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Preface

Detection theory entered psychology as a way to explain detection experi-
ments, in which weak visual or auditory signals must be distinguished from
a "noisy" background. In Signal Detection Theory and Psychophysics
(1966), David Green and John Swets portrayed observers as decision mak-
ers trying to optimize performance in the face of unpredictable variability,
and they prescribed experimental methods and data analyses for separating
decision factors from sensory ones.

Since Green and Swets' classic was published, both the content of detec-
tion theory and the way it is used have changed. The theory has deepened to
include alternative theoretical assumptions and has been used to analyze
many experimental tasks. The range of substantive problems to which the
theory has been applied has broadened greatly. The contemporary user of
detection theory may be a sensory psychologist, but more typically is inter-
ested in memory, cognition, or systems for medical or nonmedical diagno-
sis. In this book, we draw heavily on the work of Green, Swets, and other
pioneers, but aim for a seamless meshing of historical beginnings and cur-
rent perspective. In recognition that these methods are often used in situa-
tions far from the original problem of finding a "signal" in background
noise, we have omitted the word signal from the title and usually refer to
these methods simply as detection theory.

We are writing with two types of readers in mind: those learning detec-
tion theory, and those applying it. For those encountering detection theory
for the first time, this book is a textbook. It could be the basic text in a
one-semester graduate or upper level undergraduate course, or it could be a
supplementary text in a broader course on psychophysics, methodology, or
a substantive topic. We imagine a student who has survived one semester of
"behavioral" statistics at the undergraduate level, and have tried to make the
book accessible to such a person in several ways. First, we provide appen-

xiii



xiv Preface

dixes on probability and statistics (Appendix 1) and logarithms (Appendix
2). Second, there are a large number of problems, some with answers.
Third, to the extent possible, the more complex mathematical derivations
have been placed in "Computational Appendixes" at the ends of chapters.
Finally, some conceptually advanced but essential ideas, especially from
multidimensional detection theory, are presented in tutorial detail.

For researchers who use detection theory, this book is a handbook. As far
as possible, the material needed to apply the described techniques is com-
plete in the book. A road map to most methods is provided by the flowcharts
of Appendix 3, which direct the user to appropriate equations (Appendix 4)
and tables (Appendix 5). The software appendix (Appendix 6) provides a
listing of a program for finding the most common detection theory statis-
tics, and directions to standard software and Web sites for a wide range of
calculations.

An important difference between this second edition and its predecessor is
the prominence of multidimensional detection theory, to which the five chap-
ters of Part II are devoted. This topic was covered in a single chapter of the
first edition, and the increase is due to two factors. First, there has been an ex-
plosion of multidimensional applications in the past decade or so. Second,
one essential area of detection theory—the analysis of different discrimina-
tion paradigms—requires multidimensional methods that were introduced in
passing in the first edition, but are now integrated into a systematic presenta-
tion of these methods. Someone concerned only with analyzing specific para-
digms will be most interested in chapters 1 to 3, 5, 7, 9, and 10. The
intervening chapters provide greater theoretical depth (chaps. 4 and 8) as well
as a careful introduction to multidimensional analysis (chap. 6).

The flowcharts (Appendix 3) are inspired by similar charts in Behavioral
Statistics by R. B. Darlington and P. M. Carlson (1987). We thank Pat
Carlson for persuasive discussions of the value of this tool and for helping
us use it to best advantage.

We are grateful to many people who helped us complete this project. We
taught courses based on preliminary drafts at Brooklyn College and the
University of Massachusetts. Colleagues used parts of the book in courses
at Purdue University (Hong Tan), the University of California at San Diego
(John Wixted), and the University of Florida (Bob Sorkin). We thank these
instructors and their students for providing us with feedback. We owe a debt
to many other colleagues who commented on one or more chapters in pre-
liminary drafts, and we particularly wish to thank Danny Algom, Michael
Hautus, John Irwin, Marjorie Leek, Todd Maddox, Dawn Morales, Jeff
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Miller, and Dick Pastore. Caren Rotello's comments, covering almost the
entire book, were consistently both telling and supportive.

Our warmest appreciation and thanks go to our wives, Judy Mullins
(Macmillan) and Lynne Beal (Creelman), for their generous support and
patience with a project that —like the first edition—provided serious com-
petition for their company.

We also thank Bill Webber, our editor, and Lawrence Erlbaum Associ-
ates for adopting this project and making it their own.

Finally, we continue to feel a great debt to the parents of detection theory.
Among many who contributed to the theory in its early days, our thinking
owes the most to four people. We dedicate this book to David M. Green, R.
Duncan Luce, and John A. Swets, and to the memory of Wilson P. Tanner,
Jr. Without them there would be no users for us to guide.
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Introduction

Detection theory is a general psychophysical approach to measuring perfor-
mance. Its scope includes the everyday experimentation of many psycholo-
gists, social and medical scientists, and students of decision processes.
Among the problems to which it can be applied are these:

• assessing a person's ability to recognize whether a photograph is of
someone previously seen or someone new,

• measuring the skill of a medical diagnostician in distinguishing
X-rays displaying tumors from those showing healthy tissue,

• finding the intensity of a sound that can be heard 80% of the time, and
• determining whether a person can identify which of several words has

been presented on a screen, and whether identification is still possible
if the person reports that a word has not appeared at all.

In each of these situations, the person whose performance we are studying
encounters stimuli of different types and must assign distinct responses to
them. There is a correspondence1 between the stimuli and the responses so
that each response belongs with one of the stimulus classes. The viewer of
photographs, for example, is presented with some photos of Old,2 previ-
ously seen faces, as well as some that are New, and must respond "old" to
the Old faces and "new" to the New. Accurate performance consists of using
the corresponding responses as defined by the experimenter.

A correspondence experiment is one in which each possible stimulus is
assigned a correct response from a finite set. In complete correspondence
experiments, which include all the designs in chapters 1,2,4,6,7,9,10, and
11, this partition is rigidly set by the experimenter. In incomplete corre-

'Most italicized words are defined in the Glossary.
Throughout the book, we capitalize the names of stimuli and stimulus classes.

xvii



xviii Introduction

spondence experiments (such as the rating design described in chap. 3 and
the classification tasks of chap. 5), there is a class of possible correspon-
dences, each describing ideal performance.

Correspondence provides an objective standard or expectation against
which to evaluate performance. Detection theory measures the discrepancy
between the two and may therefore be viewed as a technique for under-
standing error. Errors are assumed to arise from inevitable variability, either
in the stimulus input or within the observer. If this noise does not apprecia-
bly affect performance, responses correspond perfectly to stimuli, and their
correctness provides no useful information. Response time is often the de-
pendent variable in such situations, and models for interpreting this perfor-
mance measure are well developed (Luce, 1986).

The possibility of error generally brings with it the possibility of differ-
ent kinds of errors—misses and false alarms. Medical diagnosticians can
miss the shadow of a tumor on an X-ray or raise a false alarm by reporting
the presence of one that is not there. A previously encountered face may be
forgotten or a new one may be falsely recognized as familiar. The two types
of error typically have different consequences, as these examples make
clear: If the viewer of photographs is in fact an eyewitness to a crime, a miss
will result in the guilty going free, a false alarm in the innocent being ac-
cused. A reasonable goal of a training program for X-ray readers would be
to encourage an appropriate balance between misses and false alarms (in
particular, to keep the number of misses very small).

Detection theory, then, provides a method for measuring people's accu-
racy (and understanding their errors) in correspondence experiments. This
is not a definition—we offer a tentative one at the end of chapter 1—but may
suggest the directions in which a discussion of the theory must lead.

Organization of the Book

This book is divided into four parts. Part I describes the measurement of
sensitivity and response bias in situations that are experimentally and theo-
retically the simplest. One stimulus is presented on each trial, and the repre-
sentation of the stimuli is one dimensional. In Part II, multidimensional
representations are used, allowing the analysis of a variety of classification
and identification experiments. Common but complex discrimination de-
signs in which two or more stimuli are presented on each trial are a special
case. In Part III, we consider two important topics in which stimulus charac-
teristics are central. Chapter 11 discusses adaptive techniques for the esti-
mation of thresholds. Chapter 12 describes ways in which detection theory
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can be used to relate sensitivity to stimulus parameters and partition sensi-
tivity into its components. Part IV (chap. 13) offers some statistical proce-
dures for evaluating correspondence data.

Organization of Each Chapter

Each chapter is organized around one or more examples modeled on experi-
ments that have been reported in the behavioral literature. (We do not at-
tempt to reanalyze actual experiments, which are always more complicated
than the pedagogical uses to which we might put them.) For each design, we
present one or more appropriate methods for analyzing the illustrative data.
The examples make our points concrete and suggest the breadth of applica-
tion of detection theory, but they are not prescriptive: The use of a recogni-
tion memory task to illustrate the two-alternative forced-choice paradigm
(chap. 7) does not mean, for instance, that we believe this design to be the
only or even the best tool for studying recognition memory. The appropriate
design for studying a particular topic should always be dictated by practical
and theoretical aspects of the content area.

The book as a whole represents our opinions about how best to apply de-
tection theory. For the most part, our recommendations are not controver-
sial, but in some places we have occasion to be speculative, argumentative,
or curmudgeonly. Sections in which we take a broader, narrower, or more
peculiar view than usual are labeled essays as a warning to the reader.
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I
Basic Detection Theory
and One-Interval Designs

Part I introduces the one-interval design, in which a single stimulus is pre-
sented on each trial. The simplest and most important example is a corre-
spondence experiment in which the stimulus is drawn from one of two
stimulus classes and the observer tries to say from which class it is drawn. In
auditory experiments, for example, the two stimuli might be a weak tone
and no sound, tone sequences that may be slow or fast, or passages from the
works of Mozart and Beethoven.

We begin by describing the use of one-interval designs to measure dis-
crimination, the ability to tell two stimuli apart. Two types of such experi-
ments may be distinguished. If one of the two stimulus classes contains only
the null stimulus, as in the tone-versus-background experiment, the task is
called detection. (This historically important application is responsible for
the use of the term detection theory to refer to these methods.) If neither
stimulus is null, the experiment is called recognition, as in the other exam-
ples. The methods for analyzing detection and recognition are the same, and
we make no distinction between them (until chap. 10, where we consider
experiments in which the two tasks are combined).

In chapters 1 and 2, we focus on designs with two possible responses as
well as two stimulus classes. Because the possible responses in some appli-
cations (e.g., the tone detection experiment) are "yes" and "no," the para-
digm with two stimuli, one interval, and two responses is sometimes termed
yes-no even when the actual responses are, say, "slow" and "fast." Perfor-
mance can be analyzed into two distinct elements: the degree to which the
observer's responses mirror the stimuli (chap. 1) and the degree to which
they display bias (chap. 2). Measuring these two elements requires a theory;
we use the most common, normal-distribution variant of detection theory to

1



2 Parti

accomplish this end. Chapter 4 broadens the perspective on yes-no sensitiv-
ity and bias to include three classes of alternatives to this model: threshold
theory, choice theory, and "nonparametric" techniques.

One-interval experiments may involve more than two responses or more
than two possible stimuli. As an example of a larger response set, listeners
could rate the likelihood that a passage was composed by Mozart rather than
Beethoven on a 6-point scale. One-interval rating designs are discussed in
chapter 3. As an example of a larger stimulus set, listeners could hear se-
quences presented at one of several different rates. If the requirement is to
assign a different response to each stimulus, the task is called identification',
if the stimuli are to be sorted into a smaller number of classes (perhaps slow,
medium, and fast), it is classification. Chapter 5 applies detection-theory
tools to identification and classification tasks, but only those in which ele-
ments of the stimulus sets differ in a single characteristic such as tempo.
Identification and classification of more heterogeneous stimulus sets are
considered in Part II.



1
The Yes-No Experiment: Sensitivity

In this book, we analyze experiments that measure the ability to distinguish
between stimuli. An important characteristic of such experiments is that ob-
servers can be more or less accurate. For example, a radiologist's goal is to
identify accurately those X-rays that display abnormalities, and participants
in a recognition memory study are accurate to the degree that they can tell pre-
viously presented stimuli from novel ones. Measures of performance in these
kinds of tasks are also called sensitivity measures: High sensitivity refers to
good ability to discriminate, low sensitivity to poor ability. This is a natural
term in detection studies—a sensitive listener hears things an insensitive one
does not—but it applies as well to the radiology and memory examples.

Understanding Yes-No Data

Example 1: Face Recognition

We begin with a memory experiment. In a task relevant to understanding
eyewitness testimony in the courtroom, participants are presented with a se-
ries of slides portraying people's faces, perhaps with the instruction to re-
member them. After a period of time (and perhaps some unrelated activity),
recognition is tested by presenting the same participants with a second se-
ries that includes some of the same pictures, shuffled to a new random order,
along with a number of "lures"—faces that were not in the original set.
Memory is good if the person doing the remembering properly recognizes
the Old faces, but not New ones. We wish to measure the ability to distin-
guish between these two classes of slides. Experiments of this sort have
been performed to compare memory for faces of different races, orienta-
tions (upright vs. inverted), and many other variables (for a review, see
Shapiro & Penrod, 1986).

3



4 Chapter 1

Let us look at some (hypothetical) data from such a task. We are inter-
ested in just one characteristic of each picture: whether it is an Old face (one
presented earlier) or a New face. Because the experiment concerns two
kinds of faces and two possible responses, "yes" (I've seen this person be-
fore in this experiment) and "no" (I haven't), any of four types of events can
occur on a single experimental trial. The number of trials of each type can be
tabulated in a stimulus-response matrix like the following.

Stimulus
Class

Old
New

"Yes"
20
10

Response
"No"

5
15

Total
25
25

The purpose of this yes-no task is to determine the participant's sensitiv-
ity to the Old/New difference. High sensitivity is indicated by a concentra-
tion of trials counted in the upper left and lower right of the matrix ("yes"
responses to Old stimuli, "no" responses to New).

Summarizing the Data

Conventional, rather military language is used to describe the yes-no exper-
iment. Correctly recognizing an Old item is termed a hit', failing to recog-
nize it, a miss. Mistakenly recognizing a New item as old is a false alarm',
correctly responding "no" to an Old item is, abandoning the metaphor, a
correct rejection. In tabular terms:

Stimulus Class Response

Old (S2)

New (Si)

"Yes"
Hits
(20)
False alarms
(10)

"No"
Misses

(5)
Correct rejections
(15)

Total

(25)

(25)

We use 5", and S2 as context-free names for the two stimulus classes.
Of the four numbers in the table (excluding the marginal totals), only two

provide independent information about the participant's performance.
Once we know, for example, the number of hits and false alarms, the other
two entries are determined by how many Old and New items the experi-
menter decided to use (25 of each, in this case). Dividing each number by
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the total in its row allows us to summarize the table by two numbers: The hit
rate (H) is the proportion of Old trials to which the participant responded
"yes," and the false-alarm rate (F) is the proportion of New trials similarly
(but incorrectly) assessed. The hit and false-alarm rates can be written as
conditional probabilities'

// = P("yes"IS2) (1.1)

F = P("yes"IS,), (1.2)

where Equation 1.1 is read "The proportion of 'yes' responses when stimu-
lus S2 is presented."

In this example, H = .8 and F = A. The entire matrix can be rewritten with
response rates (or proportions) rather than frequencies:

Stimulus
Class

Old (S2)
New (5,)

"Yes"
.8
.4

Response
"No"

.2

.6

Total
1.0
1.0

The two numbers needed to summarize an observer's performance, F and
H, are denoted as an ordered (false-alarm, hit) pair. In our example, (F, H)
= (A .8).

Measuring Sensitivity

We now seek a good way to characterize the observer's sensitivity. A func-
tion of H and F that attempts to capture this ability of the observer is called a
sensitivity measure, index, or statistic. A perfectly sensitive participant
would have a hit rate of 1 and a false-alarm rate of 0. A completely insensi-
tive participant would be unable to distinguish the two stimuli at all and, in-
deed, could perform equally well without attending to them. For this
observer, the probability of saying "yes" would not depend on the stimulus
presented, so the hit and false-alarm rates would be the same. In interesting
cases, sensitivity falls between these extremes: //is greater than F, but per-
formance is not perfect.

1 Technically, H and F are estimates of probabilities—a distinction that is important in statistical work
(chap. 13). Probabilities characterize the observer's relation to the stimuli and are considered stable and
unchanging; H and F may vary from one block of trials to the next.

5



6 Chapter 1

The simplest possibility is to ignore one of our two response rates us-
ing, say, H to measure performance. For example, a lie detector might be
touted as detecting 80% of liars or an X-ray reader as detecting 80% of tu-
mors. (Alternatively, the hit rate might be ignored, and evaluation might
depend totally on the false-alarm rate.) Such a measure is clearly inade-
quate. Compare the memory performance we have been examining with
that of another group:

Stimulus
Class

Old
New

"Yes"
8
1

Response

"No"
17
24

Total

25
25

Group 1 successfully recognized 80% of the Old words, Group 2 just
32%. But this comparison ignores the important fact that Group 2 partici-
pants just did not say "yes" very often. The hit rate, or any measure that de-
pends on responses to only one of the two stimulus classes, cannot be a
measure of sensitivity. To speak of sensitivity to a stimulus (as was done, for
instance, in early psychophysics) is meaningless in the framework of detec-
tion theory.2

An important characteristic of sensitivity is that it can only be mea-
sured between two alternative stimuli and must therefore depend on both
H and F. A moment's thought reveals that not all possible dependencies
will do. Certainly a higher hit rate means greater, not less, sensitivity,
whereas a higher false-alarm rate is an indicator of less sensitive perfor-
mance. So a sensitivity measure should increase when either//increases
or F decreases.

A final possible characteristic of sensitivity measures is that 5, and S2 tri-
als should have equal importance: Missing an Old item is just as important
an error as incorrectly recognizing a New one. In general, this is too strong a
requirement, and we will encounter sensitivity measures that assign differ-
ent weights to the two stimulus classes. Nevertheless, equal treatment is a
good starting point, and (with one exception) the indexes described in this
chapter satisfy it.

2The term sensitivity is used in this way, as a synonym for the hit rate, in medical diagnosis. Specificity is
that field's term for the correct-rejection rate.
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Two Simple Solutions

We are looking for a measure that goes up when H goes up, goes down when
Fgoes up, and assigns equal importance to these statistics. How about sim-
ply subtracting Ffrom HI The difference H- Fhas all these characteristics.
For the first group of memory participants, H - F - .8 - .4 = .4; for the sec-
ond, H- F = .32 - .04 = .28, and Group 1 wins.

Another measure that combines H and Fin this way is a familiar statistic,
the proportion of correct responses, which we denote p(c). To find propor-
tion correct in conditions with equal numbers of 5, and S2 trials, we take the
average of the proportion correct on S2 trials (the hit rate, H) and the propor-
tion correct on Sl trials (the correct rejection rate, 1 - F}. Thus:

If the numbers of Sl and S2 trials are not equal, then to find the literal propor-
tion of trials on which a correct answer was given the actual numbers in the
matrix would have to be used:

p(c)* = (hits + correct rejections)/total trials . (1.4)

Usually it is more sensible to give H and F equal weight, as in Equation
1.3, because a sensitivity measure should not depend on the base presenta-
tion rate.

Let us look atp(c) f°r equal presentations (Eq. 1.3). Is this a better or
worse measure of sensitivity than H - F itself? Neither. Because p(c) de-
pends directly onH-F (and not on either HoiF separately), one statistic
goes up whenever the other does, and the two are monotonic functions of
each other. Two measures that are monotonically related in this way are said
to be equivalent measures of accuracy. In the running examples, p(c} is .7
for Group 1 and .64 for Group 2, andp(c) leads to the same conclusion as H
- F. For both measures, Group 1 outscores Group 2.

A Detection Theory Solution

The most widely used sensitivity measure of detection theory (Green &
Swets, 1966) is not quite as simple asp(c), but bears an obvious family re-
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semblance. The measure is called d' ("dee-prime") and is defined in terms
of z, the inverse of the normal distribution function:

d'=z(H)-z(F). (1.5)

The z transformation converts a hit or false-alarm rate to a z score (i.e., to
standard deviation units). A proportion of .5 is converted into a z score of 0,
larger proportions into positive z scores, and smaller proportions into nega-
tive ones. To compute z, consult Table A5.1 in Appendix 5. The table makes
use of a symmetry property of z scores: Two proportions equally far from .5
lead to the same absolute z score (positive if p > .5, negative if p < .5) so that:

z(l-p) = -z(p). (1.6)

Thus, z(.4) = -.253, the negative of z(.6). Use of the Gaussian z transforma-
tion is dominant in detection theory, and we often refer to normal-distribu-
tion models by the abbreviation SDT.

We can use Equation 1.5 to calculate d' for the data in the memory exam-
ple. For Group 1, H= .8 and F= .4, so z(H) = 0.842, z(F) = -0.253, and d'=
0.842 - (-0.253) = 1.095. When the hit rate is greater than .5 and the
false-alarm rate is less (as in this case), d' can be obtained by adding the ab-
solute values of the corresponding z scores. For Group 2,H= .32 and F =
.04, so d' = -0.468 - (-1.751) = 1.283. When the hit and false-alarm rates
are on the same side of .5, d' is obtained by subtracting the absolute values
of the z scores. Interestingly, by the d' measure, it is Group 2 (the one that
was much more stingy with "yes" responses) rather than Group 1 that has
the superior memory.

When observers cannot discriminate at all, H = F and d' = 0. Inability to
discriminate means having the same rate of saying "yes" when Old faces are
presented as when New ones are offered. As long asH^F, d' must be greater
than or equal to 0. The largest possiblefinite value of d' depends on the num-
ber of decimal places to which H and F are carried. When H=.99 and F = .01,
d' - 4.65; many experimenters consider this an effective ceiling.

Perfect accuracy, on the other hand, implies an infinite d'. Two adjust-
ments to avoid infinite values are in common use. One strategy is to convert
proportions of 0 and 1 to l/(2N) and 1 - 1/(2AO, respectively, where N is the
number of trials on which the proportion is based. Suppose a participant has
25 hits and 0 misses (H= 1.0) to go with 10 false alarms and 15 correct rejec-
tions (F= .4). The adjustment yields 24.5 hits and 0.5 misses, so H= .98 and
d' = 2.054 - (-0.253) = 2.307. A second strategy (Hautus, 1995; Miller,
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1996) is to add 0.5 to all data cells regardless of whether zeroes are present.
This adjustment leads to H=25.5/26 = .981 and F= 10.5/26 = .404. Round-
ing to two decimal places yields the same value as before, but d' is slightly
smaller if computed exactly.

Most experiments avoid chance and perfect performance. Proportions
correct between .6 and .9 correspond roughly to d' values between 0.5 and
2.5. Correct performance on 75% of both Sl and S2 trials yields a d' of 1.35;
69% for both stimuli gives d' = 1.0.

It is sometimes important to calculate d' when only p(c) is known, not H
and F. (Partial ignorance of this sort is common when reanalyzing pub-
lished data.) Strictly speaking, the calculation cannot be done, but an ap-
proximation can be made by assuming that the hit rate equals the correct
rejection rate so that H=l-F. For example, if p(c) = .9, we can guess at a
measure for sensitivity: d' = z(.9) - z(. 1) = 1.282 - (-1.282) = 2.56. To sim-
plify the calculation, notice that one z score is the negative of the other (Eq.
1.6). Hence, in this special case:

d'=2z[p(c)]. (1.7)

This calculation is not correct in general. For example, suppose H= .99 and
F =. 19, so that H and the correct rejection rate are not equal. Then p(c) still
equals. 9, but </'=z(.99)-z(.19) = 2.326-(-0.878) = 3.20 instead of 2.56, a
considerable discrepancy.

Implied ROCs

ROC Space and Isosensitivity Curves

What justifies the use of d' as a summary of discrimination? Why is this
measure better, according to detection theory, than the more familiar/?(c)?
A good sensitivity measure should be invariant when factors other than sen-
sitivity change. Participants are assumed by detection theory to have a fixed
sensitivity when asked to discriminate a specific pair of stimulus classes.
One aspect of responding that is up to them, however, is their willingness to
respond "yes" rather than "no." If d' is an invariant measure of sensitivity,
then a participant whose false-alarm and hit rates are (.4, .8) can also pro-
duce the performance pairs (.2, .6) and (.07, .35); all of these pairs indicate a
d' of about 1.09, and differ only in response bias.

The locus of (false-alarm, hit) pairs yielding a constant d' is called an iso-
sensitivity curve because all points on the curve have the same sensitivity.
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This term was proposed by Luce (1963a) as more descriptive that the origi-
nal engineering nomenclature receiver operating characteristic (ROC).
Swets (1973) reinterpreted the acronym to mean relative operating charac-
teristic. We use all these terms interchangeably.

Figure 1.1 shows ROCs implied by d''. The axes of the ROC are the
false-alarm rate, on the horizontal axis, and the hit rate, plotted vertically.
Because both H and F range from 0 to 1, the ROC space, the region in which
ROCs must lie, is the unit square. For every value of the false-alarm rate, the
plot shows the hit rate that would be obtained to yield a particular sensitivity
level. Algebraically, these curves are calculated by solving Equation 1.5 for
H; different curves represent different values of d'.

When performance is at chance (d! = 0), the ROC is the major diagonal,
where the hit and false-alarm rates are equal. For this reason, the major diag-
onal is sometimes called the chance line. As sensitivity increases, the curves
shift toward the upper left corner, where accuracy is perfect (F = 0 and H=
1). These ROC curves summarize the predictions of detection theory: If an
observer in a discrimination experiment produces a (F, H) pair that lies on a
particular implied ROC, that observer should be able to display any other
(F, H) pair on the same curve.

0.2 0.4 0.6 0.8 1

False-alarm Rate (F)
FIG. 1.1. ROCs for SDT on linear coordinates. Curves connect locations with
constant d'.
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The theoretical isosensitivity curves in Fig. 1.1 have two important char-
acteristics. First, the price of complete success in recognizing one stimulus
class is complete failure in recognizing the other. For example, to be per-
fectly correct with Old faces and have a hit rate of 1, it is also necessary to
have a false-alarm rate of 1, indicating total failure to correctly reject New
faces. Similarly, a false-alarm rate of 0 can be obtained only if the hit rate is
0. Isosensitivity curves that pass through (0,0) and (1,1) are called regular
(Swets & Pickett, 1982).

Second, the slope of these curves decreases as the tendency to respond
"yes" increases. The slope is the change in the hit rate, relative to the change
in the false-alarm rate, that results from increasing response bias toward
"yes." We shall see in a later section that this systematic slope change char-
acterizes all ROCs.

ROCs in Transformed Coordinates

The features of regularity and decreasing slope are clear in Fig. 1.1, but other
aspects of ROC shape are easier to see using a different representation of the
ROC, one that takes advantage of our earlier description of a sensitivity mea-
sure as the difference between the transformed hit and false-alarm rates.

Look again at Equation 1.5, which describes the isosensitivity curve for
d'. To find an algebraic expression for the ROC, we would need to solve this
equation for H as a function of F. A simpler task is to solve for z(H) as a
function of z(F):

z(H) = z(F) + d' . (1.8)

Equation 1.8 describes a transformed ROC, specifically a zROC, in which
both axes are marked off in equal z scores rather than in equal proportion
units. The range of values in these new units is from minus to plus infinity,
although scores of more than 2.5 (i.e., 2.5 standard deviations from the
mean) are rarely encountered. In these coordinates, the ROC has a particu-
larly simple shape: It is a straight line with unit slope, as shown in Fig. 1.2.

The linearity of zROCs can be used to make a prediction about how much
the false-alarm rate will go up if the hit rate increases (or vice versa). For ex-
ample, suppose the false-alarm/hit pair (.2, .5) is on the ROC. Consulting
Table A5.1, the z scores for F and H are -0.842 and 0. If we add the same
number to each z score, the resulting scores correspond to another point on
the ROC. Let us add 1.4, giving us the new z scores of 0.558 and 1.4. The ta-
ble shows that the corresponding proportions are (.71, .92).
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FIG. 1.2. ROCs for SDT on z coordinates.

0)
D

The transformed ROC of Equation 1.8 provides a simple graphical inter-
pretation of sensitivity: d' is the intercept of the straight-line ROC in Fig.
1.2, the vertical distance in z units from the ROC to the chance line at the
point where z(F) = 0. In fact, because the ROC has slope 1, the distance be-
tween these two lines is the same no matter what the false-alarm rate is, and
d' equals the vertical (or horizontal) distance between them at any point.

ROCs Implied by p(c]

Any sensitivity index has an implied ROC, that is, a curve in ROC space that
connects points of equal sensitivity as measured by that index. To extend our
comparison of d' with proportion correct, we now plot the ROC implied by
p(c). The trick is to take the definition of p(c) in Equation 1.3 and solve it for H:

= F+[2p(c)-l] . (1.9)

Equation 1.9 is a straight line of unit slope. Implied ROCs for p(c) are
shown in Fig. 1.3 for/?(c) = .5, .65, and .8. The intercepts equal 2p(c) - 1,
that is, 0, .3, and .6.



The Yes-No Experiment: Sensitivity 13

FIG. 1.3. ROCs implied by p(c) on linear coordinates.

Consider again the false-alarm/hit pair (.2, .5). If we add the same num-
ber to each of these scores (without any transformation), the resulting
scores correspond to another point on the ROC. Let us add .42, giving us the
new hit and false-alarm proportions of (.62, .92). Simply using p(c} as a
measure of performance thus makes a prediction about how much the
false-alarm rate will go up if the hit rate increases, and it is different from the
prediction of detection theory.

Which Implied ROCs Are Correct?

The validity of detection theory clearly depends on whether the ROCs im-
plied by d' describe the changes that occur in H and F when response bias is
manipulated. Do empirical ROCs (the topic of chap. 3) look like those im-
plied by d', those implied by p(c), or something else entirely? It turns out
that the detection theory curves do a much better job than those for/?(c). In
early psychoacoustic research (Green & Swets, 1966) and subsequent work
in many content areas (Swets, 1986a), ROCs were found to be regular, to
have decreasing slope on linear coordinates, and to follow straight lines on z
coordinates.
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One property of the zROCs described by Equation 1.8 that is not always
observed experimentally is that of unit slope. When response bias changes,
the value of d' calculated from Equation 1.5 may systematically increase or
decrease instead of remaining constant. The unit-slope property reflects the
equal importance of Sl and S2 trials to the corresponding sensitivity measure.
In chapter 3, we discuss modified indexes that allow for unequal treatment.

When ROCs do have unit slope, they are symmetrical around the minor
diagonal. Making explicit the dependence of sensitivity on a hit and
false-alarm rate, we can express this property as

That is, if an observer changes response bias so that the new false-alarm rate
is the old miss rate (!-//), then the new hit rate will be the old correct-rejec-
tion rate (1 -F). For example, d'(.6, .9) = d'(.l, .4). Mathematically, this oc-
curs because z(l - p) = -z(p) (Eq. 1.6). Figure 1.4 provides a graphical
interpretation of this relation, showing that (F, H) and (1 - //, 1 - F) are on
the same unit-slope ROC.

FIG. 1.4. The points (F, H) and (1 - H, 1 - F) lie on the same symmetric ROC
curve.
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Sensitivity as Perceptual Distance

Stimuli that are easy to discriminate can be thought of as perceptually far
apart; in this metaphor, a discrimination statistic should measure perceptual
distance, and d' has the mathematical properties of distance measures
(Luce, 1963a): The distance between an object and itself is 0, all distances
are positive (positivity), the distance between objects x and y is the same as
between y and x (symmetry), and

d'(x, w) < d'(x, y) + d'(y, w). (1.11)

Equation 1.11 is known as the triangle inequality.
Because they have true zeroes and are unique except for the choice of

unit, distance measures have ratio scaling properties. That is, when dis-
criminability is measured by d', it makes sense to say that stimuli a and b
are twice as discriminate as stimuli c and d. Suppose, for example, that
two participants in our face-recognition experiment produce d' values of
1.0 and 2.0. In a second test, a day later, their sensitivities fall to 0.5 and
1.0. Although the change in d' is twice as great for Participant 2, we can
say that Old and New items are half as perceptually distant, for both partic-
ipants, as on the first day. No corresponding statement can be made in the
language of p(c).

The positivity property means that d' should not be negative in the long
run. Negative values can arise by chance when calculated over a small num-
ber of trials and are not a cause for concern. The temptation to whitewash
such negative values into zeroes should be resisted: When a number of mea-
surements are averaged, this strategy inflates a true d' of 0 into a positive one.

The triangle inequality (Eq. 1.11) is sometimes replaced by a stronger as-
sumed relation—namely,

d'(x, w)n = d'(x, y)n + d'(y, w)n . (1.12)

When n = 2, this is the Euclidean distance formula. When n = 1, Equation
1.12 describes the "city-block" metric; an important special case (discussed
in chap. 5) arises when stimuli differ perceptually along only one dimension.

Another distance property of d' is unboundedness: There is no maximum
value of d', and perfect performance corresponds to infinity. In practice, oc-
casional hit rates or false-alarm rates of 1 or 0 may occur, and a correction
such as one of those discussed earlier must be made to subject the data to de-
tection theory analysis. Any such correction is predicated on the belief that
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the perfect performance arises from statistical ("sampling") error. If, on the
contrary, stimulus differences are so great that confusions are effectively
impossible then the experiment suffers from a ceiling effect, and should be
redesigned.

The Signal Detection Model

The question under discussion to this point has been how best to measure
accuracy. We have defended d' on pragmatic grounds. It represents the dif-
ference between the transformed hit and false-alarm rates, and it provides a
good description of the relation between //and F when response bias varies.
Now we ask what our measures imply about the process by which discrimi-
nation (in our example, face recognition) takes place. How are items repre-
sented internally, and how does the participant make a decision about
whether a particular item is Old or New?

Underlying Distributions and the Decision Space

Detection theory assumes that a participant in our memory experiment is
judging a single attribute, which we call familiarity. Each stimulus presen-
tation yields a value of this decision variable. Repeated presentations do not
always lead to the same result, but generate a distribution of values. The first
panel of Fig. 1.5 presents the probability distribution (or likelihood distri-
bution, or probability density) of familiarity values for New faces (stimulus
class S,). Each value on the horizontal axis has some likelihood of arising
from New stimuli, indicated on the ordinate. The probability that a value
above the point k will occur is the proportion of area under the curve above k
(see Appendix 1 for a review of probability concepts).

On the average, Old items are more familiar than New ones—otherwise,
the participant would not be able to discriminate. Thus, the whole of the dis-
tribution of familiarity due to Old (S2) stimuli, shown in the second panel, is
displaced to the right of the New distribution. There must be at least some
values of the decision variable that the participant finds ambiguous, that
could have arisen either from an Old or a New face; otherwise performance
would be perfect. The two distributions together comprise the decision
space—the internal or underlying problem facing the observer. The partici-
pant can assess the familiarity value of the stimulus, but of course does not
know which distribution led to that value. What is the best strategy for
deciding on a response?
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FIG. 1.5. Underlying distributions of familiarity for Old and New items. Top
curve shows distribution due to New (5,) items; values above the criterion k lead to
false alarms, those below to correct rejections. Lower curve shows distribution
due to Old (52) items; values above the criterion k lead to hits, those below to
misses. The means of the distributions are Af, and M2. (In this and subsequent fig-
ures, the height of the probability density curve is denoted by/.)

Response Selection in the Decision Space

The optimal rule (see Green & Swets, 1966, ch. 1) is to establish a criterion
that divides the familiarity dimension into two parts. Above the criterion,
labeled k in Fig. 1.5, the participant responds "yes" (the face is familiar
enough to be Old); below the criterion, a "no" is called for. The four possi-
ble stimulus-response events are represented in the figure. If a value above
the criterion arises from the Old stimulus class, the participant responds
"yes" and scores a hit. The hit rate H is the proportion of area under the Old
curve that is above the criterion; the area to the left of the criterion is the pro-
portion of misses. When New stimuli are presented (upper curve), a famil-
iarity value above the criterion leads to a false alarm. The false-alarm rate is
the proportion of area under the New curve to the right of the criterion, and
the area to the left of the criterion equals the correct-rejection rate.
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The decision space provides an interpretation of how ROCs are pro-
duced. The participant can change the proportion of "yes" responses, and
generate different points on an ROC, by moving the criterion: If the crite-
rion is raised, both H and F will decrease, whereas lowering the criterion
will increase H and F.

We saw earlier that an important feature of ROCs is regularity: If F = 0,
then H = 0; if H = 1, then F = I. Examining Fig. 1.5, this implies that if the
criterion is moved so far to the right as to be beyond the entire Sl density (so
that F=0), it will be beyond the entire S2 density as well (so that H=0). The
other half of the regularity condition is interpreted similarly. The distribu-
tions most often used satisfy this requirement by assuming that any value on
the decision axis can arise from either distribution.

Sensitivity in the Decision Space

We have seen that k, the criterion value of familiarity, provides a natural in-
terpretation of response bias. What aspect of the decision space reflects sen-
sitivity? When sensitivity is high, Old and New items differ greatly in
average familiarity, so the two distributions in the decision space have very
different means. When sensitivity is low, the means of the two distributions
are close together. Thus, the mean difference between the 5, and S2 distribu-
tions—the distance M2 - M, in Fig. 1.5—is a measure of sensitivity. We
shall soon see that this distance is in fact identical to d''.

Distance along a line, as in Fig. 1.5, can be measured from any zero point;
so we measure mean distances relative to the criterion k. Thus expressed,
the mean difference equals (M2 -k)- (M, - k): Sensitivity is the difference
between these two distances, the distance from the S1 mean to the criterion
and the (negative, in this case) distance from the S2 mean to the criterion. We
now show that these two mean-to-criterion distances can be estimated using
the z transformation discussed earlier in the chapter.

Underlying Distributions and Transformations

Figure 1.6 shows how the distances between the means of underlying distri-
butions and the criterion are related to the response rates in our experiment.
For each value ofM-k, the figure shows the proportion of the area of an un-
derlying distribution that is above the criterion. When M- A; = 0, for exam-
ple, the "yes" rate is 50%; large positive differences correspond to high
"yes" rates and large negative differences to low ones. The curve in Fig. 1.6
is called a (cumulative) distribution function; in the language of calculus, it
is the integral of the probability distributions shown in Fig. 1.5.
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Negative Positive

Mean minus Criterion (M - k)
FIG. 1.6. A cumulative distribution function (the integral of one of the densities
in Fig. 1.5) giving the proportion of "yes" responses as a function of the difference
between the distribution mean and the criterion.

We can use the distribution function to translate any "yes" proportion
into a value ofM-k. This is the tie between the decision space and our sen-
sitivity measures: For any hit rate and false-alarm rate (both "yes" propor-
tions), we can use the distribution function to find two values of M- k and
subtract them to find the distance between the means. The distribution func-
tion transforms a distance into a proportion; we are interested in the inverse
function, from proportions to distances, denoted z. In Fig. 1.7, the hit and
false-alarm proportions from our face-recognition example are ordinate
values, and the corresponding values z(H) and z(F) are abscissa values. The
distance between these abscissa points, z(H) - z(F), is the distance between
the Sl and S2 means in Fig. 1.5. It is also, by Equation 1.5, equal to d''. Be-
cause z measures distance in standard deviation units, so does d'. Thus, the
sensitivity measure d' is the distance between the means of the two underly-
ing distributions in units of their common standard deviation.

The distance between the means of distributions is a congenial interpre-
tation of d' because it is unchanged by response bias. No matter where the
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FIG. 1.7. A cumulative normal distribution function. The inverse function can
be used to transform the proportions H and F into z scores, and sensitivity is the
difference between z(H) and z(F).

participant locates the criterion, d' equals the same number. This relation is
not specific to normal-distribution SDT: Any sensitivity measure obtained
by subtracting transformed hit and false-alarm rates can be represented as
the distance between the means of two distributions whose shape is given by
the inverse of the transformation.

We can now venture a "definition" that will at least delimit the contents of
this book. By detection theory we mean a theory relating choice behavior to a
psychological decision space. An observer's choices are determined by the
distances between distributions in the space due to different stimuli (sensitivi-
ties) and by the manner in which the space is partitioned to generate the possi-
ble responses (response biases).

Calculational Methods

Calculation of d' (and other statistics yet to be introduced) can be accom-
plished at several levels of technical sophistication. As we have seen, a table
of the normal distribution is sufficient in principle. Computer programs
have been developed specifically for this job and are much more convenient
when the amount of data to be analyzed is large. Appendix 6 contains one
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such program; it uses the most accurate algebraic approximation to z, ac-
cording to Brophy (1985). A more complex program, which can also be
used for the discrimination paradigms to be introduced later in the book, is
d'plus (Macmillan & Creelman, 1997), which is available on the Internet.3

It is also easy to find d'using the "inverse normal" functions of spread-
sheet programs; this is especially appealing for the many laboratories in
which the data are collected or stored into spreadsheets. Basic calculations
are illustrated in Table 1.1 for Excel, but are very similar in QuattroPro and
other programs. The function z is written = NORMSINV. The indexes to be
entered or computed are listed in Column A, and formulas are given that can
be inserted in Rows 5 to 11 of Column B, then copied to subsequent col-
umns. Sorkin (1999) explored the use of spreadsheets for SDT calculations
in greater detail.

Detection theory procedures are also available as part of standard statisti-
cal packages such as Systat and SPSS. Because many users of detection the-
ory make routine use of such packages, this is an attractive option. Data can
be entered either as frequencies (number of hits, number of misses, etc.) or
trial by trial, as they would be collected in an experiment. These packages
can also be used when there are more than two response alternatives; we dis-
cuss them further in the context of rating designs (chap. 3).

TABLE 1.1 Formulas for Spreadsheet (Excel) Calculation
of SDT Statistics With Examples

1
2
3
4
5

6

7
8
9
10
11

A (Labels Only)
#hits
# misses
# false alarms
# correct rejections
H (hit rate)

F (false-alarm rate)

e(fl)
z(F)
d'
c

j8

Formula (for Column B;
Then Copy to C

and Other Columns)

= IF(B2>0,B1/(B1+B2),
(B1-0.5)/(B1+B2))
= IF(B3>0, B3/(B3+B4),

0.5/(B3+B4))
= NORMSINV(B5)
= NORMSINV(B6)
= B7-B8
= -0.5*(B7 + B8)
=EXP(B9*B10)

B
(Setl)
10
0
2
8

.950

.200

1.645
-0.842

2.486
-0.402
0.368

C
(Set 2)

9
1
0

10
.900

.050

1.282
-1.645

2.926
0.182
1.702

3The site is http://psych.utoronto.ca/~creelman/.
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Essay: The Provenance of Detection Theory

Psychophysics, the oldest psychology, has continually adapted itself to the
substantive concerns of experimentalists. In particular, detection theory is
well suited to cognitive psychology and might indeed be considered one of
its sources. No grounding in history is needed to use this book, but some ap-
preciation of the intellectual strains that meet here will help place these
tools in context.

The term psychophysics was invented by Gustav Fechner (1860), the
19th-century physicist, philosopher, and mystic. He was the first to take a
mathematical approach to relating the internal and external worlds on the
basis of experimental data. Some present-day psychophysicists directly
pursue Fechner's interest in relating mental experience to the physical
world, usually in simple perceptual experiments. Measuring the way in
which the reported experience of loudness grows with physical intensity is a
psychophysical problem of this sort; we consider a detection theory
approach to this problem in chapter 5.

This book is part of a second Fechnerian legacy, also methodological, but
more general than the first. Fechner developed, tested, and described exper-
imental methods for estimating the difference threshold, or just noticeable
difference (jnd), the minimal difference between two stimuli that leads to a
change in experience. Fechner's assumption that the jnd could be the unit of
measurement, the fundamental building block or atom of experience, was
central to Wundt's and Titchener's structuralism, the first experimentally
based theory of perception. The analogy to 19th-century chemistry was
close: Theory and experiment should focus on uncovering the basic units
and the laws of combination of those units.

Fechner's methods were adopted and became topics of investigation in
their own right; they still form the backbone of experimental psychology.
Attempts to measure jnds led to two complications: (a) The threshold ap-
peared not to be a fixed quantity because, as the difference between two
stimuli increases, correct discrimination becomes only gradually more
likely (Urban, 1908); and (b) different methods produced different values
for the jnd.

The concept of the jnd survived the first problem by redefinition: The jnd
is now considered to be the stimulus difference that can be discriminated on
some fixed percentage of trials (see chaps. 5 and 11). Two early reactions to
the problem of continuity in psychophysical data are recognizable in mod-
ern research (see Jones, 1974).



The Yes-No Experiment: Sensitivity 23

One line of thought retained the literal notion of a sensory threshold,
building mechanical and mathematical models to explain the gradual nature
of observed functions (see chap. 4 for the current status of such models).
The threshold idea was congenial with early 20th-century behaviorist and
operationist attitudes: Sensory function could be studied and measured
without invoking unpopular notions of mental content (Garner, Hake, &
Eriksen, 1956). The threshold, in this view, was a construct derived from
data and did not have to relate to any internal and unobservable mental pro-
cess. The solution to method dependence was merely to subscript thresh-
olds to indicate the method by which they were obtained (Graham, 1950;
Osgood, 1958).

The second response to the variability problem, instigated, according to
Jones (1974), by Delboef (1883), substituted a continuum of experience for
the discrete processes of the threshold; it is this view that informs most con-
temporary psychophysics. One approach to measuring such continuous ex-
perience was Stevens' (1975) magnitude estimation, which used direct
verbal estimates. Detection measurement, in contrast, relies on underlying
random variation or noise. Psychologists' realization of the importance of
random variation dates at least to Fullerton and Cattell (1892), who invoked
it in a rigorous quantitative way to account for inconsistency in response
with repetitions of identical stimuli. Variability later served as the key build-
ing block for the pioneering work of Thurstone (1927a, 1927b) in
measuring distances along sensory continua indirectly.

The idea of variability or noise as an explanatory concept also arose in
engineering, with the development and evaluation of radar detection appa-
ratus. Radar and sonar are limited in performance by intrinsic noise in the
input signal. Any input from an antenna or sensor can be due to noise alone
or to a signal of interest embedded in the background noise. Groups at the
University of Michigan (Peterson, Birdsall, & Fox, 1954), MIT (van Meter
& Middleton, 1954), and in the Soviet Union (Kotel'nikov, 1960) recog-
nized that the physical noise that was mixed with all signals, and that could
mimic signal presence, was a major limitation to detection performance.

Knowing that stimulus environments are noisy does not, in itself, tell an
observer how best to cope with them. An approach to this problem was con-
tributed by another applied science: statistical decision theory. Decision
theorists pointed out that information derived from noisy signals could lead
to action only when evaluated against well-defined goals. Decisions (and
thus action) should depend not only on the stimulus, but on the expected
outcomes of actions. The viewer of a radar display that might or might not
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contain a blip, for example, should consider the relative effects of failing to
detect a real bomber and of detecting a phantom before deciding on a
response to that display.

W. P. Tanner, Jr., working with J. A. Swets at the University of Michigan,
realized that these engineering notions could be applied to psychology and
appropriated them directly into the psychophysical experiment (Tanner &
Swets, 1954). By separating the world of stimuli and their perturbations
from that of the decision process, detection theory was able to offer mea-
sures of performance that were not specific to procedure and that were inde-
pendent of motivation. Procedure and motivation could influence data, but
affected only the decision process, leaving measurable aspects of the inter-
nal stimulus world unchanged and capable of being evaluated separately.

According to detection theory, the observer's access to the stimuli being
discriminated is indirect: An intelligent, not entirely reliable process makes
inferences about them and acts according to the demands of the experimen-
tal situation. One might say that detection theory "deals with the processes
by which [a decision about] a perceived, remembered, and thought-about
world is brought into being from [an] unpromising beginning" (Neisser,
1967, p. 4). Neisser's landmark book linked perception and cognition into a
unified framework after a hiatus of many decades. The constructionist (al-
though not complicated) decision processes of detection theory mark it as
an early example of cognitive psychology. The ideas behind detection the-
ory are the everyday assumptions of behavioral experimenters in the cogni-
tive era, and the theory itself is central to a wide range of research areas in
cognitive science. Perhaps Estes' (2002) assessment is not an overstate-
ment: "... [SDT is] the most towering achievement of basic psychological
research of the last half century" (p. 15).

Summary

The results of a one-interval discrimination experiment can be described by
a hit and a false-alarm rate, which in turn can be reduced to a single measure
of sensitivity. Good indexes can be written as the difference between the hit
and false-alarm rates when both are appropriately transformed. The sensi-
tivity measure proposed by detection theory, d', uses the normal-distribu-
tion z transformation. The primary rationale for d'as a measure accuracy is
that it is roughly invariant when response bias is manipulated; simpler in-
dexes such as proportion correct do not have this property. The use of d' im-
plies a model in which the two possible stimulus classes lead to normal
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distributions differing in mean, and the observer decides which class oc-
curred by comparing an observation with an adjustable criterion.

Conditions under which the methods described in this chapter are appro-
priate are spelled out in Chart 2 of Appendix 3.

Problems

1.1. Suppose you are measuring the sensitivity of a polygraph ("lie de-
tector"). What are "hits," "misses," "false alarms," and "correct re-
jections"?

1.2. The following tables give the number of trials in three conditions of
a detection experiment on which participants responded "yes" or
"no" to Sj or Sr (a) Calculate H and F. (b) Find H - F, p(c\ and
/?(c)*. For these data sets, can H - Fbe greater than p(c) in one case
and the reverse ordering occur in another, or is one index always
greater than the other?

(a)

S2

(b)

S2

(c)

J

yes
9
7

"yes"
55
5

"yes"
45
25

no
6
8

"no"
45
25

"no"
55
5

1.3 (a). In Problem 1.2(a), the numbers of 5, and S2 trials are equal, but
in (b) and (c) they are not. Does this matter computationally? ex-
perimentally?
(b). Is it possible to calculatep(c) for S2 trials only? What would this
statistic measure?

1.4. Compute d' for the following (F, H) pairs:
(a) (.16, .84), (.01, .99), (.75, .75).
(b) (.6, .9), (.5, .9), (.05, .9).
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1.5 (a). If p(c) = .8 and H and F are unknown, estimate d'.
(b). If p(c) - .8, the numbers of Sl and S2 trials are equal, and F= .05,
find H and d'.

1.6 (a). Suppose d' = 1. What is //if F= .01, .1, .5?
(b) Plot the ROC from these points on linear and z coordinates, and
use the zROC to confirm the value of d'.

1.7. For the data matrixes of Problem 1.2, find d' from H and F and also
fromp(c). Is there a pattern to the results?

1.8. Are the points (.3, .9) and (. 1, .7) on the same ROC according to de-
tection theory (i.e., do they imply the same value of d')! Do they
imply the same value of p(c)l

1.9. Suppose (F, H) = (.2, .6). If F is unchanged, what would H have to
be to double the participant's sensitivity, according to detection
theory? If H is unchanged, what would F have to be?

1.10. Plot the ROCs implied by the following measures, on both linear
and z coordinates: H2 - F2, ffA - FA, H/F2, tfTF. Which measures are
best? worst?

1.11. Suppose a face-recognition experiment yields 20 hits and 10 false
alarms in 45 trials. Can you compute d'7 If not, is it possible to nar-
row down the possibilities? Hint: The stimulus-response matrix
looks like this:

20
10

45

What happens if there are 0 misses, or 0 correct rejections?



The Yes-No Experiment:
Response Bias

In dealing with other people, "bias" is the tendency to respond on some ba-
sis other than merit, showing a degree of favoritism. In a correspondence ex-
periment, response bias measures the participant's tilt toward one response
or the other.

The sensitivity measure d' depends on stimulus parameters, but is un-
tainted by response bias: To a good approximation, it remains constant in
the face of changes in response popularity. We now adopt the complemen-
tary perspective, seeking an index of response bias that is uncolored by sen-
sitivity. Conceptually, d' corresponds to a fixed aspect of the observer's
decision space, the difference between the means of underlying distribu-
tions; a measure of bias should also reflect an appropriate characteristic of
the perceptual representation. How can we assign a value to the partici-
pant's preference for one of the two responses?

Two Examples

Example 2a: Face Recognition, Continued

Consider again the face-recognition experiment of chapter 1, in which
viewers discriminated Old from New faces. Suppose the investigator now
repeats the experiment, this time hypnotizing the participants in an effort to
improve their memory, and obtains the following results from a representa-
tive observer:

Normal Hypnotized

27

Old
New

"Yes"
69
31

"No"
31
69

"Yes"
89
59

"No"
11
41

2
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Applying the analyses of chapter 1 reveals that hypnosis has not af-
fected sensitivity: d' is approximately 1.0 in both the normal and hypno-
tized conditions.

Hypnosis does appear to affect willingness to say "yes"; there are many
more positive responses in the hypnotized condition than in the control
data. (For a discussion of whether hypnotism actually has this effect, see
Klatzky & Erdelyi, 1985.) In this example, therefore, an experimental ma-
nipulation affects bias, but not sensitivity. In the next example, a single vari-
able affects both.

Example 2b: X-ray Reader Training

Apprentice radiologists must be trained to distinguish normal from abnor-
mal X-rays (see Getty, Pickett, D'Orsi, & Swets, 1988, for a description of
one training program). In this field, a hit is conventionally defined to be
the correct diagnosis of a tumor from an X-ray, and a false alarm is the in-
correct labeling of normal tissue as tumorous. Consider three readers who
before training are equally able to distinguish X-rays displaying real tu-
mors from X-rays of normal tissue, attaining exactly the same perfor-
mance, but emerge from training with different scores on a posttest:

Before Training After Training
Trainee 1

Trainee 2

Trainee 3

#=.89
F=.59
#=.89
F=.59
#=.89
F=.59

#=.96
F=.39
#=.993
F=.68

#=.915
F=.265

The trained readers are more sensitive—two of them show both a higher
proportion of hits and a lower proportion of false alarms than before train-
ing. But has there also been a change in willingness to say "yes"? In the hyp-
notic recognition experiment, a response bias change merely masked the
constancy of sensitivity; in this second example, there is clear evidence for a
sensitivity change, but an interesting response-bias question remains.

Measuring Response Bias

Characteristics of a Good Response-Bias Measure

Because a response-bias index is intended to measure the participant's will-
ingness to say "yes," we expect it to depend systematically on both the hit
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and false-alarm rates and in the same direction — either increasing or de-
creasing in both. Sensitivity measures, remember, increase with H and de-
crease with F, an analogous property. A response-bias index should depend
on the sum of terms involving H and F, whereas the sensitivity statistic d'
depends on the difference of H and F terms.

Response-bias statistics can reflect either the degree to which "yes" re-
sponses dominate or the degree to which "no" responses are preferred. All
the measures in this book index a leaning in the same direction: A positive
bias is a tendency to say "no," whereas a negative bias is a tendency to say
"yes." The rationale for these apparently illogical pairings will become
clear when we discuss the representation.

Criterion Location (c)

The basic bias measure for detection theory, called c (for criterion), is de-
fined as:

(2.1)

When the false- alarm and miss rates are equal, z(F) = z(l-H) = -z(H) and c
equals 0. Negative values arise when the false-alarm rate exceeds the miss
rate, and positive values arise when it is lower. Extreme values of c occur
when H and F are both large or both small: If both equal .99, for example, c
= -2.33, whereas if both equal .01, c = +2.33. The range of c is therefore the
same as that of d' , although 0 is at the center rather than an endpoint. Figure
2. 1 shows the locus of positive, negative, and 0 values of response bias in the
part of ROC space where sensitivity is above chance.

Table A5.1, which was introduced in chapter 1 as a tool for calculating
d', can also be used to compute the bias measure c. Spreadsheets accom-
plish the table-lookup task automatically (see Table 1.1, which includes
some bias measures). Analyzing the face-recognition results, we find that c
shifts from 0 to -0.73 under hypnosis, reflecting an increase in "yes" re-
sponses.

To interpret these numbers according to our model, consider the decision
space in Fig. 2.2. The familiarity decision axis is labeled in standard devia-
tion units, 0 being the point midway between the two distributions. Because
d' = 1.0, the mean of the Old distribution is at 0.5, the mean of the New at
-0.5. The participant's decision rule is to divide the familiarity axis into
"yes" and "no" regions at a criterion.
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False-alarm Rate

FIG. 2.1. The representation of criterion location in ROC space. Points in the
shaded regions arise from criteria that are positive (below the minor diagonal) and
negative (above the minor diagonal). Points in the unshaded region below the ma-
jor diagonal result from negative sensitivity.

FIG. 2.2. Decision spaces for the Normal and Hypnotized conditions of Exam-
ple 2a, according to SDT. Shaded area corresponds to F, diagonally striped area to
H. (a) Normal controls have a symmetric criterion, d' = 1.0. (b) Hypnotized partic-
ipants display identical sensitivity but a lower criterion, and thus have higher hit
and false-alarm rates.
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A simple calculation shows that the value of this criterion, in standard de-
viation units from the midpoint, is the bias parameter c. In chapter 1 , we saw
that the z score of the "yes" rate corresponds to the mean-minus-criterion
distance. For the 5, distribution, this implies

-d'/2-c = z(F), (2.2a)

and for the S2 distribution

d'/2 -c = z(ff) . (2.2b)

Adding these two equations produces Equation 2. 1 .
The different values of response bias in the normal and hypnotized con-

ditions of our face-recognition experiment, therefore, correspond to differ-
ent criterion locations. In the control condition (Fig. 2.2a), the criterion is
located at 0, exactly halfway between the two distributions, and the partici-
pant is said to be "unbiased." Under hypnosis (Fig. 2.2b), the participant's
criterion is much lower, below the mean of the New distribution. Because it
is 0.73 standard deviations below the zero-bias point, c = -0.73.

Analysis of the radiology training data from Example 2b is equally
straightforward. All trainees improve in sensitivity: d' about doubles. Val-
ues of c can be calculated from Equation 2. 1 . Trainee 1 maintains the same
criterion location after training as before (c = -0.74). Trainee 2 has a more
extreme bias (-1 .46), and Trainee 3 has a less extreme one (-0.37). The de-
gree to which the criteria differ among trainees is easily seen in Fig. 2.3,
which shows the decision space and criterion settings for each reader: The
first row represents the pretraining decision space of all trainees, and the
other rows represent the posttraining spaces of each one individually.

Alternative Measures of Bias

Detection theory offers one measure of sensitivity (for two-response exper-
iments), but is more generous with bias parameters. Besides criterion loca-
tion, just described, bias can be specified by relative criterion location and
likelihood ratio.

Relative Criterion Location (c')

In this measure of bias, we scale the criterion location relative to perfor-
mance. A rationale for such scaling is that with easier discrimination tasks a
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FIG. 2.3. Decision spaces
for the three radiology train-
ees of Example 2b. In each
case the hit rate, false-alarm
rate, sensitivity, and three al-
ternative criterion measures
are shown, (a) Before train-
ing, d' = 1.0. The criterion c,
the relative criterion c', and
log likelihood ratio equal
-0.73 for all trainees, (b)
Trainee 1, after training; in-
creased sensitivity and ap-
proximately the same crite-
rion location c as before train-
ing, (c) Trainee 2, after train-
ing; increased sensitivity and
approximately the same rela-
tive criterion location c' as
before training, (d) Trainee 3,
after training; increased sen-
sitivity and approximately
the same value of log likeli-
hood ratio [ln(/3)] as before
training.
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more extreme criterion (as measured by c) would be needed to yield the
same amount of bias.

