute. The procedure cannot be CLS-compliant.

If the procedure must be CLS-compliant, change the type of this parameter to the closest CLS-compliant type. For example, in place of UInteger

you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the extended range, you can replace 
UInteger  with Long .

If you are interfacing with Automation or COM objects, keep in mind that some types have different data widths than in the .NET Framework.
For example, int  is often 16 bits in other environments. If you are accepting a 16-bit integer from such a component, declare it as Short

instead of Integer  in your managed Visual Basic code.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-of-parameter-parametername-is-not-cls-compliant.md
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/dotnet/api/system.clscompliantattribute


 

Type parameters cannot be used as qualifiers
5/4/2018 • 2 minutes to read • Edit Online

Public Function checkText(Of c As System.Windows.Forms.Control)(  
    ByVal badText As String) As Boolean  

    Dim saveText As c.Text  
    ' Insert code to look for badText within saveText.  
End Function  

To correct this error

See Also

A programming element is qualified with a qualification string that includes a type parameter.

A type parameter represents a requirement for a type that is to be supplied when the generic type is constructed. It does not represent a specific defined
type. A qualification string must include only elements that are defined at compile time.

The following statements can generate this error.

Error ID: BC32098

1. Remove the type parameter from the qualification string, or replace it with a defined type.

2. If you need to use a constructed type to locate the programming element being qualified, you must use additional program logic.

References to Declared Elements
Generic Types in Visual Basic
Type List

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/type-parameters-cannot-be-used-as-qualifiers.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/declared-elements/references-to-declared-elements
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/generic-types


 

Unable to create strong-named assembly from key file '<filename>':
<error>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A strong-named assembly could not be created from the specified key file.

Error ID: BC31026

1. Verify that the correct key file has been specified, and that it is not locked by another application.

[Sn.exe (Strong Name Tool)]Sn.exe (Strong Name Tool))

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-create-strong-named-assembly-from-key-file-filename-error.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool


 

Unable to embed resource file '<filename>': <error message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest. The linker has reported an
error embedding a native COM+ resource file directly into the assembly.

Error ID: BC30143

1. Examine the quoted error message and consult the topic Al.exe. for further explanation and advice.

2. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

Al.exe.
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-embed-resource-file-filename-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to emit assembly: <error message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

To sign the assembly manuallyTo sign the assembly manually

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest, with the linker reporting an
error in the emission stage of creating the assembly.

Error ID: BC30145

1. Examine the quoted error message and consult the topic Al.exe. for further explanation and advice.

2. Try signing the assembly manually, using either the Al.exe or the Sn.exe (Strong Name Tool).

3. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

tlbimp <path to COM reference file> /out:<output assembly name> /keyfile:<path to .snk file>  

tlbimp c:\windows\system32\msi.dll /out:Interop.WindowsInstaller.dll /keyfile:"c:\documents and settings\mykey.snk"  

1. Use the [Sn.exe (Strong Name Tool)]Sn.exe (Strong Name Tool)) to create a public/private key pair file.

This file has a .snk extension.

2. Delete the COM reference that is generating the error from your project.

3. From the Windows Start menu, point to Programs, point to Microsoft Visual Studio 2008, point to Visual Studio Tools, and then click
Visual Studio 2008 Command Prompt.

4. Move to the directory where you want to place your assembly wrapper.

5. Type the following code.

An example of the code you might enter would be the following.

Use double quotation marks (") if a path or file contains spaces.

6. In Visual Studio, add a .NET Assembly reference to the file you just created.

Al.exe.
[Sn.exe (Strong Name Tool)]Sn.exe (Strong Name Tool))
How to: Create a Public-Private Key Pair
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-emit-assembly-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-create-a-public-private-key-pair
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to find required file '<filename>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A file that is required by Visual Studio is missing or damaged.

Error ID: BC30655

Reinstall Visual Studio.

Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-find-required-file-filename.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to get serial port names because of an internal system error
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An internal error occurred when the My.Computer.Ports.SerialPortNames  property was called.

1. See Debugger Basics for more troubleshooting information.

2. Note the circumstances under which the error occurred, and call Microsoft Product Support Services.

SerialPortNames
Debugger Basics
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-get-serial-port-names-because-of-an-internal-system-error.md
https://docs.microsoft.com/visualstudio/debugger/debugger-basics
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.devices.ports.serialportnames#Microsoft_VisualBasic_Devices_Ports_SerialPortNames
https://docs.microsoft.com/visualstudio/debugger/debugger-basics
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to link to resource file '<filename>': <error message>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The Visual Basic compiler calls the Assembly Linker (Al.exe, also known as Alink) to generate an assembly with a manifest. The linker has reported an
error linking to a native COM+ resource file from the assembly.

Error ID: BC30144

1. Examine the quoted error message and consult the topic Al.exe. for further explanation and advice.

2. If the error persists, gather information about the circumstances and notify Microsoft Product Support Services.

Al.exe.
Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-link-to-resource-file-filename-error-message.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to load information for class '<classname>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A reference was made to a class that is not available.

Error ID: BC30712

1. Verify that the class is defined and that you spelled the name correctly.

2. Try accessing one of the members declared in the module. In some cases, the debugging environment cannot locate members because the
modules where they are declared have not been loaded yet.

Debugging in Visual Studio

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-load-information-for-class-classname.md
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio


 

Unable to write output to memory
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

There was a problem writing output to memory.

Error ID: BC31020

1. Compile the program again to see if the error reoccurs.

2. If the error continues, save your work and restart Visual Studio.

3. If the error recurs, reinstall Visual Basic.

4. If the error persists after reinstallation, notify Microsoft Product Support Services.

Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-write-output-to-memory.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to write temporary file because temporary path is not available
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Visual Basic could not determine the path where temporary files are stored.

Error ID: BC30698

1. Restart Visual Studio.

2. If the problem persists, reinstall Visual Studio.

Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-write-temporary-file-because-temporary-path-is-not-available.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Unable to write to output file '<filename>': <error>
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

To check file attributes in File ExplorerTo check file attributes in File Explorer

To change the attributes of a file or folderTo change the attributes of a file or folder

See Also

There was a problem creating the file.

An output file cannot be opened for writing. The file (or the folder containing the file) may be opened for exclusive use by another process, or it may
have its read-only attribute set.

Common situations where a file is opened exclusively are:

The application is already running and using its files. To solve this problem, make sure that the application is not running.

Another application has opened the file. To solve this problem, make sure that no other application is accessing the files. It is not always obvious
which application is accessing your files; in that case, restarting the computer might be the easiest way to terminate the application.

If even one of the project output files is marked as read-only, this exception will be thrown.

Error ID: BC31019

1. Compile the program again to see if the error recurs.

2. If the error continues, save your work and restart Visual Studio.

3. If the error continues, restart the computer.

4. If the error recurs, reinstall Visual Basic.

5. If the error persists after reinstallation, notify Microsoft Product Support Services.

1. Open the folder you are interested in.

2. Click the Views icon and choose Details.

3. Right-click the column header, and choose Attributes from the drop-down list.

1. In File Explorer, right-click the file or folder and choose Properties.

2. In the Attributes section of the General tab, clear the Read-only box.

3. Press OK.

Talk to Us

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/unable-to-write-to-output-file-filename-error.md
https://docs.microsoft.com/visualstudio/ide/talk-to-us


 

Underlying type <typename> of Enum is not CLS-compliant
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The data type specified for this enumeration is not part of the Language Independence and Language-Independent Components (CLS). This is not an
error within your component, because the .NET Framework and Visual Basic support this data type. However, another component written in strictly
CLS-compliant code might not support this data type. Such a component might not be able to interact successfully with your component.

The following Visual Basic data types are not CLS-compliant:

SByte Data Type

UInteger Data Type

ULong Data Type

UShort Data Type

By default, this message is a warning. For more information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC40032

If your component interfaces only with other .NET Framework components, or does not interface with any other components, you do not need to
change anything.

If you are interfacing with a component not written for the .NET Framework, you might be able to determine, either through reflection or from
documentation, whether it supports this data type. If it does, you do not need to change anything.

If you are interfacing with a component that does not support this data type, you must replace it with the closest CLS-compliant type. For
example, in place of UInteger  you might be able to use Integer  if you do not need the value range above 2,147,483,647. If you do need the
extended range, you can replace UInteger  with Long .

If you are interfacing with Automation or COM objects, keep in mind that some types have different data widths than in the .NET Framework.
For example, uint  is often 16 bits in other environments. If you are passing a 16-bit argument to such a component, declare it as UShort

instead of UInteger  in your managed Visual Basic code.

Reflection (Visual Basic)
Reflection

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/underlying-type-typename-of-enum-is-not-cls-compliant.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection


 

Using the iteration variable in a lambda expression may have
unexpected results
5/4/2018 • 2 minutes to read • Edit Online

For i As Integer = 1 To 10  
    ' The warning is given for the use of i.  
    Dim exampleFunc As Func(Of Integer) = Function() i  
Next  

Module Module1  
    Sub Main()  
        Dim array1 As Func(Of Integer)() = New Func(Of Integer)(4) {}  

        For i As Integer = 0 To 4  
            array1(i) = Function() i  
        Next  

        For Each funcElement In array1  
            System.Console.WriteLine(funcElement())  
        Next  

    End Sub  
End Module  

To correct this error

Module Module1  
    Sub Main()  
        Dim array1 As Func(Of Integer)() = New Func(Of Integer)(4) {}  

        For i As Integer = 0 To 4  
            Dim j = i  
            array1(i) = Function() j  
        Next  

        For Each funcElement In array1  
            System.Console.WriteLine(funcElement())  
        Next  

    End Sub  
End Module  

See Also

Using the iteration variable in a lambda expression may have unexpected results. Instead, create a local variable within the loop and assign it the value
of the iteration variable.

This warning appears when you use a loop iteration variable in a lambda expression that is declared inside the loop. For example, the following example
causes the warning to appear.

The following example shows the unexpected results that might occur.

The For  loop creates an array of lambda expressions, each of which returns the value of the loop iteration variable i . When the lambda expressions
are evaluated in the For Each  loop, you might expect to see 0, 1, 2, 3, and 4 displayed, the successive values of i  in the For  loop. Instead, you see the
final value of i  displayed five times:

5

5

5

5

5

By default, this message is a warning. For more information about hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42324

Assign the value of the iteration variable to a local variable, and use the local variable in the lambda expression.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/using-the-iteration-variable-in-a-lambda-expression-may-have-unexpected-results.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


Lambda Expressions

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/procedures/lambda-expressions


 

Value of type '<typename1>' cannot be converted to '<typename2>'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Value of type '<typename1>' cannot be converted to '<typename2>'. Type mismatch could be due to the mixing of a file reference with a project
reference to assembly '<assemblyname>'. Try replacing the file reference to '<filepath>' in project '<projectname1>' with a project reference to
'<projectname2>'.

In a situation where a project makes both a project reference and a file reference, the compiler cannot guarantee that one type can be converted to
another.

The following pseudo-code illustrates a situation that can generate this error.

' ================ Visual Basic project P1 ================

' P1 makes a PROJECT REFERENCE to project P2

' and a FILE REFERENCE to project P3.

Public commonObject As P3.commonClass

commonObject = P2.getCommonClass()

' ================ Visual Basic project P2 ================

' P2 makes a PROJECT REFERENCE to project P3

Public Function getCommonClass() As P3.commonClass

Return New P3.commonClass

End Function

' ================ Visual Basic project P3 ================

Public Class commonClass

End Class

Project P1  makes an indirect project reference through project P2  to project P3 , and also a direct file reference to P3 . The declaration of 
commonObject  uses the file reference to P3 , while the call to P2.getCommonClass  uses the project reference to P3 .

The problem in this situation is that the file reference specifies a file path and name for the output file of P3  (typically p3.dll), while the project
references identify the source project ( P3 ) by project name. Because of this, the compiler cannot guarantee that the type P3.commonClass  comes from
the same source code through the two different references.

This situation typically occurs when project references and file references are mixed. In the preceding illustration, the problem would not occur if P1

made a direct project reference to P3  instead of a file reference.

Error ID: BC30955

Change the file reference to a project reference.

Type Conversions in Visual Basic
Managing references in a project

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/value-of-type-typename1-cannot-be-converted-to-typename2.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project


 

Value of type '<typename1>' cannot be converted to '<typename2>'
(Multiple file references)
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Value of type '<typename1>' cannot be converted to '<typename2>'. Type mismatch could be due to mixing a file reference to '<filepath1>' in project
'<projectname1>' with a file reference to '<filepath2>' in project '<projectname2>'. If both assemblies are identical, try replacing these references so
both references are from the same location.

In a situation where a project makes more than one file reference to an assembly, the compiler cannot guarantee that one type can be converted to
another.

Each file reference specifies a file path and name for the output file of a project (typically a DLL file). The compiler cannot guarantee that the output files
come from the same source, or that they represent the same version of the same assembly. Therefore, it cannot guarantee that the types in the different
references are the same type, or even that one can be converted to the other.

You can use a single file reference if you know that the referenced assemblies have the same assembly identity. The assembly identity includes the
assembly's name, version, public key if any, and culture. This information uniquely identifies the assembly.

Error ID: BC30961

If the referenced assemblies have the same assembly identity, then remove or replace one of the file references so that there is only a single file
reference.

If the referenced assemblies do not have the same assembly identity, then change your code so that it does not attempt to convert a type in one
to a type in the other.

Type Conversions in Visual Basic
Managing references in a project

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/value-of-type-typename1-cannot-be-converted-to-typename2-multiple.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/data-types/type-conversions
https://docs.microsoft.com/visualstudio/ide/managing-references-in-a-project


 

Value of type 'type1' cannot be converted to 'type2'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Value of type 'type1' cannot be converted to 'type2'. You can use the 'Value' property to get the string value of the first element of '<parentElement>'.

An attempt has been made to implicitly cast an XML literal to a specific type. The XML literal cannot be implicitly cast to the specified type.

Error ID: BC31194

Use the Value  property of the XML literal to reference its value as a String . Use the CType  function, another type conversion function, or the
Convert class to cast the value as the specified type.

Convert
Type Conversion Functions
XML Literals
XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/value-of-type-type1-cannot-be-converted-to-type2.md
https://docs.microsoft.com/dotnet/api/system.convert
https://docs.microsoft.com/dotnet/api/system.convert


 

Variable '<variablename>' hides a variable in an enclosing block
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

A variable enclosed in a block has the same name as another local variable.

Error ID: BC30616

Dim a, b, x As Integer  
If a = b Then  
   Dim y As Integer = 20 ' Uniquely named block variable.  
End If  

Rename the variable in the enclosed block so that it is not the same as any other local variables. For example:

A common cause for this error is the use of Catch e As Exception  inside an event handler. If this is the case, name the Catch  block variable ex

rather than e .

Another common source of this error is an attempt to access a local variable declared within a Try  block in a separate Catch  block. To correct
this, declare the variable outside the Try...Catch...Finally  structure.

Try...Catch...Finally Statement
Variable Declaration

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/variable-variablename-hides-a-variable-in-an-enclosing-block.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration


 

Variable '<variablename>' is used before it has been assigned a value
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

Variable '<variablename>' is used before it has been assigned a value. A null reference exception could result at run time.

An application has at least one possible path through its code that reads a variable before any value is assigned to it.

If a variable has never been assigned a value, it holds the default value for its data type. For a reference data type, that default value is Nothing. Reading
a reference variable that has a value of Nothing  can cause a NullReferenceException in some circumstances.

By default, this message is a warning. For more information on hiding warnings or treating warnings as errors, see Configuring Warnings in Visual
Basic.

Error ID: BC42104

Check your control flow logic and make sure the variable has a valid value before control passes to any statement that reads it.

One way to guarantee that the variable always has a valid value is to initialize it as part of its declaration. See "Initialization" in Dim Statement.

Dim Statement
Variable Declaration
Troubleshooting Variables

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/variable-variablename-is-used-before-it-has-been-assigned-a-value.md
https://docs.microsoft.com/dotnet/api/system.nullreferenceexception
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/variable-declaration
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/troubleshooting-variables


 

Variable uses an Automation type not supported in Visual Basic
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

You tried to use a variable defined in a type library or object library that has a data type not supported by Visual Basic.

Use a variable of a type recognized by Visual Basic.

-or-

If you encounter this error while using FileGet  or FileGetOBject , make sure the file you are trying to use was written to with FilePut  or 
FilePutObject .

Data Types

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/variable-uses-an-automation-type-not-supported.md


 

XML axis properties do not support late binding
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An XML axis property has been referenced for an untyped object.

Error ID: BC31168

Ensure that the object is a strong-typed XElement object before referencing the XML axis property.

XML Axis Properties
XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/xml-axis-properties-do-not-support-late-binding.md
https://docs.microsoft.com/dotnet/api/system.xml.linq.xelement


 

XML comment exception must have a 'cref' attribute
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The <exception> tag provides a way to document the exceptions that may be thrown by a method. The required cref  attribute designates the name of
a member, which is checked by the documentation generator. If the member exists, it is translated to the canonical element name in the documentation
file.

Error ID: BC42319

'''<exception cref="member">description</exception>  

Add the cref  attribute to the exception as follows:

<exception>
How to: Create XML Documentation
XML Comment Tags

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/xml-comment-exception-must-have-a-cref-attribute.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/how-to-create-xml-documentation


 

XML entity references are not supported
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

An entity reference (for example, © ) that is not defined in the XML 1.0 specification is included as a value for an XML literal. Only & , " , < , > , and 
'  XML entity references are supported in XML literals.

Error ID: BC31180

Remove the unsupported entity reference.

XML Literals and the XML 1.0 Specification
XML Literals
XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/xml-entity-references-are-not-supported.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/xml/xml-literals-and-the-xml-1-0-specification


 

XML literals and XML properties are not supported in embedded code
within ASP.NET
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

XML literals and XML properties are not supported in embedded code within ASP.NET. To use XML features, move the code to code-behind.

An XML literal or XML axis property is defined within embedded code ( <%= => ) in an ASP.NET file.

Error ID: BC31200

Move the code that includes the XML literal or XML axis property to an ASP.NET code-behind file.

XML Literals
XML Axis Properties
XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/xml-literals-and-xml-properties-are-not-supported-in-embedded-code-in-aspnet.md


 

XML namespace URI 'http://www.w3.org/XML/1998/namespace'; can be
bound only to 'xmlns'
5/4/2018 • 2 minutes to read • Edit Online

To correct this error

See Also

The URI http://www.w3.org/XML/1998/namespace is used in an XML namespace declaration. This URI is a reserved namespace and cannot be
included in an XML namespace declaration.

Error ID: BC31183

Remove the XML namespace declaration or replace the URI http://www.w3.org/XML/1998/namespace with a valid namespace URI.

Imports Statement (XML Namespace)
XML Literals
XML

http://www.w3.org/XML/1998/namespace&#39
https://github.com/dotnet/docs/blob/master/docs/visual-basic/language-reference/error-messages/xml-namespace-uri-uri-can-be-bound-only-to-xmlns.md
http://www.w3.org/XML/1998/namespace
http://www.w3.org/XML/1998/namespace


 

Reference (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

In This Section

Reference

Related Sections

This section provides links to reference information about various aspects of Visual Basic programming.

Visual Basic Language Reference
Provides reference information for various aspects of the Visual Basic language.

Visual Basic Command-Line Compiler
Provides links to information about the command-line compiler, which provides an alternative to compiling programs from the Visual Studio IDE.

.NET Framework Reference Information
Provides links to information on working with the .NET Framework class library.

Visual Basic Language Specification
Provides links to the complete Visual Basic language specification, which contains detailed information on all aspects of the language.

Microsoft.VisualBasic.PowerPacks
This namespace contains classes for the Visual Basic Power Packs controls. Visual Basic Power Packs controls are additional Windows Forms controls.

Microsoft.VisualBasic.PowerPacks.Printing
This namespace provides a component that enables you to print a facsimile of the form as it appears on screen.

General User Interface Elements (Visual Studio)
Contains topics for dialog boxes and windows used in Visual Studio.

XML Tools in Visual Studio
Provides links to topics on various XML tools available in Visual Studio.

Automation and Extensibility Reference
Provides links to topics covering automation and extensibility in Visual Studio, for both shared and language-specific components.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/index.md
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.aspx
https://msdn.microsoft.com/library/microsoft.visualbasic.powerpacks.printing.aspx
https://docs.microsoft.com/visualstudio/ide/reference/general-user-interface-elements-visual-studio
https://docs.microsoft.com/visualstudio/xml-tools/xml-tools-in-visual-studio
http://msdn.microsoft.com/library/93112562-db21-4188-9383-ed19ad79bddf


                                                           

Visual Basic command-line compiler
5/4/2018 • 2 minutes to read • Edit Online

In this section

Related sections

The Visual Basic command-line compiler provides an alternative to compiling programs from within the Visual Studio integrated development
environment (IDE). This section contains descriptions for the Visual Basic compiler options.

Every compiler option is available in two forms: -option and /option. The documentation only shows the -option form.

Building from the Command Line
Describes the Visual Basic command-line compiler, which is provided as an alternative to compiling programs from within the Visual Studio IDE.

Visual Basic Compiler Options Listed Alphabetically
Lists compiler options in an alphabetical table

Visual Basic Compiler Options Listed by Category
Presents compiler options in functional groups.

Visual Basic Guide
The starting point for the Visual Basic documentation.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/index.md


    

Building from the Command Line (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

TIPTIP

In This Section

Related Sections

A Visual Basic project is made up of one or more separate source files. During the process known as compilation, these files are brought together into
one package—a single executable file that can be run as an application.

Visual Basic provides a command-line compiler as an alternative to compiling programs from within the Visual Studio integrated development
environment (IDE). The command-line compiler is designed for situations in which you do not require the full set of features in the IDE—for example,
when you are using or writing for computers with limited system memory or storage space.

To compile source files from within the Visual Studio IDE, choose the Build command from the Build menu.

When you build project files by using the Visual Studio IDE, you can display information about the associated vbc command and its switches in the output window. To
display this information, open the Options Dialog Box, Projects and Solutions, Build and Run, and then set the MSBuild project build output verbosity to Normal
or a higher level of verbosity. For more information, see How to: View, Save, and Configure Build Log Files.

You can compile project (.vbproj) files at a command prompt by using MSBuild. For more information, see Command-Line Reference and Walkthrough:
Using MSBuild.

How to: Invoke the Command-Line Compiler
Describes how to invoke the command-line compiler at the MS-DOS prompt or from a specific subdirectory.

Sample Compilation Command Lines
Provides a list of sample command lines that you can modify for your own use.

Visual Basic Command-Line Compiler
Provides lists of compiler options, organized alphabetically or by purpose.

Conditional Compilation
Describes how to compile particular sections of code.

Building and Cleaning Projects and Solutions in Visual Studio
Describes how to organize what will be included in different builds, choose project properties, and ensure that projects build in the correct order.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/building-from-the-command-line.md
https://docs.microsoft.com/visualstudio/ide/reference/options-dialog-box-projects-and-solutions-build-and-run
http://msdn.microsoft.com/library/75d38b76-26d6-4f43-bbe7-cbacd7cc81e7
https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference
https://docs.microsoft.com/visualstudio/msbuild/walkthrough-using-msbuild
https://docs.microsoft.com/visualstudio/ide/building-and-cleaning-projects-and-solutions-in-visual-studio


 

How to: Invoke the Command-Line Compiler (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

To invoke the compiler using the Visual Studio Command PromptTo invoke the compiler using the Visual Studio Command Prompt

To set the PATH environment variable to the compiler for the Windows Command PromptTo set the PATH environment variable to the compiler for the Windows Command Prompt

To invoke the compiler using the Windows Command PromptTo invoke the compiler using the Windows Command Prompt

See Also

You can invoke the command-line compiler by typing the name of its executable file into the command line, also known as the MS-DOS prompt. If you
compile from the default Windows Command Prompt, you must type the fully qualified path to the executable file. To override this default behavior, you
can either use the Visual Studio Command Prompt, or modify the PATH environment variable. Both allow you to compile from any directory by simply
typing the compiler name.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following instructions. The Visual Studio edition
that you have and the settings that you use determine these elements. For more information, see Personalizing the IDE.

1. Open the Visual Studio Tools program folder within the Microsoft Visual Studio program group.

2. You can use the Visual Studio Command Prompt to access the compiler from any directory on your machine, if Visual Studio is installed.

3. Invoke the Visual Studio Command Prompt.

4. At the command line, type vbc.exe  sourceFileName and then press ENTER.

For example, if you stored your source code in a directory called SourceFiles , you would open the Command Prompt and type cd SourceFiles

to change to that directory. If the directory contained a source file named Source.vb , you could compile it by typing vbc.exe Source.vb .

1. Use the Windows Search feature to find Vbc.exe on your local disk.

The exact name of the directory where the compiler is located depends on the location of the Windows directory and the version of the ".NET
Framework" installed. If you have more than one version of the ".NET Framework" installed, you must determine which version to use (typically
the latest version).

2. From your Start Menu, right-click My Computer, and then click Properties from the shortcut menu.

3. Click the Advanced tab, and then click Environment Variables.

4. In the System variables pane, select Path from the list and click Edit.

5. In the Edit System Variable dialog box, move the insertion point to the end of the string in the Variable Value field and type a semicolon (;)
followed by the full directory name found in Step 1.

6. Click OK to confirm your edits and close the dialog boxes.

After you change the PATH environment variable, you can run the Visual Basic compiler at the Windows Command Prompt from any directory
on the computer.

1. From the Start menu, click on the Accessories folder, and then open the Windows Command Prompt.

2. At the command line, type vbc.exe sourceFileName and then press ENTER.

For example, if you stored your source code in a directory called SourceFiles , you would open the Command Prompt and type cd SourceFiles

to change to that directory. If the directory contained a source file named Source.vb , you could compile it by typing vbc.exe Source.vb .

Visual Basic Command-Line Compiler
Conditional Compilation

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/how-to-invoke-the-command-line-compiler.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide


                                                

Sample compilation command lines (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

TO USE

Compile File.vb and create File.exe vbc -reference:Microsoft.VisualBasic.dll File.vb

Compile File.vb and create File.dll vbc -target:library File.vb

Compile File.vb and create My.exe vbc -out:My.exe File.vb

Compile File.vb and create both a library and a reference assembly named File.dll vbc -target:library -ref:.\debug\bin\ref\file.dll File.vb

Compile all Visual Basic files in the current directory, with optimizations on and the 
DEBUG  symbol defined, producing File2.exe

vbc -define:DEBUG=1 -optimize -out:File2.exe *.vb

Compile all Visual Basic files in the current directory, producing a debug version of
File2.dll without displaying the logo or warnings

vbc -target:library -out:File2.dll -nowarn -nologo -debug *.vb

Compile all Visual Basic files in the current directory to Something.dll vbc -target:library -out:Something.dll *.vb

TIPTIP

See Also

As an alternative to compiling Visual Basic programs from within Visual Studio, you can compile from the command line to produce executable (.exe)
files or dynamic-link library (.dll) files.

The Visual Basic command-line compiler supports a complete set of options that control input and output files, assemblies, and debug and
preprocessor options. Each option is available in two interchangeable forms: -option  and /option . This documentation shows only the -option  form.

The following table lists some sample command lines you can modify for your own use.

When you build a project by using the Visual Studio IDE, you can display information about the associated vbc command with its compiler options in the output
window. To display this information, open the Options Dialog Box, Projects and Solutions, Build and Run, and then set the MSBuild project build output verbosity to
Normal or a higher level of verbosity.

