
Version 1.0 Page 1 of 16 Texas Instruments Proprietary Information

Document # Author(s) Approval(s)

 Prasad Jondhale

Template Version 0.1

Copyright © 2016-2017 Texas Instruments Incorporated. All rights reserved.

Information in this document is subject to change without notice. Texas Instruments may have pending
patent applications, trademarks, copyrights, or other intellectual property rights covering matter in this
document. The furnishing of this documents is given for usage with Texas Instruments products only and
does not give you any license to the intellectual property that might be contained within this document.
Texas Instruments makes no implied or expressed warranties in this document and is not responsible for
the products based from this document.

User Guide Document

 TFDTP

Design and User Guide

Page 2 o1666

NSP_GMACSW Driver
Design Document

Texas Instruments Proprietary Informati

TABLE OF CONTENTS

1 Introduction ... 3

1.1 Purpose & Scope .. 3

1.2 Terms & Abbreviations .. 3

1.3 Known Issues and Limitations .. 3

1.4 References .. 3

2 TFDTP Protocol Overview ... 5

2.1 TFDTP Packet Structure .. 6

2.2 TFDTP channel ... 6

2.3 TFDTP Receive and Transmit flow control .. 6

3 Software Module Overview... 8

3.1 TFDTP Driver Library .. 8

3.1.1 tfdtp.c & tfdtp.h ... 9
3.1.1.1 TFDTP Receive and Transmit Callbacks ... 9

3.2 TFDTP2NSP Adaptation Library .. 10

3.2.1 tfdtp2nsp.c & tfdtp2nsp.h .. 10

4 TFDTP User Guide ... 11

4.1 TFDTP directory structure .. 11

4.1.1 TFDTP driver .. 11
4.1.2 TFDTP example utils ... 11

4.2 Features Supported .. 12

4.3 Features Not Supported .. 12

4.4 Using TFDTP in RTOS application .. 12

4.4.1 Rebuilding Driver Library with TFDTP .. 12
4.4.2 Enable TFDTP in application ... 12

4.5 Example(s) .. 13

4.5.1 Target side .. 13
4.5.2 Host side ... 13

5 Known issues ... 14

6 Revision History ... 16

Page 3 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

1 Introduction

1.1 Purpose & Scope

This document details the TI Fast Data Transfer Protocol (hereafter called as TFDTP)

stack of NSP_GMACSW software. The TFDTP is custom protocol for high throughput

network traffic on the cores running at comparatively low frequencies which makes

using NDK TCP/IP stack ineffective (reasons explained later in document). The TFDTP

optimizes receive and transmit data path between the GMACSW driver to/from the

application to optimize CPU performance.

This software is supported on the DRA7xx/TDA2xx (Vayu) device, the DRA72x

(J6Eco) device, and the TDA3xx (AdasLow) device. For TDA3xx it is supported on

Cortex-M4 (IPU) core. On Vayu and J6Eco devices, this release supports TFDTP stack

on the ARM Cortex-M4 (IPU) core only, running on Cortex A15 is not supported in

this release.

The TFDTP package is part of NSP_GMACSW software stack, functionality of it is

divided between NDK2NSP adaptation layer, TFDTP2NSP adaptation layer and TFDTP

application stack library.

a) TFDTP Receive:

Though TFDTP doesn’t use any of NDK stack functionality in the receive

operation, use of NDK2NSP adaptation layer is needed for enabling

simultaneous traffic of TFDTP along with NDK. TFDTP uses NDK2NSP

adaptation layer for communicating with GMACSW driver library during

receive operation. Channel 0 of CPDMA is shared for receive traffic by TFDTP

& NDK.

b) TFDTP Transmit

TFDTP transmit library uses separate adaptation layer TFDTP2NSP for

transmit operation. This is achieved by using separate transmit channel for

TFDTP transmit. TX Channel 0 is used by NDK2NSP and TX channel 1 is used

by TFDTP2NSP layer.

The TFDTP stack is transparent to the NDK. Backward compatibility is maintained

with NSP/NDK. TFDTP and NDK can co-exists and run concurrently.

