NIRS Box DLL Guide v2 - 28/11/17

e NIRS_OPEN: opens the communication with the NIRS Box. Must be executed first.
Requires as parameter a uint32 pointer to provide the Device Handle, a pointer to an array
composed by 128 uint32 and the length of this array (number of cells) in int32 format (provided as
value). The NIRS_OPEN function returns a “status bit”, equal to 1 if communication opening was
OK, otherwise equal to 0. NOTE: Registers_Out_Length = 128.

PROTOTYPE
uint32 NIRS_OPEN(uint32 *Handle, uint32 Registers_out[], int32
Registers_out_Length);

e NIRS_CLOSE: closes the communication with the NIRS Box. Must be executed as the last function.
Requires as parameter a pointer to uint32 for the Device Handle. Returns a “status bit”, equal to 1
if OK, otherwise equal to 0.

PROTOTYPE
uint32 NIRS_CLOSE(uint32 *Handle);

e NIRS_ON: turns-ON or OFF the overall system (power supplies, SiPM module, thermal controls
and SYNC generator). This function must be executed both after the NIRS_OPEN and before the
NIRS_CLOSE. When turning ON, the clock starts at 40 MHz and the default measurement
integration time is 1 second. Requires as parameters: a pointer to uint32 for the Device Handle,
twice the pointer to the same 128 uint32 array used for the NIRS_OPEN, twice the length of this
array in int32 format (provided as value) and the ON_nOFF flag, as a uint32 value (1 -> the system
is turned ON, O -> the system is turned OFF). The function returns 1 if turning ON/OFF was OK,
otherwise returns 0. NOTE: Registers_In[] e Registers_Out[] are the same pointer.

PROTOTYPE

uint32_t NIRS_ON(uint32_t *Handle, uint32_t Registers_In[],
uint32_t Registers_out[], int32_t Registers_In_Length, int32_t
Registers_oOut_Length, uint32_t ON_nOFF);

e NIRS_LASER: turns-ON or OFF the two laser sources. This function must be executed after the
NIRS_ON (and before calling the same function to turn OFF the system). Requires as parameters: a
pointer to uint32 for the Device Handle, twice the pointer to the same 128 uint32 array used for
the NIRS_OPEN, twice the length of this array in int32 format (provided as value) and the
ON_nOFF flag, as a unint32 value (1 -> lasers are turned ON, O -> lasers are turned OFF). The
function returns 1 if turning ON/OFF was OK, otherwise returns 0.

PROTOTYPE

uint32_t NIRS_LASER(uint32_t *Handle, uint32_t Registers_in[],
uint32_t Registers_out[], int32_t Registers_In_Length, int32_t
Registers_out_Length, uint32_t ON_noOFF);

SPADIab Confidential — NIRS Box DLL v2 User Guide — M. Buttafava, M. Renna 1/3



e NIRS_SET: Allows to change the measurement parameters (SYNC frequency, integration time,
active wavelength). Can be executed at any time after the NIRS_ON, but when a measurement is
NOT running. Requires as parameters: a pointer to uint32 for the Device Handle, twice the pointer
to the same 128 uint32 array, twice its length (in int32 format), the desired SYNC frequency
(expressed in MHz) in uint32 format, the integration time (expressed in milliseconds) in uint32
format and the active wavelength in uint32 format (1 -> Laserl is always active, 2 -> Laser2 is
always active, 3 -> automatic toggling between Laserl and Laser2 during the measurement). The
function returns a “status bit”, equal to 1 if OK, otherwise equal to 0.

PROTOTYPE

uint32 NIRS_SET(uint32 *Handle, uint32 Registers_In[], uint32
Registers_out[], 1nt32 Registers_In_Length, int32
Registers_out_Length, uint32 Frequency, uint32 Time, uint32
wavelength) ;

e NIRS_MEASURE: Turns ON or OFF the measurement (TDC and histograms collection). It can be
used to start and stop the data collection (and the laser toggling, if the automatic wavelength
selection is used). When the measure is turned ON, it is possible to start polling the system (using
the NIRS_ACQ) for valid data. The measurement always starts with Bank 1. Requires as
parameters: a pointer to uint32 for the Device Handle, twice the pointer to the same 128 uint32
array used for the NIRS_OPEN, twice the length of this array in int32 format (provided as value)
and the ON_nOFF flag, as a uint32 value (1 -> measurement is turned ON, 0 -> measurement is
turned OFF). The function returns 1 if turning ON/OFF was OK, otherwise returns 0.

PROTOTYPE

uint32_t NIRS_MEASURE(uint32_t *Handle, uint32_t Registers_1in[],
uint32_t Registers_outl[], int32_t Registers_In_Length, int32_t
Registers_out_Length, uint32_t ON_nOFF)

e NIRS_ACQ: Allows the histogram readout. Must be executed in a polling process. Each time a
measurement is complete, the function returns 1 and corresponding data are available in the
respective variables. It is then possible to read the photon arrival times histogram and data from
the monitoring counters (SYNC events, SiPM counts, TDC conversions) acquired during the
previous integration time interval. Requires as parameters: a pointer to uint32 for the Device
Handle, a pointer to an array composed by 8192 uint32 for the histogram, a pointer to an array
composed by 3 uint32 for the counters, the lengths of these arrays (8192 and 3 respectively) in
int32 format and a pointer to a uint32 for the memory bank readout. The memory bank value
corresponds to the laser used during the downloaded measurement (if the system is in the
automatic wavelength toggling mode) and can be “1” or “2”. The function returns a “status bit” of
the measurement, equal to 1 when new data is acquired, otherwise equal to O.
NOTE: Histogram_length = 8192 and Stats_Length=3.

PROTOTYPE
uint32 NIRS_ACQ(uint32 *Handle, uint32 Histogram[], uint32
Stats[], int32 Histogram_Length, int32 Stats_Length, uint32
*Bank) ;

SPADIab Confidential — NIRS Box DLL v2 User Guide — M. Buttafava, M. Renna 2/3



Application example:

Note:

to change default measurement parameters,
the function NIRS_SET can be called at any
time after the NIRS_ON (but when the
measurement is OFF).

NIRS_LASER(..., 1)

NIRS_MEASURE(..., 1) Starts the measurement

Polling

Meas_done=0

NIRS_ACQ

Meas_done=1

Save the histogram

NIRS_MEASURE(..., 0) End of the measurement

NIRS_LASER(..., 0)

NIRS_ON(..., 0)

NIRS_CLOSE

SPADIab Confidential — NIRS Box DLL v2 User Guide — M. Buttafava, M. Renna 3/3