Visual Basic Command-Line Compiler
Conditional Compilation

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/sample-compilation-command-lines.md
https://docs.microsoft.com/visualstudio/ide/reference/options-dialog-box-projects-and-solutions-build-and-run


  

Visual Basic compiler options listed alphabetically
5/4/2018 • 3 minutes to read • Edit Online

OPTION PURPOSE

@ (Specify Response File) Specifies a response file.

-? Displays compiler options. This command is the same as specifying the -help

option. No compilation occurs.

-additionalfile Names additional files that don't directly affect code generation but may be used
by analyzers for producing errors or warnings.

-addmodule Causes the compiler to make all type information from the specified file(s) available
to the project you are currently compiling.

-analyzer Run the analyzers from this assembly (Short form: -a)

-baseaddress Specifies the base address of a DLL.

-bugreport Creates a file that contains information that makes it easy to report a bug.

-checksumalgorithm:<alg> Specify the algorithm for calculating the source file checksum stored in PDB.
Supported values are: SHA1 (default) or SHA256.

-codepage Specifies the code page to use for all source code files in the compilation.

-debug Produces debugging information.

-define Defines symbols for conditional compilation.

-delaysign Specifies whether the assembly will be fully or partially signed.

-deterministic Causes the compiler to output an assembly whose binary content is identical
across compilations if inputs are identical.

-doc Processes documentation comments to an XML file.

-errorreport Specifies how the Visual Basic compiler should report internal compiler errors.

-filealign Specifies where to align the sections of the output file.

-help Displays compiler options. This command is the same as specifying the -?  option.
No compilation occurs.

-highentropyva Indicates whether a particular executable supports high entropy Address Space
Layout Randomization (ASLR).

-imports Imports a namespace from a specified assembly.

-keycontainer Specifies a key container name for a key pair to give an assembly a strong name.

-keyfile Specifies a file that contains a key or key pair to give an assembly a strong name.

-langversion Specify language version: 9|9.0|10|10.0|11|11.0.

-libpath Specifies the location of assemblies referenced by the -reference option.

-linkresource Creates a link to a managed resource.

-main Specifies the class that contains the Sub Main  procedure to use at startup.

The Visual Basic command-line compiler is provided as an alternative to compiling programs from the Visual Studio integrated development
environment (IDE). The following is a list of the Visual Basic command-line compiler options sorted alphabetically.

Every compiler option is available in two forms: -option and /option. The documentation only shows the -option form.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/compiler-options-listed-alphabetically.md


-moduleassemblyname Specifies the name of the assembly that a module will be a part of.

-modulename:<string> Specify the name of the source module

-netcf Sets the compiler to target the .NET Compact Framework.

-noconfig Do not compile with Vbc.rsp.

-nologo Suppresses compiler banner information.

-nostdlib Causes the compiler not to reference the standard libraries.

-nowarn Suppresses the compiler's ability to generate warnings.

-nowin32manifest Instructs the compiler not to embed any application manifest into the executable
file.

-optimize Enables/disables code optimization.

-optioncompare Specifies whether string comparisons should be binary or use locale-specific text
semantics.

-optionexplicit Enforces explicit declaration of variables.

-optioninfer Enables the use of local type inference in variable declarations.

-optionstrict Enforces strict language semantics.

-out Specifies an output file.

-parallel[+&#124;-] Specifies whether to use concurrent build (+).

-platform Specifies the processor platform the compiler targets for the output file.

-preferreduilang Specify the preferred output language name.

-quiet Prevents the compiler from displaying code for syntax-related errors and warnings.

-recurse Searches subdirectories for source files to compile.

-reference Imports metadata from an assembly.

-refonly Outputs only a reference assembly.

-refout Specifies the output path of a reference assembly.

-removeintchecks Disables integer overflow checking.

-resource Embeds a managed resource in an assembly.

-rootnamespace Specifies a namespace for all type declarations.

-ruleset:<file> Specify a ruleset file that disables specific diagnostics.

-sdkpath Specifies the location of Mscorlib.dll and Microsoft.VisualBasic.dll.

-subsystemversion Specifies the minimum version of the subsystem that the generated executable file
can use.

-target Specifies the format of the output file.

-utf8output Displays compiler output using UTF-8 encoding.

-vbruntime Specifies that the compiler should compile without a reference to the Visual Basic
Runtime Library, or with a reference to a specific runtime library.

-verbose Outputs extra information during compilation.

OPTION PURPOSE



-warnaserror Promotes warnings to errors.

-win32icon Inserts an .ico file into the output file.

-win32manifest Identifies a user-defined Win32 application manifest file to be embedded into a
project's portable executable (PE) file.

-win32resource Inserts a Win32 resource into the output file.

OPTION PURPOSE

See also
Visual Basic Compiler Options Listed by Category
Introduction to the Project Designer
C# Compiler Options Listed Alphabetically
C# Compiler Options Listed by Category

http://msdn.microsoft.com/library/898dd854-c98d-430c-ba1b-a913ce3c73d7
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-by-category


    

@ (Specify Response File) (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
@response_file  

Arguments

Remarks

@file1.rsp @file2.rsp  

NOTENOTE

Example

# build the first output file  
-target:exe   
-out:MyExe.exe  
source1.vb   
source2.vb  

Example

vbc @file1.rsp  

See Also

Specifies a file that contains compiler options and source-code files to compile.

response_file

Required. A file that lists compiler options or source-code files to compile. Enclose the file name in quotation marks (" ") if it contains a space.

The compiler processes the compiler options and source-code files specified in a response file as if they had been specified on the command line.

To specify more than one response file in a compilation, specify multiple response-file options, such as the following.

In a response file, multiple compiler options and source-code files can appear on one line. A single compiler-option specification must appear on one
line (cannot span multiple lines). Response files can have comments that begin with the #  symbol.

You can combine options specified on the command line with options specified in one or more response files. The compiler processes the command
options as it encounters them. Therefore, command-line arguments can override previously listed options in response files. Conversely, options in a
response file override options listed previously on the command line or in other response files.

Visual Basic provides the Vbc.rsp file, which is located in the same directory as the Vbc.exe file. The Vbc.rsp file is included by default unless the 
-noconfig  option is used. For more information, see -noconfig.

The @  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following lines are from a sample response file.

The following example demonstrates how to use the @  option with the response file named File1.rsp .

Visual Basic Command-Line Compiler
-noconfig
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/specify-response-file.md


        

-addmodule
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-addmodule:fileList  

Arguments

Remarks

NOTENOTE

Example

' t1.vb
' Compile with vbc /target:module t1.vb.
' Outputs t1.netmodule.

Public Class TestClass
    Public i As Integer
End Class

' t2.vb
' Compile with vbc /addmodule:t1.netmodule t2.vb.
Option Strict Off

Namespace NetmoduleTest
    Module Module1
        Sub Main()
            Dim x As TestClass
            x = New TestClass
            x.i = 802
            System.Console.WriteLine(x.i)
        End Sub
    End Module
End Namespace

See Also

Causes the compiler to make all type information from the specified file(s) available to the project you are currently compiling.

fileList

Required. Comma-delimited list of files that contain metadata but do not contain assembly manifests. File names containing spaces should be
surrounded by quotation marks (" ").

The files listed by the fileList  parameter must be created with the -target:module  option, or with another compiler's equivalent to -target:module .

All modules added with -addmodule  must be in the same directory as the output file at run time. That is, you can specify a module in any directory at
compile time, but the module must be in the application directory at run time. If it is not, you get a TypeLoadException error.

If you specify (implicitly or explicitly) any-target (Visual Basic) option other than -target:module  with -addmodule , the files you pass to -addmodule

become part of the project's assembly. An assembly is required to run an output file that has one or more files added with -addmodule .

Use /reference (Visual Basic) to import metadata from a file that contains an assembly.

The -addmodule  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code creates a module.

The following code imports the module's types.

When you run t1 , it outputs 802 .

Visual Basic Command-Line Compiler
-target (Visual Basic)
-reference (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/addmodule.md
https://docs.microsoft.com/dotnet/api/system.typeloadexception


  

-baseaddress
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-baseaddress:address  

Arguments
TERM DEFINITION

address Required. The base address for the DLL. This address must be specified as a
hexadecimal number.

Remarks

TO SET -BASEADDRESS IN THE VISUAL STUDIO IDE

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Click Advanced.
4. Modify the value in the DLL base address: box. Note: The DLL base address: box is read-only unless the target is a DLL.

See Also

Specifies a default base address when creating a DLL.

The default base address for a DLL is set by the .NET Framework.

Be aware that the lower-order word in this address is rounded. For example, if you specify 0x11110001, it is rounded to 0x11110000.

To complete the signing process for a DLL, use the –R  option of the Strong Naming tool (Sn.exe).

This option is ignored if the target is not a DLL.

Visual Basic Command-Line Compiler
-target (Visual Basic)
Sample Compilation Command Lines
[Sn.exe (Strong Name Tool)]Sn.exe (Strong Name Tool))

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/baseaddress.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool


      

-bugreport
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-bugreport:file  

Arguments
TERM DEFINITION

file Required. The name of the file that will contain your bug report. Enclose the file
name in quotation marks (" ") if the name contains a space.

Remarks

IMPORTANTIMPORTANT

NOTENOTE

Example

vbc -bugreport:problem.txt t2.vb  

See Also

Creates a file that you can use when you file a bug report.

The following information is added to file :

A copy of all source-code files in the compilation.

A list of the compiler options used in the compilation.

Version information about your compiler, common language runtime, and operating system.

Compiler output, if any.

A description of the problem, for which you are prompted.

A description of how you think the problem should be fixed, for which you are prompted.

Because a copy of all source-code files is included in file , you may want to reproduce the (suspected) code defect in the shortest possible program.

The -bugreport  option produces a file that contains potentially sensitive information. This includes current time, compiler version, .NET Framework version, OS
version, user name, the command-line arguments with which the compiler was run, all source code, and the binary form of any referenced assembly. This option can be
accessed by specifying command-line options in the Web.config file for a server-side compilation of an ASP.NET application. To prevent this, modify the Machine.config
file to disallow users from compiling on the server.

If this option is used with -errorreport:prompt , -errorreport:queue , or -errorreport:send , and your application encounters an internal compiler error,
the information in file  is sent to Microsoft Corporation. That information will help Microsoft engineers identify the cause of the error and may help
improve the next release of Visual Basic. By default, no information is sent to Microsoft. However, when you compile an application by using 
-errorreport:queue , which is enabled by default, the application collects its error reports. Then, when the computer's administrator logs in, the error

reporting system displays a pop-up window that enables the administrator to forward to Microsoft any error reports that occurred since the logon.

The /bugreport  option is not available from within the Visual Studio development environment; it is available only when you compile from the command line.

The following example compiles T2.vb  and puts all bug-reporting information in the file Problem.txt .

Visual Basic Command-Line Compiler
-debug (Visual Basic)
-errorreport
Sample Compilation Command Lines
trustLevel Element for securityPolicy (ASP.NET Settings Schema)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/bugreport.md
http://msdn.microsoft.com/library/729ab04c-03da-4ee5-86b1-be9d08a09369


  

-codepage (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-codepage:id  

Arguments
TERM DEFINITION

id Required. The compiler uses the code page specified by id  to interpret the
encoding of the source files.

Remarks

NOTENOTE

See Also

Specifies the code page to use for all source-code files in the compilation.

To compile source code saved with a specific encoding, you can use -codepage  to specify which code page should be used. The -codepage  option
applies to all source-code files in your compilation. For more information, see Character Encoding in the .NET Framework.

The -codepage  option is not needed if the source-code files were saved using the current ANSI code page, Unicode, or UTF-8 with a signature. Visual
Studio saves all source-code files with the current ANSI code page by default, unless the user specifies another encoding in the Encoding dialog box.
Visual Studio uses the Encoding dialog box to open source-code files saved with a different code page.

The -codepage  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

Visual Basic Command-Line Compiler

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/codepage.md
http://msdn.microsoft.com/library/bf6d9823-4c2d-48af-b280-919c5af66ae9


    

-debug (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-debug[+ | -]  
' -or-  
-debug:[full | pdbonly]  

Arguments
TERM DEFINITION

+  | - Optional. Specifying +  or /debug  causes the compiler to generate debugging
information and place it in a .pdb file. Specifying -  has the same effect as not
specifying /debug .

full  | pdbonly Optional. Specifies the type of debugging information generated by the compiler. If
you do not specify /debug:pdbonly , the default is full , which enables you to
attach a debugger to the running program. The pdbonly  argument allows
source-code debugging when the program is started in the debugger, but it
displays assembly-language code only when the running program is attached to
the debugger.

Remarks

TO SET -DEBUG IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. With a project selected in Solution Explorer, on the Project menu, click Properties. 
2. Click the Compile tab.
3. Click Advanced Compile Options.
4. Modify the value in the Generate Debug Info box.

Example

vbc -debug -out:app.exe test.vb  

See Also

Causes the compiler to generate debugging information and place it in the output file(s).

Use this option to create debug builds. If you do not specify /debug , /debug+ , or /debug:full , you will be unable to debug the output file of your
program.

By default, debugging information is not emitted ( /debug- ). To emit debugging information, specify /debug  or /debug+ .

For information on how to configure the debug performance of an application, see Making an Image Easier to Debug.

The following example puts debugging information in output file App.exe .

Visual Basic Command-Line Compiler
/bugreport
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/debug.md
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/making-an-image-easier-to-debug


       

-define (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-define:["]symbol[=value][,symbol[=value]]["]  
' -or-  
-d:["]symbol[=value][,symbol[=value]]["]  

Arguments
TERM DEFINITION

symbol Required. The symbol to define.

value Optional. The value to assign symbol . If value  is a string, it must be surrounded
by backslash/quotation-mark sequences (\") instead of quotation marks. If no value
is specified, then it is taken to be True.

Remarks

TO SET /DEFINE IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Click Advanced.
4. Modify the value in the Custom Constants box.

Example

    ' Vbc /define:DEBUGMODE=True,TRAPERRORS=False test.vb
    Sub mysub()
#If debugmode Then
        ' Insert debug statements here.
         MsgBox("debug mode")
#Else
        ' Insert default statements here.
#End If
    End Sub

See Also

Defines conditional compiler constants.

The -define  option has an effect similar to using a #Const  preprocessor directive in your source file, except that constants defined with -define  are
public and apply to all files in the project.

You can use symbols created by this option with the #If ... Then ... #Else  directive to compile source files conditionally.

-d  is the short form of -define .

You can define multiple symbols with -define  by using a comma to separate symbol definitions.

The following code defines and then uses two conditional compiler constants.

Visual Basic Command-Line Compiler
#If...Then...#Else Directives
#Const Directive
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/define.md


    

-delaysign
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-delaysign[+ | -]  

Arguments

Remarks

To set -delaysign in the Visual Studio integrated development environmentTo set -delaysign in the Visual Studio integrated development environment

See Also

Specifies whether the assembly will be fully or partially signed.

+  | -

Optional. Use -delaysign-  if you want a fully signed assembly. Use -delaysign+  if you want to place the public key in the assembly and reserve space
for the signed hash. The default is -delaysign- .

The -delaysign  option has no effect unless used with -keyfile or -keycontainer.

When you request a fully signed assembly, the compiler hashes the file that contains the manifest (assembly metadata) and signs that hash with the
private key. The resulting digital signature is stored in the file that contains the manifest. When an assembly is delay signed, the compiler does not
compute and store the signature but reserves space in the file so the signature can be added later.

For example, by using -delaysign+ , a developer in an organization can distribute unsigned test versions of an assembly that testers can register with
the global assembly cache and use. When work on the assembly is completed, the person responsible for the organization's private key can fully sign
the assembly. This compartmentalization protects the organization's private key from disclosure, while allowing all developers to work on the
assemblies.

See Creating and Using Strong-Named Assemblies for more information on signing an assembly.

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Signing tab.

3. Set the value in the Delay sign only box.

Visual Basic Command-Line Compiler
-keyfile
-keycontainer
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/delaysign.md
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/create-and-use-strong-named-assemblies


  

-deterministic
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-deterministic

Remarks

See Also

Causes the compiler to produce an assembly whose byte-for-byte output is identical across compilations for identical inputs.

By default, compiler output from a given set of inputs is unique, since the compiler adds a timestamp and a GUID that is generated from random
numbers. You use the -deterministic  option to produce a deterministic assembly, one whose binary content is identical across compilations as long as
the input remains the same.

The compiler considers the following inputs for the purpose of determinism:

The sequence of command-line parameters.
The contents of the compiler's .rsp response file.
The precise version of the compiler used, and its referenced assemblies.
The current directory path.
The binary contents of all files explicitly passed to the compiler either directly or indirectly, including:

The current culture (for the language in which diagnostics and exception messages are produced).
The default encoding (or the current code page) if the encoding is not specified.
The existence, non-existence, and contents of files on the compiler's search paths (specified, for example, by /lib  or /recurse ).
The CLR platform on which the compiler is run.
The value of %LIBPATH% , which can affect analyzer dependency loading.

Source files
Referenced assemblies
Referenced modules
Resources
The strong name key file
@ response files
Analyzers
Rulesets
Additional files that may be used by analyzers

When sources are publicly available, deterministic compilation can be used for establishing whether a binary is compiled from a trusted source. It can
also be useful in a continuous build system for determining whether build steps that are dependent on changes to a binary need to be executed.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/deterministic.md


                   

-doc
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-doc[+ | -]  
' -or-  
-doc:file  

Arguments
TERM DEFINITION

+  | - Optional. Specifying +, or just -doc , causes the compiler to generate
documentation information and place it in an XML file. Specifying -  is the
equivalent of not specifying -doc , causing no documentation information to be
created.

file Required if -doc:  is used. Specifies the output XML file, which is populated with
the comments from the source-code files of the compilation. If the file name
contains a space, surround the name with quotation marks (" ").

Remarks

TO SET -DOC IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Set the value in the Generate XML documentation file box.

Example

See Also

Processes documentation comments to an XML file.

The -doc  option controls whether the compiler generates an XML file containing the documentation comments. If you use the -doc:file  syntax, the 
file  parameter specifies the name of the XML file. If you use -doc  or -doc+ , the compiler takes the XML file name from the executable file or library

that the compiler is creating. If you use -doc-  or do not specify the -doc  option, the compiler does not create an XML file.

In source-code files, documentation comments can precede the following definitions:

User-defined types, such as a class or interface

Members, such as a field, event, property, function, or subroutine.

To use the generated XML file with the Visual Studio IntelliSense feature, let the file name of the XML file be the same as the assembly you want to
support. Make sure the XML file is in the same directory as the assembly so that when the assembly is referenced in the Visual Studio project, the .xml
file is found as well. XML documentation files are not required for IntelliSense to work for code within a project or within projects referenced by a
project.

Unless you compile with /target:module , the XML file contains the tags <assembly></assembly> . These tags specify the name of the file containing the
assembly manifest for the output file of the compilation.

See XML Comment Tags for ways to generate documentation from comments in your code.

See Documenting Your Code with XML for a sample.

Visual Basic Command-Line Compiler
Documenting Your Code with XML

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/doc.md
https://docs.microsoft.com/visualstudio/ide/using-intellisense
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/documenting-your-code-with-xml
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/documenting-your-code-with-xml


   

-errorreport
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-errorreport:{ prompt | queue | send | none }  

Remarks

OPTION BEHAVIOR

prompt If an internal compiler error occurs, a dialog box comes up so that you can view the
exact data that the compiler collected. You can determine if there is any sensitive
information in the error report and make a decision on whether to send it to
Microsoft. If you decide to send it, and the machine and user policy settings allow
it, the compiler sends the data to Microsoft.

queue Queues the error report. When you log in with administrator privileges, you can
report any failures since the last time you were logged in (you will not be prompted
to send reports for failures more than once every three days). This is the default
behavior when the -errorreport  option is not specified.

send If an internal compiler error occurs, and the machine and user policy settings allow
it, the compiler sends the data to Microsoft.

The option -errorreport:send  attempts to automatically send error information
to Microsoft. This option depends on the registry. For more information about
setting the appropriate values in the registry, see How to Turn on Automatic Error
Reporting in Visual Studio 2008 Command-line Tools.

none If an internal compiler error occurs, it will not be collected or sent to Microsoft.

NOTENOTE

Example

vbc -errorreport:prompt t2.vb  

See Also

Specifies how the Visual Basic compiler should report internal compiler errors.

This option provides a convenient way to report a Visual Basic internal compiler error (ICE) to the Visual Basic team at Microsoft. By default, the
compiler sends no information to Microsoft. However, if you do encounter an internal compiler error, this option allows you to report the error to
Microsoft. That information will help Microsoft engineers identify the cause and may help improve the next release of Visual Basic.

A user's ability to send reports depends on machine and user policy permissions.

The following table summarizes the effect of the -errorreport  option.

The compiler sends data that includes the stack at the time of the error, which usually includes some source code. If -errorreport  is used with the -
bugreport option, then the entire source file is sent.

This option is best used with the /bugreport option, because it allows Microsoft engineers to more easily reproduce the error.

The -errorreport  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code attempts to compile T2.vb , and if the compiler encounters an internal compiler error, it prompts you to send the error report to
Microsoft.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines
-bugreport

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/errorreport.md
http://go.microsoft.com/fwlink/?LinkID=184695


  

-filealign
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-filealign:number  

Arguments

Remarks

NOTENOTE

See Also

Specifies where to align the sections of the output file.

number

Required. A value that specifies the alignment of sections in the output file. Valid values are 512, 1024, 2048, 4096, and 8192. These values are in bytes.

You can use the -filealign  option to specify the alignment of sections in your output file. Sections are blocks of contiguous memory in a Portable
Executable (PE) file that contains either code or data. The -filealign  option lets you compile your application with a nonstandard alignment; most
developers do not need to use this option.

Each section is aligned on a boundary that is a multiple of the -filealign  value. There is no fixed default. If -filealign  is not specified, the compiler
picks a default at compile time.

By specifying the section size, you can change the size of the output file. Modifying section size may be useful for programs that will run on smaller
devices.

The -filealign  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

Visual Basic Command-Line Compiler

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/filealign.md


    

-help, -? (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-help  
' -or-  
-?  

Remarks

NOTENOTE

Example

vbc -help  

See Also

Displays the compiler options.

If you include this option in a compilation, no output file is created and no compilation takes place.

The -help  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code displays help from the command line.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/help.md


  

-highentropyva (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-highentropyva[+ | -]  

Arguments

Remarks

See Also

Indicates whether a 64-bit executable or an executable that's marked by the /platform:anycpu compiler option supports high entropy Address Space
Layout Randomization (ASLR).

+  | -

Optional. The option is off by default or if you specify -highentropyva- . The option is on if you specify -highentropyva  or -highentropyva+ .

If you specify this option, compatible versions of the Windows kernel can use higher degrees of entropy when the kernel randomizes the address space
layout of a process as part of ASLR. If the kernel uses higher degrees of entropy, a larger number of addresses can be allocated to memory regions
such as stacks and heaps. As a result, it is more difficult to guess the location of a particular memory region.

When the option is on, the target executable and any modules on which it depends must be able to handle pointer values that are larger than 4
gigabytes (GB) when those modules are running as 64-bit processes.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/highentropyva.md


  

-imports (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-imports:namespaceList  

Arguments
TERM DEFINITION

namespaceList Required. Comma-delimited list of namespaces to be imported.

Remarks

TO SET /IMPORTS IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the References tab.
3. Enter the namespace name in the box beside the Add User Import button.
4. Click the Add User Import button.

Example

Module CompilerOption
   Public Sub Main()
      Console.WriteLine($"The current culture is {CultureInfo.CurrentCulture.Name}")
   End Sub
End Module

See Also

Imports namespaces from a specified assembly.

The -imports  option imports any namespace defined within the current set of source files or from any referenced assembly.

The members in a namespace specified with -imports  are available to all source-code files in the compilation. Use the Imports Statement (.NET
Namespace and Type) to use a namespace in a single source-code file.

The following code compiles when /imports:system.globalization  is specified. Without it, successful compilation requires either that an 
Imports System.Globalization  statement be included at the beginning of the source code file, or that the property be fully qualified as 
System.Globalization.CultureInfo.CurrentCulture.Name .

Visual Basic Command-Line Compiler
References and the Imports Statement
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/imports.md


      

-keycontainer
7/18/2018 • 2 minutes to read • Edit Online

Syntax
-keycontainer:container  

Arguments
TERM DEFINITION

container Required. Container file that contains the key. Enclose the file name in quotation
marks ("") if the name contains a space.

Remarks

NOTENOTE

Example

vbc -keycontainer:key1 input.vb  

See Also

Specifies a key container name for a key pair to give an assembly a strong name.

The compiler creates the sharable component by inserting a public key into the assembly manifest and by signing the final assembly with the private
key. To generate a key file, type sn -k file  at the command line. The -i  option installs the key pair into a container. For more information, see [Sn.exe
(Strong Name Tool)]Sn.exe (Strong Name Tool)).

If you compile with -target:module , the name of the key file is held in the module and incorporated into the assembly that is created when you compile
an assembly with -addmodule.

You can also specify this option as a custom attribute (AssemblyKeyNameAttribute) in the source code for any Microsoft intermediate language (MSIL)
module.

You can also pass your encryption information to the compiler with -keyfile. Use -delaysign if you want a partially signed assembly.

See Creating and Using Strong-Named Assemblies for more information on signing an assembly.

The -keycontainer  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles source file Input.vb  and specifies a key container.

Assemblies and the Global Assembly Cache
Visual Basic Command-Line Compiler
-keyfile
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/keycontainer.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/dotnet/api/system.reflection.assemblykeynameattribute
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/create-and-use-strong-named-assemblies


      

-keyfile
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-keyfile:file  

Arguments

Remarks

NOTENOTE

Example

vbc -keyfile:myfile.sn input.vb  

See Also

Specifies a file containing a key or key pair to give an assembly a strong name.

file

Required. File that contains the key. If the file name contains a space, enclose the name in quotation marks (" ").

The compiler inserts the public key into the assembly manifest and then signs the final assembly with the private key. To generate a key file, type 
sn -k file  at the command line. For more information, see [Sn.exe (Strong Name Tool)]Sn.exe (Strong Name Tool)).

If you compile with -target:module , the name of the key file is held in the module and incorporated into the assembly that is created when you compile
an assembly with /addmodule.

You can also pass your encryption information to the compiler with -keycontainer. Use -delaysign if you want a partially signed assembly.

You can also specify this option as a custom attribute (AssemblyKeyFileAttribute) in the source code for any Microsoft intermediate language module.

In case both -keyfile  and -keycontainer are specified (either by command-line option or by custom attribute) in the same compilation, the compiler
first tries the key container. If that succeeds, then the assembly is signed with the information in the key container. If the compiler does not find the key
container, it tries the file specified with -keyfile . If this succeeds, the assembly is signed with the information in the key file, and the key information is
installed in the key container (similar to sn -i ) so that on the next compilation, the key container will be valid.

Note that a key file might contain only the public key.

See Creating and Using Strong-Named Assemblies for more information on signing an assembly.

The -keyfile  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles source file Input.vb  and specifies a key file.