Look again at the radiography training data of Example 2b. The first radi-
ologist's criterion location is indeed the same distance from 0 (the
equal-bias point) before and after training, but whether this is to be called
"no change" can be argued. The criterion was initially below the mean of
the Sl distribution, but is above it afterward. If distance from the criterion to
a distribution mean is the key to bias, this observer's bias has become less
extreme. Would it not be sensible to calculate the criterion distance as a pro-
portion of sensitivity distance? The alternative bias measure suggested by
this reasoning is:

Calculated values for c' are given in Fig. 2.3. It happens in this example that
before training, c-c\ but only because d' =1.0. After training, c' is half the
magnitude of c because d' = 2. When d' varies, one must decide whether in
discussing "bias" one wishes to take account of sensitivity. Of the three ra-
diologists, it is Trainee 2 who maintains the same bias in the sense of c' and
Trainee 1 whose bias is unchanged in the sense of c.

Likelihood Ratio (P)

The third measure of bias is found by an apparently different strategy. In
the decision space, each value x on the decision axis has two associated
"likelihoods," one for each distribution. Each likelihood is the height of
one of the distributions; we denote this height at the location jc by/(;c), and
to distinguish the two distributions we refer to the heights of Sl and S2 as
/(xlSj) andf(x\S2). The relative likelihood of S2 versus 5,, obtained by di-
viding these, is called the likelihood ratio:

Each point x has an associated value of likelihood ratio: It is 1 .0 at the center
(where the two distributions cross), greater than 1.0 to the right, and be-
tween 0 and 1.0 to the left. One measure of response bias, therefore, is the
value of likelihood ratio at the criterion.

Equation 2.4 suggests an interesting interpretation of likelihood ratio in
terms of the ROC. Consider two points very close together on the decision
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axis—imagine they are a small value 8 units apart, as shown in Fig. 2.4a.
The change in the hit rate between the two points is approximately /(jclS^e,
the height of the S2 distribution multiplied by the width of a tiny rectangle.
The change in the false-alarm rate, by the same token, equals fixlS^e. The
ratio of these changes, which is the slope of the ROC, isflxlSJ/faAS^. No-
tice that this slope exactly equals the likelihood ratio. The assertion in chap-
ter 1 that the slope of the ROC continuously decreases follows from the
equivalence of likelihood ratio and ROC slope. As the criterion goes from
large to small values of c, the likelihood ratio must decrease, and so there-
fore must the slope.

FIG. 2.4. Geometric demonstration that the slope of the ROC at any point is the
likelihood ratio at the criterion value that yields that point, (a) In the decision
space, two criteria are shown that differ by a small amount e. For the lower crite-
rion, the hit rate is greater by an amount equal to the area of the filled rectangle, and
the false-alarm rate is greater by an amount equal to the area of the diagonally
shaded rectangle, (b) The two criteria correspond to two points on an ROC curve.
(c) An expanded view of the relevant section of the ROC. The lower point (higher
criterion) is (F, H). At the higher point, the hit and false-alarm rates increase by the
areas of the rectangles in (a). The slope of the ROC, the ratio of these two incre-
ments, isflxlSJ/flxlSi), which is the likelihood ratio.



The Yes-No Experiment: Response Bias 35

This conclusion does not depend on any assumptions about the shape of
the underlying distributions, but actual calculation of likelihood ratio does
require such a commitment. In the normal-distribution model we have been
exploring, the height of the likelihood function, denoted 0, depends on x
and on the distribution's mean fi and standard deviation cr according to the
equation

(2.5)

Values of 0 are given in Table A5.1.
The general strategy for finding the likelihood ratio can now be applied

to the normal model. The likelihood function/in Equation 2.4 equals 0, and
the likelihood ratio is the ratio of two values of <j)(x) — one for the S2 distribu-
tion and one for 5,. A little calculation (to be found in the Computational
Appendix) shows that the likelihood ratio, usually called ft in the normal
model, depends on sensitivity and the criterion location in a simple way:

An equivalent form can be found by taking logarithms:

Likelihood ratio can be calculated either directly from likelihoods (given by
Eq. 2.5 or Table A5.1) or from its relation to c and d' (Eq. 2.6). For Trainee
3, the likelihood ratio equals 0(.915)/0(.265) = .1556/.3276 = 0.475, and
\n(fi) = -0.75. Alternatively, because d' = 2.00 and c = -0.373 for this ob-
server, ln(/J) = cd' = -0.75. By this measure, Trainee 3 maintained the same
response bias before and after training, whereas the other trainees adopted
more extreme criteria (-1.49 and -2.91) after training. Summarizing bias
using j8 [or In(j3)] leads us to a different conclusion about our radiologists
than did core'.

Isobias Curves

The isosensitivity curve, which describes the relation between the hit and
false-alarm rates when bias (but not sensitivity) changes, is useful in evalu-
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ating measures of accuracy. A function relating Hand F for changing sensi-
tivity (but not bias) is equally important in understanding bias statistics. The
locus of points in ROC space that reflect equal bias is called an isobias
curve.

For a particular bias parameter, the isobias curve is a prediction about
how performance changes when bias is held fixed while sensitivity varies.
Consider Fig. 2.5, which locates the performance of all the radiologists of
Example 2b in ROC space. Trainee 1, remember, displayed the same value
of c before and after training, so the points B and Tl lie on the isobias contour
for c defined by c = -0.73. Other points for which c takes on this value are
connected by a continuous curve. Similarly, Trainees 2 and 3 generate two
points on the isobias curves for c' and /?, respectively. Clearly the three mea-
sures predict very different patterns of performance when sensitivity
changes and bias remains the same.

To derive the form of an index's isobias curve, it is necessary to solve the
equation defining the measure for H as a function of F. For example, the
isobias function for c is found from Equation 2.1 to be

z(H) = -2c-z(F). (2.7)

As can be seen in Fig. 2.6 (upper right panel), this relation is a straight line in
z coordinates. Families of curves for all three measures are shown in Fig.
2.6, in both linear and z coordinates.

Comparing the Bias Measures

How can a choice be made among the bias statistics available? The three
bias measures, all quite plausible, are simply related. The criterion location
relative to the zero-bias point, c, is divided by d' to obtain the relative bias
c', and multiplied by d' to obtain the likelihood ratio measure ln()8). Be-
cause the logarithm is a monotonic function, ln(/J) is equivalent to likeli-
hood ratio itself.

Likelihood ratio is the most general of these three concepts: Unlike abso-
lute or relative criterion location, it is meaningful for representations of any
complexity. Early writers on detection theory (Licklider, 1959; Peterson,
Birdsall, & Fox, 1954), therefore, placed great stress on the likelihood ratio
as the basis for decision. When sensitivity is constant, d' serves as an arbi-
trary scale factor on the interval-scaled decision axis, and one may fairly say
that log likelihood ratio is the decision variable.
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FIG. 2.5. Two ROCs and three isobias curves for the data of Example 2b. One
ROC describes the sensitivity for all three trainees before training (d1 = 1), the
other sensitivity after (d' = 2). The isobias curves are for constant c (Trainee 1),
constant c' (Trainee 2), and constant ft (Trainee 3). Linear coordinates are used in
(a), z coordinates in (b).
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FIG. 2.6. Families of isobias curves (hit rate vs. false-alarm rate, d' varying) for
constant criterion c, relative criterion c', and likelihood ratio ft, on linear and z axes.
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But this does not mean that ln(/T) is necessarily to be preferred as a re-
sponse bias measure for comparing experimental conditions—when de-
tectability is constant, any measure will do. In Example 2a, d' equals 1.0 in
both face-recognition conditions; thus, the bias parameters c, c', and ln(/J)
give the same values. If d' were constant but not equal to 1.0, and the three
statistics therefore differed numerically, they would still lead to the same
conclusion in any comparison between conditions. But when d' varies, as in
Example 2b, the three measures of bias support different interpretations.

We consider three standards to which a candidate bias measure might be
held: (a) Its isobias curve should be supported empirically, (b) it should de-
pend monotonically on H and F in the same direction, and (c) it should be
independent of the sensitivity index. The second and third standards favor
the criterion location c; the first has not provided clear-cut support for any
one measure.

Form of Empirical Isobias Curves

The curves in Fig. 2.6 are similar, but they differ substantially in certain
parts of the space (at the corners and near the major diagonal), and the
reader may eagerly expect that, as with sensitivity, we shall be able to decide
among the implied measures on the basis of data. Dusoir (1975,1983) com-
pared isobias curves for c, c', ft, and several other potential bias statistics
with data from an auditory detection experiment. Sensitivity was varied by
changing tone intensity and bias via instructions, allowing isobias curves to
be constructed.

Dusoir found great individual differences in shapes of isobias curves and
could not support any one measure as superior to any other. This lack of
unanimity reflects an important asymmetry between sensitivity and bias: To
derive measures that yield constant sensitivity requires, at most, a theory of
the stimuli; to do the same for bias indexes requires, at least, a theory of the
instructions. Theories of tone detection, and even theories of memory, are a
good deal more advanced than the kind of theory of language understanding
needed to predict isobias performance. Dusoir (1983) concluded that par-
ticipants may vary in their understanding of bias-inducing instructions so
that different observers may all be holding some—but not the same—bias
parameter fixed.

Two more recent applications produced more internally consistent re-
sults, although they are not in agreement with each other. See, Warm,
Dember, and Howe (1997) examined a "vigilance" situation in which sig-
nals occur infrequently and trials are not defined by the experimenter. Such
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tasks are of interest as models of, for example, radar monitoring, and ob-
servers typically show a decrement in performance after less than 1 hour
(Davies & Parasuraman, 1982). See et al. asked observers to detect small in-
creases in the height of lines on a computer screen, and they manipulated re-
sponse bias by varying the probability of signal occurrence and monetary
payoffs. In a critical test, they chose two levels of "salience" (detectability),
and were thus able to construct two-point isobias curves; these curves had
the form predicted for c.

Recognition memory data relevant to the isobias question have been re-
ported by Stretch and Wixted (1998), who reanalyzed the data of Ratcliff,
McKoon, and Tindall (1994) and also conducted new experiments. Sensi-
tivity was manipulated by varying the time or rate of exposure of words, or
the number of times items were presented. Response bias was evaluated
through a rating design; we discuss the details of this procedure in the next
chapter. Although they did not plot isobias curves per se, their data come
closest to the form predicted for j3.

It is tempting to conclude that the bias manipulations used by See et al.
(1997) and Stretch and Wixted (1998) are superior to the instructional
method used by Dusoir (1983), at least in the sense that individual differ-
ences may be smaller. But changes in presentation probability have their
own problems, as we shall see in chapter 3. In any case, these two studies
reach different conclusions. Perhaps this is not something to worry about:
Although one would like theories of response bias to be oblivious to the
stimulus domain being studied, such a goal may be too optimistic.

Monotonicity of Theoretical Isobias Curves

Our general condition on bias measures, according to which an increase in
either the hit rate or false-alarm rate should mean a decrease in bias, im-
poses a restriction on isobias curves: As F increases, //must decrease. All
measures satisfy this condition in the upper left quadrant of ROC space,
where H ̂  .5 and F ̂  .5, but both relative criterion and likelihood ratio vio-
late it elsewhere.

Two other regions of ROC space, in which the curves of Fig. 2.6 show
different behaviors, are the chance line H = F and the area below it. When
sensitivity is 0, it is still meaningful to talk about bias: An observer for
whom H = F = . 1 clearly has a different bias from one operating aiH = F =
.9. The criterion location c does take on different values along the diagonal,
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but c' and jSdo not. In fact, when underlying distributions of likelihood are
identical, both of these statistics are undefined.1

Below-chance behavior may seem uninteresting or even illogical, but
statistical fluctuations can easily lead to such performance. Two points in
ROC space that are symmetrically located across the chance line—(F, H)
and (H, F)—should intuitively show the same or similar biases. By this test,
criterion location is again the best measure, giving the same value for the
two points. Both c' and ln(/J) show discontinuities, changing sign as they
cross the diagonal (see Macmillan & Creelman, 1990, for more detail).
These measures can be salvaged by multiplying their values by -1 below the
chance line [as has been suggested for ln(/J) by Waldmann & Gottert, 1989,
and for other, "nonparametric" bias measures by Aaronson & Watts, 1987,
and Snodgrass & Corwin, 1988].

Independence of Bias From Sensitivity

That response bias be independent of accuracy is clearly a desirable outcome,
but we must be careful what we wish for, because independence has multiple
meanings. First, consider statistical independence, the condition that in re-
peated tests neither of two measures affects the other. Only c is independent
of d'in this sense (see the Computational Appendix for proof that it is).

Second, we can examine the dependence of bias measures on stimulus
strength—there should be none. An analogous strategy, finding noneffects
of bias on sensitivity, provided some of the earliest support for the use of d'.
Dusoir (1983) applied this test, but the results were inconclusive: Of 21
comparisons (each representing a single observer in a single experimental
condition), c,c', and /? were each significantly correlated with sensitivity 12
times. Other statistics considered by Dusoir (some of which we encounter
in chap. 4) were at least equally unsuccessful. In the See et al. (1997) experi-
ment, c showed a slight dependence on d' in one of three experiments, but
the correlations between /5 and d' were both more widespread and stronger.

A final type of independence can be seen intuitively in the ranges of these
variables: The range of c does not depend on d', whereas the range of the
other measures does (Banks, 1970; Ingham, 1970). When d' is large, c' has
a small range and (3 a large one; when d' is small, the reverse is true. The cri-
terion location c is the only index whose magnitude can be interpreted with-

'in one interpretation, likelihood ratio equals 1 for the zero-sensitivity case. As noted earlier, however,
the decision axis itself may be considered to be likelihood ratio, so the decision space collapses to a
single point.



42 Chapter 2

out knowledge of d' (Macmillan & Creelman, 1990; Snodgrass & Corwin,
1988). A caveat remains, however: Perhaps the range of biases is truly not
the same at different levels. Thus, Stretch and Wixted (1998) concluded
from the nature of the relation between criterion and stimulus strength in
their memory experiment that the range of biases was narrower at high lev-
els of accuracy.

How Does the Participant Choose a Decision Rule?

Whatever the best response bias measure is, the decision process leading to
it is not in dispute.2 The participant establishes a criterion at some point on a
relevant internal dimension and uses it to partition the dimension into re-
gions of "yes" and "no" responses. Two questions remain: (a) Is this always
the best thing to do? If so, (b) where should the criterion be located?

As long as the stimuli (and thus sensitivities) are fixed, using a criterion
to determine responses is, indeed, always the right strategy, and for an inter-
esting reason. As we have seen, the decision axis is a monotonic function of
likelihood ratio in the fixed-sensitivity case, so the question becomes
whether it is optimal to use likelihood ratio to make decisions.3 To answer
this question requires consensus about what the "best" decision rule should
accomplish, something about which reasonable people can agree. Green
and Swets (1966: ch. 1) nominated four decision goals; for each a likelihood
ratio decision rule is indicated and the optimal likelihood ratio at the
criterion can be calculated:

1. Maximize proportion correct. When presentation probabilities are
equal, a participant who wishes to maximize proportion correct must
treat the two stimulus classes symmetrically, preferring to make neither
false alarms nor misses more often. This is accomplished by setting c to
equal 0, the zero-bias point. Likelihood ratio at this point is 1. If S2 is pre-
sented more often than 5P however, it will pay the participant to be more
willing to respond "yes," and a lower criterion should be set. If p(Sl) and
p(S2) are the a priori probabilities of presenting the two stimuli, then the
optimal value of likelihood ratio is p(Sl)/p(S2).

2Well, not in much dispute. One alternative interpretation of detection data rejects the whole idea of crite-
rion shifts (Balakrishnan, 1999) in favor of changes in the distributions themselves.

3In chapter 3, we encounter a case in which the likelihood ratio is not monotonic with the decision axis;
even then the likelihood ratio rule is best.
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2. Maximize a weighted combination of hits and correct rejec-
tions. An observer may be more interested in hits than in false alarms,
or vice versa, for reasons other than presentation probability. For ex-
ample, the X-ray readers of Example 2b should be much more willing
to make a false alarm (detecting a tumor when none is there) than a
miss (failing to detect). To maximize a weighted average—say, three
times the hit rate, plus the correct rejection rate—the observer should
set a criterion at the "importance ratio," in this example, three. That is,
only if the X-ray under examination is at least three times as likely to
be normal as pathological should the observer say, "no, there is no tu-
mor." If the importance ratio equals the ratio of presentation probabili-
ties, this objective is the same as maximizing proportion correct.

3. Maximize expected value. The decision rule suggested for the
X-ray reader, just above, was based on the relative value of the two
kinds of correct decisions. This can be made explicit, at least in experi-
mental situations: Participants can be rewarded for hits and correct re-
jections, or they can be penalized for false alarms and misses. In the
laboratory, the rewards are sometimes small financial ones, some-
times merely "points" (see chap. 3).

The ideal value of likelihood ratio in such a situation depends on
the reward function R that specifies the payoff for each experimental
outcome:

[R(correct rejection) - R( false alarm)] p ( S ^ ) (2.8)
[R(hit)-R(miss)] p(S2) '

Normally, the "rewards" for false alarms and misses are negative. If an
observer is paid 10 cents for each correct response and is penalized 1
cent for misses and a dollar for false alarms, the optimal value for the
criterion (assuming equal presentation probabilities) is [0.10 -
(-1.00)]/[(0.10 - (-0.01)] = 10; that is, the observer should insist that
the odds favoring S2 given the data be 10 to 1 or larger before hazard-
ing a "yes" response.

People rarely adopt such extreme criteria; when payoffs are
changed to favor "no," criteria generally shift, but not to the degree
prescribed by Equation 2.8. The theoretical analysis is sometimes sal-
vaged by reference to "subjective" rewards, which are presumed to lag
behind real ones. We are aware of no attempt to verify that the subjec-
tive criteria actually used by participants in payoff-driven experi-
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ments are, in any sense, optimal. Many practical matters, such as
participants' (usually negative) attitudes toward piece work, competition
among participants, and a tendency to see performance (in what is fre-
quently, after all, a professor's laboratory) as a measure of intelligence,
all suggest that Equation 2.8 captures only some of the real basis for hu-
man decision making.

4. Test a statistical hypothesis. A decision maker is often instructed,
explicitly or implicitly, to obtain as high a hit rate as possible while hold-
ing the false-alarm rate to some predetermined level, a goal called the
Neyman-Pearson objective. Thus, our X-ray reader might be advised to
keep the false-alarm rate below .5; for an air traffic controller, an accept-
able value of F might also be quite high, because it is the misses—fail-
ures to notice impending collisions—that have to be minimized. Clients
undergoing audiological testing often adopt a much more severe crite-
rion, being unwilling to make more than a few false alarms, which they
view as lies.

Satisfaction of the Neyman-Pearson objective also requires a like-
lihood ratio criterion decision rule, with the value of likelihood ratio
set to produce the desired false-alarm rate. Jerzy Neyman and Karl
Pearson were among the founding fathers of modern statistics, and
their objective is exactly that met by conventional statistical hypothe-
sis testing. False alarms in that context are called Type I errors, and the
false-alarm rate is arbitrarily set to a small value, typically .05 or .01.
Observations (sample means, sample mean differences, etc.) above
the criterion lead to rejection of the null hypothesis, either correctly
(hits) or, with fixed low probability, incorrectly (false alarms).

Coda: Calculating Hit and False-Alarm Rates
From Parameters

The outcome of a yes-no discrimination experiment, we have seen, can be
characterized by either of two pairs of parameters: the hit and false-alarm
rates, or sensitivity and bias. Detection theory asserts that the latter pair is
more illuminating. These first two chapters have therefore focused on ex-
pressions for sensitivity and bias in terms of H and F. When solved for H,
these expressions describe isosensitivity and isobias curves.

It is sometimes useful, however, to reverse this process and calculate H
and F from detection theory parameters. We do this here according to the
following plan. In the decision space, the hit and false-alarm rates—both
proportions of "yes" responses—correspond to the area under a probability
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function above the criterion. The (cumulative) distribution function at the
criterion gives the complementary probability of an observation falling be-
low criterion. This distribution function can be easily calculated, because it
is the inverse of the z transformation that converts proportions to distances.
The calculation is illustrated in Fig. 2.7.

The z transformation converts a proportion to a standardized distance
from the mean. The inverse of z, which gives the "no" rate when the crite-
rion is at z, is the normal distribution function, denoted <3>(z). The value of
O(z) can be found from a normal table, but Table A5.1 is not ideally ar-
ranged for this purpose. In that table, p values are given in units of .01,
which is helpful when/? is known, as in data analysis. Table A5.2 gives the
same information, but for z scores in units of .01, which is more convenient
when z is known. The probability p corresponding to a z score is O(z).

The "yes" rate is 1 - <f>(z); because the normal distribution is symmetric,
this equals O(-z). Expressed as a z score, the criterion equals c-d'12 for the
S2 distribution and c - (-d'/2) for S{', so

For an unbiased observer, c = 0, # = O(d'12), and F = O(-d72). In this case,
the hit and correct rejection rates both equal proportion correct, so

(2.10)

FIG. 2.7. Relation between underlying distributions and "yes" rates (hit and
false-alarm rates). When the criterion is at z, the yes rate is O(-z).
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Essay: On Human Decision Making

Much of the large literature on decision making by human beings (see, e.g.,
Kahnemann, Slovic, & Tversky, 1982) asks how closely our behavior corre-
sponds to what we "should" do. The decision problem described in this
chapter is in many ways rather simple: Only one dimension is relevant, the
stimuli are presented at predictable times (in most applications), and re-
peated trials allow the observer to focus on relevant aspects of the stimulus
display. Does the observer indeed deal with this problem in the "right"
way—by establishing a criterion and using it?

At least two nonoptimal strategies have occurred to most psychophysi-
cists who have studied (and, frequently, served as participants in) corre-
spondence experiments: inattention and inconsistency. An inattentive
observer dozes off, or at least drifts into reverie, on some proportion of tri-
als; because failing to respond is usually discouraged, this leads to an un-
known number of d' = 0 trials, ones on which the observer responds despite
not having paid attention, mixed in with the others. An inconsistent partici-
pant uses a criterion, but changes the location of the cutoff from trial to trial;
because the criterion must be compared to a sensory event, the movement
adds an unknown amount of variance to the underlying distributions
(Wickelgren, 1968). Both strategies, if they may be called that, serve to re-
duce observed sensitivity.

Do these effects occur? Almost certainly, but little is known about
how badly they contaminate experiments. Training provided before ex-
perimental data are collected may serve to reduce these errors; observers
who fail to improve during practice may be suspected of persisting in a
nonoptimal strategy. In most applications, small amounts of inattention
or inconsistency matter little. Stimulus pairs that yield high performance
levels are an exception: The experimenter who wishes to make a precise
estimate of a d' of 4 or so will be frustrated by even an occasional lapse.
If lapses are part of the human condition, such estimates are doomed to
unreliability.

We have been speaking of optimal strategies; what about optimal use of
strategies? Given that an observer is using a criterion in the manner we sup-
pose, are there ways we can encourage "unbiased" decision making, that is,
symmetric criterion placement? Arguments are sometimes put forward that
one or another experimental technique will accomplish this goal, which is
sometimes a valuable one (see especially chap. 11). Often, however, there is
no reason to aim for a symmetric criterion. After all, the sensitivity measure
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with which detection theory provides us is unaffected by bias, so why
worry? Perhaps only because in common parlance (but not in
psychophysics) bias is a pejorative term, something worth avoiding.

Another appeal of unbiased responding is that it makes almost any mea-
sure of sensitivity satisfactory, eliminating the need for complex psycho-
physics. The search for unbiased responding may thus be a vestige of the
belief that, really, simple, untransformed measures are to be trusted more than
theoretical ones. We shall critically evaluate this possibility in chapter 4.

Finally, the concept of bias in detection theory has sometimes been mis-
understood in a way that makes neutral bias qualitatively different from
other values. The location of the criterion can, we have seen, be manipu-
lated by instructions: Apparently, then, observers can consciously choose to
change it. If no instructions are given, however, observers are not aware of
the possibility of varying a criterion. Thus, the argument goes, instructions
to change bias provide conscious interference with a normally unconscious
process. In our view, the distinction between consciousness and its lack has
nothing to do with either the existence or location of a criterion. Detection
theory takes no stand on the conscious status of a criterion, and in any case
observers do not naturally choose a neutral value. We shall encounter this
issue again in chapter 10 when we briefly discuss the alleged phenomenon
of subliminal perception. An observer who responds "no" when a stimulus
is presented because of a high criterion is not necessarily aware of the
possibility that a "yes" response would have been possible had the criterion
been set lower.

Summary

Whereas a good sensitivity statistic is the difference between the transformed
hit and false-alarm rates (chap. 1), a good measure of response bias is the sum
of the same two quantities. In the decision space, this index describes the lo-
cation of a criterion that divides the decision axis between values that lead to
"yes" and "no" responses. Other measures—relative criterion and likelihood
ratio—are equivalent when sensitivity is unvarying, but not when accuracy
changes across conditions. Criterion location has advantages, both logically
and, in some cases, empirically. Using a criterion to partition the decision axis
is an optimal response strategy. The optimal location of the criterion can be
calculated if the performance goal is specified.

Conditions under which the methods described in this chapter are appro-
priate are spelled out in Chart 3 of Appendix 3.
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Computational Appendix

Derivation of Equation 2.6

The likelihood ratio is the ratio of the values of the S2 and S1 normal likeli-
hood functions at the location x = c. The function 0(jc) is defined by Equa-
tion 2.5. For both distributions, the standard deviation <j= 1; the mean JLL
equals d' in the numerator and 0 in the denominator. The resulting likeli-
hood ratio, called j8 in SDT, is

/? = ecrf', or

(2.11)

Statistical Independence ofd' and c

That c is statistically independent of d' can be seen as follows: Hit and
false-alarm rates are independently computed (from data on S2 and Sl trials,
respectively); so z(H) and z(F) are independent, and thus uncorrelated across
repeated estimates. The sum (c) and difference (d') of uncorrelated variables
are also uncorrelated and, because z(H) and z(F) are normally distributed, in-
dependent. Neither c' nor ft is independent of d' in this sense.

Problems

2.1. For the data of Example 2b, calculate p(c) for each trainee. Do all
readers improve, according to this measure?

2.2. For the data of Example 2b, suppose all trainees adopted symmetric
criteria, both before and after training, (a) What values of p(c)
would they obtain? (b) How do c, c', and ln(/J) compare?

2.3. For the matrixes of Problem 1.2, find c, c', and /?.
2.4. (a) Suppose an investigator decides to use F itself to measure re-

sponse bias. What is the isobias curve for this statistic? (b) Another
simple statistic is the yes rate, (H + F)/2. Find the isobias curve.

2.5. Suppose (F, H) = (.2, .6). If d' doubles and the observer maintains
the "same bias," what will the new (F, H) point be? (Interpret "same
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bias" to mean same criterion, same relative criterion, and same like-
lihood ratio; you will have three answers.)

2.6. Ekman, O' Sullivan, and Frank (1999) videotaped men either lying
or telling the truth about social issues on which they held strong be-
liefs, and played the tapes to four groups of observers: trained inter-
rogators, Los Angeles County sheriffs, clinical psychologists
interested in deception, and academic psychologists. The propor-
tions of correct responses to lies and truths were:

Experimental group
Interrogators
Sheriffs
Clinical psychologists
Academic psychologists

P("lie"\lie)
.80
.77
.71
.57

P(" truth" \truth)
.66
.56
.64
.58

The authors concluded that"... the most accurate groups did espe-
cially well in judging the lies compared with the truths...," and that
this could not be attributed to response bias. What would a detec-
tion theory analysis have to say about bias in these four groups?
About sensitivity?

2.7. Suppose an observer is paid 10 cents for all correct responses, (a)
What does the payoff matrix look like? (b) What is the optimal
value of likelihood ratio if the proportion of S2 trials is .5? .25? . 1 ?
(c) If d' = 1, find the criterion location c for each case, (d) Again as-
sume d' = 1. In each case, what would the hit and false-alarm rates
be? (Hint: Use the "coda" section.)

2.8. In a grating detection experiment, observers try to distinguish the
presence of a pattern of alternating light and dark stripes from a
uniform grey patch. There are two experimental conditions, with
the stimuli differing in contrast, such that the stripes are better de-
fined in the high-contrast than the low-contrast condition. Two
groups of participants each view both conditions, but differ in that
one group is given feedback (told after their response whether the
grating was present) and the other is not. For each set of observers,
how would you expect criterion placement to differ with contrast?
Would it make a difference if the high- and low-contrast gratings
were presented in different blocks of trials, or mixed together in a
single block?

2.9. In this chapter, an analogy between detection theory and conven-
tional statistical hypothesis testing is presented. According to this
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analogy, statistical results usually are summarized by a "false-alarm
rate." Why are they not instead summarized by a sensitivity measure
such as d'?

2.10. Suppose d' = 2. (a) What are H and F if c = 0.5? -0.5? What are H
and Fife'=0.5?-0.5?



The Rating Experiment
and Empirical ROCs

In the last two chapters, we described correspondence experiments in which
people report which of two events (such as seeing a New or Old face) had
occurred. According to detection theory, they do this by comparing the
strength of evidence, which we called familiarity, with a criterion. Observa-
tions of more than criterial familiarity are called "old," and those below cri-
terion are called "new." The criterion is placed at a location of the observer's
choice: Strict criteria serve to minimize false alarms, lax criteria to mini-
mize misses.

If observers can set different criteria in different experimental conditions,
they must know more about events in their experience than is needed to
make a simple yes-no judgment. In this chapter, we see how observers can
make graded reports about the degree of their experience by setting multiple
criteria simultaneously. Our two primary examples are both tests of recog-
nition memory, but for rather different materials: odors and words.

Design of Rating Experiments

Example 3a: Recognition Memory for Odors

How is memory for odors affected by the passage of time? Rabin and Cain
(1984) presented participants with 20 odors to remember, then tested them
at a delay of 10 minutes, 1 day, and 7 days. At each test, a different set of 20
New odors was intermixed with the Old stimuli.

Observers labeled each smell as "old" or "new" and also rated their confi-
dence in these answers on a 5-point scale, which we have reduced to a
3-point scale for illustrative purposes. Thus, there are two kinds of stimuli
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and six possible responses (three ratings for each binary judgment). In our
simplification, there are 375 trials of each sort (Old and New). Table 3.1
shows the data matrixes for two conditions: Each entry is the number of tri-
als on which an observer used a specific response (old/new plus rating) for
one stimulus class.

TABLE 3.1 Frequency of Each Response for Each Stimulus
(Odor Recognition)

"Old"
"3" "2" "1"

"New"
"1" "2" "3"

Total

10-Minute Delay
Old
New

112
7

112
38

72
50

53
117

22
101

4
62

375
375

7 -Day Delay
Old
New

49
8

94
37

75
45

60
60

75
113

22
113

375
375

Response Alternatives in Rating Experiments

Like the examples in chapters 1 and 2, this experiment employs a one-inter-
val design with two possible stimuli (Old and New odors). Rating experi-
ments differ from yes-no experiments only in the response set available to
the observer.

The rating task offers the observer a set of responses varying from great
confidence in one alternative, through relative indifference between the
two choices, to great confidence in the second alternative. Notice that this
is the ordering in Table 3.1. Three different, equivalent response sets meet
this requirement. The simplest is a set of numerals, "1" to "10," "1" to "5,"
or some other range. The lowest numbered response indicates high cer-
tainty that, for example, the test odor was in the study set, whereas the
highest number indicates high certainty that it was not. As a second possi-
bility, the response set may consist of verbal categories ranging from "cer-
tain it is not old" through "fairly sure it is not old," through some
intermediate categories, to "very certain it is an old word." A third way to
organize the response set for participants, the method used in the Rabin
and Cain (1984) experiment, is to require two subresponses. Observers
first judge the stimulus as old or new and then grade the certainty of the re-
sponse with a number or verbal category.
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ROC Analysis

As in chapter 1, we wish to know how sensitive the participants were to the
experimental distinction, but we have more information than in two-re-
sponse examples. If no confidence judgments had been used, the two condi-
tions could be easily summarized. By ignoring the distinctions among
confidence levels, Table 3.1 could be reduced to the following:

Old (S2)
New (Si)

10-Minute Delay
"Yes" "No"
296 79
95 280

7 -Day Delay
"Yes" "No"
218 157
90 285

Then d' could be calculated for each condition as follows:

10-Minute Delay
H = 296/31 '5 = .79
F= 95/375 = .25
d' = 1.48

7-Day Delay
# = 218/375 = .58
F = 90/375 = .24
d' = 0.91

How can we use the supplementary ratings to improve our assessment of the
participants' performance? We first discuss the calculation of hit and false-
alarm rates from the data, and then we provide a graphical presentation of
the results.

Calculating Hit and False-Alarm Rates

The first steps in analyzing rating data parallel the treatment of yes-no data in
chapter 1. The number of responses of each type for each stimulus is tabu-
lated (Table 3.1), and each cell frequency is divided by the total number of
stimulus presentations in its row to estimate a conditional probability. Table
3.2 shows the results of this transformation for both matrixes of our example.
Each entry in the new table shows the proportion of trials on which the stimu-
lus yielded that response, so each row totals 1.0 (except for rounding error).

The third step is special to rating designs. For each response, we find the
proportion of trials leading to that response, or any response to the left of it,
by summing the conditional probability table, left to right. The cumulative
probabilities are shown, for our data, in Table 3.3. For both conditions, each
column of the table now contains a hit rate and false-alarm rate. We have al-
ready pointed out that if ratings had been omitted, the participants in the
7-day delay condition could have produced a false-alarm/hit pair of (.24,
.58). But observers also could have reached the pair (.4, .74) by using "yes"
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TABLE 3.2 Proportion of Each Response for Each Stimulus
(Odor Recognition)

"Old"
"3" "2" "7"

"New"
"1" "2" "3"

Total

10-Minute Delay
Old
New

.299

.019
.299
.101

.192

.133
.141
.312

.059

.269
.011
.165

1.00
1.00

7-Day Delay
Old
New

.131

.021
.251
.099

.200

.120
.160
.160

.200

.301
.059
.301

1.00
1.00

TABLE 3.3 Hit and False-Alarm Rates: Cumulative
Proportions for Each Stimulus (Odor Recognition)

"Old"
"3" "2" "1"

"New"
"1" "2" "3"

10-Minute Delay
Old
New

.299

.019
.598
.120

.790

.253
.931
.565

.990

.834
1.00
1.00

7-Day Delay
Old
New

.131

.021
.382
.120

.582

.240
.742
.400

.942

.701
1.00
1.00

to include both "old" (all levels of confidence) and "new but with a confi-
dence rating of 1." Each of the other pairs also corresponds to a partition of
the response categories into two subsets and reflects a possible yes-no deci-
sion rule.1

As in the two-response experiment, we now use Table A5.1 to find z
scores for each cumulative conditional probability; these are shown for our
illustration in Table 3.4. The result is a whole set of d' measures, one for
each possible partition of the response set. A 2 x 2 table produces one esti-
mate of sensitivity; a 2 x 6 table, five. The multiple estimates of d' obtained
from the rating data are not independent of each other. In moving from one
partition to the adjacent one to the right, all the same data are used, plus one
new column. In this example, the estimates of d' obtained at different crite-
ria agree rather well.

Notice that if we had summed right to left, the entries would have become miss and correct rejec-
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TABLE 3.4 Transformed Hit and False-Alarm Rates, z Scores,
and d' Estimate for Each Response (Odor Recognition)

"Old"
"3" "2" "1"

"New"
"1" "2"

10-Minute Delay
Old
New
d'

-0.527
-2.081

1.554

0.232
-1.175

1.407

0.807
-0.665

1.472

1.484
0.164
1.320

2.327
0.970
1.357

7-Day Delay
Old
New
d'

-1.121
-2.037
0.916

-0.301
-1.175

0.874

0.207
-0.706
0.913

0.649
-0.253

0.902

1.573
0.527
1.046

Graphing Discrimination—The Empirical ROC

To make sense of these data, it is useful to represent them graphically. We
can do so using the ROC curve, the function that relates hit and false-alarm
rates. In chapter 1, we described the implied ROC, the set of (hit, false-
alarm) pairs consistent with a specific value of a sensitivity measure. The
implied ROC makes a theoretical statement.

The data in Table 3.3 can be used to plot empirical ROCs, as illustrated in
Fig. 3.1 a. Each possible (F, H) pair in Table 3.3 is a point in ROC space: The
leftmost pair falls near the lower left corner of the graph in the first panel of
the figure, and each succeeding pair is farther to the right and higher. The
points must increase in this way because each point is obtained by adding
the data from one new column to the previous one. The second panel shows
the same data as the first, but uses the values in Table 3.4 to locate points on z
coordinates rather than linear probability axes.

The shape of an empirical ROC is predicted by detection theory. For ex-
ample, the ROC implied by the use of d' as a sensitivity index is z(H) = d' +
z(F) (Eq. 1.8). This is the equation of a straight line with a slope of 1.0, dis-
placed upward from the origin by the constant sensitivity. Such a line has
been drawn through each set of data in Fig. 3.1b; the curves in Fig. 3.la were
produced by transforming back from z values to probabilities. The five
points on each ROC are separate (although not independent) estimates of
the discriminability of the two stimulus sets. A single underlying d' can
yield any data point that gives the same difference of the transformed values
on the two axes of the ROC plot.
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FIG. 3.1. ROCs for odor recognition (Example 3a) on (a) linear coordinates, and
(b) z coordinates. Upper curves are for a 10-minute delay, lower curves for a
1-week delay.
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The data show that odor memory is initially good, but declines over a
7-day period (for Rabin and Cain's observers, most of the decline oc-
curred in just 1 day). Recognition memory for smell is, of course, a differ-
ent quality than the ability of smells to evoke other memories. Proust's
classic Remembrance of Things Past celebrates this long-term power of
olfactory memory.

ROC Analysis With Slopes Other Than 1

All points on each unit-slope line in Fig. 3.1b represent the same detect-
ability. What would we make of a line that did not have a slope of 1 so that
sensitivity, as estimated by z(H) - z(F), was different for each point on the
line? How can we best summarize such data?

Example 3b: Recognition Memory for Words of Varying
Frequency

Models of memory for words are often tested by examining ROC data
(Ratcliff, McKoon, & Tindall, 1994). The next example compares experi-
mental conditions in which the studied items have either high frequency of
occurrence (i.e., are common words) or low frequency. Participants choose
from a set of five responses, which might be numerical or verbal judgments,
as shown in Table 3.5. The data, also given in the table, are typical of such ex-
periments in that recognition is better for low- than for high-frequency words.

TABLE 3.5 Frequency of Each Response for Each Stimulus
(Word Recognition)

"1"= "2"= "3"= "4"= "5" =
"Sure Old" "Maybe Old" "Uncertain" "Maybe New" "Sure New'

Low-Frequency Words
Old
New

61
2

15 15
8 37

5
23

4
30

High- Frequency Words
Old
New

37
4

25 18
18 28

11
21

9
29

Plotting the ROC

The cumulated proportions based on these data are plotted in Fig. 3.2 on
both linear probability and normal (z score) axes. (The lines and summary
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FIG. 3.2. ROCs for word recognition (Example 3b) on (a) linear coordinates,
and (b) z coordinates. Upper curves are for low-frequency words, lower curves for
high-frequency words.
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statistics in the figure will be explained presently.) The z-transformed hit
and false-alarm rates are presented in Table 3.6. The last line in the table
gives the difference of the normal deviates, as in Table 3.4. Here the values
of z(H) - z(F) vary considerably and systematically; for low-frequency
words, for instance, they range from 2.33 to 1.23. If we had conducted a
yes-no experiment, our sensitivity estimate could have been anything be-
tween these two values depending on the response criterion chosen by the
observer. We need a way to summarize this set of data by a single value, and
it is clear that the z score difference does not provide one.

TABLE 3.6 Cumulative Proportions in z Score Units
(Word Recognition)

"1" "2" "3" "4"
Low-Frequency Words

Old
New
z(H)-z(F)

0.279
-2.054

2.333

0.706 1.341
-1.282 -0.075

1.988 1.416

1.751
0.524
1.227

High-Frequency Words
Old
New
z(H)-z(F)

-0.332
-1.751

1.419

0.306
-0.772

1.078

0.842
0.0
0.842

1.341
0.553
0.788

Estimating Sensitivity: da, ROC Slope, and Related Indexes

When the slope of the ROC equals 1, d' is both the horizontal distance and
the vertical distance between the zROC and the chance line. When the slope
is not equal to 1, however, these two distances differ, as shown in Fig. 3.3. A
large value of d' (call it d' ̂  can be measured by taking the horizontal dis-
tance from the ROC to the major diagonal at the point where z(H) = 0. A
small value (d'2) is the vertical distance between them where z(F) = 0. Ex-
amination of the figure reveals that s, the slope of the zROC, is equal to

s = d'Jd\ . (3.1)

The equation of the ROC can be written

d\ = (l/s)zm-z(F), or (3.2)

d'2 = z(H)-sz(F) . (3.3)
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FIG. 3.3. Nonunit-slope ROC, showing alternative indexes of sensitivity :d',
(unit is the standard deviation of 5,), d'2 (unit is the standard deviation of 52),
and da (unit is the rms average of the two standard deviations). The distance da

is *J2 times as long as DYN, the perpendicular from the origin to the ROC.

Some insight into these measures can be gained by considering the un-
derlying distributions implied by this ROC. What does it mean that the ROC
slope is less than 1 ? It means that moving one z unit, or standard deviation,
on the F-axis produces a change of less than one standard deviation (s units
to be exact) on the H axis. That is, the standard deviations of the S} and S2

distributions are in the ratio s: 1. Pairs of distributions having this character-
istic (with s = 0.5) are shown in Fig. 3.4.

Our alternate measures of sensitivity (Eqs. 3.2 and 3.3) each rely on one
of these standard deviations, and each corresponds to a different distance
in the decision space. The index d', is measured at the point z(H) = 0, that
is, for a criterion set at the mean of the S2 distribution, as in Fig. 3.4a. At
that point, d' {equals —z(F) (Eq. 3.2) and thus only depends on the standard
deviation of the Sl distribution. On the other hand, d'2 is measured where
z(F) = 0, so that the criterion is at the mean of the S2 distribution (Fig.
3.4b). Here, d'2 equals z(H) and depends only on the standard deviation of
the S2 distribution.

The best single measure of sensitivity in this situation is neither d\ nor
d'2, but a compromise. In ROC space (Fig. 3.3), it should be a distance be-
tween the ROC and the chance line that is shorter than d\ but longer than
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FIG. 3.4. Decision space for nonunit-slope ROC, standard deviation of 52 dou-
ble that of 5,: (a) criterion at mean of 52, difference between the means measured
in units of the S, standard deviation; (b) criterion at mean of 5,, difference be-
tween the means measured in units of the 5, standard deviation.

d'r In the decision space, it should measure the mean distance between dis-
tributions in units of some kind of average of the two standard deviations.

Figure 3.3 illustrates such a measure. Instead of selecting the horizontal
or vertical distance from the origin to the ROC, consider the shortest dis-
tance between them. This statistic, termed DYN by its inventors (Schulman
& Mitchell, 1966), is a principled choice, but gives values of the wrong
magnitude, always smaller than either d\ or d'r The correct adjustment is
to multiply DYN by V2. The new distance, called da (Simpson & Fitter,
1973), is shown in Fig. 3.3 as the length of the hypotenuse of the equilateral
triangle whose legs have length DYN .

The index da has the properties we want. First, it is intermediate in size
between d\ and d'r Second, it is equivalent to d' when the ROC slope is 1,
for then the perpendicular line of length DYN coincides with the minor diag-
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onal, and the two lines of length da coincide with the d' , and d'2 segments.
Third, da turns out to be equivalent to the difference between the means in
units of the root-mean-square (rms) standard deviation, a kind of average
equal to the square root of the mean of the squares of the standard deviations
of S, and S2.

To find da from an ROC that is linear in z coordinates, it is easiest to first
estimate d'2 (the vertical intercept), d\ (the horizontal intercept), and s
(from Eq. 3.1). Because the standard deviation of the Sl distribution is s
times as large as that of 52, we can set the standard deviation of Sl to s and
that of S2 to 1 . Then the standard deviation used for measuring da is [V4(l +
s2)]"4, the rms average of the two. When sensitivity is measured in units of
the S2 distribution, it equals d'2\ to convert to the right units for da, divide d'2
by the rms standard deviation:

To find da directly from a point on the ROC (once the slope is known), Equa-
tions 3.3 and 3.4 are combined to yield

(3-5)

When a single number is desired to characterize an ROC, da is a good
one; by also reporting the slope s, the investigator can completely describe
the curve. For the two conditions of the word-recognition experiment (Fig.
3.2 and Tables 3.5 and 3.6), s = 0.55 for low-frequency words and 0.73 for
high-frequency words. Values of da for the two conditions are approxi-
mately 1.78 and 1.02.

Another commonly used distance measure, d'e, is named for James Egan,
who conducted several important early experiments establishing the useful-
ness of detection theory. This index is based on the arithmetic average of
the standard deviations and is defined by

and can be found from a hit/false-alarm pair by
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Like da, d'eisa distance between the ROC and the chance line that is inter-
mediate in length between d', and d'2. In fact, as Fig. 3.5 shows, it is the dis-
tance between the two lines measured at the minor diagonal. Any measure
based on an average of the two underlying standard deviations is an im-
provement over d't or d'2 (the geometric mean has also been proposed; see
Grey & Morgan, 1972).

Area Under the ROC: Az and Ag

Sometimes a measure of performance expressed as a proportion is preferred
to one expressed as a distance. The index Az, which is simply DYN trans-
formed by the normal distribution function <I>, is appropriate in such cir-
cumstances (Swets & Pickett, 1982):

(3.8)

In the current examples, Az = .9 and .76. This statistic equals the area under
the normal-model ROC curve, which increases from .5 at zero sensitivity to
1.0 for perfect performance.

FIG. 3.5. Nonunit-slope ROC, showing alternative indexes of sensitivity: d1',
(unit is the standard deviation of 5,), d'2 (unit is the standard deviation of 52), and
d'e (unit is the arithmetic average of the two standard deviations).
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Area under the ROC is a good index of sensitivity and can be measured
without any model assumptions—the first truly nonparametric measure we
have encountered. Pollack and Hsieh (1969) suggested estimating this area
in a straightforward way. Using the linear-coordinate ROC, connect the suc-
cessive (F, H) points and draw vertical lines from each point to the F-axis,
creating a series of trapezoids (and one triangle). Each of these figures has
an area equal to the difference in the F values times the average //value, and
the total area (which Pollack and Hsieh called Ag) is found by summing
these areas:

Ag=^FM-Fi)(HM+Hi). (3.9)

The index i tracks the ROC points so that (F,, #,) equals (0,0), (F2, H2) is the
first point to the right, and the last point is (1,1).

This measure is best with a large number of responses: The polygon form
of the ROC is systematically lower than the "true" ROC, and this difference
is greatest for curves with few points. Donaldson and Good (1996) pro-
posed a measure, A' r (r for rating), that increases Ag to approximately com-
pensate for this discrepancy. Of course if the ROC is consistent with the
normal-distribution model, Ai exactly compensates, so the nonparametric
Ag and A'r measures are most useful when this model does not hold.

Estimating Bias

Decision Space for the Rating Experiment

In deriving empirical ROCs, the stimulus-response matrix is partitioned
many different ways, once for each possible rule by which the observer could
have reduced the matrix to a simple yes-no table. Each partition yields a dif-
ferent (false-alarm, hit) pair, as shown in Figs. 3.1 and 3.2, and thus implies a
different criterion. One criterion is enough to generate one ROC point; to pro-
duce an ROC curve with n points, the observer must maintain n criteria simul-
taneously. No paraphernalia beyond those introduced in chapter 2 are needed
to find the locations of these criteria. The rating matrix is reanalyzed as sepa-
rate yes-no matrixes, and any desired bias measure can then be computed. We
illustrate the calculations involved for our two examples.

Unit-Slope ROCs

First, consider the 7-day delay condition in the Rabin and Cain (1984) odor-
recognition experiment. Table 3.7 extends that part of Table 3.4 in which a"
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was computed for this condition to the bias parameter c. For each column, c
= - l/2[z(H) + z(F)], just as in two-response experiments. The highest values
of the criterion c indicate reluctance to say "old," and therefore correspond
to the left-most responses in the table. Figure 3.6 shows the locations of the
criteria vis-a-vis the underlying distributions.

The likelihood ratio, another measure of bias included in Table 3.7, can
be computed in two ways: either directly from the heights of the underlying
densities or from the product of the criterion location and d' (Eq. 2.6). We il-
lustrate both methods for the criterion dividing "old" from "new" re-
sponses. At this point, z(H) = 0.207 and z(F) = -0.706, that is, H = .58 and F
= .24. Using Table A5.1, we find that the likelihood ratio j3 is 0.391/0.311 =
1.26 and ln(/3) = 0.23. And, according to Table 3.2, d' = 0.913 and c = 0.250,
so ln(£) = d'c = 0.23.

TABLE 3.7 Transformed Hit and False-Alarm Rates, d', and
Bias for Each Response in the Odor Recognition Experiment
(7-Day Delay Condition)

Old
New
d'
c

ln(/3)

"Old"
-1.121
-2.037

0.916
1.579
1.446

-0.301
-1.175

0.874
0.738
0.645

0.207
-0.706

0.913
0.250
0.230

"New"
0.649 1.573

-0.253 0.527
0.902 1.046

-€.198 -1.050
-0.179 -1.098

FIG. 3.6. Decision space and response criteria for the odor-recognition rating
experiment of Example 3a (1-week delay condition).
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Notice that the likelihood ratio j8 decreases as the hit and false-alarm rates
increase (moving through the table from left to right). As we saw in chapter 2,
the likelihood ratio is the slope of the ROC curve (on linear, not z score coor-
dinates), so the slope of the ROC must also continually decrease. Because of
variability, however, empirical ROCs do not always have monotonically de-
creasing slope. One particularly glaring violation of monotonicity occurs
when a cell not in an end column of the data matrix contains a 0. A 0 in the up-
per (5"2) row implies that two adjacent points on the ROC fall on the same hori-
zontal line, and a 0 in the lower row implies two points on the same vertical
line. The first yields a likelihood ratio of zero, the second of infinity. Because
such values are inconsistent with most models, some experimenters
"smooth" them in plotting their data. The simplest method for doing this is to
merge any column with a 0 in the S2 row with the column to its left, and any
column with a 0 in the 5, row with the column to its right. This procedure se-
lects the more sensitive of two horizontally or vertically paired points, and it
eliminates the one displaying less sensitivity.

Nonunit-Slope ROCs

If the slope of the ROC on z coordinates does not equal 1 , a decision must be
made about the unit in which c is to be measured. Let us first consider using
the standard deviation of the S2 distribution in this role, calling the resulting
criterion location index cr Figure 3.7 shows an unequal- variance decision
space; the S^ distribution has standard deviation s and the S2 distribution
standard deviation 1. We wish to calculate the criterion location c2 relative
to the zero-bias point. As we saw in chapter 1 , the z coordinate of each "yes"
rate is a difference between a distribution mean and the criterion location
expressed in standard deviation units:

The analysis differs from that of chapter 1 only because the standard devia-
tion of the Sj distribution is not 1. Combining Equations 3.10 leads to2

2See Computational Appendix for derivation.
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FIG. 3.7. Unequal-variance decision space portraying criterion location c2

(measured in terms of the S2 standard deviation).

Three other possible bias statistics employ the standard deviation of the
5, distribution, the rms standard deviation, and the average standard devia-
tion, and can be calculated from

Values for all four measures in the low-frequency condition of the
word-recognition experiment (Example 3b) are given in Table 3.8. Be-
cause the measures differ only in unit, they are related to each other by
multiplicative constants. The isobias curves of all measures are the same,
and the same as that for c (Fig. 2.6). When s = 1, all the indexes are equal to
each other and to c.

Two other classes of bias measures were considered in chapter 2: relative
distances and likelihood ratio. In the unequal-variance case, relative dis-
tances (c') can be computed by combining the criterion values of Equations
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TABLE 3.8 Transformed Hit and False-Alarm Rates
and Bias Measures for the Word-Recognition
Experiment (Low-Frequency Condition)

Old
New
z(H) + z(F
c\
C2

ca

ce

"1"
0.279

-2.054
) -1.775

1.145
0.630
0.780
0.813

"2"
0.706

-1.282
-0.576

0.372
0.204
0.253
0.264

"3"
1.341

-0.075
1.266

-0.817
-0.449
-0.557
-0.580

«,»

1.751
0.524
2.275

-1.468
-0.807
-1.000
-1.042

3.12 to 3.14 with the corresponding sensitivity values. Likelihood ratio can
be calculated, as in the previous example, by finding the heights of the S{

and S2 densities that correspond to H and F in Table A5.1. However, the sim-
ple relation between likelihood ratio and c (Eq. 2.6) no longer applies. In
fact, the use of likelihood ratio in describing nonunit-slope ROCs presents a
difficulty. Two normal densities that differ in both mean and variance inter-
sect each other at two points (Luce, 1963a), as shown in the first panel of
Fig. 3.8. Because each intersection point reflects a likelihood ratio of 1, the
decision axis can no longer be monotonic with likelihood ratio. Indeed, if
the observer uses a cutpoint decision rule on this axis, H will be less than F
near one corner of the ROC (Fig. 3.8b).

Although ROCs with nonunit slope are common, we are not aware of any
data for which H is systematically less than F. There are two possible rea-
sons for this nonphenomenon. First, the reversal occurs at extreme points in
ROC space. If d', = 2 and s = 0.5 (as in the figure), the reversal occurs at H-
F= .995, an ROC point rarely encountered in application. Even if d\ - 0.5,
the critical point is H = F = .98. The small magnitude of the potential rever-
sals makes them hard to distinguish from chance (H = F) performance.

Second, no observer is forced to use the cutpoint response rule, which is
not ideal in this situation. The optimal decision maker establishes two cut-
points, one at each location having the critical value of likelihood ratio, and
responds "yes" for ratios greater than that value. Such observations are ei-
ther above the upper cutpoint or below the lower one. The third panel of Fig.
3.8 illustrates this rule for a likelihood ratio of 1.0. The corresponding ROC,
portrayed in the second panel, differs most from the cutpoint rule in the up-
per corner, where the likelihood ratio rule does not produce below-chance
performance.
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FIG. 3.8. Decision space and possible ROCs for underlying distributions of un-
equal variance, (a) Normal distributions with standard deviations 1 and 2. The dis-
tributions intersect at two points, (b) Two possible ROCs. Cutpoint rule yields a
linear ROC (s = 0.5) and leads to below-chance performance at low criteria; likeli-
hood ratio rule has nonlinear shape, (c) Decision space of panel (a) showing the
two cutpoints required by a likelihood ratio response rule, here set at ft = 1.
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Systematic Parameter Estimation
and Calculational Methods

Statistical methods are used to find the ROC curve of a given shape that
best fits the data. Fitting curves to points is a common procedure in behav-
ioral research, but the ROC presents a peculiar problem. Whereas most ex-
perimental data plots have a dependent variable (something measured) on
the ordinate and an independent variable (something varied by the experi-
menter) on the abscissa, in an ROC both axes are dependent variables. For
a linear fit when only one dimension is free to vary, one aims to minimize
the total discrepancy between the data points and the line on that dimen-
sion. This tactic is inappropriate for ROC data (see Appendix 1 for more
discussion).

A solution to this difficulty is provided by the statistical curve-fitting
procedure of maximum-likelihood estimation (discussed in chap. 13 and in
Appendix 1). A program that uses this method to calculate ROCs was devel-
oped by Dorfman and Alf (1969); a modified version, called ROCKIT, and
several extensions have been made available by Metz and his colleagues
(e.g., Metz & Kronman, 1980). These programs are available online.3 The
output gives the value of d'2 (called A), s (called fi), and Az.

Statistical packages with detection theory modules can also be used for
both the normal model and a variety of other distributional assumptions
(some of which we discuss in chap. 4). To use the signal detection module in
Systat, first enter the data into three columns, one for the stimulus (0 or 1),
the second for the response (any integers in the range -6 to +6), and the third
for the frequency of that stimulus-response combination, which we call
FREQ. Give this data set a name, say PROBLEM 1, and then issue the
following instructions:

USEPROBLEM1
SIGNAL
MODEL RATING=SIGNAL
FREQ=COUNT

ESTIMATE

The output gives the value of d\ (confusingly, this is called d'}, da, l/s, Az,
and the bias measures /? and ln(/J). The ROC is plotted, and its goodness of
fit is measured by chi-square. SPSS provides a similar module.

3The Web site is http://www.radiology.uchicago.edu .
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Alternative Ways to Generate ROCs

There is more than one way to gather ROC data. Although the rating method
is the most efficient, it does not even have historical priority as a procedure
(Tanner & Swets, 1954). All other methods use the same stimulus alterna-
tives under several different experimental conditions at different times. Un-
der the different conditions, observers are encouraged in one way or another
to change their willingness to say "yes"; we expect any change in such will-
ingness to change both the hit and false-alarm rates, but not sensitivity.

Monetary Rewards (Payoffs)

Experimenters may reward observers, trial by trial, for their performance.
Use of rewards mimics some real-life discrimination situations. An auto-
motive quality-control inspector should perceive the cost of failing to detect
faulty work to be large relative to the cost of a false alarm. On the other hand
we may hope that those who can start a war in response to intelligence infor-
mation are made cautious by the very high cost of a false alarm.

In a simple yes-no experiment with two possible stimuli and two re-
sponses, there are four values to manipulate: the amounts paid (or debited)
by the experimenter for hits, misses, false alarms, and correct rejections.
Different runs use the same stimuli, but a different set of financial rewards
or payoff matrix. Each set of payoffs produces a separate 2 x 2 data matrix,
and the set of (F, H) pairs defines an ROC. The optimal value of the criterion
under each payoff can be calculated from Equation 2.8.

Verbal Instructions

Explicit financial incentives can often be effectively replaced by verbal in-
structions. Participants are urged during some experimental runs to be lax in
reporting, for instance, that a stimulus is Old, whereas during other runs they
are urged to be strict. Well-trained participants seem able to understand these
instructions—perhaps a bit of support for the notions of SDT in itself—and
can also use "neutral" as a criterion, as well as degrees of strictness or laxness.
This procedure is just as time-consuming as paying money because each ver-
bal criterion must be set in a separate session to establish an ROC.

Exactly what terms can be used, either in separate sessions, or in rating
experiments, is not always obvious. In recognition memory research, for
example, participants are sometimes asked to distinguish items they can re-
member encountering in the experiment from those they know were pre-
sented even though the specific episode is not available. The original
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motivation for such experiments (Tulving, 1985) was to tap distinct explicit
versus implicit memorial processes, but participants may also treat "re-
member" and "know" as different levels of confidence along the same di-
mension. Donaldson (1996) proposed the latter interpretation, supporting it
with an analysis in which sensitivity is calculated separately for the two pu-
tative levels of confidence represented by these responses. More recently,
Rotello, Macmillan, and Reeder (2004) argued that "remember" and
"know" responses reflect multiple sensitivities as well as different response
rules. The key point is that not every manipulation that affects hit and
false-alarm rates generates a true ROC; whether a particular set of points in
ROC space reveals isosensitivity is a substantive theoretical question.

Manipulating Presentation Probability

Another way to alter the willingness of people to say "yes" as opposed to
"no" is to change the relative likelihood of presenting the two stimuli. View-
ers who are aware of the presentation probabilities are more willing to re-
port the more likely stimulus. Experimenters can change the presentation
probability of one stimulus from session to session and keep separate re-
cords for each probability condition. This strategy is even more tedious than
the last two, especially when one of the stimuli is very unlikely, because es-
timating a hit or false-alarm rate requires many runs simply to get a suffi-
ciently large sample of trials. However, some intrepid souls have collected
ROC data this way (Creelman, 1965).