1.2 Terms & Abbreviations

TFDTP TI Fast Data Transfer Protocol

TFDTP2NSP Adaptation layer between TFDTP & GMACSW in

NSP_GMACSW software.

NDK2NSP Adaptation layer between NDK & GMACSW in NSP_GMACSW

software

1.3 Known Issues and Limitations

1.4 References

1. TDA2x TRM, Section 22.8 Device Technical Reference Manual

2. NSP_GMACSW_Design.pdf NSP design document

Page 4 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

3. spru524i.pdf TI Network Developer's Kit (NDK) v2.24

Reference Guide

Page 5 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

2 TFDTP Protocol Overview

The NDK/NSP combination is used to provide network support (TCP/IP, UDP, or Raw

Ethernet) in the TDA devices. Due to internal implementation of NDK APIs and the

protocol stack structure of TCP/IP stack network applications become CPU bound.

This causes very low Ethernet performance on the cores like Cortex-M4 (IPU)

running at low frequencies. The reason for high CPU usage in NDK is due to

a) Internal CPU copy done in the NDK for moving packets into applications

space.

b) The cache operations (cache flush & invalidate) done in NSP driver before

handling packets to NDK.

We can improve Ethernet performance if replace CPU copies in NDK with EDMAs and

remove cache operations which will free CPU for other tasks. Below is summary of

improvements to reduce CPU consumption during N/W activity

a) Use EDMA to copy packets from driver to application buffers

b) Use of EDMA PaRAM linking to copy burst of data in paced receive interrupt

and reduce CPU overheads due to EDMA completion interrupts.

c) Remove cache invalidate operations for receive packet payload data before

submitting packets as CPU not touching data during movement (as using

EDMA).

To achieve this we develop custom protocol using predefined UDP number called as

TFDTP. TFDTP is a simple application protocol on top of NSP UDP to aggregate UDP

packets into larger logical frames for ease of use/porting to customer’s own

tool/application. It bypasses NDK stack for this selected UDP port and all traffic on

this port is handled by TFDTP stack. From host point of view protocol is still standard

UDP/IP.

Figure below shows high level data flow path of TFDTP application.

Figure 1 TFDTP Data Flow

Page 6 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

As shown in figure TFDTP is interface between Ethernet applications and the

underlying UDP socket either on the target side (TDA3) or the host side (PC). TFDTP

frames (TFDTP header+ TFDTP data) are payload of UDP packets.

2.1 TFDTP Packet Structure

TFDTP header format is defined as below

Field Flags Channel
ID

Frame
ID.

Seq. No. Total
Seq. No.

Length Frame
offset

Reserved

Length
(Byte)

4 2 2 2 2 4 4 4

Description of fields in TFDTP packet

a) Flags – TFDTP packet and protocol information flags like start of frame, end of frame

and version info.

SOF 0xXX_XX_BE_XX

EOF 0xXX_XX_XX_EF

VER 0x00_XX_XX_XX

b) Channel Identifier – Channel identifier for TFDTP UDP traffic.

c) Frame id – Frame identifier

d) Sequence no - Sequence no. or packet number within a frame.

e) Total sequence numbers - Total number of packets in frame (max. 64K packets

allowed for max frame size of ~90MB size)

f) Length – Packet length.

g) Frame offset – Packet offset within the frame.

h) Reserved – reserved for future use.

2.2 TFDTP channel

TFDTP channel id is unique identifier in the TFDTP packet which differentiates

multiple traffic flows coming on the TFDTP UDP port. As we use UDP channel in the

IP packet to segregate NDK and TFDTP traffic, host tools can’t use UDP port number

as traffic identifier. Use of common UDP port along with channel id also saves CPU

cycles for NDK traffic due to single check.

Once all TFDTP packets are put delivered to TFDTP receive function we check channel

number to identify receiver binding to channel and use receive buffer accordingly.

Note: channel ID is present in header for future extension and as of now multiple

channels is not supported.

2.3 TFDTP Receive and Transmit flow control

Due to connectionless nature of UDP protocol data is transmitted at maximum

possible speed supported by link and software stack running on the host. This

creates problem receiving such high bandwidth traffic on target EVM which starts

Page 7 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

dropping packets as CPU becomes overloaded. This also applies when target is

transmitting which chokes host.