Assemblies and the Global Assembly Cache
Visual Basic Command-Line Compiler
-reference (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/keyfile.md
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/dotnet/api/system.reflection.assemblykeyfileattribute
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/create-and-use-strong-named-assemblies


   

-langversion (Visual Basic)
5/30/2018 • 2 minutes to read • Edit Online

Syntax
-langversion:version  

Arguments

Remarks

Example

vbc -langversion:9.0 sample.vb  

See Also

Causes the compiler to accept only syntax that is included in the specified Visual Basic language version.

version

Required. The language version to be used during the compilation. Accepted values are 9 , 10 , 11 , 12 , 14 , 15 , 15.3 , 15.5 , default  and latest .

Any of the whole numbers may also be specified using .0  as the minor version, for example, 11.0 .

You can see the list of all possible values by specifying -langversion:?  on the command line.

The -langversion  option specifies what syntax the compiler accepts. For example, if you specify that the language version is 9.0, the compiler generates
errors for syntax that is valid only in version 10.0 and later.

You can use this option when you develop applications that target different versions of the .NET Framework. For example, if you are targeting .NET
Framework 3.5, you could use this option to ensure that you do not use syntax from language version 10.0.

You can set -langversion  directly only by using the command line. For more information, see Targeting a Specific .NET Framework Version.

The following code compiles sample.vb  for Visual Basic 9.0.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines
Targeting a Specific .NET Framework Version

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/langversion.md
https://docs.microsoft.com/visualstudio/ide/targeting-a-specific-dotnet-framework-version
https://docs.microsoft.com/visualstudio/ide/targeting-a-specific-dotnet-framework-version


     

-libpath
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-libpath:dirList  

Arguments
TERM DEFINITION

dirList Required. Semicolon-delimited list of directories for the compiler to look in if a
referenced assembly is not found in either the current working directory (the
directory from which you are invoking the compiler) or the common language
runtime's system directory. If the directory name contains a space, enclose the
name in quotation marks (" ").

Remarks

TO SET /LIBPATH IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the References tab.
3. Click the Reference Paths... button.
4. In the Reference Paths dialog box, enter the directory name in the Folder: box.
5. Click Add Folder.

Example

vbc -libpath:c:\;"c:\New Assemblies" -reference:t2.dll t2.vb  

See Also

Specifies the location of referenced assemblies.

The -libpath  option specifies the location of assemblies referenced by the -reference option.

The compiler searches for assembly references that are not fully qualified in the following order :

1. Current working directory. This is the directory from which the compiler is invoked.

2. The common language runtime system directory.

3. Directories specified by /libpath .

4. Directories specified by the LIB environment variable.

The -libpath  option is additive; specifying it more than once appends to any prior values.

Use -reference  to specify an assembly reference.

The following code compiles T2.vb  to create an .exe file. The compiler looks in the working directory, in the root directory of the C: drive, and in the
New Assemblies directory of the C: drive for assembly references.

Assemblies and the Global Assembly Cache
Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/libpath.md


  

-link (Visual Basic)
5/4/2018 • 3 minutes to read • Edit Online

Syntax
-link:fileList  
' -or-  
-l:fileList  

Arguments
TERM DEFINITION

fileList Required. Comma-delimited list of assembly file names. If the file name contains a
space, enclose the name in quotation marks.

Remarks

NOTENOTE

Generics and Embedded Types

Generic InterfacesGeneric Interfaces

' The following code causes an error if ISampleInterface is an embedded interop type.
Dim sample As ISampleInterface(Of SampleType)

Causes the compiler to make COM type information in the specified assemblies available to the project that you are currently compiling.

The -link  option enables you to deploy an application that has embedded type information. The application can then use types in a runtime assembly
that implement the embedded type information without requiring a reference to the runtime assembly. If various versions of the runtime assembly are
published, the application that contains the embedded type information can work with the various versions without having to be recompiled. For an
example, see Walkthrough: Embedding Types from Managed Assemblies.

Using the -link  option is especially useful when you are working with COM interop. You can embed COM types so that your application no longer
requires a primary interop assembly (PIA) on the target computer. The -link  option instructs the compiler to embed the COM type information from
the referenced interop assembly into the resulting compiled code. The COM type is identified by the CLSID (GUID) value. As a result, your application
can run on a target computer that has installed the same COM types with the same CLSID values. Applications that automate Microsoft Office are a
good example. Because applications like Office usually keep the same CLSID value across different versions, your application can use the referenced
COM types as long as .NET Framework 4 or later is installed on the target computer and your application uses methods, properties, or events that are
included in the referenced COM types.

The -link  option embeds only interfaces, structures, and delegates. Embedding COM classes is not supported.

When you create an instance of an embedded COM type in your code, you must create the instance by using the appropriate interface. Attempting to create an
instance of an embedded COM type by using the CoClass causes an error.

To set the -link  option in Visual Studio, add an assembly reference and set the Embed Interop Types  property to true. The default for the 
Embed Interop Types  property is false.

If you link to a COM assembly (Assembly A) which itself references another COM assembly (Assembly B), you also have to link to Assembly B if either
of the following is true:

A type from Assembly A inherits from a type or implements an interface from Assembly B.

A field, property, event, or method that has a return type or parameter type from Assembly B is invoked.

Use -libpath to specify the directory in which one or more of your assembly references is located.

Like the /reference compiler option, the -link  compiler option uses the Vbc.rsp response file, which references frequently used .NET Framework
assemblies. Use the -noconfig compiler option if you do not want the compiler to use the Vbc.rsp file.

The short form of -link  is -l .

The following sections describe the limitations on using generic types in applications that embed interop types.

Generic interfaces that are embedded from an interop assembly cannot be used. This is shown in the following example.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/link.md
http://msdn.microsoft.com/library/b28ec92c-1867-4847-95c0-61adfe095e21


Types That Have Generic ParametersTypes That Have Generic Parameters

Imports System.Collections.Generic
Imports Microsoft.Office.Interop.Excel

Class Utility
    ' The following code causes an error when called by a client assembly.
    Public Function GetRange1() As List(Of Range)

End Function

' The following code is valid for calls from a client assembly.
Public Function GetRange2() As IList(Of Range)

    End Function
End Class

Module Client
    Public Sub Main()
        Dim util As New Utility()

        ' The following code causes an error.
        Dim rangeList1 As List(Of Range) = util.GetRange1()

        ' The following code is valid.
        Dim rangeList2 As List(Of Range) = CType(util.GetRange2(), List(Of Range))
    End Sub
End Module

Example

vbc -link:COMData1.dll,COMData2.dll /out:OfficeApp.exe OfficeApp.vb  

See Also

Types that have a generic parameter whose type is embedded from an interop assembly cannot be used if that type is from an external assembly. This
restriction does not apply to interfaces. For example, consider the Range interface that is defined in the Microsoft.Office.Interop.Excel assembly. If a
library embeds interop types from the Microsoft.Office.Interop.Excel assembly and exposes a method that returns a generic type that has a parameter
whose type is the Range interface, that method must return a generic interface, as shown in the following code example.

In the following example, client code can call the method that returns the IList generic interface without error.

The following command line compiles source file OfficeApp.vb  and reference assemblies from COMData1.dll  and COMData2.dll  to produce 
OfficeApp.exe .

Visual Basic Command-Line Compiler
Walkthrough: Embedding Types from Managed Assemblies
-reference (Visual Basic)
-noconfig
-libpath
Sample Compilation Command Lines
Introduction to COM Interop

https://msdn.microsoft.com/library/microsoft.office.interop.excel.range.aspx
https://msdn.microsoft.com/library/microsoft.office.interop.excel.aspx
https://msdn.microsoft.com/library/microsoft.office.interop.excel.aspx
https://msdn.microsoft.com/library/microsoft.office.interop.excel.range.aspx
https://docs.microsoft.com/dotnet/api/system.collections.ilist
http://msdn.microsoft.com/library/b28ec92c-1867-4847-95c0-61adfe095e21


     

-linkresource (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-linkresource:filename[,identifier[,public|private]]  
' -or-  
-linkres:filename[,identifier[,public|private]]  

Arguments

Remarks

NOTENOTE

Example

vbc -linkresource:rf.resource in.vb  

See Also

Creates a link to a managed resource.

filename

Required. The resource file to link to the assembly. If the file name contains a space, enclose the name in quotation marks (" ").

identifier

Optional. The logical name for the resource. The name that is used to load the resource. The default is the name of the file. Optionally, you can specify
whether the file is public or private in the assembly manifest, for example: -linkres:filename.res,myname.res,public . By default, filename  is public in
the assembly.

The -linkresource  option does not embed the resource file in the output file; use the -resource  option to do this.

The -linkresource  option requires one of the -target  options other than -target:module .

If filename  is a .NET Framework resource file created, for example, by the Resgen.exe (Resource File Generator) or in the development environment, it
can be accessed with members in the System.Resources namespace. (For more information, see ResourceManager.) To access all other resources at run
time, use the methods that begin with GetManifestResource  in the Assembly class.

The file name can be any file format. For example, you may want to make a native DLL part of the assembly, so that it can be installed into the global
assembly cache and accessed from managed code in the assembly.

The short form of -linkresource  is -linkres .

The -linkresource  option is not available from the Visual Studio development environment; it is available only when you compile from the command line.

The following code compiles in.vb  and links to resource file rf.resource .

Visual Basic Command-Line Compiler
-target (Visual Basic)
-resource (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/linkresource.md
http://msdn.microsoft.com/library/8ef159de-b660-4bec-9213-c3fbc4d1c6f4
https://docs.microsoft.com/dotnet/api/system.resources
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.reflection.assembly


     

-main
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-main:location  

Arguments

Remarks

' Compile with /r:System.dll,SYSTEM.WINDOWS.FORMS.DLL /main:MyC
Public Class MyC
    Inherits System.Windows.Forms.Form
End Class

To set -main in the Visual Studio integrated development environmentTo set -main in the Visual Studio integrated development environment

Example

vbc t2.vb t3.vb -main:Test2  

See Also

Specifies the class or module that contains the Sub Main  procedure.

location

Required. The name of the class or module that contains the Sub Main  procedure to be called when the program starts. This may be in the form -
main:module or -main:namespace.module.

Use this option when you create an executable file or Windows executable program. If the -main option is omitted, the compiler searches for a valid
shared Sub Main  in all public classes and modules.

See Main Procedure in Visual Basic for a discussion of the various forms of the Main  procedure.

When location  is a class that inherits from Form, the compiler provides a default Main  procedure that starts the application if the class has no Main

procedure. This lets you compile code at the command line that was created in the development environment.

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Application tab.

3. Make sure the Enable application framework check box is not checked.

4. Modify the value in the Startup object box.

The following code compiles T2.vb  and T3.vb , specifying that the Sub Main  procedure will be found in the Test2  class.

Visual Basic Command-Line Compiler
-target (Visual Basic)
Sample Compilation Command Lines
Main Procedure in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/main.md
https://docs.microsoft.com/dotnet/api/system.windows.forms.form


   

-moduleassemblyname
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-moduleassemblyname:assembly_name  

Arguments
TERM DEFINITION

assembly_name The name of the assembly that this module will be a part of.

Remarks

NOTENOTE

See Also

Specifies the name of the assembly that this module will be a part of.

The compiler processes the -moduleassemblyname  option only if the -target:module  option has been specified. This causes the compiler to create a
module. The module created by the compiler is valid only for the assembly specified with the -moduleassemblyname  option. If you place the module in a
different assembly, run-time errors will occur.

The -moduleassemblyname  option is needed only when the following are true:

A data type in the module needs access to a Friend  type in a referenced assembly.

The referenced assembly has granted friend assembly access to the assembly into which the module will be built.

For more information about creating a module, see /target (Visual Basic). For more information about friend assemblies, see Friend Assemblies.

The -moduleassemblyname  option is not available from within the Visual Studio development environment; it is available only when you compile from a command
prompt.

How to: Build a Multifile Assembly
Visual Basic Command-Line Compiler
-target (Visual Basic)
-main
-reference (Visual Basic)
-addmodule
Assemblies and the Global Assembly Cache
Sample Compilation Command Lines
Friend Assemblies

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/moduleassemblyname.md
http://msdn.microsoft.com/library/df0c70ea-2c2a-4bdc-9526-df951ad2d055
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/how-to-build-a-multifile-assembly
http://msdn.microsoft.com/library/df0c70ea-2c2a-4bdc-9526-df951ad2d055


    

-netcf
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-netcf  

Remarks

NOTENOTE

Sets the compiler to target the .NET Compact Framework.

The -netcf  option causes the Visual Basic compiler to target the .NET Compact Framework rather than the full .NET Framework. Language
functionality that is present only in the full .NET Framework is disabled.

The -netcf  option is designed to be used with -sdkpath. The language features disabled by -netcf  are the same language features not present in the
files targeted with -sdkpath .

The -netcf  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line. The -netcf

option is set when a Visual Basic device project is loaded.

The -netcf  option changes the following language features:

Module Module1
    Sub Main()
        End   ' not valid to terminate execution with /netcf
    End Sub
End Module

The End <keyword> Statement keyword, which terminates execution of a program, is disabled. The following program compiles and runs
without -netcf  but fails at compile time with -netcf .

Late binding, in all forms, is disabled. Compile-time errors are generated when recognized late-binding scenarios are encountered. The following
program compiles and runs without -netcf  but fails at compile time with -netcf .

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/netcf.md


Class LateBoundClass
    Sub S1()
    End Sub

    Default Property P1(ByVal s As String) As Integer
        Get
        End Get
        Set(ByVal Value As Integer)
        End Set
    End Property
End Class

Module Module1
    Sub Main()
        Dim o1 As Object
        Dim o2 As Object
        Dim o3 As Object
        Dim IntArr(3) As Integer

        o1 = New LateBoundClass
        o2 = 1
        o3 = IntArr

        ' Late-bound calls
        o1.S1()
        o1.P1("member") = 1

        ' Dictionary member access
        o1!member = 1

        ' Late-bound overload resolution
        LateBoundSub(o2)

        ' Late-bound array
        o3(1) = 1
    End Sub

    Sub LateBoundSub(ByVal n As Integer)
    End Sub

    Sub LateBoundSub(ByVal s As String)
    End Sub
End Module

' compile with: /target:library
Module Module1
    ' valid with or without /netcf
    Declare Sub DllSub Lib "SomeLib.dll" ()

    ' not valid with /netcf
    Declare Auto Sub DllSub1 Lib "SomeLib.dll" ()
    Declare Ansi Sub DllSub2 Lib "SomeLib.dll" ()
    Declare Unicode Sub DllSub3 Lib "SomeLib.dll" ()
End Module

The Auto, Ansi, and Unicode modifiers are disabled. The syntax of the Declare Statement statement is also modified to 
Declare Sub|Function name Lib "library" [Alias "alias"] [([arglist])] . The following code shows the effect of -netcf  on a compilation.

Using Visual Basic 6.0 keywords that were removed from Visual Basic generates a different error when -netcf  is used. This affects the error
messages for the following keywords:

Open

Close

Put

Print

Write

Input

Lock

Unlock

Seek

Width

Name

FreeFile



Example

vbc -netcf -sdkpath:"c:\Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000\Windows CE " myfile.vb  

See Also

EOF

Loc

LOF

Line

The following code compiles Myfile.vb  with the .NET Compact Framework, using the versions of mscorlib.dll and Microsoft.VisualBasic.dll found in
the default installation directory of the .NET Compact Framework on the C drive. Typically, you would use the most recent version of the .NET Compact
Framework.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines
-sdkpath



         

-noconfig
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-noconfig  

Remarks

NOTENOTE

NOTENOTE

See Also

Specifies that the compiler should not automatically reference the commonly used .NET Framework assemblies or import the System  and 
Microsoft.VisualBasic  namespaces.

The -noconfig  option tells the compiler not to compile with the Vbc.rsp file, which is located in the same directory as the Vbc.exe file. The Vbc.rsp file
references the commonly used .NET Framework assemblies and imports the System  and Microsoft.VisualBasic  namespaces. The compiler implicitly
references the System.dll assembly unless the -nostdlib  option is specified. The -nostdlib  option tells the compiler not to compile with Vbc.rsp or
automatically reference the System.dll assembly.

The Mscorlib.dll and Microsoft.VisualBasic.dll assemblies are always referenced.

You can modify the Vbc.rsp file to specify additional compiler options that should be included in every Vbc.exe compilation (except when specifying the 
-noconfig  option). For more information, see @ (Specify Response File).

The compiler processes the options passed to the vbc  command last. Therefore, any option on the command line overrides the setting of the same
option in the Vbc.rsp file.

The -noconfig  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

-nostdlib (Visual Basic)
Visual Basic Command-Line Compiler
@ (Specify Response File)
-reference (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/noconfig.md


  

-nologo (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-nologo  

Remarks

NOTENOTE

Example

vbc -nologo t2.vb  

See Also

Suppresses display of the copyright banner and informational messages during compilation.

If you specify -nologo , the compiler does not display a copyright banner. By default, -nologo  is not in effect.

The -nologo  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles T2.vb  and does not display a copyright banner.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/nologo.md


   

-nostdlib (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-nostdlib  

Remarks

NOTENOTE

NOTENOTE

Example

vbc -nostdlib -define:_MYTYPE=\"Empty\" T2.vb  

See Also

Causes the compiler not to automatically reference the standard libraries.

The -nostdlib  option removes the automatic reference to the System.dll assembly and prevents the compiler from reading the Vbc.rsp file. The Vbc.rsp
file, which is located in the same directory as the Vbc.exe file, references the commonly used .NET Framework assemblies and imports the System  and 
Microsoft.VisualBasic  namespaces.

The Mscorlib.dll and Microsoft.VisualBasic.dll assemblies are always referenced.

The -nostdlib  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles T2.vb  without referencing the standard libraries. You must set the _MYTYPE  conditional-compilation constant to the string
"Empty" to remove the My  object.

-noconfig
Visual Basic Command-Line Compiler
Sample Compilation Command Lines
Customizing Which Objects are Available in My

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/nostdlib.md


    

-nowarn
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-nowarn[:numberList]  

Arguments
TERM DEFINITION

numberList Optional. Comma-delimited list of the warning ID numbers that the compiler
should suppress. If the warning IDs are not specified, all warnings are suppressed.

Remarks

TO SET -NOWARN IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Select the Disable all warnings check box to disable all warnings.
- or -
To disable a particular warning, click None from the drop-down list adjacent to the warning.

Example

vbc -nowarn t2.vb  

Example

vbc -nowarn:42024 t2.vb  

See Also

Suppresses the compiler's ability to generate warnings.

The -nowarn  option causes the compiler to not generate warnings. To suppress an individual warning, supply the warning ID to the -nowarn  option
following the colon. Separate multiple warning numbers with commas.

You need to specify only the numeric part of the warning identifier. For example, if you want to suppress BC42024, the warning for unused local
variables, specify -nowarn:42024 .

For more information on the warning ID numbers, see Configuring Warnings in Visual Basic.

The following code compiles T2.vb  and does not display any warnings.

The following code compiles T2.vb  and does not display the warnings for unused local variables (42024).

Visual Basic Command-Line Compiler
Sample Compilation Command Lines
Configuring Warnings in Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/nowarn.md
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic
https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


   

-nowin32manifest (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-nowin32manifest  

Remarks

See Also

Instructs the compiler not to embed any application manifest into the executable file.

When this option is used, the application will be subject to virtualization on Windows Vista unless you provide an application manifest in a Win32
Resource file or during a later build step. For more information about virtualization, see ClickOnce Deployment on Windows Vista.

For more information about manifest creation, see -win32manifest (Visual Basic).

Visual Basic Command-Line Compiler
Application Page, Project Designer (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/nowin32manifest.md
https://docs.microsoft.com/visualstudio/deployment/clickonce-deployment-on-windows-vista
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


  

-optimize
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-optimize[ + | - ]  

Arguments
TERM DEFINITION

+  | - Optional. The -optimize-  option disables compiler optimizations. The 
-optimize+  option enables optimizations. By default, optimizations are disabled.

Remarks

TO SET -OPTIMIZE IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Compile tab.
3. Click the Advanced button.
4. Modify the Enable optimizations check box.

Example

vbc t2.vb -optimize  

See Also

Enables or disables compiler optimizations.

Compiler optimizations make your output file smaller, faster, and more efficient. However, because optimizations result in code rearrangement in the
output file, -optimize+  can make debugging difficult.

All modules generated with -target:module  for an assembly must use the same -optimize  settings as the assembly. For more information, see -target
(Visual Basic).

You can combine the -optimize  and -debug  options.

The following code compiles T2.vb  and enables compiler optimizations.

Visual Basic Command-Line Compiler
-debug (Visual Basic)
Sample Compilation Command Lines
-target (Visual Basic)

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/optimize.md


         

-optioncompare
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-optioncompare:{binary | text}  

Remarks

To set -optioncompare in the Visual Studio IDETo set -optioncompare in the Visual Studio IDE

To set -optioncompare programmaticallyTo set -optioncompare programmatically

Example

vbc -optioncompare:binary projFile.vb  

See Also

Specifies how string comparisons are made.

You can specify -optioncompare  in one of two forms: -optioncompare:binary  to use binary string comparisons, and -optioncompare:text  to use text
string comparisons. By default, the compiler uses -optioncompare:binary .

In Microsoft Windows, the current code page determines the binary sort order. A typical binary sort order is as follows:

A < B < E < Z < a < b < e < z < À < Ê < Ø < à < ê < ø

Text-based string comparisons are based on a case-insensitive text sort order determined by your system's locale. A typical text sort order is as follows:

(A = a) < (À = à) < (B=b) < (E=e) < (Ê = ê) < (Z=z) < (Ø = ø)

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Compile tab.

3. Modify the value in the Option Compare box.

See Option Compare Statement.

The following code compiles ProjFile.vb  and uses binary string comparisons.

Visual Basic Command-Line Compiler
-optionexplicit
-optionstrict
-optioninfer
Sample Compilation Command Lines
Option Compare Statement
Visual Basic Defaults, Projects, Options Dialog Box

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/optioncompare.md
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box


        

-optionexplicit
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-optionexplicit[+ | -]  

Arguments

Remarks

To set -optionexplicit in the Visual Studio IDETo set -optionexplicit in the Visual Studio IDE

Example

Module Module1
    Sub Main()
        i = 99
        System.Console.WriteLine(i)
    End Sub
End Module

See Also

Causes the compiler to report errors if variables are not declared before they are used.

+  | -

Optional. Specify -optionexplicit+  to require explicit declaration of variables. The -optionexplicit+  option is the default and is the same as 
-optionexplicit . The -optionexplicit-  option enables implicit declaration of variables.

If the source code file contains an Option Explicit statement, the statement overrides the -optionexplicit  command-line compiler setting.

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Compile tab.

3. Modify the value in the Option Explicit box.

The following code compiles when -optionexplicit-  is used.

Visual Basic Command-Line Compiler
-optioncompare
-optionstrict
-optioninfer
Sample Compilation Command Lines
Option Explicit Statement
Visual Basic Defaults, Projects, Options Dialog Box

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/optionexplicit.md
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box


        

-optioninfer
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-optioninfer[+ | -]  

Arguments
TERM DEFINITION

+  | - Optional. Specify -optioninfer+  to enable local type inference, or 
-optioninfer-  to block it. The -optioninfer  option, with no value specified, is

the same as -optioninfer+ . The default value when the -optioninfer  switch is
not present is also -optioninfer+ . The default value is set in the Vbc.rsp
response file.

NOTENOTE

Remarks

To set -optioninfer in the Visual Studio IDETo set -optioninfer in the Visual Studio IDE

Example

vbc -optioninfer+ test.vb  

See Also

Enables the use of local type inference in variable declarations.

You can use the -noconfig  option to retain the compiler's internal defaults instead of those specified in vbc.rsp. The compiler default for this option is 
-optioninfer- .

If the source code file contains an Option Infer Statement, the statement overrides the -optioninfer  command-line compiler setting.

1. Select a project in Solution Explorer. On the Project menu, click Properties.

2. On the Compile tab, modify the value in the Option infer box.

The following code compiles test.vb  with local type inference enabled.

Visual Basic Command-Line Compiler
-optioncompare
-optionexplicit
-optionstrict
Sample Compilation Command Lines
Option Infer Statement
Local Type Inference
Visual Basic Defaults, Projects, Options Dialog Box
Compile Page, Project Designer (Visual Basic)
/noconfig
Building from the Command Line

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/optioninfer.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/variables/local-type-inference
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box
https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


         

-optionstrict
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-optionstrict[+ | -]  
-optionstrict[:custom]  

Arguments

Remarks

To set -optionstrict in the Visual Studio IDETo set -optionstrict in the Visual Studio IDE

To set -optionstrict programmaticallyTo set -optionstrict programmatically

Example

vbc -optionstrict+ test.vb  

See Also

Enforces strict type semantics to restrict implicit type conversions.

+  | -

Optional. The -optionstrict+  option restricts implicit type conversion. The default for this option is -optionstrict- . The -optionstrict+  option is the
same as -optionstrict . You can use both for permissive type semantics.

custom

Required. Warn when strict language semantics are not respected.

When -optionstrict+  is in effect, only widening type conversions can be made implicitly. Implicit narrowing type conversions, such as assigning a 
Decimal  type object to an integer type object, are reported as errors.

To generate warnings for implicit narrowing type conversions, use -optionstrict:custom . Use -nowarn:numberlist  to ignore particular warnings and 
-warnaserror:numberlist  to treat particular warnings as errors.

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Compile tab.

3. Modify the value in the Option Strict box.

See Option Strict Statement.

The following code compiles Test.vb  using strict type semantics.

Visual Basic Command-Line Compiler
-optioncompare
-optionexplicit
-optioninfer
-nowarn
-warnaserror (Visual Basic)
Sample Compilation Command Lines
Option Strict Statement
Visual Basic Defaults, Projects, Options Dialog Box

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/optionstrict.md
https://docs.microsoft.com/visualstudio/ide/reference/visual-basic-defaults-projects-options-dialog-box


    

-out (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-out:filename  

Arguments
TERM DEFINITION

filename Required. The name of the output file the compiler creates. If the file name contains
a space, enclose the name in quotation marks (" ").

Remarks

TO SET -OUT IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Application tab.
3. Modify the value in the Assembly Name box.

Example

vbc t2.vb -out:t3.exe  

See Also

Specifies the name of the output file.

Specify the full name and extension of the file to create. If you do not, the .exe file takes its name from the source-code file containing the Sub Main

procedure, and the .dll file takes its name from the first source-code file.

If you specify a file name without an .exe or .dll extension, the compiler automatically adds the extension for you, depending on the value specified for
the -target  compiler option.

The following code compiles T2.vb  and creates output file T2.exe .

Visual Basic Command-Line Compiler
-target (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/out.md


     

-platform (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-platform:{ x86 | x64 | Itanium | arm | anycpu | anycpu32bitpreferred }  

Arguments
TERM DEFINITION

x86 Compiles your assembly to be run by the 32-bit, x86-compatible CLR.

x64 Compiles your assembly to be run by the 64-bit CLR on a computer that supports
the AMD64 or EM64T instruction set.

Itanium Compiles your assembly to be run by the 64-bit CLR on a computer with an
Itanium processor.

arm Compiles your assembly to be run on a computer with an ARM (Advanced RISC
Machine) processor.

anycpu Compiles your assembly to run on any platform. The application will run as a 32-bit
application on 32-bit versions of Windows and as a 64-bit application on 64-bit
versions of Windows. This flag is the default value.

anycpu32bitpreferred Compiles your assembly to run on any platform. The application will run as a 32-bit
application on both 32-bit and 64-bit versions of Windows. This flag is valid only
for executables (.EXE) and requires .NET Framework 4.5.