Use of presentation probability to trace ROCs encounters two other
problems. First, if feedback is not used, so that the observers are unaware
of the a priori probabilities, decreasing the probability of presenting S2

may actually increase the number of "yes" responses (T. Tanner, Haller, &
Atkinson, 1967; T. Tanner, Rauk, & Atkinson, 1970). One interpretation
of this result is that participants tend to believe the presentation probabili-
ties to be equal (similar effects in identification experiments are discussed
in chap. 5). The last difficulty with changing presentation probabilities is
that doing so may influence sensitivity as well as bias (Markowitz &
Swets, 1967; see also Dusoir, 1983). In a detection task, the higher the pro-
portion of S2 (Signal) trials, the better the observer will be able to remem-
ber the Signal. Balakrishnan (1999) also found that changes in
presentation probability—and even changes in payoffs—can affect sensi-
tivity. These difficulties, and the tedium of collecting enough data at low
presentation probabilities, generally make this strategy for collecting
ROCs unattractive.
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Another Kind of ROC: Type 2

An empirical ROC curve plots ratings conditional on one stimulus class
against ratings conditional on another, but an analogous curve can be con-
structed from ratings conditional on the correctness of responses. In the
odor-recognition task (Example 3a), observers first labeled stimuli as old or
not and then expressed their confidence in their answers. A Type-2 ROC
curve relates their confidence judgments on correct trials to confidence
judgments on incorrect trials. Type-2 ROCs, first analyzed by Clarke,
Birdsall, and Tanner (1959), provide a perspective on the decision space dif-
ferent from that of their Type-1 siblings, as shown in Fig. 3.9.

Clarke et al. (1959) supposed that the observer's initial response was
based on an unbiased criterion placement (c = 0) and that the later confi-
dence judgments would be high for extreme observations in either direc-
tion. Only two levels of confidence are shown in the figure: The observer
reports "sure" for observations that are either above a positive cutoff k or be-
low the negative cutoff -k, and "unsure" otherwise. Thus, the initial re-
sponse depends on a binary partition of the decision axis, and the later
confidence rating relies on a multiple partition applied to the absolute value.

The hit and false-alarm rates for a Type-2 ROC are the proportions of rat-
ing responses up to a particular level of confidence given truly correct and

criterion

"no," then provide a confidence rating.
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incorrect initial responses. Because the initial response is assumed to be
symmetrically determined, these response rates can be calculated by con-
sidering only one of the two stimuli, say S2. A conditional probability equals
the probability of a joint event (say rating a correct response as correct) di-
vided by the probability of a marginal one (an initial correct response).
Thus,

P(rating correct I initial correct)

/"(rating correct I initial incorrect)

Equations 3.15 contain only two unknowns (d' and k) and can be solved
by iteration. The apparent sensitivity index of the Type-2 ROC (i.e., the in-
tercept of the ROC on z axes) is less than d' . The slope is less than the as-
sumed Type-1 slope of 1.0.

Although the analysis of Clarke et al. (1959) is almost as old as the stan-
dard Type-1 method, it is little used. This is unfortunate, because many ex-
periments that are unsuitable for Type 1 are susceptible in principle to
Type-2 description. Consider, for example, the traditional recall task: A par-
ticipant hears a series of words and later lists as many as possible. With each
item recalled, the participant provides a rating of confidence that it was in
fact on the original list. A Type-2 ROC clearly can be constructed from data
of this sort, but because there is only one stimulus class (the words on the
original list), no Type-1 curve is possible. To our knowledge, no one has
tested the usefulness of this approach to recall.

Essay: Are ROCs Necessary?

When an empirical ROC has unit slope, any point on the curve provides the
same estimate of sensitivity. Rating responses are in this case unnecessary if
we are only interested in sensitivity: The entire ROC can be inferred from
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one point, and a yes-no experiment suffices to find that point. Indeed, not
every researcher employing detection theory collects ROCs, a procedure
that may appear to introduce unnecessary tedium and complexity into ex-
periments. Are ROCs worth the effort?

It is even possible that the rating procedure distorts "true" yes-no behav-
ior. Perhaps maintaining several criteria is a more taxing cognitive chore
than setting only one (Wickelgren, 1968). Most existing data are reassuring:
Early in the history of detection theory, Egan and his colleagues (Egan &
Clarke, 1956; Egan, Schulman, & Greenberg, 1959) obtained equivalent
measures of detectability with and without ratings in an auditory task.

The difficulty in not collecting ROCs is, of course, that if ROC slopes are
not equal to 1, then comparisons of observed sensitivity estimates may be
misleading. Consider the two points shown in Fig. 3.10, (F = .31, H= .83)
and(F=. 62, H=. 96). For both, d'= z(H) - z(F) = 1.45. Yet if the true ROCs
have slopes of, say, 0.5, the second point reflects much greater sensitivity
than the first.

Collection of full ROCs could be avoided, even if slopes did not equal 1,
if slopes were known a priori. Several theorists have offered models in
which slope is systematically related to sensitivity. Green and Swets (1966,
ch. 4) proposed that the slope s = 4/(4 + d'J, so that ROCs reflecting low
sensitivity have slopes near 1 and those measuring good performance have

F (z scale)
FIG. 3.10. Two points [(.62, .96) and (.31, .83)] that lie on different nonunit-
slope ROCs but the same unit-slope ROC. (The axes are scaled in z score units.)
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increasingly shallow slopes. Other families of ROCs that show a negative
correlation between sensitivity and slope are those that take the underlying
distributions to be (a) chi-square, for which the mean equals half the vari-
ance; (b) Poisson, for which the mean equals the variance; or (c) exponen-
tial, for which the mean equals the standard deviation. This last possibility
generates ROCs of a simple type, power functions of the form/f=F", where
n is a number between 0 and 1. Egan (1975) provided a thorough descrip-
tion of each of these ROC families, and Laming (1986) provided a
theoretical rationale for various ROC slopes and shapes.

The key question is, of course, whether the slope and sensitivity of ROCs
(equivalently, the mean and variance of the underlying distributions) are ac-
tually related in a predictable pattern. Early enthusiasm for this idea was
based on psychoacoustic models of the ideal observer in which sensitivity
was limited by statistical characteristics of the stimuli (see chap. 12). More
recently, Ratcliff, Sheu, and Gronlund (1992) pointed out that different the-
ories of recognition memory make distinct predictions about ROC shape,
and the ROC is a popular tool for testing models in that field.

There are several psychophysical models, not tied to specific stimulus
sets, that attempt to account for ROC slopes. Graham, Kramer, and Yager
(1987) have shown that if detection of a known signal leads to a unit-slope
ROC, then detection of a signal whose characteristics are unknown (see
chap. 8) leads to a curve with a shallower slope. The stimulus-based model
of Laming (1986) predicts that discrimination ROCs should have unit
slopes and detection ROCs shallow ones.

But in many fields in which ROCs have been collected, no theories exist
for predicting then* shape. In a survey of a wide range of content areas,
Swets (1986b) concluded that the slopes of empirical ROCs vary from
about 0.5 to 2.0, and that they are not predictable from sensitivity or any
stimulus characteristic. A similar conclusion is reached in Swets and
Pickett's (1982) survey of detection theory applications to diagnostic sys-
tems in medicine and elsewhere. This finding leads directly to their recom-
mendation that ROCs should always be collected.

Meanwhile, the user of detection theory who does not collect ratings is at
risk. For purposes of comparing two points in ROC space, the risk is least in
some important special cases: (a) If two points have the same value of F but
different values of H (or vice versa), there is no question which represents
the greater sensitivity, and (b) two points with the same bias can always be
compared. We found in chapter 2 that "the same bias" is an ambiguous
phrase, but there is less doubt about what "neutral bias" means: H=l-F.
Thus, if bias is minimal, ROCs are minimally necessary. Conditions under
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which bias is neutral are not easy to specify either, but experience may be an
adequate guide.

Summary

In a single session of a one-interval experiment we can collect data that can
be interpreted as multiple (false-alarm, hit) pairs. This is accomplished by
asking observers to provide a graded rather than a binary response, rating
their experience on an ordered scale. The result is an empirical ROC curve.

The data are interpreted as if the observer maintained several response
criteria simultaneously. Sensitivity can be estimated separately for each cri-
terion. If the empirical ROC has unit slope on z coordinates (so that the vari-
ances of the underlying distributions are equal), the sensitivity measure will
be the same at all criteria. If the slope of the ROC does not equal 1 , apparent
sensitivity changes along the decision axis; the slope can be interpreted as
the ratio of the standard deviations of the underlying distributions. Sensitiv-
ity can be measured in units of either standard deviation or, most commonly,
some sort of average.

Response criteria can be estimated as in the yes-no design except that
multiple criteria are now found. When variances are unequal, the criterion
location c can be measured in any of the units used for sensitivity.

Alternative ways to get multiple points on an ROC are to conduct sepa-
rate sessions with different a priori probabilities or apply different payoffs
and penalties for the various outcomes.

Conditions under which the methods described in this chapter are appro-
priate are spelled out in Chart 4 of Appendix 3.

Computational Appendix

Derivation of Equation 3.11

Combining Equations 3.10 yields

The point of equal bias, where the criterion must equal zero, occurs where
z(H) = -z(F). In this case, the left side of Equation 3.16 equals zero, and the
right side equals -[(l/s)M{ + M2]. Thus, ML has the opposite sign from M2 and
is s times as far from zero, and -[(\ls)Ml + M2] always equals zero. The last
term in Equation 3.16 can therefore be dropped, leading to Equation 3.1 1.
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Calculation of the Point Where H = F in the
Unequal-Variance ROC

In the example, the ROC curve has a slope of 0.5 so that the S2 distribution has
a standard deviation twice that of 5,. Using Equation 2.5, normal densities
with means of 0 and d', and standard deviations of 1 and 2 can be written as

(3.17)

Setting 0j = 02 yields a quadratic equation, which we can solve for the (two)
values at which the S, and S2 curves cross. In units of the S{ distribution, the
intersections are at

the negative solution being the point below which H<F.

Problems

3.1. In music perception experiments, listeners are sometimes asked to
discriminate between chords (combinations of notes played to-
gether) that are in tune versus out of tune. Consider a three-re-
sponse experiment in which 25 trials of each type are presented,
and the response set is "sure it was in tune," "sure it was out of
tune," and "not sure." For in-tune stimuli, the number of responses
in these categories is 13, 5, and 7; for out-of-tune stimuli, they are 3,
16, and 6. (a) Find the two ROC points implied by these data, (b)
Calculate d' for both points, (c) Plot the points on a graph (linear
coordinates).

3.2. In the previous problem, suppose the listeners refuse to use the "un-
certain" category, but distribute those responses evenly between
the "sure" categories. How would this affect the analysis?

3.3. Here are some data from a one-interval auditory detection experi-
ment. The participants made a binary ("yes" or "no") detection re-
sponse followed by a binary ("definitely" or "probably") confidence
judgment.
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"Definitely
Yes"

"Probably
Yes"

"Probably
No"

"Definitely
No"

Condition 1
Signal
No signal

162
6

22
22

2
12

14
160

Condition 2
Signal
No signal

76
8

70
52

14
22

40
118

(a) How do Conditions 1 and 2 probably differ, experimentally?
(b) Use statistical software (Systat or SPSS) or ROCKIT to fit
ROCs to these data.
Find da, s, Az, and the bias measures /3 and ln(/J).

3.4. Suppose an ROC has an intercept d'e - 1.0 and a slope s = 0.7. Cal-
culate i(H) - z(F) for F proportions of .1, .5, and .99.

3.5. A computer program informs you that d', = 2.5 and s = 0.8. Calcu-
late da, d' e, and Az.

3.6. For the data of Example 3b (word recognition), calculate Ag. How
do the values compare with those for Az?

3.7. Two experimenters conduct studies of auditory pitch discrimina-
tion with the same two stimuli, a 200-Hz and a 202-Hz tone, using a
rating design. One defines a hit to be a correct response to the
200-Hz tone, the other defines it as a correct response to the 202-Hz
tone. If the first investigator finds da = 1.5 and s = 0.5, what results
will the second investigator obtain?

3.8. In a subliminal perception experiment, a geometric figure is pre-
sented very briefly on S2 trials but not on S{ trials. Both underlying
distributions have the same mean, but the standard deviation is
twice as great for S2 trials, (a) Sketch the ROC on z coordinates that
would be obtained in a rating task, (b) If the task is yes-no (rather
than rating), how will estimated d' differ if the participant adopts a
strict versus a lenient criterion?

3.9. List possible experimental situations or areas of interest that might
most reasonably be studied using rating methods with the follow-
ing response sets: (a) a set of 5 numbers, (b) binary response plus
three categories of certainty, and (c) verbal categories instead of nu-
merical ones to signify degrees of certainty.
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Alternative Approaches:
Threshold Models and Choice Theory

Detection theory models have faced three classes of competitors. First, be-
fore the advent of detection theory, much of psychophysics was concerned
with measuring "thresholds," below which stimuli were thought not to be
perceived. Second, in the 1950s and early 1960s, as Tanner, Green, and
Swets were developing signal detection theory, Luce (1959, 1963a) pro-
posed Choice Theory, a conceptually different analysis of a similar range of
experiments. Third, one reaction to detection theory has been an attempt to
avoid the "parametric" assumption that the underlying distributions are
Gaussian.

These three lines of work occupy distinct psychophysical niches in the
current research environment. Choice Theory differs only slightly from de-
tection theory in the simplest cases, but its quite different framework allows
for a wide range of application. Threshold concepts lead to models that de-
scribe most data less well than detection theory; there are exceptions, how-
ever, and threshold ideas have been extended usefully to "multinomial"
models of complex tasks. "Nonparametric" measures have turned out, on
examination, to be related to threshold theory, Choice Theory, or both, and
they are just as theory-bound as other statistics. We discuss explicit thresh-
old models first, then Choice Theory, and then "nonparametric" analysis.

Threshold theory (Krantz, 1969; Luce, 1963a) assumes that the decision
space is characterized by a few discrete states, rather than the continuous di-
mensions of detection theory. Different threshold models propose different
connections between stimulus classes and discrete internal states, and be-
tween internal states and responses. For most models, we develop a state di-
agram that spells out these connections and defines the model. From the
state diagram, the form of the implied ROC can be deduced; for those mod-
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els that have a single sensitivity parameter, this ROC is the locus of points
with the same value of sensitivity.

A single isosensitivity curve is, however, consistent with more than one
set of underlying distributions, and we use the threshold ROC also to de-
scribe the decision space in the alternative terms of continuous rectangular
distributions. These continuous distributions are not mathematically equiv-
alent to the corresponding state diagrams, but because both are consistent
with the ROC, both are legitimate representations of the decision space. The
continuous version has the important advantage of enabling comparison
with the detection theory models of chapters 1 and 2.

In this chapter, we deviate from the example-based structure used so far be-
cause few data support the use of threshold measures to summarize discrimina-
tion data. We do not organize the presentation around data sets for which these
approaches are appropriate because, in most cases, there are none.

The thresholds discussed here are theoretical, referring to internal states.
A second use of the term is empirical, denoting stimuli: A threshold stimu-
lus is one that can barely be discriminated from the background or another
stimulus. We discuss this empirical thresholds chapters 5 and 11; its use as
a dependent measure is not challenged by the arguments in this chapter.

Single High-Threshold Theory

Sensitivity Measure q

The first model we consider proposes that sensitivity be measured by the
adjusted hit rate:

q = (H-F)/(l-F). (4.1)

In chapter 1, we discussed H- F as a possible sensitivity measure. The sta-
tistic q, sometimes said to "correct" the hit rate for "guessing," adjusts this
index so that it ranges from 0 to 1, rather than from 0 to 1 - F. In effect,
Equation 4.1 deflates H to take account of the tendency to make false
alarms. The correction for guessing lowers the hit rate more when the
false-alarm rate is higher. Thus, if H= .75 and F =. 1, the adjusted hit rate q is
.72; but for the same hit rate and F = .5, q is only .5.

Underlying Representation

The essential tenet of high-threshold theory is that "yes" responses to S{

must be guesses based on no information. A state diagram incorporating
this idea is shown in Fig. 4.la. The diagram contains only two internal
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states, which we call Dl and £>2, and it specifies the possible paths from stim-
ulus to internal state and from state to response, together with the probabili-
ties of each path. The adjusted hit rate q is the probability that S2 leads to the
D2 state; if observers could be relied on to report their internal states accu-
rately, q would equal the hit rate H, and the false-alarm rate F would equal

_

FIG. 4.1. (a) State diagram for
single high-threshold theory. Stim-
uli in class S2 lead to state D2 with
probability q; "yes" responses
(guesses) are made from state D,
with probability u. (b) ROCs im-
plied by high-threshold theory, on
linear coordinates, for three values
of q. Changing u maps out the
ROC. (c) ROCs in z coordinates.
Panels (a) and (b) adapted from
Macmillan and Creelman (1990)
by permission of the publisher.
Copyright 1990 by the American
Psychological Association.
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zero. Instead observers respond "yes" on some occasions even when in state
Dp these contaminating guesses occur with probability u and make the cor-
rection recommended by Equation 4.1 necessary.

The dependence of H and F on the adjusted hit rate and the guessing rate
can be calculated directly from the state diagram. The probability of each
path through the diagram is the product of the probabilities of the segments,
and the total probability of a response given a stimulus is the sum of the
probabilities of the possible paths. Thus:

H = P("yes"\SJ = q + u(l-q) (4.2)

F = P("yes"IS1) = w .

Eliminating the guessing parameter u from these equations leads back to
Equation 4.1.

The ROC implied by q is obtained by solving Equation 4.1 for H in terms
of F. As shown in Fig. 4.1b, it is a straight line from (0, q) to (1,1). Unlike
the isosensitivity curves of SDT and Choice Theory, it is nonregular: A
false-alarm rate of zero can be obtained with a nonzero hit rate. On z coordi-
nates, the ROC is not straight, but strongly concave upward.

How can we construct continuous underlying distributions that are con-
sistent with the single high-threshold ROC? To allow for the point (0, q),
there must be a region on the decision axis where events only occur due to
S2—otherwise the false-alarm rate would not be 0. Such a region is drawn
on the right side of Fig. 4.2a. In the rest of the decision space, corresponding
to the ROC segment (0, q) to (1,1), the S} and S2 distributions could have any
shape. They must be proportional to each other, however, because the ratio
of their heights—the likelihood ratio—is constant when the ROC has con-
stant slope. Thus, the decision space is divided into two regions, one with a
likelihood ratio that is some constant less than 1, the other with a likelihood
ratio of infinity. The boundary between these two areas is the "threshold,"
the decision-axis value above which only S2 events occur.

Figure 4.2b eliminates some unnecessary complexity by representing the
underlying distributions in a simple rectangular form. A changing value of
the parameter u (the proportion of D^ trials on which the observer responds
"yes") is modeled in this decision space by a shift in the criterion, but not by a
change in the value of likelihood ratio. The criterion can be sensibly located
only on the below-threshold segment of the decision axis (a higher location
reduces the hit rate without any compensating reduction in F, and it corre-
sponds to a point along the vertical ROC axis below the intercept).
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FIG. 4.2. Two representations of a decision space for single high-threshold theory
consistent with the ROCs of Fig. 4.1: (a) arbitrary distributions, and (b) rectangular
distributions. Panel (b) adapted from Macmillan and Creelman (1990) by permis-
sion of the publisher. Copyright 1990 by the American Psychological Association.

This model is traditionally termed high threshold because of the asym-
metry between hits and false alarms. The threshold—the dividing line be-
tween the internal states—is "high" because 5, stimuli cannot hurdle it,
although S2 stimuli can. In the original application of this model to detection
experiments, the model captured the (now discredited) intuition that back-
ground noise could never lead to a "true detection," so that errors on noise
trials arose only from guessing.

Bias Measures F and u

Because the observer can control response bias only by changing the guess-
ing rate, u is the natural bias index for single high-threshold theory. Because
u equals F (Eq. 4.2), the false-alarm rate itself is the model's bias statistic. In
terms of underlying rectangular distributions (Fig. 4.2b), u (and F) mea-
sures the location of the response criterion relative to the upper end of the Sl

distribution.
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Its association with the single high-threshold model is one count against
F as a bias index. A more serious charge is its failure to depend at all (much
less monotonically, as we have been requiring) on the hit rate H.

Low-Threshold Theory

In low-threshold theory (Luce, 1963b), asymmetric treatment of hits and
false alarms is abandoned. To compare the two theories, consider the low-
threshold state diagram in Fig. 4.3. As before, there are two internal states,
but now S2 as well as 5, can lead to either state. There are two "sensitivity"
parameters: q2, the probability that S2 leads to state D2, the "true" hit rate;
and <?,, the probability that Sl leads to state D2, the "true" false-alarm rate.

The transition paths from internal state to response take one of two
forms, depending on which of two response strategies the observer uses. A
response of "yes" may be given to all D2 states plus a proportion u of D,
states (panel a), or to only some proportion t of D2 states and no Dl states
(panel b). These strategies are called, for reasons that will soon be evident,
"upper limb" and "lower limb" responding.

FIG. 4.3. State diagrams from low-threshold theory. Stimuli in classes 5, and 52

lead to state D2 with probabilities <?, and q2, respectively, (a) In the upper limb
strategy, "yes" responses are always made from state D2 and with probability u
from state D,. (b) In the lower limb strategy, "yes" responses are never made from
state £>, and with probability t from state Z>2.
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The state diagram leads directly to expressions for the hit and false-alarm
rates:

(4.3)

H=tq2

(upper limb)

(lower limb)

The bias parameters t and u vary from 0 to 1.
The ROC for low-threshold theory is shown in Fig. 4.4. On linear coordi-

nates, it consists of two straight lines, or "limbs," of different slopes, meet-
ing at the point (qr q2). The lower limb arises from the conservative lower
limb strategy, the upper limb from the more lax upper limb response rule.
The theory predicts regular ROCs that are only moderately nonlinear in z
coordinates. Despite the tell-tale "corner" predicted by low-threshold the-

FIG. 4.4. (a) ROC implied by low-
threshold theory, in linear coordinates.
Changing u maps out the upper limb and
changing t the lower limb, (b) Same
ROC in z coordinates.
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ory, it has been experimentally difficult to distinguish this theory from nor-
mal-distribution detection theory.

To find continuous underlying distributions corresponding to the two-
limbed ROC, we follow the same logic as for high-threshold theory. Be-
cause the ROC has only two slopes, there are two possible values of likeli-
hood ratio. In each state, however, the likelihood ratio is finite, so each of
the two distributions takes on two different heights, as shown in Fig. 4.5.
The criterion can be located in either state, depending on whether the ob-
server uses an upper or a lower limb response strategy.

Low-threshold theory retains the appealing intuitions of high-thresh-
old theory, but avoids the unpalatable nonregularity prediction. Its pri-
mary disadvantage is its lack of a single sensitivity measure that can be
calculated from one (F, H) pair. Despite this drawback, the theory has been
of substantive interest as a model of auditory detection and, before Luce
described it, of categorical perception in speech (Liberman, Harris,
Hoffman, & Griffith, 1957).

Double High-Threshold Theory

Double high-threshold theory is most often encountered not as a proposal
about a discrete underlying process, but indirectly via its sensitivity param-
eter: This theory justifies the use of proportion correct to measure perfor-
mance. It was first explicitly proposed by Egan (1958; summarized in
Green & Swets, 1966, pp. 337-341).

FIG. 4.5. Decision space consistent with the low-threshold ROC of Fig. 4.4,
using rectilinear distributions.
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The Sensitivity Measure p(c)

In chapter 1, we contrasted p(c) with d' as a measure of performance. In
general, p(c) is found by averaging H and 1 - F using presentation probabil-
ities as weights:

F) (4.4)

= p(Sl)+p(S2)H-p(Sl*)F,

where p(S) is the probability that S. is presented. Proportion correct equals a
constant plus the difference between weighted hit and false-alarm rates,
with different weights (multiplicative constants) applied to each. When the
number of trials for each type of stimulus is equal, the weights are the same
and proportion correct only depends on the difference between H and F:

p(c) = V2(l+H-F). (4.5)

Early on, Woodworm (1938) suggested H- F as a performance measure for
recognition memory experiments.

Underlying Rectangular Distributions

Like all sensitivity measures, p(c) implies a decision theory: To usep(c) to
summarize performance is to say that when bias is manipulated, p(c) should
remain constant. The state diagram of the underlying model is shown in Fig.
4.6a. There are three discrete states: D, arises only when Sl occurs, D2 can be
triggered only by Sv and an intermediate state D? can occur for either stimu-
lus. The model specifies two "high" thresholds, each of which can be
crossed by only one of the two stimuli. The special case in which the Dl state
is omitted is equivalent to single high-threshold theory.

As with both high- and low-threshold theories, the sensitivity parameter
in this model is a "true" detection rate. The proportion of S2 presentations
leading to the D2 state equals the proportion of Sl presentations leading to
the D, state; both equal 2p(c) - 1. If p(c) equals .8, for example, the propor-
tion of trials falling in the "sure" D, and D2 states is .6. Other trials lead to the
uncertain state D?, where they are assigned "yes" and "no" responses ac-
cording to the observer's response bias v.

The ROCs forp(c) were shown in chapter 1 to be straight lines with unit
slope when plotted on probability coordinates. Like the ROCs for single
high-threshold theory, they are curved on z coordinates. Underlying distri-
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FIG. 4.6. (a) State diagram implied by double high-threshold theory. Stimuli in
class Sj lead to state Df with probability q and to state D., with probability 1 - q. The
uncertain state leads to a "yes" response with probability v. (b) Underlying rectan-
gular distributions consistent with double high-threshold theory. The criterion can
be located anywhere in the D, region. Adapted from Macmillan and Creelman
(1990) by permission of the publisher. Copyright 1990 by the American Psycho-
logical Association.

butions consistent with double high-threshold theory are shown in Fig.
4.6b; as the state diagram (Fig. 4.6a) shows, 5, presentations can lead either
to D, or D?, S2 presentations to either D2 or Dr There are three values of like-
lihood ratio—zero, infinity, and one value between. The use of proportion
correct makes very strong assumptions about the internal representation of
stimuli.

For sensory detection experiments, these assumptions are not very plau-
sible, but some memory studies have produced linear ROCs. Yonelinas
(1997) conducted an associative recognition experiment: Participants were
presented with pairs of words in both the study and test phases; the question
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was whether the test pairs had occurred together in the study phase. The
ROC data, presented in Fig. 4.7, are clearly linear and consistent with dou-
ble-high threshold theory. Notice that the ROCs do not have slope 1; instead
they are consistent with a representation in which S2 presentations are de-
tected as Old at a different rate than 5, presentations are detected as New. In
the state diagram of Fig. 4.6a, the parameter q is replaced by separate pa-
rameters q} and q2; in Fig. 4.6b, there are still three values of likelihood ratio,
but the intermediate value is not 1.

What accounts for ROC data of this sort? Yonelinas argued that decisions
in associative recognition cannot be based on familiarity because familiar
words may not have occurred together in the study phase. Instead partici-
pants must "recollect" the specific episode in which they last encountered
the pair, and recollection is a threshold process. The two limbs of the state
diagram reflect different types of recollection: A pair may be recollected as
Old, or the participant may recollect that one of the two words had a differ-

FIG. 4.7. ROCs for recogni-
tion memory from Yonelinas
(1997). (a) Item (single-word)
recognition, and (b) associa-
tive (word-pair) recognition.
Adapted with permission.
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ent partner in the study phase. The accuracy of these two strategies may dif-
fer, accounting for the different intercepts of the ROC.

Bias Measures

Two bias measures that appear to make no distributional assumptions are
actually consistent with the double high-threshold model. These are the yes
rate, l/2(H + F), and the error ratio (1 - H)IF.

Yes Rate. To see the connection between the yes rate and the dou-
ble high-threshold model, consider again the model's decision space,
shown in Fig. 4.8. The center of the region of overlap is set to zero, and the
criterion k is measured with respect to this origin. Then H=p(c) - k and F =
1 -p(c) - k; solving these equations yields

(4.6)

The criterion is thus a simple linear transformation of the yes rate; like c in
detection theory, the yes rate reflects the location of the criterion relative to
the halfway point between the Sl and S2 distributions.

The relation between k and p(c) is suggested by the similarity between
Equation 4.6 and the corresponding expression for sensitivity when an un-
weighted average of Hand F is used (Eq. 4.5). The false-alarm and hit rates
are added in Equation 4.6 and subtracted in Equation 4.5, and the same

FIG. 4.8. Decision space for the double high-threshold model as in Fig. 4.6b.
Shaded area is the false-alarm rate, diagonal area is the hit rate. The criterion k is
monotonic with the overall yes rate. Adapted from Macmillan and Creelman
(1990) by permission of the publisher. Copyright 1990 by the American Psycho-
logical Association.
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transformation is applied to the result. We encountered a similar relation for
detection theory models (e.g., compare Eqs. 1.5 and 2.1).

Error Ratio. Like c, the yes rate measures the same distance
along the decision axis whether the sensitivity measure is large or small. If
we linearly transform k into a new variable k' that varies from 0 to 1 , no mat-
ter what p(c) is, we obtain

(4'7)

that is, something that only depends on the error ratio. The parameter k' is, in
fact, equal to 1 - v (see Fig. 4.6) and is therefore equivalent as a bias measure
to v, which was proposed as a bias index by Snodgrass and Corwin (1988).

Comparison of Indexes. Isobias curves for the yes rate and error
ratio are shown in Fig. 4.9. As might be expected from their decision-space
interpretation, the two indexes share attributes with analogous detection
theory statistics. Curves for the yes rate, like curves for c, are parallel, but on
linear rather than z coordinates. Curves for the error ratio, like detection the-
ory curves for relative criterion location, converge at a point (H = F=l and
H - F = .5, respectively).

What about the likelihood ratio? As noted earlier, there are only three dif-
ferent values of likelihood ratio in the proportion correct model. Variation
of criterion within the overlap region does not change likelihood ratio,
which is therefore of little use as a bias statistic for this (or any other)
threshold theory.

Evaluating the yes rate and the error ratio as measures of bias is more dif-
ficult than passing judgment on threshold sensitivity indexes. A long his-
tory of collecting empirical ROCs (Green & Swets, 1966; Swets, 1986b)
has suggested limits on the shape of implied ROCs, whereas the much
shorter history of collecting empirical isobias curves has been inconclusive.

By some theoretical standards, however (Macmillan & Creelman, 1990),
the two measures fare well. Both change in the same direction with in-
creases in H and F, behave well when sensitivity is at chance, and are undis-
torted if computed by averaging across participants or conditions. Because
its isobias curves are parallel rather than divergent, the yes rate is independ-
ent of p(c) and acts sensibly when sensitivity is below chance; the error ratio
only approximately meets these desiderata.
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FIG. 4.9. Isobias curves for (a) the
yes rate, and (b) the error ratio.
Adapted from Macmillan and
Creelman (1990) by permission of the
publisher. Copyright 1990 by the
American Psychological Association.

There is an argument for preferring c over the yes rate: When sensitivity and
bias indexes are both reported, they should derive from the same model. Al-
though there is little to choose between detection theory and double high-
threshold bias measures, the sensitivity statistic of detection theory is superior.

Choice Theory

Luce (1959) conjectured that the odds of choosing one stimulus over a sec-
ond are unaffected by other possible stimuli, and this choice axiom is the ba-
sis for the structure of Choice Theory. Although this starting point does not
sound related to the principles of detection in noise that led to the models of
chapters 1 to 3, we shall see that the two theories are formally very similar.
The idea of a decision continuum, and the form of underlying distributions,
can be derived from the choice axiom. Choice Theory predictions look
much like those from the normal-distribution model in simple detection
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tasks and are sometimes easier to generate for more complex experiments.
Because Choice Theory is a close cousin of signal detection theory in many
applications, from now on we include it under the phrase "detection theory."
We continue to use the abbreviation "SDT" to refer to normal distribution
models.

Sensitivity Measures

In Choice Theory (Luce, 1959), the sensitivity measure a is found by

In chapter 1, we noted that the sensitivity measures d' andp(c) amounted
to differences between transformed values of H and F. Choice Theory also
has such an index, obtained by taking the logarithm of a (and thus equiva-
lent to it):1

In Choice Theory, the transformation applied to H and F is the log-odds
transform, which converts a proportion/? to p/(l -p) (the odds in favor) and
then takes logarithms.

To give an idea of the magnitude of a: If F = A and H = .8, then a = [(.8 x
.6)/(.2 x .4)f = 2.45 and ln(a) = 0.90. The (F, H) pair (. 1 , .4) leads to the same
values; these points give similar (although not identical) values of d' . Total in-
ability to discriminate (H = F) leads to a = 1 , ln(a) = 0. When H = .99 and F =
.01 , a= 99 and ln(a) = 4.60. A proportion correct of .75 on both types of trials
yields a= 3, ln(a) = 1.10;/?(c) = .73 corresponds to ln(«) = 1.0.

These examples suggest that d' and ln(a) are similar as measures of sen-
sitivity, and Fig. 4.10 shows that they are very nearly proportional to each
other for low to moderate values. The relation between them can be approx-
imated by ln(a) = 0.8 1 d' , with deviations from this equation being greatest
for hit rates near 1 or false-alarm rates near 0. Figure 4.10 encourages us to
choose between the two accuracy indexes on the basis of convenience; the
two analyses are not likely to support discrepant conclusions.

'Luce (1959, 1963a) assigned sensitivity the symbol a , with slightly different meanings in two versions
of Choice Theory. In memory research, one of the areas in which Choice Theory is most widely used,
ln(a) is sometimes called dL (Hintzman & Curran, 1994) to highlight its similarity to d' .
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FIG. 4.10. Relations between ln(a) and d' for the zero-bias case, and for two
cases of bias to respond "yes."

Implied ROC Curves

What is the form of the ROC implied by the Choice Theory measure a? To
answer this question with a question, what transformation would render
these curves straight lines? As Equation 4.9 makes clear, the required func-
tion is log odds because

If we were to plot the ROC in log-odds coordinates, (ln[///(l - H)] vs
ln[F/(l -F)]), then the (constant) distance between the ROC and the chance
line would be 2 ln(a). The analogy to SDT correctly suggests that 2 ln(a)
plays the role of mean difference in the decision space.

To get a feel for the relation between the log-odds and z transformations,
consider Fig. 4.11, in which ROCs for constant a and constant d' are plot-
ted. It is hard to distinguish the two sets of curves, which differ systemati-
cally only for very small or large proportions. An important difference
between Choice Theory and SDT, however, is that the ROCs implied by a
are always symmetric (like those implied by d'), but there is no measure
analogous to da that allows for ROC curves that are not of unit slope.
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FIG. 4.11. ROCs for SDT and Choice Theory on linear coordinates. Curves con-
nect locations with constant d', and xs are points of constant a.

Bias Measures

Choice Theory's bias measure b (for "bias") can be computed from

Taking logarithms reveals that ln(£), Like c in SDT, is the sum of the trans-
formed hit and false-alarm rates, the transformation in this case being log odds:

As we shall see shortly, ln(£) is a measure of criterion location. Division by
the sensitivity parameter 21n(a) yields a measure of relative criterion analo-
gous to c' :
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Finally, the likelihood ratio j3L can be shown to equal2

The algebraic form of Equation 4.12 leads one to expect the isobias curve
for b to be much like that for c, and this conjecture is correct. Although
Equations 4.13 and 4.14 provide less of a hint, isobias curves for relative
criterion and likelihood ratio in the Choice Theory model are also very simi-
lar to their SDT counterparts (see Fig. 2.7).

Decision Space

From our analysis of the normal distribution SDT model, we know that sen-
sitivity is a difference of transformed hit and false-alarm rates and response
bias a sum. The transformation, in Choice Theory, is log-odds, which con-
verts a proportion /? to ln[/?/(l -/?)]. Figure 4. 12 shows how this operation is
used to convert the false-alarm/hit pair (.4, .8) to the sensitivity statistic
21n(a) and the bias statistic ln(b).

The decision space implied by these Choice Theory measures contains
two underlying distributions whose form is logistic, rather than normal. The
logistic distribution is symmetric and only subtly different in shape from the
normal when plotted on a log-odds axis (see Fig. 4.13). As in the SDT
model, the distance between the means of the S, and S2 distributions is a sen-
sitivity measure; its value is 21n(a). If we define 0 as the point at which the
two distributions cross, then the distribution means are at ±ln(a) and the cri-
terion is located at ln(b).

In the normal model, the transformation from p to location on the deci-
sion axis is z(p)\ the reverse operation, to find hit and false-alarm rates from
a z-score axis location, is O. Both are found using the normal table. In the lo-
gistic model, the log-odds transformation is used to find log-odds axis loca-
tions, called logits; to find hit and false-alarm rates from a log-odds value
requires solving the equation

x = \n[p/(l-p)] (4.15)

2See Computational Appendix.
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FIG. 4.12. A logistic distribution function. The inverse function can be used to
transform proportions into logits. Sensitivity [21n(a)] is the difference between
ln[H/(l - H)] and ln[F/(l - F)].

FIG. 4.13. Decision space for the yes-no experiment according to Choice The-
ory (logistic distributions).
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for p. The solution is

p=l / ( l+e x ) . (4.16)

To find H and F, * must be expressed as a distance from the mean. For the S2

distribution, x = ln(6) - In(a), and for the 5", distribution, x - ln(&) + ln(a).
Substituting into Equation 4.16 yields

H=a/(a+b) (4.17)

F=l/(l + ab) . (4.18)

For an unbiased observer, b=l,H= aJ(a+ 1), and F= l/(a+ 1). Again, H
= 1 - F, and

). (4.19)

Measures Based on Areas in ROC Space: Unintentional
Applications of Choice Theory

An appealing measure of sensitivity is the area under the ROC, which in-
creases from .5 for chance performance to 1.0 for perfect responding. We
saw in chapter 3 that if the underlying distributions are normal, the esti-
mated area Az is simply related to the mean difference index da\ in addition,
the area can be estimated nonparametrically from ROC data. If only a sin-
gle (F, tf) point is available, however, we are forced to assume that the un-
derlying distributions are normal, logistic, rectangular, or something
specific. In this section, we consider measures of sensitivity and bias for
single ROC points that were developed without recourse to detection the-
ory. We shall find, however, that most of them are equivalent to parameters
of the logistic model.

Sensitivity: Area Under the One-Point ROC

If only one point in ROC space is obtained in an experiment, there are many
possible ROCs on which it could lie, and some assumptions must be made
to estimate the area under the ROC. One possibility is to find the smallest
possible area consistent with that point. As shown in Fig. 4. 14, this is equiv-
alent to finding the area under the low-threshold ROC for which the ob-
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FIG. 4.14. Calculation of the area under the one-point ROC. The minimum area
is shaded; the statistic A' is the minimum area plus one half the sum of regions A,
and A2. The dashed line is an example of an ROC that bounds an area greater than
the minimum but less than the maximum (minimum plus A, and A2).

tained point forms the corner. This area turns out to equal proportion
correct, a measure with which we have already dealt harshly.

A better estimate, proposed by Pollack and Norman (1964), is also dia-
gramed in Fig. 4.14. Their measure A' is a kind of average between mini-
mum and maximum performance and can be calculated (Grier, 1971) by3

j, (g- fXl+g-f ) .{H>F (4.20)
2 4/f(l-F)

If performance is below chance, so that H<F, the equation must be modi-
fied (Aaronson & Watts, 1987):

(4.21)

Macmillan and Creelman (1996) have shown that A' (for above-chance
performance) can be written as a function of sensitivity measures we have
already encountered:
3Smith (1995) pointed out that the maximal area under the ROC is less than that assumed by Pollack and

Norman (1964), and defined a corrected measure A". Zhang and Mueller (in press) improved on this
measure. Implied ROCs for these indexes are similar to those for A'.
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(4.22)

At low sensitivity, this expression is dominated by the logistic term ln(a),
whereas at high sensitivities p(c) is more important. The shift is shown in
Fig. 4.15, which displays implied ROCs for A' on the same plot as those for
a (panel a) and p(c) (panel b). At low levels a constant-A' ROC is similar to
a constant-a curve, whereas at high levels a constant-A' ROC is similar to a
constant-p(c) curve.

One appeal of the area measure is that, unlike d' and a, it can be calcu-
lated even when the observed hit or correct-rejection rate is 1.0. Unfortu-
nately, perfect performance on one of the two stimulus classes tends to
mean high performance overall, and it is for high values that A' has undesir-
able, threshold-like characteristics. At low performance levels, A' is much

FIG. 4.15. ROCs implied by
A', which are (a) similar to those
implied by a at low sensitivity
and (b) similar to those implied
by p(c) at high sensitivity.
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like a (and thus much like d'). In neither case is it assumption-free, nor does
it have any other perceptible advantages over detection theory measures.

Another constraint imposed by A ' is that it is symmetric, in the sense that
the pair ( 1 - H, 1 - F) leads to the same value and is thus on the same ROC as
(F, H). Use of this statistic thus implies an equal- variance representation,
and it is inappropriate for content areas (e.g., item-recognition memory) in
which the slope of the zROC is known not to be 1.

Two other "nonparametric" strategies for estimating sensitivity from H
and F, both derived from statistics, share the threshold characteristics of
p(c) and A' . Proportions are sometimes transformed by taking the arcsine of
the square root to equalize the variance for proportions of different magni-
tude. Mosteller (cited in Torgerson, 1958) suggested that this transforma-
tion be used in analyzing discrimination data as well, but Macmillan and
Kaplan (1985) showed that the ROCs implied by this transformation have
the same shape as those of p(c) and A ' . The contingency coefficient 0 equals
(%2/N)y\ where %2 is the chi-square statistic (see Appendix 1), and Ms the to-
tal number of trials. Swets (1986a) derived ROCs for this index, which are
also similar to those of A'. The family resemblance to A' is an argument
against taking either of these routes to sensitivity measurement.

Bias Measures Based on ROC Geometry

Hodos (1970) proposed a bias measure, Z?'H, that is also based on the geome-
try of ROC space. This particular index is little used because Grier (1971)
suggested an equivalent statistic (one with the same isobias curve) that is
easier to calculate. Like A', the measure B" must be modified if perfor-
mance is below chance:

B,l=H(l-H)-Fil-F)

(423)

#(!-#)+ F(l-F)

The Hodos and Grier statistics are often paired with A' , just as ft and d'
are paired by users of SDT or b and a by users of Choice Theory. But there
is no model that unifies A' and B", as there is for the others. In fact B" is
only superficially related to A', but it is strongly connected to an entirely
different bias index, logistic likelihood ratio. Equation 4.23 is a
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monotonic function of, and therefore equivalent to, j8L (Eq. 4.14). A differ-
ent measure based on ROC geometry, proposed by Donaldson (1992),
turns out to be equivalent to the logistic criterion b. As Macmillan and
Creelman (1996) pointed out, all these measures are based on the sums,
differences, products, and ratios of areas of triangles, and the sides of the
triangles equal H,F,l-H,orl- F. That the statistics end up being depend-
ent on odds ratios, the stuff of Choice Theory, is not surprising.

Nonparametric Analysis of Rating Data

The admirable goal of measuring sensitivity nonparametrically is quite pos-
sible, but only if the yes-no design is abandoned in favor of ratings. We have
seen that the true area under the ROC is a nonparametric index of accuracy,
and if there are enough data points this can be estimated without fitting a
theoretical model. A related measure has been developed by Balakrishnan
(1998) for the dual-response version of the rating paradigm. The separate
distributions of confidence ratings for Signal and Noise take over the role of
the hypothetical distributions in SDT. The difference between the cumula-
tive distributions of these ratings measures the discrepancy between the hit
and false-alarm rates at each level of confidence. The sum of these differ-
ences is S', an estimate of the difference between the two confidence distri-
butions under the assumption that the criteria used by the observer are
equally spaced. In simulations, Balakrishnan showed that S' did a better job
than d'of rank ordering conditions that differed slightly in sensitivity. A
similar strategy, applied to the two-response rating design ("yes" or "no"
followed by a confidence judgment), leads to a nonparametric measure of
response bias.

Essay: The Appeal of Discrete Models

Mark Twain once remarked that there are two kinds of people: those who
believe there are two kinds of people, and those who do not. Similarly, there
are two kinds of performance measures and two kinds of psychophysical
models: those that imply two (or at most a few) internal states, and those that
envision a continuum. We have argued that discrete models, especially sin-
gle and double high-threshold theory, are less successful than continuous
models of detection theory.

The continued appeal of discrete models (which is broader than psycho-
physics) is worth consideration, and in this essay we raise one possible rea-
son for this popularity. Discrete models offer identifiability. The response
of a participant on a single trial may either directly indicate the current inter-
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nal state or reduce the possibilities to a very small number. In single high-
threshold theory, for example, a "no" response implies state Dr In double
high-threshold theory, a "no" response eliminates the possibility of D2, and
a "yes" response eliminates the possibility of Z), on that trial.

According to detection theory, on the other hand, any point in the deci-
sion space can arise from either stimulus alternative. Further, an observer
responding appropriately to instructions can assign any point in the space to
either response. Thus, the observer's response on a single trial never reveals
the internal state evoked, only whether the observation is above or below an
adjustable criterion.

Discrete models, then, promise a direct access into the mind of the ob-
server that detection theory denies. Because much behavioral research aims
to either understand internal states or use them to explain actions, the attrac-
tiveness of these models is great. The threshold differs importantly from the
criterion of detection theory models: If responses are determined by com-
paring events with fixed thresholds, they inform us about sensations; if they
are determined by comparing events with adjustable criteria, they inform us
only about the confluence of sensation and the decision process, leaving
much work to be done.

We now consider briefly two domains in which discrete models have
played an important role: subliminal perception and the classification of
speech sounds. A detection theory treatment of both areas is offered later in
the book (in chaps. 10 and 5, respectively). A final topic is the relation be-
tween discrete thinking and statistical hypothesis testing.

Subliminal Perception

A widespread use of the threshold concept is in the popular distinction be-
tween normal and subliminal (below threshold) perception (see Holender,
1986, for a review). Putative demonstrations of subliminal perception typi-
cally present a participant with a stimulus that is "below threshold," but find
that the ability to identify the stimulus in some way remains.

Such a result seems surprising because stimuli that are not perceived are
nonetheless effective. Indeed the finding is contrary to high-threshold the-
ory: The "no" response implies that the observer is in state D,, where no in-
formation about the stimulus exists. There is, however, a natural detection
theory interpretation. The "no" response only means that the stimulus led to
an event below the detection criterion. On a later identification test, an event
above the (possibly different) criterion occurs. Because criteria are adjust-
able, this is not remarkable.
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One reason for the appeal of threshold approaches to this topic may be
the interpretation of "threshold" as the dividing line between consciousness
and its absence. Indeed the threshold idea has been extended to include both
"objective" and "subjective" variants (Reingold & Merikle, 1988). Detec-
tion theory, however, has no construct corresponding to consciousness.

Classification of Speech Sounds

In a popular approach to the perception of speech sounds, stimuli from a
synthetic continuum between two syllables are offered one at a time to
be classified as one of the two endpoints. Responses are taken to reveal
sensory states directly, and the pattern of data is used to find the "bound-
ary" between the two speech categories (e.g., Diehl, 1981; Liberman et
al., 1957).

The experiment differs from those we have described in having more
than two stimuli, but two internal states are still postulated. When classifi-
cation changes (e.g., because of context), the result is interpreted as a
change in "perception." Applications of detection theory to such data,
however, have shown that context effects can affect criterion location
rather than sensitivity (Elman, 1979; Macmillan, Goldberg, & Braida,
1988). In chapter 8, we consider experiments of this type more fully as
tests of perceptual interaction. Speech classification experiments are of-
ten combined with discrimination experiments to study "categorical per-
ception." We discuss both threshold and detection theory approaches to
this problem in chapter 5.

Statistical Hypothesis Testing

There is an analogy between the observer in a detection experiment and an
experimenter deciding about the source of data. The observer must deter-
mine whether the pattern of stimulation arose from S2 (a Signal) or Sl

(Noise); the experimenter must decide whether the data are best explained
with an "alternative" hypothesis (a real difference in the state of the world)
or a null hypothesis (an apparent difference arising from sampling variabil-
ity). Standard hypothesis-testing methods are used to decide which inter-
pretation is more appropriate.

What information does an investigator take away from such data analy-
sis? A binary decision ("significant" or "not significant") is usually re-
quired, just as a "yes" or "no" response is required by a detection subject. In
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addition, however, there is evidence that some experimenters try to make a
direct inference to the state of the world, in the manner that discrete models
permit and continuous ones do not.

Discrete thinking has been demonstrated, in this context, by Tversky and
Kahneman (1971). They asked two samples of psychologists the following
question: "Suppose you have run an experiment on 20 subjects, and have
obtained a significant result which confirms your theory (z = 2.23, p < .05,
two-tailed). You now have cause to run an additional group of 10 subjects.
What do you think the probability is that the results will be significant, by a
one-tailed test, separately for this group?" (p. 105). The median answer
from Tversky and Kahneman's respondents was .85; a more reasonable es-
timate is .48. One interpretation of this result (similar but not identical to
that of Tversky & Kahneman) is that psychologists view an effect as present
or absent. The first experiment demonstrated an effect, which should there-
fore reveal itself, independent of factors like the power of the test.

Discrete thinking appears to be a decision-making heuristic of some gen-
erality. It offers the advantage of reducing cognitive complexity: The stimu-
lus was perceived or not, the experimental hypothesis was true or false. Like
high-contrast film, however, discrete models convert shades of gray into
black and white at the expense of fidelity.

Summary

Threshold theories of discrimination postulate a small number of internal
states, rather than a continuum. In such models, sensitivity is related to the
probability that stimuli lead to the appropriate state(s). We have considered
three such models:

1. Single high-threshold theory assumes that one stimulus (S{) al-
ways leads to the correct state and defines sensitivity as the adjusted
hit rate, the probability that the other stimulus (52) also leads to the
correct state. This model predicts a nonregular ROC and almost al-
ways has been rejected when tested.

2. Low-threshold theory assumes that either stimulus can lead to
either internal state. It predicts a regular ROC, and it is often as consis-
tent with data as are detection theory models. But because it has no
single sensitivity measure, this model is not widely applied.

3. Double high-threshold theory assumes three internal states, so
that neither stimulus ever leads to the extreme state corresponding to the
other stimulus. This model is implied when proportion correct is used
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as an accuracy measure. The nonregular ROC shape that it predicts is
unusual, but some data have been reported that are consistent with it.

Choice Theory is, in the applications discussed so far, very similar to nor-
mal distribution detection theory, and thus consistent with a wide range of
data. A limitation of the theory is that it predicts unit-slope ROCs.

Some measures described as nonparametric, such as proportion correct
and area under the one-point ROC, make threshold assumptions and predict
nonregular ROCs. As with explicit threshold theories, these measures limit
the underlying distributions and are not truly nonparametric. "Nonpara-
metric" measures of bias are, in fact, the theoretical indexes of threshold or
detection theory models: The false-alarm rate derives from single high-t-
hreshold theory, the yes rate and error ratio from double high-threshold the-
ory, and area-based indexes from Choice Theory.

The implications of using the measures described in this chapter are sum-
marized in Charts 2 and 3 of Appendix 3.

Computational Appendix

Logistic distributions have the form

It is convenient to work with the logarithm of this quantity. The criterion lo-
cation x - ln(b), so

The likelihood ratio J3L is the ratio of two values of A, one for JJL = \n(a), the
other for jU = -ln(#). The logarithm of the likelihood ratio is

The likelihood ratio equals e to this power:
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Equation 4.27 expresses the likelihood ratio in terms of logistic model pa-
rameters; to write it as a function of data, we substitute from Equations 4.17,
4.18, and 4.8 to find

Logistic likelihood ratios are more extreme (farther from unity) than
Gaussian ratios for the same values of H and F. For moderate values, ln(/3L)
and ln(/?) are roughly proportional.

Problems

4.1. Suppose single high-threshold theory is correct, (a) If H = .8, what
is the "true" hit rate qifF= .2? .57.8? (b) If F = .2, what is the value
of the bias parameter uifH= .8? .5? .21

4.2. (a) If you observe (F =A,H= .7) and wish to assume low-threshold
theory, how can you tell whether the point is on the upper or lower
limb? (b) Suppose you assume that the "corner" in low-threshold
theory is on the minor diagonal (where H=l-F).If you now ob-
serve the point (.4, .7), which limb is it on?

4.3. Suppose that high-threshold theory is true for a certain observer
and q = A for some stimulus pair. What are the largest and smallest
values of p(c) this observer can obtain, assuming equal presenta-
tion probabilities? For H and F between .01 and .99, what is the
largest and smallest possible value of d' 1

4.4. (a) For two experimental participants, (F, H) = (.4, .9) and (.2, .9). For
each, compute /?(c), the yes rate, and the error ratio, (b) If double
high-threshold theory is correct, what is the lowest hit rate and high-
est false-alarm rate that could be obtained by these participants?

4.5. Suppose (.25, .75) is a point on an ROC. Find the area under the
ROC (using geometry) assuming (a) high- threshold theory; (b)
low-threshold theory, letting the observed point be the corner; and
(c) double high-threshold theory.
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4.6. If p(S2) = .80, what is the highest and lowest value of p(c) a partici-
pant can get, in a visual experiment, without looking?

4.7. What is the decision space (in either underlying distribution or state
diagram form) implied by the ROC in Fig. 4.16?

4.8. Suppose H = .S and F = .3 in a yes-no experiment. What is the area
under the two-limbed ROC curve determined by this point? What is
A' ? Find the area under the complete ROC (assume equal-variance
SDT).

4.9. Suppose you observe an ROC point (F, H) and decide to measure
A'. Is the area you get most similar to the area under the ROC of
high-threshold, low-threshold, or double high-threshold theory?

4.10. Suppose a yes-no experiment yields the following detection data:
condition 1: #=.8, F=A
condition 2:H=.6,F= .2.

(a) For each condition, compute d', a, p(c), and A'. According to
each measure of sensitivity, in which of these two conditions is per-
formance better?
(b) Assuming high-threshold theory to be correct, find the "true"
hit rate q. Do both points have the same value?
(c) There is a unique low-threshold ROC curve that is consistent
with both of these points. Find it, that is, find the location of the
"corner" in ROC space.

FIG. 4.16. ROC for the model proposed by Krantz (1969), on linear coordinates.
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4.11. The high-threshold model says that false alarms arise only from
guesses, but misses can be due to imperfect encoding. An alternative
threshold model could be constructed by making an opposite as-
sumption, namely that misses arise only from guesses but false
alarms can be due to imperfect encoding. What would the ROC look
like? What would be appropriate measures of sensitivity and bias?

4.12. Show that the bias measures k'(Eq. 4.7) and v [P("yes"ID?) in the
state diagram of Fig. 4.6] add up to 1. (Hint: First use the state dia-
gram to write H and F as functions of v and the sensitivity parame-
ter q, then solve for v as a function of H and F.)

4.13. For the ROC points (.7, .9) and (.3, .9), show that /^ and B" are the
same for both points, but that ln(&) is different. Generalize this result.
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Classification Experiments For
One-Dimensional Stimulus Sets

Successful participants in discrimination experiments can distinguish two
stimulus classes, but in most paradigms they need not be able to name them.
In this chapter, we extend detection theory to encompass experiments in
which stimuli drawn from large sets are named or classified by the observer.
These sets are "one-dimensional," that is, they contain stimuli that differ for
the participant in just one characteristic. As in earlier chapters, we are inter-
ested in sensitivity and bias, but multiple parameters must be estimated, and
their interpretation is somewhat different.

One-dimensional classification experiments are among the oldest psy-
chophysical tasks, and they take on many aliases. Accordingly, this chapter
has an unusually large number of examples, but one basic strategy for data
analysis fits all.

Design of Classification Experiments

In classification experiments, observers use M responses to sort N stimuli
into categories. If there are two stimuli and two responses (N = M = 2), the
task is the familiar one-interval yes-no discrimination. If there are more
possible stimuli than responses (N > M), the design is traditionally called
category scaling, but is now often called categorization. We consider the
important special case in which M = 2 in detail first. When N equals M but
both are greater than two, the experiment is absolute judgment, absolute
identification, or simply identification', the second part of the chapter con-
cerns this task.

Classification experiments can be modified by the addition of a standard
stimulus. The stimuli being judged are called comparisons, and a (standard,
comparison) pair is offered on each trial. The presence of standards makes
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no difference to our analysis of classification because the standard gives no
information regarding which response is appropriate. As examples, we use
both tasks with standards and tasks without.

Perceptual One-Dimensionality

What is a "one-dimensional" stimulus set? In the examples used so far in this
book, some stimulus sets are physically one-dimensional (or, to borrow Klein's
[1985] phrase, can be produced with a "single knob"). Examples in sensory
work include intensity and frequency. The stimuli in face recognition and
X-ray reading, on the other hand, clearly vary in many physical dimensions.

The question of the perceptual dimensionality of a stimulus set is distinct
from that of physical structure. Stimuli differing in one dimension can pro-
duce multi-dimensional perceptual changes. A dimension that seems to be-
have in this way is the phase relation between components in a visual grating.
Data suggest that changing the relative phase of components of a stimulus
from negative to zero to positive may yield two-dimensional ("monopolar"
and "bipolar") effects (Klein, 1985). Conversely, stimuli differing in complex
ways can produce internal representations differing along a single contin-
uum. Cases in which two variables appear to contribute to a common dimen-
sion of judgment, called trading relations, occur in such disparate fields as
lateralization of binaural stimuli (Moore, 2003) and speech recognition
(Repp, 1982). We consider a speech example later in the chapter.

A detection-theory characterization of perceptual one-dimensionality is
shown in Fig. 5.1. The sensitivity statistic d' is a distance measure, as we
saw in chapter 1, and distances along a single dimension add up. Thus, if
stimuli S1,, S2, and 53 give rise to distributions along a continuum, with their
means in the order nl<fi2< jj.3, then

d'(l,3) = </'(U) + «/'(2,3) . (5.1)

Equation 5.1 can be viewed as a prediction about the result of three dif-
ferent two-stimulus experiments or one experiment in which all three possi-
ble stimulus pairs occur. The sensitivity distance between any stimulus and
the endpoint stimulus is a useful measure, cumulative d', that can be com-
puted by adding up adjacent d' values, as Equation 5.1 suggests. The value
of cumulative d'obtained between both endpoint stimuli represents the total
sensitivity of the observer to the stimulus set and is called total d'. Total d'is
the basic measure of observer performance on the entire stimulus ensemble.
It is important to realize that the use of cumulative and total d' depends cru-
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FIG. 5.1. An additivity condition (Eq. 5.1) for perceptual one-dimensionality:

cially on the assumption of unidimensionality; when we consider
multidimensional stimulus sets in Part II, we shall need other measures.

If there is reason to expect that a stimulus set will lead to a one-dimensional
representation, Equation 5.1 can be used to infer sensitivities between remote
stimulus pairs (like 5, and S3) from sensitivities to adjacent pairs (5, vs. 52 and
S2 vs. 53). Scales of sensory experienced magnitude have been constructed
and verified by adding up or integrating d' values (Creelman, 1963b;
Houtsma, Durlach, & Braida, 1980; Lim, Rabinowitz, Braida, & Durlach,
1977). This strategy can be used to measure quite large sensitivities.

Models of one-dimensional classification based on the normal distribu-
tion were first presented by Thurstone (1927a, 1927b) long before the ad-
vent of SDT, and the material in this chapter is largely drawn from the field
of "Thurstonian scaling" (Bock & Jones, 1968; Torgerson, 1958). Similar
classification models constructed from Choice Theory components (Luce
& Galanter, 1963) are analogous to Thurstonian ones and are not described
here. Nosofsky (1985) found, in fitting Korabrot's data (1978), that the two
approaches were about equally successful.