Flow control is not defined in TFDTP protocol. User should take this into

consideration and implement flow control in the application utilizing TFDTP.

As a reference, a simple busy wait is implemented in TFDTP test server and

host app to avoid high Ethernet traffic which overloads CPU from doing

other tasks. These can be used as reference while developing user

application.

a) Host side flow control

To limit transmit bandwidth in the host app, we add busy wait based on delays

computed at packet level (before each TFDTP packet) for requested throughput.

b) Target side flow control

As adding packet level busy waiting delays in target side blocks CPU for other low

priority tasks and inability to use BIOS task sleep which has 1ms granularity, we

need add delays in application instead of driver APIs (as done in host app).

Also due to fact that Host drops packets due to file writes after whole buffer is

received if we apply delays at buffer level which is much bigger we can overcome

packet drops. The delays are computed similar way as done for host except

applied at app buffer level.

Page 8 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

3 Software Module Overview

This section provides detailed information about each software module of the TFDTP

driver. It also notes the interdependencies between the modules.

As shown in below figure TFDTP comprises basically of 3 modules

a) TFDTP driver library – main driver library for TFDTP stack.

b) TFDTP2NDK adaptation layer – TFDTP transmit layer

c) NDK2NSP packet segregator – TFDTP packet segregator in NDK2NSP adaptation

layer

Figure 3-1Graphical Overview of TFDTP Architecture

3.1 TFDTP Driver Library

This high-level driver library has implementations for TFDTP interface APIs along with

local functions for packet processing. The applications use these interface APIs to

initialize stack and use callback functions during receive/transmit operation.

For further information about the files described below, the user can examine the

source in the packages/ti/nsp/drv/tfdtp path. The public header files tfdtp.c &

tfdtp_types.h can be found at packages/ti/nsp/drv/inc. There is also doxygen-

generated documentation in HTML format located at docs/gmacsw/html/index.html

(it is also linked from the release notes).

Page 9 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

3.1.1 tfdtp.c & tfdtp.h

This module implements the top-level TFDTP interface; defining methods for starting

and stopping the driver, submitting receive/transfer buffers, as well as interacting

with it via callback functions.

As shown in Figure-2.1 we use NDK2NSP layer for the receive operation. The reason

for using NDK2NSP layer is shared CPDMA channel (channel 0) for NDK and TFDTP

traffic. As without VLAN priority tags we can’t segregate these traffics in the

hardware and therefore both is received on the common channel. We do traffic

segregation in the software and put packets in different queues as would have done

by the hardware. This has some software overhead which may reduce NDK

throughput if used along with TFDTP.

To use TFDTP alongside NDK and also use EDMA for copying TFDTP traffic, we need

to have common Rx packet structure. Also for receive operations we have use NDK

PBM buffers so it can be passed to NDK if packet belongs to it. Now for EDMA

chaining we have to associate PaRAMs to each packets so when packet is received

for the TFDTP we can just modify link field instead of modifying each field in the

PaRAM memory.

Now as we are using shared receive packets & same CPDMA channel and it is opened

during NDK initialization we need to make sure that TFDTP is initialized during NDK

init too. For this reason we call TFDTP_initStack() from NDK2NSP_open(), instead of

application calling it, so as to initialize TFDTP receive packets. TFDTP_initStack fills

PBM buffer address in the EDMA PaRAMs associated with the packets and links all Rx

packets. Though TFDPT_initStack initializes EDMA PaRAMs, it doesn’t start TFDTP

right away and application has to explicitly call TFDTP_start().

Once the basic stack initialization is done from NDK2NSP_open, application can call

open and close for starting and stopping driver. The first time the open function is

called, a pointer to a valid TFDTP_OpenPrm_t structure must be provided as an

input parameter. Subsequent calls will ignore the config parameter and will simply

return a handle to the already open driver. The returned handles are reference

counted in the driver and the driver close function will not perform the close

operation until the reference count returns back to zero.