Remarks

To set -platform in the Visual Studio IDETo set -platform in the Visual Studio IDE

Specifies which platform version of common language runtime (CLR) can run the output file.

Use the -platform  option to specify the type of processor targeted by the output file.

In general, .NET Framework assemblies written in Visual Basic will run the same regardless of the platform. However, there are some cases that behave
differently on different platforms. These common cases are:

Structures that contain members that change size depending on the platform, such as any pointer type.

Pointer arithmetic that includes constant sizes.

Incorrect platform invoke or COM declarations that use Integer  for handles instead of IntPtr.

Casting IntPtr to Integer .

Using platform invoke or COM interop with components that do not exist on all platforms.

The -platform option will mitigate some issues if you know you have made assumptions about the architecture your code will run on. Specifically:

If you decide to target a 64-bit platform, and the application is run on a 32-bit machine, the error message comes much earlier and is more
targeted at the problem than the error that occurs without using this switch.

If you set the x86  flag on the option and the application is subsequently run on a 64-bit machine, the application will run in the WOW
subsystem instead of running natively.

On a 64-bit Windows operating system:

Assemblies compiled with -platform:x86  will execute on the 32-bit CLR running under WOW64.

Executables compiled with the -platform:anycpu  will execute on the 64-bit CLR.

A DLL compiled with the -platform:anycpu  will execute on the same CLR as the process into which it loaded.

Executables that are compiled with -platform:anycpu32bitpreferred  will execute on the 32-bit CLR.

For more information about how to develop an application to run on a 64-bit version of Windows, see 64-bit Applications.

1. In Solution Explorer, choose the project, open the Project menu, and then click Properties.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/platform.md
https://docs.microsoft.com/dotnet/api/system.intptr
https://docs.microsoft.com/dotnet/api/system.intptr


Example

vbc -platform:x86 myFile.vb  

See Also

2. On the Compile tab, select or clear the Prefer 32-bit check box, or, in the Target CPU  list, choose a value.

For more information, see Compile Page, Project Designer (Visual Basic).

The following example illustrates how to use the -platform  compiler option.

/target (Visual Basic)
Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://docs.microsoft.com/visualstudio/ide/reference/compile-page-project-designer-visual-basic


  

-quiet
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-quiet  

Remarks

Module Module1  
    Sub Main()  
        x()  
    End Sub  
End Module  

C:\projects\vb2.vb(3) : error BC30451: 'x' is not declared. It may be inaccessible due to its protection level.

        x()
        ~

NOTENOTE

Example

vbc -quiet t2.vb  

See Also

Prevents the compiler from displaying code for syntax-related errors and warnings.

By default, -quiet  is not in effect. When the compiler reports a syntax-related error or warning, it also outputs the line from source code. For
applications that parse compiler output, it may be more convenient for the compiler to output only the text of the diagnostic.

In the following example, Module1  outputs an error that includes source code when compiled without -quiet .

Output:

Compiled with -quiet , the compiler outputs only the following:

E:\test\t2.vb(3) : error BC30451: Name 'x' is not declared.

The -quiet  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles T2.vb  and does not display code for syntax-related compiler diagnostics:

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/quiet.md


  

-recurse
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-recurse:[dir\]file  

Arguments

Remarks

NOTENOTE

Example

vbc *.vb  

vbc -target:library -out:Test.ABC.dll -recurse:Test\ABC\*.vb  

See Also

Compiles source-code files in all child directories of either the specified directory or the project directory.

dir

Optional. The directory in which you want the search to begin. If not specified, the search begins in the project directory.

file

Required. The file(s) to search for. Wildcard characters are allowed.

You can use wildcards in a file name to compile all matching files in the project directory without using -recurse . If no output file name is specified, the
compiler bases the output file name on the first input file processed. This is generally the first file in the list of files compiled when viewed alphabetically.
For this reason, it is best to specify an output file using the -out  option.

The -recurse  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following command compiles all Visual Basic files in the current directory.

The following command compiles all Visual Basic files in the Test\ABC  directory and any directories below it, and then generates Test.ABC.dll .

Visual Basic Command-Line Compiler
-out (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/recurse.md


             

-reference (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-reference:fileList  
' -or-  
-r:fileList  

Arguments
TERM DEFINITION

fileList Required. Comma-delimited list of assembly file names. If the file name contains a
space, enclose the name in quotation marks.

Remarks

Example

vbc -reference:metad1.dll,metad2.dll -out:out.exe input.vb  

See Also

Causes the compiler to make type information in the specified assemblies available to the project you are currently compiling.

The file(s) you import must contain assembly metadata. Only public types are visible outside the assembly. The /addmodule option imports metadata
from a module.

If you reference an assembly (Assembly A) which itself references another assembly (Assembly B), you need to reference Assembly B if:

A type from Assembly A inherits from a type or implements an interface from Assembly B.

A field, property, event, or method that has a return type or parameter type from Assembly B is invoked.

Use -libpath to specify the directory in which one or more of your assembly references is located.

For the compiler to recognize a type in an assembly (not a module), it must be forced to resolve the type. One example of how you can do this is to
define an instance of the type. Other ways are available to resolve type names in an assembly for the compiler. For example, if you inherit from a type in
an assembly, the type name then becomes known to the compiler.

The Vbc.rsp response file, which references commonly used .NET Framework assemblies, is used by default. Use -noconfig  if you do not want the
compiler to use Vbc.rsp.

The short form of -reference  is /r .

The following command compiles source file Input.vb  and reference assemblies from Metad1.dll  and Metad2.dll  to produce Out.exe .

Visual Basic Command-Line Compiler
-noconfig
-target (Visual Basic)
Public
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/reference.md


     

-refonly (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-refonly

Remarks

See also

The -refonly option indicates that the primary output of the compilation should be a reference assembly instead of an implementation assembly. The 
-refonly  parameter silently disables outputting PDBs, as reference assemblies cannot be executed.

Every compiler option is available in two forms: -option and /option. The documentation only shows the -option form.

Visual Basic supports the -refout  switch starting with version 15.3.

Reference assemblies are metadata-only assemblies that contain metadata but no implementation code. They include type and member information for
everything except anonymous types. The reason for using throw null  bodies (as opposed to no bodies) is so that PEVerify could run and pass (thus
validating the completeness of the metadata).

Reference assemblies include an assembly-level ReferenceAssembly attribute. This attribute may be specified in source (then the compiler won't need to
synthesize it). Because of this attribute, runtimes will refuse to load reference assemblies for execution (but they can still be loaded in a reflection-only
context). Tools that reflect on assemblies need to ensure they load reference assemblies as reflection-only; otherwise, the runtime throws a
BadImageFormatException.

The -refonly  and -refout  options are mutually exclusive.

-refout
Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/refonly-compiler-option.md
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.referenceassemblyattribute
https://docs.microsoft.com/dotnet/api/system.badimageformatexception


     

-refout (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-refout:filepath

Arguments

Remarks

See Also

The -refout option specifies a file path where the reference assembly should be output.

Every compiler option is available in two forms: -option and /option. The documentation only shows the -option form.

filepath  The path and filename of the reference assembly. It should generally be in a sub-folder of the primary assembly. The recommended
convention (used by MSBuild) is to place the reference assembly in a "ref/" sub-folder relative to the primary assembly. All folders in filepath  must
exist; the compiler does not create them.

Visual Basic supports the -refout  switch starting with version 15.3.

Reference assemblies are metadata-only assemblies that contain metadata but no implementation code. They include type and member information for
everything except anonymous types. Their method bodies are replaced with a single throw null  statement. The reason for using throw null  method
bodies (as opposed to no bodies) is so that PEVerify can run and pass (thus validating the completeness of the metadata).

Reference assemblies include an assembly-level ReferenceAssembly attribute. This attribute may be specified in source (then the compiler won't need to
synthesize it). Because of this attribute, runtimes refuse to load reference assemblies for execution (but they can still be loaded in a reflection-only
context). Tools that reflect on assemblies need to ensure they load reference assemblies as reflection-only; otherwise, the runtime throws a
BadImageFormatException.

The -refout  and -refonly  options are mutually exclusive.

-refonly
Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/refout-compiler-option.md
https://docs.microsoft.com/dotnet/api/system.runtime.compilerservices.referenceassemblyattribute
https://docs.microsoft.com/dotnet/api/system.badimageformatexception


  

-removeintchecks
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-removeintchecks[+ | -]  

Arguments
TERM DEFINITION

+  | - Optional. The -removeintchecks-  option causes the compiler to check all integer
calculations for overflow errors. The default is -removeintchecks- .

Specifying -removeintchecks  or -removeintchecks+  prevents error checking
and can make integer calculations faster. However, without error checking, and if
data type capacities are overflowed, incorrect results may be stored without raising
an error.

TO SET -REMOVEINTCHECKS IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Click the Advanced button.
4. Modify the value of the Remove integer overflow checks box.

Example

vbc -removeintchecks+ test.vb  

See Also

Turns overflow-error checking for integer operations on or off.

The following code compiles Test.vb  and turns off integer overflow-error checking.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/removeintchecks.md


     

-resource (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-resource:filename[,identifier[,public|private]]  
' -or-  
-res:filename[,identifier[,public|private]]  

Arguments
TERM DEFINITION

filename Required. The name of the resource file to embed in the output file. By default, 
filename  is public in the assembly. Enclose the file name in quotation marks (" ")

if it contains a space.

identifier Optional. The logical name for the resource; the name used to load it. The default is
the name of the file. Optionally, you can specify whether the resource is public or
private in the assembly manifest, as with the following: 
-res:filename.res, myname.res, public

Remarks

Example

vbc -res:rf.resource in.vb  

See Also

Embeds a managed resource in an assembly.

Use -linkresource  to link a resource to an assembly without placing the resource file in the output file.

If filename  is a .NET Framework resource file created, for example, by the Resgen.exe (Resource File Generator) or in the development environment, it
can be accessed with members in the System.Resources namespace (see ResourceManager for more information). To access all other resources at run
time, use one of the following methods: GetManifestResourceInfo, GetManifestResourceNames, or GetManifestResourceStream.

The short form of -resource  is -res .

For information about how to set -resource  in the Visual Studio IDE, see Managing Application Resources (.NET).

The following code compiles In.vb  and attaches resource file Rf.resource .

Visual Basic Command-Line Compiler
-win32resource
-linkresource (Visual Basic)
-target (Visual Basic)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/resource.md
http://msdn.microsoft.com/library/8ef159de-b660-4bec-9213-c3fbc4d1c6f4
https://docs.microsoft.com/dotnet/api/system.resources
https://docs.microsoft.com/dotnet/api/system.resources.resourcemanager
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.getmanifestresourceinfo
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.getmanifestresourcenames
https://docs.microsoft.com/dotnet/api/system.reflection.assembly.getmanifestresourcestream
https://docs.microsoft.com/visualstudio/ide/managing-application-resources-dotnet


   

-rootnamespace
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-rootnamespace:namespace  

Arguments
TERM DEFINITION

namespace The name of the namespace in which to enclose all type declarations for the current
project.

Remarks

TO SET -ROOTNAMESPACE IN THE VISUAL STUDIO INTEGRATED DEVELOPMENT ENVIRONMENT

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Application tab.
3. Modify the value in the Root Namespace box.

Example

vbc -rootnamespace:mynamespace in.vb  

See Also

Specifies a namespace for all type declarations.

If you use the Visual Studio executable file (Devenv.exe) to compile a project created in the Visual Studio integrated development environment, use 
-rootnamespace  to specify the value of the RootNamespace property. See Devenv Command Line Switches for more information.

Use the common language runtime MSIL Disassembler ( Ildasm.exe ) to view the namespace names in your output file.

The following code compiles In.vb  and encloses all type declarations in the namespace mynamespace .

Visual Basic Command-Line Compiler
Ildasm.exe (IL Disassembler)
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/rootnamespace.md
https://docs.microsoft.com/dotnet/api/vslangproj80.vbprojectproperties3.rootnamespace
https://docs.microsoft.com/visualstudio/ide/reference/devenv-command-line-switches
https://msdn.microsoft.com/library/f7dy01k1


      

-sdkpath
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-sdkpath:path  

Arguments

Remarks

NOTENOTE

Example

vbc -netcf -sdkpath:"c:\Program Files\Microsoft Visual Studio .NET 2003\CompactFrameworkSDK\v1.0.5000\Windows CE " myfile.vb  

See Also

Specifies the location of mscorlib.dll and Microsoft.VisualBasic.dll.

path

The directory containing the versions of mscorlib.dll and Microsoft.VisualBasic.dll to use for compilation. This path is not verified until it is loaded.
Enclose the directory name in quotation marks (" ") if it contains a space.

This option tells the Visual Basic compiler to load the mscorlib.dll and Microsoft.VisualBasic.dll files from a non-default location. The -sdkpath  option
was designed to be used with -netcf. The .NET Compact Framework uses different versions of these support libraries to avoid the use of types and
language features not found on the devices.

The -sdkpath  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line. The 
-sdkpath  option is set when a Visual Basic device project is loaded.

You can specify that the compiler should compile without a reference to the Visual Basic Runtime Library by using the -vbruntime  compiler option. For
more information, see -vbruntime.

The following code compiles Myfile.vb  with the .NET Compact Framework, using the versions of Mscorlib.dll and Microsoft.VisualBasic.dll found in
the default installation directory of the .NET Compact Framework on the C drive. Typically, you would use the most recent version of the .NET Compact
Framework.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines
-netcf
-vbruntime

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/sdkpath.md


                  

-target (Visual Basic)
6/8/2018 • 4 minutes to read • Edit Online

Syntax
-target:{exe | library | module | winexe | appcontainerexe | winmdobj}  

Remarks

OPTION BEHAVIOR

-target:exe Causes the compiler to create an executable console application.

This is the default option when no -target  option is specified. The executable file
is created with an .exe extension.

Unless otherwise specified with the /out  option, the output file name takes the
name of the input file that contains the Sub Main  procedure.

Only one Sub Main  procedure is required in the source-code files that are
compiled into an .exe file. Use the -main  compiler option to specify which class
contains the Sub Main  procedure.

-target:library Causes the compiler to create a dynamic-link library (DLL).

The dynamic-link library file is created with a .dll extension.

Unless otherwise specified with the -out  option, the output file name takes the
name of the first input file.

When building a DLL, a Sub Main  procedure is not required.

-target:module Causes the compiler to generate a module that can be added to an assembly.

The output file is created with an extension of .netmodule.

The .NET common language runtime cannot load a file that does not have an
assembly. However, you can incorporate such a file into the assembly manifest of
an assembly by using -reference .

When code in one module references internal types in another module, both
modules must be incorporated into an assembly manifest by using -reference .

The -addmodule option imports metadata from a module.

-target:winexe Causes the compiler to create an executable Windows-based application.

The executable file is created with an .exe extension. A Windows-based application
is one that provides a user interface from either the .NET Framework class library or
with the Win32 APIs.

Unless otherwise specified with the -out  option, the output file name takes the
name of the input file that contains the Sub Main  procedure.

Only one Sub Main  procedure is required in the source-code files that are
compiled into an .exe file. In cases where your code has more than one class that
has a Sub Main  procedure, use the -main  compiler option to specify which class
contains the Sub Main  procedure

Specifies the format of compiler output.

The following table summarizes the effect of the -target  option.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/target.md


-target:appcontainerexe Causes the compiler to create an executable Windows-based application that must
be run in an app container. This setting is designed to be used for Windows 8.x
Store applications.

The appcontainerexe setting sets a bit in the Characteristics field of the Portable
Executable file. This bit indicates that the app must be run in an app container.
When this bit is set, an error occurs if the CreateProcess  method tries to launch
the application outside of an app container. Aside from this bit setting, -
target:appcontainerexe is equivalent to -target:winexe.

The executable file is created with an .exe extension.

Unless you specify otherwise by using the -out  option, the output file name
takes the name of the input file that contains the Sub Main  procedure.

Only one Sub Main  procedure is required in the source-code files that are
compiled into an .exe file. If your code contains more than one class that has a 
Sub Main  procedure, use the -main  compiler option to specify which class

contains the Sub Main  procedure

-target:winmdobj Causes the compiler to create an intermediate file that you can convert to a
Windows Runtime binary (.winmd) file. The .winmd file can be consumed by
JavaScript and C++ programs, in addition to managed language programs.

The intermediate file is created with a .winmdobj extension.

Unless you specify otherwise by using the -out  option, the output file name
takes the name of the first input file. A Sub Main  procedure isn’t required.

The .winmdobj file is designed to be used as input for the WinMDExp export tool to
produce a Windows metadata (WinMD) file. The WinMD file has a .winmd extension
and contains both the code from the original library and the WinMD definitions
that JavaScript, C++, and the Windows Runtime use.

OPTION BEHAVIOR

To set -target in the Visual Studio IDETo set -target in the Visual Studio IDE

Example

vbc -target:library in.vb  

See Also

Unless you specify -target:module , -target  causes a .NET Framework assembly manifest to be added to an output file.

Each instance of Vbc.exe produces, at most, one output file. If you specify a compiler option such as -out  or -target  more than one time, the last one
the compiler processes is put into effect. Information about all files in a compilation is added to the manifest. All output files except those created with 
-target:module  contain assembly metadata in the manifest. Use Ildasm.exe (IL Disassembler) to view the metadata in an output file.

The short form of -target  is -t .

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.

2. Click the Application tab.

3. Modify the value in the Application Type box.

The following code compiles in.vb , creating in.dll :

Visual Basic Command-Line Compiler
-main
-out (Visual Basic)
-reference (Visual Basic)
-addmodule
-moduleassemblyname
Assemblies and the Global Assembly Cache
Sample Compilation Command Lines

https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx?id=19509
https://docs.microsoft.com/dotnet/api/microsoft.build.tasks.winmdexp
https://msdn.microsoft.com/library/f7dy01k1


 

-subsystemversion (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
-subsystemversion:major.minor  

ParametersParameters

Remarks

WINDOWS VERSION SUBSYSTEM VERSION

Windows 2000 5.00

Windows XP 5.01

Windows Server 2003 5.02

Windows Vista 6.00

Windows 7 6.01

Windows Server 2008 6.01

Windows 8 6.02

Default values

Setting this option

Specifies the minimum version of the subsystem on which the generated executable file can run, thereby determining the versions of Windows on
which the executable file can run. Most commonly, this option ensures that the executable file can leverage particular security features that aren’t
available with older versions of Windows.

To specify the subsystem itself, use the -target compiler option.

major.minor

The minimum required version of the subsystem, as expressed in a dot notation for major and minor versions. For example, you can specify that an
application can't run on an operating system that's older than Windows 7 if you set the value of this option to 6.01, as the table later in this topic
describes. You must specify the values for major  and minor  as integers.

Leading zeroes in the minor  version don't change the version, but trailing zeroes do. For example, 6.1 and 6.01 refer to the same version, but 6.10
refers to a different version. We recommend expressing the minor version as two digits to avoid confusion.

The following table lists common subsystem versions of Windows.

The default value of the -subsystemversion compiler option depends on the conditions in the following list:

The default value is 6.02 if any compiler option in the following list is set:

-target:appcontainerexe

-target:winmdobj

-platform:arm

The default value is 6.00 if you're using MSBuild, you're targeting .NET Framework 4.5, and you haven't set any of the compiler options that were
specified earlier in this list.

The default value is 4.00 if none of the previous conditions is true.

To set the -subsystemversion compiler option in Visual Studio, you must open the .vbproj file and specify a value for the SubsystemVersion  property in
the MSBuild XML. You can't set this option in the Visual Studio IDE. For more information, see "Default values" earlier in this topic or Common
MSBuild Project Properties.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/subsystemversion.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/target-compiler-option
https://docs.microsoft.com/visualstudio/msbuild/common-msbuild-project-properties


See Also
Visual Basic Command-Line Compiler

MSBuild Properties

https://docs.microsoft.com/visualstudio/msbuild/msbuild-properties


  

-utf8output (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-utf8output[+ | -]  

Arguments

Remarks

NOTENOTE

Example

vbc -utf8output in.vb  

See Also

Displays compiler output using UTF-8 encoding.

+  | -

Optional. The default for this option is -utf8output- , which means compiler output does not use UTF-8 encoding. Specifying -utf8output  is the same
as specifying -utf8output+ .

In some international configurations, compiler output cannot be displayed correctly in the console. In such situations, use -utf8output  and redirect
compiler output to a file.

The -utf8output  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles In.vb  and directs the compiler to display output using UTF-8 encoding.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/utf8output.md


    

-vbruntime
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-vbruntime:{ - | + | * | path }  

Arguments

Remarks

Embedding Visual Basic Runtime core functionality

Specifies that the compiler should compile without a reference to the Visual Basic Runtime Library, or with a reference to a specific runtime library.

-
Compile without a reference to the Visual Basic Runtime Library.

+
Compile with a reference to the default Visual Basic Runtime Library.

*
Compile without a reference to the Visual Basic Runtime Library, and embed core functionality from the Visual Basic Runtime Library into the
assembly.

path

Compile with a reference to the specified library (DLL).

The -vbruntime  compiler option enables you to specify that the compiler should compile without a reference to the Visual Basic Runtime Library. If you
compile without a reference to the Visual Basic Runtime Library, errors or warnings are logged on code or language constructs that generate a call to a
Visual Basic runtime helper. (A Visual Basic runtime helper is a function defined in Microsoft.VisualBasic.dll that is called at runtime to execute a specific
language semantic.)

The -vbruntime+  option produces the same behavior that occurs if no -vbruntime  switch is specified. You can use the -vbruntime+  option to override
previous -vbruntime  switches.

Most objects of the My  type are unavailable when you use the -vbruntime-  or -vbruntime:path  options.

The -vbruntime*  option enables you to compile without a reference to a runtime library. Instead, core functionality from the Visual Basic Runtime
Library is embedded in the user assembly. You can use this option if your application runs on platforms that do not contain the Visual Basic runtime.

The following runtime members are embedded:

Conversions class

AscW(Char) method

AscW(String) method

ChrW(Int32) method

vbBack constant

vbCr constant

vbCrLf constant

vbFormFeed constant

vbLf constant

vbNewLine constant

vbNullChar constant

vbNullString constant

vbTab constant

vbVerticalTab constant

Some objects of the My  type

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/vbruntime.md
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.compilerservices.conversions
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw#Microsoft_VisualBasic_Strings_AscW_System_Char_
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.ascw#Microsoft_VisualBasic_Strings_AscW_System_String_
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.strings.chrw#Microsoft_VisualBasic_Strings_ChrW_System_Int32_
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbback
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcr
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbcrlf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbformfeed
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vblf
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnewline
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnullchar
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbnullstring
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbtab
https://docs.microsoft.com/dotnet/api/microsoft.visualbasic.constants.vbverticaltab


Referencing a specified library

Example

vbc -vbruntime:C:\VBLibraries\CustomVBLibrary.dll  

See Also

If you compile using the -vbruntime*  option and your code references a member from the Visual Basic Runtime Library that is not embedded with the
core functionality, the compiler returns an error that indicates that the member is not available.

You can use the path  argument to compile with a reference to a custom runtime library instead of the default Visual Basic Runtime Library.

If the value for the path  argument is a fully qualified path to a DLL, the compiler will use that file as the runtime library. If the value for the path

argument is not a fully qualified path to a DLL, the Visual Basic compiler will search for the identified DLL in the current folder first. It will then search in
the path that you have specified by using the -sdkpath compiler option. If the -sdkpath  compiler option is not used, the compiler will search for the
identified DLL in the .NET Framework folder ( %systemroot%\Microsoft.NET\Framework\versionNumber ).

The following example shows how to use the -vbruntime  option to compile with a reference to a custom library.

Visual Basic Core – New compilation mode in Visual Studio 2010 SP1
Visual Basic Command-Line Compiler
Sample Compilation Command Lines
-sdkpath

http://blogs.msdn.com/b/vbteam/archive/2011/01/10/vb-core-new-compilation-mode-in-visual-studio-2010-sp1.aspx


  

-verbose
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-verbose[+ | -]  

Arguments

Remarks

NOTENOTE

Example

vbc -verbose in.vb  

See Also

Causes the compiler to produce verbose status and error messages.

+  | -

Optional. Specifying -verbose  is the same as specifying -verbose+ , which causes the compiler to emit verbose messages. The default for this option is 
-verbose- .

The -verbose  option displays information about the total number of errors issued by the compiler, reports which assemblies are being loaded by a
module, and displays which files are currently being compiled.

The -verbose  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles In.vb  and directs the compiler to display verbose status information.

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/verbose.md


   

-warnaserror (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-warnaserror[+ | -][:numberList]  

Arguments
TERM DEFINITION

+ | - Optional. By default, -warnaserror-  is in effect; warnings do not prevent the
compiler from producing an output file. The -warnaserror  option, which is the
same as -warnaserror+ , causes warnings to be treated as errors.

numberList Optional. Comma-delimited list of the warning ID numbers to which the 
-warnaserror  option applies. If no warning ID is specified, the -warnaserror

option applies to all warnings.

Remarks

NOTENOTE

TO SET -WARNASERROR TO TREAT ALL WARNINGS AS ERRORS IN THE VISUAL STUDIO IDE

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Compile tab.
3. Make sure the Disable all warnings check box is unchecked.
4. Check the Treat all warnings as errors check box.

TO SET -WARNASERROR TO TREAT SPECIFIC WARNINGS AS ERRORS IN THE VISUAL STUDIO IDE

1. Have a project selected in Solution Explorer. On the Project menu, click Properties.
2. Click the Compile tab.
3. Make sure the Disable all warnings check box is unchecked.
4. Make sure the Treat all warnings as errors check box is unchecked.
5. Select Error from the Notification column adjacent to the warning that should be treated as an error.

Example

vbc -warnaserror in.vb  

Example

vbc -warnaserror:42024 t2.vb  

Causes the compiler to treat the first occurrence of a warning as an error.

The -warnaserror  option treats all warnings as errors. Any messages that would ordinarily be reported as warnings are instead reported as errors. The
compiler reports subsequent occurrences of the same warning as warnings.

By default, -warnaserror-  is in effect, which causes the warnings to be informational only. The -warnaserror  option, which is the same as 
-warnaserror+ , causes warnings to be treated as errors.

If you want only a few specific warnings to be treated as errors, you may specify a comma-separated list of warning numbers to treat as errors.

The -warnaserror  option does not control how warnings are displayed. Use the -nowarn option to disable warnings.

The following code compiles In.vb  and directs the compiler to display an error for the first occurrence of every warning it finds.

The following code compiles T2.vb  and treats only the warning for unused local variables (42024) as an error.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/warnaserror.md


See Also
Visual Basic Command-Line Compiler
Sample Compilation Command Lines
Configuring Warnings in Visual Basic

https://docs.microsoft.com/visualstudio/ide/configuring-warnings-in-visual-basic


  

-win32icon
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-win32icon:filename  

Arguments
TERM DEFINITION

filename The .ico file to add to your output file. Enclose the file name in quotation marks (" ")
if it contains a space.

Remarks

TO SET -WIN32ICON IN THE VISUAL STUDIO IDE

1. Have a project selected in Solution Explorer. On the Project menu, click Properties. 
2. Click the Application tab.
3. Modify the value in the Icon box.

Example

vbc -win32icon:rf.ico in.vb  

See Also

Inserts an .ico file in the output file. This .ico file represents the output file in File Explorer.

You can create an .ico file with the Microsoft Windows Resource Compiler (RC). The resource compiler is invoked when you compile a Visual C++
program; an .ico file is created from the .rc file. The -win32icon  and -win32resource  options are mutually exclusive.