Two-Response Classification

Example 5a: Auditory Detection

In an experiment to determine the detectability of weak auditory stimuli,
one of seven sound intensities is randomly chosen on each trial. The inten-
sity of the weakest "sound," stimulus 1, is zero. The participant responds
"yes" if the sound can be heard and "no" otherwise. This is a one-interval
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detection experiment, but it differs from other such experiments we have
discussed in using more than two stimulus values. Possible data are shown
in Table 5.1.

TABLE 5.1 Results of an Auditory Detection
Experiment

Stimulus Response

1 =
2
3
4
5
6
7

Note

no stimulus

. Values are percentages.

"Yes"

2
6
15
40
80
92
96

'Wo"
98
94
85
60
20
8
4

Measuring Sensitivity, Total Sensitivity, and Bias

The questions we can answer about classification data, like discrimination
questions, fall into the two categories of sensitivity and bias. The perceptual
spacing of each pair of stimuli, as well as cumulative and total sensitivity,
can be calculated either directly or by using Equation 5.1. In two-response
classification, a single bias parameter describes how the observer partitions
the perceptual continuum to determine responses.

An SDT analysis of the data is presented in Fig. 5.2. The distances be-
tween the means of the distributions are, of course, values of d', calculated
by considering the data in Table 5.1 two rows at a time. Thus, d'(\,2), the
perceptual distance between the first two stimuli, is z(.06) - z(.02) = -1.555
- (-2.054) = 0.499. As is apparent in the figure, the seven stimuli are not
equally spaced, perceptually, but tend to cluster in two regions near the ends
of the continuum.

Sensitivity for nonadjacent stimulus pairs can be found by two methods,
one direct and one indirect. Directly, the distance between stimuli 1 and 3
equals z(. 15) - z(.02) = -1.036 - (-2.054) = 1.018. The indirect approach uses
Equation 5.1, which says that d'(l,3) = d'(l,2) + d'(2,3). In fact the distance
between Stimulus 1 and any other stimulus—cumulative d'—can be found
by either technique, as shown in Table 5.2. Total d'is cumulative d' between
Stimuli 1 and 7 and equals (directly or indirectly) 3.805 for these data.
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Cumulative cT 0 0.5 1.02 1.80 2.91 3.463.81

x = Intensity

FIG. 5.2. SDT analysis of auditory detection data (Example 5a) showing the dif-
ferences between adjacent means (d1) and the mean of each distribution relative to
that of 5, (cumulative d'). The criterion is located 2.05 units above the mean of 5,.

The participant decides whether to say "yes" or "no" by comparing ob-
servations with a criterion. The location of the criterion can be found from
any row of Table 5.2. From the first row, for example, we see that the crite-
rion must be 2.054 units above 0, the mean of Stimulus 1; or, from the fifth
row, it is 0.853 units below 2.907, the mean of Stimulus 5, which is also
2.054. In this experiment, the observer tended to report hearing Stimuli 5 to
7, but not Stimuli 1 to 4. Distance along the internal continuum, our bias sta-
tistic here, is arbitrarily measured from the mean of an endpoint stimulus
distribution. In chapter 2, the bias statistic c was referred to the zero-bias
point, but with more than two stimuli this point is not unique. Another im-
portant measure of bias, likelihood ratio, is also defined in terms of two dis-
tributions: In this experiment, with its seven possible stimuli, there are 21
different likelihood ratios, and we therefore avoid this statistic.

One way in which the data might be plotted is shown in Fig. 5.3. In panel
(a), cumulative d' is plotted against stimuli, which are equally spaced in
physical units (say, decibels). The graph compares the physical and psycho-
logical spacing of the stimuli, and its slope tells us how rapidly the percep-
tual effect grows with stimulus value—that is, how sensitive the observer is
to systematic stimulus changes. A straight line fitted to the data with stan-
dard least-squares methods (see Appendix 1) reveals that our data deviate
somewhat from a straight line. Therefore, physical and psychological spac-
ings are not exactly equivalent. The (cumulative) logistic distribution is also
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TABLE 5.2 Calculation of Cumulative and Total d'
for the Data in Table 5.1

Stimulus
1

2

3

4

5

6

7

P("Yes")
.02

.06

.15

.40

.80

.92

.96

z(p)
-2.054

-1.555

-1.036

-0.253

0.853

1.405

1.751

d'

0.499

0.519

0.783

1.106

0.552

0.346

Cumulative d'

0.499

1.018

1.801

2.907

3.459

3.805 =
total d'

FIG. 5.3. A psychometric
function for the data of Ex-
ample 5a in terms of (a) cu-
mulative d', and (b) the pro-
portion of "yes" responses.
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sometimes used to fit data; as we have seen before, the normal and logistic
curves are very similar.

Psychometric Functions and the Empirical Threshold

Each value of cumulative d' corresponds to a response proportion, and
P("yes") is used as the ordinate in Fig. 5.3b. More precisely, cumulative d'
is z[P("yes")] plus a constant equal to the criterion location (2.054 in this
example).

When proportion of "yes" responses is plotted on a linear scale, as in
panel b, the function follows an ogival shape; if the function is linear on z
coordinates, it has the shape of the normal distribution function on linear
coordinates. In a detection context, like Example 5a, a relation between
stimulus intensity and proportion of "yes" responses is called a psych-
ometric function. Such functions are often used to estimate the magnitude
of the weakest detectable stimulus, conventionally termed the threshold. To
distinguish this statistic from the theoretical "thresholds" discussed in
chapter 4, we use the term empirical threshold.

The empirical threshold must be defined with reference to a particular
performance level. That level is chosen arbitrarily, perhaps d' = 1. Examina-
tion of Fig. 5.3a reveals that the weakest stimulus value that can be discrimi-
nated from the Null stimulus with a d' of 1 is between 2 and 3. A threshold
defined in terms of d', whatever the specific value, has the advantage of
being uncolored by response bias.

A second (and probably more common) definition for threshold is the
stimulus to which the observer responds "yes" on 50% of the trials. In Fig.
5.3, a value of about 4 is needed to reach this frequency of hearing. Be-
cause it depends only on the hit rate and not on the false-alarm rate, this
measure is bias-contaminated. The shape of the curve in the lower panel of
Fig. 5.3 depends on the response criterion, whereas that in the upper panel
does not.

A third performance measure, proportion correct, does depend on both
H and F, but is unbiased only when observers adopt a symmetric decision
rule. When there are more than two possible stimuli, the criterion cannot
be symmetric for all pairs, and p(c) cannot be bias-free (Sperling &
Dosher, 1986). Use of proportion correct in two-alternative forced-choice
tasks (see chap. 7) is less problematic. If on each trial a Null stimulus and a
non-Null stimulus are both presented in random order, then the same sym-
metric criterion can be applied to the difference between the observations
for all stimulus pairs.
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Example 5b: Length Classification With a Standard

Another application of classification has a long history. Consider a study in
which a series of lines differing in length are presented for judgment, each
line preceded by a standard from the middle of the range, and the observer
must decide whether the comparison stimulus is "longer" or "shorter" than
the standard. This method of constant stimuli dates back at least to Fechner
(Jones, 1974). The method is used to measure discrimination between the
standard and comparison stimuli, but is analytically a classification task.
Modifying the two-response paradigm by adding a standard stimulus does
not change the analysis, but experiments that use this design often have a
different emphasis.

The PSE and the jnd

Figure 5.4 shows hypothetical psychometric functions for an experiment em-
ploying a standard, on both linear and z coordinates. The upper curve has a
cumulative normal shape—as is often true, to a first approximation, in prac-
tice—so the lower curve is a straight line. Traditionally (see Luce & Galanter,
1963), two statistics are abstracted from such curves, a measure of slope and a
measure of the intercept, both expressed in stimulus (x-axis) units. The inter-
cept, the stimulus judged "longer" 50% of the time, is called fae, point of sub-
jective equality (PSE). The usual measure of slope is half the stimulus
distance between the 25th and 75th percentiles; this is termed the just-notice-
able difference (jnd). We can see from Fig. 5.4 that the jnd is the stimulus dif-
ference yielding d' = 0.675; if the psychometric function is linear in z
coordinates, the jnd is the same for any two points this distance apart.

Example 5c: False Memory

Roediger and McDermott (1995), following Deese (1959), conducted a rec-
ognition memory experiment with a twist: The study items were themati-
cally related (e.g., bed, night, dream, blanket). The test included Old items,
New items that were not related to the theme, and a "critical lure"—sleep, in
this example—that was the core concept to which the study items were re-
lated. Of course there were many such sets of critical lures and related study
items. Participants tended to recognize (incorrectly) the critical lures at a
higher rate than other lures and sometimes at a higher rate than Old items.
The paradigm (usually called DRM after its inventors) is of interest because
it demonstrates, in a controlled situation, the phenomenon of "false mem-
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FIG. 5.4. A psychometric
function for the data of Exam-
ple 5b, with (a) linear and (b)
z-score ordinates. Calculation
of the PSE and jnd is shown.

ory." The possibility that such "memories" might occur in court testimony
is a matter of evident concern.

The results of a typical experiment can be summarized in terms of the
proportion of "yes" responses:

Proportion of
Type of Item "Yes" Responses z[P("Yes")]
Old words
New words:
Unrelated to Old words
New words: Critical lures

.85

.30

.80

1.036
-0.524

0.842

A natural question about false memory (Miller & Wolford, 1999) is
whether it is a sensitivity or a response-bias effect: Do participants "really"
remember the critical lures as having been presented, or is the finding some-
how due to a bias (that could, in principle, be manipulated)? The presence of
three "yes" rates in a yes-no experiment raises the question of how sensitivity
and bias are to be calculated. For example, is d'the distance between the Old
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and New/unrelated distributions or between the Old and New/critical distri-
butions? If response bias is to be the distance from the criterion to a crossover
between an Old and New distribution, which New distribution is relevant?

We have analyzed most previous memory examples by assuming that the
underlying dimension being judged is familiarity. The familiarity of a word
can be influenced by two factors: how frequently the item has occurred, and
the number of associated words that have recently been presented. As
Wixted and Stretch (2000) have pointed out, this understanding of familiar-
ity leads to a straightforward account of the DRM phenomenon: The critical
lures are highly familiar because of recently occurring associated words,
and Old words are highly familiar because they have been presented.

If familiarity is the only characteristic of test words being evaluated by
the participant, the appropriate detection theory model is one-dimensional,
as sketched in Fig. 5.5. Old, New, and Critical stimuli lead to distinct distri-
butions on the familiarity axis, with means corresponding to their average
activation. Converting each yes rate to a z score, as shown in the previous ta-
ble, reveals the values of these means; the location of the criterion is 0 on
this scale.

There are three distinct sensory distances of interest: the discriminability
of Old items from New/unrelated ones (d' = 1.560), that of Old items from
critical lures (d' = 0.194), and that of critical lures versus unrelated New
items (d1 = 1.366). This last value is different from the other two, in that the
correct response ("no") is the same for both stimulus classes. Dosher (1984)
proposed the term pseudo-d'foi a sensory distance estimated in this way.
Pseudo-d'acts just like any other d': It is unaffected by criterion location,
and it is additive in the sense of Equation 5.1.

FIG. 5.5. Possible representation for a false-memory recognition experiment.
Old items were presented in the study list, New items were not, and Critical lures
are new items that are semantically related to Old items.
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The analysis concludes that false memory is a sensitivity effect: The
strength of critical lures is high due to associations, that of Old items
through recent presentation, and these two sources cannot be distinguished
by the participant. Response bias is fixed: There is only one criterion loca-
tion. The representation could, of course, be wrong: Perhaps the experiment
provides a separate source of information about whether test items were on
the study list; this hypothesis suggests a multidimensional representation.
The DRM design does not allow us to test alternative models in which such
representations are required.

Example 5d: False Fame

Jacoby, Woloshyn, and Kelley (1989) introduced an influential variant of
the recognition memory design. Their study list included both famous and
nonfamous people (the latter being simply randomly chosen names). In the
test condition, participants were asked not whether the names had occurred
at study time, but rather whether the names were those of famous people.
Some of the nonfamous names seen at study were judged famous by partici-
pants, who apparently could not always distinguish familiarity due to fame
from familiarity due to recent exposure. In some ways, this design resem-
bles the DRM study of the previous section.

We analyze here a similar experiment by Park and Banaji (2000) that dif-
fered in an important respect: There was no study trial. Participants were
asked to judge whether names were those of basketball players; some of the
names were players, and some were not. Among the players, some were Af-
rican-American and some Euro-American, and among the nonplayers,
some had names likely to be African-American (Lamont Turpin, Reggie
Newton) and some likely to be Euro-American (Eric Griffin, John Merritt).
The following table presents the results.

Type of Name
Euro- American players
African- American players
Euro- American nonplayers
African-American nonplayers

Proportion of
"Yes" Responses

.932

.893

.334

.564

z[/W)l
1.49
1.24

-0.43
0.16

As in the earlier example, response bias is fixed, and the data are best in-
terpreted as reflecting different levels of overall activation. Figure 5.6 il-
lustrates the assumption that a single dimension, basketball-playerness,
mediates judgments. Some of the sensitivities that can be estimated repre-
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sent true d' (for distinguishing White players and nonplayers, or Black
players and nonplayers). The key conclusions, however, are based on
pseudo-d' (for distinguishing White and Black players, or White and
Black nonplayers). On the playerness dimension, White players are
higher than Black ones (perhaps being a minority they are more salient),
whereas Black names are, on average, higher than White ones (apparent
stereotyping).

Example 5e: Trading Relations in Speech Identification

In a common type of speech perception experiment, a set of synthetic stim-
uli is constructed along a continuum between two waveforms that corre-
spond to different speech sounds. For example, a stimulus waveform
perceived as /ga/1 can be gradually converted into one perceived as /ka/ by
lengthening voice-onset time (VOT), the amount of time between the be-
ginning of the consonant and the onset of voicing. An apparently straight-
forward way to find out what a listener hears is to present a series of
randomly chosen stimuli from this set and ask whether each sounds more
like "ka" or "ga." Typically, the proportion of trials on which "ka" is the re-
sponse increases as VOT increases (Lisker, 1975). Speech researchers term
this design identification.

Table 5.3 presents data similar to those from Lisker's (1975) study.
Lisker systematically varied VOT, and the second and third columns of the

FIG. 5.6. Possible representation for the false-fame experiment of Park and
Banaji (2000). Among real basketball players, Euro-American athletes were
judged higher than African Americans, whereas nonplayers with African-Ameri-
can names were judged higher than those with Euro-American names.

[We use the common linguistic notation of enclosing phonetic utterances between slashes.
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table show that as this parameter increased, the percentage of "ka" re-
sponses did also. The numbers in these columns are the same as in the audi-
tory detection example (Table 5.1); the "identification function" (Fig. 5.7)
is identical to the psychometric function shown in Fig. 5.3.

TABLE 5.3 Results of a Speech Identification Experiment

Stimulus
Number
l=/ga/
2
3
4
5
6
7 = /ka/

VOT (ms)
0
10
20
30
40
50
60

Fl Onset
"ka"

2
6
15
40
80
92
96

= 386 Hz
"ga"
98
94
85
60
20
8
4

Fl Onset =
"ka"
10
15
23
52
84
95
99

769 Hz
"ga"
90
85
77
48
16
5
1

Note. Values are percent responses.

FIG. 5.7. A function relating
identification responses to
stimulus levels for the data of
Example 5e in terms of (a) cu-
mulative d', and (b) proportion
of "ka" responses. Although
the experiment is different
from Example 5a (which was
detection rather than identifi-
cation), the presentation of the
data is identical.



126 Chapters

Xwo features distinguish these formally identical examples. First, there is a
correspondence function in auditory detection (the correct answer is "no" for
Stimulus 1 and "yes" for the others), whereas there is none in speech identifi-
cation: The point of the experiment is to find out how each sound is perceived.
Second, the psychological interest in the detection experiment is in sensitivity
(if the dependent measure used to estimate threshold is a"), whereas in the
speech experiment the most popular dependent measure is the "category
boundary"—the stimulus value at which each response is used on 50% of tri-
als. Like the PSE, the category boundary is a bias statistic.

Xhe final two columns in Xable 5.3 approximate the results of a second
condition in Lisker's study. Another feature of speech waveforms that influ-
ences the perception of voicing is the frequency at which Fp the first for-
mant (i.e., frequency band), begins. When the identification experiment
was redone with a higher value of Fl onset, the percentage of "ka" responses
increased across the board. In effect, the two acoustic cues, VOX and F, on-
set, trade off against each other: Xo get 15% "ka" responses, either a
20-msec VOX and a 386-Hz F1 onset or a 10-msec VOX and a 769-Hz F, on-
set will work. Such trading relations (Repp, 1982) reflect a kind of percep-
tual interaction between cues. Notice that the effect is one of response bias:
In chapter 8, we introduce approaches to measuring such interactions that
are sensitivity based.

Xhe speech experiment described in Example 5e can be modified by in-
cluding a standard. Now each trial contains two waveforms, the first always
the /ga/ stimulus from the continuum endpoint (Stimulus 1), the second
changing from trial to trial. Xhe task is to say whether the second, compari-
son stimulus sounds like "ga" or "ka." In studies resembling Example 5e,
the effect of the standard is frequently to change bias rather than sensitivity:
If every presentation is preceded by Stimulus 1, the response criterion is far-
ther to the left in Fig. 5.7 than if no standard is used. Listeners using the first
/ga/ stimulus as a standard report hearing more intermediate stimuli as "ka"
than those operating without a standard (Carney, Widin, & Viemeister,
1977; Diehl, 1981; Macmillan, Braida, & Goldberg, 1987).

Experiments with More Than Two Responses

Xhe assignment of many stimuli to just two responses in the examples so far
seems natural—all waveforms in the speech experiment, for example, re-
semble either /ga/ or /ka/, not a third utterance. But there are at least two rea-
sons an experimenter might prefer a number of responses closer to the size
of the stimulus set.



One-Dimensional Classification 127

The first is familiar from our treatment of rating experiments. We found in
chapter 3 that even with only two stimuli, the availability of a graded response
provided us with a more detailed understanding of the discrimination pro-
cess. This is no less true of classification experiments; if the underlying distri-
butions have unequal variance, the use of multiple responses is essential.

The second reason is specific to classification tasks. In the hypothetical
data of the examples so far, no response proportions of 0 or 1 occur—we
have been protecting the reader from the complications such proportions
cause for detection theory analysis. If total d' is more than about 3 (an unbi-
ased proportion correct of about .93), the fact of binomial variability means
that troublesome perfect proportions are quite likely. The availability of
more responses solves the problem as long as some response proportion is
not perfect for each stimulus pair.

Example 5f: Intensity Identification

Braida and Durlach (1972) conducted an auditory identification experiment
with 15 pure-tone stimuli whose intensities ranged from 50 to 90 decibels.
On each trial, one stimulus was presented, and listeners selected 1 of 15 re-
sponses. Some possible data for an analogous task in which M = N=4, with
four stimuli and four responses, are shown in Table 5.4.

Measuring Sensitivity, Total Sensitivity, and Bias

The data for an experiment with N stimuli and M responses fill an N x M stim-
ulus-response matrix—in the two-response case, the matrix (e.g., Table 5.1)
was NX 2. Any two rows in such a table provide information about distin-
guishing two stimuli; when there are more than two responses, a pair of rows
defines an ROC with more than one point. Considering only adjacent rows,
an NxM experiment yields N-1 ROCs, each with as many as M-1 points.

The three 3-point ROCs for adjacent stimuli generated by Example 5f are
shown (on normal coordinates) in Fig. 5.8, with straight lines of unit slope
fitted to the points by eye. The values of d', shown in the figure, are approxi-
mately d'(l,2) = 1.2, d'(2,3) = 0.4, and d'(3,4) = 0.8.

Total d', a measure of total sensitivity in the experiment, is 2.4, the sum of
the three d' values. The additivity condition (Eq. 5.1) implies that this is also
d'(l,4); when the data for Stimuli 1 and 4 are plotted, the distance between
the ROC and the chance line is indeed 2.4.

As we saw in chapter 3, the best-fitting ROC can be found by maxi-
mum-likelihood estimation procedures (Dorfman & Alf, 1969). Addi-
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TABLE 5.4 Results of an Intensity Identification Experiment
With Four Stimuli and Four Responses

(a) Original Data

Stimulus 1
1 39
2 17
3 11
4 3

Frequencies
Response
2 3
7 3

12 10
10 12
5 9

Cumulative Proportions
Response

4 1 2 3 4
1 .78 .92 .98 1.0

11 .34 .58 .78 1.0
17 .22 .42 .66 1.0
33 .06 .16 .34 1.0

(b) Modified Data

Stimulus 1
1 39
2 17
3 0
4 0

Frequencies
Response
2 3

11 0
12 21
21 12
0 17

Cumulative Proportions
Response

4 1 2 3 4
0 .78 1.0 1.0 1.0
0 .34 .58 1.0 1.0

17 0 .42 .66 1.0
33 0 0 .34 1.0

(c) Further Modified Data
Response

Stimulus
1
2
3
4

0 39
0 17
0 11
0 3

7 4
12 21
10 29
5 42

FIG. 5.8. ROCs for the identifica-
tion experiment of Example 5f . Each
curve is for a separate pair of adja-
cent stimuli. Hit and false-alarm
rates are estimated from successive
rows in Table 5.4a. The data for each
stimulus pair are analyzed using the
methods described in chapter 3, with
the higher number stimulus playing
the role of S-,.
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tional complexity is introduced when more than two stimuli are used,
because the M -1 criteria are assumed to fall in the same location for each
stimulus pair. A program to fit classification data in this way has been pub-
lished by Schonemann and Tucker (1967). In Braida and Durlach's (1972)
modification of the program, equal variances for the underlying distribu-
tions are assumed.

Data Matrixes With Zeroes

In experiments with many responses, or generally high sensitivities, direct
computation of total d' may not be possible because all responses may not
have been used in response to all the stimuli. As long as each pair of succes-
sive stimuli has two adjacent response columns of overlap, d' can be com-
puted, and the results can be summed to find total sensitivity. Consider the
modified data matrix for the reduced Braida-Durlach experiment, pre-
sented in both raw frequency and cumulative proportion form in part (b) of
Table 5.4.

For each adjacent stimulus pair, d'can be computed for one criterion
placement. For example, d'(l,2) = z(.78) - z(.34) = 1.184, using the crite-
rion to separate Response 1 from the other responses; for other response
partitions, one or both proportions equal 1.0, and d' cannot be estimated.
Similarly, d'(2,3) and d'(3,4) are found to be 0.404 and 0.824. All three val-
ues are approximately the same as for the original data matrix. We are still
able to calculate d'for nonadjacent pairs, but only using the indirect, addi-
tivity-of-d' method. Thus, d'(l,3) = 1.2 + 0.4 = 1.6, and total d' = 2.4.

Biases and Feedback

In experiments that aim to measure sensitivity, it is common to provide
trial-by-trial feedback, informing the observer, after each response, of the
stimulus just presented. When the response used by the participant is inter-
esting in its own right, feedback is usually not given. What effect does the
feedback manipulation have?

The answer depends on both the spacing and presentation probabilities
of the stimuli. Sometimes—again, most often in sensitivity-oriented exper-
iments—the distribution of stimuli is uniform; in that case, feedback does
not usually have much effect. But when stimulus distributions are not uni-
form, as (one might argue) in real life, the response biases of observers are
given free rein. Such experimental situations have been theoretically influ-
ential. Kelson's (1964) adaptation-level theory proposes that people make
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classification judgments by comparing their observations with a weighted
average of stimulus effects, the adaptation level. For example, if Stimulus 1
in our speech study were presented more frequently than the others, the ad-
aptation level, or neutral stimulus, would move toward Stimulus 1. Re-
sponses would therefore shift toward higher numbers. This approach has
been extended in Parducci's (1974) range-frequency model, for which
Parducci garnered support in experiments without feedback.

A participant who is informed about a nonuniform stimulus distribution
might be expected to show an effect opposite to that just described: If one
knew that Stimulus 1 would be presented half the time in an absolute identifi-
cation experiment, surely it would be sensible to use Response 1 frequently.
Results of this sort have been found by Chase, Bugnacki, Braida, and Durlach
(1983) for auditory intensity and by Macmillan and Braida (1985) for a vowel
continuum. Macmillan and Braida were replicating a study by Sawusch,
Nusbaum, and Schwab (1980) that used the same continuum but no feedback
and obtained results consistent with range-frequency theory. The pattern of
results is similar to that found in discrimination experiments in which presen-
tation probability is manipulated with and without feedback (see chap. 3).
The moral is this: If one wants participants to mimic changes in presentation
schedule in their responding, provide feedback; if no feedback is provided,
they will act as if the distribution were uniform and show increased respond-
ing away from the most frequently presented stimuli. Exactly how to charac-
terize these response changes is still a matter for study.

Nonparametric Measures

Pairwise Sensitivity: Mean Category Scale

Consider again the data of Example 5f, the intensity identification experi-
ment. By finding a" for each pair of stimuli, we located the means of the four
underlying distributions at 0, 1.2, 1.6, and 2.4 units on a psychological di-
mension. Another strategy for "scaling" these tone intensities is to compute
the mean rating given to each stimulus. Stimulus 1 is assigned a mean rating
of 1.32; Stimulus 2, 2.30; Stimulus 3, 2.70; and Stimulus 4, 3.44. These
mean ratings constitute an alternative mapping of stimuli into psychologi-
cal magnitude, called the mean category scale.

The mean rating assigned to a single stimulus is, of course, a measure of
response bias, but the difference between two such ratings is not so obvi-
ously flawed as a measure of sensitivity. That it is flawed can be seen from
an analysis of the simplest, 2 x 2 (one-interval discrimination) experiment.
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The mean rating of Stimulus 1 equals P("l"l5j) + 2P("2"I5,). In more usual
notation, this is (1 - F) + 2F, or 1 + F. The mean rating of Stimulus 2, simi-
larly, is 1 + H. The difference in mean rating equals H - F, which (when
stimuli are equiprobable) equals 2p(c) -1. We saw in chapter 4 that thresh-
old measures, such as those that depend on p(c), are not bias-free; neither
are the mean differences between category judgments.

The effects of stimulus range and frequency on mean category scales are
substantial and have been studied extensively by Parducci (1974) and oth-
ers. No one, to our knowledge, has succeeded in abstracting sensitivity mea-
sures from these impoverished scales. Once responses to a given stimulus
have been summarized by a mean rating, the information needed to separate
sensitivity and bias is lost. Quite useful analyses of mean rating data have
been proposed (see also Anderson, 1974), but they are not detection theo-
retic and do not generate estimates of sensitivity.

Overall Sensitivity

There is a natural nonparametric response measure of overall sensitivity,
namely, overall p(c). How does it compare to our detection theoretic index,
total </'?

A major accomplishment of detection theory is to abstract a measure of
sensitivity, such as d', that does not depend on response criterion. The meth-
ods we have described in this chapter extend this accomplishment to de-
signs with more than two stimuli. Whereas the bias parameter is usually
viewed as a confounding influence in discrimination tasks, users of classifi-
cation designs are often as interested in bias as in sensitivity.

Suppose the listeners in the auditory identification experiment (Example
5f) had been biased toward high-numbered responses and, in fact, never used
Response 1. They might have generated the data matrix in part (c) of Table
5.4, in which Response 2 is assigned to Stimulus 1, Response 3 to Stimulus 2,
and Response 4 to Stimulus 3 as accurately as correct assignments were made
in the original matrix.

The ROC curves derived from this matrix consist of the two left-most
points from each ROC in Fig. 5.8, so d'values are unchanged (leaving aside
issues of sampling variability). Yet the participant has correctly identified
only 69 of the 200 presentations correctly \p(c) = .345], whereas in the orig-
inal matrix the proportion correct was 96/200 = .48. Is this a case in which a
nonparametric measure, proportion correct, is more useful than a detection
theoretic measure?
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The answer is that this depends on the goal of the experiment. Is the ex-
perimenter interested in whether the participant can correctly name the
stimulus or in the participant's resolution power? For the one-dimensional
continua we have been considering, the answer is usually the latter; in any
case, response criterion shifts of this sort are reflected in the estimated val-
ues of the bias parameters. We shall see in chapter 10 that correct naming of-
ten is important in investigations of multidimensional stimulus sets. For
example, it seems natural to ignore response shifts of the sort just described
for our /ga - ka/ continuum, but if the possible responses were all different
words, a systematic mispairing of stimuli and responses would be viewed as
a true decline in performance.

Information Theory

The ability of an observer to classify stimuli is often summarized by another
nonparametric measure, information transmitted, a statistic proposed by in-
formation theory. We have elected not to describe this approach because in-
formation transmitted is not a true sensitivity measure. Information
transmitted is unchanged by systematic reassignment of responses (e.g.,
"yes" for "no" and vice versa in yes-no discrimination), but does depend on
presentation probability and response bias. Introductory treatments of in-
formation theory can be found in the work of Miller (1953, 1956); a more
extended account has been provided by Garner (1962).

Comparing Classification and Discrimination

Using detection theory models, an investigator can measure values of d' for
the same two stimuli in either classification or discrimination. Will both ex-
periments (each of which has many possible variants) lead to the same re-
sult? If not, how will they differ?

Although classification and discrimination data both lead to estimates of
sensitivity, they need not converge on the same truth. Detection theory and
threshold theory offer ways to compare these two kinds of tasks.

SDT Models

Comparing classification and discrimination in detection theoretic terms is
uncomplicated: One measures d' in one experiment of each type and exam-
ines the result to see whether sensitivity has changed. When this is done,
sensitivity is almost always found to be better in discrimination.



One-Dimensional Classification 133

In a few special cases, classification and discrimination d'are (theoreti-
cally or empirically) nearly equivalent. Empirically, Pynn, Braida, and
Durlach (1972) compared identification and discrimination of pure-tone in-
tensity on a very small (2.25-dB) range and found close agreement. Theo-
retically, an influential proposal about speech perception experiments of
the sort described in Example 5e, the categorical perception hypothesis,
says, in part, that discrimination is exactly as good as classification for some
speech continua. This hypothesis has been presented in SDT language by
Macmillan, Kaplan, and Creelman (1977); its original statement, to which
we now turn, was in threshold terms.

Threshold Models

According to Liberman et al. (1957), the listener in a discrimination experi-
ment (Liberman et al. used an "ABX" design; see chap. 9) covertly catego-
rizes each sound of the three presented in a trial as Sl or S2 and makes a
response consistent with these categorizations. The probabilities of these
categorizations were to be directly measured in identification experiments,
allowing discrimination to be predicted from identification.

Discrimination in ABX (see chap. 9 for details) can be predicted from
two-response classification, according to these models, as follows:

/^^discrimination = T^ + (Pi ~ P^ » (5-2)

where/?! and/?2 are the probabilities of classifying Stimuli 1 and 2 into apar-
ticular category, as estimated from a two-response classification experi-
ment. We can use Equation 5.2 to predict discrimination results for the VOT
continuum of Example 5e. Proportion correct in discriminating Stimuli 1
and 2, for example, is predicted to be 0.5[1 + (.98 - .94)2] = .5008, whereas
for Stimuli 4 and 5 p(c) should be .58.

In fact predictions made using threshold theory are always too low. De-
tection theory predictions tend to be higher, but still too low. The difference
between observed and predicted results varies with a number of factors, in-
cluding the type of continuum being studied, but there is always a differ-
ence. Why this is true is a long-standing puzzle in cognitive psychology.

Why Is Classification Harder Than Discrimination?

Psychologists were alerted to the discrepancy between classification and
discrimination by George Miller in a famous 1956 paper. Miller summa-
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rized experiments showing that increases in the number of stimuli to clas-
sify led to corresponding increases in total sensitivity only up to about seven
stimuli. When the range of stimuli was increased beyond that point, there
were no further increases in classification performance, but total discrimi-
nation performance continued to improve.

A model that relates classification and discrimination has been offered
by Durlach and Braida (1969). Although originally presented as a theory of
intensity perception, the model applies to many other domains as well. The
application of the model to speech perception in particular is discussed by
Macmillan (1987) and Macmillan, Braida, and Goldberg (1987).

According to Durlach and Braida, fixed discrimination tasks (those us-
ing just two stimuli) measure only sensory resolution, whereas classifica-
tion depends on both sensory and context-coding, or labeling processes.
Both sensory and context-coding processes contribute to the variance of the
underlying distributions, so if a is the distance between the two means, j82

the sensory variance and C2 the context-coding variance, then

Clearly, the discrepancy between fixed discrimination and identification
depends on the relative magnitude of the sensory and context variance com-
ponents. The relative context variance—the size of the context variance in
units of the sensory variance—can be estimated:

(5.5)

Equation 5.5 can be applied to total d' values as well as d' for particular
stimulus pairs, and it provides a measure of the importance of context mem-
ory for a stimulus pair or continuum.

Context variance is a measure of memory, and the Durlach-Braida the-
ory asserts that classification tasks are difficult because of the memory load
they impose. What types of stimulus continua are hard to context code? In
the theory, context variance is a function of stimulus range (measured, for
intensity, in decibels). The greater the range, the greater the discrepancy be-
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tween classification and discrimination. This accounts for the close agree-
ment between the two tasks found by Pynn et al. (1972).

The range is not as well defined for most stimulus continua as it is for in-
tensity, but the qualitative relation between range and sensitivity is nonethe-
less useful. Other proposals for relating performance in different
classification tasks are discussed in chapter 10.

Summary

In a classification experiment, one stimulus from a set of possible stimuli is
presented on each trial. This chapter has considered classification experi-
ments for stimuli lying only on one perceptual dimension.

Two-response classification is a generalization of the yes-no design to
many stimuli. Values of d' for any two adjacent stimuli can be found by sub-
tracting z-transformed response proportions. Bias is measured by criterion
location. Cumulative sensitivity is the perceptual d' distance between any
stimulus and the endpoint stimulus, and total sensitivity is the sum of all ad-
jacent values of d'.

When each stimulus to be judged is preceded by a standard, calculation
of sensitivity and bias is unchanged. The function relating cumulative sen-
sitivity to stimulus value is called the psychometric function. The midpoint
of this function (the criterion location) is now called the (empirical) thresh-
old or point of subjective equality; the (inverse of the) slope of the function
is a sensitivity measure, the jnd.

Classification with more than two responses produces an ROC for each
stimulus pair; measures of sensitivity and bias are otherwise the same as
with two responses.

The mean category scale, another approach to analyzing classifica-
tion data, leads to a sensitivity measure based on proportion correct and
is not detection theoretic. As a measure of overall performance, p(c) dif-
fers from total d' in assessing the ability to name the stimulus rather than
sensitivity.

For the same stimulus set, discrimination is superior to classification.
One model for this effect attributes the discrepancy to the need for context
memory in classification and permits an estimate of the context variance
caused by classification tasks relative to the unavoidable sensory variance
inherent in all tasks.

Chart 8 of Appendix 3 provides guideposts to methods for analysis of
classification data.
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Problems

5.1. (a) If Stimuli A and Bean be discriminated with a d' of 1 andStimuliB
and C with a d' of 2, what is the predicted d'for discriminating A and C
(assuming that A, B, and C fall in that order on a single dimension)?
(b) If Stimuli A and B can be discriminated with a/?(c) of .69 and
Stimuli B and C with a/?(c) of .84, what is the predictedp(c) for dis-
criminating A and C? Make the same assumptions as in (a), plus un-
biased responding by the participants. Is it possible to state an
additivity condition like Equation 5.1 for/?(c)?
(c) Repeat part b, but with ap(c) of .84 for (A, B) and .93 for (B, Q.

5.2. Is it possible to state an additivity condition like Equation 5.1 for
d''j (mean difference in units of the Sl distribution)? Redo Problem
5.1 a, letting the values be for d', rather than for d', and let s - 0.5 in
all cases.

5.3. In a recognition memory experiment using faces, some stimuli are
presented once, some twice, and some four times. The test se-
quence contains some faces from each condition, plus New faces.
The proportions of "yes" responses are .92, .76, and .60 for 4,2, and
1 presentations, and .18 for New faces.
(a) Assuming that all judgments are mediated only by familiarity, find
cumulative d'for all categories effaces. Where is the criterion? Is this
location closer to the average Old face or the average New face?
(b) Suppose the participants in the experiment are presented, in a
separate condition, with faces they have seen either once or four
times, and asked to say which. Predict d'andp(c) for this "frequency
discrimination" task assuming an unbiased criterion setting.

5.4. In an auditory frequency-discrimination experiment, a 1000-Hz
tone is used as the standard, and the observer responds "higher" or
"lower" to five other frequencies as follows.

Number of Number of
Frequency (Hz) "Higher" Responses "Lower" Responses

9 9 8 1 0 4 0
999 20 30
1000 30 20
1001 40 10
1002 45 5

Find the PSE and the jnd.
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5.5. The jnd depends on the 75% and 25% points on the psychometric
function and, as Fig. 5.4 shows, yields two stimuli that are 0.675 z
units apart. But these percentages are arbitrary: We could use 80%
and 20%, 65% and 35%, or any other pair that add to 100%. What
percentages should be used to find two stimuli that are 1 z unit apart?

5.6. In a modification of the method of constant stimuli (as applied to
line length), participants are allowed to respond "longer,"
"shorter," or "same." The results of such an experiment are as fol-
lows (the standard length was 28 cm).

Length of Comparison
Stimulus (cm) "Longer" "Same" "Shorter"

10
15
20
25
30
35
40

0
0
0
3
5
10
14

2
4
7
9
10
10
6

18
16
13
8
5
0
0

Find d'for each adjacent stimulus pair (if two estimates are avail-
able, average them). Calculate cumulative a" for each stimulus, and
total d'. Assuming that the observer uses two criteria to partition
the decision dimension, find their locations relative to the endpoint
distributions. To what approximate stimuli (lengths) do the criteria
correspond?

5.7. Reduce the data matrix of Problem 5.6 into two response categories
by dividing the "same" responses equally between "longer" and
"shorter." Reanalyze the data. What is the effect of this reduction on
total d'?

5.8. Using the data from Problem 5.7, draw a straight-line psychometric
function by eye to the data on z coordinates. Use the function to es-
timate the jnd and PSE.

5.9. In a visual "categorical perception" experiment (similar to that of
Yasuhara and Kuklinski, 1978), the letter E is modified by decreas-
ing the length of its lowest horizontal segment in four steps until it
becomes the letter F. The five resulting stimuli are flashed briefly,
many times each, to the observer, who must identify them as "E" or
"F." The proportion of "E" judgments for Stimuli 1 through 5 is, re-
spectively, .97, .9, .6, .2, and .1. Find d' for each adjacent stimulus
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pair, cumulative d' for each stimulus, and total d''. Also find the lo-
cation of the criterion relative to the means of the stimulus distribu-
tions. To approximately what stimulus or stimuli does the criterion
correspond?

5.10. Apply the categorical perception hypothesis to the data of Problem
5.9 assuming (a) an SDT model, and (b) a threshold model. Predict
the proportion correct in discriminating each adjacent pair and each
pair two steps apart (like Stimuli 1 and 3) in ayes-no discrimination
experiment.

5.11. Suppose that the actual total (fixed) discrimination d' in the E/F ex-
periment (Problem 5.9) is 4.0. Estimate the relative context vari-
ance for this continuum according to Durlach and Braida's theory.
Reestimate it assuming that total discrimination d' is 6.0 and as-
suming that it is 8.0.

5.12. Observers are asked to identify four sucrose solutions that differ in
saturation. There are four solutions and four responses, and the data
(numbers of responses) are as follows.

Saturation

1
2
3
4

Response
1
6
0
0
0

2 3
2 2
6 4
3 5
0 3

4
0
0
2
7

Find each pairwise d', total d', and the location of the three criteria
(letting the mean of the #1 solution equal 0).



II
Multidimensional Detection Theory
and Multi-Interval Discrimination
Designs

The one-interval experiment has now been analyzed in some detail. For
two-stimulus experiments, we have learned how to estimate sensitivity and
bias from yes-no data and how to plot ROCs from rating data. The analysis
generalizes easily to experiments with more than two stimuli. Our models
also provide us with a picture of the decision space and the manner in which
decisions are made. What is common to all the situations we have so far con-
sidered is the assumption that observers base their decisions on a single
variable or axis and determine their responses by dividing this continuum
into segments using one or more criteria.

In Part II, we consider some of the many situations in which this assump-
tion fails. Most obviously, more than one variable is needed to describe
many perceptual and cognitive representations: Changes in tone intensity
and light intensity, to take a simple example, have distinct neural and psy-
chological outcomes. To model this additional complexity, we take the ob-
vious step of increasing the dimensionality of the representation. For the
most part, we use two-dimensional geometric analyses.

We progress from the simplest cases toward (but not to) the most com-
plex on two parallel tracks. Chapter 6 considers the detection and discrimi-
nation of two stimuli whose representation is two-dimensional (such as
simultaneous tone-light pairs). Because there are only two stimuli, it turns
out that the optimal strategy of relying on a single dimension—the sum of
perceived brightness and loudness—is sufficient to analyze such experi-
ments, but that two dimensions are required to allow for reasonable but
nonoptimal decision rules. In chapter 8, we examine classification designs,
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in which collapsing the two dimensions is not possible. The primary sub-
stantive questions addressed by such designs are the abilities to separate
(selective attention) or combine (perceptual interaction) distinct dimen-
sions. Chapter 10 considers identification, as in chapter 5, but without the
restriction to a single dimension.

The second track in Part II concerns more complex designs for studying
discrimination. In these tasks, each trial contains two or more intervals, the
"intervals" being arranged in either time or space. These experimental de-
signs serve the same goal as yes-no discrimination: to estimate the ob-
server's ability to tell two stimuli apart. In multi- and one-interval designs
alike, therefore, the stimuli are of only two types. Investigators choose to
measure discrimination with these apparently more complicated designs
for practical reasons, some of which we discuss.

Multi-interval designs can be described by SDT models in which the "di-
mensions" are the intervals that compose the task. In chapter 7, we use the
tools required to model compound detection (chap. 6) to examine two-alter-
native forced-choice and the "reminder" experiment. In chapter 9, we use
the tools developed for studying attention and interaction (chap. 8) to model
the same-different, matching-to-sample, and oddity experiments. In chap-
ter 10, we find that multi-alternative forced-choice is a special case of multi-
dimensional identification, so that the same models apply to both.



Detection and Discrimination
of Compound Stimuli: Tools for
Multidimensional Detection Theory

In Flatland, Abbott's (1991/1884) classic mathematical fantasy, a two-di-
mensional world is visited by someone from the third dimension who shows
an eager acolyte the splendors of 3D. So far we have described a one-dimen-
sional psychological world that even flatlanders would disdain: Sensation,
familiarity, and other such dimensions have been the single subjective vari-
ables involved. For the initial applications of detection theory to auditory
and visual detection, the idea that a single variable—subjective intensity—
characterized the decision process was quite reasonable. We saw in chapter
5 that some apparently more complex problems such as false memory and
social judgment can be interpreted unidimensionally as well.

The problems we consider in this chapter are the detection and discrimi-
nation of "compound" stimuli, that is, those with two or more perceptually
distinct components. The key questions are whether these "cues" are com-
bined by the observer and, if so, in what way. Treisman (1998) offers some
nonlaboratory examples: To decide whether there is an aircraft in the sky (a
detection task) or whether the aircraft is a plane or a helicopter (discrimina-
tion), one may rely on visual appearance or the quality of sound it produces.
In assessing the degree of impairment of a particular patient, a clinician's
judgment may be based both on a deficiency in movement control and signs
of disordered thought. The question may be whether impairment exists (de-
tection) or what type of impairment it is (discrimination). Cues may be in
conflict or in agreement, and how they are best combined is a complex prob-
lem. Should the nature of combination change, in the plane-spotting exam-
ple, if clouds limit the view or traffic noise masks the auditory signal?
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The experimental illustration for most of the chapter is a simplified ver-
sion of the aircraft example, the detection of the simultaneous presentation
of a tone burst and a light flash. Compound detection of this type was ex-
plored early by Tulving and Lindsay (1967). To analyze the problem re-
quires multidimensional tools, and the first part of the chapter provides
them. We begin by reviewing the general one-dimensional model with
which we have worked so far, and then we expand its application into per-
ceptual spaces of two or more dimensions. After discussing the principles
needed to analyze multidimensional problems in general terms, we finally
apply them to the compound detection problem.

The attentive reader will note that we have considered "multidimen-
sional" stimuli, such as faces, words, and X-rays, without venturing beyond
one-dimensional representations. The single decision axis has been
"strength of evidence," even if that evidence had multiple components. For-
mally, the decision axis in a single two-response task can always be consid-
ered as likelihood ratio. Why is this familiar flatland mode no longer
adequate?

In many applications, the interest in the detection of multidimensional
objects lies in its relation to the detection of the objects' components. How
much more accurate is an observer who listens to, as well as looks at, an air-
craft? A clinician who considers two categories of behavior rather than one?
Providing a quantitative framework for such comparisons of tasks is one of
detection theory's significant contributions, and the possibility of such
comparisons is much greater in multidimensional domains. The only such
case considered in unidimensional Part I was the relation between discrimi-
nation and identification at the end of chapter 5. In Part II, connections of
this type will be far more salient.

Distributions in One- and Two-Dimensional Spaces

One-Dimensional Review

Figure 6.1 shows two familiar one-dimensional normal distributions, each
with a standard deviation of 1; the upper distribution arises from Sl (Noise)
trials and the lower one from S2 (Signal) trials. The mean of each distribu-
tion is labeled 0 so that locations on both axes correspond to z scores. The
criterion in this example is one standard deviation below the mean of the S2

distribution and one standard deviation above the mean of the S{ distribu-
tion. The hit and false-alarm rates are given by the areas under the two
curves to the right of the criterion.
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FIG. 6.1. The one-dimensional equal-variance SDT model for d' = 2 and an un-
biased criterion placement. Hit, miss (lower distribution), false-alarm, and correct
rejection (upper distribution) probabilities can be written in terms of the normal
distribution function <E>.

To calculate these proportions, we need information about the normal
distribution function, and for this purpose Table A5.2 is the more conve-
nient of our two tables of this curve (see chap. 2). For each positive z score,
the table gives O(z), the area from the left tail of the distribution to the crite-
rion.1 The general rule is that areas in Table A5.2 are from one tail of the dis-
tribution to a z score on the opposite side of the mean. For z scores on the
same side, the areas in the table must be subtracted from 1.

The four basic SDT probabilities are easily found from the table:

• Correct rejections. In the upper panel of Fig. 6.1, the area below the
criterion is the probability of a correct rejection. The criterion c = 1, so
this probability is O(c) = O(l) = .84.

1 Remember that (uppercase) 5> is not the same as (lowercase) </>, the height of the normal curve, which is
given in Table A5.1.
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• False alarms. Still in the upper panel, the area above the criterion is
the false-alarm rate. The total area under the curve is 1, so this proba-
bility is 1 - 0(1) = .16.

• Hits. In the lower panel, the value of z at the criterion is negative, spe-
cifically -1. The table does not contain negative numbers, and the
symmetry of the normal distribution must be used. The area to the
right of a negative z score equals the area to the left of the correspond-
ing positive z score, so the hit rate is O(l) = .84.

• Misses. Still in the lower panel, the area below the criterion is the miss
rate. The total area under the curve is 1, so this probability is 1 - O( 1) =
.16. Because this is an area below the criterion, it is also a value of O it-
self, namely, O(-l).

Two-Dimensional Distributions That Can Be Analyzed
One-Dimensionally

Multidimensional distributions build on the familiar one-dimensional vari-
ety, but there are several steps in the generalization. Our goal in this chapter
is to describe the compound detection problem, in which two compound
stimuli are discriminated, but to simplify things we temporarily consider
the unrealistic case in which only one (two-dimensional) distribution rather
than the usual pair is possible. We still refer to the observer as making a de-
cision, although a well-informed decision maker would simply produce the
same response on every trial.

Figure 6.2 shows two ways to draw the joint distribution of two variables,
produced when a light and a tone are presented simultaneously. One strat-
egy is to add a third dimension to the graph: A two-dimensional graph (like
Fig. 6.1) was needed to display one variable and its likelihood distribution,
and a three-dimensional graph (Fig. 6.2a) can show two variables plus the
likelihood of the combination. The overall distribution is a hill situated on a
surface defined by loudness and brightness dimensions. A particular value
of loudness and brightness is a point on the surface, and the likelihood of
that value is the height of the hill over that point. The highest point, which
represents the greatest likelihood, lies over the means of both variables, the
point (jix, /xp.

As decision problems grow in complexity, three-dimensional pictures of
perceptual spaces quickly lose their charm. We instead use cross-sections to
represent distributions, omitting the likelihood dimension. The circles in
Fig. 6.2b connect (jc, v) points of equal likelihood from Fig. 6.2a. They can
be thought of as paths of constant height around the hill in Fig. 6.2a or pla-
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HG. 6.2. Two repre-
sentations of a two-di-
mensional distribution
of the brightness and
loudness of the light/
tone pair: (a) The likeli-
hood of each (x, y) point
is a value in the third di-
mension, and (b) the
likelihood dimension is
suppressed, and each
circle is the locus of
points having the same
likelihood.

teaus obtained by slicing off the top of the hill at a constant height. The cen-
ter of the circles is still (nx, /xy), the means on the two axes, and the diameters
represent the standard deviation or a multiple of the standard deviation. No-
tice that, compared with Fig. 6.1, in which the psychological space is one-
dimensional, the cross-section picture in Fig. 6.2b portrays a two-dimen-
sional space, each dimension representing a psychological variable. Likeli-
hood is not shown, but the equal-likelihood contours do convey useful
information as we shall see.

Now what about the observer's criterion? In one-dimensional problems,
this was just a point (z = +1 or -1 in Fig. 6.1), but with two internal dimen-
sions we need a curve or line, called a decision boundary, that gives values
of y for all possible values of x. The example in the lower half of Fig. 6.1—a
criterion one standard deviation below the mean—is rendered as a two-di-
mensional plot in Fig. 6.3. The problem of finding the "yes" rate looks
much more difficult in this representation: Instead of finding the area to the
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FIG. 6.3. A two-dimensional distribution (in the style of Fig. 6.2b) and a deci-
sion boundary. Points to the right of the boundary represent above-criterion values
of loudness, and the value of brightness is ignored. The marginal distributions of
brightness and loudness are shown along their respective axes.

right of z = -1, we are interested in the volume to the right of the line zx = -1.
Fortunately, there is a shortcut.

To understand the shortcut, called projection, we need to know a little
more about the joint distributions (i.e., those that depend on more than one
variable). If the distributions are normal, they can be described by five val-
ues: the means on both variables, the standard deviations on both variables,
and the correlation between them. For calculations involving only one di-
mension, we can use the marginal distribution on that axis, that is, the distri-
bution of x (ignoring y) or y (ignoring x). One way to think about marginal
distributions is to imagine that the three-dimensional joint distribution is
tipped on its side so that all the mass piles up on one axis. The height at each
value of x in the marginal distribution of x corresponds to the summed
heights of the joint distribution at every point for that value of x for any
value of y. The marginal distributions, shown along the axes of Fig. 6.3, are
also normal, and the mean and standard deviation of the marginal distribu-
tion on x are the same as the x-mean and x-standard deviation of the joint
distribution. The joint distribution is said to be projected onto the Jt-axis.

Now we can calculate the "yes" rate for an observer with the representa-
tion shown in Fig. 6.3 for repeated presentations of a tone-light pair. The
vertical criterion line means that the decision is based solely on the loudness
of the tone—as if the judgment was made with the eyes closed. The proba-
bility of an observation to the right of the decision boundary is the volume to
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the right of that boundary in the joint distribution, but this is the same as the
area to the right of the criterion in the marginal distribution. If z = -1, this
area is 1 - O(-l) = .84—the same as in Fig. 6.1b. This is exactly what one
should expect: The probability of detecting the tone is the same when only
the tone is presented as when both a tone and light are presented, but the
light is ignored.

In Fig. 6.3, the joint distribution is drawn as circular, with equal standard
deviations on the two dimensions. For many stimuli (including the simulta-
neous tone and light presentation we have been discussing), there is no rea-
son to expect equal standard deviations. When variability is unequal on the
two dimensions, equal-likelihood contours are elliptical rather than circu-
lar, as in Fig. 6.4. Computations in which the joint distribution of x and y is
projected onto either x or y are unchanged. For example, in Fig. 6.4, the
standard deviation on x is 2 and on y is 1. The area to the right of a vertical
line at x = -1 is 3>(0.5) = .69, but above the line y = -1 it is O(l) = .84. If the
distribution were circular, these two numbers would be equal.

Two-Dimensional Decision Rules
That Can Be Analyzed One-Dimensionally

We have now succeeded in finding the "yes" rate in a two-dimensional per-
ceptual space by projecting a joint distribution onto a single-dimensional
one. This simplification always works when the decision boundary is a
straight line, and the line need not be perpendicular to one of the axes.

Suppose the standard deviations are the same on the two axes, so that the
likelihood contours are circles. An observer might reasonably decide to add
the values of loudness and brightness and use the sum as the basis for a deci-

FIG. 6.4. A two-dimensional
distribution in which the stan-
dard deviation of x is greater
than the standard deviation of y.
The outer ellipse represents
points one standard deviation
from the mean, and the inner el-
lipse represents points 0.5 stan-
dard deviations from the mean.
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sion about whether the tone-light pair was presented. This observer's deci-
sion axis, shown in Fig. 6.5a, is a line at a 45-degree angle to both axes.
Values increase as we move up and to the right along (or parallel to) this
axis: The point (-!,-!) has a sum of-2, (0,0) has a sum of 0, (1,1) has a sum
of 2, and so on. The decision boundary, as in earlier examples, is perpendic-
ular to the decision axis. In the figure, the boundary is set so that any sum of
loudness and brightness greater than -2 leads to a "yes" response. Thus, an
observation of (0, -1) produces a "yes" and (-2,-!) a "no."

For this boundary, what is the probability of a "yes" response? The pro-
jection strategy is appropriate, but the projection must be onto the decision
axis (the sum of loudness and brightness), not the ;t-axis (loudness) or the
v-axis (brightness). In the figure, the marginal distribution is drawn on an
axis parallel to the decision axis; notice that all points on the decision
boundary project onto the same point on the decision axis, as is necessary
for projection to work.

FIG. 6.5. (a) A two-dimensional
distribution, a decision axis for in-
creasing values of the sum of AC andy,
and a decision boundary that is the lo-
cus of points with a fixed sum of x
and y. The marginal distribution of x
+ y is shown parallel to the decision
axis, (b) Demonstration that the dis-
tance from the decision boundary to
the mean of the distribution is the Py-
thagorean sum of the distances along
the*- andy-axes.
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How far is the projected boundary—the criterion—from the mean? At
the critical point (-!,-!), the distance to the mean of (0,0) is, by the Pythag-
orean Theorem, v2 or 1.41 units (see Fig. 6.5b). The area to the right of the
boundary is therefore O(1.41) = .92. The observer who uses both loudness
and brightness in deciding whether the tone-light pair occurred has a higher
hit rate (92% detections) than the one who is detecting only one or the other
(84%) because the former has two useful pieces of information, the latter
only one. (Keep in mind, however, that this number is just a hit rate, not an
index of sensitivity; a true detection theory analysis is yet to come.)

Some Characteristics of Two-Dimensional Spaces

So far the analysis of two-dimensional perceptual spaces has been only a
matter of properly reducing them to one-dimensional problems. When this
is not possible, it is because the distributions, the decision rule, or both re-
quire the second dimension to be taken seriously. Before we return to the
compound detection problem, a brief tour of two-dimensional-space geog-
raphy is necessary.

Perceptual Independence and Dependence of Distributions

The essential simplicity of distributions like those in Fig. 6.2 through 6.5,
and the possibility of analyzing either component dimension separately,
arises from the lack of correlation between the dimensions. Normal
bivariate distributions with zero correlation result from statistically inde-
pendent variables and are said to be perceptually independent (Ashby &
Townsend, 1986). The opposite case is called perceptual dependence; this
condition arises in vision, for example, because increasing the brightness of
a patch of light tends to increase its yellowness, and it arises in hearing be-
cause increasing the loudness of a pure tone slightly increases its pitch.

There are two equivalent ways to represent perceptual dependence. In Fig.
6.6a, the x and y axes are nonorthogonal; in Fig. 6.6b, the axes are orthogonal,
but the distribution is elliptical. In this figure, the marginal as well as the joint
distributions are displayed, and one way to see that the elliptical distribution
is not perceptually independent is to compare it with the distribution shown in
dashed lines. This distribution is the result of multiplying the marginals to-
gether, and it is circular.

Perceptual dependence always refers both to the shape of the bivariate
distribution and its orientation in the perceptual space, or equivalently the
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FIG. 6.6. Two equivalent repre-
sentations of perceptual depend-
ence: (a) the x- and y-axes meet at a
nomight angle, and the distribution
is circular (correlation equals 0);
(b) the axes are orthogonal, but the
distribution is elliptical (correlation
is not equal to 0). The dashed lines
represent a perceptually independ-
ent distribution constructed from
the two marginal distributions.

angle between the underlying axes. There is a simple quantitative relation
between the two depictions: The correlation of the bivariate distribution in
panel b equals minus the cosine of the angle between the axes in panel a.

Two-Dimensional Decision Boundaries: The Product Rule

Figure 6.7 illustrates another way to divide up the three-dimensional per-
ceptual space, one that explicitly makes use of the two distinct dimensions
by placing a separate criterion on each of them. The distribution still de-
scribes the internal effect of a tone-light pair, and it exhibits perceptual in-
dependence. The space (and the distribution) is divided by the criteria into
four regions according to whether the observation is above or below each.

Suppose a cautious observer requires a combined observation to be
above both of the criteria in order to respond "yes." We are interested in the
volume that looms over the area shaded in Fig. 6.7a. The proportion of the
distribution's volume to the right of the x criterion (when it is located one
standard deviation below the mean, as in the figure) is <1>(1) = .84, as we
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FIG. 6.7. The maximum and mini-
mum rules. In the maximum rule (a),
the observer responds "yes" only if
both jc and y exceed their respective
criteria. In the minimum rule (b), the
observer responds "yes" if either* ory
exceeds its respective criterion.

found earlier (see Fig. 6.3), but we are interested in just some of that vol-
ume, the part that is higher than the y criterion. What fraction would that be?
For the whole distribution, the proportion of volume above the line is .84,
and a convenient consequence of perceptual independence is that this same
proportion applies to any fraction of the distribution to the left or right of the
jc criterion. The fraction of the marginal distribution that is to the right of the
criterion on jc is. 84, but not all of that area can be counted because of the cri-
terion on v. Thus, the volume over the shaded area is .84 x .84, or .71. We
call this principle, naturally enough, the product rule: The volume under a
distribution that is above a horizontal criterion zy and to the right of a vertical
one zx equals the proportion above the horizontal criterion [<E>(-zy), found
from the y marginal distribution] times the proportion to the right of the ver-
tical criterion [O(-z), found from the x marginal]. As an equation:

volume over an infinite "rectangle" above zy

and to the right of z = O(-z) O(-z).
(6.1)
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With this result in hand, we can easily find the volume beneath the joint
distribution over the unshaded area in Fig. 6.la. This represents the likeli-
hood that the compound stimulus would lead to a "no" response—that is,
the miss rate. This area is L-shaped rather than rectangular, so the product
rule cannot be used directly, but the likelihood is the complement of the hit
rate, 1 - .71 = .29.

Now consider an alternative decision rule. The shaded area in Fig. 6.7b
corresponds to all observations that are either above the y criterion or to the
right of the x criterion, and it reflects the "yes" rate of an incautious observer
whose decision rule is to say "yes, the compound is present" if either tone or
light yields a sufficiently large input, regardless of the value of the other.
This time it is the miss rate that can be calculated directly from the product
rule; it equals (.16) x (.16) = .026. The hit rate, the volume over the shaded
area, is the complement of this value, or .974.