Once driver is opened the application needs to open receive or transmit channel to

start receive/transmit operations respectively. Application should pass valid

TFDTP_RxChOpenPrm_t structure with receive buffer details while opening receive

channel. For Tx channel, buffers need not submitted at the time of opening channel

but parameters like host MAC, host IP must be submitted through

TFDTP_TxChOpenPrm_t structure. Once buffers are submitted user can start transfer

by calling TFDTP_start() function which starts packet filtering process in NDK2NSP

receive task.

For TFDTP receive operation all buffers need to be submitted during channel open

through function TFDTP_submitRxBuf API. For transmit operations buffers can be

submitted as and when data is available using TFDTP_submitTxBuf() API.

3.1.1.1 TFDTP Receive and Transmit Callbacks

TFDTP receive and transmit channel open call takes callback function one of

parameter through open param structure.

 Receive callback

o Receive callback is called from stack when one full frame buffer is

received or packet drop is detected for current buffer.

Page 10 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

o When full frame is received, receive callback is called with buffState

set to BUFF_FULL else for partial frames it is set to BUFF_PARTIAL.

Application can use buffer state for checking packet drop and take

further action.

o Prototype of receive callback

typedef int32_t (*tfdtp_rcv_cb_t)(tfdtp_rx_buf_handle_t appRxBuffh,

void *cbdata, uint32_t channelNum);

 Transmit callback

o Transmit callback is called by stack when one full frame is transmitted.

There is no error status reporting for transmit buffers and higher level

application should check if receiver correctly received packet.

o Prototype

typedef int32_t (*tfdtp_tx_cb_t)(tfdtp_tx_buf_handle_t appTxBuffh,

void *cbdata, uint32_t channelNum);

3.2 TFDTP2NSP Adaptation Library

TFDTP2NSP is adaptation layer for between GMACSW and TFDTP driver. As TFDTP is

receive uses NDK2NSP, this layer is only used for TFDTP transmit.

For further information about the files described below, the user can examine the

source in the packages/ti/nsp/drv/tfdtp path.

3.2.1 tfdtp2nsp.c & tfdtp2nsp.h

Due to no restriction on using multiple transmit channels we use separate transmit

channel for NDK and TFDTP data. User don’t need to explicitly open transmit channel

as TFDTP_start() will start receive and transmit operations. This module is has not

made accessible to user and is accessed by TFDTP driver only. When host has data

to send it can submit those data through TFDTP_submitTxBuf() call which in turn

would kick start TFDTP2NSP transmit.

Page 11 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

4 TFDTP User Guide

The purpose of this User Guide is to provide more detailed information regarding the

software elements and infrastructure provided with TFDTP. The software provided is

intended to be used as a reference when starting application development.

4.1 TFDTP directory structure

4.1.1 TFDTP driver

TFDTP driver is part of NDP_GMACSW software and is bridge between application

and NSP.

Figure 2 Driver directory structure

4.1.2 TFDTP example utils

To aid application development with TFDTP example application is provided in the

NSP package. These examples show functionality of driver and host tools. In the

below directory structure Target contains server application running on the EVM

whereas host has host client application running on WindowsTM or Linux PC. Host

tools are standalone PC tools which can send/receive user’s frames over Ethernet

to/from Target EVM.

Page 12 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

4.2 Features Supported

a) TFDTP receive and transmit operation.

b) User configurable UDP port id for traffic segregation.

c) Flow control at transmitter using user given throughput value.

d) Concurrent use with NDK.

4.3 Features Not Supported

a) Use of channels for traffic differentiation when using multiple hosts

simultaneously

4.4 Using TFDTP in RTOS application

4.4.1 Rebuilding Driver Library with TFDTP

TFDTP build is enabled by default when building NSP driver library. Separate libraries

are created with and without TFDTP support into the NDK2NSP adaptation layer.

When user enables TFDTP though configuration file it will be linked to lib with tfdtp

support. This way when TFDTP is not enabled we avoid any TFDTP related

functionality adding software overhead. Below are TFDTP libraries created during

build.

ti.nsp.drv.ndktfdtp2nsp

ti.nsp.drv.tfdtp

For rebuilding GMACSW driver library refer to “Rebuilding the Driver Library” section

the NSP user guide.