See -linkresource (Visual Basic) to reference a .NET Framework resource file, or -resource (Visual Basic) to attach a .NET Framework resource file. See -
win32resource to import a .res file.

The following code compiles In.vb  and attaches an .ico file, Rf.ico .

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/win32icon.md


   

-win32manifest (Visual Basic)
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-win32manifest: fileName  

Arguments
TERM DEFINITION

fileName The path of the custom manifest file.

Remarks

NOTENOTE

Example

NOTENOTE

<?xml version="1.0" encoding="utf-8" standalone="yes"?>  
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">  
  <assemblyIdentity version="1.0.0.0" name="MyApplication.app"/>  
  <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">  
    <security>  
      <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">  
        <requestedExecutionLevel level="asInvoker"/>  
      </requestedPrivileges>  
    </security>  
  </trustInfo>  
</assembly>  

Identifies a user-defined Win32 application manifest file to be embedded into a project's portable executable (PE) file.

By default, the Visual Basic compiler embeds an application manifest that specifies a requested execution level of asInvoker. It creates the manifest in the
same folder in which the executable file is built, typically the bin\Debug or bin\Release folder when you use Visual Studio. If you want to supply a
custom manifest, for example to specify a requested execution level of highestAvailable or requireAdministrator, use this option to specify the name of
the file.

This option and the -win32resource option are mutually exclusive. If you try to use both options in the same command line, you will get a build error.

An application that has no application manifest that specifies a requested execution level will be subject to file/registry virtualization under the User
Account Control feature in Windows Vista. For more information about virtualization, see ClickOnce Deployment on Windows Vista.

Your application will be subject to virtualization if either of the following conditions is true:

1. You use the -nowin32manifest  option and you do not provide a manifest in a later build step or as part of a Windows Resource (.res) file by using
the -win32resource  option.

2. You provide a custom manifest that does not specify a requested execution level.

Visual Studio creates a default .manifest file and stores it in the debug and release directories alongside the executable file. You can view or edit the
default app.manifest file by clicking View UAC Settings on the Application tab in the Project Designer. For more information, see Application Page,
Project Designer (Visual Basic).

You can provide the application manifest as a custom post-build step or as part of a Win32 resource file by using the -nowin32manifest  option. Use that
same option if you want your application to be subject to file or registry virtualization on Windows Vista. This will prevent the compiler from creating
and embedding a default manifest in the PE file.

The following example shows the default manifest that the Visual Basic compiler inserts into a PE.

The compiler inserts a standard application name MyApplication.app into the manifest XML. This is a workaround to enable applications to run on Windows Server
2003 Service Pack 3.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/win32manifest.md
https://docs.microsoft.com/visualstudio/deployment/clickonce-deployment-on-windows-vista
https://docs.microsoft.com/visualstudio/ide/reference/application-page-project-designer-visual-basic


See Also
Visual Basic Command-Line Compiler
-nowin32manifest (Visual Basic)



     

-win32resource
5/4/2018 • 2 minutes to read • Edit Online

Syntax
-win32resource:filename  

Arguments

Remarks

NOTENOTE

Example

vbc -win32resource:rf.res in.vb  

See Also

Inserts a Win32 resource file in the output file.

filename

The name of the resource file to add to your output file. Enclose the file name in quotation marks (" ") if it contains a space.

You can create a Win32 resource file with the Microsoft Windows Resource Compiler (RC).

A Win32 resource can contain version or bitmap (icon) information that helps identify your application in File Explorer. If you do not specify 
-win32resource , the compiler generates version information based on the assembly version. The -win32resource  and -win32icon  options are mutually

exclusive.

See -linkresource (Visual Basic) to reference a .NET Framework resource file, or -resource (Visual Basic) to attach a .NET Framework resource file.

The -win32resource  option is not available from within the Visual Studio development environment; it is available only when compiling from the command line.

The following code compiles In.vb  and attaches a Win32 resource file, Rf.res :

Visual Basic Command-Line Compiler
Sample Compilation Command Lines

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/win32resource.md


  

Visual Basic compiler options listed by category
5/4/2018 • 3 minutes to read • Edit Online

Compiler output
OPTION PURPOSE

-nologo Suppresses compiler banner information.

-utf8output Displays compiler output using UTF-8 encoding.

-verbose Outputs extra information during compilation.

-modulename:<string> Specify the name of the source module

-preferreduilang Specify a language for compiler output.

Optimization
OPTION PURPOSE

-filealign Specifies where to align the sections of the output file.

-optimize Enables/disables optimizations.

Output files
OPTION PURPOSE

-doc Process documentation comments to an XML file.

-deterministic Causes the compiler to output an assembly whose binary content is identical
across compilations if inputs are identical.

-netcf Sets the compiler to target the .NET Compact Framework.

-out Specifies an output file.

-refonly Outputs only a reference assembly.

-refout Specifies the output path of a reference assembly.

-target Specifies the format of the output.

.NET assemblies
OPTION PURPOSE

-addmodule Causes the compiler to make all type information from the specified file(s) available
to the project you are currently compiling.

-delaysign Specifies whether the assembly will be fully or partially signed.

-imports Imports a namespace from a specified assembly.

-keycontainer Specifies a key container name for a key pair to give an assembly a strong name.

-keyfile Specifies a file containing a key or key pair to give an assembly a strong name.

The Visual Basic command-line compiler is provided as an alternative to compiling programs from within the Visual Studio integrated development
environment (IDE). The following is a list of the Visual Basic command-line compiler options sorted by functional category.

Every compiler option is available in two forms: -option and /option. The documentation only shows the -option form.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/command-line-compiler/compiler-options-listed-by-category.md
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/preferreduilang-compiler-option


-libpath Specifies the location of assemblies referenced by the -reference option.

-reference Imports metadata from an assembly.

-moduleassemblyname Specifies the name of the assembly that a module will be a part of.

-analyzer Run the analyzers from this assembly (Short form: -a)

-additionalfile Names additional files that don't directly affect code generation but may be used
by analyzers for producing errors or warnings.

OPTION PURPOSE

Debugging/error checking
OPTION PURPOSE

-bugreport Creates a file that contains information that makes it easy to report a bug.

-debug Produces debugging information.

-nowarn Suppresses the compiler's ability to generate warnings.

-quiet Prevents the compiler from displaying code for syntax-related errors and warnings.

-removeintchecks Disables integer overflow checking.

-warnaserror Promotes warnings to errors.

-ruleset:<file> Specify a ruleset file that disables specific diagnostics.

Help
OPTION PURPOSE

-? Displays the compiler options. This command is the same as specifying the -help

option. No compilation occurs.

-help Displays the compiler options. This command is the same as specifying the -?

option. No compilation occurs.

Language
OPTION PURPOSE

-langversion Specify language version: 9|9.0|10|10.0|11|11.0.

-optionexplicit Enforces explicit declaration of variables.

-optionstrict Enforces strict type semantics.

-optioncompare Specifies whether string comparisons should be binary or use locale-specific text
semantics.

-optioninfer Enables the use of local type inference in variable declarations.

Preprocessor
OPTION PURPOSE

-define Defines symbols for conditional compilation.

Resources



OPTION PURPOSE

-linkresource Creates a link to a managed resource.

-resource Embeds a managed resource in an assembly.

-win32icon Inserts an .ico file into the output file.

-win32resource Inserts a Win32 resource into the output file.

Miscellaneous
OPTION PURPOSE

@ (Specify Response File) Specifies a response file.

-baseaddress Specifies the base address of a DLL.

-codepage Specifies the code page to use for all source code files in the compilation.

-errorreport Specifies how the Visual Basic compiler should report internal compiler errors.

-highentropyva Tells the Windows kernel whether a particular executable supports high entropy
Address Space Layout Randomization (ASLR).

-main Specifies the class that contains the Sub Main  procedure to use at startup.

-noconfig Do not compile with Vbc.rsp

-nostdlib Causes the compiler not to reference the standard libraries.

-nowin32manifest Instructs the compiler not to embed any application manifest into the executable
file.

-platform Specifies the processor platform the compiler targets for the output file.

-recurse Searches subdirectories for source files to compile.

-rootnamespace Specifies a namespace for all type declarations.

-sdkpath Specifies the location of Mscorlib.dll and Microsoft.VisualBasic.dll.

-vbruntime Specifies that the compiler should compile without a reference to the Visual Basic
Runtime Library, or with a reference to a specific runtime library.

-win32manifest Identifies a user-defined Win32 application manifest file to be embedded into a
project's portable executable (PE) file.

-parallel[+&#124;-] Specifies whether to use concurrent build (+).

-checksumalgorithm:<alg> Specify the algorithm for calculating the source file checksum stored in PDB.
Supported values are: SHA1 (default) or SHA256.

See Also
Visual Basic Compiler Options Listed Alphabetically
Introduction to the Project Designer
C# Compiler Options Listed Alphabetically
C# Compiler Options Listed by Category

https://msdn.microsoft.com/en-us/library/898dd854-c98d-430c-ba1b-a913ce3c73d7(v=vs.100)
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-by-category


 

.NET Framework Reference Information (Visual Basic)
6/6/2018 • 2 minutes to read • Edit Online

Related Sections

This topic provides links to information about how to work with the .NET Framework class library.

Getting Started
Provides a comprehensive overview of the .NET Framework and links to additional resources.

Class Library Overview
Introduces the classes, interfaces, and value types that help expedite and optimize the development process and provide access to system functionality.

Development Guide
Provides a guide to all key technology areas and tasks for application development, including creating, configuring, debugging, securing, and deploying
your application. This topic also provides information about dynamic programming, interoperability, extensibility, memory management, and threading.

Tools
Describes the tools that you can use to develop, configure, and deploy applications by using .NET Framework technologies.

.NET Framework Samples
Provides links to sample applications that demonstrate .NET Framework technologies.

.NET API Browser
Provides syntax, code examples, and related information for each class in the .NET Framework namespaces.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/net-framework-reference-information.md
http://msdn.microsoft.com/library/177055f8-4a1f-43e7-aee6-995c196079b1
https://docs.microsoft.com/en-us/dotnet/api/index


     

Visual Basic Language Specification
5/4/2018 • 2 minutes to read • Edit Online

See Also

The Visual Basic Language Specification is the authoritative source for answers to all questions about Visual Basic grammar and syntax. It contains
detailed information about the language, including many points not covered in the Visual Basic reference documentation.

The specification is available on the Microsoft Download Center.

This site contains the VB 11 specification. It's built from the Markdown files contained in the dotnet/vblang GitHub repository.

Issues on the specification should be created in the dotnet/vblang repository. Or, if you're interested in fixing any errors you find, you may submit a Pull
Request to the same repository.

Visual Basic Language Reference

N E X T

https://github.com/dotnet/docs/blob/master/docs/visual-basic/reference/language-specification/index.md
http://go.microsoft.com/fwlink/?LinkId=188623
https://docs.microsoft.com/en-us/dotnet/visual-basic/reference/language-specification/introduction
https://github.com/dotnet/vblang/blob/master/spec/README.md
https://github.com/dotnet/vblang/issues
https://github.com/dotnet/vblang/pulls
https://docs.microsoft.com/en-us/dotnet/visual-basic/reference/language-specification/introduction


  

Visual Basic Sample Applications
6/4/2018 • 2 minutes to read • Edit Online

See Also

You can use Visual Studio to download and install samples of full, packaged Visual Basic applications from the MSDN Code Gallery

You can download each sample individually, or you can download a Sample Pack, which contains related samples that share a technology or topic. You’ll
receive a notification when source code changes are published for any sample that you download.

Visual Studio Samples
Visual Basic Programming Guide
Visual Basic

https://github.com/dotnet/docs/blob/master/docs/visual-basic/sample-applications.md
https://code.msdn.microsoft.com
https://code.msdn.microsoft.com/vstudio
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/index


  

Visual Basic Language Walkthroughs
5/4/2018 • 2 minutes to read • Edit Online

Walkthroughs give step-by-step instructions for common scenarios, which makes them a good place to start learning about the product or a particular
feature area.

Writing an Async Program
Shows how to create an asynchronous solution by using Async and Await.

Declaring and Raising Events
Illustrates how events are declared and raised in Visual Basic.

Handling Events
Shows how to handle events using either the standard WithEvents  keyword or the new AddHandler / RemoveHandler  keywords.

Creating and Implementing Interfaces
Shows how interfaces are declared and implemented in Visual Basic.

Defining Classes
Describes how to declare a class and its fields, properties, methods, and events.

Writing Queries in Visual Basic
Demonstrates how you can use Visual Basic language features to write Language-Integrated Query (L INQ) query expressions.

Implementing IEnumerable(Of T) in Visual Basic
Demonstrates how to create a class that implements the IEnumerable(Of String)  interface and a class that implements the IEnumerator(Of String)

interface to read a text file one line at a time.

Calling Windows APIs
Explains how to use Declare  statements and call Windows APIs. Includes information about using attributes to control marshaling for the API call and
how to expose an API call as a method of a class.

Creating COM Objects with Visual Basic
Demonstrates how to create COM objects in Visual Basic, both with and without the COM class template.

Implementing Inheritance with COM Objects
Demonstrates how to use Visual Basic 6.0 to create a COM object containing a class, and then use it as a base class in Visual Basic.

Multithreading
Shows how to create a multithreaded application that searches a text file for occurrences of a word.

Determining Where My.Application.Log Writes Information
Describes the default My.Application.Log  settings and how to determine the settings for your application.

Changing Where My.Application.Log Writes Information
Shows how to override the default My.Application.Log  and My.Log  settings for logging event information and cause the Log  object to write to other
log listeners.

Filtering My.Application.Log Output
Demonstrates how to change the default log filtering for the My.Application.Log  object.

Creating Custom Log Listeners
Demonstrates how to create a custom log listener and configure it to listen to the output of the My.Application.Log  object.

Embedding Types from Managed Assemblies
Describes how to create an assembly and a client program that embeds types from it.

Validating That Passwords Are Complex (Visual Basic)
Demonstrates how to check for strong-password characteristics and update a string parameter with information about which checks a password fails.

Encrypting and Decrypting Strings in Visual Basic
Shows how to use the DESCryptoServiceProvider class to encrypt and decrypt strings.

Manipulating Files and Folders in Visual Basic
Demonstrates how to use Visual Basic functions to determine information about a file, search for a string in a file, and write to a file.

Manipulating Files Using .NET Framework Methods
Demonstrates how to use .NET Framework methods to determine information about a file, search for a string in a file, and write to a file.

Persisting an Object in Visual Basic
Demonstrates how to create a simple object and persist its data to a file.

Test-First Support with the Generate from Usage Feature
Demonstrates how to do test-first development, in which you first write unit tests and then write the source code to make the tests succeed.

https://github.com/dotnet/docs/blob/master/docs/visual-basic/walkthroughs.md
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/async/walkthrough-accessing-the-web-by-using-async-and-await
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/walkthrough-declaring-and-raising-events
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/events/walkthrough-handling-events
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/walkthrough-defining-classes
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/concepts/linq/walkthrough-writing-queries
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/control-flow/walkthrough-implementing-ienumerable-of-t
http://msdn.microsoft.com/library/2cbf5116-8499-4af9-818c-6f7c1c2ad2c9
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-determining-where-my-application-log-writes-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-changing-where-my-application-log-writes-information
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-filtering-my-application-log-output
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/log-info/walkthrough-creating-custom-log-listeners
http://msdn.microsoft.com/library/b28ec92c-1867-4847-95c0-61adfe095e21
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/walkthrough-validating-that-passwords-are-complex
https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/strings/walkthrough-encrypting-and-decrypting-strings
https://docs.microsoft.com/dotnet/api/system.security.cryptography.descryptoserviceprovider
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/walkthrough-manipulating-files-and-directories
https://docs.microsoft.com/en-us/dotnet/visual-basic/developing-apps/programming/drives-directories-files/walkthrough-manipulating-files-by-using-net-framework-methods
http://msdn.microsoft.com/library/cb0a0917-08d5-4578-ad2b-3764ccf6167f
http://msdn.microsoft.com/library/764c17a4-cd95-4c23-bf63-d92d9c5adfb2




   

ML.NET Guide
5/10/2018 • 2 minutes to read • Edit Online

Get started

How the ML.NET guide is organized

API reference

ML.NET is a free, open-source, and cross-platform machine learning framework that enables you to build custom machine learning solutions and
integrate them into your .NET applications. This guide provides many resources about working with ML.NET.

For more information about ML.NET, see Introducing ML.NET: Cross-platform, Proven and Open Source Machine Learning Framework post on the
.NET blog.

To get started with ML.NET, check out the Iris Petal Prediction quickstart or the more in-depth tutorials.

If you are new to machine learning, you can also review the Machine Learning Basics, where you'll find machine learning resources to assist you.

There are several sections in the ML.NET Guide. You can read them in order, or jump directly to what interests you the most.

Tutorials

In this section, you find step-by-step tutorials that guide you through building custom machine learning models for common developer scenarios.

Glossary

Find a list of machine learning terminology and their definitions.

Check out the ML.NET API Reference to see the breadth of APIs available.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/index.md
https://blogs.msdn.microsoft.com/dotnet/2018/05/07/introducing-ml-net-cross-platform-proven-and-open-source-machine-learning-framework/
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet/get-started
https://docs.microsoft.com/dotnet/api/?view=ml-dotnet


  

ML.NET tutorials
7/10/2018 • 2 minutes to read • Edit Online

The following tutorials enable you to understand how to use ML.NET to build custom machine learning solutions and integrate them into your .NET
applications:

Sentiment analysis: demonstrates how to apply a binary classification task using ML.NET.
Taxi fare predictor: demonstrates how to apply a regression task using ML.NET.
Iris clustering: demonstrates how to apply a clustering task using ML.NET.

For more examples that use ML.NET, check the dotnet/machinelearning-samples GitHub repository.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/tutorials/index.md
https://github.com/dotnet/machinelearning-samples


  

Tutorial: Use ML.NET in a sentiment analysis binary classification
scenario
7/11/2018 • 12 minutes to read • Edit Online

NOTENOTE

Sentiment analysis sample overview

Prerequisites

Machine learning workflow

Understand the problemUnderstand the problem

Select the appropriate machine learning task

This topic refers to ML.NET, which is currently in Preview, and material may be subject to change. For more information, visit the ML.NET introduction.

This sample tutorial illustrates using ML.NET to create a sentiment classifier via a .NET Core console application using C# in Visual Studio 2017.

In this tutorial, you learn how to:

Understand the problem
Select the appropriate machine learning task
Prepare your data
Create the learning pipeline
Load a classifier
Train the model
Evaluate the model with a different dataset
Predict the test data outcomes with the model

The sample is a console app that uses ML.NET to train a model that classifies and predicts sentiment as either positive or negative. It also evaluates the
model with a second dataset for quality analysis. The sentiment datasets are from the WikiDetox project.

The Wikipedia detox line test tab separated file (wikipedia-detox-250-line-test.tsv).

Visual Studio 2017 15.6 or later with the ".NET Core cross-platform development" workload installed.

The Wikipedia detox line data tab separated file (wikiPedia-detox-250-line-data.tsv).

This tutorial follows a machine learning workflow that enables the process to move in an orderly fashion.

The workflow phases are as follows:

1. Understand the problem
2. Ingest the data
3. Data preprocess and feature engineering
4. Train and predict the model
5. Evaluate the model
6. Model operationalization

You first need to understand the problem, so you can break it down to parts that can support building and training the model. Breaking the problem
down you to predict and evaluate the results.

The problem for this tutorial is to understand incoming website comment sentiment to take the appropriate action.

You can break down the problem to the sentiment text and sentiment value for the data you want to train the model with, and a predicted sentiment
value that you can evaluate and then use operationally.

You then need to determine the sentiment, which helps you with the machine learning task selection.

With this problem, you know the following facts:

Training data: website comments can be positive or negative (sentiment). Predict the sentiment of a new website comment, either positive or negative,
such as in the following examples:

Please refrain from adding nonsense to Wikipedia.
He is the best, and the article should say that.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/tutorials/sentiment-analysis.md
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://github.com/dotnet/machinelearning/blob/master/test/data/wikipedia-detox-250-line-data.tsv
https://github.com/dotnet/machinelearning/blob/master/test/data/wikipedia-detox-250-line-test.tsv


About the classification taskAbout the classification task

Create a console application

Prepare your dataPrepare your data

Create classes and define pathsCreate classes and define paths

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Models;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;

static readonly string _dataPath = Path.Combine(Environment.CurrentDirectory, "Data", "wikipedia-detox-250-line-data.tsv");
static readonly string _testDataPath = Path.Combine(Environment.CurrentDirectory, "Data", "wikipedia-detox-250-line-test.tsv");
static readonly string _modelpath = Path.Combine(Environment.CurrentDirectory, "Data", "Model.zip");

The classification machine learning task is best suited for this scenario.

Classification is a machine learning task that uses data to determine the category, type, or class of an item or row of data. For example, you can use
classification to:

Identify sentiment as positive or negative.
Classify email as spam, junk, or good.
Determine whether a patient's lab sample is cancerous.
Categorize customers by their propensity to respond to a sales campaign.

Classification tasks are frequently one of the following types:

Binary: either A or B.
Multiclass: multiple categories that can be predicted by using a single model.

1. Open Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project* dialog, select the Visual C# node followed by
the .NET Core node. Then select the Console App (.NET Core) project template. In the Name text box, type "SentimentAnalysis" and then
select the OK button.

2. Create a directory named Data in your project to save your data set files:

In Solution Explorer, right-click on your project and select Add > New Folder. Type "Data" and hit Enter.

3. Install the Microsoft.ML NuGet Package:

In Solution Explorer, right-click on your project and select Manage NuGet Packages. Choose "nuget.org" as the Package source, select the
Browse tab, search for Microsoft.ML, select that package in the list, and select the Install button. Select the OK button on the Preview
Changes dialog and then select the I Accept button on the License Acceptance dialog if you agree with the license terms for the packages
listed.

1. Download the WikiPedia detox-250-line-data.tsv and the wikipedia-detox-250-line-test.tsv data sets and save them to the Data folder previously
created. The first dataset trains the machine learning model and the second can be used to evaluate how accurate your model is.

2. In Solution Explorer, right-click each of the *.tsv files and select Properties. Under Advanced, change the value of Copy to Output Directory
to Copy if newer.

Add the following additional using  statements to the top of the Program.cs file:

You need to create three global fields to hold the paths to the recently downloaded files:

_dataPath  has the path to the dataset used to train the model.
_testDataPath  has the path to the dataset used to evaluate the model.
_modelPath  has the path where the trained model is saved.

Add the following code to the line right above the Main  method to specify those paths:

You need to create some classes for your input data and predictions. Add a new class to your project:

1. In Solution Explorer, right-click the project, and then select Add > New Item.

2. In the Add New Item dialog box, select Class and change the Name field to SentimentData.cs. Then, select the Add button.

The SentimentData.cs file opens in the code editor. Add the following using  statement to the top of SentimentData.cs:

https://github.com/dotnet/machinelearning/blob/master/test/data/wikipedia-detox-250-line-data.tsv
https://github.com/dotnet/machinelearning/blob/master/test/data/wikipedia-detox-250-line-test.tsv


using Microsoft.ML.Runtime.Api;

public class SentimentData
{
    [Column(ordinal: "0", name: "Label")]
    public float Sentiment;
    [Column(ordinal: "1")]
    public string SentimentText;
}

public class SentimentPrediction
{
    [ColumnName("PredictedLabel")]
    public bool Sentiment;
}

static async Task Main(string[] args) 
{

}

NOTENOTE

var model = await Train();

public static async Task<PredictionModel<SentimentData, SentimentPrediction>> Train()
{

}

Ingest the data

var pipeline = new LearningPipeline();

pipeline.Add(new TextLoader(_dataPath).CreateFrom<SentimentData>());

Remove the existing class definition and add the following code, which has two classes SentimentData  and SentimentPrediction , to the
SentimentData.cs file:

SentimentData  is the input dataset class and has a float  ( Sentiment ) that has a value for sentiment of either positive or negative, and a string for the
comment ( SentimentText ). Both fields have Column  attributes attached to them. This attribute describes the order of each field in the data file, and
which is the Label  field. SentimentPrediction  is the class used for prediction after the model has been trained. It has a single boolean ( Sentiment ) and
a PredictedLabel  ColumnName  attribute. The Label  is used to create and train the model, and it's also used with a second dataset to evaluate the model.
The PredictedLabel  is used during prediction and evaluation. For evaluation, an input with training data, the predicted values, and the model are used.

In the Program.cs file, change the Main  method signature by replacing void  with async Task , as in the following example:

You add async  to Main  with a Task return type because you're saving the model to a zip file later, and the program needs to wait until that external task
completes.

An async main method enables you to use await  in your Main  method. For more information, see the async main topic in the C# programming guide.

Replace the Console.WriteLine("Hello World!")  line with the following code in the Main  method:

The Train  method executes the following tasks:

Loads or ingests the data.
Preprocesses and featurizes the data.
Trains the model.
Predicts sentiment based on test data.

Create the Train  method, just after the Main  method, using the following code:

Initialize a new instance of LearningPipeline that will include the data loading, data processing/featurization, and model. Add the following code as the
first line of the Train  method:

The TextLoader object is the first part of the pipeline, and loads the training file data.

https://docs.microsoft.com/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-command-args/index
https://docs.microsoft.com/dotnet/api/microsoft.ml.learningpipeline
https://docs.microsoft.com/dotnet/api/microsoft.ml.data.textloader


Data preprocess and feature engineering

pipeline.Add(new TextFeaturizer("Features", "SentimentText"));

Choose a learning algorithm

pipeline.Add(new FastTreeBinaryClassifier() { NumLeaves = 5, NumTrees = 5, MinDocumentsInLeafs = 2 });

Train the model

PredictionModel<SentimentData, SentimentPrediction> model =
    pipeline.Train<SentimentData, SentimentPrediction>();

Save and Return the model trained to use for evaluationSave and Return the model trained to use for evaluation

await model.WriteAsync(_modelpath);

return model;

Evaluate the model

public static void Evaluate(PredictionModel<SentimentData, SentimentPrediction> model)
{

}

Evaluate(model);

Pre-processing and cleaning data are important tasks that occur before a dataset is used effectively for machine learning. Raw data is often noisy and
unreliable, and may be missing values. Using data without these modeling tasks can produce misleading results. ML.NET's transform pipelines allow
you to compose a custom set of transforms that are applied to your data before training or testing. The transforms' primary purpose is for data
featurization. A transform pipeline's advantage is that after transform pipeline definition, save the pipeline to apply it to test data.

Apply a TextFeaturizer to convert the SentimentText  column into a numeric vector called Features  used by the machine learning algorithm. This is the
preprocessing/featurization step. Using additional components available in ML.NET can enable better results with your model. Add TextFeaturizer  to
the pipeline as the next line of code:

The FastTreeBinaryClassifier object is a decision tree learner you'll use in this pipeline. Similar to the featurization step, trying out different learners
available in ML.NET and changing their parameters leads to different results. For tuning, you can set hyperparameters like NumTrees, NumLeaves, and
MinDocumentsInLeafs. These hyperparameters are set before anything affects the model and are model-specific. They're used to tune the decision tree
for performance, so larger values can negatively impact performance.

Add the following code to the Train  method:

You train the model, PredictionModel<TInput,TOutput>, based on the dataset that has been loaded and transformed. 
pipeline.Train<SentimentData, SentimentPrediction>()  trains the pipeline (loads the data, trains the featurizer and learner). The experiment is not

executed until this happens.