Even if the standard deviations for two dimensions differ, as in Fig. 6.4,
the procedure for finding the volume over (infinite) rectangular area is the
same. For example, the area in the upper right-hand quadrant of Fig. 6.4 is
the volume above the y criterion, which is ̂ (-zy) = .84, times the volume to
the right of the x criterion, which is 3>(-zx) = .69, for a product of .58.

Compound Detection

We are at last ready to tackle the problem with which the chapter began, the
detection of compound stimuli such as a simultaneous tone burst and light
flash. An important part of any solution must concern the comparisons
likely to interest the experimenter, in particular detection using the same
components of the stimulus, but alone rather than in combination. For ex-
ample, the research question might be how combined detection of the
tone-light combination compares with detection of the tone or the light
when either is presented separately. This focus on relative performance in
more than one task with the same stimuli is a strength of multidimensional
detection theory; it allows for theoretical "converging operations," relating
performance in separate tasks (Garner, Hake, & Eriksen, 1956).

Equal-Variance Uncorrelated Representation
for Compound Detection

Half of the representation for compound detection—the distribution due to
the compound stimulus—has been displayed in previous figures. The miss-
ing half, in detection, is the distribution due to no stimulus. In Fig. 6.8, two
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circular unit normal distributions arise—one with a mean of (0, 0) for the
no-stimulus distribution, the other with a mean o f ( d ' , d ' ) for the stimulus

•* "

distribution. We develop equations for this general case, but also track the
specific example in which dx' and d' both equal 1.

Decision Rules

A characteristic of multidimensional tasks is that observers may plausibly
adopt any of a number of response strategies, as spelled out in earlier sections
of this chapter. In the one-interval design, variations in performance could be
produced by changing the location of the criterion, and by some degree of in-
attention, criterion fluctuation, and so on. A criterion shift, according to de-
tection theory, represents a change in the likelihood of using one response
rather than the other, and it does not affect sensitivity as measured by d'. Inat-
tention and criterion fluctuation produce lower performance, arising because
the observer acts nonoptimally. The alternate rules adopted in multidimen-
sional tasks provide an additional level of complexity.

How can we compare different strategies for dealing with the same mul-
tidimensional decision problem? In analyzing the one-interval design, we
stressed the bias-free measure d', but d' is a characteristic of the task or
problem, not of the decision rule. To understand decision strategies for a
representation in which d'is the same for the strategies to be compared, we
are forced to depend on some other index. One possibility isp(c), although
we have seen that this depends on the criterion when d' is fixed. A natural

FIG. 6.8. The compound de-
tection problem: A compound
stimulus must be discriminated
from a null stimulus.
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criterion-free measure is/?(c)max, the value of p(c) when responding is unbi-
ased, and we sometimes adopt this measure. For the one-dimensional
yes-no task, best performance is with a criterion halfway between the
distributions; we saw in chapter 2 (Eq. 2.10) that in that case,

(6.2)

Decisional Separability. The first decision rule to be considered
is the simplest and the most obviously inadequate: Attempting to detect a
stimulus that has two components, the observer ignores one of them. We
considered this strategy early in the chapter; it makes use of the marginal
distribution of one component. As shown in Fig. 6.9, the decision boundary
is a straight line parallel to one of the axes, a condition called decisional sep-
arability. For example, in the tone-light detection example, the observer
considers only the amount of activation on the loudness dimension. The ef-
fective sensitivity to the combination is d'x, so/?(c), assuming equal presen-
tation probabilities, is the average of the hit and correct rejection rates,
0.5[<&(d'x - k) + O(jy]. The maximum value is for a criterion halfway be-
tween the distributions, and/?(c)max = <b(d' J2). lfd'x = 1, as in the running
example, p(c)max = .69.

Maximum, Minimum: Nonparametric Solution. Two similar but
opposite rules are shown in Fig. 6.10. The observer sets criteria on both axes
and responds "yes" if the observation exceeds both criteria (the maximum

loudness 

FIG. 6.9. A decisionally
separable rule for the com-
pound detection problem.
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rule) or either criterion (the minimum rule). These rules resemble somewhat
the conservative and liberal settings of the criterion in the simple one-di-
mensional case, in that the maximum rule leads to a low "yes" rate and the
minimum rule to a high one.

To relate performance in the compound task to that for detecting single
components, a nonparametric approach is possible. For the maximum rule,
the observer says "yes" to a compound signal whenever an above-criterion
event occurs on both dimensions. Such events are exactly those that would
generate "yes" responses in the single-component task, so the yes-rate for
compound detection is the product of the yes-rates for single-feature detec-
tion. This argument applies to both the hit and false-alarm rates. We denote
the hit rates for the x and y dimensions as Hx and H and the false-alarm rates
as Fx and Fy. Then the hit and false-alarm rates for compound detection, H2

and F2, are

FIG. 6.10. (a) Maximum and
(b) minimum rules for the com-
pound detection problem.
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For the running example, if the criteria are kx = ky = 0.5, then Hx = Hy = .69
and#2 = .692 = .48. Similarly, F =Fy = .31 andF2 = .312 = .10. Tofindp(c),
we average the hit and correct rejection rates to get 0.5(.48 + .90) = .69, per-
haps surprisingly the same as using only one dimension.

In the minimum rule, the compound yes-rate is broken into two parts —
one for an above-criterion observation on the .x-axis, the other if there is no
visual detection but an above-criterion event on the y-axis. Thus,

For the example, H2 = .90, F2 = .52, and/?(c) is again .69. The maximum and
minimum rules produce the same accuracy, but only when the criteria are
halfway between the distribution means as they are here. The minimum rule
is often called probability summation because any increase in two-dimen-
sional accuracy over one dimension results only from having two chances to
(probabilistically) detect the stimulus.

The weak part of the analysis is the assumption that criteria remain the same
between conditions. (Applications of the probability summation idea are
sometimes even weaker, in that no account of false alarms is taken at all; see
Treisman, 1998.) To maximize p(c), an observer should adopt a symmetric cri-
terion, and in the example we have assumed this choice for the one-component
tasks. The result, however, is strong response bias in compound detection, with
an overall yes-rate [(H + F)/2] of .29 for the maximum rule and .7 1 for the mini-
mum rule. A detection theory approach can avoid this problem.

Maximum, Minimum: SDT Solution. To evaluate the maximum
and minimum rules in SDT terms, we need to find the volume over an infi-
nite rectangle, calculated as shown earlier in this chapter by the product rule
(see Figs. 6.7a and 6.7b). The only additional step is to apply the product
rule twice, to both the stimulus and no-stimulus distributions. For the maxi-
mum rule, the easiest proportions to calculate are the hit and false-alarm
rates because they are volumes over the rectangle defined by the upper right
quadrant, and the product rule can be used directly. These are:
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Notice that Equation 6.5 is just a special case of Equation 6.3.
For the minimum rule, the easiest values to calculate are the miss and cor-

rect rejection rates, which fall in the lower left quadrant. These rates, which
we write as the complements of H2 and F2, are

t.

Rearrangement of Equation 6.6 reveals that it is a special case of Equation
6.4.

Notice that an observer using either rule can adjust the yes-rate by mov-
ing one of the decision boundaries, or both together. That is, the observer
can generate an ROC. What is the shape of these curves? We consider the
simplest cases, in which sensitivity is equal for the two dimensions (d'x = d'y
= d'), and the decision boundaries are moved at the same time and in the
same direction along the axes. For the maximum rule, the hit and
false-alarm rates are

and for the minimum rule they are

Figure 6.1 1 shows these curves together with the ROC for decisional sepa-
rability (which is the same as that for single-component detection). The
maximum and minimum rules are virtually indistinguishable, and both are
slightly better than decisional separability.

This latter conclusion may seem to be in conflict with our analysis of the
running example, in which the maximum rule (H2 - .48, F2 = . 10), minimum
rule (H2 = .90, F2 = .52), and decisionally separable rule (H2 = .69, F2 = .3 1)
all produced p(c) = .69. Clearly, however, these three ROC points differ in
bias. We found in chapter 1 that the same value of p(c) represents greater
true sensitivity for biased performance (as in our calculations for the maxi-
mum and minimum rules) than for unbiased performance (as in the deci-
sionally separable example). The criterion k = 0.5 for decisional
separability, but to obtain the highest value of p(c) [p(c)max = .73], we need k
= 0 for the minimum rule and k = 1 for the maximum rule.
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False-alarm rate

FIG. 6.11. ROCsfordeci-
sional separability, maxi-
mum, minimum, and optimal
rules in the compound detec-
tion problem.

The Optimal Rule: Diagonal Decision Boundary. The optimal
rule has been illustrated (considering only the S2 distribution) in Fig. 6.5a:
The decision axis runs between the means of the alternative distributions,
and the criterion is a line perpendicular to the decision axis, dividing the
space in two. Reasonably, both components contribute to the decision, and
strong evidence for one component of the compound can compensate for
weaker evidence for the other. The decision rule is to use the sum of the val-
ues from a stimulus on the two axes and to say "yes" if the sum is above a set
value. A large sum corresponds to a strict decision boundary, a small num-
ber to a lax one.

A consequence of reducing the problem to one dimension is that it makes
sense to ask: What is the effective d' value for this pair of distributions? The
answer comes immediately from the Pythagorean Theorem:

In the running example, if the one-modality d' values are each 1.0, J'for the
compound is 1.41. Accuracy as measured by p(c)max is .76, as compared
with .69 on each dimension alone.

An alternative way to reach this conclusion is to calculate H2 and F2 from
the one-dimensional projections. The value of d' is V2 greater than for the
individual components, so:
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(6.11)

Taking the unbiased case in which k = ̂ /2(d'/2), we find again that H2 = l-
F2 = .76. The ROC for the diagonal rule can be calculated from these equa-
tions and is shown in Fig. 6.11. Clearly this rule yields the best perfor-
mance of any decision strategy we have considered.

The optimal rule allows for integration of information before, rather than
after making decisions about the individual components, and it is this better
use of the available input that produces the improvement in accuracy. Dis-
tinguishing the optimal rule from the maximum or minimum rule is difficult
when only one data point is available—performance levels are not that dif-
ferent—but when multiple comparisons are available the predictions are
more discrepant. Treisman (1998) pointed out that in a method-of-con-
stant-stimuli context, the rules predict psychometric functions with both
different slopes and different intercepts.

Inferring the Representation From Data

If the representation and decision rule in a compound detection task are
known, the tools of the previous section allow us to calculate hit and false-
alarm rates, and thus ROC curves. Being able to deduce predictions from
models in this way is valuable, but what about the opposite, inductive prob-
lem of deriving representations and decision rules from the data? This latter
sequence dominated Part I, and it is important to extend it to multidimen-
sional situations.

An immediate hurdle is that more parameters are needed to describe
two-dimensional representations than one-dimensional ones. For detection
of a single feature, the hit and false-alarm rates each depend on a sensitivity
value and a criterion, which can therefore be uniquely determined. In two
dimensions, these same two observables depend on two values of sensitiv-
ity and one or two values of criterion, even with assumptions about inde-
pendence, the form of the decision bound, and the nature of the decision
rule. There are two ways to attack this problem.

First, simplifying assumptions can make any problem more tractable.
Consider the nonparametric approach to predicting H2 and F2 in compound
detection from the same statistics in single-component detection. There are
no sensitivity or bias parameters—the issue is whether accuracy in the sin-
gle-component conditions can be predicted from accuracy in the compound
case. Equations 6.3 (maximum rule) and 6.4 (minimum rule) express com-
pound H2 and F2 (two values) in terms of single-component Hx, H, Fx, and



160 Chapter 6

Fy (four values). Sometimes it is natural to assume that both components are
equally detectable, so that Hx = H = Hv and Fx = Fy = Fr

Consider, for example, a "compound" recognition memory experiment.
Following a study trial in which a list of words is presented, observers are
shown pairs of words with one of two instructions: say "yes" only if both
words are Old (maximum rule) or if either word is Old (minimum rule).
Both components of the stimulus pair are equally detectable, and we may
hope that the instructions determine the decision rule. In that case, the hit
and false-alarm rates for the one-component tasks, Hl and F1? can be related
to the values for compound performance, H2 and F2, by solving Equations
6.3 and 6.4. For the "both" condition,

and for the "either" condition,

The shortcoming of the nonparametric model, noted earlier, is that it as-
sumes an unrealistic kind of bias constancy. The SDT model overcomes this
problem by postulating an underlying representation on which all tasks
draw. The assumption needed—plausible in the compound memory experi-
ment—is that both sensitivity and bias are the same for the two words in
each stimulus. Then Equations 6.7 and 6.8 can be solved for d'; for the
"both" condition,

and for the "either" condition,

To be concrete, suppose we observe H2 = .8 and F2 = .2 in each of the two
compound conditions. Because H 2 - 1 - F2, both the nonparametric and
SDT models make the same prediction for the two conditions.
Nonparametrically, Hl = Vs = .89 and F, = V2 = .45. The SDT model uses
these same values to find d', which equals z(.89) - z(.45) = 1.35. Values of
H{ = .89 and F, = .45 satisfy this prediction, of course, but so do H{ = .55 and
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Fj = .1 1 and many other (Fv H2) values on the ROC defined by Equations
6. 14 and 6. 15.

The diagonal rule, which might be used in the "both" or "either" recogni-
tion task, makes a different prediction. Solving Equations 6.8 and 6.9 yields

In the example, d'= (1A/2)[(0.842 - (-0.842)] = 1.19. Notice that the inferred
value of d'is smaller in this case: Because the decision rule is optimal, a lower
level of sensitivity is required to reach the same level of performance.

Summary

Some stimulus sets are best represented using a perceptual space with more
than one dimension. In the two-dimensional case, each stimulus leads to a
distribution taking on values of likelihood for pairs of observations. In an
experimental context, the observer establishes a decision boundary that di-
vides the space into regions corresponding to each possible response.

In compound detection, the task is to detect the presence of a compound
stimulus, saying "yes" to presentation of a simultaneous tone-light pair and
"no" to noise alone on both channels. A variety of decision rules can be ap-
plied to this problem: (a) decisional separability, in which only one dimen-
sion is considered; (b) the maximum rule, in which an above-criterion event
is required on both channels; (c) the minimum rule (probability summa-
tion), in which either a visual or an auditory detection is required; and (d) an
integration rule, in which the effective decision variable is the sum of the
two channels. The latter rule is optimal.

Problems

6.1. On a decision axis jc, a value of 2 is observed. What is the area below
this point if (a) the mean of the distribution of observations is 0 and
the standard deviation is 1 , (b) the mean is 2 and the standard devia-
tion is 1 , (c) the mean is 3 and the standard deviation is 1 , and (d) the
mean is 3 and the standard deviation is 2?

6.2. (a) For the representation in Fig. 6.3, suppose the decision bound-
ary on the jc-axis is -1.41 standard deviations. How does this affect
the volume to the right of it?
(b) Same question, except that the standard deviation on the y-axis is
1 .41 . How does this effect the volume to the right of the criterion line?
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(c) Now suppose the criterion line is horizontal at z = -2. Describe
this decision rule in words. What proportion of the volume of the
distribution is above this line?

6.3. (a) Suppose an observer in the situation of Fig. 6.5a uses a decision
boundary that is parallel to the one shown, but goes through the
point (0,0). What is the implied decision axis? What percent of the
distribution is to the right of the boundary?
(b) Suppose the observer decides that loudness is more important
than brightness in making a detection decision. How should this af-
fect the decision axis and criterion line? (Hint: An observer who ig-
nores one dimension completely uses an extreme version of this
strategy.)

6.4. Assume that the underlying distributions are normal.
(a) In the tone-light example, what is the probability that a particu-
lar stimulus will be louder than average? brighter than average?
both? neither?
(b) Do the answers to (a) depend on (i) the x and y standard devia-
tions, (ii) the distributions being normal, (iii) the distributions be-
ing perceptually independent?
(c) In the tone-light example, what is the probability that a particu-
lar stimulus will be at least 1.5 standard deviations louder than av-
erage? at least 1.5 standard deviations brighter? both? neither?
(d) Do the answers to (c) depend on (i) the x and y standard devia-
tions, (ii) the distributions being normal, (iii) the distributions be-
ing perceptually independent?

6.5. In the tone-light example, suppose that the distribution for the Null
stimulus (Sj) and means of the distribution for the Signal (S2) are as
shown in Figs. 6.8 to 6.10, but the standard deviation of S2 equals 1
for the loudness dimension and 2 for the brightness dimension.
What is p(c) for the maximum rule if the criteria are (a) kx = 1, k = 1,
(b)*,= l,*, = 0.5,(c)*, = 0.5,*,= l?

6.6. Generalize the tone-light example to three stimuli: the Null stimu-
lus (5,), a Weak Signal (52), and a Strong Signal (S3). Suppose all
standard deviations equal 1, and the means are located at (0,0),
(1,1), and (2,2). (a) Does the additivity condition of Equation 5.1
hold for an observer using the optimal rule? (b) Does additivity
hold for a minimum-rule observer? (Set the criteria to k = 1, k = 1.x y

For each pair of stimuli, find H and F, then calculate d' from Eq. 1.5
and p(c) from Eq. 1.7.)
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6.7. In Fig. 6.10a, the maximum rule for compound detection is illus-
trated, with d'= 1 for both dimensions. Plot ROCs for three ways of
changing the criterion:
(a) Move the vertical segment of the decision boundary to the left or
right, but leave the horizontal one where it is.
(b) Move the horizontal segment of the decision boundary up or
down, but leave the vertical one where it is.
(c) Move both segments together.
In each case, you can choose any locations you want, perhaps 1 z unit
apart. Plot the ROCs on z coordinates as well as linear coordinates.

6.8. In Fig. 6.10a, what do the "isobias" curves for the maximum rule
look like? To find out, change the location of the tone-light distribu-
tion along the major diagonal decision axis [i.e., put it at (1,1), (2,2),
etc.], but leave the noise-noise distribution where it is. Two cases:
(a) Keep the "corner" of the horizontal and vertical segments of the
decision boundary halfway between the two distributions.
(b) Keep the "comer" fixed at (0,0), the mean of the noise-noise dis-
tribution.

6.9. The decisional separability, maximum, minimum, and diagonal de-
cision rules for compound detection make different predictions
about how performance in that task should be related to simple
(tone-alone or light-alone) detection.
(a) Design an experiment that would allow you to tell which rule a
naive observer is using.
(b) What instructions or payoffs could you give participants to en-
courage them to adopt these strategies?
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Comparison (Two-Distribution)
Designs for Discrimination

So far we have discussed only situations in which one stimulus at a time is
evaluated. In psychophysics, even these designs are sometimes termed dis-
crimination because they permit estimates of the ability to distinguish two
stimuli or stimulus classes, and in common psychological usage discrimi-
nation means telling two things apart. In this chapter, we introduce para-
digms in which the process of discrimination is more salient because two or
more stimuli are explicitly compared on each trial.

There are two types of such paradigms, which we term comparison de-
signs and classification designs. Comparison designs (considered in this
chapter) resemble one-interval designs in that the observer makes a binary
decision based on an underlying representation containing only two distri-
butions. These paradigms require the observer to make a direct comparison
between two stimulus presentations. In classification designs (chap. 9), the
observer again compares (two or more) stimuli, but the world of possible
stimuli and their representation contains more than two distributions. Be-
cause multiple distributions are mapped onto each response, the task facing
the observer is more complex than a simple comparison.

There are only two comparison designs: two-alternative forced-choice
and the reminder design. It is possible to analyze both with only the one-di-
mensional, flatland tools of Part I. The advantage of considering two-di-
mensional representations is that each design offers multiple alternative
decision rules, and the perspective of a multidimensional spaceland view
renders the relations among these rules more visible. A representation con-
taining a pair of bivariate distributions in a two-dimensional perceptual
space was illuminating in analyzing the compound detection problem in
chapter 6, and we construct similar decision spaces to describe two-alterna-
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live forced-choice and the reminder design. The decision boundaries turn
out to be straight lines in the space, allowing us to use the projection strategy
to find a one-dimensional decision axis that is the basis for the observer's
decision.

Two-Alternative Forced Choice (2AFC)

In using the traditional name for this design, we continue an unfortunate
historical precedent. The choices made by observers in two-alternative
forced-choice (2AFC) studies are no more constrained than in other corre-
spondence experiments. As in the one-interval design, the possible stimuli
come from two categories (Old or New, Loud or Soft), and the experimenter
is interested in the correspondence between the correct response and the ob-
server's "forced choice."

The new feature of the 2AFC design is that both alternatives are pre-
sented on every trial, in a random spatial or temporal order. The observer re-
ports not which stimulus occurred—both did—but in which order. A better
name for this paradigm might be "order discrimination," but other designs
also manipulate the order of stimuli.

There are forced-choice designs that, while also using two stimulus
classes, have more than two intervals in which the stimuli may occur and a
response for each. Three-, four-, and larger-number alternative variants are
identification rather than comparison designs, and these are described in
chapter 10.

Example 7: Recognition Memory for Words

Glanzer and Bowles (1976) presented English words to participants, first for
study and later for recognition. In the recognition test, two words were pre-
sented on each trial, one above the other. One of the two (an Old word) had
been presented during the study phase of the experiment, and the other (the
New word) was a "lure." Whether the Old or New word was on top varied ran-
domly from trial to trial. The participants indicated which of the two words
was more likely to have been the Old one, the one on the top or the bottom
one. The words to be remembered and the lures with which they were paired
were selected to be either high or low in frequency of occurrence in English
(see Glanzer & Adams [1985] for a summary of this and other experiments on
the effects of frequency of occurrence in recognition memory).

The experimenters elected to use the apparently more cumbersome
2AFC procedure to avoid possible contamination of yes-no results by ef-
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fects of the decision criterion. If participants make judgments in a memory
experiment on the basis of familiarity, as suggested in the discussion of pre-
vious recognition memory examples, we might expect them to be more
willing to call frequent or familiar words "old" even if they had not ap-
peared in the study phase of the experiment. The yes-no paradigm, in pre-
senting one word at a time and asking whether it has been seen earlier,
confounds familiarity in general with familiarity due to recent exposure. By
looking separately at the four possible combinations of test item frequency
(high and low in English) and lure item frequency (also high and low), the
experimenters hoped to disentangle the effects of recent and remote history
on judgments of familiarity.

Experimental Design and Sensitivity Estimates

Data for one condition of such an experiment can be represented in a 2 x 2
stimulus-response table:

Stimulus Sequences

<Old, New>

<New, Old>

Responses

"Old on Top"

16

7

"Old on Bottom "

9

18

W

25

25

The rows of the table correspond to stimulus sequences, denoted by an-
gle-bracketed lists, rather than to individual stimuli. In this example, the
stimuli are listed spatially from top to bottom in the stimulus presentation so
that, for instance, <Old, New> represents the presentation of an Old word
on top and a New word below. A temporal sequence rather than a spatial one
is used in auditory (and many visual) 2AFC experiments, but the analysis is
the same.

The two possible responses are "old on top" and "old on bottom." The des-
ignations "hit" and "false alarm" in this case are arbitrary; we define them as:

Two questions we can ask of these data are parallel to those posed for the
one-interval design: How sensitive are the observers? How biased are they?
A third question concerns the relation between 2AFC and yes-no. As many
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readers will surmise, 2AFC is the easier task. Models for 2AFC must build
on those for yes-no and give an account of this discrepancy in performance.

The first and third questions can be answered together: To compute sen-
sitivity for these data, we first subtract the transformed hit and false-alarm
rates, as we did for one-interval data in chapter 1 . To take account of the dif-
ference in difficulty between 2AFC and yes-no, this difference must be ad-
justed downward by a factor of V2 as follows:

For the example at hand, H = .64 and F = .28, the transformed difference
z(#)-z(F) = 0.358-(-0.583) = 0.941 (from Table A5.1), and d' =0.665.

Choice Theory leads to exactly the same prediction about the
2AFC/yes-no relation. From the hit and false-alarm rates in 2AFC, ln(a)
can be found from

which is a factor of ^12 less than if the data had arisen from a yes-no experiment.

Representation and Analysis

To understand why forced choice should be easier for the observer than
yes-no (and why the discrepancy should be V2), we must derive the charac-
teristics of the decision space underlying a forced-choice task. Each trial in-
volves two stimuli, the top word and the bottom one. We assume that the
observer estimates the familiarity of each word independently, which
means that we can treat each spatial location as a separate dimension in the
decision space. Geometrically, independence is interpreted as ortho-
gonality, so the two stimulus locations in Fig. 7.1 are drawn at right angles.
The internal effect of a single experimental trial is a point in the two-dimen-
sional space: The top word has a familiarity value on the vertical axis, the
bottom word on the horizontal axis. The underlying distributions are sur-
faces above a plane, but they are indicated in the figure as circles of equal
likelihood, as in chap. 6.

The mean of the New distribution on both axes is, arbitrarily, chosen to
equal zero. A 2AFC trial involves one observation that is most likely to be
near 0 and another near the original d', so points will center around coordi-
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FIG. 7.1. A two-dimensional interpretation of the 2AFC task. The decision axes
are the observation strengths for the two intervals. Each distribution is represented
by a set of concentric circles defining contours of equal likelihood for one possible
stimulus sequence. The decision boundary is perpendicular to the line connecting
the two means. The observer responds "old on top" in the region to the right of the
boundary

nates (0, d') on <New, Old> trials and around (d', 0) when the stimulus se-
quence is <Old, Newx The observer's task is to decide whether a two-
interval observation is drawn from one or the other distribution on the deci-
sion plane, that is, to decide which axis is nearer to the observation. Appli-
cation of Pythagoras' theorem to the triangle in Fig. 7.1—formed by the two
means and the origin—shows that the means of the two probability density
distributions are separated by a distance v 2 as great as d', confirming Equa-
tion 7.2. The logic is the same as for compound detection in chapter 6, but
notice that the distances along the two axes between the means are now
guaranteed to be the same because each represents the psychological dis-
tance between Old and New stimulus classes.

Also as in chapter 6, it is possible to reduce the decision space to one di-
mension by projecting the bivariate distributions onto a decision axis. The
appropriate axis for the optimal rule runs through the means of the two dis-
tributions, the decision boundary perpendicular to this orientation. In the
resulting one-dimensional picture, shown in Fig. 7.2, the means are sepa-
rated by V2d', and this is now the value that is estimated by calculating
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z(H) - z(F). To find d', therefore, we must divide this result by V2, as in
Equation 7.2.

One nonoptimal rule is worth mentioning: decisional separability. Sup-
pose, for example, that the decision bound is a vertical line in Fig. 7.1. The
strategy implied by this bound is to use only the top word in making a deci-
sion. The effective sensitivity in this case is simply d', the distance between
the marginal distributions on the ;t-axis. The observer has converted the
2AFC task to yes-no by ignoring one of the two pieces of useful information
on each trial.

For measuring response bias, the methods of chapter 2 are entirely ade-
quate. No V2 adjustment is necessary, because (as the reader may not be sur-
prised to learn) bias in one task cannot be predicted from bias in the other.

Sensitivity Measures Based on Proportion Correct

Proportion correct is a poor measure of sensitivity for the yes-no experi-
ment because as bias varies the ROC implied by p(c) has a threshold shape
(chaps. 1 and 4). This flaw is not remedied by moving to a new design, but
its impact is greatly reduced by an empirical discovery about 2AFC data:
Observers tend not to display extreme biases. If we could be sure that all re-
sponding is unbiased, so that ROC points lie on the minor diagonal, then
p(c) would be as good a measure as any for simply saying which of two con-
ditions yields the higher accuracy.

The 2AFC Area Theorem. In fact, Green and Swets (1966, pp.
45ff) showed that the proportion correct in 2AFC by an unbiased observer

FIG. 7.2. A one-dimensional interpretation of the 2AFC task. The decision axis
is the difference between observations in the two intervals A and B.
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equals the area under the yes-no isosensitivity curve. This important result,
which we call the 2AFC area theorem, is sometimes cited as justification for
using (a) proportion correct, or (b) area under the yes-no ROC as a "non-
parametric" measure of discrimination performance. These complemen-
tary arguments require some attention.

First, the area theorem says nothing about proportion-correct scores that
do exhibit bias. Although extreme response strategies are rare, the forced-
choice design does not guarantee the complete absence of bias. To measure
sensitivity, bias must be eliminated; this can be done either by calculating a
statistic such as a" or by correcting p(c) for bias, as discussed later.

Second, although the theorem does indeed offer justification for the use of
area under the yes-no ROC, it does not abet all area-like measures equally. We
saw in chapter 4 that A', Pollack and Norman's (1964) statistic, has threshold
properties at high levels that make it undesirable. The area we want is the
whole area under the ROC, not simply that marked off by a point on it. When
more points are estimated, as in rating experiments, the area Ag found by
"connecting the dots" is closer to the desired value. Alternatively, measured
points can be used to estimate a continuous curve consistent with a pair of dis-
tributions of known shape and the area under that continuous curve calcu-
lated. An SDT statistic of this type is Az, which was introduced in chapter 3.

Maximum Proportion Correct [p(c)mtj. Proportion correct is a
desirable measure, we have seen, to the extent that responding is unbiased.
Why not "adjust" observed values of p(c) to find the value that would have
been obtained by a truly unbiased participant? Would this not solve all our
problems without recourse to detection theory?

Such an adjustment is possible, but is not innocent of theory. We begin
with the equal-variance SDT model. For a constant value of d', the largest
value of p(c) arises at the minor diagonal, where responding is unbiased.
The proportion correct at this point, p(c)max, can be found from

The difference between the transformed hit and false-alarm rates does not
depend on bias, according to the equal-variance assumption; so/?(c)max is a
true sensitivity statistic.

Equation 7.4 can be applied to either yes-no or 2AFC data. In the yes-no
case, it reduces to
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which was presented earlier (Eqs. 2.10 and 6.2) as an expression for unbi-
ased p(c). In 2AFC, combining Equations 7.2 and 7.4 leads to

For the equal- variance case, p(c)max 2AFC is identical with Az, the area under
the yes-no isosensitivity curve (see Eq. 3.8). This conclusion follows from
the area theorem, which says that p(c)max 2AFC equals the yes-no area. We
shall see presently that Equation 7.6 can be easily generalized to the un-
equal-variance case.

Equation 7.6 can be solved for d', with the result:

The resulting values of d' are listed in Table A5.3. Given the simplicity of
Equation 7.7, the table is not really necessary for 2AFC, but it is necessary
for multiple-interval forced-choice designs, which are also included (and
which we discuss in chap. 10). It is important to recognize that the table
gives correct results only for unbiased performance. For 2AFC data, the ta-
ble is most useful in reanalyzing published data that may not include sepa-
rate hit and false-alarm rates.

The adjustment provided by p(c)max is consequential with moderately bi-
ased data. Suppose that in a yes-no experiment H - .4 and ¥ - .04, indicating
a strong "no" bias. Observed p(c) = .68, but d'= 1.498 and/?(c)max yes_no = .77,
which is a noticeably different value from .68.

Proportion Correct Corrected for Guessing. Proportion correct
can also be adjusted according to the assumptions of threshold theory. In
chapter 4, we presented a simple (but ineffective) method for correcting the
hit rate for guessing; the corrected hit rate q was found to be

One could apply exactly the same formula to 2AFC, but a modification is
usually made. Because observers often display little bias, H is set equal to
proportion correct [p(c)] and F to the proportion of trials on which one
could be successful by guessing, namely, ¥2. In 2AFC, then
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The hit rate adjusted in this way is the level that could be obtained if F
were 0—the leftmost point on a high-threshold ROC. Of all the points on
that ROC, this is the one with the highest value of p(c)—a point of resem-
blance between g2AFC andp(c)max.

Proportion Measures Versus Distance Measures. Equations 7.5
and 7.6 describe a monotonic relation between two sensitivity measures, a
proportion measure [p(c)max] and a distance measure (d1). The two are
equivalent in the sense that they imply the same ROC. Is either type of mea-
sure preferable on other grounds?

The greatest advantage of proportion measures is their familiarity-many
people who do not know whether a d' value of 4.0 represents good or poor
performance appreciate immediately that a proportion correct of .98 is excel-
lent. A second advantage concerns perfect accuracy, which corresponds to a
finite value of/?(c), but an infinite value of a" and a. The shadow side of this fi-
niteness is the disguising of ceiling effects; occasional proportions of 1.0 can
be adjusted downward to obtain finite values of d', as discussed in chapter 1.

Distance measures have three important advantages. First, they can be
compared across different experiments. For example, an observer who ob-
tains d'= 1 in both yes-no and 2AFC has displayed the same level of perfor-
mance, whereas someone for whomp(c) = .75 in both tasks has not. Second,
they can be compared across different values of physical variables. Which is
better, p(c) = .9 for stimuli two units apart orp(c) = .74 for stimuli differing
by one unit? Conversion to d' shows that the two results are the same in
rf'per unit.

Finally, distance measures can be added and subtracted. In chapter 5, we
took advantage of this fact in several ways. To recall one, the sum of d' val-
ues across a one-dimensional set of stimuli can be used as a measure of total
sensitivity to the set. No summary statistic based on proportions is as useful.

Distributions With Unequal Variance

Form of the 2AFC Isosensitivity Curve. Although it is not com-
mon, the forced-choice rating design (first explored by Schulman & Mitch-
ell, 1966) deserves attention. In this experiment, the participant chooses a
response ranging from high confidence that <S1S2> was presented to high
confidence in the occurrence of <S2Sl>. As in chapter 3, the data are plotted
as ROCs.

The interesting aspect of this experiment is the shape of the ROC. Figure
7.3a shows the standard model for the yes-no task, assuming that S^ and S2
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lead to distributions with unequal variances s2 and 1. Figure 7.3b is the
one-dimensional representation for 2AFC under the same assumption. The
decision variable in 2AFC is the difference in strength between Intervals 1
and 2, which we denote A - B (see Fig. 7.2). The variance of this difference
is the sum of the variances, 1 + s2, for either possible stimulus order. Thus,
the representation for 2AFC is equal-variance even if that for yes-no is not,
and the ROC in 2AFC should be a straight line with unit slope on z coordi-
nates in all cases. The unit slope reflects an important theoretical advantage
of forced choice over yes-no: No matter what the criterion is, apparent sen-
sitivity—the difference between the transformed hit and false-alarm
rates—is the same. In a one-interval experiment, this is true only if the un-
derlying distributions have the same variance. It is ironic that an advantage
of 2AFC should be the robustness of its sensitivity measure in the face of
extreme biases that do not normally arise.

Implications for One-Interval ROC Analysis. The relation be-
tween the yes-no and 2AFC isosensitivity curves provides a theoretical ra-
tionale for the use of da in the one-interval task, as proposed in chapter 3

FIG. 7.3. (a) Decision space for yes-no when the variances of 5, and 52 are un-
equal, (b) Decision space (in the style of Fig. 7.2) for 2AFC, according to SDT,
when the variances of 5, and S2 are unequal and the observer uses an unbiased
cut-point decision rule. The area under the <S2St> distribution to the right of the
criterion (and the area under the <S,S2> distribution to its left) equals p(c), which
by the area theorem equals the area under the unequal-variance yes-no ROC.
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(Schulman & Mitchell, 1966). The two distributions in Fig. 7.3b each have
variance ( 1 + s2) and differ in mean by 2 d"r The mean difference divided by
the common standard deviation can be estimated by subtracting the z-trans-
formed hit and false-alarm rates:

The right side equals V 2 da (see Eq. 3.4), so

(7.11)

For the case in which s - 1, we recommended earlier that d' be estimated
from 2AFC by dividing z(H) - z(F) by >/2 (Eq. 7.2). It now appears that
when the unit-slope assumption is unwarranted, this method is still desir-
able and yields an estimate of da.

Finally, Fig. 7.3b can be used to illustrate the area theorem for this nor-
mal unequal- variance case. Maximum proportion correct is the same for ei-
ther stimulus sequence and equals

This expression equals Az, the area under the yes-no ROC, in the SDT case
(Eq. 3.8), confirming the area theorem. The equivalence of a distance mea-
sure da to the area under the yes-no ROC is a strong argument for preferring
it to other possible distance measures of sensitivity in the one-interval ex-
periment (Simpson & Fitter, 1973).

Some Empirical Findings and Their Implications for Theory

Although 2 AFC appears to be a simple extension of the one-interval design, a
number of experimental results using this paradigm have been fodder for per-
ceptual theory. In particular, the data force us to think seriously about the lim-
itations imposed on discrimination by imperfect memory.

Empirical Comparisons Between 2AFC and Yes-No. Signal de-
tection theory and Choice Theory agree exactly on the relation between
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2AFC and yes-no data. It seems almost impolite to ask whether the data re-
spect this unanimity.

Much of the early work that introduced SDT established that different
tasks yielded constant estimates of d'. The results of most early experiments
using simple auditory and visual detection tasks (see Green & Swets, 1966,
ch. 4; and Luce, 1963a, for summaries) supported detection theory in this
respect. Extending the theory to discrimination tasks uncovered a system-
atic failure. Jesteadt and Bilger (1974) found that 2AFC performance was a
factor of 2, rather than V2, better than yes-no, both in their own frequency-
discrimination experiments and others they surveyed. Creelman and
Macmillan (1979) found the same result for discrimination of both auditory
frequency and monaural phase.

What accounts for the confirmation of the predicted yes-no/2AFC rela-
tion originally found by SDT advocates in detection experiments?
Wickelgren (1968) enumerated the many processing assumptions underly-
ing the v 2 prediction and concluded:

When one considers all the ways in which the «j2d' prediction might
fail for reasons having nothing to do with the essential validity of
strength theory [detection theory] for both absolute [yes-no] and com-
parative [2AFC] judgments, it is truly amazing that it has not failed
thus far. However, the present analysis makes it clear that, if the
-/2d'prediction fails in some future application of strength theory, one
cannot reject strength theory without a detailed study of the reason for
the failure, (p. 117)

Subsequent data, as we have seen, justified Wickelgren's suspicions.
Two variables in particular—time between intervals and stimulus range—
are known to affect performance in 2AFC, and thus its relation to yes-no.
There has been some progress in interpreting the effects of these variables
theoretically without, as Wickelgren also foresaw, abandoning the basic
detection theory approach.

Effects of Interstimulus Interval. In temporal 2AFC, the two
stimuli are separated by time rather than space. How much time should
elapse between the two stimuli? Our analysis has assumed that the particu-
lar order of the stimuli, and the time between them, makes no difference, but
it turns out that the interstimulus interval (ISI) does affect both sensitivity
and response bias.

The response-bias findings are classic. When the two stimuli on a trial
differ in intensity, the second interval is commonly called "larger" more of-
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ten than the first, an effect called time order error. The sequence <Small,
Large> is, accordingly, correctly reported more often than <Large, Smallx
Further, the greater the ISI, the greater the bias. These data have been inter-
preted to show decay of a central representation of the stimulus over time
(Kohler, 1923; discussed in Osgood, 1958).

Increases in ISI also lead to decreases in sensitivity. Berliner and Durlach
(1973), Kinchla and Smyzer (1967, in a same-different task), and Tanner
(1961) systematically varied ISI, and all found sensitivity to be a decreasing
function of time. In Tanner's auditory experiment, a very short ISI (less than
0.8 seconds) also led to decreased discrimination, a result Tanner inter-
preted as evidence for short-term auditory interference.

Effects of Stimulus Range: The Roving Discrimination Design.
Two-alternative forced choice permits manipulation of another experimen-
tal variable: the range of stimulus values. In our word-recognition experi-
ment, each stimulus class contains many words, but there are only two
values of recency—words tested have either been seen recently, in the study
phase, or not at all in the experiment. However, we could allow a wider
range of recency among words tested for recognition. Suppose participants
learn one list on Monday, a second on Tuesday, and so on for a week. In the
test phase, they are presented with two words, one from day n, the other
from day n + l, and must choose the more recent. The stimulus difference
being discriminated—one day's difference in presentation time—is a con-
stant. Notice that, unlike other 2AFC designs we have discussed, roving dis-
crimination does not have an analogous yes-no task. An attempt to generate
one leads to absurdities: "Here is a word that you saw last week. Did you see
it before or after another word, which I will not show you?"

Although this roving discrimination task is more difficult than the corre-
sponding fixed discrimination experiment, a common decision strategy ap-
plies to both: Each word leads to an estimate of recency, and the decision
variable is the difference between the two values. The observer compares
this difference with a criterion to make a response.

Roving and fixed 2AFC discrimination have been compared for audi-
tory amplitude and frequency by Jesteadt and Bilger (1974). The fixed
task used one pair of tones differing in (say) amplitude; the roving design
used a constant amplitude difference, but the two stimuli ranged together
over many amplitudes from trial to trial. A 40-dB range of amplitudes
yielded a 27% drop in intensity discrimination d', and a 465-Hz range in
frequency led to a 37% drop in frequency discrimination d'. Berliner and



178 Chapter 7 

Durlach (1973) found that the decline in intensity discrimination perfor-
mance depended systematically on the intensity range, reaching 58% for
the largest (60-dB) range.

Trace-Context Theory. The same >/2 relation between 2AFC and
yes-no clearly cannot hold for both roving and fixed discrimination, and a
model of how decisions are made in roving discrimination tasks is needed to
relate the two types of tasks. Durlach and Braida's (1969) trace-context the-
ory addresses this problem and unifies the perceptual phenomena we have
been discussing.

Durlach and Braida's proposal about the one-dimensional classification
experiment, described in chapter 5, is that both sensory noise ((¥) and
range-dependent context noise (C2) limit performance, and that these
sources of variance add. Context noise is proportional to the square of the
range R so that C2 = CPR2 (G is a constant). Sensitivity is the mean difference
a divided by the standard deviation, or

Discrimination performance in 2AFC depends on both sensory and con-
text variance, and also on trace variance—noise that increases with the
interstimulus interval T. How do these limitations combine? Durlach and
Braida suggested that they do so optimally, the result being that whichever
memory process is more accurate—has smaller variance—dominates. In a
roving experiment, each pair of stimuli is discriminated according to the
following relation:

Although it may not be obvious, this form of combining variances has the
properties we want. First, what if the range R is small, as in fixed discrimina-
tion? Then the right-hand variance term is small as well, and

Reducing Talso improves performance so that if the two stimulus intervals
are adjacent in time, range does not matter and Equation 7.15 again holds.
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Trace-context theory has been extensively tested for sets of tones differ-
ing in intensity and describes many regularities of the data. One systematic
violation is the prediction that d' ratios across tasks will be the same
throughout the range. What is found instead is that at particular points, like
the edges of the range, the advantage of fixed d' over classification and rov-
ing d' is reduced. In the current version of the theory (Braida & Durlach,
1988), this effect is attributed to perceptual anchors that narrow the effec-
tive value of R in certain parts of the range.

Two Reasons for Using Two Alternatives

Two-alternative forced choice has been a very popular procedure, for two
excellent reasons. First, the procedure discourages bias. The assumption of
symmetric bias is often a good first approximation, and in any case bias can
be easily evaluated using the methods of chapter 2. Detection theoretic mea-
sures are preferable to "nonparametric" ones in 2AFC, as in yes-no, but
small amounts of bias reduce the experimenter's theory dependence, be-
cause most measures are equivalent at the ROC's minor diagonal. Low ex-
pected bias makes 2AFC a convenient task for use with adaptive
procedures, in which stimulus differences are changed depending on the
current level of performance (see chap. 11).

Second, performance levels in 2AFC, as measured by p(c), are high.
The predicted V2 difference between yes-no and 2AFC permits mea-
surement of sensitivity to smaller stimulus differences than would be
practical with yes-no, and we have seen that, for many possible reasons,
the disparity observed in practice may be even greater. The relative ease
of 2AFC has an impact on some aspects of subjective experience: Ob-
servers often report surprise that they can perform above chance with
small stimulus differences, which they might be unwilling to report as
above a yes-no criterion.

In a 2AFC experiment, two stimuli are presented on each trial. The de-
sign is occasionally confused with other paradigms that also happen to use
two intervals. The defining characteristics of 2AFC are that both 5, and S2

occur on each trial, and that the order of the stimuli determines the corre-
sponding response. One or the other of these properties is violated by
other, similar designs. In the task we discuss next, one of the two stimuli is
merely a reminder or standard that may improve performance (an empiri-
cal question), but is not essential to the judgment process.
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Reminder Paradigm

Design

Consider again the lowly yes-no experiment, in which one of two stimuli is
presented on each trial. In a detection task, the two stimuli are Signal and
Noise. If the discrimination is difficult, an observer sometimes has the sense
of not being able to remember what the signal looks, sounds, or feels like.
As we have seen, the data support the idea that "memory" for the stimuli to
be detected is fragile, and in the reminder design the experimenter attempts
to jog the observer's memory. Each trial contains two intervals, the first of
which always contains the same stimulus. The observer's task is to deter-
mine whether the second stimulus matches the first. If the reminder is 5,,
then the presentations are <S1S1> and <5,S2>, and the participant in effect
decides "same" or "different" rather than "1" or "2." A variant of the re-
minder experiment is the method of constant stimuli, in which the compari-
son stimulus varies from trial to trial, but the reminder in the first interval is
always the same. We considered this design in chapter 5, but without incor-
porating the reminder into our theoretical analysis.

Analysis

Figure 7.4 portrays the observer's problem in the usual two-dimensional
space. There are two distributions corresponding to the two stimulus possi-
bilities <5,51> and <S1S2>. As for 2AFC, we consider both decisionally sep-
arable and differencing strategies.

FIG. 7.4. Decision space for
the reminder experiment, with
decision boundaries for both the
decisionally separable and dif-
ferencing models. Each model
postulates that the observer re-
sponds "different" in the region
above the appropriate decision
boundary.
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In the decisionally separable strategy, the observer places a boundary
perpendicular to the line connecting the two distributions. In effect the
space is viewed from the vantage of the vertical axis, and the distributions
are projected on this axis. Because the distance between the two distribu-
tions from this perspective is d", performance is the same as in yes-no. In-
deed this is quite sensible: The boundary line is independent of the
observation from Interval 1, implying that the decision maker is ignoring
the "reminder" stimulus.

In the differencing strategy, the observer bases a decision on the differ-
ence between the two observations, A -B. In the space of Fig. 7.4, this is ac-
complished by using a boundary line of the form A + B = constant. Along
the A - B axis, the difference between the means of the two distributions is
not d', but only d'N2, so observed z(H) - z(F) will be poorer than yes-no d'

by a factor of v 2. Thus, counterintuitively, observers who use the reminder
stimulus as a decision aid will suffer a decline in performance. The re-
minder stimulus has as much variance as the stimulus to be judged, so the
variable A - B has twice the variance of A alone.

Data

We may thus hope that data will help us decide between the intuitive but del-
eterious differencing strategy and the decisionally separable rule of ignor-
ing the reminder. Some empirical comparisons of the reminder, yes-no, and
2AFC designs are summarized in Table 7.1. All of these experiments were
essentially fixed discrimination, although in all except the line-orientation
study of Vogels and Orban (1986) both stimuli roved slightly from trial to
trial, the difference (on trials where there was a difference) being constant.
Such "jittering" had little effect in the experiments of Jesteadt and Bilger
(1974), who also measured unjittered performance.

Table 7.1 reports ratios of d' measures. If our SDT models were all cor-
rect, each entry in the table would equal 1.0. This prediction is most nearly
fulfilled for the 2AFC/reminder comparison, for which the geometric mean
ratio is 1.15. (Some individual ratios are nearer V 2 than 1 and have been in-
terpreted as supporting the differencing model for both tasks; see Vogels &
Orban, 1986.) The two comparisons with yes-no show, once again, the rela-
tive difficulty of that task. Comparison of yes-no to reminder data shows
that reminders aid rather than harm performance. Relative to the optimal
performance described by our models, 2AFC yields the best performance
and yes-no the worst, with the reminder task intermediate between them.
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TABLE 7.1 Experiments Comparing Yes-No, 2AFC,
and Reminder Performance

Reference

Jesteadt &
Bilger (1974)

Jesteadt &
Sims (1975)

Creelman &
Macmillan
(1979)

Vogels &
Orban (1986)

Continuum

Intensity

Frequency

Frequency

Frequency
modulation

Frequency

Phase

Line
orientation

Geometric mean

Relative Performance (a" Ratio)

Reminder/
Yes-No

1.26

1.00

1.37

1.06

1.23

1.33

2AFC/
Yes-No

1.51

1.48

1.74

0.86

1.37

1.33

2AFC/
Reminder

1.20

1.48

1.27

0.81

1.11

1.00

1.31

1.20 1.35 1.15

It is possible to force the use of a differencing strategy in reminder exper-
iments by employing a real roving design, in which the standard varies
across a substantial range of stimuli from trial to trial. Jesteadt and Bilger
(1974) conducted such an experiment; for both intensity and frequency dis-
crimination, and for both 2AFC and the reminder task, d' declined by about
the predicted V 2 compared to the fixed design. A similar result was ob-
tained for intensity discrimination by Long (1973).

Essay: Psychophysical Comparisons
and Comparison Designs

The basic psychophysical process, we believe, is comparison. All psycho-
physical judgments are of one stimulus relative to another; designs differ in
the nature and difficulty of the comparison to be made. In the one-interval
experiment (or any of our two-interval designs if decisional separability is
in use), comparison is made to events remembered from previous trials. We
have seen evidence that this is a challenging task: Yes-no performance is not
as good as it should be relative to both 2AFC and the reminder experiment.

A comparison task of great importance in psychophysics, but one we have
slighted here, is the matching procedure. To judge the subjective magnitude
of a stimulus, a participant selects a value on some other continuum that
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seems to "match" the standard. For example, the brightness of a light might
be matched by the intensity of white noise or the brightness of a light of a dif-
ferent color. What can we say about the reliability of such judgments?

When the two stimuli being matched are from the same continuum (e.g.,
both are pure tones and differ only on the dimension being studied), adjust-
ment is more accurate than fixed methods. At least that was the finding of
Wier, Jesteadt, and Green (1976) for frequency discrimination. But when
the comparison is across continua, the need to compare disparate stimuli
harms performance: Lim, Rabinowitz, Braida, and Durlach (1977) and
Uchanski, Braida, and Durlach (1981) measured roving intensity discrimi-
nation of pure tones (or noises) that differed in frequency (or spectrum).
They found that comparing stimuli from different continua contributed ad-
ditional, additive variance to the decision process.

One assumption we have been making that may be incorrect concerns the
independence of the intervals being compared. The variance of the differ-
ence between two variables is the sum of their variances only if the two vari-
ables are independent; if they are positively correlated, the standard could
effectively increase performance. This effect may account for the small ad-
vantage of the reminder and 2AFC designs seen in Table 7.1. The matching
procedure, by providing the observer with control, may allow strategies that
maximize this correlation.

Some researchers have combined the 2AFC and reminder designs. In ex-
periments with binaural noise samples, Trahiotis and Bernstein (1990; also
Heller & Trahiotis, 1995) preceded and followed each 2AFC presentation
with an example of the standard, so that the possible stimulus sequences
were <S1S2S1S1> and <S{S1S2S1>. The analysis is the same as for 2AFC, but
the instructions no longer require discussion of stimulus order. Instead the
listeners are asked to say whether it is the second or third stimulus that is dif-
ferent from all the others. Trahiotis and colleagues found superior results
with this design, but Gerrits and Schouten (2004) found that it lowered
performance with their speech syllables.

Gerrits and Schouten invoked perceptual memory to account for their re-
sults, and a more detailed understanding of memory may be required to
unify findings in this field. McFadden and Callaway (1999) conducted re-
minder experiments in which the standard was a "commonly encountered"
stimulus or, in other conditions, "less commonly encountered." For exam-
ple, in musical chord discrimination, the standard was either an in-tune
chord, so that the comparison was out of tune, or an out-of-tune chord, with
a comparison that was in tune. The result was that performance was much
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better (a factor of about 2 in the chord experiment) for the commonly en-
countered standard. McFadden and Callaway suggested that such stimuli
have stable memory representations and may allow a more efficient form of
processing. Whatever the explanation turns out to be, it will necessarily re-
quire an understanding of the stimulus domain being studied, not just
general processing principles.

Summary

In comparison designs for discrimination, each trial contains two stimuli,
and the decision problem can be represented by two bivariate distributions
that can be projected onto a single dimension. In two-alternative forced
choice (2AFC), Sl and S2 are presented in either of two orders, and perfor-
mance is expected to be better than in yes-no. In the reminder design, a
yes-no interval containing either S, or S2 is preceded by a constant "stan-
dard" (say Sj), and performance is expected to be worse than yes-no if the
observer compares the two intervals.

Accuracy in 2AFC (and thus its relation to yes-no) depends on two as-
pects of the two-interval design: the interstimulus interval and the range of
stimuli. Long intervals and wide ranges lower performance, and models
that are explicit about perceptual memory can account for the pattern of re-
sults in some domains. Yes-no accuracy tends to be lower, relative to both
2AFC and reminder performance, than detection theory predicts; a likely
culprit is the need to make comparisons across trials rather than across the
shorter intervals within a trial.

Chart 6 in Appendix 3 provides pointers to calculations of sensitivity in
2AFC.

Problems

7.1. For the following stimulus-response matrixes, calculate d', the cri-
terion c, p(c), and p(c)* assuming that the data arose from (a) a
2AFC experiment, and (b) a yes-no experiment.

Matrix A

12 8

8 12

Matrix B

18 2

14 6

Matrix C

4 16

1 19

Matrix D

9 6

2 1

7.2. Find p(c) 2AFC for each matrix of Problem 7.1.
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7.3. Marsh and Hicks (1998) conducted both yes-no and 2AFC experi-
ments on source monitoring. In the study phase, participants saw
some words and generated others by rearranging anagrams.
(a) In one yes-no task, words of both types were presented, and the
possible responses were "seen" and "not seen"; the results were H=
.66, F = .18. In a second yes-no task, the possible responses were
"generated" and "not generated"; the results were H = .84, F = .37.
Find d'and c for both conditions. How do the two tasks differ?
(b) In a 2AFC task, two words were presented on each test trial, one
Seen and one Generated. In one version, participants were asked to
choose the one that was generated, andp(c) was .83 (separate hit
and false-alarm rates are not reported). How does this compare with
detection theory predictions?
(c) In a second version of 2AFC, participants were asked to choose
the word that was seen. This time/7(c) equaled .7. How would you
account for the discrepancy between the two 2AFC tasks?

7.4. In a 2AFC recognition memory experiment, the participants cor-
rectly identify both Old and New items at the same rate, .8. (a) Pre-
dict da in a yes-no experiment with the same stimuli, assuming s =
0.5; assuming 5 = 2. (b) Predict d"2 in a yes-no experiment with the
same stimuli, assuming s = 0.5; assuming 5 = 2.

7.5. You conduct three intensity-discrimination experiments with the
same observer using the same stimulus pair for each. The first ex-
periment uses a 2AFC paradigm, the second a reminder paradigm,
and the third a yes-no task to figure out what strategy the observer is
using in the reminder task. What would you expect the data to be if
(a) the observer is using a differencing strategy in each condition;
(b) the observer is using adecisionally separable strategy in each;
(c) the observer is using an optimal strategy in each.
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Classification Designs:
Attention and Interaction

In a classification design, a number of stimuli are sorted into a smaller or
equal number of categories. When introducing this type of experiment in
chapter 5, we restricted the discussion to sets of stimuli that differed on a
single internal dimension, but we now abandon that limitation and examine
paradigms in which the stimuli lead to representations that differ multi-
dimensionally. Proceeding gently, we consider apparently simple problems
in which just three or four stimuli must be classified into only two catego-
ries. This project turns out to be sufficiently challenging for one chapter.

This set of problems has both methodological and substantive applica-
tions. Methodologically, there is a set of discrimination paradigms that can
be thought of as classification tasks. Recall that the comparison designs of
chapter 7 always lead to a representation with only two distributions. As a
result, although they can be modeled in two dimensions, they can also be
analyzed by projecting the bivariate distributions onto a single axis and con-
ducting a unidimensional calculation. As long as there are only two stimu-
lus classes, and thus only two distributions, the projection strategy always
works. This simplification cannot be made for classification paradigms, and
in chapter 9 we use the tools developed here to analyze them.

Substantively, classification designs are extensively used to study two
important topics: (a) independence versus interaction between two aspects
of a stimulus, and (b) attention. The independence question was the first,
historically, to which multidimensional detection theory was applied (Tan-
ner, 1956), but the idea of independence turns out to be multifaceted. In
chapter 6, we encountered the concept of perceptual independence—a
characteristic of the representation of a single stimulus or stimulus class. An
analogous concept applies to stimulus sets', this was Tanner's focus, and
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many other paradigms have been introduced more recently to explore the
presence or absence of interaction in this sense.

Classification experiments are more complex than discrimination de-
signs in that they require grouping multiple stimuli together (i.e., assigning
them the same response). Does this structural complexity have a corre-
sponding cognitive cost? We discuss three classification paradigms in
which attention has been invoked by theorists. If several distinct stimuli oc-
cur that require the same response, we refer to the design as one of uncer-
tainty about which of these stimuli will occur. If the response partition is
such that some aspects of the stimulus set must be appreciated and others ig-
nored, attention is selective', if all aspects are relevant, attention must be di-
vided among dimensions or features.

A critical distinction is that between extrinsic and intrinsic attentional
limitations (Graham, 1989). Extrinsic uncertainty is inherent in the situa-
tion, whereas intrinsic uncertainty is internal to the observer. It is essential
to find the extrinsic difficulty of a classification design so that poor perfor-
mance that is in fact inevitable is not blamed on the experimental partici-
pant's inefficiency. Most of this chapter concerns models for extrinsic
uncertainty, which are useful for establishing a performance baseline.

One-Dimensional Representations and Uncertainty

Multiple distributions may lie on a single axis, of course. We explored such
examples in chapter 5, and we begin this chapter with some unidimensional
problems that are special cases of true multidimensional designs.

Inferring a One-Dimensional Representation

There are no one-dimensional stimuli: Every perceptual and cognitive ob-
ject has multiple characteristics. But stimulus classes can be represented
one-dimensionally if they differ from each other in only one way that is rele-
vant to judgment. The projection strategy of chapters 6 and 7 is a method for
mapping two complex stimuli onto a single decision axis. How can we
know if this is appropriate for more than two stimuli?

As discussed in chapter 5, the additivity of d' permits a simple test of
one-dimensionality: If three stimuli lead to a one-dimensional representa-
tion, as in Fig. 8.la, then

</'(l,3) = rf'(l,2) + rf'(2,3) . (8.1)
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This prediction can be tested by estimating the three d' values. In some
cases, the nature of the stimuli makes the hypothesis of one-dimensionality
plausible; this is true of amplitude-discrimination experiments, which pro-
vide our first two examples.

Example 8a: Detection of Signals of Different Amplitudes

Suppose that Fig. 8. la is the representation of three auditory tones differing
only in amplitude: 51, is a constant background tone, and 52 and 5"3 are small
and large increments in the background. In a simple detection experiment,
the listener may be presented with any of the stimuli and must say whether
an increment (S2 or 53) has occurred or not (5,). This is an uncertain detec-
tion experiment, and the question is whether the listener can do as well in
this roving, three-stimulus situation as in the fixed, two-stimulus variants
(S} vs. S2 and 51, vs. 5"3).

s

FIG. 8.1. One-dimensional representations of three auditory stimuli differing in
intensity; the listeners' task is to say "yes" to changes in the background, "no" to
background alone, (a) 5, is background, 52 is a small increment in the background,
and 53 is a larger increment. A single criterion is used, (b) 5, is a decrement in the
background, 52 is background, and 53 is an increment. Two criteria are required.
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The appropriate decision strategy—using a single criterion to divide the
stimulus set into two regions—is just a minimalist version of the method of
the rule we used to construct psychometric functions from the method of
constant stimuli in chapter 5. The model predicts that the d' values obtained
in the certain and uncertain situations will be the same, that there is no ex-
trinsic loss due to uncertainty about the magnitude of change. Although
there have been few direct tests, most experimenters assume that this is true
in practice as well, that is, listeners display no intrinsic loss. The experiment
is technically one of uncertainty, but there is no reason to worry about it.