4.4.2 Enable TFDTP in application

Enabling TFDTP is done using BIOS configuration file. To enable TFDTP build set

GMACSW.tfdtpBuild to true. Make sure to give enough number of NDK frame buffers

when TFDTP is enabled. For default configuration of no. of CPDMA descriptors (64 for

NDK & 128 for TFDTP) minimum 512 buffers should be given.

Page 13 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

GMACSW.tfdtpBuild = true;

NdkConfigGlobal.pktNumFrameBufs = 512;

TFDTP will use these buffers for submitting to GMAC hardware for receive operation.

NDK start up flow like DHCP, TCP/IP initialization will be unchanged. Host side tools

for TFDTP will use IP address assigned by NDK. Except this (getting IP address) and

buffer management TFDTP does not have any dependency on NDK.

The BIOS configuration file has other settings for NDK like static IP configuration,

profiling etc. which can be enabled in needed.

4.5 Example(s)

The example provided with this package for TFDTP consists of Target server running

on Cortex-M4 and host client running on PC. Below are steps to build & run example

application on TDA3xx IPU1 and Vayu IPU.

4.5.1 Target side

a) TFDTP server examples can be found in the “utils\tfdtp_test\target\tda3xx\ipu1"

directory and the “utils\tfdtp_test\target\vayu\ipu1". The examples are stored as

CCSv6 project files that are meant to be imported into CCSv6.

Importing the TFDTP Example Projects into CCS 6.1:

Before following the steps in this section, please ensure that all dependent

software that is listed in the section Compatibility Information in the release

notes has been installed.

i. Open CCSv6 and create a new workspace.

ii. From within the C/C++ View, select the menu option "Project -> Import

Existing CCS/CCE Eclipse Project"

iii. In the browse projects, navigate to the location where you installed the

nsp_gmacsw_4_14_00_00 package and select TFDTP project from the

utils\tfdtp_test\target folder.

iv. Under "Discovered Projects" you should see the examples listed. Click

"Finish" to import the examples.

v. You may now build the TFDTP examples within CCSv6.

b) To run application Load application binary into CortexM4 core 0 and click on Run

in the debug window.

c) You should get MAC address and IP address prints in the console.

4.5.2 Host side

For building host side applications you need MINGW or Cygwin installed if using

on WindowsTM.

a) Navigate to the host app folder at utils\tfdtp_test\host

b) Open command prompt/Terminal/Git bash/Cygwin bash

c) Modify makefile to change BUILD_OS to WindowsTM or Linux.

d) To build app use command “make all” in the console. This should create

application binary in the bin folder.

Note: If you are using Cygwin on WindowsTM set BUILD_OS to Linux.

e) Start host application using binary created in bin folder. User needs to give

multiple command line arguments to the host application. Below is command to

start host app and different arguments.

Page 14 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

tfdtp_test.out --src_ip <ipaddr> --dest_ip <ipaddr> [--ch <ch id>] --dir

<tx:0|rx:1> --file <filename> --num_frame <# of RX frames> --frame_size <#

of bytes> [--num_loop <# of iterations>] [--data-rate <throughput(TX) in

Mbps>] [--validate-data<enable data check>]

 src_ip – Source IP address of host. It is an important argument as this IP

is used to get MAC address for host N/W interface.MAC address and IP are

passed to target during TFDTP client initialization. Server uses these

addresses for further communication.

 dest_ip – IP address of Target EVM. Will be printed in console when

running target app.

 [ch] – Channel id. For future use. Default channel id 56 is used.

 dir – Direction of transfer. Receive or transmit.

 File – File to be transmitted or received into. For receive operation this is

optional argument and if not given all incoming frames will be dropped.

 num_frame – Number of frames for receive operation. Application will wait

till num_frame frames are received from target before closing down.

 frame_size – Frame size. Make sure this matches with target frame size

else there is chance of data lost due to buffer overflow.

 [num_loop] – Loop counter

 [data-rate] – Throughput in Mbps for receives and transmits operation.

For host transmit this argument is used for computing flow control delays.

For host receive this value is passed to target during initialization to have

flow control at target side.

 [validate-data] – Enable validation of received data. This is for testing

integrity of received data where known pattern is sent and checked by

receiver. There is significant CPU overhead in this is enabled.