Add the following code to the Train  method:

At this point, you have a model that can be integrated into any of your existing or new .NET applications. To save your model to a .zip file before
returning, add the following code to the next line in Train :

Return the model at the end of the Train  method.

Now that you've created and trained the model, you need to evaluate it with a different dataset for quality assurance and validation. In the Evaluate

method, the model created in Train  is passed in to be evaluated. Create the Evaluate  method, just after Train , as in the following code:

The Evaluate  method executes the following tasks:

Loads the test dataset.
Creates the binary evaluator.
Evaluates the model and create metrics.
Displays the metrics.

Add a call to the new method from the Main  method, right under the Train  method call, using the following code:

https://docs.microsoft.com/dotnet/api/microsoft.ml.transforms.textfeaturizer
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreebinaryclassifier
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreebinaryclassifier.numtrees#Microsoft_ML_Trainers_FastTreeBinaryClassifier_NumTrees
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreebinaryclassifier.numleaves#Microsoft_ML_Trainers_FastTreeBinaryClassifier_NumLeaves
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreebinaryclassifier.mindocumentsinleafs#Microsoft_ML_Trainers_FastTreeBinaryClassifier_MinDocumentsInLeafs
https://docs.microsoft.com/dotnet/api/microsoft.ml.predictionmodel-2


var testData = new TextLoader(_testDataPath).CreateFrom<SentimentData>();

var evaluator = new BinaryClassificationEvaluator();

BinaryClassificationMetrics metrics = evaluator.Evaluate(model, testData);

Displaying the metrics for model validationDisplaying the metrics for model validation

Console.WriteLine();
Console.WriteLine("PredictionModel quality metrics evaluation");
Console.WriteLine("------------------------------------------");
Console.WriteLine($"Accuracy: {metrics.Accuracy:P2}");
Console.WriteLine($"Auc: {metrics.Auc:P2}");
Console.WriteLine($"F1Score: {metrics.F1Score:P2}");

Predict the test data outcomes with the model

public static void Predict(PredictionModel<SentimentData, SentimentPrediction> model)
{

}

Predict(model);

IEnumerable<SentimentData> sentiments = new[]
{
    new SentimentData
    {
        SentimentText = "Please refrain from adding nonsense to Wikipedia."
    },
    new SentimentData
    {
        SentimentText = "He is the best, and the article should say that."
    }
};

IEnumerable<SentimentPrediction> predictions = model.Predict(sentiments);

Model operationalization: predictionModel operationalization: prediction

The TextLoader class loads the new test dataset with the same schema. You can evaluate the model using this dataset as a quality check. Add the
following code to the Evaluate  method:

The BinaryClassificationEvaluator object computes the quality metrics for the PredictionModel  using the specified dataset. To see those metrics, add the
evaluator as the next line in the Evaluate  method, with the following code:

The BinaryClassificationMetrics contains the overall metrics computed by binary classification evaluators. To display these to determine the quality of
the model, you need to get the metrics first. Add the following code:

Use the following code to display the metrics, share the results, and then act on them:

Create the Predict  method, just after the Evaluate  method, using the following code:

The Predict  method executes the following tasks:

Creates test data.
Predicts sentiment based on test data.
Combines test data and predictions for reporting.
Displays the predicted results.

Add a call to the new method from the Main  method, right under the Evaluate  method call, using the following code:

Add some comments to test the trained model's predictions in the Predict  method:

Now that you have a model, you can use that to predict the positive or negative sentiment of the comment data using the PredictionModel.Predict
method. To get a prediction, use Predict  on new data. Note that the input data is a string and the model includes the featurization. Your pipeline is in
sync during training and prediction. You didn’t have to write preprocessing/featurization code specifically for predictions, and the same API takes care of
both batch and one-time predictions.

Display SentimentText  and corresponding sentiment prediction in order to share the results and act on them accordingly. This is called

https://docs.microsoft.com/dotnet/api/microsoft.ml.data.textloader
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationevaluator
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics
https://docs.microsoft.com/dotnet/api/microsoft.ml.predictionmodel.predict


Console.WriteLine();
Console.WriteLine("Sentiment Predictions");
Console.WriteLine("---------------------");

var sentimentsAndPredictions = sentiments.Zip(predictions, (sentiment, prediction) => (sentiment, prediction));

foreach (var item in sentimentsAndPredictions)
{
    Console.WriteLine($"Sentiment: {item.sentiment.SentimentText} | Prediction: {(item.prediction.Sentiment ? "Positive" : "Negative")}");
}
Console.WriteLine();

Results

PredictionModel quality metrics evaluation
------------------------------------------
Accuracy: 66.67%
Auc: 94.44%
F1Score: 75.00%

Sentiment Predictions
---------------------
Sentiment: Please refrain from adding nonsense to Wikipedia. | Prediction: Negative
Sentiment: He is the best, and the article should say that. | Prediction: Positive

Next steps

operationalization, using the returned data as part of the operational policies. Create a header for the results using the following Console.WriteLine()
code:

Before displaying the predicted results, combine the sentiment and prediction together to see the original comment with its predicted sentiment. The
following code uses the Zip method to make that happen, so add that code next:

Now that you've combined the SentimentText  and Sentiment  into a class, you can display the results using the Console.WriteLine() method:

Because inferred tuple element names are a new feature in C# 7.1 and the default language version of the project is C# 7.0, you need to change the
language version to C# 7.1 or higher. To do that, right-click on the project node in Solution Explorer and select Properties. Select the Build tab and
select the Advanced button. In the dropdown, select C# 7.1 (or a higher version). Select the OK button.

Your results should be similar to the following. As the pipeline processes, it displays messages. You may see warnings, or processing messages. These
have been removed from the following results for clarity.

Congratulations! You've now successfully built a machine learning model for classifying and predicting messages sentiment. You can find the source
code for this tutorial at the dotnet/samples repository.

In this tutorial, you learned how to:

Understand the problem
Select the appropriate machine learning task
Prepare your data
Create the learning pipeline
Load a classifier
Train the model
Evaluate the model with a different dataset
Predict the test data outcomes with the model

Advance to the next tutorial to learn more

Taxi Fare Predictor

https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine
https://docs.microsoft.com/dotnet/api/system.linq.enumerable.zip
https://docs.microsoft.com/dotnet/api/system.console.writeline#System_Console_WriteLine
https://github.com/dotnet/samples/tree/master/machine-learning/tutorials/SentimentAnalysis


  

Tutorial: Use ML.NET to predict New York taxi fares (regression)
7/11/2018 • 12 minutes to read • Edit Online

NOTENOTE

Prerequisites

Understand the problem

Select the appropriate machine learning task

Create a console application

Prepare and understand the data

This topic refers to ML.NET, which is currently in Preview, and material may be subject to change. For more information, see the ML.NET introduction.

This tutorial illustrates how to use ML.NET to build a regression model for predicting New York City taxi fares.

In this tutorial, you learn how to:

Understand the problem
Select the appropriate machine learning task
Prepare and understand the data
Create a learning pipeline
Load and transform the data
Choose a learning algorithm
Train the model
Evaluate the model
Use the model for predictions

Visual Studio 2017 15.6 or later with the ".NET Core cross-platform development" workload installed.

This problem is about predicting the fare of a taxi trip in New York City. At first glance, it may seem to depend simply on the distance traveled. However,
taxi vendors in New York charge varying amounts for other factors such as additional passengers or paying with a credit card instead of cash.

You want to predict the price value, which is a real value, based on the other factors in the data set. To do that you choose a regression machine learning
task.

1. Open Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project dialog, select the Visual C# node followed by
the .NET Core node. Then select the Console App (.NET Core) project template. In the Name text box, type "TaxiFarePrediction" and then
select the OK button.

2. Create a directory named Data in your project to store the data set and model files:

In Solution Explorer, right-click the project and select Add > New Folder. Type "Data" and hit Enter.

3. Install the Microsoft.ML NuGet Package:

In Solution Explorer, right-click the project and select Manage NuGet Packages. Choose "nuget.org" as the Package source, select the
Browse tab, search for Microsoft.ML, select that package in the list, and select the Install button. Select the OK button on the Preview
Changes dialog and then select the I Accept button on the License Acceptance dialog if you agree with the license terms for the packages
listed.

1. Download the taxi-fare-train.csv and the taxi-fare-test.csv data sets and save them to the Data folder you've created at the previous step. We use
these data sets to train the machine learning model and then evaluate how accurate the model is. These data sets are originally from the NYC
TLC Taxi Trip data set.

2. In Solution Explorer, right-click each of the *.csv files and select Properties. Under Advanced, change the value of Copy to Output
Directory to Copy if newer.

3. Open the taxi-fare-train.csv data set and look at column headers in the first row. Take a look at each of the columns. Understand the data and
decide which columns are features and which one is the label.

The label is the identifier of the column you want to predict. The identified features are used to predict the label.

The provided data set contains the following columns:

vendor_id: The ID of the taxi vendor is a feature.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/tutorials/taxi-fare.md
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://github.com/dotnet/machinelearning/blob/master/test/data/taxi-fare-train.csv
https://github.com/dotnet/machinelearning/blob/master/test/data/taxi-fare-test.csv
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml


Create data classes

public class TaxiTrip
{
    [Column("0")]
    public string VendorId;

    [Column("1")]
    public string RateCode;
    
    [Column("2")]
    public float PassengerCount;
    
    [Column("3")]
    public float TripTime;
    
    [Column("4")]
    public float TripDistance;
    
    [Column("5")]
    public string PaymentType;
    
    [Column("6")]
    public float FareAmount;
}

public class TaxiTripFarePrediction
{
    [ColumnName("Score")]
    public float FareAmount;
}

NOTENOTE

Define data and model paths

static readonly string _datapath = Path.Combine(Environment.CurrentDirectory, "Data", "taxi-fare-train.csv");
static readonly string _testdatapath = Path.Combine(Environment.CurrentDirectory, "Data", "taxi-fare-test.csv");
static readonly string _modelpath = Path.Combine(Environment.CurrentDirectory, "Data", "Model.zip");

rate_code: The rate type of the taxi trip is a feature.
passenger_count: The number of passengers on the trip is a feature.
trip_time_in_secs: The amount of time the trip took. You want to predict the fare of the trip before the trip is completed. At that moment you don't
know how long the trip would take. Thus, the trip time is not a feature and you'll exclude this column from the model.
trip_distance: The distance of the trip is a feature.
payment_type: The payment method (cash or credit card) is a feature.
fare_amount: The total taxi fare paid is the label.

Create classes for the input data and the predictions:

1. In Solution Explorer, right-click the project, and then select Add > New Item.
2. In the Add New Item dialog box, select Class and change the Name field to TaxiTrip.cs. Then, select the Add button.

using Microsoft.ML.Runtime.Api;

3. Add the following using  directives to the new file:

Remove the existing class definition and add the following code, which has two classes TaxiTrip  and TaxiTripFarePrediction , to the TaxiTrip.cs file:

TaxiTrip  is the input data class and has definitions for each of the data set columns. Use the Column attribute to specify the indices of the source
columns in the data set.

The TaxiTripFarePrediction  class represents predicted results. It has a single float field, FareAmount , with a Score  ColumnName attribute applied. In
case of the regression task the Score column contains predicted label values.

Use the float  type to represent floating-point values in the input and prediction data classes.

Go back to the Program.cs file and add three fields to hold the paths to the files with data sets and the file to save the model:

_datapath  contains the path to the file with the data set used to train the model.
_testdatapath  contains the path to the file with the data set used to evaluate the model.
_modelpath  contains the path to the file where the trained model is stored.

Add the following code right above the Main  method to specify those paths:

https://docs.microsoft.com/dotnet/api/microsoft.ml.runtime.api.columnattribute
https://docs.microsoft.com/dotnet/api/microsoft.ml.runtime.api.columnnameattribute


using System;
using System.IO;

Create a learning pipeline

using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Models;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;

PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = Train();

public static PredictionModel<TaxiTrip, TaxiTripFarePrediction> Train()
{

}

var pipeline = new LearningPipeline();

Load and transform data

pipeline.Add(new TextLoader(_datapath).CreateFrom<TaxiTrip>(useHeader: true, separator: ','));

pipeline.Add(new ColumnCopier(("FareAmount", "Label")));

pipeline.Add(new CategoricalOneHotVectorizer("VendorId",
                                             "RateCode",
                                             "PaymentType"));

pipeline.Add(new ColumnConcatenator("Features",
                                    "VendorId",
                                    "RateCode",
                                    "PassengerCount",
                                    "TripDistance",
                                    "PaymentType"));

To make the preceding code compile, add the following using  directives at the top of the Program.cs file:

Add the following additional using  directives to the top of the Program.cs file:

In the Main  method, replace the Console.WriteLine("Hello World!")  with the following code:

The Train  method trains the model. Create that method just below Main , using the following code:

The learning pipeline loads all of the data and algorithms necessary to train the model. Add the following code into the Train  method:

The first step to perform is to load data from the training data set. In our case, training data set is stored in the text file with a path defined by the 
_datapath  field. That file has the header with the column names, so the first row should be ignored while loading data. Columns in the file are

separated by the comma (","). Add the following code into the Train  method:

In the next steps we refer to the columns by the names defined in the TaxiTrip  class.

When the model is trained and evaluated, by default, the values in the Label column are considered as correct values to be predicted. As we want to
predict the taxi trip fare, copy the FareAmount  column into the Label column. To do that, use ColumnCopier and add the following code:

The algorithm that trains the model requires numeric features, so you have to transform the categorical data ( VendorId , RateCode , and PaymentType )
values into numbers. To do that, use CategoricalOneHotVectorizer, which assigns different numeric key values to the different values in each of the
columns, and add the following code:

The last step in data preparation combines all of the feature columns into the Features column using the ColumnConcatenator transformation class. By
default, a learning algorithm processes only features from the Features column. Add the following code:

Notice that the TripTime  column, which corresponds to the trip_time_in_secs  column in the data set file, isn't included. You already determined that it
isn't a useful prediction feature.

https://docs.microsoft.com/dotnet/api/microsoft.ml.transforms.columncopier
https://docs.microsoft.com/dotnet/api/microsoft.ml.transforms.categoricalonehotvectorizer
https://docs.microsoft.com/dotnet/api/microsoft.ml.transforms.columnconcatenator


NOTENOTE

Choose a learning algorithm

pipeline.Add(new FastTreeRegressor());

var pipeline = new LearningPipeline
{
    new TextLoader(_datapath).CreateFrom<TaxiTrip>(useHeader: true, separator: ','),
    new ColumnCopier(("FareAmount", "Label")),
    new CategoricalOneHotVectorizer(
        "VendorId",
        "RateCode",
        "PaymentType"),
    new ColumnConcatenator(
        "Features",
        "VendorId",
        "RateCode",
        "PassengerCount",
        "TripDistance",
        "PaymentType"),
    new FastTreeRegressor()
};

Train the model

PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>();

Save the modelSave the model

await model.WriteAsync(_modelpath);
return model;

public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train()

PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = await Train();

These steps must be added to the pipeline in the order specified above for successful execution.

After adding the data to the pipeline and transforming it into the correct input format, you select a learning algorithm (learner). The learner trains the
model. You chose a regression task for this problem, so you use a FastTreeRegressor learner, which is one of the regression learners provided by
ML.NET.

FastTreeRegressor learner utilizes gradient boosting. Gradient boosting is a machine learning technique for regression problems. It builds each
regression tree in a step-wise fashion. It uses a pre-defined loss function to measure the error in each step and correct for it in the next. The result is a
prediction model that is actually an ensemble of weaker prediction models. For more information about gradient boosting, see Boosted Decision Tree
Regression.

Add the following code into the Train  method following the data processing code added in the previous step:

You added all the preceding steps to the pipeline as individual statements, but C# has a handy collection initialization syntax that makes it simpler to
create and initialize the pipeline. Replace the code you added so far to the Train  method with the following code:

The final step is to train the model. Until this point, nothing in the pipeline has been executed. The pipeline.Train<TInput, TOutput>  method produces
the model that takes in an instance of the TInput  type and outputs an instance of the TOutput  type. Add the following code into the Train  method:

And that's it! You have successfully trained a machine learning model that can predict taxi fares in NYC. Now let's take a look to understand how
accurate the model is and learn how to use it to predict taxi fare values.

At this point, you have a model that can be integrated into any of your existing or new .NET applications. To save the model to a .zip file, add the
following code at the end of the Train  method:

Adding the await  statement to the model.WriteAsync  call means that the Train  method must be changed to an async method that returns a task.
Modify the signature of Train  as shown in the following code:

Changing the return type of the Train  method means you have to add an await  to the code that calls Train  in the Main  method as shown in the
following code:

Using await  in the Main  method means the Main  method must have the async  modifier and return a Task :

https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreeregressor
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.fasttreeregressor
https://docs.microsoft.com/azure/machine-learning/studio-module-reference/boosted-decision-tree-regression


static async Task Main(string[] args)

using System.Threading.Tasks;

Evaluate the model

Evaluate(model);

private static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model)
{

}

var testData = new TextLoader(_testdatapath).CreateFrom<TaxiTrip>(useHeader: true, separator: ',');

var evaluator = new RegressionEvaluator();
RegressionMetrics metrics = evaluator.Evaluate(model, testData);

Console.WriteLine($"Rms = {metrics.Rms}");

Console.WriteLine($"RSquared = {metrics.RSquared}");

Use the model for predictions

You also need to add the following using  directive at the top of the file:

Because the async Main  method is the feature added in C# 7.1 and the default language version of the project is C# 7.0, you need to change the
language version to C# 7.1 or higher. To do that, right-click the project node in Solution Explorer and select Properties. Select the Build tab and select
the Advanced button. In the dropdown, select C# 7.1 (or a higher version). Select the OK button.

Evaluation is the process of checking how well the model predicts label values. It's important that the model makes good predictions on data that was
not used to train the model. One way to do this is to split the data into training and test data sets, as it's done in this tutorial. Now that you've trained the
model on the training data, you can see how well it performs on the test data.

Go back to the Main  method and add the following code beneath the call to the Train method:

The Evaluate  method evaluates the model. To create that method, add the following code below the Train  method:

Add the following code into the Evaluate  method to setup loading of the test data:

Add the following code to evaluate the model and produce the evaluation metrics:

RMS is one of the evaluation metrics of the regression model. The lower it is, the better the model is. Add the following code into the Evaluate  method
to display the RMS value:

RSquared is another evaluation metric of the regression models. RSquared takes values between 0 and 1. The closer its value is to 1, the better the
model is. Add the following code into the Evaluate  method to display the RSquared value:

Create a class to house test data instances:

1. In Solution Explorer, right-click the project, and then select Add > New Item.
2. In the Add New Item dialog box, select Class and change the Name field to TestTrips.cs. Then, select the Add button.

static class TestTrips

3. Modify the class to be static like in the following example:

This tutorial uses one test trip within this class. Later you can add other scenarios to experiment with the model. Add the following code into the 
TestTrips  class:

file:///T:/resources/glossary.html##root-of-mean-squared-error-rmse


internal static readonly TaxiTrip Trip1 = new TaxiTrip
{
    VendorId = "VTS",
    RateCode = "1",
    PassengerCount = 1,
    TripDistance = 10.33f,
    PaymentType = "CSH",
    FareAmount = 0 // predict it. actual = 29.5
};

TaxiTripFarePrediction prediction = model.Predict(TestTrips.Trip1);
Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.FareAmount);

Next steps

This trip's actual fare is 29.5. Use 0 as a placeholder, as the model will predict the fare.

To predict the fare of the specified trip, go back to the Program.cs file and add the following code into the Main  method:

Run the program to see the predicted taxi fare for your test case.

Congratulations! You've now successfully built a machine learning model for predicting taxi trip fares, evaluated its accuracy, and used it to make
predictions. You can find the source code for this tutorial at the dotnet/samples GitHub repository.

In this tutorial, you learned how to:

Understand the problem
Select the appropriate machine learning task
Prepare and understand the data
Create a learning pipeline
Load and transform the data
Choose a learning algorithm
Train the model
Evaluate the model
Use the model for predictions

Advance to the next tutorial to learn more.

Iris clustering

https://github.com/dotnet/samples/tree/master/machine-learning/tutorials/TaxiFarePrediction


  

Tutorial: Use ML.NET to cluster iris flowers (clustering)
7/10/2018 • 8 minutes to read • Edit Online

NOTENOTE

Prerequisites

Understand the problem

Select the appropriate machine learning task

Create a console application

Prepare the data

This topic refers to ML.NET, which is currently in Preview, and material may be subject to change. For more information, see the ML.NET introduction.

This tutorial illustrates how to use ML.NET to build a clustering model for the iris flower data set.

In this tutorial, you learn how to:

Understand the problem
Select the appropriate machine learning task
Prepare the data
Load and transform the data
Choose a learning algorithm
Train the model
Use the model for predictions

Visual Studio 2017 15.6 or later with the ".NET Core cross-platform development" workload installed.

This problem is about dividing the set of iris flowers in different groups based on the flower features. Those features are the length and width of a sepal
and the length and width of a petal. For this tutorial, assume that the type of each flower is unknown. You want to learn the structure of a data set from
the features and predict how a data instance fits this structure.

As you don't know to which group each flower belongs to, you choose the unsupervised machine learning task. To divide a data set in groups in such a
way that elements in the same group are more similar to each other than to those in other groups, use a clustering machine learning task.

1. Open Visual Studio 2017. Select File > New > Project from the menu bar. In the New Project dialog, select the Visual C# node followed by
the .NET Core node. Then select the Console App (.NET Core) project template. In the Name text box, type "IrisClustering" and then select the
OK button.

2. Create a directory named Data in your project to store the data set and model files:

In Solution Explorer, right-click the project and select Add > New Folder. Type "Data" and hit Enter.

3. Install the Microsoft.ML NuGet package:

In Solution Explorer, right-click the project and select Manage NuGet Packages. Choose "nuget.org" as the Package source, select the
Browse tab, search for Microsoft.ML, select that package in the list, and select the Install button. Select the OK button on the Preview
Changes dialog and then select the I Accept button on the License Acceptance dialog if you agree with the license terms for the packages
listed.

1. Download the iris.data data set and save it to the Data folder you've created at the previous step. For more information about the iris data set,
see the Iris flower data set Wikipedia page and the Iris Data Set page, which is the source of the data set.

2. In Solution Explorer, right-click the iris.data file and select Properties. Under Advanced, change the value of Copy to Output Directory to
Copy if newer.

The iris.data file contains five columns that represent:

sepal length in centimetres
sepal width in centimetres
petal length in centimetres
petal width in centimetres
type of iris flower

For the sake of the clustering example, this tutorial ignores the last column.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/tutorials/iris-clustering.md
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=button+cta&utm_content=download+vs2017
https://github.com/dotnet/machinelearning/blob/master/test/data/iris.data
https://en.wikipedia.org/wiki/Iris_flower_data_set
http://archive.ics.uci.edu/ml/datasets/Iris


Create data classes

public class IrisData
{
    [Column("0")]
    public float SepalLength;

    [Column("1")]
    public float SepalWidth;

    [Column("2")]
    public float PetalLength;

    [Column("3")]
    public float PetalWidth;
}

public class ClusterPrediction
{
    [ColumnName("PredictedLabel")]
    public uint PredictedClusterId;

    [ColumnName("Score")]
    public float[] Distances;
}

NOTENOTE

Define data and model paths

static readonly string _dataPath = Path.Combine(Environment.CurrentDirectory, "Data", "iris.data");
static readonly string _modelPath = Path.Combine(Environment.CurrentDirectory, "Data", "IrisClusteringModel.zip");

using System;
using System.IO;

Create a learning pipeline

Create classes for the input data and the predictions:

1. In Solution Explorer, right-click the project, and then select Add > New Item.
2. In the Add New Item dialog box, select Class and change the Name field to IrisData.cs. Then, select the Add button.

using Microsoft.ML.Runtime.Api;

3. Add the following using  directive to the new file:

Remove the existing class definition and add the following code, which defines the classes IrisData  and ClusterPrediction , to the IrisData.cs file:

IrisData  is the input data class and has definitions for each feature from the data set. Use the Column attribute to specify the indices of the source
columns in the data set file.

The ClusterPrediction  class represents the output of the clustering model applied to an IrisData  instance. Use the ColumnName attribute to bind the 
PredictedClusterId  and Distances  fields to the PredictedLabel and Score columns respectively. In case of the clustering task those columns has the

following meaning:

PredictedLabel column contains the ID of the predicted cluster.
Score column contains an array with squared Euclidean distances to the cluster centroids. The array length is equal to the number of clusters.

Use the float  type to represent floating-point values in the input and prediction data classes.

Go back to the Program.cs file and add two fields to hold the paths to the data set file and to the file to save the model:

_dataPath  contains the path to the file with the data set used to train the model.
_modelPath  contains the path to the file where the trained model is stored.

Add the following code right above the Main  method to specify those paths:

To make the preceding code compile, add the following using  directives at the top of the Program.cs file:

Add the following additional using  directives to the top of the Program.cs file:

https://docs.microsoft.com/dotnet/api/microsoft.ml.runtime.api.columnattribute
https://docs.microsoft.com/dotnet/api/microsoft.ml.runtime.api.columnnameattribute


using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;

PredictionModel<IrisData, ClusterPrediction> model = Train();

private static PredictionModel<IrisData, ClusterPrediction> Train()
{

}

var pipeline = new LearningPipeline();

Load and transform data

pipeline.Add(new TextLoader(_dataPath).CreateFrom<IrisData>(separator: ','));

pipeline.Add(new ColumnConcatenator(
        "Features",
        "SepalLength",
        "SepalWidth",
        "PetalLength",
        "PetalWidth"));

Choose a learning algorithm

pipeline.Add(new KMeansPlusPlusClusterer() { K = 3 });

Train the model

var model = pipeline.Train<IrisData, ClusterPrediction>();
return model;

Save the modelSave the model

await model.WriteAsync(_modelPath);

In the Main  method, replace the Console.WriteLine("Hello World!")  with the following code:

The Train  method trains the model. Create that method just below the Main  method, using the following code:

The learning pipeline loads all of the data and algorithms necessary to train the model. Add the following code into the Train  method:

The first step to perform is to load the training data set. In our case, the training data set is stored in the text file with a path defined by the _dataPath

field. Columns in the file are separated by the comma (","). Add the following code into the Train  method:

The next step is to combine all of the feature columns into the Features column using the ColumnConcatenator transformation class. By default, a
learning algorithm processes only features from the Features column. Add the following code:

After adding the data to the pipeline and transforming it into the correct input format, you select a learning algorithm (learner). The learner trains the
model. ML.NET provides a KMeansPlusPlusClusterer learner that implements k-means algorithm with an improved method for choosing the initial
cluster centroids.

Add the following code into the Train  method following the data processing code added in the previous step:

Use the KMeansPlusPlusClusterer.K property to specify number of clusters. The code above specifies that the data set should be split in three clusters.