Example 8b: Detection of Increments and Decrements
in a Background

In an apparently minor modification of this experiment, Macmillan (1971)
studied the detection and discrimination of increments (53) and decrements
(Sj) in a background (52). In one condition, listeners were obliged to distin-
guish changes (Sl or S3) from nonchanges (52), as in Fig. 8.1b. Is this parti-
tion of the stimulus set just as demanding as the fixed discrimination tasks,
or does it lead to an extrinsic loss?

A reasonable decision rule (if the representation is still unidimensional)
is to say "yes" (there was a change in amplitude) for observations suffi-
ciently large or small and "no" for those that are not. As Fig. 8.1b shows,
two criteria are needed to implement this rule. To take a simple example, let
us suppose that the means are 1 d' unit apart and the criteria halfway be-
tween the means.

For the fixed conditions, in which there are just two stimuli and one crite-
rion (i.e., S, vs. S2 and S2 vs. S3\ d'- 1 and/?(c) = .69. To evaluate the uncer-
tain condition S2 versus (Sl or 53), we find the proportion of correct
responses for each of the three stimulus types. Each "yes" probability has
two components, one for observations below the lower criterion and the
other for observations above the higher one.

P("yes"l53) = O(0.5) + O(-1.5) = .69 + .07 = .76 .

P("yes"l5j) is the same as P("yes"IS3).

/T'yes"!^) = 20(-0.5) = .62, so P("no"IS2) = .38 . (8.2)

The overall p(c) depends on the proportion of each type of trial. Macmillan
used 50% no change (S2) and 25% of each of the others, so predicted p(c) =
(.5)(.38) + (.25)(.76) + (.25)(.76) = .57.
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Thus, uncertainty about the direction of the change produces a 12-point
deficit in performance. One might interpret the drop as an attentional effect
(i.e., the participant does better by knowing the direction of change to attend
to), but really it is the situation that forces the decline. This is our first exam-
ple of extrinsic uncertainty: The 12-point loss is the best the listener can do,
not an indication that central capacity is limited or attention is wandering.
To justify inferences about such effects (which are types of intrinsic uncer-
tainty), the data would have to show a greater-than-12-point discrepancy
between the certain and uncertain tasks.

Two-Dimensional Representations

We have just seen that an understanding of uncertainty for stimuli varying
along one dimension requires knowledge of the (unidimensional) represen-
tation of these stimuli. Before we can advance to uncertainty in other atten-
tion experiments that are analyzed using multidimensional representations,
we must consider how such representations can be derived.

Example 8c: Tanner's "Theory of Recognition"

Detection theory was still young when it was first extended to multiple di-
mensions. In a 1956 article, Tanner devised no new experimental designs, but
instead proposed measuring the discriminability of each pair in a multidi-
mensional set and then examining the relations among these indexes. He ana-
lyzed the simple but important case of three stimuli, one of which is Noise. In
his experiments, tones of different frequencies were the other two stimuli.

These three stimuli can be thought of as varying on two dimensions, as in
Fig. 8.2. The notation in the figure generalizes that introduced in chapter 7:
Each distribution is labeled as an ordered pair, the elements of which are the
stimuli on the different dimensions. Thus, <S}N2> is the distribution due to
Signal on Dimension 1 and Noise on Dimension 2; the notation is more ex-
plicit than referring to this distribution simply as 51, (which we continue to
do when no ambiguity is possible).

Three two-stimulus discrimination experiments can be constructed from
the three stimuli: detection of S{ (i.e., discrimination of Sl vs. the Noise
stimulus), detection of S2, and recognition of 51, versus Sr The results of
these tests can be used to decide whether the Sl and S2 dimensions are or-
thogonal. Nonorthogonality implies (for normal distributions) a correlation
between the dimensions; if the dimensions intersect at an angle 9, the corre-
lation equals cos(0). The results of the three experiments can be used to esti-



192 Chapters

FIG. 8.2. Decision space
showing distributions for
the Null stimulus and two
stimuli differing from it,
each along a different di-
mension. The angle be-
tween the axes measures the
dependence between the
two dimensions.

mate 0. The relation between recognition performance (d1
12) and detection

sensitivity (d\ and d'2), measured in separate sessions, can be calculated
from the geometry of Fig. 8.2:

(8.3)

The criterion for deciding which response to give in recognition divides
the line joining the means of the S: and S2 distributions. The particular crite-
rion shown in Fig. 8.2 is halfway between the two distributions. Because the
values for d\ and d'2 are not equal in the figure, the criterion line does not
pass through the origin, the mean of the Noise distribution.

Equation 8.3 covers all possible relations between pairs of imperfectly
detectable stimuli. In one important special case, the alternative stimuli pro-
duce independent effects, which are said to require independent sensory
channels, a metaphor introduced by Broadbent (1958). In that case, the axes
are orthogonal so that 6 = 90°, cos(0) = 0, and

We derived the same equation for compound detection of orthogonal stim-
uli in chapter 6 (Eq. 6.9).
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Values of 9 less than 90° arise from overlap between the channels' re-
gions of sensitivity—a signal that activates one maximally also activates the
other to some extent. Angles of 6 greater than 90° might arise from inhibi-
tion between the separate perceptual or sensory channels (Graham, Kramer,
& Haber, 1985; Klein, 1985).

When 6= 0°, we are back in the unidimensional world of the previous ex-
amples, wherepairwised'values add: cos(0)= 1.0, so d\ 2= d\-d'r When
6= 180°, another one-dimensional case, the distance between the two Sig-
nals in the recognition task is the sum of the individual detectability values.
This is the well-known city-block metric, first described by Shepard (1964)
for the scaling of similarity judgments. For a discussion of the range of ap-
plication of this metric, see Nosofsky (1984).

In his own experiments, Tanner found that dimensional orthogonality
held when tones were sufficiently different in frequency, but that 6 was less
than 90° when they were similar. The result is consistent with the "critical-
band" hypothesis, according to which auditory inputs are divided into chan-
nels according to frequency. Tanner's approach offers a convenient sum-
mary of the data in geometric terms, but it has a shortcoming: The three
experiments result in three values of d'. This is just enough data to deter-
mine the internal angles of the triangle in Fig. 8.2 (by the side-side-side the-
orem of geometry, which underlies Eq. 8.3), but does not provide any
internal test of validity (Ashby & Townsend, 1986). Later in the chapter, we
shall see how the addition of just one more stimulus can give us more confi-
dence in the representations inferred from data like these.

Example 8d: Item and Source Recognition for Words

In a typical recognition memory experiment, participants are asked whether
test items were on a study list they saw earlier. In real life, a question just as
important as whether an item can be recognized is whether its source can be
identified: Did I see this face yesterday at work or yesterday on TV? at the
scene of the crime or in the police station? To simulate this problem in the
laboratory, two lists are presented for study, and tests can be of two kinds:
item recognition (was this presented on a study list?) and source identifica-
tion (which list was it on?).

Banks (2000) pointed out that these two tasks are analogous to the detec-
tion and recognition problems in Tanner's (1956) model. The question Tan-
ner posed is important in this application: Do the three distributions fall on a
single dimension or are two dimensions required? A single dimension
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would be appropriate if all judgments were based on "familiarity," a vari-
able commonly thought to underlie item-recognition decisions. Banks pre-
sented his participants with a visual list of words on a computer monitor and
an auditory list via loudspeakers. ROC curves were collected, and da in item
recognition was found to be 1.55 for the visual list and 1.63 for the auditory
list. Clearly if the same dimension were also responsible for source identifi-
cation, we would expect da = 1.63 - 1.55 = 0.08. In fact da was 1.59, imply-
ing a representation like Fig. 8.2, with 6 = 59°. Furthermore, as Banks
pointed out, the implied decision axes for item recognition (with list mem-
bership "uncertain") and source recognition are perpendicular to each other
(as is approximately true in Fig. 8.2). This result is roughly consistent with
the idea that source identification depends on a (probably conscious) recol-
lection process, whereas item recognition depends primarily on a (probably
unconscious) familiarity judgment.

Perceptual Separability and Integrality

Tanner's model captures the idea of interaction, and the degree of interac-
tion (as measured by 0) maps naturally onto concepts in psychoacoustics,
recognition memory, and other fields. As noted earlier, however, an impor-
tant limitation of the model is the use of only three stimulus classes and thus
three distributions. The data consist of three values of d', and the represen-
tation is a triangle, the length of each leg equal to a d'. Except in extreme
cases, for which the triangle inequality is violated (one value is greater than
the sum of the other two), the model is guaranteed to work.

Expanding the stimulus set overcomes this technical limitation and al-
lows for the study of interesting substantive questions. Many stimulus sets
can be constructed by varying two or more dimensions: height and width to
make rectangles, the first and second formants to make vowels, contrast and
spatial frequency to make gratings, and so on. In the resulting stimulus sets,
every value of one dimension can (in principle) combine with every value of
the other. The smallest set of stimuli that has this property is built from two
values on each of two dimensions; the stimuli can be denoted Su (value 1 on
both x and y), 512 (value 1 on x and 2 on y), 521, and 522.

Such sets have been studied extensively by Gamer (1974) and his col-
leagues, with the intent of distinguishing "integral" pairs of dimensions
(which interact) from "separable" ones (which do not). Garner proposed a
series of classification tests to distinguish these possibilities operationally;
all of them are discussed in this chapter, and we return to an evaluation of the
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"Garner paradigm" in a later section. For now we simply adapt his terminol-
ogy for use in our psychophysical context. To avoid confusion, we follow
General Recognition Theory (Ashby & Townsend, 1986) in using the terms
perceptual integrality and perceptual separability for characteristics of rep-
resentations, and the Garner terms integrality and separability in his
original operational senses.

Perceptual separability (Fig. 8.3a) is defined by a rectangular arrangement
of distribution means; in this case, a change on one dimension has no effect on
the value of the other. In perceptually integral cases (Fig. 8.3b), the two di-
mensions are correlated so that a change on one is at least partly confusable
with a change on the other. Such representations display mean-shift (or just
mean-) integrality (Kingston & Macmillan, 1995; Maddox, 1992) because
the means of the distributions are shifted compared to the perceptually sepa-
rable case. In Fig. 8.3b, lines connecting the means are drawn, and the angle 6
is a measure of how integral the two dimensions really are. Notice that these

FIG. 8.3. (a) A perceptually
separable arrangement of distri-
butions due to four stimuli, (b) A
mean-integral arrangement of
the four distributions; the angle
9 measures the degree of mean
integrality.
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concepts refer to sets of distributions, whereas the idea of perceptual (in)de-
pendence introduced in chapter 6 refers to a single distribution.

The use of four stimuli produces constraints among the fixed, two-stimu-
lus tasks needed to generate the representation: There are six values of
d' constrained by only five degrees of freedom. The four outside segments
in Fig. 8.3, plus one diagonal, force the value of the other diagonal. Predic-
tions about classification tasks can also be made from such a representation,
as we shall see shortly.

Two-Dimensional Models
for Extrinsic Uncertain Detection

Example 8e: The Uncertainty Design in Multimodal Detection

Bonnel and Miller (1994) asked observers to detect a change in background
that, on different trials, was unpredictably an increment in either the lumi-
nance of a spot or the intensity of a tone. The research question was whether
uncertainty would lower performance compared with control conditions in
which the modality to be attended to was known in advance. This basic de-
sign was earlier used within a modality (e.g., using tones of different tempo-
ral frequencies; Creelman, 1960; Green, 1961) or gratings of different
spatial frequencies (Davis & Graham, 1981). In all these studies, the uncer-
tainty design was used as a tool for exploring sensory channels.

Bonnel and Miller assumed there was no interaction between their visual
and auditory stimuli, and that the representation was thus perceptually sepa-
rable, as illustrated in Fig. 8.4. The locations of the distribution means for
visual (S,) and auditory (52) distributions are the d'values (1.5 and 2.0)
found in the control conditions in which each increment was discriminated
from no change (N). The uncertainty task requires that observers establish a
decision boundary in the space of Fig. 8.4 that accurately assigns stimuli 5",
and S2 to one response and N to the other. How should this be done?

Summation Rule

Although the representation sports three distributions in two dimensions, it
is still possible to reduce the decision problem to one dimension using the
projection technique. Just as in the compound detection case of chapter 6,
the observer might base a decision on total subjective intensity, which is
greater for points farther out into the upper right quadrant along the decision
axis y - x. Possible decision boundaries consistent with this rule are all per-
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FIG. 8.4. A representation of an
uncertain detection experiment in
which an auditory stimulus 5,, a
visual stimulus 52, or no stimulus
(AO may occur, and the auditory
and visual dimensions are inde-
pendent.

pendicular to this line, as shown in Fig. 8.5. When the S} and S2 distributions
are projected onto the decision axis, the means are no longer 2 and 1.5
units from the N mean, but instead (using the Pythagorean theorem as
usual) 2/V2 = 1.41 and 1.5A/2 = 1.06 units away. Choosing a criterion lo-
cation halfway between the means of N and S2 places it at .71 units from
the N mean. The hit rates are therefore O(0.71) = .761 for S2 and 0>(0.36) =
.641 for Sp the false-alarm rate is O(-0.71) = .239. If Noise is presented on
half the trials and each Signal on one quarter, then p(c) = (.5)(.761) +
(.25)(.641) + (.25)(.761) = .73. The model predicts a drop due to uncertainty
in visual performance from/?(c) = .84 in visual detection andp(c) = .77 in
auditory detection to an overall level of p(c) = .73.

The summation rule is a natural one.' Furthermore, it resembles the opti-
mal strategy for detecting compound stimuli that we developed in chapter 6.
It is clear, however, that Bonnel and Miller's observers did not use this rule
because their performance turned out to be better than the rule predicts. Re-
call that models of extrinsic uncertainty give the best performance possible,
and intrinsic uncertainty can only lower observer accuracy. When extrinsic
models are outpaced in practice, they are wrong.

Independent-Observation Rule

Bonnel and Miller's observers were not using a straight-line boundary, but
perhaps they employed another relatively simple rule: Compare the obser-

1A slightly different summation rule, in which the decision boundary is parallel to a line passing through
the S, and S2 distribution means, yields slightly better performance.
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FIG. 8.5. The uncertain de-
tection experiment of Fig.
8.4 and an integrative (total
intensity) decision rule. The
decision boundary permits
all distributions to be pro-
jected onto a single dimen-
sion, shown at the lower
right, and the observer re-
sponds "yes" if the total in-
tensity exceeds a criterion.

vation to criteria on each dimension independently, and say "yes" if either
criterion is exceeded. We also encountered this "minimum" rule in the com-
pound detection problem of chapter 6. Continuing the present example,
suppose the observers placed criteria perpendicular to the x and y axes at un-
biased locations, 0.75 units along x and 1 unit along y, and responded "yes"
if their joint observation exceeded either criterion. This leads to the two-
segment rectilinear decision boundary shown in Fig. 8.6a.

It is easiest to calculate />("no"leach possibility) because a "no" response
can only be made if the observation is below both the criteria and the prod-
uct rule introduced in chapter 6 applies. For the Wdistribution, the probabil-
ity of a correct rejection, P("no"IAO, therefore equals O( 1)O(0.75) =
(.841)(.773) = .650. Applying the same logic to the non-null stimuli gives
us the "miss" rates for each modality: For visual stimuli, P("no"l5,) =
O(-0.75)O(1) = (.229)0841) = .193; for auditory stimuli, P("no"l52) =
<D(-1)O(0.75) = (.159)0771) = .123. Subtracting the latter two values from
1 gives us the hit rates .807 and .877. The overall proportion correct is a
weighted average of the correct rejection and hit rates. Bonnel and Miller
presented each signal on one quarter of the trials, no signal on half, so p(c) is
05)0647) + -025)0807) + 025)0877) = -744. Fixed (no uncertainty) p(c)
was (.841 + .771)72 = .806 so there is a 6.2 percentage drop due to uncer-
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FIG. 8.6. The uncertain detec-
tion experiment of Fig. 8.4. (a)
An independent-observation de-
cision rule. The observer re-
sponds "yes" if either a Dimen-
sion 1 criterion or a Dimension 2
criterion is exceeded, (b) The op-
timal decision rule.

tainty according to this model. This independent-observation rule is always
superior to the summation rule, although in this case the difference is small
(6.2 vs. 7.5 percentage points).2

Is this corner rule the best strategy? Almost. The optimal boundary, shown
in Fig. 8.6b is (as always) the locus of points for which the likelihood ratio is
the same. This boundary is only slightly discrepant from the rectilinear
boundary, and the predictions of the corner rule are much easier to calculate
(Irwin & Hautus, 1997). For more than two dimensions, the discrepancy be-
tween the corner and optimal rules is even smaller.

2The calculation here is not precise because the locations of the criteria for best performance are not al-
ways midway between the means. The difference between the strategies tends to be larger for lower
values of d',
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Uncertain Simple and Compound Detection

Now consider a variant on the uncertain detection design in which the com-
pound stimulus as well as the single components are possible signals. For
example, a radiologist may be attempting to determine the presence of tu-
mors without knowing how many are present; the dimensions might be
strength of evidence in two areas of an X-ray, and tumors could be present in
neither, one, or both regions. Or an observer — perhaps an airline pilot —
may be engaging in "bimodal" signal detection, in which a warning signal
(if it occurs) may be auditory, visual, or both.

Like other multidimensional problems, this task can be solved with an in-
tegration or independent-observation strategy. Because of the richness of the
data — in two dimensions, there are four possible stimuli, rather than two or
three — more powerful tests are available to distinguish the two possibilities
than in other designs we have considered. Our analysis follows that of Shaw
(1982), who presented these models and others in more detail and generality.

Figure 8.7 shows a two-dimensional decision space for such an experi-
ment, assuming orthogonal channels. The first panel illustrates the inde-
pendent-observation model: The observer responds "no" in the shaded area.
The decision rule is the same as in the uncertain detection task.

It is convenient to use SDT terminology in writing the predictions of the
model, but we shall soon see that no distributional assumptions are neces-
sary. A "no" response results from observations from the relevant distribu-
tion that are below both the channel- 1 criterion k{ and the channel-2
criterion kr Because we are assuming perceptual independence, the product
rule applies, and the probability of this event is the product of subcriterion
observations on the two axes, and

Shaw (1982) pointed out that the four equations imply two simple interrela-
tions among the response probabilities:
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FIG. 8.7. Decision space for the si-
multaneous simple and compound
detection task: (a) independent-ob-
servation rule, and (b) integration
rule. Observers respond "no" in the
shaded regions.

These relations depend on the perceptual independence and orthogonality as-
sumptions, but they do not require that O be the normal distribution or even
that the marginal distributions on the two channels have the same form.

Figure 8.7b shows the same decision space, but with an integration-rule
decision criterion. The observer's criterion line is perpendicular to a line
connecting the mean of the <S1S2> and <N^2> distributions. To find the
response probabilities, we need to know only the distances along this line
corresponding to the means of the various distributions. In the figure, the
distance from the mean of </VyV2> to the criterion is k and that to the mean
of <S1S2> is d+. By geometry, if the distance to the mean of<NlS2> is d, the
distance to the mean of <S{N2> is d+ - d. Thus,
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(8.7)

The interrelation that follows from these equations does depend on the
assumption of normal distributions. Denoting the z score corresponding to
P, by z,, it is

zl + z2 = zn + zn • (8.8)

Mulligan and Shaw (1980) applied this approach to the problem of bi-
modal (auditory and visual) detection and found the independent-observa-
tion predictions (Eqs. 8.6) supported over the integration prediction (Eq.
8.8). Shaw reached the same conclusion in her analyses of experiments on
visual detection and Bayesian decision making. The relatively firm prefer-
ence for one type of model over the other does not depend simply on a com-
parison of d' values or other performance measures, but on finer, struc-
ture-revealing aspects of the data (Fidell, 1982; Shaw & Mulligan, 1982).
That the predictions are to some degree nonparametric is another advantage
of Shaw's approach.

Selective and Divided Attention Tasks

Is the uncertain detection task a "selective"or "divided" attention design?
Recall that in selective tasks the goal is to attend to one dimension and ig-
nore others, whereas in divided tasks attention to both dimensions is neces-
sary. The uncertain-detection task can be viewed either way depending on
the model assumed: The one-dimensional "intensity" model (Fig. 8.5)
treats attention as selective, in that the observer must attend to subjective in-
tensity and ignore characteristics, like modality, that distinguish stimuli Sl

and S2. The comer and optimal models (Fig. 8.6), however, appear to be
strategies for dividing attention.

Selective and divided attention are easier to distinguish operationally
with four-stimulus sets. There are three ways in which four elements can be
partitioned into two equal parts, two of these being examples of selective at-
tention and one of divided. We consider these in turn, following an analysis
presented by Kingston and Macmillan (1995) for speech discrimination
experiments.
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Selective Attention

Figure 8.8a displays a perceptually separable representation, as in Fig. 8.3a.
In one selective attention task, observers are instructed to respond strictly
on the basis of the x variable, assigning one response to 5H and 512, the other
to 5*2, and S22. A decisionally separable boundary—the vertical line in the
figure—is optimal, and the distributions project onto a single (horizontal)
axis. Performance is just as good as if only the two distributions Su and 5"21

were being discriminated, so the model predicts that for separable dimen-
sions there is no performance deficit due to filtering, as the selective task is
sometimes called. An analogous task for selective attention to the vertical
dimension is analyzed in the same way.

FIG. 8.8. Representation for selec-
tive attention task in which 5,, and S,2
are assigned to one response and 521

and S22 to the other, (a) Perceptual sep-
arability, and (b) mean integrality.
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The mean-integral arrangement in Fig. 8.8b requires a different bound-
ary. This is the kind of problem for which the likelihood ratio analysis of re-
sponse bias (see chaps. 2 and 4) is essential. When two different
distributions correspond to the same response, the likelihood of an observa-
tion due to either of them is the sum of their likelihoods—an example of the
additive rule for combining probabilities. For the representation in Fig.
8.8b, this is true of both stimulus subsets. The boundary shown in the figure
connects all points for which the likelihood of either S, {or 512 is the same as
the likelihood of either 521 or S22—that is, for which the likelihood ratio is 1.
It may seem surprising that the optimal boundary has this curved shape,
rather than being parallel to lines connecting the means, but some insight
can be gained by considering points far up above S12 and S22. In this region,
the Sj, and 521 distributions matter little, so the boundary must be perpendic-
ular to the Dimension 1 axis.

The attention question is how performance in the task sketched in Fig.
8.8b compares to performance with just stimuli Su and 512. Can an observer
do as well as in the baseline two-stimulus control condition, or is there a
"filtering loss," that is, a deficit due to the additional stimuli. Our simple
methods of calculating proportion correct fail us here—numerical integra-
tion is needed—but performance is indeed lower than for the baseline task.
The magnitude of the drop depends on 9, the degree of integrality (see Fig.
8.3b). Larger declines arise as 6 nears 0° or 180°. For example if d'= 2 for
all one-dimensional comparisons, so that baselinep(c) = .84, then predicted
p(c) = .82 if 0 = 60° and .78 if 0 = 30°.

Divided Attention

To force attention to both dimensions, the observer is required to assign
stimuli Sn and S22 to one response, S12 and S21 to the other. An optimal strat-
egy for doing this in a perceptually separable representation is shown in Fig.
8.9. The observer divides the decision space into four quadrants and gives
one response for the NE and SW regions, the other for NW and SE. It is clear
that this strategy has no equivalent one-dimensional model, but is the opti-
mal strategy good enough to prevent a performance decline?

To analyze this perceptually separable case, we denote the discrimin-
ability of Sn and S2l by d'x and that of 5,, and 512 by d'y. Because of the as-
sumed symmetric criteria, proportion correct is the same for all four stimuli,
so we need to consider only one of them, say stimulus 512. The observer
makes a correct response to this stimulus if the observation falls in either the



Attention and Interaction 205

FIG. 8.9. Representation for
divided attention task in which
5,, and S22 are assigned to one
response and S,2 and 52I to the
other.

upper left or lower right quadrant, and we can calculate the probabilities of
each of these events using the product rule from chapter 6:

(8.9)

lid' = 2 on both dimensions, so that baselinep(c) = .84, these terms are
(.84)2 = .706 and (.16)2 = .026, for a sum of .732. For d'- 1, the decline is
from .69 to .572. Clearly the divided attention task is, extrinsically, quite a
difficult one.

We do not discuss the mean-integral case in detail. The optimal decision
boundary is constructed by combining two curves like the one in Fig. 8.7b.
The interesting result is that performance is relatively unaffected by 0over
its entire range.

The Garner Paradigm for Assessing Interaction

We are now in a position to consider the complete Garner paradigm. Garner
(1974) argued that determining whether two dimensions interact should not
rely on a single test, but on "converging operations." In typical experiments
by Garner and his colleagues, the two dimensions are sampled at two points
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each, as in the last few examples. Separability is defined by no filtering loss,
that is, selective attention equal to baseline performance; and no "redun-
dancy gain," for example, the ability to distinguish Sn and S22 being the
same as the ability to distinguish Su and 512. Integrality is the opposite pat-
tern, both a filtering loss and a redundancy gain. Divided attention is not al-
ways included and is not considered diagnostic in distinguishing integrality
and separability.

Does the perceptual-space model agree with Garner's definitions? Both
approaches agree that integrality is associated with filtering loss, separabil-
ity with no loss. As for redundancy gain, the parallelogram model predicts
this effect for all arrangements if optimal decision rules are used, but can
predict no gain in the separable case if decisional separability is assumed
(see chap. 6). In many experiments using the Garner paradigm, participants
are instructed to attend to one dimension even in the redundant case, so it is
perhaps not surprising when redundancy gains are not found.

The analyses in this chapter provide a theoretical convergence of opera-
tions that allows for quantitative predictions of the relations among these
tasks, but there are two important limitations. The first we have just seen:
Predicted performance depends on the particular decision strategy used by
the observer. Second, detection theory applies to imperfectly discriminable
stimulus sets and the measurement of accuracy. Most Garner-paradigm
studies have instead used response time, and explicit modeling of this mea-
sure is required if quantitative predictions are to be made (Ashby &
Maddox, 1994).

Attention Operating Characteristics (AOCs)

Extrinsic models of attentional paradigms provide a useful baseline for per-
formance: Even a substantial drop due to divided attention, for example,
can be consistent with no real limit on intrinsic attention allocation. We now
consider a detection-theoretic approach to an intrinsic concept, "paying at-
tention." To begin, it helps to return to the problem of compound detection
introduced in chapter 6.

"Multiple-Look" Experiments

Remember that the detectability of a "compound" stimulus, for example, a
simultaneous tone and light flash, is the Pythagorean sum of each compo-
nent's d''. If the stimuli are equally detectable, the improvement (or redun-
dancy gain) is a factor of V2. Now imagine a slight modification in which
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the observer gets multiple "looks" at the same stimulus, say a light flash.
The argument still applies, so that the detectability of a double look is V 2
times the d' for a single one. In fact the argument can be extended to any
number of looks, so that 10 looks should improve d' by VlO. Early research
(Swets, Shipley, McKee, & Green, 1959) roughly supported this way of
modeling multiple presentations, although observers were not completely
efficient.

This same relation can be derived in a different way with reference to a
single decision axis. Assume that the decision variable is the sum of obser-
vations (on a single dimension). Then n stimuli produce a mean difference
of nd' and a variance of n (because the variance for one observation is 1), so
the effective normalized mean difference is nd'Hn - 4nd'. This one-di-
mensional perspective allows us to easily go beyond two samples, whereas
visualizing six-dimensional spaces is hard.

Capacity and the Sample-Size Model

What has this to do with attention? Suppose that (as is postulated by many
models of attention) a person has a fixed "capacity" to allocate among what-
ever tasks are at hand.3 For convenience, let us call this capacity T (for "to-
tal") units. As in the previous discussion, assume that as each unit is
allocated it adds a fixed amount to both the mean and variance. Hypotheti-
cal performance using one unit of capacity is denoted by d'.

Consider now the uncertain detection experiment with which we began
the chapter. If all attention is allocated to dimension jc, performance will be
^Td' on that dimension, but 0 on dimension y. The reverse is true if all at-
tention is allocated to y. But what if P of the r units are allocated to x and T-
P to yl Then performance on x, denoted d'x, is ̂ d'and d'y is ̂ (T -P)d'.

The model says that capacity can be allocated to one dimension only at
the cost of the other, and so it describes a tradeoff between accuracy on the
two tasks. When P is large, the observer will do well on Dimension x and
poorly on Dimension y, whereas when P is small (so that T- P is large) the
opposite will be true. The relation between x and y performance is an "oper-
ating characteristic," analogous to the receiver operating characteristic
(ROC), which describes a tradeoff between hits and correct rejections.

3Most such models distinguish "controlled" tasks, which require attentional capacity, from "automatic"
tasks, which do not.
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To find the form of the attention (or performance) operating characteris-
tic between d'x and d'y, we need to solve the prior expressions derived from
the sample-size model for one in terms of the other. This can be done most
easily in terms of the squares of the sensitivities:

This is a circle (the usual equation is y2 = r2 -x2) as shown in Fig. 8.10. Rear-
ranging the terms provides another perspective:

The idea that squared sensitivities are added to estimate overall capacity is
an old one, dating to Lindsay, Taylor, and Forbes (1968).

What would happen if participants were asked to give, say, 80% attention
to x and 20% to v? They should allocate 80% of their capacity to x and oper-
ate at the point labeled (80%, 20%) on the diagram. Experiments of this type
have often shown that participants not only follow a circular tradeoff func-
tion, but are also accurate at assigning the requested percentage of capacity.

FIG. 8.10. Schematic rep-
resentation of a hypothetical
attention operating charac-
teristic (AOC) showing joint
performance (or sensitivity)
in the dual-task paradigm.
Solid symbols depict re-
source limitation in which a
fixed capacity is allocated to
each task alone in the single
task, but is divided according
to instructions in the dual
task. The open triangle repre-
sents a case of independence
in which neither of the dual-
task components affects the
other.
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For some pairs of stimuli, however, no tradeoff is found. For example, Gra-
ham and Nachmias (1971) found that attention could be simultaneously
paid to gratings of two different frequencies so that the AOC consisted of
two straight line segments, as also illustrated in Fig. 8.10. This result is
strong quantitative evidence that separate perceptual "channels" are used in
processing the two gratings.

Summary

Classification experiments, in which a number of stimuli are partitioned by
the observer into a smaller number of categories, can be used to study per-
ceptual independence versus interaction and a variety of paradigms for
measuring attention. Uncertainty about which element of a stimulus subset
is to be presented can force performance to be lower than in a corresponding
fixed-discrimination condition. Uncertainty effects occur even for
unidimensional stimulus sets if multiple criteria are used in the decision
process.

Stimuli that differ perceptually in more than one way can be represented
as distributions in a multidimensional space. Sensitivity measures, such as
a", are distances in such a space, and multiple experimental conditions can
allow the geometric arrangement of the distributions to be determined. To
determine whether two stimulus dimensions are represented independently,
a set of stimuli in which both dimensions vary must be used. As few as three
stimuli lead to an answer to the independence question, but a 2 x 2 set
permits stronger conclusions.

Many multidimensional tasks are susceptible to either integration or in-
dependent-observation decision strategies. These can sometimes be distin-
guished on the basis of predicted accuracy, but more powerful methods
examine more detailed aspects of the data.

Selective and especially divided attention are usually intrinsically more
difficult than the corresponding baseline tasks. The loss due to attention de-
pends on whether the dimensions on which the stimuli vary are independent
or interacting.

Detection theory can be used to quantify the idea of a limited attentional
capacity that must be allocated among various tasks. Data from experiments
in which observers are instructed to allocate attention differently can be
used to determine whether different stimulus dimensions are processed by a
single channel or separate ones.
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Problems

8.1. In detection experiments for two audio frequencies, H = .78, F = .24
for a weak 1000-Hz tone and H = .72, F = .31 for a weak 1200-Hz
tone. Find detection d' for both frequencies. Predict identification
d' assuming that the tones are analyzed by independent channels.

8.2. What would a 2AFC identification experiment yield for p(c) if
tones of frequencies 1000 Hz and 1000.5 Hz were each detectable
at d' = L5 and (a) 6= 60° or (b) 0= 30° in Fig. 8.2?

8.3. (a) In Example 8b, on increment-decrement uncertainty, recalcu-
late the hit and false-alarm rates assuming the criteria are located at
+/- 0.75 rather than +/- 0.5 SDs from the mean of S2. Do the stricter
criteria lead to better performance in the uncertain task, and thus a
smaller decline due to extrinsic uncertainty?
(b) Extend the calculation to plot an ROC for this task.

8.4. In the representation of Tanner's detection/recognition experiment
shown in Fig. 8.2, suppose that d\ = d'2 = d' 12 - 2. These are the
lengths of the three legs of an equilateral triangle in which all the in-
terior angles are 60°. Therefore, participants could get 84% correct
in any of the three tasks (S^ detection, S2 detection, and recogni-
tion). But what if they only consider Dimension 1 in making their
decisions? That is, they have decisionally separable boundaries
perpendicular to Dimension 1 or (equivalently) project all three
distributions onto Dimension 1? What is percent correct for the
three tasks in that case?

8.5. In the illustration of mean integrality (Fig. 8.3b), what would hap-
pen if 8= 0° or 180°?

8.6. Redo the uncertain-detection example (Figs. 8.4-8.6) assuming d'
= 1 on both dimensions, (a) For both the summation and independ-
ent-observation rules, find p(c) for the uncertain condition and
compare it with the fixed condition, (b) This is not the best possible
performance for the independent-observation rule. How well can
the participant do if the two criteria go through the means of the 512

and S22 distributions rather than halfway between those means and
the origin?

8.7. On each trial of a detection experiment, an auditory signal can be
presented to the listener's left earphone (SL), right earphone (5"R),
both, or neither. Two observers produce the following data:
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Observer 1

Signal "Yes"

Null 8

SL 32

SR 24

Both 36

"No"

32

8

16

4

Observer 2

"Yes"

17

32

24

36

"No"

23

8

16

4

For each listener, determine whether an integration or independ-
ent-observation strategy is being used.

8.8. Redo the example in Figs. 8.8a and 8.9 assuming d'x = d'y=l. That
is, predict performance in selective and divided attention assuming
that this is the accuracy level in the fixed, baseline tasks.

8.9. In Fig. 8.8b, the optimal decision rule cannot be interpreted as a
projection on a single decision axis, but there is a simple non-
optimal rule that can: The decision axis could be parallel to a line
connecting the means of Sn and Sn. Suppose all d' values for one-
dimensional comparisons equal 2, 9 = 45°, and the decision crite-
rion goes through the middle of the parallelogram. Analyze the
problem in this one dimension and calculate p(c).

8.10. The divided attention problem (Fig. 8.9) can also be reduced to one
dimension. Assume the same representation as in Problem 8.9, but
with a decision axis parallel to the line connecting the means of S12

and S2l and three response regions (as in Fig. 8.1b). What is p(c)l
8.11. Participants study a list of words. There are two test conditions.

One is standard: Single words are presented, and the participant
says "yes" or "no." In the "expanded" condition, four words are
presented on each trial, either all Old words or all New words. If
p(c) is .75 in the one-word condition, what do you predict it will be
in the four-word condition? (Assume unbiased responding.)
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Classification Designs
for Discrimination

We return again to designs for studying discrimination. The tasks de-
scribed to this point—yes-no with or without a rating response or a re-
minder, and 2AFC—provided the experimental cornerstone for detection
theory in psychology. They are natural paradigms for studying the detec-
tion of weak signals and, as we have seen, are simply related to each other
on theoretical grounds.

Each design, however, has shortcomings. The failure of the predicted re-
lation between yes-no and 2AFC (Eq. 7.2) led us to the suspicion that par-
ticipants are limited in the one-interval task by imperfect memory. Two-
alternative forced choice, which survives this criticism, is subject to an-
other: In some applications, the task is difficult to describe to participants.
Observers in 2AFC are instructed to "choose the picture you think you have
seen before" or "choose the interval that contained a tone added to the noise
background." The dimension of judgment—recency and "tone-ness," in
these examples—is made explicit. But observers may not share the experi-
menter's definition of the dimension being judged, and may even be able to
distinguish the stimuli without having names for them at all. Many listeners
in simple auditory tone-detection experiments, for example, discover that
"tone-ness" is not, introspectively, the basis for judgment: The experience
of a very weak stimulus is not a small version of a more intense one, but par-
ticipants usually learn to respond appropriately with training.

Frequently, the problem of describing the dimension on which the stimuli
differ is not so readily solved. Sometimes the physical dimension is difficult
to characterize for participants; the experimental design precludes training;
or participants are unsophisticated, and forced-choice instructions are diffi-
cult to convey. We now discuss three participant-friendly designs that seem

213

9



214 Chapter 9

well suited to such situations: same-different, ABX, and oddity. These tasks
have been used in experiments with animals, unsophisticated participants by
most standards, and in human studies in which the differences among stimuli
are difficult to describe. Our examples illustrate these applications: We con-
sider people categorizing visual objects, animals discriminating visual
shapes, and people discerning subtle differences among wines.

The cost of using these accessible designs is borne by the experimenter,
for they are not psychophysicist-friendly. The "comparison" tasks dis-
cussed in chapter 7—2AFC and reminder—assumed two distributions, one
for each of the possible stimuli (or stimulus sequences). These distributions
were represented in a two-dimensional perceptual space, but the optimal
strategy could be displayed in one dimension by an appropriate projection.
The discrimination designs in this chapter require classification—that is,
there are more possible stimulus sequences than responses. The attention
designs analyzed in chapter 8 can be adapted with only minor modification
to describe same-different and ABX (matching to sample). Oddity requires
a slightly different classification analysis.

Same-Different

Example 9a: Semantic Judgments of Pictures

Irwin and Francis (1995a) explored the perception of line drawings of ob-
jects that were either natural (e.g., alligator, leaf) or manufactured (e.g.,
various tools). Pairs of such objects were briefly presented, and the observ-
ers had to say whether they belonged to the same or different categories.
Thus, the correct response for the pair <hammer, leaf> was "different,"
whereas for <leaf, alligator> it was "same."

Letting S1 and 5"2 denote the natural and manufactured stimuli, there are
four possible pair types: <S1S1>, <S2S2>, <S{S2>, and <S2Sl>. The participant
has only to respond "same" or "different" and need not know or be able to
articulate the ways in which the stimuli actually differ. The results can be
summarized in a 2 x 2 table as in earlier chapters, but with new labels for the
rows and columns. Here are some possible data:

Response

Stimulus Pair "Different" "Same"

> or <55> 30 20

> or <S2S2> 10 40
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Hit and false-alarm rates can be defined in a natural way:

We assume that presentations of the two kinds of Same trials and the two
kinds of Different trials are equally likely. How can we estimate a" for data
of this sort?1

Representation

To appreciate the peculiarity of the same-different task, consider its underly-
ing distributions shown in Fig. 9. 1 . As with 2AFC, the two dimensions are the
two intervals of the task, and every point in the two-dimensional space repre-
sents a possible outcome of a trial. For each interval, the mean given 51, is 0
and the mean given 52 is d' , so that d' is the distance between the means of any
two distributions differing along just one axis. The four possible stimulus se-
quences generate four probability distributions in the space. If the stimulus
sequence is <S2S{>, for example, the observer's observation is drawn from the
distribution at the lower right. Our task is to estimate d', the original normal-
ized distance between the means of the S, and S2 distributions, a sensitivity
statistic that characterizes only the stimulus pair, not the method.

FIG. 9.1. Decision
space for the same-dif-
ferent experiment. The
effects of the two obser-
vations are combined
independently. The un-
biased decision rule is to
respond "different" in
the shaded area.

1 Because we know of no Choice Theory models for the tasks described in this chapter, we consider only
SDT models.
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We explore two decision rules based on this representation: an independ-
ent-observation and a differencing rule. Both are special cases of rules we
developed for divided attention in chapter 8, and the independent-observa-
tion rule is again the optimal one. However, we shall see that some experi-
mental designs conspire against any decision maker's attempts to use this
strategy, and for those designs differencing is the best available analysis.

Independent-Observation Decision Rule

Statement of Rule. The optimal decision rule is like that used for
the divided attention task: To determine which points on the plane lead to
which response, a pair of criterion lines is used to partition the space of Fig.
9.1. If an observation falls either to the right of the vertical criterion line and
below the horizontal one (in the lower right quadrant) or to the left and
above (upper left quadrant), the response is "different"; otherwise the ob-
server responds "same." For the <S1S2> distribution, the proportion in this
region is the hit rate; because the decision rule is symmetric, this is also the
proportion correct for all other trials and for the task as a whole. The calcu-
lation of proportion correct in same-different using independent observa-
tions [p(c)SDIO] is the special case of divided attention (Eq. 8.9) in which d'x
equals d'y:

(9.2)

Solving for d' yields2 (see Computational Appendix to this chapter)

(9.3)

Comparison With Yes-No. How difficult is this task compared
with yes-no? To relate the two tasks, recall that O(J72) is the proportion
correct for an unbiased participant in yes-no. Combining this identity with
Equation 9.2 reveals that

p(cW + [1 -P(c)yes.no]
2 . (9.4)

Sample predictions from this equation, given in Table 9. 1 , clearly show that
observers are expected to find same-different more difficult than the corre-

2Equation 9.3 assumes thatp(c) > .5. If not, the equation cannot be used. A heuristic solution is to replace
p(c} with 1 -p(c) and treat the result as a negative value of d'.
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TABLE 9.1 Comparison of Yes-No Performance
With Two Decision Strategies in Same-Different

P(c)
Same-Different

d'

1

2

3

4

5

6

Yes-No

.69

.84

.93

.98

.994

.999

Independent-
Observation

.57

.73

.88

.96

.987

>.999

Differencing

.55

.68

.80

.89

.95

.98

spending yes-no task, just as they find the divided attention task quite chal-
lenging compared with baseline.

Equation 9.4 contains no explicit reference to d'', does that mean it is a
nonparametric result? The requirement is that the underlying distributions
be perceptually independent and that the arrangement be perceptually sepa-
rable. These assumptions may or may not be correct in general, but in this
application the two dimensions are the two observation intervals of a single
trial. It is common to assume independence and separability in this case (al-
though remember that non-independence was one of the reasons conjec-
tured to account for the superiority of 2AFC and reminder over the level
predicted from yes-no).

Threshold Analysis. Same-different data are often summarized
by proportion correct, but this measure turns out to imply a threshold model
in which the participant covertly classifies each stimulus into one of two
categories. Let/?; and/?2 be the probabilities that Sl and S2, respectively, are
classified covertly by the participant as stimulus Sr The observer responds
"same" whenever the two classifications agree, "different" otherwise. Then
as Pollack and Pisoni (1971) have shown,

P(c\^dlSeKM = ̂ +(P2-pf] • (9-5)

A similar analysis (see Creelman & Macmillan, 1979) reveals that propor-
tion correct by an unbiased observer in both yes-no and 2AFC is
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(9.6)

Combining Equations 9.5 and 9.6 leads to a prediction about the relation
between same-different and yes-no performance, for an unbiased observer,
and it is again Equation 9.4 (see Computational Appendix). Apparently, for
an unbiased observer, the covert-classification and independent-observa-
tion models are the same. Discrepancies arise when observers display bias,
because the ROC implied by proportion correct has the wrong shape. This
familiar shortcoming of proportion correct is of even greater significance
for same-different than for other paradigms we have discussed, because
participants seem to naturally adopt strong response biases in same-differ-
ent experiments. In particular, a preference for "same" is commonly ob-
served for hard-to-discriminate stimuli, which are perforce perceived to be
the same on many trials.

Response Bias. The participants in Example 9a display just such
a preference for "same" over "different" responses, implying that the
criterial value of likelihood ratio is some value greater than 1.0. Figure 9.2
shows how the decision space is divided up by an observer who is biased to-
ward "same" so that an observation must be at least twice as likely to come
from a Different trial to evoke a "different" response.

It is possible to convert the representation of Fig. 9.2 to a one-dimen-
sional one. In this strategy, described by Irwin, Hautus, and Francis
(2001), the decision axis is the likelihood ratio j8. [more precisely,

FIG. 9.2. Decision
space for the same-dif-
ferent experiment. The
decision rule is to re-
spond "different" in the
shaded area; this ob-
server is biased toward
"same."
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'], and a Same and a Different distribution are constructed on that
axis. (Neither distribution is Gaussian in shape.) The height of the Same
distribution for a specific value of /J. is the sum of heights of the <S1S1> and
<S2S2> distributions in Fig. 9.2 for which /J(. has that value, and the height
of the Different distribution is the sum of the heights of the <S1S2> and
<S2S}> distributions over points for which /J. has that value. One measure
of response bias is simply /?, and another is the criterion location on the
decision axis, denoted ci and equal to In(j3.)/d'.

Figure 9.3 shows isobias curves for both of these measures, and it is im-
mediately clear that they bear family resemblances to c and ft, the corre-
sponding statistics for the yes-no design introduced in chapter 2. The
criterion location measure again behaves more regularly than likelihood

FIG. 9.3. Isobias curves for
criterion location ct (panel a) and
likelihood ratio /3, (panel b) ac-
cording to the independent-ob-
servation model. (Adapted from
Irwin et al., 2001, Figure 4, with
permission from the author and
publisher.)
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ratio. Empirical isobias curves for visual (Irwin, Hautus, & Francis, 2001)
and auditory discrimination (Hautus & Collins, 2003) favor c. over p..

Calculating these measures is somewhat onerous, and for purposes of
comparing experimental conditions it is tempting to adopt the strategy of
simply using the yes-no formulas. A defense for this approach is the simi-
larity between the curves in Fig. 9.3 and those in Fig. 2.7 for the analogous
indexes. For the current example, the statistic c (Eq. 2.1), equals -0.5[z(H)
+ Z(F)] = -0.5(0.253 - 0.842) = 0.294. The likelihood ratio p = 0(.6)/0(.2)
= 1.380. For comparison with biases observed when d' is higher or lower,
the criterion measure can, as before, be normalized by dividing by z(H) -
z(F): c' = 0.294/1.095 = 0.268. All show that there is some bias toward
saying "same" in these data.

ROC Curves. By systematically varying the critical value of
likelihood ratio and calculating H and F for each value, we can trace out
a same-different ROC. The important characteristic of such curves is
that they are approximately straight lines with unit slope on normal coor-
dinates, so that z(H) - z(F) does not change with criterion. This result al-
lows a simple strategy for finding d' in a same-different task: First,
convert z(H) - z(F) to the equivalent proportion correct for an unbiased
observer (Eq. 7.4):

/>(')_ = 0{[z(H) - z(F)}!2} . (9.7)

Then insert/?(c)max into Equation 9.3 to find d'. We have followed this logic
in constructing Table A5.3, which provides d' corresponding to any value
of z(H) - z(F) observed in a same-different task.

We can now, finally, analyze the data matrix from the beginning of the
chapter. The transformed difference z(H) - z(F) equals z(.60) - z(.20) =
0.253 + 0.842 = 1.095, and/?(c)max = .71. The underlying d' is found from
Table A5.3 (or Eq. 9.3) to be 1.86.

Our model abandons the requirement of unbiased responding, but retains
another simplifying assumption: The critical value of likelihood ratio for
responding "different" is the same whether the observed difference is posi-
tive or negative. Although to our knowledge this assumption is shared by all
models for the same-different paradigm, it need not be correct: P("differ-
ent"l<525i>) may not equal P("different"kS1(S2>), and the two halves of the
decision contour in Fig. 9.2 may not be symmetric.
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Differencing Rule

In chapter 7, we distinguished fixed and roving versions of the 2AFC exper-
iment, according to whether two fixed stimuli recurred throughout a block
of trials or the stimulus pair roved along a continuum. The roving feature is
also often incorporated into same-different tasks. Suppose in our categori-
zation experiment (Example 9a) there are four stimulus classes—5P 52, S3,
and S4—and we wish to measure sensitivity for each adjacent pair. A fixed
experiment requires three separate blocks of trials, whereas the roving pro-
cedure can employ just one. An appealing feature of roving experiments is
that they more closely resemble real-life situations, in which repeated
presentation of the same pair of stimuli is unusual.

Sample data for a roving same-different experiment are given in Table 9.2.
The participants' responses have been classified into those relevant to mea-
suring sensitivity between S{ and S2, S2 and S3, and S3 and S4. Notice that some
Same trials are used twice in this table: <S2S2> trials, for example, enter into
both the 5"/52 and S,/S3 comparisons. This fact produces a correlation between
adjacent sensitivities that would not be present in a fixed design.

TABLE 9.2 Sample Roving Same-Different Data

Response

Stimulus Pair

<S1S2> or <S2Sl>

<S1S1> or <S2S2>

<S2S3> or <S3S2>

<S2S2> or <S3S3>

<S3S4> or <S4S3>

<S3S3> or <S4S4>

"Different"

30

10

35

5

25

5

"Same "

20

40

15

45

25

45

In 2AFC the observer's ideal response strategy is the same for both rov-
ing and fixed designs, but in same-different the response rules for the two
cases differ. To see why, consider a possible sequence of stimulus pairs in
roving same-different discrimination: <S1S2> on Trial 1, then <S3S3>,
<S2S3>, <S4S3>, and so on. The independent-observation decision rule por-
trayed in Figs. 9.1 and 9.2 requires the observer to independently assess the
relative likelihood that each sound arose from both of the two stimuli in the
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sequence. For a set of four possible stimuli, this rule is very complex: The
participant must estimate a likelihood ratio based on the 10 possible stimu-
lus pairs listed in Table 9.2. If, as is often true, the observer does not know
exactly how large the stimulus set is, the information needed for the
calculation is not even available. Another strategy is needed.

Statement of Rule. The appropriate procedure is a differencing
strategy like that used in comparison designs: The two observations on a
trial are subtracted, and the result is compared to a criterion. If the difference
exceeds the criterion, the stimuli are called "different," otherwise "same."
The differencing strategy was first described by Sorkin (1962) and has been
found to describe data from experiments in pitch perception (Wickelgren,
1969), speech perception (Macmillan et al., 1977), and some visual dis-
crimination situations that we discuss presently.

Figure 9.4 illustrates the differencing decision rule; for simplicity, only
stimuli S, and S2 are considered. The criterion lines for a constant difference
resemble the line for 2AFC (Fig. 7.1), but the decision space is more com-
plicated. The shaded areas in the figure mark observations that lead to a
"different" response under the differencing rule, which is at odds with the
independent-observation rule in certain regions of the space.

An example cited by Noreen (1981) can be extended to contrast the rules.
Suppose the two stimulus classes are fifth- and sixth-grade boys, and the
only information available for discriminating the classes is height, which
averages 54 inches in Grade 5 and 56 inches in Grade 6. Then two boys

FIG. 9.4. Decision
space for the same-dif-
ferent experiment. The
effects of the two in-
tervals are subtracted,
and the absolute value
of the result is com-
pared to a criterion
(differencing model).
The decision rule is to
respond "different" in
the shaded area.
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whose heights are 54 and 56 inches should probably be judged "different"
(i.e., from different grades), but two boys whose heights are 58 and 60
inches should be judged "same" because both are more likely sixth than
fifth graders. This example mimics a fixed design and adopts an independ-
ent-observation strategy. In the corresponding roving paradigm, boys are
drawn from Grades 5 to 8, and the average heights are 54, 56, 58, and 60
inches. Again the heights of two boys are announced; now one must decide
whether the two are from the same grade or 1 year apart. Using the differ-
encing strategy, any difference of two inches or more leads to a "different"
response. The strategy is not optimal — heights of 65 and 67 inches are more
likely Same than Different — but it is reasonable and simple to apply. And it
is the only sensible approach for a decision maker without knowledge of the
stimulus range.

Because the differencing rule depends on a single variable — the differ-
ence between two observations — we can simplify the decision space by
projecting the distributions onto one dimension (as we did for comparison
designs in chap. 7). Let us consider the probability distributions of the dif-
ference for each type of trial. When both trials contain the same stimulus, so
that the pair is either <5,5'1> or <S2S2>, the mean difference is 0. However,
there are two types of Different pairs: those that, when subtracted, yield a
mean difference of d', and those yielding a mean of —d'. The decision prob-
lem in one dimension thus involves three difference distributions on one
axis, as shown in Fig. 9.5. The representation resembles that for uncertain
increment-decrement detection (Example 8b), and the decision rule is the
same: Respond "different" whenever the observed difference is more ex-
treme than k, either in a positive or negative direction. As in comparison de-
signs, however, these are difference distributions; because two independent
variables with (by definition) variance 1 are being subtracted, they have
variance 2.

Sensitivity and ROCs. The hit and false-alarm rates result from
combining areas under these distributions:

If k is varied, Equations 9.8 can be used to trace out an ROC; some exam-
ples are shown in Fig. 9.6. Unlike the ROCs for the independent-observa-
tion rule, these do not have unit slope, so two points with equal values of



224 Chapter 9

FIG. 9.5 One-dimensional decision space for the same-different experiment ac-
cording to the differencing model. The representation is equivalent to that in Fig.
9.4: The decision rule is to respond "different" in the shaded area. The hit rate is
the sum of all shaded areas under the right-hand (or left-hand) distribution; the
false-alarm rate is the sum of the diagonally shaded and cross-hatched areas under
the center distribution.

z(H) - z(F) do not necessarily have the same d'. Therefore, we cannot ex-
pect to find d'via z(H) - z(F), as we did for the independent-observation
model. Table A5.4, modified from the tables of Kaplan, Macmillan, and
Creelman (1978), gives d' for any (F, H) pair, assuming the differencing
model to be correct.

Applying the differencing model to our categorization data yields the
following sensitivity values: d' 12 = 2.16, d'23 = 3.07, and d1'34 = 2.32. What
would happen if we had mistakenly applied the independent-observation
model to these data? Table A5.3 yields d'n = 1.85, d'23 = 2.56, and d'34 =
2.04. The independent-observation model implies smaller values of d', as it
must, but the two models are not dramatically different for these data, lead-
ing to values of d' differing by an average of 13%. The ROCs suggest that
the greatest discrepancy will occur when the probability of responding "dif-
ferent" is small. Indeed if H = .10andF= .01, d' is 3.04 according to the dif-
ferencing model and only 1.83 under the independent-observation model.

As Table 9.1 shows, p(c) by an unbiased differencing observer is poorer
than for the independent-observation rule (unsurprising because the latter is
optimal). One implication is that quite high d' values correspond to less-
than-perfect accuracy. This can sometimes be convenient: If participants



Classification Designs for Discrimination 225

FIG. 9.6. ROCs for the same-dif-
ferent (SD) and yes-no (YN) experi-
ments, according to the differencing
model, on (a) linear coordinates, and
(b) z coordinates.

are "too good" in yes-no or 2AFC and the stimuli cannot be adjusted, a shift
to same-different can avoid a ceiling effect.

Response Bias in the Differencing Model. The likelihood ratio
J3d of Different vis-a-vis Same pairs is the easiest bias measure to formulate.
Its value at the point k is the average height of the two Different distributions
divided by the height of the Same distribution. Assuming equal presenta-
tion probabilities for the subtypes of each stimulus class, we have

To develop a criterion-location measure, it is helpful to consider an al-
ternative version of the representation in Fig. 9.5 in which the decision
axis is the absolute value of the difference between the intervals. Only
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positive values can occur, of course; the Same distribution looks like the
right half of a normal distribution; the Different distribution looks roughly
like a normal distribution whose left tail has been cut off. Equation 9.8 still
applies, and k is still the criterion location expressed as a distance from 0.
A better reference point is the location at which ft = 1; the distance from
this point, which is denoted cd, can be calculated by a method given in the
Computational Appendix.

Figure 9.7 shows the isobias curves for cd and ft. The family resemblance
between these measures and the corresponding indexes for the independent-
observation model (Fig. 9.3) and the yes-no experiment (Fig. 2.7) is clear and
encourages a preference for the criterion statistic.3 Data from an auditory ex-
periment (Hautus & Collins, 2003) also support cd over ft.

FIG. 9.7. Isobias curves for (a) crite-
rion location cd> and (b) likelihood ratio
fld according to the differencing model.
(Adapted from Irwin et al., 2001, Figure
2, with permission from the author and
publisher.)

3Two alternative reference points have been explored: csd compares the criterion location to the point
J72, and c*., compares it to the point at which H=F. By the criteria of reasonable isobias curves and fit
to data, the second of these measures is a good one and the first is not (see Hautus & Collins, 2003).
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As with the independent-observation model, calculation of either of
these statistics is a somewhat tedious process, and the resemblance of the
isobias curves to those for c and j3 argues for the heuristic use of those statis-
tics for the purpose of comparing experimental conditions. For our exam-
ple, the values of ln(/3) are 0.32,0.68, and 2.27, and the values of c are 0.29,
0.38, and 0.64. That all values are positive reflects the preponderance of
"same" responses in the data.

Relation Between the Two Strategies

The independent-observation and differencing strategies are both special
cases of a general situation (Dai, Versfeld, & Green, 1996). Consider what
would happen if the correlation between x and y (which is 0 in the diagrams
so far) were substantial—that is, if we had perceptual dependence. We as-
sume that the amount of dependence, represented by the correlation p be-
tween x and y, is the same for all four stimulus sequences.

The upper panel of Fig. 9.8 shows ellipses with correlation p. Because
the correlations (and variances) are the same in all distributions, this repre-
sentation is equivalent to a mean-integral one in which the distributions are
perceptually independent, but the axes intersect at an angle of cos'̂ -p)
(Ashby & Townsend, 1986). The lower panel shows that when p is not 0
(and the angle between the axes not 90°), the spacing between the distribu-
tions is wider along the negative diagonal than along the positive one, an ef-
fect that results from the smaller standard deviation in that direction. The
optimal rule for this case is not straight lines intersecting at a right angle. In
fact the larger p is, the closer the rule is to two parallel lines perpendicular to
the negative diagonal, as in the differencing model.

Some Relevant Results

Our models for same-different performance could be tested in two ways.
One test concerns the shape of the ROC. The observers in the Irwin and
Francis (1995a) categorization experiment on which Example 9a is based
produced ROCs supporting the independent-observation model, but these
researchers have also shown that observers spontaneously adopt either
strategy depending on the stimulus set (Francis & Irwin, 1995; Irwin &
Francis, 1995a, 1995b). The independent-observation model applied when
observers compared letters varying in orientation (correct vs. reversed),
whereas the differencing model was supported by data using color patches
that could vary in any direction in color space (a type of roving design).
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FIG. 9.8. Two equivalent repre-
sentations for perceptual depend-
ence. In (a) each of the bivariate
distributions has a correlation p be-
tween x and y. In (b) the x and y
axes meet at an angle such that
cos(0) = -p.