Ex. receiver command:

./bin/tfdtp_test.exe --src_ip 172.24.190.147 --dest_ip 172.24.190.47 --dir 0 --

file av_bios_sdk_01_06_00_00_setupwin32.exe --frame_size 3000000 --data-

rate 500

Ex. transmitter command:

./bin/tfdtp_test.exe --src_ip 172.24.190.147 --dest_ip 172.24.190.47 --dir 1 --

frame_size 3000000 --data-rate 1000 --num_frame 100 –validate-data 0

f) Default values if parameters are not given

If user defined values are not given for the data-rate, validate-data, frame-soze

etc. arguments, the default values configured in host application would be used

for TFDTP initialization. Please refer to main.c parse_arguments() function to

change these values)

5 Known issues

a) Variation in requested throughput and actual throughput for client and server

applications.

Due to dependency on multiple parameters like host PC TCP/IP stack, host CPU

load etc. there is discrepancy in throughput requested by user and actual line

throughput. User has to set correct user throughput by trial and error checking

frame drops at the receiver. ~20% difference is seen during our testing but it

may differ at different set up due to factors stated earlier.

Page 15 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

Note: Flow control when host is transmitting (EVM receive) is not supported on

WindowsTM PC, which will send data at maximum possible throughput possible

which may cause packet drop at the Target.

b) Minimal testing with WindowsTM

Throughput issues are seen while testing with Windows PC. On some PCs

transmit link speed was not crossing 100Mbps.Try to disable anti-virus software

before testing. Same is not seen on Linux machines.

c) Only little endian PC support.

As Target EVM is also little endian we don’t do host to network and network to

host conversions for TFDTP packet headers. As this header will never be analyzed

by any other machine on network during data transmission and we assume that

both host and target are little endian, we don’t add network conversions. The

application will fail if used on big endian PC.

d) Running TFDTP stack on A15 core is not tested.

e) Application crash due to not enough NDK PBM buffers provided

Addition of TFDTP increases no. of CPDMA descriptors used for receive channel.

We use twice the no. of NDK buffers to always have spare buffers to give to

hardware. So user should make sure to provide at least twice buffers to no. of

CPDMA descriptors through BIOS configuration file.

f) Packet drops after CPU overload

If the throughput requested is higher than currently supported maximum,

hardware will start dropping packets as TFDTP will not be able to return enough

descriptors and hardware will run out of descriptors and start dropping packets

till free CPDMA descriptors are submitted by software.

g) Packet drop on Host side due to file IO operations

Though host PC is running at high frequency, the receive buffer file writes causes

packet loss in TFDTP host side application. This can be overcome thread based

solution is implemented. This way one thread can receive data and other can do

file write operations. This is not supported in this release.

Page 16 of 16 Texas Instruments Proprietary Information

NSP TFDTP Dr16de Do1616cument

6 Revision History

Version # Date Author Name Revision History

v1.0 6 July 2016 Prasad Jondhale

Initial document for

TFDTP driver.

v1.1 1 February 2017 Prasad Jondhale

Updates for Tx/Rx

channel open

Review comments.

	1 Introduction
	1.1 Purpose & Scope
	1.2 Terms & Abbreviations
	1.3 Known Issues and Limitations
	1.4 References

	2 TFDTP Protocol Overview
	2.1 TFDTP Packet Structure
	2.2 TFDTP channel
	2.3 TFDTP Receive and Transmit flow control

	3 Software Module Overview
	3.1 TFDTP Driver Library
	3.1.1 tfdtp.c & tfdtp.h
	3.1.1.1 TFDTP Receive and Transmit Callbacks

	3.2 TFDTP2NSP Adaptation Library
	3.2.1 tfdtp2nsp.c & tfdtp2nsp.h

	4 TFDTP User Guide
	4.1 TFDTP directory structure
	4.1.1 TFDTP driver
	4.1.2 TFDTP example utils

	4.2 Features Supported
	4.3 Features Not Supported
	4.4 Using TFDTP in RTOS application
	4.4.1 Rebuilding Driver Library with TFDTP
	4.4.2 Enable TFDTP in application

	4.5 Example(s)
	4.5.1 Target side
	4.5.2 Host side

	5 Known issues
	6 Revision History