The steps added in the preceding sections prepared the pipeline for training, however, none have been executed. The pipeline.Train<TInput, TOutput>

method produces the model that takes in an instance of the TInput  type and outputs an instance of the TOutput  type. Add the following code into the 
Train  method:

At this point, you have a model that can be integrated into any of your existing or new .NET applications. To save your model to a .zip file, add the
following code to the Main  method below the call to the Train  method:

Using await  in the Main  method means the Main  method must have the async  modifier and return a Task :

https://docs.microsoft.com/dotnet/api/microsoft.ml.transforms.columnconcatenator
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.kmeansplusplusclusterer
https://en.wikipedia.org/wiki/K-means_clustering
https://docs.microsoft.com/dotnet/api/microsoft.ml.trainers.kmeansplusplusclusterer.k#Microsoft_ML_Trainers_KMeansPlusPlusClusterer_K


private static async Task Main(string[] args)

using System.Threading.Tasks;

Use the model for predictions

internal static readonly IrisData Setosa = new IrisData
{
    SepalLength = 5.1f,
    SepalWidth = 3.5f,
    PetalLength = 1.4f,
    PetalWidth = 0.2f
};

var prediction = model.Predict(TestIrisData.Setosa);
Console.WriteLine($"Cluster: {prediction.PredictedClusterId}");
Console.WriteLine($"Distances: {string.Join(" ", prediction.Distances)}");

Cluster: 2
Distances: 0.4192338 0.0008847713 0.9660053

Next steps

You also need to add the following using  directive at the top of the Program.cs file:

Because the async Main  method is the feature added in C# 7.1 and the default language version of the project is C# 7.0, you need to change the
language version to C# 7.1 or higher. To do that, right-click the project node in Solution Explorer and select Properties. Select the Build tab and select
the Advanced button. In the dropdown, select C# 7.1 (or a higher version). Select the OK button.

Create the TestIrisData  class to house test data instances:

1. In Solution Explorer, right-click the project, and then select Add > New Item.
2. In the Add New Item dialog box, select Class and change the Name field to TestIrisData.cs. Then, select the Add button.

static class TestIrisData

3. Modify the class to be static like in the following example:

This tutorial introduces one iris data instance within this class. You can add other scenarios to experiment with the model. Add the following code into
the TestIrisData  class:

To find out the cluster to which the specified item belongs to, go back to the Program.cs file and add the following code into the Main  method:

Run the program to see which cluster contains the specified data instance and squared distances from that instance to the cluster centroids. Your results
should be similar to the following. As the pipeline processes, it might display warnings or processing messages. These have been removed from the
following output for clarity.

Congratulations! You've now successfully built a machine learning model for iris clustering and used it to make predictions. You can find the source
code for this tutorial at the dotnet/samples GitHub repository.

In this tutorial, you learned how to:

Understand the problem
Select the appropriate machine learning task
Prepare the data
Load and transform the data
Choose a learning algorithm
Train the model
Use the model for predictions

Check out our GitHub repository to continue learning and find more samples.

dotnet/machinelearning GitHub repository

https://github.com/dotnet/samples/tree/master/machine-learning/tutorials/IrisClustering
https://github.com/dotnet/machinelearning/


 

ML.NET resources
6/6/2018 • 2 minutes to read • Edit Online

The following ML.NET resources may be helpful to build custom AI solutions and integrate them into your .NET applications:

Machine learning glossary: contains definitions of important machine learning terms.
Machine learning basics: provides links to learning resources to get started with machine learning.
Machine learning tasks: describes various machine learning usage scenarios supported by ML.NET.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/resources/index.md


            

  

       

   

 

      

Machine learning glossary
6/15/2018 • 5 minutes to read • Edit Online

Accuracy

Area under the curve (AUC)

Binary classification

Classification

Coefficient of determination

Feature

Feature engineering

F-score

Hyperparameter

Label

Log loss

The following list is a compilation of important machine learning terms that are useful as you build your custom models.

In classification, accuracy is the number of correctly classified items divided by the total number of items in the test set. Ranges from 0 (least accurate)
to 1 (most accurate). Accuracy is one of evaluation metrics of the performance of your model. Consider it in conjunction with precision, recall, and F-
score.

Related ML.NET API: BinaryClassificationMetrics.Accuracy.

In binary classification, an evaluation metric that is the value of the area under the curve that plots the true positives rate (on the y-axis) against the false
positives rate (on the x-axis). Ranges from 0.5 (worst) to 1 (best). Also known as the area under the ROC curve, i.e., receiver operating characteristic
curve. For more information, see the Receiver operating characteristic article on Wikipedia.

Related ML.NET API: BinaryClassificationMetrics.Auc.

A classification case where the label is only one out of two classes. For more information, see the Binary classification section of the Machine learning
tasks topic.

When the data is used to predict a category, supervised machine learning task is called classification. Binary classification refers to predicting only two
categories (for example, classifying an image as a picture of either a 'cat' or a 'dog'). Multiclass classification refers to predicting multiple categories (for
example, when classifying an image as a picture of a specific breed of dog).

In regression, an evaluation metric that indicates how well data fits a model. Ranges from 0 to 1. A value of 0 means that the data is random or
otherwise cannot be fit to the model. A value of 1 means that the model exactly matches the data. This is often referred to as r , R , or r-squared.2 2

Related ML.NET API: RegressionMetrics.RSquared.

A measurable property of the phenomenon being measured, typically a numeric (double) value. Multiple features are referred to as a Feature vector
and typically stored as double[] . Features define the important characteristics of the phenomenon being measured. For more information, see the
Feature article on Wikipedia.

Feature engineering is the process that involves defining a set of features and developing software that produces feature vectors from available
phenomenon data, i.e., feature extraction. For more information, see the Feature engineering article on Wikipedia.

In classification, an evaluation metric that balances precision and recall.

Related ML.NET API: BinaryClassificationMetrics.F1Score.

A parameter of a machine learning algorithm. Examples include the number of trees to learn in a decision forest or the step size in a gradient descent
algorithm. Values of Hyperparameters are set before training the model and govern the process of finding the parameters of the prediction function, for
example, the comparison points in a decision tree or the weights in a linear regression model. For more information, see the Hyperparameter article on
Wikipedia.

The element to be predicted with the machine learning model. For example, the breed of dog or a future stock price.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/resources/glossary.md
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.accuracy#Microsoft_ML_Models_BinaryClassificationMetrics_Accuracy
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.auc#Microsoft_ML_Models_BinaryClassificationMetrics_Auc
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.regressionmetrics.rsquared#Microsoft_ML_Models_RegressionMetrics_RSquared
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Feature_engineering
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.f1score#Microsoft_ML_Models_BinaryClassificationMetrics_F1Score
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)


 

 

 

  

  

     

  

Mean absolute error (MAE)

Model

Multiclass classification

N-gram

Numerical feature vector

Pipeline

Precision

Recall

Regression

Relative absolute error

Relative squared error

Root of mean squared error (RMSE)

Supervised machine learning

In classification, an evaluation metric that characterizes the accuracy of a classifier. The smaller log loss is, the more accurate a classifier is.

Related ML.NET API: BinaryClassificationMetrics.LogLoss.

In regression, an evaluation metric that is the average of all the model errors, where model error is the distance between the predicted label value and
the correct label value.

Related ML.NET API: RegressionMetrics.L1.

Traditionally, the parameters for the prediction function. For example, the weights in a linear regression model or the split points in a decision tree. In
ML.NET, a model contains all the information necessary to predict the label of a domain object (for example, image or text). This means that ML.NET
models include the featurization steps necessary as well as the parameters for the prediction function.

A classification case where the label is one out of three or more classes. For more information, see the Multiclass classification section of the Machine
learning tasks topic.

A feature extraction scheme for text data: any sequence of N words turns into a feature value.

A feature vector consisting only of numerical values. This is similar to double[] .

All of the operations needed to fit a model to a data set. A pipeline consists of data import, transformation, featurization, and learning steps. Once a
pipeline is trained, it turns into a model.

In classification, the precision for a class is the number of items correctly predicted as belonging to that class divided by the total number of items
predicted as belonging to the class.

Related ML.NET API: BinaryClassificationMetrics.NegativePrecision, BinaryClassificationMetrics.PositivePrecision.

In classification, the recall for a class is the number of items correctly predicted as belonging to that class divided by the total number of items that
actually belong to the class.

Related ML.NET API: BinaryClassificationMetrics.NegativeRecall, BinaryClassificationMetrics.PositiveRecall.

A supervised machine learning task where the output is a real value, for example, double. Examples include predicting stock prices. For more
information, see the Regression section of the Machine learning tasks topic.

In regression, an evaluation metric that is the sum of all absolute errors divided by the sum of distances between correct label values and the average of
all correct label values.

In regression, an evaluation metric that is the sum of all squared absolute errors divided by the sum of squared distances between correct label values
and the average of all correct label values.

In regression, an evaluation metric that is the square root of the average of the squares of the errors.

Related ML.NET API: RegressionMetrics.Rms.

A subclass of machine learning in which a desired model predicts the label for yet-unseen data. Examples include classification, regression, and

https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.logloss#Microsoft_ML_Models_BinaryClassificationMetrics_LogLoss
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.regressionmetrics.l1#Microsoft_ML_Models_RegressionMetrics_L1
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.negativeprecision#Microsoft_ML_Models_BinaryClassificationMetrics_NegativePrecision
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.positiveprecision#Microsoft_ML_Models_BinaryClassificationMetrics_PositivePrecision
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.negativerecall#Microsoft_ML_Models_BinaryClassificationMetrics_NegativeRecall
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.binaryclassificationmetrics.positiverecall#Microsoft_ML_Models_BinaryClassificationMetrics_PositiveRecall
https://docs.microsoft.com/dotnet/api/microsoft.ml.models.regressionmetrics.rms#Microsoft_ML_Models_RegressionMetrics_Rms


Training

Transform

Unsupervised machine learning

structured prediction. For more information, see the Supervised learning article on Wikipedia.

The process of identifying a model for a given training data set. For a linear model, this means finding the weights. For a tree, it involves the identifying
the split points.

A pipeline component that transforms data. For example, from text to vector of numbers.

A subclass of machine learning in which a desired model finds hidden (or latent) structure in data. Examples include clustering, topic modeling, and
dimensionality reduction. For more information, see the Unsupervised learning article on Wikipedia.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning


  

Machine learning basics
5/7/2018 • 2 minutes to read • Edit Online

What is machine learning?

Data Science for Beginners videos

This article presents some basic resources to give a quick introduction to machine learning.

Machine learning is a data science technique that allows computers to use existing data to forecast future behaviors, outcomes, and trends. Using
machine learning, computers learn without being explicitly programmed.

Forecasts or predictions from machine learning can make apps and devices smarter. When you shop online, machine learning helps recommend other
products you might like based on what you've purchased. When your credit card is swiped, machine learning compares the transaction to a database of
transactions and helps detect fraud. When your robot vacuum cleaner vacuums a room, machine learning helps it decide whether the job is done.

Get a quick introduction to data science from Data Science for Beginners in five short videos from a top data scientist. These videos are basic but useful,
whether you're interested in doing data science or you work with data scientists.

Video 1: The 5 questions data science answers (5 min 14 sec).

Video 2: Is your data ready for data science? (4 min 56 sec)

Video 3: Ask a question you can answer with data (4 min 17 sec)

Video 4: Predict an answer with a simple model (7 min 42 sec)

Video 5: Copy other people's work to do data science (3 min 18 sec)

https://github.com/dotnet/docs/blob/master/docs/machine-learning/resources/basics.md
https://docs.microsoft.com/azure/machine-learning/studio/data-science-for-beginners-the-5-questions-data-science-answers
https://docs.microsoft.com/azure/machine-learning/studio/data-science-for-beginners-is-your-data-ready-for-data-science
https://docs.microsoft.com/azure/machine-learning/studio/data-science-for-beginners-ask-a-question-you-can-answer-with-data
https://docs.microsoft.com/azure/machine-learning/studio/data-science-for-beginners-predict-an-answer-with-a-simple-model
https://docs.microsoft.com/azure/machine-learning/studio/data-science-for-beginners-copy-other-peoples-work-to-do-data-science


         

Machine learning tasks
6/15/2018 • 3 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Binary classification

Multiclass classification

Regression

NOTENOTE

Clustering

When building a machine learning model, you first need to define what you are hoping to achieve with your data. After, you can pick the right machine
learning task for your situation. The following list describes the different machine learning tasks that you can choose from and some common use cases.

ML.NET is currently in Preview. Not all machine learning tasks are currently supported. To submit a request for a certain task, open an issue in the
dotnet/machinelearning repository.

Currently, ML.NET does not support machine learning tasks with images. Support will be added in future releases.

A supervised machine learning task that is used to predict which of two classes (categories) an instance of data belongs to. The input of a classification
algorithm is a set of labeled examples, where each label is an integer of either 0 or 1. The output of a binary classification algorithm is a classifier, which
you can use to predict the class of new unlabeled instances. Examples of binary classification scenarios include:

Understanding sentiment of Twitter comments as either "positive" or "negative".
Diagnosing whether a patient has a certain disease or not.
Making a decision to mark an email as "spam" or not.

For more information, see the Binary classification article on Wikipedia.

A supervised machine learning task that is used to predict the class (category) of an instance of data. The input of a classification algorithm is a set of
labeled examples. Each label is an integer between 0 and k-1, where k is the number of classes. The output of a classification algorithm is a classifier,
which you can use to predict the class of new unlabeled instances. Examples of multi-class classification scenarios include:

Determining the breed of a dog as a "Siberian Husky", "Golden Retriever", "Poodle", etc.
Understanding movie reviews as "positive", "neutral", or "negative".
Categorizing hotel reviews as "location", "price", "cleanliness", etc.

For more information, see the Multiclass classification article on Wikipedia.

A supervised machine learning task that is used to predict the value of the label from a set of related features. The label can be of any real value and is
not from a finite set of values as in classification tasks. Regression algorithms model the dependency of the label on its related features to determine
how the label will change as the values of the features are varied. The input of a regression algorithm is a set of examples with labels of known values.
The output of a regression algorithm is a function, which you can use to predict the label value for any new set of input features. Examples of regression
scenarios include:

Predicting house prices based on house attributes such as number of bedrooms, location, or size.
Predicting future stock prices based on historical data and current market trends.
Predicting sales of a product based on advertising budgets.

Currently, ML.NET is still building support for regression tasks that involve time series.

An unsupervised machine learning task that is used to group instances of data into clusters that contain similar characteristics. Clustering can also be
used to identify relationships in a dataset that you might not logically derive by browsing or simple observation. The inputs and outputs of a clustering
algorithm depends on the methodology chosen. You can take a distribution, centroid, connectivity, or density-based approach. ML.NET currently
supports a centroid-based approach using K-Means clustering. Examples of clustering scenarios include:

Understanding segments of hotel guests based on habits and characteristics of hotel choices.
Identifying customer segments and demographics to help build targeted advertising campaigns.
Categorizing inventory based on manufacturing metrics.

https://github.com/dotnet/docs/blob/master/docs/machine-learning/resources/tasks.md
https://github.com/dotnet/machinelearning/issues
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification


Anomaly detection (coming soon)

Ranking (coming soon)

Recommendation (coming soon)



                 

Samples and tutorials
6/22/2018 • 4 minutes to read • Edit Online

.NET Core
SamplesSamples

TutorialsTutorials

ASP.NET Core

C# language
SamplesSamples

TutorialsTutorials

The .NET documentation contains a set of samples and tutorials that teach you about .NET. This topic describes how to find, view, and download .NET
Core, ASP.NET Core, and C# samples and tutorials. Find resources to learn the F# programming language on the F# Foundation's site. If you're
interested in exploring C# using an online code editor, start with this interactive tutorial and continue with C# interactive quickstarts. For instructions on
how to view and download sample code, see the Viewing and downloading samples section.

Unit Testing in .NET Core using dotnet test

This guide shows you how to create an ASP.NET Core web app and associated unit tests. It starts by creating a simple web service app and then adds
tests. It continues with creating more tests to guide implementing new features. The completed sample is available in the dotnet/samples repository on
GitHub.

Writing .NET Core console apps using the CLI tools: A step-by-step guide

This guide shows you how to use the .NET Core CLI tooling to build cross-platform console apps. It starts with a basic console app and eventually
spans multiple projects, including testing. You add features step-by-step, building your knowledge as you go. The completed sample is available in the
dotnet/samples repository on GitHub.

Writing Libraries with Cross Platform Tools

This sample covers how to write libraries for .NET using cross-platform CLI tools. These tools provide an efficient and low-level experience that works
across any supported operating system. The completed sample is available in the dotnet/samples repository on GitHub.

See the ASP.NET Core tutorials. Many articles in the ASP.NET Core documentation have links to samples written for them.

Iterators

This sample demonstrates the syntax and features for creating and consuming C# iterators. The completed sample is available in the dotnet/samples
repository on GitHub.

Indexers

This sample demonstrates the syntax and features for C# indexers. The completed sample is available in the dotnet/samples repository on GitHub.

Delegates and Events

This sample demonstrates the syntax and features for C# delegates and events. The completed sample is available in the dotnet/samples repository on
GitHub. A second sample focused on events is also in the same repository.

Expression Trees

This sample demonstrates many of the problems that can be solved by using Expression Trees. The completed sample is available in the dotnet/samples
repository on GitHub.

LINQ Samples

This series of samples demonstrate many of the features of Language Integrated Query (L INQ). The completed sample is available in the
dotnet/samples repository on GitHub.

Console Application

This tutorial demonstrates Console I/O, the structure of a console app, and the basics of the task-based asynchronous programming model. The
completed sample is available in the dotnet/samples repository on GitHub.

REST Client

This tutorial demonstrates web communications, JSON serialization, and object-oriented features of the C# language. The completed sample is
available in the dotnet/samples repository on GitHub.

Working with LINQ

https://github.com/dotnet/docs/blob/master/docs/samples-and-tutorials/index.md
http://fsharp.org/learn.html
https://www.microsoft.com/net/learn/in-browser-tutorial/1
https://github.com/dotnet/samples/tree/master/core/getting-started/unit-testing-using-dotnet-test
https://github.com/dotnet/samples/tree/master/core/console-apps
https://github.com/dotnet/samples/tree/master/framework/libraries/frameworks-library
https://docs.microsoft.com/aspnet/core/tutorials/
https://github.com/dotnet/samples/tree/master/csharp/iterators
https://github.com/dotnet/samples/tree/master/csharp/indexers
https://github.com/dotnet/samples/tree/master/csharp/delegates-and-events
https://github.com/dotnet/samples/tree/master/csharp/events
https://github.com/dotnet/samples/tree/master/csharp/expression-trees
https://github.com/dotnet/samples/tree/master/core/linq/csharp
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-teleprompter
https://github.com/dotnet/samples/tree/master/csharp/getting-started/console-teleprompter
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-webapiclient
https://github.com/dotnet/samples/tree/master/csharp/getting-started/console-webapiclient
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/working-with-linq


 

Deploying to containers

Viewing and downloading samples

This tutorial demonstrates many of the features of L INQ and the language elements that support it. The completed sample is available in the
dotnet/samples repository on GitHub.

Microservices hosted in Docker

This tutorial demonstrates building an ASP.NET Core microservice and hosting it in Docker. The completed sample is available in the dotnet/samples
repository on GitHub.

Getting started with .NET Core on macOS using Visual Studio for Mac

This tutorial shows you how to build a simple .NET Core console app using Visual Studio for Mac.

Building a complete .NET Core solution on macOS using Visual Studio for Mac

This tutorial shows you how to build a complete .NET Core solution that includes a reusable library and unit testing.

Running ASP.NET MVC Applications in Windows Docker Containers

This tutorial demonstrates how to deploy an existing ASP.NET MVC app in a Windows Docker Container. The completed sample is available in the
dotnet/samples repository on GitHub.

Running .NET Framework Console Applications in Windows Containers

This tutorial demonstrates how to deploy an existing console app in a Windows container. The completed sample is available in the dotnet/samples
repository on GitHub.

Many topics show source code and samples that are available for viewing or download from GitHub. To view a sample, just follow the sample link. To
download the code, follow these instructions:

1. Download the repository that contains the sample code by performing one of the following procedures:

2. Navigate within the repository's folders to the sample's location. The relative path to the sample's location appears in your browser's address bar
when you follow the link to the sample.

3. To run a sample, you have several options:

Download a ZIP of the repository to your local system. Un-ZIP the compressed archive.
Fork the repository and clone the fork to your local system. Forking and cloning permits you to make contributions to the documentation by
committing changes to your fork and then creating a pull request for the official docs repository. For more information, see the .NET
Documentation Contributing Guide and the ASP.NET Docs Contributing Guide.
Clone the repository locally. If you clone a docs repository directly to your local system, you won't be able to make commits directly against
the official repository, so you won't be able to make documentation contributions later. Use the fork and clone procedure previously described
if you want to preserve the opportunity to contribute to the documentation later.

Use the dotnet CLI tools: In a console window, navigate to the sample's folder and use dotnet CLI commands.
Use Visual Studio or Visual Studio for Mac: Open the sample by selecting File > Open > Project/Solution from the menu bar, navigate to
the sample project folder, and select the project file (.csproj or .fsproj).
Use Visual Studio Code: Open the sample by selecting File > Open Folder from the menu bar and selecting the sample's project folder.
Use a different IDE that supports .NET Core projects.

https://github.com/dotnet/samples/tree/master/csharp/getting-started/console-linq
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/microservices
https://github.com/dotnet/samples/tree/master/csharp/getting-started/WeatherMicroservice
https://docs.microsoft.com/en-us/dotnet/framework/docker/aspnetmvc
https://github.com/dotnet/samples/tree/master/framework/docker/MVCRandomAnswerGenerator
https://github.com/dotnet/samples/tree/master/framework/docker/ConsoleRandomAnswerGenerator
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/cloning-a-repository/
https://github.com/dotnet/docs/blob/master/CONTRIBUTING.md
https://github.com/aspnet/Docs/blob/master/CONTRIBUTING.md
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/visual-studio-mac/
https://code.visualstudio.com/

	Cover Page
	Welcome
	.NET Guide
	Get Started with .NET
	Tour of .NET
	.NET Architectural Components
	.NET Standard
	What's new in the .NET Standard

	Target Frameworks
	.NET Glossary
	Architecture Guidance
	Architect Modern web applications with ASP.NET Core and Microsoft Azure
	Modernize Existing .NET Applications with Azure cloud and Windows Containers
	Containerized Docker Application Lifecycle with the Microsoft Platform and Tools
	.NET Microservices: Architecture for Containerized .NET Applications
	Serverless apps: Architecture, patterns, and Azure implementation

	Choosing between .NET Core and .NET Framework for server apps
	What is "managed code"?
	Automatic Memory Management

	Common Language Runtime (CLR)
	Language Independence
	Language Independence and Language-Independent Components

	Framework Libraries
	Class Library Overview
	Base Types

	.NET Class libraries
	Analyzers
	API Analyzer
	Portability Analyzer
	Framework Analyzer

	Handling and throwing exceptions
	.NET Assembly File Format
	Garbage Collection
	Generic types
	Delegates and lambdas
	LINQ
	Common Type System & Common Language Specification
	Parallel Processing, Concurrency, and Async
	Asynchronous programming
	Asynchronous programming in depth
	Asynchronous Programming Patterns

	Parallel Programming
	Threading

	Native interoperability
	Collections and Data Structures
	Numerics in .NET
	Dates, times, and time zones
	Events
	Managed Execution Process
	Metadata and Self-Describing Components
	Building Console Applications
	Application Essentials
	File and Stream I/O
	Globalization and Localization
	Attributes
	Framework Design Guidelines
	XML Documents and Data
	Security
	Serialization
	Developing for Multiple Platforms

	.NET Core Guide
	Get started
	Get started with C# and Visual Studio Code
	Build a C# Hello World app with .NET Core in Visual Studio 2017
	Build a Visual Basic Hello World app with .NET Core in Visual Studio 2017
	Build a class library with C# and .NET Core in Visual Studio 2017
	Build a class library with Visual Basic and .NET Core in Visual Studio 2017

	Windows Prerequisites
	macOS Prerequisites
	Linux Prerequisites
	What's new in .NET Core
	What's new in .NET Core 2.1
	What's new in .NET Core 2.0

	Tutorials
	Building a complete .NET Core solution on Windows, using Visual Studio 2017
	Getting started with .NET Core on macOS
	Getting started with .NET Core on macOS using Visual Studio for Mac
	Building a complete .NET Core solution on macOS using Visual Studio for Mac
	Getting started with .NET Core using the CLI tools
	Organizing and testing projects with the .NET Core command line

	Developing Libraries with Cross Platform Tools
	Developing ASP.NET Core applications
	How to Manage Package Dependency Versions for .NET Core 1.0
	Hosting .NET Core from native code
	Create a custom template for dotnet new

	Packages, Metapackages and Frameworks
	Changes in CLI overview
	Dependency management
	Additions to the csproj format

	Migration
	.NET Core 2.0 to 2.1
	Migration to csproj format
	Mapping between project.json and csproj
	Migrating from DNX

	Application Deployment
	Deploy apps with CLI tools
	Deploy apps with Visual Studio
	Creating a NuGet Package with Cross Platform Tools
	Self-contained deployment runtime roll forward
	Runtime package store

	Docker
	Introduction to .NET and Docker
	Learn Docker Basics with .NET Core
	Building Docker Images for .NET Core Applications
	Visual Studio Tools for Docker

	Unit Testing
	C# unit testing with xUnit
	C# unit testing with NUnit
	C# unit testing with MSTest
	F# unit testing with xUnit
	F# unit testing with NUnit
	F# unit testing with MSTest
	VB unit testing with xUnit
	VB unit testing with NUnit
	VB unit testing with MSTest
	Running selective unit tests
	Unit Testing Published Output
	Live unit testing .NET Core projects with Visual Studio

	Versioning
	.NET Core version selection

	Runtime IDentifier catalog
	.NET Core SDK Overview
	.NET Core CLI Tools
	Telemetry
	Global Tools
	Extensibility Model
	Continuous Integration
	Custom templates
	dotnet
	dotnet build
	dotnet build-server
	dotnet clean
	dotnet help
	dotnet install-script
	dotnet migrate
	dotnet msbuild
	dotnet new
	dotnet nuget
	dotnet nuget delete
	dotnet nuget locals
	dotnet nuget push

	dotnet pack
	dotnet publish
	dotnet restore
	dotnet run
	dotnet sln
	dotnet store
	dotnet test
	dotnet tool
	dotnet tool install
	dotnet tool list
	dotnet tool uninstall
	dotnet tool update

	dotnet vstest
	Project modification commands
	References
	dotnet add reference
	dotnet list reference
	dotnet remove reference

	Packages
	dotnet add package
	dotnet remove package


	global.json

	.NET Core Additional Tools
	WCF Web Service Reference Provider
	dotnet-svcutil
	XML Serializer Generator

	Porting from .NET Framework
	Organizing projects for .NET Core
	Analyzing third-party dependencies
	Porting libraries
	Using the Windows Compatibility Pack

	Build .NET Core from source
	.NET Core distribution packaging

	VS 2015/project.json docs

	.NET Framework Guide
	What's New
	Get Started
	Installation guide
	Migration Guide
	.NET Framework on Docker Guide
	Running Console Apps in Containers

	Development Guide
	Application Domains and Assemblies
	Resources in Desktop Apps
	Accessibility
	Data and Modeling
	Client Applications
	Common Client Technologies
	Windows Presentation Foundation
	Windows Forms

	Service-Oriented Applications with WCF
	Windows Workflow Foundation
	Windows Service Applications
	64-bit Applications
	Web Applications with ASP.NET
	Network Programming in the .NET Framework
	Configuring Apps
	Compiling Apps with .NET Native
	Windows Identity Foundation
	Debugging, Tracing, and Profiling
	Deployment
	Performance
	Dynamic Programming
	Managed Extensibility Framework (MEF)
	Add-ins and Extensibility
	Interoperating with Unmanaged Code
	Unmanaged API Reference
	XAML Services