A second approach asks whether either model correctly describes the
relation between same-different and other discrimination designs, and a
few studies have compared same-different with performance in either
2AFC or yes-no using the differencing model. In a taste study, Hautus and
Irwin (1995) found same-different d' to be just 3% higher than yes-no d'.
Macmillan et al. (1988), investigating a synthetic vowel continuum, found
estimated d'values to be almost exactly equal in same-different and 2AFC
for both fixed and roving procedures. Chen and Macmillan (1990) found
same-different d' to be 6% lower than 2AFC d' in line-length discrimina-
tion. In frequency discrimination, Creelman and Macmillan (1979) found
same-different d' to be 14% lower. Creelman and Macmillan also studied
a continuum of pure-tone octaves differing in relative phase, and for these
stimuli the model failed: d'was 50% higher in same-different. Taylor,
Forbes, and Creelman (1983) speculated about characteristics of these
stimuli that might account for the discrepancy.
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ABX (Matching-to-Sample)

Of the three stimuli presented on an ABX trial, the third is the focus. The
first two stimuli (A and B) are standards, Sl and S2 in a randomly chosen or-
der, and the observer's task is to choose which of the two is matched by the
final stimulus (X). (A parallel notation, AX, is sometimes used for same-dif-
ferent. Again the first interval is not fixed as it would be in a reminder exper-
iment; rather, A is a place holder for either possible stimulus.) Altogether
there are four legal stimulus sequences in ABX, and they are evenly parti-
tioned by the two responses: "A" is the correct answer for <S1S2S1> and
<S2S1S2>, and "B" is correct for <S1S2S2> and <S2S}S}>.

Example 9b: Matching-to-Sample by Chimpanzees

In animal research, the ABX design is called matching-to-sample. Suppose
we want to know whether a chimpanzee can distinguish a circle (52) from an
ellipse (S1,). On each trial, we present the animal with an object (X) and two
keys to press (A and B), each of which is labeled with a "sample" for the
chimp to "match." The samples <AB> are randomly assigned to the two key
positions, and thus are always in one of two orders: <ellipse, circle> or <cir-
cle, ellipsex The third object (X), which may be either shape, is presented
below the two keys. The chimp's task is to press whichever sample key
matches object X. On succeeding trials, both the labels for the sample keys
and the identity of the X stimulus are chosen anew (e.g., Spence, 1937).

Because the samples are presented unpredictably, the chimp must com-
pare object X with the standards to respond correctly—this is the "match-
ing" in "matching-to-sample." If the order were always, say, <circle,
ellipse>, then comparison would not be necessary: The animal might learn
to respond "A" when X was a circle and "B" when it was an ellipse, compar-
ing X with a remembered criterion rather than the sample. Although this is a
perfectly respectable discrimination design—a kind of "reminder"
experiment—it is rarely performed.

Two aspects of matching-to-sample experiments are neglected in this de-
scription. First, the samples may be presented last (an XAB design), or
flanking the test stimulus (AXB), as in Example 9b. Second, a delay may be
imposed between the samples and the test stimulus. We describe optimal
strategies that are unaffected by ordering and assume perfect memory. To
capture the nature of nonoptimal processing, substantive theories must be
added to psychophysical models.

The following table offers some possible data for the chimp experiment.
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Response

Stimulus Sequence

X matches A: ̂ ^S^ or <525,52>

X matches B. <S{S2S2> or <S2SjS,>

"A"

30

10

"B"

20

40

Our analysis requires that all four sequences be equally likely, so that we
can lump together the two sequences for which "A" is the correct response
and the two for which "B" is correct to form the familiar 2 x 2 table. The ob-
servant reader will notice that the numerical data are the same as Example 9a,
a same-different experiment. Hits are now defined as correct matches of Xto
the A sample, false alarms as incorrect matches of Xto the A sample, so that:

In this example, H - .6 and F = .2.
Summarizing discrimination data as a (false-alarm, hit) pair is, as for all

designs, only a start toward finding underlying detectability. Our goal is to
extract from these statistics the difference between underlying single-stim-
ulus probability distributions. As for same-different, there are two contrast-
ing decision rules, one using independent observations and one using
differencing.

The Independent-Observation Decision Rule

In the independent-observation model, the observer has to decide two
things: the order of the first two stimuli (A - B) and the value of the third
(X). Each of these decisions corresponds to a familiar design. The sub-
sequence <AB> can be either <S1S2> or <S2S{> so the first two intervals,
considered by themselves, compose a 2AFC task. The third stimulus X can
be either S1, or S2 so the third interval, considered in isolation, is a yes-no
experiment. Although each ABX trial contains three stimuli, there are
only two independent pieces of information: the order of the samples, or
standards (A and B), and the value of the third stimulus, X. If the internal
variable on which A and B differ is eccentricity, then the intelligent chimp
is interested in two statistics. One is the difference in eccentricity between
A and B (the information needed in 2 AFC), and the other is the eccentric-
ity of X (needed in yes-no).
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These two variables combine independently, producing a space similar
to that for same-different, as shown in Fig. 9.9. (The model described here
is that of Macmillan et al., 1977.) As usual, the figure portrays the likeli-
hood of distributions of the internal representations. The result of compar-
ing (i.e., subtracting) the two standards is plotted on the horizontal axis,
the two possible orderings each generating a distribution, as in the 2AFC
model of chapter 7. The difference distributions have means of -d'and
+d", and variance twice as large as any single-stimulus distribution. The
horizontal axis in the figure has been rescaled by dividing by V2, so that
the means are at -d'N2 and +d'H2. The vertical axis of the figure repre-
sents the X part of a trial, on which a single stimulus drawn from one of the
two distributions is presented.

A full ABX trial yields a value on each axis, and thus a point in the plane
of the figure. Each of the four distributions in the figure arises from one of
the four possible stimulus sequences. If the stimulus sequence is <S2S}S2>,
for example, then (A - B)H2 averages d'N 2, X averages d', and the chimp's
observation is drawn from the distribution at the upper right. To determine a
response, the unbiased observer partitions the decision space, using vertical
and horizontal criterion lines, into regions in which each response is more
likely to be correct. Observations in the shaded area of Fig. 9.9, the upper
right and lower left quadrants of the space, lead to an "A" response, other re-
gions to a "B."

FIG. 9.9. Decision space
for fixed ABX (independ-
ent-observation model).
Probability distributions of
joint occurrence of A - B
differences and X observa-
tions are shown for the four
possible presentation se-
quences. Abscissa values
are scaled by 1/^/2 to equate
standard deviations on the
two axes. The shaded re-
gion leads to the response
"A" and the unshaded re-
gion to the response "B."
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As always, the d' we seek to estimate is the distance between the means
of the Sl and S2 distributions. In the ABX decision space, this is the distance
between the means of the <S2S}S2> and <S2S1S1> distributions along the ver-
tical axis. Because the decision strategy shown in Fig. 9.9 is unbiased, it is
sufficient to calculate p(c), which equals both H and 1 - F, and to consider
just one possible sequence. Proportion correct on an <S2S1S2> trial has two
components, the probabilities of observations in the upper right and lower
left quadrants. Each component probability is the volume over an infinite
rectangular area. The analysis parallels that for the same-different design
earlier in the chapter, and proportion correct can be expressed as follows:

Equation 9.11 can be used to find proportion correct from d'. What the
investigator usually wants is the inverse function, which calculates d' from
proportion correct. Table A5.3, based on atable in Kaplan et al. (1978), pro-
vides a solution to this problem.

The chimp in our matching-to-sample example neglected to adopt the
unbiased decision rule shown in Fig. 9.9; that is, the animal's likelihood-
ratio criterion is some value other than 1.0. Boundaries in the decision
space for which likelihood ratio is constant but not equal to 1.0 resemble
those calculated for the same-different design (see Fig. 9.2). For each pos-
sible value of likelihood ratio, the hit and false-alarm rates can be com-
puted by numerical integration. When this is done for many values of
likelihood ratio, an ROC curve results. It turns out that the ROC has unit
slope, so sensitivity depends only on z(H) - z(F), and (as was true for
same-different) d' can be determined by a two-step procedure. First, find
z(H) - z(F) using Table A5.1 and then convert to d' by using Table A5.3.
For our chimps, z(H) - z(F) = z(.60) - z(.20) = 1.095. According to Table
A5.3, d' = 1.57. A given performance level, notice, is more difficult to
reach in ABX than in yes-no.

The three types of bias measures discussed in chapter 2 can all be com-
puted from ABX data. Absolute and relative criterion location are mim-
icked by 0.5[z(H) + z(F)] with or without dividing by z(H) - z(F). The
association is not precise because the idea of criterion location is, as can be
seen in Fig. 9.9, a two-dimensional one. The third measure, likelihood ratio,
is conceptually simple but computationally unpleasant. Remember that, as
in the one-interval experiment, all these measures convey exactly the same
information when sensitivity is constant; when it is not, a choice must be
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made along the lines sketched in chapter 2. Bias measures derived explicitly
for the ABX task have not been developed.

Roving ABX: Another Differencing Model

The fixed versus roving distinction applies to ABX. For our chimpanzee,
the issue is whether every trial contains only a particular pair of circle and
ellipse or whether trials with ellipses of different degrees of eccentricity
might be intermixed.

In the roving design, the decision rule illustrated in Fig. 9.9 will not
work. Suppose there are three possible stimuli, a circle, a broad ellipse, and
a narrow ellipse, and a particular trial happens to contain the triplet <circle,
broad ellipse, broad ellipsex According to our model, the first two intervals
are subtracted, giving, on the average, a negative value—we are in the left
half of Fig. 9.9—but which quadrant are we in? The observer does not know
whether an obtained value of X for the third interval should be treated as a
large value of eccentricity (relative to a circle) or a small one (relative to a
narrow ellipse), and thus does not know whether to respond "A" or "B."

A better decision procedure for the roving design (first described by
Pierce and Gilbert, 195 8) is to compare each sample A and B directly with X.
As for same-different, we contrast this differencing rule with the independ-
ent-observation strategy. The differencing participant calculates two differ-
ences, A - X and B-X, and then faces the decision problem shown in Fig.
9.10. Because both axes depend on the third (X) interval, they are corre-
lated, and the distributions are elliptical. For the unbiased observer,

As with the independent-observation strategy, varying the critical value of
likelihood ratio generates an ROC with approximately unit slope. This means
that z(H) - z(F) has the same value no matter what the criterion is. Table A5.3
contains a column for finding d' in the ABX task, assuming the differencing
rule. If the false-alarm/hit pair (.2, .6) occurs in a roving ABX experiment, the
corresponding true d' is 1.76. For all values of z(H) - z(F), the differencing
rule gives a higher value of d' than the independent-observation rule (Eq.
9.11). If the stimuli (and therefore d') are held constant, proportion correct is
lower according to the differencing model because of the additional variance
contributed by doing two subtractions rather than one.

The alternatives for measuring bias are the same as for the independent-
observation model.
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FIG. 9.10. Decision
space for roving ABX
(differencing model).
Probability distributions
of joint occurrence of A -
X and B - X values are
shown for the four possi-
ble presentation se-
quences. Elliptical equal-
probability contours re-
sult because the axes are
correlated positively:
The observed value of the
third presentation, X,
contributes to each value.
The shaded region leads
to the response "A" and
the unshaded region to
the response "B."

Some Relevant Results

Do these models successfully account for performance in the ABX design?
Hautus and Meng (2002) conducted a series of ABX experiments in which
observers discriminated Gaussian distributions of circle size, number
value, and tone amplitude. The use of distributions allowed the observers'
decision bounds to be estimated (see chap. 12 for more detail on this experi-
mental approach). In all experiments, the differencing strategy provided a
good description of these bounds, although extensive experience and feed-
back should have permitted use of the optimal independent-observation
strategy. Hautus and Meng speculated that differencing was preferred
because of its minimal cognitive demands.

Two experiments that have compared ABX and 2AFC performance are
modestly encouraging. Creelman and Macmillan (1979) found the ratio of
d' values to be 0.85 for auditory frequency and 1.11 for auditory phase (for
both dimensions, the ABX/yes-no ratio was substantially higher).
Macmillan (1987) found a ratio of 0.98 for a pluck-bow continuum.

Threshold Analysis

"Nonparametric" (threshold) analysis of ABX grows from the assumption
of discrete internal states, as delineated in chapter 4. In this view (Pollack &
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Pisoni, 1971), each of the three presentations on a trial is covertly classified
as either S1, or 52, and a decision to respond "A" or "B" is based on these clas-
sifications. Proportion correct is related to pl and p2, the probabilities that
stimuli S1, and S2 are covertly classified as S2, by

The flaws in proportion correct as a performance measure, outlined ear-
lier for other designs, also undercut its use to summarize ABX data. Specifi-
cally, the ROC implied by this measure is strongly nonlinear on z
coordinates. Because bias (toward the "B" response) is common in tempo-
ral ABX, this is a significant shortcoming. For a constant sensitivity, p(c) is
smaller for biased than for unbiased responding, so it is easy to mistake
criterion changes for sensitivity effects.

A comparison of Equations 9.5 and 9.13 reveals that, according to
threshold theory, the value predicted for proportion correct in same-differ-
ent is exactly the same as in ABX. Experiments that have compared the two
paradigms (Creelman & Macmillan, 1979; Pastore, Friedman, & Baffuto,
1976; Rosner, 1984) generally have not supported this prediction, but have
instead found p(c) to be higher in ABX, consistent with SDT analysis.

Oddity (Triangular Method)

Another three-stimulus task is the oddity design. The observer is presented
with a "triangle" <ABC> of stimuli, two of which are alike, and is asked to
locate the "odd" one, which may be any of the three. The identity of the mi-
nority stimulus is not known to the observer and can be either Sl or S2. There
are six possible stimulus sequences: <S1S2S2> and <S2S1S]>, for both of
which the correct response is "A"; <S2S1S2> and <S1S2S1>, for which the an-
swer is "B"; and <S2S2S{> and <S1S1S2>, for which the answer is "C."

Oddity offers a new complication: Three rather two responses are al-
lowed. To our knowledge, no models for characterizing response bias have
been developed for this design. Oddity is not restricted to three intervals, but
could include any number (although "triangular method" would be a poor
description of four-interval oddity). In practice, three interval is the most
popular variant.

Example 9c: Taste Discrimination

Oddity is a frequently used design in "sensory evaluation" experiments
conducted by food scientists to measure sensitivity to differences in taste
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and smell. We consider an enjoyable experiment of this sort, in which tast-
ers attempt to distinguish between two wines: a Burgundy and a claret. Pro-
fessional wine tasters, it should be said, would be unlikely to use this
method because it does not require that they be able to say which wine was
which. The oddity task is suitable for the enthusiastic novice, who might be
learning the aspects of taste and smell that differentiate wines, but still
would find identification of the dimensions of difference difficult.

On each trial, the taster receives three wine samples, two of one type and
one of the other. Whether the odd glass has Burgundy or claret is randomly
decided for each trial, as is the location of the odd glass among the three. Be-
cause there are six possible stimulus sequences and three responses, the
data from this study are best summarized in a 6 x 3 matrix, but in practice the
overall proportion correct is almost always reported. Let us suppose our
tasters, mimicking the results of an experiment with "aqueous solutions of
simple compounds" by Byers and Abrams (1953; described by Frijters,
1979a), are correct on 21 of 45 trials.

Measuring Sensitivity

A decision rule for the oddity task has been described by Frijters (1979b).
The observer compares each pair of presentations in the triplet, determines
the pair with the smallest difference, and chooses the response correspond-
ing to the remaining stimulus. Thus, if glasses A and B are most similar in
taste, glass C is most different from the others, and response "C" is given.
Because the observer knows nothing of the dimensions of judgment, the ab-
solute differences are used. In the language of our other models, this is a dif-
ferencing, not an independent-observation rule.

The problem for the observer is portrayed in Fig. 9.11. The dimensions
of the space are two of the differences computed by the observer, those be-
tween the effects of Intervals A and B and between Intervals B and C. Each
triplet is composed of samples from 5, (Burgundy) and S2 (claret). The dis-
tance between a single S{ stimulus and a single S2 is, as always, d'. Hence,
the six possible sequences are readily located in the space. The distributions
corresponding to each stimulus are not circular because both axes depend
on stimulus presentation B, so that the two dimensions covary negatively.

The taster's decision rule is this: Find the smallest of the three differences
between pairs of stimuli, and select the response corresponding to the stim-
ulus that is not in that pair. The decision boundaries arising from this rule
are shown in Fig. 9.11. At first, it may seem surprising that the areas allo-
cated to the three responses are not equal. The area in which response "B" is
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FIG. 9.11. Decision space
for the oddity (ABC) task.
The joint probability distri-
butions of A - B and B - C
observations for the six pos-
sible presentation se-
quences are shown. Ellipti-
cal equal-probability con-
tours result from correlation
between the axes (B con-
tributes to both). Decision
boundaries separate un-
equal areas of the decision
space because of this asym-
metry. The region with ver-
tical shading leads to re-
sponse "A," the dark region
to response "B," and the un-
shaded region to response
"C."

appropriate is smaller only because of the covariance noted earlier; the
model does not predict any asymmetry in response rates.

Craven (1992) calculated sensitivity as a function of proportion cor-
rect for this decision rule and its extensions to m-alternative oddity, m
ranging from 3 up to 32. The results are given in Table A5.5. An observer
who correctly chooses the odd wine on 21 of 45 trials [p(c) = .47] has a d'
of 1.31.

This rule is clearly in ttfe differencing family; is there an independ-
ent-observation model for tfijs paradigm? Versfeld, Dai, and Green
(1996) derived predictions for §uph a model. As in the independent-ob-
servation rule fpr the same-different paradigm, the observer does not
subtract values, but instead computes the likelihood of the multi-interval
observation under each of the two hypotheses and bases a decision on
these likelihoods. For m = 3, the representation is thus four-dimensional
(the three intervals plus likelihood), and we do not attempt to illustrate it
here. Table A5.6 gives values of p(c) for both the differencing and inde-
pendent-observation models, for m = 3, 4, and 5. For our wine taster, a
p(c) of .47 has a d' of 1.10; this is lower than under differencing assump-
tions because an optimal model requires a lower d' than a nonoptimal
one to reach any given level of performance.



238 Chapter 9

Threshold Analysis

Proportion correct by an unbiased observer can be calculated from thresh-
old assumptions (Pollack & Pisoni, 1971). If/?, and/?2 are the probabilities
of covertly identifying Sl and S2 as being S2, then

Performance according to this model is intermediate between the differenc-
ing and independent-observation rules. If p2 = 1 -p{, then Equation 9.14 can
be solved for/?2 and this value converted to d''. Forp(c) = .47, as in the run-
ning example, d' - 1.20.

Summary

In a same-different experiment, a pair of stimuli is presented on each trial,
and the observer decides whether its two elements are the same or different.
Two stimuli generate four possible stimulus pairs in such an experiment.
The optimal strategy for the observer is to treat the two observations inde-
pendently. Even with this approach, the task is more difficult than yes-no.
When the stimulus level is roving, the optimal strategy may not be available,
and a differencing rule may be used instead. In this approach, only the dif-
ference between the two observations on a trial is used in making a decision.
Performance is poorer than with the independent-observation strategy, es-
pecially in remote regions of ROC space.

In an ABX experiment, three stimuli are presented on each trial; the third
presentation matches one of the first two, and the observer's task is to decide
which. With two stimuli, four stimulus triplets are possible in this experi-
ment. The optimal independent-observation strategy is to independently as-
sess (a) the difference between A and B and (b) X. When stimulus level is
roving, the optimal strategy may not be available, and a differencing rule
may be used instead. In this approach, two differences contribute to the de-
cision: A - X and B - X. Performance is poorer than with the independ-
ent-observation model.

In the three-alternative oddity task, two of the three presentations are the
same, and the observer must select the different one. Six stimulus triplets
are possible. The differencing model proposes that the observer finds the
smallest of the three differences and chooses the response corresponding to
the stimulus that does not contribute to it. The independent-observation
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Computational Appendix

Finding d'From Unbiased p(c) in Same-Different
Independent-Observations Model

From Equation 9.2,

This equals

p(c\D I0 = 2[0(</72)]2 - 2<D(</72) + 1 .

Solving for O(W72) by using the quadratic formula leads to:

Then apply the z transformation to both sides and multiply by 2 to get

which is Equation 9.3.

Relation Between Yes-No and Same-Different
in Threshold Theory

From Equations 9.5 and 9.6,

and

Solving the second equation for p2 -pl gives
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model requires covert identification of all presentations. Both models
assume unbiased responding.

Nonparametric (threshold) analysis—use of proportion correct to sum-
marize data—is identical with the independent-observation approach for an
unbiased observer in both same-different and ABX. In the oddity task, it
predicts performance intermediate between the models. For biased observ-
ers, threshold assumptions militate against the use of the model in all tasks.

Methods appropriate for finding sensitivity in these paradigms are given
in Chart 6 of Appendix 3, those for finding response bias in Chart 7.
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Substituting into the expression for /?(c)same.different,

Expanding this yields

which is Equation 9.4.

Criterion Location Measure cd in Same-Different
Differencing Model

The likelihood ratio in the differencing model, as given in Equation 9.9, can
be rewritten:

where cosh is the hyperbolic cosine. The value of the decision axis at which
($d=l can be found be solving this equation for k:

where cosh"1 is the inverse hyperbolic cosine. To find cd, first estimate k for
the data at hand from Equation 9.8 (which requkes iteration), then subtract
from it the value in Equation 9.16.
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Problems

9.1. Interpret the following stimulus-response matrixes (repeated from
Problem 7.1) as arising from a same-different experiment. (Different
pairs correspond to the top row, "different" responses to the left-hand
columns.) Calculate d' assuming (a) the independent-observation
model to be correct, and (b) the differencing model to be correct.

Matrix A

12 8

8 12

Matrix B

18 2

14 6

Matrix C

4 16

1 19

Matrix D

9 6

2 1

9.2. You observe H= 1 - F = .9 in a yes-no experiment, and you con-
struct a same-different experiment with the same set of stimuli. If
the observer continues to be unbiased, what do you expect p(c) to
be according to the threshold model? The independent-observation
model? The differencing model?

9.3. Repeat Problem 9.2, except now as sume that the observer is not un-
biased in same-different, but has F - .05.

9.4. The following table shows data from a roving same-different ex-
periment. Assuming the differencing model, find d' and cd for both
the <5,52> and <S2S3> pairs. Which is weighted more heavily in
these estimates, Same trials or Different trials? Looking at the en-
tire data matrix, find/?(c)* and compare it to the average of the hit
and correct-rejection rates. Why are these not the same?

Response

Stimuli

<£,£,>

<S,S2>

<S2S{>

<S2S2>

<S2S3>

<S,S,>3 2

<V3>

"Different"

6

12

10

4

14

12

2

"Same"

14

8

10

16

6

8

18
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9.5. You observep(c) = .95 (symmetric bias) in a fixed same-different
task. What is d'l What would you predict p(c) to be in yes-no?
2AFC?

9.6. In the differencing model for same-different, the observer's deci-
sion is assumed to be based on the difference between the observa-
tions from the two intervals. Can you devise a decision rule that
uses the sum of the observations? How well will someone using this
rule perform compared with someone using the differencing rule?

9.7. Interpret the matrixes of Problem 9.1 as arising from an ABX ex-
periment. (A = X corresponds to the top row, "A" responses to the
left-hand columns.) Calculate d' assuming (a) the independ-
ent-observation model to be correct, and (b) the differencing
model to be correct.

9.8. Suppose d' = 1 in a fixed-level experiment and the participant is
unbiased. What is p(c) in 2AFC, ABX, same-different, and odd-
ity? Repeat for d' = 2. Is the ordering of conditions the same at
both levels?

9.9 Suppose d' = 1 in a roving-level experiment and the participant is
unbiased. What isp(c) in 2AFC, ABX, same-different, and oddity?
Repeat for d' = 2. Is the ordering of conditions the same at both lev-
els? The same for roving as for fixed paradigms?

9.10. Repeat Problems 9.8 and 9.9, but assume that F = . 1 and find H for
each paradigm.
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Identification of Multidimensional
Objects and Multiple Observation
Intervals

In an identification experiment,1 a single stimulus from a known set is pre-
sented on each trial, and it is the observer's job to say which it was—to iden-
tify it. The purposes of such experiments vary, but usually include obtaining
an overall index of performance, as well as a measure of sensitivity for each
stimulus pair and bias for each response.

If there are only two stimuli, identification is simply the yes-no task of
chapters 1 and 2, and performance can be summarized by one sensitivity
and one bias parameter. The nature of the stimuli is unimportant—it does
not even matter if they differ along one physical dimension (lights of differ-
ent luminance) or many (X-rays of normal and diseased tissue). With more
than two stimuli, the task is easily described: One stimulus from a set of m is
presented on each trial, and the observer must say which it was. From the
participant's point of view, there is nothing more to say, but to extend the
analysis to more than two stimuli the dimensionality of the representation
must be known. If all stimuli differ perceptually on a single dimension, then
m - 1 sensitivity distances between adjacent stimuli and m - 1 criterion lo-
cations can be found along it, as we saw in chapter 5. Perceptual distances
for all other pairs of stimuli are easily calculated as the sum of the stepwise
distances between them. To characterize overall performance, it is natural
to add sensitivity distances across the range.

lfThe term identification has another meaning in speech perception, where it describes what we have
termed a two-category classification experiment, in which psychometric functions are collected. Para-
digms like those in this chapter are sometimes distinguished by being termed absolute identification.

245
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The assumption of unidimensionality is a restrictive one, and in this
chapter we consider two multidimensional cases. In the first, all members of
the stimulus set are independent of each other and may be thought of as be-
ing processed by different channels. In our perceptual-space models, each
stimulus produces a mean shift along a different dimension. An important
application is to the special case in which identification is of intervals in
m-alternative forced-choice experiments. In a second experimental situa-
tion, the feature-complete factorial design, values on each of two or more
dimensions are manipulated independently. This design is useful in assess-
ing interactions between dimensions, a topic we introduced (using simple
discrimination experiments) in chapter 8.

Object Identification

Example lOa: Letter Recognition

Consider a letter recognition task: The observer fixates the center of a video
terminal on which is displayed, briefly, a single letter followed by a "mask"
that serves to disrupt retinal storage of the stimulus. One of just four letters
can occur: N, O, P, or S. The task is to press a computer key corresponding to
the letter shown. Let us suppose that an observer obtains p(c) = .5 in this task.

We adopt the simplifying assumption that these four letters are processed
by independent channels. (Although this is too strong a requirement, it is
certainly better than assuming that the letters differ along a single dimen-
sion.) The decision space contains m = 4 distributions, each removed from a
common origin in a different dimension. Using the notation of previous
chapters, the m sequences to be distinguished can be written

, and <N1N2N3S4>.

Sensitivity (Assuming No Bias)

The simplest (and most optimistic) calculations assume not only that each
stimulus activates a separate, orthogonal channel, and that each is equally
far from the Null stimulus N, but also that there is no bias. In this case, p(c)
can be used to summarize accuracy. An SDT analysis that relates the pro-
portion correct to d' was developed by Elliott (1964) and improved by
Hacker and Ratcliff (1979). Table A5.7 makes the latter calculations avail-
able. For each value of proportion correct, the columns show the associated
value of d' for different numbers of alternatives. For our observer, p(c) = .5
and m = 4 implies a d' of 0.84. The m = 2 column gives values for the
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two-choice experiment. For example, if p(c) = .75 when m = 2, then d' =
0.95. The table shows negative values of d' for/?(c) less than 1/m, because to
score reliably below chance the observer must know enough systematically
to avoid the correct alternative.

For Choice Theory, again assuming no bias, ln(cu) can be calculated us-
ing an equation given by Luce (1963a, p. 140):

Notice that ln(a) = 0 when/?(c) = 1/m (the chance level) and reduces to the un-
biased case of Equation 7.3 when m = 2. According to Equation 10.1, a score
of .5 in 4AFC and a score of .75 in 2AFC each indicate that ln(a) equals 0.78.

In the general Choice Theory model, sensitivity is related to the product
of the odds ratios that, for each cell, compare the probability of the response
actually given to the probability of the correct response:

The product n is over all cells in the stimulus-response matrix. When i =j,
the ratio P(R]S)/P(R\S) equals 1 and may be ignored, so the product is ef-
fectively over all the nondiagonal cells (those in which / =£/). Equation 10.1
is the special case in which all the proportions of correct responding P(Ri\S)
are equal top and all proportions of incorrect responding P(R}\S) (for i *j)
are equal to (1 -p)l(m - 1).

A Model Assuming "Bias Constancy":
The Constant-Ratio Rule

Luce (1959) developed Choice Theory from an axiom about the relation
among recognition tasks using different-sized subsets from a common uni-
verse (see chap. 4). According to the choice axiom, the ratios of response
frequencies in a confusion matrix do not depend on the number of stimuli in
the experiment. This constant ratio rule (Clarke, 1957) can be applied, for
example, to the data from Example 5f, in which the four stimuli were tones
differing in intensity. Table 10.1 gives the number of responses out of 50
presentations for each stimulus in a set of four.
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If we were to eliminate Stimulus 4, according to the constant ratio rule
we should find the results in the lower part of Table 10.1. The proportions in
this table are calculated by dividing original frequencies by the total fre-
quency in the first three columns of each row. The response proportions for
Stimulus 3, for instance, are equal to the frequencies 11, 10, and 12, each
divided by their total, 33.

TABLE 10.1 Results of an Identification Experiment
With Four Stimuli and Four Responses

Response

(a) Original Data

Stimulus

1

2

3

4

1

39

17

11

3

2

7

12

10

5

3

3

10

12

9

4

1

11

17

33

(b) Proportions in Three-Stimulus Identification Predicted
by the Constant Ratio Rule

1

2

3

1

.80

.44

.33

2

.14

.31

.30

3

.06

.26

.36

Because the constant ratio rule can extract a 2 x 2 matrix from a larger
one, it can be used to calculate sensitivity for discriminating any stimulus
pair. In an experiment involving only Stimuli 2 and 3, the constant ratio
rule predicts P(R2\S2) = 127(12 + 10) = .55 and P(R2\SJ = .45. Either SDT
or Choice Theory can be used to calculate sensitivity. The predicted value
of ln(a) is ln[(.55 x .55)/(.45 x .45)]1/2 = 0.2. Predicted d'2 3 = z(.55) -z(.45)
= 0.25—lower than that predicted under unidimensional assumptions in
chapter 5, where we found d'23 = 0.4 for this example. Hodge (1967;
Hodge & Pollack, 1962) concluded that the constant ratio rule was more
successful when applied to multidimensional than one-dimensional stim-
ulus domains.

The constant ratio rule is a variant of Choice Theory, in which bias is pre-
sumed not to depend on the stimulus subset being studied (Luce, 1963a).
This is a strong and (Luce suggested) uncongenial assumption. One way in
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which the assumption could be correct is for participants to be unbiased in
all conditions.

A Complete Model

Bias assumptions can be avoided by using a more systematic approach. A
complete Choice Theory solution, which calculates bias parameters for
each response and discriminability measures for each pair of stimuli, is pro-
vided by Smith (1982b, Appendix B).

Interval Identification: /w-Alternative Forced Choice
(mAFC)

Now that we know how to model the identification of the correct object in a
set of any size, it is easy to translate to the identification of one interval in
which a stimulus might be presented. The analogous task is one in which
there are m spatial or temporal intervals, one containing S2 and the others 5r

The analytic problem is formally the same as for identification of objects,
just as the same-different discrimination task was formally the same as di-
vided attention.

Example lOb: Multiple-Choice Exams

An obvious educational application of mAFC is the venerable multiple-
choice exam, in which one correct and m -1 incorrect choices are provided
for each question. We wish to estimate true sensitivity for a student for
whom/?(c) in a four-alternative exam is .5, perhaps for comparison with an-
other student who scores .75 on a two-alternative version. To make such
comparisons possible, our models must apply to any number of alternatives.

Representation and Sensitivity

In the initial statement of the 2AFC problem (Fig. 7.1), each interval corre-
sponded to a separate dimension in the decision space. This representation
is also appropriate for m > 2 intervals, so there are as many dimensions in the
representation as there are intervals in the task. The optimal unbiased strat-
egy is to choose the interval with the largest observation. In 2AFC, this rule
is equivalent to basing the decision on A - B and using a criterion of 0, so the
task can be analyzed as a comparison design. No such shortcut is possible
for m > 2.



250 Chapter 10

The models of the previous section apply directly to the raAFC problem,
and the assumptions of equal sensitivity and independent effects for all alter-
natives are apparently quite reasonable. If we are still willing to assume unbi-
ased responding (a less compelling assumption), we can use Equation 10.1 to
convert p(c) to a distance measure. The calculations of the previous section
allow estimation of SDT and Choice Theory sensitivity parameters. Thus,
p(c) = .5 in4AFC corresponds to ad' of 0.84 and aln(a) of 0.78. According to
SDT, the comparison student for whom/?(<:) = .75 in 2AFC is superior: d" =
0.95 (Eq. 7.1). According to Choice Theory, ln(a) = 0.78 for both students.

For forced-choice experiments with unbiased decision rules, distribu-
tions consistent with Choice Theory are not logistic, but double-exponen-
tial (Yellott, 1977). Tables of mAFC performance for logistic distributions
have been published as well (Frijters, Kooistra, & Vereijken, 1980).

Response Bias in mAFC

The Choice Theory model for sensitivity given by Equation 10.2 also speci-
fies m -1 bias parameters. Each response R. has a corresponding bias bf but
only the ratios between biases can be estimated:

The product is over all possible stimuli Sk.
As we have seen, bias is customarily ignored in analyzing mAFC data.

That it does not therefore go away is shown in some 4AFC experiments of
Nisbett and Wilson (1977), whom we quote:

In both studies, conducted in commercial establishments under the guise
of a consumer survey, passersby were invited to evaluate articles of cloth-
ing—four different nightgowns in one study ... and four identical pairs of
nylon stockings in the other .... [T]he right-most object in the array was
heavily overchosen. For the stockings, the effect was quite large, with the
right-most stockings being preferred over the left-most by a factor of al-
most four to one.(p. 243)

This study provides an interesting insight into the unconscious nature of re-
sponse bias:

When asked the reasons for their choices, no subject ever mentioned
spontaneously the position of the article in the array. And, when asked di-
rectly about a possible effect of the position of the article, virtually all
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subjects denied it, usually with a worried glance at the interviewer sug-
gesting that they felt either that they had misunderstood the question or
were dealing with a madman, (pp. 243-244)

Nisbett and Wilson's experiments were unusual in that d' sometimes
equaled 0, so that there was no basis for choice in the task they put to their
participants. In other conditions, however, the stimuli really did differ. As in
2AFC, proportion correct is highest when bias is least, so the effect of asym-
metrical responding is to depress measures of sensitivity that ignore the
possibility of bias.

Interval effects were found in psychophysical tasks by Johnson, Watson,
and Kelly (1984), who observed that/?(c)was higher for the third interval of a
3 AFC design than for the first. Such a result could arise from either bias or sen-
sitivity changes across intervals. Bias effects can be diagnosed by application
of Equation 10.3; to uncover sensitivity effects requires a more complex model.

mAFC Compared With 2AFC and Yes-No

Do our equations and tables for mAFC accurately describe the relations
among two-, three-, and higher-choice paradigms? We know of few data
that address this question, but in an early experiment on tone detection
Swets (1959; cited in Green & Swets, 1966, pp. 111-113) found perfor-
mance to be well predicted by SDT for up to eight choices. Equation 10.1
makes similar, and thus equally compelling, predictions for Choice Theory.

The Boundary Theorem. Detection theory models make, as al-
ways, distributional assumptions. Shaw (1980) showed that if the decision
rule is unbiased, a lower limit can be placed on mAFC performance regard-
less of the shape of the underlying distribution. Her boundary theorem re-
lates this lower limit, in mAFC, to 2AFC performance by a generalization of
the area theorem:

Table 10.2 compares this lower bound with the level of performance predicted
from SDT. For moderate to high sensitivities, the two values are quite close.

Threshold Measures (Correction for Guessing) in mAFC

We saw earlier that 2AFC data could be "corrected for guessing" (Eq. 7.8).
An equivalent correction has also been applied to mAFC; because the
guessing rate is 1/m,
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TABLE 10.2 Gaussian Predictions (Table A5.7)
and Boundary-Theorem Limits (Eq. 10.4) for Proportion
Correct in mAFC by an Unbiased Observer

<?

d'
0.5

1.0

2.0

3.0

j
mAFC ~~

£^C'2AFC Gaussian Boundary

.64

.76

.92

.983

rtc)-i
1— *-

.48

.63

.865

.969

mp(c) — 1

m-1

.41

.58

.85

.966

Gaussian

.39

.55

.82

.956

Boundary

.26

.44

.78

.950

(10.5)

This correction has been applied to standardized multiple-choice examina-
tions of the sort used for college admission. The idea, apparently, is that stu-
dents who answer more questions are probably guessing more often on
problems that they cannot solve, and that the "correction" will rectify an
otherwise unfair advantage of this strategy.

As we saw in chapter 4, the correction for guessing implies a threshold
model. In the context of multiple-choice exams, this means that students are
assumed either to know the answer or guess at random. This denial of the
possibility of partial information will strike the experienced test taker as un-
realistic. Often several alternatives in a four-alternative test item can be re-
jected, and even a completely random choice among the others will lead to a
score above chance. Indeed Equation 10.5 expresses a quite different rela-
tion among mAFC paradigms from our detection theory models. For exam-
ple, q is .50 for p(c) = .75 in 2AFC, but equals only .33 for p(c) = .50 in
4AFC; recall that both SDT and Choice Theory assess these performances
as quite similar. Because the sparse existing data (Swets, 1959) support the
detection theory models, they reject the correction for guessing, which
should probably not be used.

Comparisons Among Discrimination Paradigms

With the treatment of mAFC just completed, we have covered the last dis-
crimination design in the book, and the time has come to compare them all.
As measured by d', all tasks yield the same outcome—or so detection the-
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ory asserts. What differences should we expect among paradigms if perfor-
mance is measured by proportion correct?

The "Best" Paradigm?

We do not need to compare all paradigms and models with each other. The
rating design can be ignored because performance in that experiment is the
same as in yes-no. We arbitrarily omit raAFC and oddity paradigms with
more than three intervals. The remaining designs are: yes-no, 2AFC, 3 AFC,
same-different, ABX, and oddity. Except for yes-no, any design can be used
in either a fixed or roving experiment, and some designs have distinct mod-
els (independent-observation versus differencing) for these two applica-
tions. We consider fixed and roving experiments separately.

To determine p(c) for these paradigms, we assume that observers are un-
biased—we must make some assumption about bias, and we have already
adopted this one in our analysis of 3AFC and oddity. Figures 10.1 (for fixed
experiments) and 10.2 (for roving) show the results for d' between 0 and
about 5. The designs vary greatly in performance level as measured by p(c),
and the magnitudes of the differences depend on d'. Performance in ABX is
well below that for yes-no at low sensitivity levels, for example, but very
close when d' is large. Three-interval forced-choice, in which p(c) is per-
force lower than in yes-no when d' is small, outperforms that task easily at
high accuracy levels.

Experimenters frequently measure discrimination p(c) for stimulus dif-
ferences of varying size, generating a "psychometric function," as dis-
cussed in chapter 5. That the curves in Figs. 10.1 and 10.2 are not linearly
related to each other implies that the shapes of these psychometric functions
differ across paradigms. Our models offer a solution: Plots of d' versus
stimulus difference should be invariant with paradigm.

The Importance of Knowing What the Design Is

It may take a little thought to be sure what design has actually been used in
someone else's discrimination experiment or even one's own. One confus-
ing factor is the lack of agreement on terminology. For example, "same-dif-
ferent" is used by some writers to refer to what we have called "reminder"
experiments, and "forced-choice" has been used to describe experiments
other than mAFC simply because the observer is obliged to respond on ev-
ery trial. A second difficulty is in deciding among competing models for the
same paradigm—for example, independent-observation versus differenc-
ing strategies—when either is possible.
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FIG. 10.1. Proportion correct as a function of d' for six different experimental par-
adigms with fixed stimuli. Independent-observation models are assumed for ABX,
same-different, and oddity. Unbiased responding is assumed for all paradigms.

FIG. 10.2. Proportion correct as a function of d' for five different experimental
paradigms with roving stimuli. Differencing models are assumed for ABX,
same-different, and oddity. Unbiased responding is assumed for all paradigms.
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A third problem arises when investigators invent paradigms that appear
new, but (at least as far as detection theory is concerned) are not. For exam-
ple, consider the design (discussed in chap. 7) in which the possible presen-
tations are <AABA> and <ABAA>. The observer is instructed to decide
whether the second or third interval is unlike the others. Analytically, the
end intervals are reminders and are ignored by an optimal participant, so
this design is simply 2AFC. Of course it is an empirical question whether
performance will be the same: Perhaps the presence of the end intervals and
the instructions will serve to encourage inappropriate difference judgments
and lower performance, or perhaps the reminders will reduce memory
variance and actually improve accuracy.

Occasionally an incorrect characterization of the paradigm leads to sub-
stantive confusion. In chapter 9, we mentioned an experiment by Byers and
Abrams (1953) in which proportion correct was .47 in a three-alternative
oddity task. These investigators reported a "paradox": When the tasters
were presented a second time with the 24 triplets to which they had not re-
sponded correctly and were asked to choose the weakest or strongest stimu-
lus (whichever was appropriate), they were successful in 17 (71%) of these
cases. The paradox lay in the ability to give relatively accurate reports to
triplets that had previously not been discriminable.

The paradox depends on the assumption that incorrect responses are
based on a total lack of knowledge (see Frijters, 1979b). The use of p(c) to
compare the original oddity task with the later 3 AFC introduces a threshold
model. According to our continuous differencing model (Table A5.5), the
sensitivity corresponding to/?(c) = .71 is d' = 1.28, in good agreement with
the d' of 1.31 found earlier for oddity. Our analysis leads to a prediction:
The same level of performance, 71%, should be found for the 21 stimulus
triplets that were correctly responded to in the initial oddity task.

Some final thoughts on comparing discrimination paradigms are con-
tained in this chapter's Essay.

Simultaneous Detection and Identification

In some situations, detection and identification are both interesting. (Obvi-
ously, the detection must be under uncertainty or else there is nothing to
identify.) In the laboratory, participants may try to detect a grating that has
one of several frequencies and also to identify which grating was seen. In
eyewitness testimony, the witness must both "detect" whether a perpetrator
is present (in the lineup, or in court) and also identify which person that is.
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Example We: Measuring Detection and Identification
Performance

The next example mimics the X-ray detection/spatial identification task of
Starr, Metz, Lusted, and Goodenough (1975). Possible data are shown in Ta-
ble 10.3a. Two of the table's three rows are familiar from chapter 3: The top
row gives the proportion of responses (R) in each rating category when a
shadow was present in one quadrant of the X-ray stimulus, and the bottom
row gives false-alarm data from trials on which no signal was presented. The
second line of the table, which is new to this design, gives the proportion of
Signal trials that were assigned a particular rating and whose location was
correctly identified. The notation P(R&C\S) means "the probability of the rat-
ing and a correct recognition, given a Signal presentation."

Cumulating these proportions to give the coordinates of an ROC, as in
chapter 3, leads to Table 10.3b, and to two curves, for detection and com-
bined detection/identification. There is only one set of false-alarm probabil-
ities—it makes no sense to ask the likelihood of being right in identification
when no signal is present. Figure 10.3 shows the two performance curves:
the familiar ROC and (below it) the new identification operating character-
istic (IOC).

TABLE 10.3 Detection and Detection/Identification Responses

(a) Proportions for Five Rating Categories

Rating

P(R\S)

P(R&C\S)

P(R\N)

5

.10

.08

.01

4

.25

.24

.07

3

.26

.21

.15

2

.25

.10

.42

1

.14

.06

.35

(b) ROC and IOC Curve Coordinates Accumulated Across Rating Categories

P(R\S) .10 .35 .61 .86 1.00

P(R&C\S) .08 .32 .53 .63 .69

P(R\N) .01 .08 .23 .65 1.00

Relation Between Identification and Uncertain Detection

An independent-observation model can be used to predict the identification
operating curve of Fig. 10.3 from the uncertain-detection ROC
(Benzschawel & Cohn, 1985; Green, Weber, & Duncan, 1977; Starr et al.,
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FIG. 10.3. ROC [P(R\S)]
and IOC [P(R&C\S)] for the
data of Table 10.3. The IOC
(identification operating
characteristic) plots the pro-
portion of trials on which
identification and detection
responses were both correct.

1975). Within this model, there is a natural decision rule: The channel with
the maximum output determines the identification response and is com-
pared to a criterion to determine the detection response. Integration models
are not so easily adapted to identification.

To understand the relation between the two operating characteristics,
consider the decision space. Figure 10.4 shows a single detection boundary
of the independent-observation type used in uncertain detection (as in Fig.
8.6a). The identification boundary is symmetric because the observer is
simply choosing the dimension (channel) with the larger output. The two
criteria divide the space into four regions, those in which the observer re-
sponds "yes-1" (there was a signal, and it was 5,), "yes-2," "no-1," and
"no-2." All four regions are labeled in the figure.

Now we compare detection and identification for Sl. (Because the stimuli
are equally detectable and the identification decision rule is symmetric, we
need to think about only one of the two signals.) The probability of both de-
tecting and correctly identifying Sl—the height of the IOC—is that part of
the 5, distribution in the "yes-1" area. The probability of just detecting
it—the height of the ROC—includes both the "yes-1" and "yes-2" areas and
must therefore be larger.

To trace out the IOC and ROC by increasing the false-alarm rate, the de-
tection criterion curve is moved down and to the left. When the curve has
been moved as far as possible in this direction, both the false-alarm rate and
the detection (ROC) hit rate will equal 1. The identification (IOC) success
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FIG. 10.4. Decision space showing criteria for the simultaneous detection and
identification task. Observer gives both a detection response ("yes" or "no") and
an identification response ("1" or "2" was presented). The space is therefore di-
vided into four regions, one for each response.

rate will equal the proportion correct by an unbiased observer in mAFC, as
can be seen by comparing Fig. 10.4 with Fig. 7.1. For m = 2, the area theo-
rem (see chap. 7) implies that the asymptote of the IOC will equal the area
under the ROC. Green et al. (1977) generalized the 2AFC area theorem to
the case of m signals.

Subliminal Perception

Of the various stimulus-response events that can occur in simultaneous de-
tection and identification, one has attracted special attention. Is it possible
for an observer to identify an undetected stimulus? If so, how is the combi-
nation to be understood? Such a result has generally been considered para-
doxical at best; early attempts to demonstrate "subliminal" (literally, below
the threshold) perception were driven by a search for "motivational" deter-
minants of perception.

A reexamination of Fig. 10.4 shows that identification without detection,
on some trials, is to be expected when orthogonal signals are used
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(Macmillan, 1986). All observations to the left of the detection boundary
lead to "no" responses; if they arise from either <S^N2> or <N1S2>, they cor-
respond to failures to detect. Yet such observations—all those in the "no-1"
and "no-2" regions—fall more often than not on the correct side of the iden-
tification boundary (i.e., nearer to the Signal distribution responsible for the
observation than to the other), so identification performance will clearly be
above chance.

At least some psychophysically oriented tests of identification without
detection have supported this interpretation. In one that did not, Shipley
(1960) presented tones having one of two frequencies in a 2AFC uncertain
detection experiment and also asked her observers to state on each trial
which signal had been presented. She found chance recognition perfor-
mance on trials for which the detection response was incorrect. But Lindner
(1968) was able to reverse Shipley's results by explaining to his subjects the
nonreality of thresholds. He found that the proportion of correct identifica-
tions increased with criterion (as the IOC suggests), and that identification
was above chance on incorrect detection trials.

Subliminal perception results seem surprising to the degree that an inap-
propriate, threshold model guides theorizing and experimentation: Failure to
detect is understood as a drop below threshold, rather than below criterion.
This interpretation meshes well with the idea that the threshold is the dividing
line between consciousness and its absence. As noted in chapter 4, however,
detection theory has no construct corresponding to consciousness. It is true
that instructions of which participants presumably are conscious can lead to
criterion changes, but the converse implication need not hold.

Using Identification to Test for Perceptual Interaction

GRTAnalysis of Identification

Identification experiments are a valuable tool for testing whether perceptual
dimensions interact or are perceived independently. General Recognition
Theory has clarified various types of independence (Ashby & Townsend,
1986) and provides two general approaches to testing it with identification
designs. We consider one such method here.2

2The method we do not discuss, hierarchical model fitting (Ashby & Lee, 1991), is more computationally
intensive. A set of models is constructed in which more complex models are "nested" within and tested
against simpler ones. For example, a model that includes decisional separability might be compared
with one that does not; failure to find a statistically significant improvement in fit for the latter model is
considered evidence for decisional separability.
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In the basic stimulus set for testing independence, each value of one di-
mension is factorially combined with each value of the others. In two dimen-
sions (the only case we consider), choosing two values on each dimension
leads to four stimuli, two on one and three on the other to six, and so forth. As
in all identification experiments, one stimulus is presented on each trial and
the task is to assign a unique label to each stimulus; this may be done by re-
porting the value on each dimension separately. Such an experiment imple-
ments tine feature-complete identification design.

In chapters 6 and 8, we distinguished three meanings of independence.
Perceptual independence (PI) is the independence of two variables and ap-
plies to a single stimulus. If X and Fare perceptually independent, their joint
distribution is the product of the marginal distributions,

and has circular or elliptical equal-likelihood contours that display no cor-
relation. Perceptual separability (PS) refers to sets of stimuli, and it is pres-
ent if the marginal distributions on one dimension, say X, are the same for
different values of F, that is,

and so forth for other values of Y. Decisional separability (DS) also refers to
sets of stimuli and means that the decision criterion on one variable does not
depend on the value of the other. When decisional separability occurs, deci-
sion bounds are straight lines perpendicular to a perceptual axis.

These independence qualities, or their opposites, are theoretical charac-
teristics of the perceptual representation. Certain empirical features of the
identification data provide information about each type of independence.
We introduce a GRT method, Multidimensional signal detection analysis
(MSDA) (Kadlec & Townsend, 1992a, 1992b) that can be implemented us-
ing a straightforward computer program (Kadlec, 1995,1999).3 It is helpful
to refer to an example.

Example lOd: Perception of Curvature and Orientation

Kadlec (1995) asked her observers to identify stimuli that varied in curvature
and orientation (and also location, which we ignore here). There were two

3Kadlec's program msda_2a is available at http://castle.uvic.ca/psyc/kadlec/research.htm.
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levels of each variable, and thus four possible stimuli. The data from 200 tri-
als per stimulus filled a 4 x 4 contingency table as shown in Table 10.4.

TABLE 10.4 Stimulus-Response Matrix for Identification
of Curve/Orientation Stimuli

Stimulus

Curvature 1, 50°

Curvature 1, 55°

Curvature 2, 50°

Curvature 2, 55°

Response Pair

"Curvature
1; 50°"

172

82

2

1

"Curvature
1; 55°"

13

98

2

15

"Curvature
2; 50°"

11

12

156

54

"Curvature
2; 55°"

4

8

40

129

The MSDA technique includes several distinct analyses; we illustrate the
approach by examining a "macroanalysis" of perceptual and decisional
separability. The question to be asked is whether judgments of curvature are
perceptually or decisionally independent of orientation. Three aspects of
the data are relevant:

1. Marginal response rates. Does the probability of a particular cur-
vature response depend on the orientation? In the table, first look just at
the cases for which orientation was 50° (Rows 1 and 3). The hit rate for
curvature (probability of using response "1" for curvature 1) is (172 +
13)7200 = .925, and the false-alarm rate is (2 + 2)/200 = .02. Compare
these with the same proportions for cases in which orientation was 55°,
which are (82 + 98)/200 = .90 and (1 + 15)7200 = .08. Are the hit and
false-alarm rates invariant? Use of the MSDA program reveals that the
false-alarm rates are reliably different, but the hit rates are not.

2. Marginal d' values. The hit and false-alarm rates can be used to
find curvature d' for both values of orientation; the values are 3.49 and
2.69, which are significantly different.

3. Marginal criterion values. The hit and false-alarm rates can be
used to find curvature criterion values (relative to the means of the cur-
vature-1 distributions) for both values of orientation; the values are
1.44 and 1.28, which are not significantly different.

What can we conclude from these calculations about independence of cur-
vature and orientation? Table 10.5 (from Kadlec, 1995; Kadlec & Townsend,
1992b) summarizes the implications of the data. The left-hand columns give
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TABLE 10.5 Inferences About Perceptual and Decisional
Separability From Identification Data

Observed Results

Marginal
Response

Invariance?

T

T

T

T

F

F

F

F

Marginal d'
Equal?

T

T

F

F

T

T

F

F

Marginal
Criteria
Equal?

T

F

T

F

T

F

T

F

Conclusions

Perceptual
Separability

yes

yes

no

no

yes

yes

no

no

Decisional
Separability

yes

no

yes

no

possibly no

no

unknown

unknown

possible outcomes of the three statistical comparisons, in which the marginal
statistics can be equal (T, or true, in the table) or not (F, or false). Conclusions
about separability are in right columns. Notice that if the marginal responses
are invariant, then perceptual separability is associated with equal marginal d'
and decisional separability with equal criteria. In the absence of marginal re-
sponse invariance, as in the example, conclusions are less firm. The
next-to-last row of the table tells us that Kadlec's data do not display percep-
tual separability and are inconclusive about decisional separability.

This example portrays only part of the MSDA method. For example, we
have considered the macroanalysis of curvature across orientation, but not
orientation across curvature (see Problem 10.3). Completely different cal-
culations are needed to evaluate perceptual independence. Identification
tasks build on a detailed theoretical analysis (Ashby & Townsend, 1986;
Kadlec & Townsend, 1992b) and are a powerful tool for analyzing
interaction and independence.

Essay: How to Choose an Experimental Design

In this section, we offer some final comments on discrimination paradigms.
Are all the designs we have described—yes-no, identification, and several
examples of comparison and classification—equally useful? Although all
should, in principle, yield the same d' values, many factors influence the
choice of a paradigm. We begin with considerations that derive from our de-



Multidimensional Identification 263

tection theory models and then discuss the possibility that tasks differ in the
cognitive processes they require, and thus are not related as detection theory
says they should be after all.

Detection Theory Factors

Figures 10.1 and 10.2 suggest one important consideration in choosing a
design: level of performance. An observer with a particular value of sensi-
tivity will do best, in proportion correct terms, in a 2AFC task, and worst in
oddity. Knowing this, which (if either) should the experimenter select?

Many sensory psychologists would opt for 2AFC, arguing that this pro-
duces the "best" performance of which the observer is capable. But consid-
ering only the detection theory models (as we are doing in this section), all
paradigms yield the same performance, that is, the same d'. Showing that a
participant can obtain d' = 1.5 in same-different is just as impressive as the
same demonstration in 2AFC, even thoughp(c) = .86 in 2AFC and only .55
in same-different (differencing model).

A more important consideration is the possibility of floor and ceiling ef-
fects. Most experiments aim to compare the discriminability of several dif-
ferent stimulus pairs, a goal that is hard to realize if p(c) is near chance or
near perfect. When/?(c) is near chance, making the task more difficult can-
not produce a corresponding drop in performance; when p(c) is near per-
fect, not only can improvements not be seen, but detection theory measures
cannot even be calculated. Thus, 2AFC (and other high-performance para-
digms) are desirable when sensitivity is low, but oddity and its low-perfor-
mance relatives are desirable when sensitivity is high.

Processing Differences

In assuming optimal processing, detection theory models make a signifi-
cant simplification. Although people surely fall short of the ideal, ineffi-
ciency itself is not usually a serious problem in application. (In chap. 12, we
discuss methods for investigating such inefficiencies in their own right.)
What is worth worrying about is the possibility that inefficiency character-
izes some designs more than others, so that the relation among paradigms is
not as expected.

Three predictions of the models we have described have proved overly
simple in this way: (a) One-interval experiments often yield poorer perfor-
mance than do other designs, (b) discrimination deteriorates with inter-
stimulus interval, and (c) sensitivities measured in fixed and roving
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experiments differ by more than the models predict. Models have been pro-
posed, and successfully tested, that account for each of these effects in
terms of memory limitation (see chap. 7).

Many experimenters entertain untested beliefs about relative perfor-
mance across designs. For example, same-different, ABX, and oddity de-
signs are generally thought to be easier for participants to understand than
2AFC or 3AFC. Also, people who serve as participants in psychophysical
experiments sometimes develop strong opinions about the decision rule
that best describes behavior. For example, observers in ABX (and even in
2AFC) sometimes report ignoring the first interval. Participants in multi-in-
terval designs may report covert classification of the sort postulated by
threshold theory. Models quantifying these and other types of nonoptimal
processing have been developed and may seem more "psychological" than
the normative decision rules of detection theory.

Introspection is a useful source of ideas, but not of experimental truths.
Because the mental processing of which we are aware may not be signifi-
cant in determining our performance, quantitative tests are necessary for in-
tuitively appealing and unappealing theories alike. Furthermore, sub-
stantive theorizing is most likely to succeed when it starts from a solid meth-
odological base. With our present understanding of the in-principle relation
between, say, 2AFC and same-different, the folly of building a memory
model to explain differences in p(c) between them is evident.

Finally, a corollary caution for the innovator: New designs need detec-
tion analysis just as much as old ones. Driven by the demands of new con-
tent areas, investigators continue to invent new ways to measure sensitivity.
Before results obtained with the new technique can be compared with older
data, a model of the new design is essential.

Summary

In identification tasks, observers provide distinct labels for each of m > 2
possible stimuli. If all stimuli are assumed independent, detection theory
analyses can estimate sensitivity for each stimulus and (for some models)
bias parameters for each response. Data from one identification task can be
used to predict the results of an experiment using a subset of the same stim-
uli using the constant ratio rule.

Multi-interval forced-choice, in which sequences of length m longer than
2 are constructed that contain one sample of S2 and m -1 samples of 5,, is a
special case of identification in which intervals rather than objects are iden-
tified. Such experiments can be analyzed with or without a no-bias assump-
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tion using Choice Theory. An unbiased SDT model has also been
developed.

Experiments in which stimuli are both detected and identified can be an-
alyzed using identification operating characteristics, which are theoreti-
cally related to receiver operating characteristics (ROCs) for the same data.

Identification of stimuli constructed factorially from values on two or
more dimensions provide data from which various types of perceptual inter-
action can be evaluated.

Methods appropriate for finding sensitivity in these paradigms are given
in Chart 6 of Appendix 3, those for finding response bias in Chart 7.

Problems

10.1. Predict identification performance for a set of 25 orthogonal stim-
uli if detection d' for each is 1.0. What is the identification perfor-
mance for a subset of five of these? two of these?

10.2. Suppose p(c} = .75 in a 2AFC experiment. What shouldp(c) be in a
3-, 4-, 8-, 32-, and 1,000-alternative forced-choice experiment ac-
cording to SDT? according to Choice Theory? What are the mini-
mum values according to Shaw's boundary theorem? (Assume
unbiased responding.)

10.3. Here is a confusion matrix for three speech sounds:

Rl R2 /?3

Sl 60

52 10

53 10

10

60

10

10

10

60

(a) Using the constant ratio rule, predict d' for an experiment with
only two stimuli from the set. Do this for each possible stimulus
pair, (b) Use the d' values from part (a) to infer the perceptual repre-
sentation. How many dimensions are required? (c) What would
happen if the methods of chapter 5 were applied to these data?
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10.4. A three-alternative experiment yields the following response fre-
quencies:

R2
sl
S2

S3

4

2

1

3

6

1

2

2

8

(a) Estimate d' and ln(a), ignoring bias, (b) Using the general
Choice Theory model (Equations 10.2 and 10.3), estimate ln(a),
ln(V£>2), ln(V^)' and ln(&A)-

10.5. In fixed experiments, p(c) is lower in 3AFC than in yes-no for small
d', but greater for large d'. At what value are the two equal? Answer
the same question for 4AFC, 8AFC, 32AFC, and 1,OOOAFC.

10.6. In roving paradigms, at what d' does p(c) in 3AFC equal d' in
ABX? in oddity? Answer both questions for 4AFC, 8AFC, 32AFC,
and l.OOOAFC.