	Tools
	Additional Class Libraries and APIs

	C# Guide
	Get Started
	Quickstarts
	Tutorials
	Tour of C#
	What's new in C#
	C# 7.3
	C# 7.2
	C# 7.1
	C# 7.0
	C# 6
	C# Version History
	Relationships between language and framework

	C# Concepts
	C# Type system
	Namespaces
	Basic Types
	Classes
	Structs
	Tuples
	Deconstructing tuples and other types
	Interfaces
	Methods
	Lambda Expressions
	Properties
	Indexers
	Discards
	Generics
	Iterators
	Delegates & events
	Introduction to Delegates
	System.Delegate and the delegate keyword
	Strongly Typed Delegates
	Common Patterns for Delegates
	Introduction to Events
	Standard .NET event patterns
	The Updated .NET Event Pattern
	Distinguishing Delegates and Events

	Language Integrated Query (LINQ)
	Asynchronous programming
	Pattern Matching
	Reference semantics with value types
	Expression Trees
	Expression Trees Explained
	Framework Types Supporting Expression Trees
	Executing Expressions
	Interpreting Expressions
	Building Expressions
	Translating Expressions
	Summary

	Native interoperability
	Documenting your code
	Versioning

	How To C# Topics
	Parse strings using `String.Split`
	Concatenate strings
	Convert a string to a DateTime
	Search strings
	Modify string contents
	Compare strings

	The .NET Compiler Platform SDK (Roslyn APIs)
	C# Programming Guide
	Language Reference
	Walkthroughs

	F# Guide
	Tour of F#
	Get Started
	Install F#
	Get Started with Visual Studio
	Get Started with Visual Studio for Mac
	Get Started with Visual Studio Code and Ionide
	Get Started with with the .NET Core CLI

	F# style guide
	F# code formatting guidelines
	F# coding conventions
	F# component design guidelines

	Tutorials
	F# Interactive
	Type Providers
	Create a Type Provider
	Type provider Security
	Troubleshooting Type Providers


	Introduction to Functional Programming
	Functions as First-Class Values
	Asynchronous and Concurrent Programming
	Asynchronous Programming


	Using F# on Azure
	Get started with Azure Blob storage using F#
	Get started with Azure File storage using F#
	Get started with Azure Queue storage using F#
	Get started with Azure Table storage using F#
	Package Management for F# Azure Dependencies

	F# Language Reference
	Keyword Reference
	Symbol and Operator Reference
	Arithmetic Operators
	Boolean Operators
	Bitwise Operators
	Nullable Operators

	Functions
	let Bindings
	do Bindings
	Lambda Expressions: the fun keyword
	Recursive Functions: the rec keyword
	Entry Point
	External Functions
	Inline Functions

	Values
	Null Values

	Literals
	F# Types
	Type Inference
	Basic Types
	Unit Type
	Strings
	Tuples
	F# Collection Types
	Lists
	Options
	Results
	Sequences
	Arrays
	Generics
	Automatic Generalization
	Constraints
	Statically Resolved Type Parameters

	Records
	Discriminated Unions
	Enumerations
	Reference Cells
	Type Abbreviations
	Classes
	Structures
	Inheritance
	Interfaces
	Abstract Classes
	Members
	let Bindings in Classes
	do Bindings in Classes
	Properties
	Indexed Properties
	Methods
	Constructors
	Events
	Explicit Fields: The `val` Keyword

	Type Extensions
	Parameters and Arguments
	Operator Overloading
	Flexible Types
	Delegates
	Object Expressions
	Copy and Update Record Expressions
	Casting and Conversions
	Access Control
	Conditional Expressions: if...then...else
	Match Expressions
	Pattern Matching
	Active Patterns
	Loops: for...to Expression
	Loops: for...in Expression
	Loops: while...do Expression
	Assertions
	Exception Handling
	Exception Types
	The try...with Expression
	The try...finally Expression
	The raise Function
	The failwith Function
	The invalidArg Function

	Attributes
	Resource Management: the use Keyword
	Namespaces
	Modules
	Import Declarations: The open Keyword
	Signature Files
	Units of Measure
	XML Documentation
	Lazy Computations
	Computation Expressions
	Asynchronous Workflows
	Query Expressions
	Code Quotations
	Fixed keyword
	Compiler Directives
	Compiler Options
	F# Interactive Options
	Source Line, File, and Path Identifiers
	Caller Information
	Verbose Syntax
	Code Formatting Guidelines


	Visual Basic Guide
	Get Started
	What's New for Visual Basic
	Visual Basic Breaking Changes in Visual Studio
	Additional Resources for Visual Basic Programmers

	Developing Applications
	Programming in Visual Basic
	Accessing Computer Resources
	Logging Information from the Application
	Accessing User Data
	Accessing Application Forms
	Accessing Application Web Services
	How to: Call a Web Service Asynchronously

	Accessing Application Settings
	Processing Drives, Directories, and Files

	Development with My
	Performing Tasks with My.Application, My.Computer, and My.User
	Default Object Instances Provided by My.Forms and My.WebServices
	Rapid Application Development with My.Resources and My.Settings
	Overview of the Visual Basic Application Model
	How My Depends on Project Type

	Accessing Data
	Creating and Using Components
	Printing and Reporting
	PrintForm Component
	How to: Print a Scrollable Form
	How to: Print Client and Non-Client Areas of a Form
	How to: Print the Client Area of a Form
	How to: Print a Form by Using the PrintForm Component
	Deploying Applications That Reference the PrintForm Component
	Adding Printable Reports to Visual Studio Applications

	Windows Forms Application Basics
	Power Packs Controls
	DataRepeater Control
	Introduction to the DataRepeater Control
	Virtual Mode in the DataRepeater Control
	How to: Display Bound Data in a DataRepeater Control
	How to: Display Unbound Controls in a DataRepeater Control
	How to: Change the Layout of a DataRepeater Control
	How to: Change the Appearance of a DataRepeater Control
	How to: Display Item Headers in a DataRepeater Control
	How to: Disable Adding and Deleting DataRepeater Items
	How to: Search Data in a DataRepeater Control
	How to: Create a Master-Detail Form by Using Two DataRepeater Controls
	Walkthrough: Displaying Data in a DataRepeater Control
	Troubleshooting the DataRepeater Control

	Line and Shape Controls
	Introduction to the Line and Shape Controls
	How to: Draw Lines with the LineShape Control
	How to: Draw Shapes with the OvalShape and RectangleShape Controls
	How to: Enable Tabbing Between Shapes
	Deploying Applications That Reference Power Packs Controls

	Customizing Projects and Extending My with Visual Basic
	Extending the My Namespace
	Packaging and Deploying Custom My Extensions
	Extending the Visual Basic Application Model
	Customizing Which Objects are Available in My


	Programming Concepts
	Assemblies and the Global Assembly Cache
	Asynchronous Programming with Async and Await
	Attributes
	Expression Trees
	Iterators
	Language-Integrated Query (LINQ)
	Object-Oriented Programming
	Reflection
	Serialization
	Threading

	Program Structure and Code Conventions
	Structure of a Program
	Main Procedure
	References and the Imports Statement
	Namespaces
	Naming Conventions
	Coding Conventions
	Conditional Compilation
	How to: Break and Combine Statements in Code
	How to: Collapse and Hide Sections of Code
	How to: Label Statements
	Special Characters in Code
	Comments in Code
	Keywords as Element Names in Code
	Me, My, MyBase, and MyClass
	Limitations

	Language Features
	Arrays
	Collection Initializers
	Constants and Enumerations
	Control Flow
	Data Types
	Declared Elements
	Delegates
	Early and Late Binding
	Error Types
	Events
	Interfaces
	Walkthrough: Creating and Implementing Interfaces

	LINQ
	Objects and Classes
	Operators and Expressions
	Procedures
	Statements
	Strings
	Variables
	XML

	COM Interop
	Introduction to COM Interop
	How to: Reference COM Objects
	How to: Work with ActiveX Controls
	Walkthrough: Calling Windows APIs
	How to: Call Windows APIs
	How to: Call a Windows Function that Takes Unsigned Types
	Walkthrough: Creating COM Objects
	Troubleshooting Interoperability
	COM Interoperability in .NET Framework Applications
	Walkthrough: Implementing Inheritance with COM Objects

	Language Reference
	Configure language version
	Typographic and Code Conventions
	Visual Basic Runtime Library Members
	Keywords
	Arrays Summary
	Collection Object Summary
	Control Flow Summary
	Conversion Summary
	Data Types Summary
	Dates and Times Summary
	Declarations and Constants Summary
	Directories and Files Summary
	Errors Summary
	Financial Summary
	Information and Interaction Summary
	Input and Output Summary
	Math Summary
	Derived Math Functions

	My Reference
	Operators Summary
	Registry Summary
	String Manipulation Summary

	Attributes
	Constants and Enumerations
	Data Type Summary
	Boolean Data Type
	Byte Data Type
	Char Data Type
	Date Data Type
	Decimal Data Type
	Double Data Type
	Integer Data Type
	Long Data Type
	Object Data Type
	SByte Data Type
	Short Data Type
	Single Data Type
	String Data Type
	UInteger Data Type
	ULong Data Type
	User-Defined Data Type
	UShort Data Type

	Directives
	#Const Directive
	#ExternalSource Directive
	#If...Then...#Else Directives
	#Region Directive

	Functions
	Conversion Functions
	Math Functions
	String Functions
	Type Conversion Functions
	Return Values for the CStr Function

	CType Function

	Modifiers
	Ansi
	Assembly
	Async
	Auto
	ByRef
	ByVal
	Default
	Friend
	In (Generic Modifier)
	Iterator
	Key
	Module <keyword>
	MustInherit
	MustOverride
	Narrowing
	NotInheritable
	NotOverridable
	Optional
	Out (Generic Modifier)
	Overloads
	Overridable
	Overrides
	ParamArray
	Partial
	Private
	Protected
	Public
	ReadOnly
	Shadows
	Shared
	Static
	Unicode
	Widening
	WithEvents
	WriteOnly

	Modules
	Nothing
	Objects
	My.Application Object
	My.Application.Info Object
	My.Application.Log Object

	My.Computer Object
	My.Computer.Audio Object
	My.Computer.Clipboard Object
	My.Computer.Clock Object
	My.Computer.FileSystem Object
	My.Computer.FileSystem.SpecialDirectories Object

	My.Computer.Info Object
	My.Computer.Keyboard Object
	My.Computer.Mouse Object
	My.Computer.Network Object
	My.Computer.Ports Object
	My.Computer.Registry Object

	My.Forms Object
	My.Log Object
	My.Request Object
	My.Response Object
	My.Resources Object
	My.Settings Object
	My.User Object
	My.WebServices Object
	TextFieldParser Object

	Operators
	Operator Precedence
	Operators Listed by Functionality
	& Operator
	&= Operator
	* Operator
	*= Operator
	+ Operator
	+= Operator
	= Operator
	- Operator
	-= Operator
	<< Operator
	<<= Operator
	>> Operator
	>>= Operator
	/ Operator
	/= Operator
	\ Operator
	\= Operator
	^ Operator
	^= Operator
	AddressOf Operator
	And Operator
	AndAlso Operator
	Await Operator
	Function Expression
	GetType Operator
	GetXmlNamespace Operator
	If Operator
	Is Operator
	IsFalse Operator
	IsNot Operator
	IsTrue Operator
	Like Operator
	Mod Operator
	Not Operator
	Or Operator
	OrElse Operator
	Sub Expression
	TypeOf Operator
	Xor Operator

	Data Types of Operator Results
	DirectCast Operator
	TryCast Operator
	New Operator
	Arithmetic Operators
	Assignment Operators
	Bit Shift Operators
	Comparison Operators
	Concatenation Operators
	Logical-Bitwise Operators
	Miscellaneous Operators

	Properties
	Queries
	Aggregate Clause
	Distinct Clause
	Equals Clause
	From Clause
	Group By Clause
	Group Join Clause
	Join Clause
	Let Clause
	Order By Clause
	Select Clause
	Skip Clause
	Skip While Clause
	Take Clause
	Take While Clause
	Where Clause

	Statements
	A-E Statements
	AddHandler Statement
	Call Statement
	Class Statement
	Const Statement
	Continue Statement
	Declare Statement
	Delegate Statement
	Dim Statement
	Do...Loop Statement
	Else Statement
	End Statement
	End <keyword> Statement
	Enum Statement
	Erase Statement
	Error Statement
	Event Statement
	Exit Statement

	F-P Statements
	For Each...Next Statement
	For...Next Statement
	Function Statement
	Get Statement
	GoTo Statement
	If...Then...Else Statement
	Implements Statement
	Imports Statement (.NET Namespace and Type)
	Imports Statement (XML Namespace)
	Inherits Statement
	Interface Statement
	Mid Statement
	Module Statement
	Namespace Statement
	On Error Statement
	Operator Statement
	Option <keyword> Statement
	Option Compare Statement
	Option Explicit Statement
	Option Infer Statement
	Option Strict Statement
	Property Statement

	Q-Z Statements
	RaiseEvent Statement
	ReDim Statement
	REM Statement
	RemoveHandler Statement
	Resume Statement
	Return Statement
	Select...Case Statement
	Set Statement
	Stop Statement
	Structure Statement
	Sub Statement
	SyncLock Statement
	Then Statement
	Throw Statement
	Try...Catch...Finally Statement
	Using Statement
	While...End While Statement
	With...End With Statement
	Yield Statement

	Clauses
	Alias Clause
	As Clause
	Handles Clause
	Implements Clause
	In Clause
	Into Clause
	Of Clause

	Declaration Contexts and Default Access Levels
	Attribute List
	Parameter List
	Type List

	XML Comment Tags
	<c>
	<code>
	<example>
	<exception>
	<include>
	<list>
	<para>
	<param>
	<paramref>
	<permission>
	<remarks>
	<returns>
	<see>
	<seealso>
	<summary>
	<typeparam>
	<value>

	XML Axis Properties
	XML Attribute Axis Property
	XML Child Axis Property
	XML Descendant Axis Property
	Extension Indexer Property
	XML Value Property

	XML Literals
	XML Element Literal
	XML Document Literal
	XML CDATA Literal
	XML Comment Literal
	XML Processing Instruction Literal

	Error Messages
	'#ElseIf' must be preceded by a matching '#If' or '#ElseIf'
	'#Region' and '#End Region' statements are not valid within method bodies-multiline lambdas
	'<attribute>' cannot be applied because the format of the GUID '<number>' is not correct
	'<classname>' is not CLS-compliant because the interface '<interfacename>' it implements is not CLS-compliant
	'<elementname>' is obsolete (Visual Basic Warning)
	'<eventname>' is an event, and cannot be called directly
	'<expression>' cannot be used as a type constraint
	'<functionname>' is not declared (Smart Device-Visual Basic Compiler Error)
	'<interfacename>.<membername>' is already implemented by the base class '<baseclassname>'. Re-implementation of <type> assumed
	'<keyword>' is valid only within an instance method
	'<membername>' cannot expose type '<typename>' outside the project through <containertype> '<containertypename>'
	'<membername>' is ambiguous across the inherited interfaces '<interfacename1>' and '<interfacename2>'
	<message> This error could also be due to mixing a file reference with a project reference to assembly '<assemblyname>'
	'<methodname>' has multiple definitions with identical signatures
	'<name>' is ambiguous in the namespace '<namespacename>'
	'<name1>' is ambiguous, imported from the namespaces or types '<name2>'
	<proceduresignature1> is not CLS-compliant because it overloads <proceduresignature2> which differs from it only by array of array parameter types or by the rank of the array parameter types
	<type1>'<typename>' must implement '<membername>' for interface '<interfacename>'
	<type1>'<typename>' must implement '<methodname>' for interface '<interfacename>'
	'<typename>' cannot inherit from <type> '<basetypename>' because it expands the access of the base <type> outside the assembly
	'<typename>' is a delegate type
	'<typename>' is a type and cannot be used as an expression
	A double quote is not a valid comment token for delimited fields where EscapeQuote is set to True
	A property or method call cannot include a reference to a private object, either as an argument or as a return value
	A reference was created to embedded interop assembly '<assembly1>' because of an indirect reference to that assembly from assembly '<assembly2>'
	A startup form has not been specified
	Access of shared member through an instance; qualifying expression will not be evaluated
	'AddressOf' operand must be the name of a method (without parentheses)
	An unexpected error has occurred because an operating system resource required for single instance startup cannot be acquired
	Anonymous type member name can be inferred only from a simple or qualified name with no arguments
	Argument not optional
	Array bounds cannot appear in type specifiers
	Array declared as for loop control variable cannot be declared with an initial size
	Array subscript expression missing
	Arrays declared as structure members cannot be declared with an initial size
	'As Any' is not supported in 'Declare' statements
	Attribute '<attributename>' cannot be applied multiple times
	Automation error
	Bad checksum value, non hex digits or odd number of hex digits
	Bad DLL calling convention
	Bad file mode
	Bad file name or number
	Bad record length
	Because this call is not awaited, the current method continues to run before the call is completed
	Cannot convert anonymous type to expression tree because it contains a field that is used in the initialization of another field
	Cannot create ActiveX Component
	Cannot refer to '<name>' because it is a member of the value-typed field '<name>' of class '<classname>' which has 'System.MarshalByRefObject' as a base class
	Cannot refer to an instance member of a class from within a shared method or shared member initializer without an explicit instance of the class
	Can't create necessary temporary file
	Can't open '<filename>' for writing
	Class '<classname>' cannot be found
	Class does not support Automation or does not support expected interface
	'Class' statement must end with a matching 'End Class'
	Clipboard format is not valid
	Constant expression not representable in type '<typename>'
	Constants must be of an intrinsic or enumerated type, not a class, structure, type parameter, or array type
	Constructor '<name>' cannot call itself
	Copying the value of 'ByRef' parameter '<parametername>' back to the matching argument narrows from type '<typename1>' to type '<typename2>'
	'Custom' modifier is not valid on events declared without explicit delegate types
	Data type(s) of the type parameter(s) cannot be inferred from these arguments
	Declaration expected
	Default property '<propertyname1>' conflicts with default property '<propertyname2>' in '<classname>' and so should be declared 'Shadows'
	Default property access is ambiguous between the inherited interface members '<defaultpropertyname>' of interface '<interfacename1>' and '<defaultpropertyname>' of interface '<interfacename2>'
	Delegate class '<classname>' has no Invoke method, so an expression of this type cannot be the target of a method call
	Derived classes cannot raise base class events
	Device I/O error
	'Dir' function must first be called with a 'PathName' argument
	End of statement expected
	Error creating assembly manifest: <error message>
	Error creating Win32 resources: <error message>
	Error in loading DLL
	Error saving temporary Win32 resource file '<filename>': <error message>
	Errors occurred while compiling the XML schemas in the project
	Evaluation of expression or statement timed out
	Event '<eventname1>' cannot implement event '<eventname2>' on interface '<interface>' because their delegate types '<delegate1>' and '<delegate2>' do not match
	Events cannot be declared with a delegate type that has a return type
	Events of shared WithEvents variables cannot be handled by non-shared methods
	Expression does not produce a value
	Expression has the type '<typename>' which is a restricted type and cannot be used to access members inherited from 'Object' or 'ValueType'
	Expression is a value and therefore cannot be the target of an assignment
	Expression of type <type> is not queryable
	Expression recursively calls the containing property '<propertyname>'
	Expression too complex
	'Extension' attribute can be applied only to 'Module', 'Sub', or 'Function' declarations
	File already open
	File is too large to read into a byte array
	File name or class name not found during Automation operation
	File not found (Visual Basic Run-Time Error)
	First operand in a binary 'If' expression must be nullable or a reference type
	First statement of this 'Sub New' must be a call to 'MyBase.New' or 'MyClass.New' (No Accessible Constructor Without Parameters)
	First statement of this 'Sub New' must be an explicit call to 'MyBase.New' or 'MyClass.New' because the '<constructorname>' in the base class '<baseclassname>' of '<derivedclassname>' is marked obsolete: '<errormessage>'
	'For Each' on type '<typename>' is ambiguous because the type implements multiple instantiations of 'System.Collections.Generic.IEnumerable(Of T)'
	Friend assembly reference <reference> is invalid
	Function '<procedurename>' doesn't return a value on all code paths
	Function evaluation is disabled because a previous function evaluation timed out
	Generic parameters used as optional parameter types must be class constrained
	'Get' accessor of property '<propertyname>' is not accessible
	Handles clause requires a WithEvents variable defined in the containing type or one of its base types
	Identifier expected
	Identifier is too long
	Initializer expected
	Input past end of file
	Internal error happened at <location>
	Implicit conversion from '<typename1>' to '<typename2>' in copying the value of 'ByRef' parameter '<parametername>' back to the matching argument.
	'Is' requires operands that have reference types, but this operand has the value type '<typename>'
	'IsNot' operand of type 'typename' can only be compared to 'Nothing', because 'typename' is a nullable type
	Labels that are numbers must be followed by colons
	Lambda expression will not be removed from this event handler
	Lambda expressions are not valid in the first expression of a 'Select Case' statement
	Late bound resolution; runtime errors could occur
	Latebound overload resolution cannot be applied to '<procedurename>' because the accessing instance is an interface type
	Leading '.' or '!' can only appear inside a 'With' statement
	Line is too long
	'Line' statements are no longer supported (Visual Basic Compiler Error)
	Method does not have a signature compatible with the delegate
	Methods of 'System.Nullable(Of T)' cannot be used as operands of the 'AddressOf' operator
	'Module' statements can occur only at file or namespace level
	Name <membername> is not CLS-compliant
	Name '<name>' is not declared
	Name <namespacename> in the root namespace <fullnamespacename> is not CLS-compliant
	Namespace or type specified in the Imports '<qualifiedelementname>' doesn't contain any public member or cannot be found
	Namespace or type specified in the project-level Imports '<qualifiedelementname>' doesn't contain any public member or cannot be found
	Need property array index
	Nested function does not have a signature that is compatible with delegate '<delegatename>'
	No accessible 'Main' method with an appropriate signature was found in '<name>'
	Non-CLS-compliant <membername> is not allowed in a CLS-compliant interface
	Nullable type inference is not supported in this context
	Number of indices exceeds the number of dimensions of the indexed array
	Object or class does not support the set of events
	Object required
	Object variable or With block variable not set
	Operator declaration must be one of:  +,-,*,-,-,^, &, Like, Mod, And, Or, Xor, Not, <<, >>, =, <>, <, <=, >, >=, CType, IsTrue, IsFalse
	'Optional' expected
	Optional parameters must specify a default value
	Ordinal is not valid
	Out of memory (Visual Basic Compiler Error)
	Out of stack space
	Out of string space
	Overflow (Visual Basic Error)
	Overflow (Visual Basic Run-Time Error)
	Path not found
	Path-File access error
	Permission denied
	Procedure call or argument is not valid
	Property '<propertyname>' doesn't return a value on all code paths
	Property array index is not valid
	Property let procedure not defined and property get procedure did not return an object
	Property not found
	Property or method not found
	Range variable <variable> hides a variable in an enclosing block, a previously defined range variable, or an implicitly declared variable in a query expression
	Range variable name can be inferred only from a simple or qualified name with no arguments
	Reference required to assembly '<assemblyidentity>' containing type '<typename>', but a suitable reference could not be found due to ambiguity between projects '<projectname1>' and '<projectname2>'
	Reference required to assembly '<assemblyname>' containing the base class '<classname>'
	Resume without error
	Return type of function '<procedurename>' is not CLS-compliant
	'Set' accessor of property '<propertyname>' is not accessible
	Some subkeys cannot be deleted
	Statement cannot end a block outside of a line 'If' statement
	Statement is not valid in a namespace
	Statement is not valid inside a method-multiline lambda
	String constants must end with a double quote
	Structure '<structurename>' must contain at least one instance member variable or at least one instance event declaration not marked 'Custom'
	'Sub Main' was not found in '<name>'
	Sub or Function not defined
	Subscript out of range
	TextFieldParser is unable to complete the read operation because maximum buffer size has been exceeded
	The type for variable '<variablename>' will not be inferred because it is bound to a field in an enclosing scope
	This array is fixed or temporarily locked
	This key is already associated with an element of this collection
	Too many files
	Type '<typename>' has no constructors
	Type <typename> is not CLS-compliant
	Type '<typename>' is not defined
	Type arguments could not be inferred from the delegate
	Type mismatch
	Type of '<variablename>' cannot be inferred because the loop bounds and the step variable do not widen to the same type
	Type of member '<membername>' is not CLS-compliant
	Type of optional value for optional parameter <parametername> is not CLS-compliant
	Type of parameter '<parametername>' is not CLS-compliant
	Type parameters cannot be used as qualifiers
	Unable to create strong-named assembly from key file '<filename>': <error>
	Unable to embed resource file '<filename>': <error message>
	Unable to emit assembly: <error message>
	Unable to find required file '<filename>'
	Unable to get serial port names because of an internal system error
	Unable to link to resource file '<filename>': <error message>
	Unable to load information for class '<classname>'
	Unable to write output to memory
	Unable to write temporary file because temporary path is not available
	Unable to write to output file '<filename>': <error>
	Underlying type <typename> of Enum is not CLS-compliant
	Using the iteration variable in a lambda expression may have unexpected results
	Value of type '<typename1>' cannot be converted to '<typename2>'
	Value of type '<typename1>' cannot be converted to '<typename2>' (Multiple file references)
	Value of type 'type1' cannot be converted to 'type2'
	Variable '<variablename>' hides a variable in an enclosing block
	Variable '<variablename>' is used before it has been assigned a value
	Variable uses an Automation type not supported in Visual Basic
	XML axis properties do not support late binding
	XML comment exception must have a 'cref' attribute
	XML entity references are not supported
	XML literals and XML properties are not supported in embedded code within ASP.NET
	XML namespace URI '<uri>' can be bound only to 'xmlns'


	Reference
	Command-Line Compiler
	Building from the Command Line
	How to: Invoke the Command-Line Compiler
	Sample Compilation Command Lines

	Compiler Options Listed Alphabetically
	@ (Specify Response File)
	-addmodule
	-baseaddress
	-bugreport
	-codepage
	-debug
	-define
	-delaysign
	-deterministic
	-doc
	-errorreport
	-filealign
	-help, /?
	-highentropyva
	-imports
	-keycontainer
	-keyfile
	-langversion
	-libpath
	-link
	-linkresource
	-main
	-moduleassemblyname
	-netcf
	-noconfig
	-nologo
	-nostdlib
	-nowarn
	-nowin32manifest
	-optimize
	-optioncompare
	-optionexplicit
	-optioninfer
	-optionstrict
	-out
	-platform
	-quiet
	-recurse
	-reference
	-refonly
	-refout
	-removeintchecks
	-resource
	-rootnamespace
	-sdkpath
	-target
	-subsystemversion
	-utf8output
	-vbruntime
	-verbose
	-warnaserror
	-win32icon
	-win32manifest
	-win32resource

	Compiler Options Listed by Category

	.NET Framework Reference Information
	Language Specification

	Sample Applications
	Walkthroughs

	ML.NET Guide
	Tutorials
	Sentiment analysis (binary classification)
	Taxi fare predictor (regression)
	Iris clustering

	Resources
	Machine learning glossary
	Machine learning basics
	Machine learning tasks


	Samples and Tutorials