10.7. Use MSDA to evaluate the perceptual and decisional independence
of orientation over curvature. (Mimic the analysis of curvature over
orientation, and summarize the results qualitatively rather than
conducting actual hypothesis tests.)
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Stimulus Factors

One way to characterize the shift in the attitude of psychologists toward
their work that came with the cognitive revolution is as a decline in interest
in "the stimulus." In the behaviorist period, understanding the effect of pre-
senting a conditioned or unconditioned stimulus, or a reward, was central,
and that effect was usually a more or less overt "response." In the cognitive
era, the focus has shifted to representations and processing, both nonob-
servable, and in this respect detection theory is a prototypical cognitive en-
terprise. In this book, we have repeatedly asked how experimental
situations are represented internally, and what sorts of decision processes
are applied to them. Details of the stimuli being used have been missing,
and in our treatment of data they have not been missed.

This story line is too simple, however, and in the next two chapters we
look at two important detection theory scripts that offer the stimulus a lead
role. Chapter 11, "Adaptive Methods for Estimating Empirical Thresh-
olds," summarizes strategies for determining a stimulus whose detectability
or discriminability is at a preset level. Finding the stimulus corresponding
to a performance level is the inverse of the one-dimension problems in Part I
and assumes the same kinds of representations. The stimulus sets to which
adaptive methods have most often been applied are simple perceptual ones,
although advancing technology is broadening the scope.

Chapter 12, "Components of Sensitivity," is an introduction to the use of
detection theory in partitioning discriminability between the stimulus and
its processing, and among different types of processing. One of the first ap-
plications of SDT was in comparing the performance of human listeners to
ideal observers, hypothetical processors who make optimal use of the infor-
mation in the stimulus in making their decisions. In this early work, sensory
applications dominated, but more recently the approach has advanced into
cognitive and even social domains.
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11
Adaptive Methods
for Estimating Empirical Thresholds

Detection theory provides tools for exploring the relation between stimuli
and their psychological magnitudes. In the examples discussed so far, stim-
ulus parameters have been chosen for their inherent interest, and the de-
pendent variable has been d', ln(a), or some other measure of performance.

Often it is natural to turn this experimental question around and try to
find the stimulus difference that leads to a preselected level of performance.
Such a stimulus difference we have called the empirical threshold or simply
the threshold. For example, an experimenter may seek a physical difference
just large enough so that an observer in 2AFC obtains a d' of 1.0 or 1.5, or
(equivalently, for an unbiased observer) so thatp(c) equals .76 or .86. Em-
pirical thresholds are unrelated to those of threshold theory (discussed in
chap. 4); indeed, they can be measured in either detection theory (d'} or
threshold theory [p(c)] terms. The double meaning of threshold, although
unfortunate, is unavoidable and need cause no confusion.1

Measuring a threshold requires access to a set of stimuli that range, on
some physical variable, from too small to too large for the desired level of per-
formance. A field in which threshold measurement has been widely used is
audiology, which assesses sensitivity as an aid to the diagnosis of hearing
problems. Audiologists estimate thresholds by straightforward manipulation
of tone intensity using a Bekesy Audiometer (von Bekesy, 1947). The inten-
sity of the tone being detected is either continuously increased or continu-
ously decreased, and the observer is told to press a switch whenever the
stimulus is audible. The switch is connected to an automatic attenuator in
such a way that holding down the switch decreases the intensity and letting it
lrThe dual use of the term has caused confusion, in our view, in treatments of "subliminal perception." See

chapter 10 for a discussion of this issue.
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go increases the intensity. A graphic recorder marks the resulting up-down
swings in stimulus intensity over time. Threshold is ordinarily determined by
freehand averaging of the extremes, and clinical workers in audiometry ex-
pect accuracy of 5 dB from the result. For clinical diagnosis of disruptive
hearing loss, this degree of accuracy is sufficient.

In some other areas to which detection theory has been applied, stimulus
measurement and control are not simple, and not all sensitivity experiments
can be converted into threshold ones. For example, memory for words is af-
fected by similarity in meaning within a list, but list similarity is difficult to
quantify (M. B. Creelman, 1966), and the prospects for measuring a
"threshold" of semantic relatedness are not very bright. The examples in
this chapter are from sensory experiments, and the stimulus variables are
simple attributes of auditory and visual signals.

Two Examples

Our examples illustrate problems for which threshold measurement makes
more sense than sensitivity measurement. In the first, two conditions leading
to very different sensitivities are compared; if the same stimulus difference
were used in each condition, at least one would necessarily give either perfect
or chance performance. In the second, no correspondence function is defined
by the experimenter. Sensitivity can therefore not be estimated by the meth-
ods in Parts I and II of this book, but threshold estimation is still possible.

Example 11 a: Auditory Thresholds at Different Air Pressures

What effect does a difference in air pressure across the eardrum have on
hearing? Creelman (1963a) addressed this question using tones of several
different frequencies as stimuli. The detectability of pure tones changes
greatly with frequency; because measurement of either very small or very
large sensitivities is difficult, using the same tone intensity for all frequen-
cies was impractical. Suppose d' values for 100- and 1,000-Hz tones of the
same intensity are in the ratio 1 to 10. If the actual values are 0.5 and 5.0,
then/?(c) by an unbiased observer in 2AFC will equal .64 and .9998. The
second of these numbers means that only one error will be made in about
5,000 trials. Few experimenters wish to squander 5,000 trials on a single
sensitivity estimate, and in any case a single error in that span could easily
be due to a motor slip, attention lapse, or some other nonsensory factor. On
the other hand, if the stimulus intensity is reduced so that d' equals 0.1 and
1.0, p(c) will be .53 and .76. The first of these numbers is uncomfortably
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close to chance; a further halving of d' from 0.1 to 0.05 will change p(c) by
less than two percentage points. Clearly, the problem requires that stimulus
intensity not be held constant.

Another important consideration in Creelman's study was the length of
an experimental session. Even small differences in air pressure across the
eardrum cannot be maintained for long, so relatively short runs and rapid
threshold estimation were essential.

Creelman chose an adaptive procedure to estimate thresholds for all
stimulus conditions; that is, the intensity of the stimulus being detected was
changed every few trials in response to the listener's performance. Such a
procedure can yield useful data in a short experimental run. Because calcu-
lating d' from a small number of trials is problematic, the sensitivity target
was a value of proportion correct, p(c) = .80. We have seen thatp(c) is most
acceptable as a sensitivity measure if performance is unbiased (chap. 4),
and that 2AFC tends to produce unbiased responding (chap. 7). Creelman's
experimental paradigm was 2AFC.

Example lib: Brightness Matching by Pigeons

Blough (1958) wished to measure equal-brightness contours for visual
stimuli of different wavelengths using pigeons as observers. He first trained
birds to peck at a button corresponding to the brighter of two illuminated
disks. When training was complete, the two disks were illuminated with
lights of different wavelengths, one of 450 nm (blue), the other 600 nm (yel-
low). When both lights were presented at an intensity of 100 units, the pi-
geon pecked the yellow button, indicating that the yellow spot was brighter.
The experimenter then increased the intensity of the blue light to 110 units
for the next trial. Whenever the yellow button was pecked, the blue light was
made 10 units more intense; whenever the blue key was pecked, the blue
light was decreased in intensity by 10 units. After a block of trials, the aver-
age level at which the blue light was presented provided an estimate of the
"threshold" intensity needed to match the yellow one in brightness.

Although two lights were presented in Blough's experiment, the design
was not 2AFC, but yes-no with a "reminder" (chap. 7). The pigeon could, at
least in theory, compare the brightness of the blue light to a remembered cri-
terion corresponding to the (constant) intensity of the yellow light. An im-
portant difference between our examples concerns the events controlling
the change in stimulus level. In the hearing sensitivity study, intensity was
adjusted in response to the observer's sensitivity to the experimenter-de-
fined correspondence. In the brightness matching experiment, intensity de-
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pended only on the response: No objective correspondence existed. In both
cases, performance was vulnerable to the effects of response bias, but with
different consequences. In the 2AFC task we needed to assume bias to be
slight to have faith in p(c) as an index, whereas in the matching task
whatever bias existed was part of the phenomenon being investigated.

Psychometric Functions

Definitions and Illustrations

Adaptive procedures work because, over some range, sensitivity (or, in the
matching case, sensory magnitude) increases with stimulus level. The ex-
perimenter knows, therefore, that performance will rise if the stimulus
value increases and fall if it decreases. The underlying relation between sen-
sitivity and stimulus level, the psychometric function, was introduced in
chapter 5. Figure 11.1 presents illustrative psychometric functions for the
two examples just described.

FIG. 11.1. Two psychometric
functions, (a) Proportion correct
versus stimulus intensity in a
2AFC tone-detection experi-
ment, with threshold correspond-
ing top(c) = .8. (b) Proportion of
"brighter" judgments versus
stimulus intensity in a yes-no
brightness matching experiment,
with the point of subjective
equality (PSE) corresponding to
/T'brighter") = .5.
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In the first panel, proportion correct is plotted against tone intensity for
one condition of our auditory detection example. The graph represents the
outcome of a conventional, nonadaptive experiment: A number of 2AFC
trials are presented at each of six intensities, and/?(c) is estimated for each.
The threshold we seek is the intensity for whichp(c) = .8. To estimate it, we
draw a smooth curve (exactly what curve we discuss later) through the
points. The threshold equals the stimulus level that corresponds to/?(c) = .8
on this curve.

A psychometric function for the brightness matching example is shown
in the second panel. Because this experiment has a yes-no decision (with a
reminder), the proportion of "brighter" responses ranges from 0 to 1 rather
than from .5 to 1. The "threshold" in this case is usually chosen to be the
50% point, the intensity for which judgments of "brighter" and "dimmer"
are equally likely. As we learned in chapter 5, this type of threshold is called
the point of subjective equality (PSE). Remember that this experiment has
no objective correspondence; therefore, there is no way to plot the data that
takes account of response bias. The procedure for finding the PSE in Exam-
ple lib is formally the same as that for finding the threshold in Example
1 la, but the result is likely to be tainted by response bias.

The Shape of the Psychometric Function

General Considerations. Fitting a normal ogive (i.e., the Gaussi-
an distribution function) to data of the type shown in Fig. 11.1 is traditional
(Woodworm, 1938); like many traditions, the procedure still commands re-
spect, but not obeisance. We ask here whether this is truly the appropriate
form of the function and, if so, under what circumstances and for what reason.

The form of the function does not follow directly from detection theory
as we have described it so far. The psychometric function is a plot of sensi-
tivity against stimulus value, whereas the underlying distributions in a deci-
sion space take values along an internal, psychological dimension.
Predictions about psychometric function shape can be made when the de-
tection theory approach is joined to a model for stimulus transduction. To
take the simplest example, if stimulus intensity is converted linearly into
mean location on the decision axis and variance is constant, then the likeli-
hood of judging a stimulus "brighter" can be obtained by moving a Gaussi-
an distribution from low to high values relative to a fixed criterion.

If this same approach is applied to 2AFC experiments, two distributions
that move with respect to each other must be considered. An unbiased ob-
server places a criterion halfway between the two means, and proportion
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correct equals the area under either of these distributions on the correct side
of the criterion. As the stimulus difference decreases toward zero, a normal
ogive is traced out, but the curve ends at/?(c) = .5, not/?(c) = 0, and it looks
like the upper half of the curve in Fig. 11. Ib.

Some 2AFC data do take this form, but a probably greater number re-
semble instead the complete curve of Fig. 11. la. There are two reasons
for this variability: differences in the stimuli and/or their processing, and
differences in how the stimuli are measured. An example of the first was
provided by Foley and Legge (1981), who found 2AFC functions resem-
bling full ogives in a visual detection task, but half-ogive curves in a dis-
crimination task with the same stimuli. The second reason is that if the
stimulus variable is monotonically but nonlinearly transformed, the
shape of the psychometric function must be affected. The very common
logarithmic transformation used in vision and hearing (the decibel is
such a transformation) tends to turn steep functions like the half ogive
into shallower ones.

The exact form of the psychometric function cannot be specified in the
absence of a stimulus theory. Many such theories have been proposed, and
we provide some illustrations in chapter 12 (e.g., quantum theory in vision,
Cornsweet, 1970; ideal-observer theory in audition, Green & Swets, 1966).
Except when stimulus theories are being used, it is appropriate to choose a
shape for the psychometric function on the basis of experience and conve-
nience. Such criteria have led to three prominent candidates, whose
credentials we now consider.

Specific Quantitative Functions. The functions to be discussed
are mathematically different, but have similar shapes (Fig. 11.2). Each has
two parameters of substantive interest: One reflects the location of the func-
tion along the AC-axis and primarily determines the threshold (or PSE); the
other is a measure of slope, which indicates the rate of change in response
probability over the range.

The cumulative normal (Gaussian) distribution O has, as already men-
tioned, long been used to describe psychometric functions. The Gaussian
distribution function cannot be written as an algebraic expression, but is the
integral of the normal density (given in Eq. 2.5). The mean and standard de-
viation of the variable corresponding to the distribution determine the
psychometric function's threshold and slope. Probit analysis (Finney,
1971) is a set of procedures for fitting <& to data that take account of differ-
ences in binomial variance at different points on the curve.
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The logistic distribution function is

FIG. 11.2. Cumulative
normal, logistic, and
Weibull functions com-
pared on (a) linear, and (b)
normal coordinates. The
three curves have been
scaled to have similar
slopes and intercepts.

(11.1)

where ]ii is the threshold parameter and 0is the slope parameter. We saw in
chapter 4 that the underlying distributions implied by Choice Theory for the
yes-no task are logistic in form.

The third and final candidate is the Weibull function

p(x) = \-
(11.2)

The parameter a corresponds to the threshold and ($ to the slope. The
Weibull function has valuable theoretical properties (Green & Luce, 1975;
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Quick, 1974) and is extensively used in vision research (Graham, 1989;
Nachmias, 1981; Pelli, 1985).

All these functions increase from 0 to 1 as x increases. The lower asymp-
tote of real psychometric functions is often greater than 0, however, for two
reasons. First, in a yes-no experiment the observer may well produce some
"yes" responses to the weakest stimulus; if this stimulus is a blank, or null,
these are false alarms. Second, chance performance may be higher than 0: in
2AFC it is .5, and in mAFC it is 1/m. In either case, the curve is often "cor-
rected for guessing" so that the observed function P(x) is related to the true
function p(x) by

. (11.3)

The consequence of this rescaling is that the function has the shape of a full
ogive, but ranges only from /to 1—for example, from .5 to 1 in 2AFC
(McKee, Klein, & Teller, 1985).2

Adaptive Versus Nonadaptive Methods

To obtain a threshold, the experimenter must present the observer with stim-
uli at different levels, but has many options in choosing the sequence of
stimuli. There are two general strategies: Decide in advance which stimuli
to use and how many of each to present; or decide about the next stimulus on
the basis of the observer's performance so far. The advance-planning ap-
proach has the longer history (Urban, 1908); we commented on several
variants and presented appropriate data analysis techniques in chapter 5.
The adaptive approaches, described in this chapter, do not require that the
experimenter know beforehand what stimuli are most relevant.

Psychometric functions take on useful values (neither near chance nor
near perfect) over a narrow range, and the investigator can locate the criti-
cal region only with the cooperation of the observer. Because the goal is
usually to locate the threshold, adaptive methods concentrate testing on
stimuli near it. An adaptive psychophysical procedure is a collaboration in
which the experimenter adjusts the stimulus in a detection or discrimina-
tion task on the fly, presenting on each trial a stimulus that is likely to yield
information about the location of the desired stimulus level appropriate
for the observer.

2The form of the observed psychometric function is sometimes further modified to take account of
"lapses," trials on which the observer fails to give the correct response to large values of*.
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The Tracking Algorithm: Choices for the Adaptive Tester

To define an adaptive procedure, the experimenter must answer five sepa-
rate questions: (a) Under what conditions should testing end at the present
level and shift to a new one? (b) What target performance should be sought?
(c) When the stimulus level changes, what new level should it change to? (d)
When does an experimental run end? and (e) How should an estimate of
threshold be calculated? Because these questions are largely independent of
each other, an adaptive method can be constructed out of virtually any set of
answers. In this section, we provide multiple-choice alternatives for each
question based on answers given by past investigators.

Decision Rules: When to Change the Stimulus Level

Rules for deciding to change the stimulus level operate in one of three ways.
A new stimulus may be presented on every trial, when the trial-by-trial re-
sults match a set sequence, or when the observer's performance deviates
from its target by a specified amount. The target is the response proportion
sought by the experimenter.

After Each Trial. In the pigeon brightness-matching experiment,
the blue stimulus is changed after every trial. When the blue patch is
brighter than the yellow, its magnitude is decreased; when it is dimmer, it is
made more intense. The proportion of "brighter" responses after one trial is
either 1, which is higher than the target, or 0, which is lower. In the long run,
the procedure narrows in on the neutral stimulus to which the observer is as
likely to respond "brighter" as "dimmer." The proportion of "brighter" re-
sponses at that threshold stimulus equals the target proportion p(T), and

p(T) = P("brighter") = P("dimmer") . (11.4)

Because P("dimmer") = 1 - P("brighter")—there are only the two possible
responses—p(T) equals .5, and the method estimates the 50% point.

Two other methods change the level on every trial, but are more flexible
in the target level they track. Kaernbach's (1991) method can estimate any
target percentage by systematically varying the size of the increasing and
decreasing steps. Maximum likelihood procedures consider the entire run
history in deciding on the new level. We discuss both of these approaches
further in the next section.
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When Results Match a Predetermined Pattern. In the up-down
transformed-response (UDTR) method (Wetherill & Levitt, 1965), the se-
quence of correct and incorrect trials at the current stimulus level is com-
pared after each trial to a list of possible patterns. Some patterns require an
upward change in stimulus level, others a downward change. If there is a
match, the stimulus level is changed appropriately, testing is started again,
and a new record of trial results is started. If there is no match, another trial
is run with the same stimulus, and the pattern of results is extended using the
result of that new trial.

A favorite UDTR rule, often applied to 2AFC experiments, has p(T) =
.71: A single incorrect trial leads to a more intense stimulus, a sequence of
two correct trials to a less intense one. Let us verify that this rule does indeed
track the 71 % point, using the logic applied earlier to the 50% target. If p(T)
is the probability of a correct response, the likelihood of two correct trials in
a row is [p(T)]2. At threshold, the patterns that yield a decision to decrease
the stimulus must be as likely as the patterns that call for an increase, so
[p(T)]2 = .5 and/?(7) = >/5 = .71.

Levitt (1971) listed several other sets of sequences along with the proba-
bilistic equations for p(T) of each set. In one subset, a single incorrect re-
sponse leads to an increase in level (as in the rule just described), but the
number of correct responses needed for a decrease is greater than two. If
three successive correct responses are required, p(T) = .51/3 or .79; if four are
required, p(T) - .51/4 or .84. The experimenter can choose whichever mem-
ber of this family of rules tracks the desired level of accuracy.

When Performance Deviates From the Target by a Critical Amount.
The optimal rule for determining whether an observed proportion differs
from a target was described by Wald (1947). In Wald's application, a factory
wants to shut down an assembly line if the proportion of defective units ex-
ceeds some limit, such as one tenth (we assume we are discussing defective
dolls, not defective automobile steering assemblies). The aim is to react as
quickly as possible if quality slips to a lower proportion, with some accept-
able likelihood of error. In adaptive psychophysics we are interested in cor-
rect responses instead of satisfactory units; p(T) is the proportion correct at
threshold, and we want to know if the current stimulus gives either better or
worse performance.

Figure 11.3 illustrates the Wald rule for our auditory detection example.
For a series of trials at a single level, the number of correct trials is plotted
against the total number of trials (AO- If performance were perfect, the num-
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FIG. 11.3. Trials correct
versus total trials during a
Wald run. Target perfor-
mance isp(c) = .8, and devi-
ations of one trial above or
below target are needed to
change level. In the exam-
ple, a new (lower) level is fi-
nally called for after the 10th
trial.

ber of correct trials would equal the number of trials, and the graph would be
a line through the origin with a slope of 1. The expected number of correct
trials at the target equals p(T)N, the target proportion correct times the num-
ber of trials. In the figure, this expectation is shown as a straight line with
slopep(T). The experimenter does not require that the observer perform ex-
actly at the target—in general, this is not possible—but demands that per-
formance be within a deviation limit. In the example, this limit is 1: If the
number correct deviates from the expected target by at least 1, the stimulus
level is changed. The lines labeled Deviation limit are parallel to the target
line and bracket a region of performance consistent (by this standard) with
the 80% goal.

Hypothetical data are represented in the figure by crosses. The observer
is correct on Trial 1, incorrect on Trial 2, and correct on Trials 3 through 10.
For the first 9 trials, the total number correct is within 1 of the target number,
but on the 1 Oth trial the total of 9 correct is 1 greater than the expected 8. The
stimulus level is decreased before Trial 11.

The deviation limit can be set to any value, and both narrow and wide
limits have advantages. Narrow limits reject response proportions that are
even slightly discrepant from the target, and therefore lead to rapid deci-
sions. Figure 11.4 shows the mean number of trials to reach a decision for
p(T) = .8 and deviation limits of 1.0, 1.5, and 2.0. The speed advantage of
the narrower limit varies with the true/?(c) at the level being tested, but can
be as great as 5 to 1.
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FIG. 11.4. Number of trials to reach a decision in a Wald test aimed at/j(7) = .8,
as a function of the true probability of a correct response, for three deviation limits.
Curves are based on Monte Carlo simulations.

Narrow limit decisions are quick, but they are often wrong. By waiting
for a larger discrepancy to occur, the experimenter can be more confident of
changing level in the right direction. In Fig. 11.5, the probability that a Wald
test decides that the level is too high is shown for each truep(c) value. For a
perfect test, this probability would be 0 for all values less than/?(7) = .8 and
1 for all higher values. The deviation-2.0 limit comes closest to this ideal. If
the true proportion correct is .65 and the target .8, a deviation-1.0 test incor-
rectly decreases the stimulus level about 20% of the time, a deviation-2.0
test only about 5% of the time.

In psychophysical applications, narrow deviation tests are often used for
their speed; accuracy derives from the use of many repeated tests as an ex-
perimental run proceeds. Hall (1974) showed, on the basis of simulations,
that greater accuracy in threshold estimates could be obtained from a larger
number of fast, variable, narrow deviation tests than from a smaller number
of slow, accurate, wide limit tests.

Target: What Performance Level to Track

In subjective yes-no (matching) experiments the target percentage is almost
always 50%, but in objective sensitivity tests the choice is less obvious. Prob-
ably the most popular target percentage in application is the 71% tracked by
Levitt's (1971) 2/1 rule. This rule is easy to implement, but Green (1990) has
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FIG. 11.5. Probability
that a Wald test aimed at
p(T) = .8 yields the result
"too high," as a function of
the true probability of a
correct response, for three
deviation limits. Curves
are based on Monte Carlo
simulations.

argued that the most efficient target percentage is much higher. The inherent
variability of a threshold estimate depends on the target percentage because
this percentage is influenced by both the slope of the psychometric function
and the binomial variance of observer responses. Steep slopes (which occur
near the midpoint of the function) and low variance (which occurs near the
extremes) are desirable. Thus, Green suggested a "sweet point" that repre-
sents a compromise between these two goals. For 2AFC, this optimum occurs
at 91%; for procedures in which chance is less than 50%, it is lower. Experi-
menters wishing not to venture too far from the 2/1 rule can improve the pre-
cision of their estimates by using 3/1, 4/1, or some higher criterion for
lowering the stimulus level. Kollmeier, Gilkey, and Sieben (1988) showed
that the 3/1 (79%) rule was more efficient than the 2/1 (71%) rule in an audi-
tory masked threshold experiment.

Stepping Rules: What Size Change in Level to Make

Having decided to abandon the old stimulus level, we must now select a new
one. How large a "step" in the direction determined by our test shall we take:
always the same size, a size decreasing during the run, or an adjustable size?
If the last, how much prior data should enter into our decision?

Fixed Steps. The simplest rule is to change the stimulus up or
down by a fixed amount; by architectural analogy, this is called a staircase
procedure (e.g., Blough, 1958; Cornsweet, 1962). To use fixed steps, one
must know the appropriate step size beforehand. This is the sort of advance
planning from which adaptive procedures are supposed to free us, but some-
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times the apparatus confines an experiment to fixed stimulus values, or the
experimenter is required to prepare a set of graded stimuli beforehand (as
when the stimuli are colored papers with differing spectral characteristics or
odorants). When fixed steps are unavoidable, the step size must not be too
small (lest performance change insignificantly between steps) or too large
(such that one step changes the task from trivially easy to impossibly diffi-
cult). In between, experimenters face one of the many tradeoffs of adaptive
procedures, that between inaccuracy and tedium.

Step Size Determined by Target Level. Kaernbach (1991)
showed that any point on the psychometric function could be estimated by
choosing increasing and decreasing step sizes that are in the appropriate ra-
tio. In general, to reach the target proportion p the ratio of magnitudes must
be/?/(l -p). For example, a target of 75% is reached by setting the increas-
ing step to be three times the magnitude of a decreasing one.

Decreasing Steps. In an early paper, Dixon and Mood (1948)
suggested that steps in stimulus size be made smaller as an experimental run
progresses to take advantage of increasing certainty about threshold loca-
tion. The Dixon-Mood rule prescribes a step size equal to the initial size di-
vided by the number of steps taken to date in the experimental run. The
original application was in research on explosives, where amounts of vari-
ous constituent chemicals could be chosen arbitrarily; stimulus continua in
many behavioral applications have this graded characteristic.

With steps of continually decreasing size, an incorrect decision about the di-
rection of the next step can add to the time to reach a threshold estimate, be-
cause recovery from a bad decision takes longer with smaller steps. Most
decision rules are designed to be quick rather than highly accurate, so such an
incorrect decision—even a string of them—is likely. Some means to recover
from steps in the wrong direction by increasing step size is appropriate.

Adjustable Steps Determined by Immediately Preceding Trials.
The first proposal to address this problem was Parameter Estimation by Se-
quential Testing (Taylor & Creelman, 1967), or PEST (the field's first mar-
ginally clever acronym). PEST rules generally use decreasing step sizes, but
switch to increasing ones to recover from apparently incorrect decisions.
There are five rules:

1. After each reversal, halve the step size. A reversal is a step in the
opposite direction from the previous step, for example, an increase in
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level following a decrease. A minimum value is specified below
which step size is not decreased.

2. A step in the same direction as the last uses the same step size as
previously, with the following exceptions.

3. A third step in the same direction calls for a doubled step size,
and each successive step in the same direction is also doubled until the
next reversal. This rule has its own exceptions.

4. If a reversal follows a doubling of step size, then an extra same-
size step is taken after the original two before doubling.

5. A maximum step size is specified, at least 8 or 16 times the size
of the minimum step.

These rules are illustrated in Fig. 11.6, which shows the sequence of
stimuli used after each of several decisions to change level; the actual num-
ber of trials needed to make a decision varies and is not shown. We begin at a
level of 35, chosen to be relatively easy for the observer. Testing shows the
level to be too high, so it is changed downward by 20 units. This level yields
performance that is too low; applying Rule 1, the level is increased by half
the previous step size. The figure shows successive applications of the fore-
going rules. From this point, the rules applied are as follows: 1,2,1,2,3,1,
2,4, 1, l.andl.

FIG. 11.6. Example of stimulus levels during a PEST run for successive blocks
of trials. The level changes for each block according to the indicated rule.
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Adjustable Steps Determined by the Entire History of the Run.
PEST's computation of the next level depends on the past history of the run,
but only some of it. In maximum-likelihood methods, a best estimate of the
threshold is calculated after each trial from the entire run history, the result
of all trials at all levels tested so far. The new level is set to that estimate, and
testing is continued.

A maximum-likelihood procedure assumes the underlying psycho-
metric function to have one of the specific forms discussed earlier. This
function, which we call/?(*), specifies the proportion correct for every stim-
ulus level x. If p(x) describes the data, then the likelihood L(x) of a particular
sequence of R correct responses followed by N - R incorrect responses to
stimulus x is:

(The probability of the entire sequence equals the product of probabilities
because we assume that trials are independent.) Thus, if a particular theoret-
ical function predicts thatp(c) = .75 for a stimulus value x, and if in the test-
ing to date there have been four correct trials followed by two incorrect
ones, then L(x) = (.75)4 (.25)2 = .0198 for that sequence. An expression of
this form can be written for any sequence of trials and any possible theoreti-
cal function. The overall likelihood of the function is the product of L(x)
values for all stimulus levels x for which data have been collected.

The experimenter chooses a form for the psychometric function and uses the
data to determine which function of that form is correct. Choosing the form of
p(x) specifies a family of curves whose members differ in mean (threshold) and
variance (slope). The likelihood of the data is computed from Equation 11.5 for
each member of such a family, and the curve giving the largest value—the max-
imum likelihood—is selected. The current threshold is then the 80% point (or
some other point) on that curve. (For more discussion of maximum-likelihood
estimation, see Madigan & Williams, 1987; computational issues are consid-
ered in Press, Flannery, Teukolsky, & Vetterling, 1986).

In a seminal paper, Robbins and Monro (1951) showed that this strategy
is the optimally efficient way to find the threshold. Among the modern
methods that use the maximum-likelihood approach are Pentland's "Best
PEST," which assumes the underlying function to be logistic (Lieberman &
Pentland, 1982; Pentland, 1980), and Watson and Pelli's (1983) QUEST,
which assumes the Weibull function. The calculations these procedures re-
quire between trials of an ongoing experiment are well within the capability
of laboratory computers.
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In both methods, the slope is fixed by the experimenter, and the likeli-
hood calculation gives the probability of the obtained data assuming each
possible psychometric function with that slope. QUEST differs from Best
PEST in requiring the experimenter to provide some initial guesses, an a
priori distribution of likely threshold locations. The program uses a
Bayesian strategy to successively revise the odds as data are collected. Not
having to predict where the threshold might lie is an advantage of adaptive
procedures, but the prior estimates have been shown to improve QUEST'S
precision (Madigan & Williams, 1987).

Suspending the Rules. Many small choices the experimenter
makes are not specified by the adaptive procedure, and it is important that
these choices turn out to be truly irrelevant to the outcome. For example, the
rules for changing level, whatever they are, are often suspended at the be-
ginning of a run in order to rapidly locate the region of the threshold. Many
experimenters begin testing with relatively large stimulus differences. To
reach the neighborhood of threshold, they may reduce the stimulus differ-
ence by a large step after only one or two correct responses, and revert to
normal rules after two incorrect responses. Other experimenters attempt to
begin each run at the current best estimate of threshold so that special
"run-in" rules are unnecessary. In maximum-likelihood techniques, outly-
ing points (due to inattention or slow learning) can distort threshold esti-
mates. If these points are truly far from threshold, however, they are visited
rarely and have only a small influence on threshold estimates late in a run.

Stopping Rules: When to End a Run

As with deciding when to change levels and what to change to, the experi-
menter can make more or less use of information from the observer in decid-
ing when to stop.

Fixed Number of Trials. Many experimenters employ runs of
fixed length. Run length is, of course, perfectly predictable with this strat-
egy, a significant advantage, but some of the flexibility of adaptive proce-
dures is lost. For example, sufficient information to locate the threshold to
the desired degree of accuracy may be available before the run is complete.

Fixed Number of Reversals. The experimenter can decide to
stop the run after a fixed number of reversals, say 5 to 10. This strategy
avoids ending a run when the participant has not yet "settled down." The ex-
act number of trials in the run varies, but not dramatically.
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Minimum Step Size. For stepping rules in which the step size var-
ies, one can terminate the run when some minimum-size step is demanded.
In the example of Fig. 11.6, for example, data collection might be stopped
when a sub-minimum step of 0.3125 is required. This rule leads to consider-
able unpredictability in run length, but ensures that when the run is stopped
the stimulus level is near threshold.

Minimum Confidence Interval The maximum-likelihood
QUEST computations allow a stronger version of the foregoing strategy.
After each trial, the prior distribution plus all data thus far collected are used
to calculate a confidence interval around the estimated threshold. The run is
ended when this interval is less than some minimum. Emerson (1986b) at-
tributed some of QUEST'S apparent advantage over other procedures, in
simulations, to this stopping rule.

Summary Rules: How to Calculate a Threshold Estimate

Most strategies for calculating a threshold ignore the earliest segment of a
run. Many possible summary statistics remain, notably the following:

Average of All Trials. The simplest approach is to find the mean,
or median, of all levels visited.

Average of a Fixed Sample of Trials. In an adaptive session, the
stimuli presented on successive trials are heavily dependent, and those used
on more separated trials less so. Kaplan (1975) estimated PEST thresholds
by averaging stimulus values obtained every 16 trials and was able to make
precise estimates of the auditory threshold of highly trained observers. This
has been called the rapid adaptive tracking (RAT) mode for PEST, as op-
posed to the previously described minimum overshoot and undershoot se-
quential estimation (MOUSE) mode, in which testing is stopped when a
step smaller than some minimum is called for. In the RAT mode, testing is
continued by taking the allowed minimum step if smaller steps are re-
quested. RAT is PEST with a long tail.

Average of All Reversals. Averaging stimulus values at each re-
versal is equivalent to finding the midpoint between reversals and averaging
these, on the assumption that the threshold lies halfway between reversals.
Besides omitting early reversals, some experimenters calculate a "trimmed
mean" by leaving out the most extreme values, perhaps on the assumption
that the observer should be allowed at least one extended lapse in attention.
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Final Testing Level or Point on Best-Fitting Psychometric Function.
The original PEST package used the final testing level — the one called for
by the final minimum- size step — as its estimate of threshold. With a
Bayesian or maximum-likelihood estimation run, this is also a logical sum-
mary datum because all the data contribute to it. However, the target level
could in principle be different from the desired definition of threshold. For
example, one might choose a high (say 90%) target but still wish to report
the stimulus level corresponding to the 75% point. To do this, one finds the
best-fitting psychometric function and calculates the level that leads to 75%
correct on that function.

2AFC Threshold Estimation Without Response Bias. None of
these summary measures is completely free of bias. Does such a statistic ex-
ist? We illustrate several possible solutions for a 2AFC detection experi-
ment with three levels of intensity; hypothetical data are shown in Table
11.1. The second column gives the proportions correct for each intensity,
and these values are plotted in Fig. 1 1 .7a. A typical definition of threshold
in this case is the level leading to 75% correct; interpolating between points
yields an estimate of 1.57 units. Sometimes 2AFC data are corrected for
guessing, via a rearrangement of Equation 1 1.3:

Because .5 is the chance ("guessing") rate, 7 is set to .5. Values of the equa-
tion thus corrected are shown in the third column of Table 11.1. With this
version of the psychometric function, the natural definition of threshold is
the 50% point, and interpolation shows that this value is still 1.57 units.

To see that neither approach takes account of response bias, we must dis-
tinguish the two types of trials on which a given stimulus level can occur.
The non-zero intensity can be presented either in Interval 1 (e.g., the se-
quence <3,0>) or in Interval 2 (e.g., <0,3>). Column 4 in the table lists the
trial types in this format, and Column 5 characterizes the various types of
trials by the difference in intensity between the two intervals. Remember
(from chap. 7) that the difference between the stimulus effects in the two in-
tervals is the optimal decision variable in 2 AFC. Column 6 provides the
proportion of "2" responses for each possible stimulus sequence, and the
overall p(c) values can be seen to be the averages of two quite different num-
bers at each level of intensity — for example, at Level 2, the proportion cor-



288 Chapter 11

FIG. 11.7. Three treatments of the
2AFC data in Table 11.1. (a) Propor-
tion correct versus stimulus intensity;
(b) proportion correct adjusted for the
false-alarm rate versus stimulus in-
tensity; and (c) z score corresponding
to proportion correct versus the
(signed) difference in intensity be-
tween Intervals 2 and 1. Only the last
approach permits separation of sensi-
tivity from bias.

rect is .93 when the stimulus was in the second interval, but only 1 - .31 =
.69 when it was in the first.

When the proportion of "2" responses is plotted against this difference, as
in Fig. 11.7b, a complete psychometric function that increases from. 16 to .98
is obtained. This function offers a natural measure of bias, the PSE; it is not
even necessary to interpolate (in this case) to find that the PSE is an intensity
difference of-1.0 units. To estimate the threshold from curves like this, one
normally finds the average difference between the 75% and 25% points. The
resulting value is .5[0.72 - (-2.40)] = 1.56. This strategy attempts to eliminate
the bias in the estimate by averaging it away, but does not succeed. The bot-
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TABLE 11.1 Constructing Bias-Free Psychometric Functions

p(c) Intensity Intensity
Intensity p(c) Corrected Pair Difference P("2") z[P("2")]

3 .91

2 .81

1 .67

.82

.62

.34

<0,3>

<0,2>

<0,1>

<1,0>

<2,0>

<3,0>

3

2

1

-1

-2

-3

.98

.93

.84

.50

.31

.16

2.05

1.48

0.99

0.00

-0.50

-0.99

torn line is the same as in the earlier calculations because each of the two
points being averaged is still influenced by response bias.3

The best plan, according to detection theory, is to plot the psychometric
function in units of z scores rather than proportions, as shown in Fig. 11.7c
(Klein, 2001). A natural definition of threshold is the level difference re-
quired to obtain a specific value of d' for a stimulus compared with the null
difference, d' = z(x) - z(0). Many investigators choose d' = 1, the 76% cor-
rect point in unbiased 2AFC. In this example, z(0) is found by interpolation
to be 0.5 units and z(2) equals 1.48, so d' = 1 is obtained when x approxi-
mately equals 2. The threshold for detection is therefore estimated to be 2
units, a value that is unaffected by response bias. The bias toward "2" in the
raw data led to an exaggerated impression of the observer's sensitivity (i.e.,
an unduly low estimate of threshold).

Evaluation of Tracking Algorithms

A very large number of adaptive packages can be constructed by combining
rules for changing levels, target percentage, rules for finding new levels,
stopping testing, and computing a threshold. Like Treutwein (1995), who
listed 21 separate procedures, we find the goal of deciding on a single
method that can be recommended in all circumstances to be beyond our
reach. Instead we attempt to set out rationales that might justify choices in
particular applications. A necessary preliminary step is to establish some
criteria for evaluation.

3For subjective judgment UDTR tasks (such as Example 1 Ib), Jesteadt (1980) suggested a similar strat-
egy: Estimate each of two symmetrically located points (e.g., 71 % and 29%) on subsets of trials and av-
erage them to obtain the PSE. The task is said to reduce response bias and provide the illusion of having
a correspondence function, in compensation for a loss of statistical efficiency.
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Evaluation Criteria

Statistical Characteristics of Threshold Estimates. An empiri-
cal threshold is a statistic (see Appendix 1), an estimate of a theoretical pa-
rameter, and can be evaluated by asking two questions: (a) On the average,
is it equal to the parameter? The average discrepancy between a statistic and
the corresponding parameter is called statistical bias (a usage unrelated to
response bias), (b) Is its variability small? To find out, comparisons with
other, competing measures are made.

The variability of a threshold (or any other) statistic ordinarily decreases
as more trials are used in computing it. Taylor and Creelman (1967) sug-
gested that the work accomplished by a procedure could be measured by the
sweat factor, equal to the product of the number of trials and variance. The
relative efficiency of a measure is its sweat factor divided into the sweat fac-
tor of an alternative index. One interesting basis for comparison is the
"ideal" variability, that constrained only by inevitable binomial variance
(see Appendix 1).

Computations and Experiments. Adaptive procedures can be
compared by conducting threshold measurements with human or animal
observers or by simulating the outcome. More computations than experi-
ments have been done, not only because they can be more easily conducted,
but also because they provide a needed baseline for experimental data. The
threshold to be expected can sometimes be calculated by enumerating every
possible outcome of a series of trials (e.g., Madigan & Williams, 1987). For
less tractable calculations, a common approach is simulation using a Monte
Carlo method: An assumed underlying distribution determines the effec-
tive probability of each response at each stimulus "level," and "runs" of
many "trials" are presented (Press et al., 1986, ch. 7). The observer imag-
ined by most simulators is ideal (see chap. 12), reaching the best possible
performance given the limitations of sensory and response variability (Tay-
lor & Creelman, 1967, Appendix). Simulations must mirror all important
aspects of the threshold estimation problem. For example, runs must begin
at variable starting points because in real experiments we do not know the
relation of the initial stimulus to the observer's threshold; assuming knowl-
edge about the starting point produces unrealistically precise estimates
(Watson & Fitzhugh, 1990).

We can now evaluate the main classes of adaptive methods, those de-
pending on maximum likelihood, PESTilent rules, or staircases.
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Maximum-Likelihood Methods

If adaptive procedures are compared solely in terms of statistical criteria
and assessed by simulation, then a choice is not difficult to make: Maxi-
mum-likelihood procedures (QUEST and Best PEST) have the greatest ef-
ficiency. Because of its use of a priori information, QUEST is the better of
the two in efficiency and bias for large stimulus ranges (Emerson, 1986b;
Madigan & Williams, 1987). Watson and Pelli (1983) found the efficiency
of QUEST to be 84%.

One reason that pure maximum-likelihood methods have not made
their competitors obsolete is that they make a number of assumptions. To
determine the psychometric function "most likely" to have produced the
data, one needs a constrained set of candidates; thus the form of the func-
tion must be known. Most methods also require knowledge of the slope so
that all the possible functions differ only in threshold. These assumptions
are more attractive in well-mapped research areas than in novel domains.
A further assumption is that the data result from an ideal observer: What-
ever the psychometric function is, it is the same on every trial, with no
shifts in threshold, lapses in attention, or loss of memory for stimulus
characteristics. It is straightforward to simulate these kinds of
nonoptimality, but not to incorporate them into algorithms for choosing
the next stimulus level.

Nonparametric Methods Using PEST

PEST packages are nonparametric in that they make no assumptions about
the underlying psychometric function. Taylor and Creelman (1967) calcu-
lated PEST to have an efficiency of 40% to 50%, which is better than all but
the maximum-likelihood procedures. Madigan and Williams (1987) found,
in a word-recognition experiment, that PEST was no less efficient in prac-
tice than Best PEST or QUEST. PEST-estimated thresholds are biased low
for short experimental runs or large stimulus ranges (Emerson, 1986a;
Madigan & Willams, 1987).

Taylor, Forbes, and Creelman (1983) reported data suggesting that PEST
observers suffer less from sensitivity fluctuations than do participants in the
method of constant stimuli. Shifts that do occur can be detected by examin-
ing a plot of stimulus level against trials (Hall, 1983; Leek, Hanna, & Mar-
shall, 1991). Such trends are more evident in PEST or UDTR than in a
similar plot derived from the sort of continual adjustment made by
maximum-likelihood methods.
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Nonparametric Staircase Methods

The UDTR method exercises simple staircase control over stimulus inten-
sity. Its major advantage over the other methods is that computation and
stimulus control are simple. Computational complexity is an issue of dimin-
ishing importance, but it is still true that continuous adjustment of the stim-
ulus variable is not practical in some domains. When experimenters know
fairly well what step size to use, and the ballpark of the threshold, UDTR
can be a good choice. Kaernbach's (1991) step-size method provides a
modest improvement in efficiency for short runs (Rammsayer, 1992).
UDTR decision rules are, in general, slightly less efficient than Wald rules
for the same target proportion.

A strategy often used in conjunction with UDTR is the interleaving of
multiple adaptive tracks. The particular adaptive track to be used on a trial is
chosen at random, and its current stimulus is presented. This reduces the
predictability of the next stimulus level and aids memory in that if stimuli on
one track are at a low, hard-to-remember level, then those on the other track
may not be. An apparent disadvantage is that twice as many trials are re-
quired, but in compensation one obtains two distinct estimates of threshold.

Two More Choices: Discrimination Paradigm
and the Issue of Slope

Two other choices, not logically part of the tracking algorithm, must also be
faced. Of the many available discrimination paradigms discussed in earlier
chapters, which is to be used? And is the threshold the only important fea-
ture of the psychometric function, or should the slope also be estimated?

Discrimination Paradigm

2AFC. Most modern adaptive psychophysical procedures have
used the two-alternative forced-choice paradigm, probably because of its rep-
utation for minimal response bias. Although this reputation is deserved,
2AFC is less efficient and more statistically biased than the yes-no paradigm
(Kershaw, 1985; Madigan & Williams, 1987; McKee et al., 1985). The ineffi-
ciency results from the reduced range: p(c) takes values between .5 and 1 in
2AFC, whereas the yes-no hit rate increases from 0 (or the false-alarm rate y)
to 1. The response-bias-free method described earlier solves this reduced-
range problem. The statistical bias arises because the lowest values of the
psychometric function near an asymptote can still yield erroneous decisions,
whereas the upper values, near the 100% point, are unlikely to give wrong an-
swers. Threshold estimates are therefore systematically too low.
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mAFC. Simulations show that offering more than two alterna-
tives per forced-choice trial results in improved efficiency and smaller bias
(e.g., McKee et al., 1985). Some of the advantage arises from the increased
range of the psychometric function, the lower limit of which is 33.3% in
3AFC and 25% in 4AFC. In addition, mAFC designs make it easier to place
the target above the midpoint of the psychometric function—a desirable
goal (Leek, 2001). Auditory detection experiments confirm that 3AFC and
4AFC are to be preferred over 2AFC (Kollmeier et al., 1988; Shelton &
Scarrow, 1984). Of course more presentations per trial mean longer trials;
thus, Schlauch and Rose (1990) recommended three alternatives over four.

Yes-No. The task that maximizes the range of the psychometric
function is yes-no, which has a minimum response rate of 0%. An addi-
tional advantage, in most applications, is that each trial contains a single
temporal interval, reducing experiment time. Kaernbach (1990) developed
a "single-interval adjustment-matrix" procedure in which different targets
are reached by manipulating step size. Both signal and noise trials can oc-
cur, and the method aims at a response rate target of t=H- F. Stimulus level
is lowered 1 unit following a hit, increased tl(\ - f) units following a miss,
and increased 1/(1 - f) units following a false alarm. For a 75% target, these
values are -1, +3, and +4 units. In simulations and experiments, Kaernbach
showed a substantial benefit of this method over Bekesy tracking and
2AFC, especially when the time per trial was taken into account.

Slope

Most of our effort in this chapter has been aimed at estimating a single point on
a psychometric function, but it is often useful to know more. Knowledge of a
complete function is best obtained with the method of constant stimuli; Miller
and Ulrich (2001) provided a nonparametric method for estimating the func-
tion in some detail. Several investigators have designed adaptive methods with
a more modest goal: an accurate estimate of the function's slope. This statistic
gives information about the reliability of threshold estimates and is helpful in
maximum-Ukerihood calculations in which a slope must be assumed.

At the end of an adaptive run, response proportions for a number of stim-
ulus levels are available, and in principle slope could be estimated by fitting
functions of differing slopes to the data. In fact, however, a set of levels that
is well chosen for the goal of estimating threshold is not ideal for estimating
slope-typically, the points are too close together. The first step in modifying
adaptive methods for slope estimation is to adjust the rules for selecting
stimuli.
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Consider, for example, the adaptive probit estimation (APE) procedure
of Watt and Andrews (1981). Four stimuli are selected that are thought to
span the major portion of the psychometric function, and a short run using
these values is presented. At the end of the run, the observed response pro-
portions are fit by the probit method, and four new values are selected that
cover the new estimate of the function. The procedure continues in this
adaptive manner.

One way to view the simultaneous estimation of threshold and slope is
as a search through a two-dimensional parameter space, and current meth-
ods approach the problem from this point of view. In the earliest of these,
Hall (1981) used the PEST tracking rules combined with a large initial
step to guarantee a dispersion of stimulus values; both the starting point
and the initial step are adjusted between runs. The summary psychometric
function is chosen by maximum likelihood from a set varying in both
mean and variance. King-Smith and Rose (1997) and Kontsevich and Ty-
ler (1999) improved on this basic approach by the use of maximum likeli-
hood and Bayesian methods in stimulus selection as well as for data
summary. One cautionary conclusion from this body of work is that the
number of trials needed for an accurate assessment of slope is far greater
than the number needed for a threshold. Leek, Hanna, and Marshall
(1992) recommend 200 trials to find a slope value. Kontsevich and Tyler
(1999) estimated that 300 are required, versus 30 for a simple threshold
estimate. Clearly one needs a good reason for all this extra work; one com-
pelling rationale would be the existence of theories that make predictions
about psychometric function slope.

Summary

Adaptive procedures estimate the stimulus level needed for a fixed level of
performance. The stimulus that yields some proportion of correct respond-
ing in a forced-choice task (or a specified hit rate in yes-no) is found by sys-
tematically varying the stimulus difference during an experimental run.

Procedures differ in the rules by which they decide to change stimulus
level, the target performance accuracy, the rules by which the new level is
computed, the criterion for ending a run, and the method of computing a
threshold from the data. The simplest rules change level after a fixed num-
ber of trials, by a fixed step size, stop after a fixed number of trials or rever-
sals of direction, and compute threshold from one or a few points. More
complex rules make greater use of the history of the run, the prior judgments
of the experimenter, and the expected form of the psychometric function.
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Computer simulations show the more complex rules to be more effi-
cient, that is, to produce less variable and less biased estimates, provided
that their assumptions are correct. The most popular discrimination para-
digm, 2AFC, is inferior to raAFC and yes-no, especially at low perfor-
mance levels. Psychometric function slope can be estimated with
appropriate modifications in adaptive procedures, but at considerable ex-
perimental cost.

Problems

11.1. Following are some stimulus values, together with the number of
correct and incorrect responses to date at each level in a 2AFC de-
tection experiment:

Stimulus

-2.5

-2.0

-1.0

-0.5

0.0

0.5

1.0

2.0

2.5

Number Correct

0

0

1

2

3

4

4

2

1

Number Incorrect

2

1

4

3

2

1

0

1

0

For each of the following logistic psychometric functions, find the
likelihood of these data using the method of Equation 11.5:

1

l+e~*

l+e

Which function is most likely for these data? Plot both the observed
data points and the three theoretical curves.
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11.2. A new trial is run at stimulus intensity 0, and the observer is correct.
Recompute the likelihoods of the three functions with the new data.
Which is now most likely? Plot the new data point on the graph you
drew for the previous problem.

11.3. A string of trials in an adaptive 2AFC experiment leads to the fol-
lowing correct (+) and incorrect (0) responses:

+0+0++0+++0000++++++

(a) Apply the Wald sequential test with p(T) = .75 and deviation
limit 1.0 until a decision to change level is made. Continue until
you run out of data. On what trials is the decision made, and in
which direction is the change?
(b) Apply the 2/1 UDTR rule in which p(T) = .71 to the same set of
responses, and answer the same questions.
(c) Apply the 4/1 UDTR rule in whichp(T) = .84 to the same set of
responses, and answer the same questions.

11.4. For each of the three rules in Problem 11.3, find the stimulus level
after each decision:
(a) using the PEST stepping rules with initial level of 32, initial step
of 16, maximum step of 16, and minimum step of 1;
(b) and (c) using the UDTR stepping rules with initial level of 32
and all steps of size 4.
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Components of Sensitivity

What determines the degree to which two stimuli can be distinguished? De-
tection theory offers a two-part answer: Sensitivity is high if the difference
in the average neural effects of the two are large or if the variability arising
from repeated presentations is small. Common measures of accuracy like d'
are accordingly expressed as a mean difference divided by a standard devia-
tion. In most of the applications we have considered, changes in sensitivity
are equally well interpreted as changes in mean difference or variability,
and attributing such effects to one source or the other is both impossible and
unnecessary. In the early chapters of this book, we therefore suppressed the
role of distribution variances, dealing only with mean differences and stan-
dard deviation ratios.

When the experimental situation is expanded beyond two stimuli, the lo-
cus of a sensitivity effect may become clear. If three stimuli differ along a
single dimension—light flashes varying only in luminance, for example—
and the extreme stimuli are more discriminable than the adjacent ones, sys-
tematic increases in mean effect provide the simplest interpretation. If the
perceptibility of a stimulus decreases when another must also be detected,
as in uncertain detection designs, it is natural to imagine that variance rather
than mean difference has been affected by the demands of attention. Our
treatments of these problems in chapters 5 and 8 adopted exactly these inter-
pretations.

In the pure two-stimulus world, disentangling these two contributions to
sensitivity requires another approach. A starting point is to ask whether
there is variability within a stimulus class itself, and perusal of our several
examples reveals the answer to be: sometimes. Absolute auditory detection
typifies one case: Every presentation of a weak tone burst is the same, so all
the variability must arise from processing. The variance is entirely internal.

297
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Recognition memory is quite different: No matter how carefully the stimu-
lus set is constructed, the items in it must differ in familiarity (or whatever
the decision variable is). If recognition is represented as a task of distin-
guishing two distributions of familiarity, external variance contributed by
the stimulus set combines with the internal variance of the fallible observer.

In this chapter, we examine efforts to partition blame for imperfect sensi-
tivity between external and internal sources, and among components of
each of these. We begin with the simplest case, two distributions on one di-
mension arising from stimulus classes that are nonconstant. The primary
question is the relative importance of internal and external variance—the
efficiency of the observer compared with the best possible performance. In
the second section, we extend the information combination ideas of chap-
ters 6 to 10 to partition variance among components of a stimulus and
among observers in a "team." Finally, we discuss hierarchical models in
which variance may arise at multiple levels of processing. The application
of these ideas in perception is too widespread to cover in a chapter, and a
thorough understanding requires sophistication in particular content areas.
We intend this introductory presentation to illustrate an important use of de-
tection theory that is not treated elsewhere in the book.

Stimulus Determinants of d' in One Dimension

Example 12a: The Dice Game

The first detection theory problem encountered by many students is a "dice
game" described in the first chapter of Green and Swets' (1966) classic
treatment. On each trial, three dice are rolled, two conventional dice with 1
to 6 spots, and a third die that contains 0 spots on 3 sides and 3 spots on the
other 3 sides. You are given the total number of spots on the three dice and
asked to judge the value of the third, critical die. What decision rule should
you adopt, and how well can you expect to do?

In this artificial problem, the decision maker is obviously discriminating
between distributions, not constant stimuli.1 Possible totals range from 2 to
12 if the third die is 0 and 5 to 15 if it is 3, so values between 5 and 12 could
arise from either 0 or 3. Figure 12.1 shows the distributions, which are trian-
gular in shape. The natural decision rule (natural to the reader of this book,

1A given trial does not contain a distribution, but only an event—in this case, a number. We nonetheless
use the term distribution discrimination for cases in which the possible events in S{ and S2 are explicitly
varied by the experimenter.
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conventional dice plus
0, and the S2 distribu-

totals for two conven-

who encounters the problem in chap. 12 rather than chap. 1) is to establish a
criterion at some value between 5 and 12.

If presentation probabilities are equal, what is the highest success rate the
player can obtain? In this case, the criterion should be at the crossover point
of the two distributions, and the decision rule is to respond "0" for totals of 8
or less and "3" for totals of 9 or more. Examination of the distributions re-
veals that the "hit rate" (correctly saying "3") and the correct rejection rate
(correctly saying "0") will each equal 26/36 = .72. This is the best perfor-
mance level the observer can reach.

Models of optimal performance of this kind are called ideal observers.
The strategy described for the dice example is ideal in three senses. First, the
decision variable is the total number of spots, which is perceived without er-
ror. Second, the observed value is compared with a fixed criterion. Third,
the criterion is placed at a location that maximizes accuracy as measured by
p(c). When either of the first two characteristics is violated by a human ob-
server, as when there is an error in perception or variability in the criterion
location, lower than ideal sensitivity results. If only the third characteristic
is violated, a point on the ideal ROC is obtained, and performance might or
might not be considered ideal depending on the application. Performance
that is reliably better than ideal is not possible.

Can we compute a d' for the dice game? The distributions are obviously
not normal, but the analogous statistic is easily found. The mean difference
is 3, the standard deviation can be shown to be 2.45, and the ratio of these is

Fig.  12.1.   Distribu
tions of totals for the
dice game. The s1 dis
tribution gives the
possible totals for two

tion gives the possible

tional disc plus 3.
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1.22. If this were ad', it would correspond to ap(c)max of .73, quite close to
the true value based on the actual triangular distributions.

Distribution Discrimination

Green and Swets intended the dice game as a pedagogical device, and for
that matter so do we. But a number of investigators have used similar tasks
to compare actual performance with that of an ideal observer who behaves
optimally.

Lee and Janke (1964, 1965), in fact, used numerical distributions as in
the dice game, except that the distributions were normal. In a later experi-
ment of this type, Kubovy, Rapoport, and Tversky (1971) found that re-
sponding was close to ideal, but that about 6% of responses could not be
predicted by the optimal rule. This is what would be expected if the observer
shifted the response criterion from trial to trial; we discuss this further later.
Lee and his colleagues drew similar conclusions from one-dimensional
non-numeric distributions (e.g., grayness of a patch of paper).

Comparisons of Real and Ideal Observers

In measuring detection thresholds, it has been important to find out whether
limitations in sensitivity are inherent in the stimulus or derive from short-
comings of the observer. We consider one example from vision and one
from hearing, and then we consider how the relative contributions of these
two sources of "noise" can be estimated.

Absolute Visual Detection. An early experiment that compared
real and ideal observers predates the development of detection theory.
Hecht, Schlaer, and Pirenne (1942) asked how many quanta of light need to
be absorbed for a viewer to detect a weak visual stimulus (see Cornsweet,
1970, and Luce & Krumhansl, 1988, for summaries). Figure 12.2a shows
the percentage of "yes, I see it" responses as a function of stimulus intensity.
Because of uncertainties about how many quanta are filtered out by the opti-
cal system of the eye, these data cannot be used directly to determine the
minimum number of quanta required for detection. Thus, the stimulus axis
is labeled arbitrary: The values are only proportional to the number of
quanta reaching the receptors and cannot be used directly to find the exact
number of quanta being absorbed.

Ideal observers enter the picture because for a fixed light intensity the
number of quanta reaching the retina is not constant, but has a Poisson dis-
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FIG. 12.2. (a) A psycho-
metric function obtained by
Hecht, Schlaer, and Pirenne
(1942) for visual detection,
(b) The same data with theo-
retical Poisson functions
overlaid on them. Each curve
corresponds to a different hy-
pothetical number of quanta
required for detection, and
each has a different slope.
The curve that assumes 7 or
more quanta to be required
for detection provides the
best fit. (Adapted with per-
mission from Figs. 4.6 and
4.7 in Cornsweet, 1970.)

tribution. This distribution can be used to predict the shape of the psycho-
metric function. If the data fit the prediction, we could conclude that the
only limitation in detecting weak lights lies in the stimulus itself. The Pois-
son is a family of one-parameter distributions for which the mean and vari-
ance are equal, and as a consequence the predicted slope of the
psychometric function depends on the number of quanta required for detec-
tion. Figure 12.2b shows a family of psychometric functions derived from
the Poisson. When the data points obtained by Hecht et al. are superim-
posed on these theoretical curves, the best fit is the case in which 7 quanta
are required for the observer to say "yes."

We know, therefore, that if the observer is ideal the number of quanta
needed for detection is 7, but we do not know whether the observer is in fact
ideal. As mentioned earlier, one sort of nonoptimality is variation in the ob-
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server's response criterion from trial to trial, and it turns out that the effect of
such variation is to decrease the slope of the psychometric function. The
psychometric function measured by Hecht et al. could, therefore, be steeper
than the true function, and the slope of that function would correspond to a
higher threshold. Hecht et al. were able to resolve this indeterminacy in a
more precise experiment at a single performance level (60%), and found
that 8 quanta were sufficient to produce this hit rate. The small difference
between this number and the good fit of the 7-quantum, ideal observer theo-
retical curve led them to conclude that the major limitation on visual detec-
tion was the variability of the stimulus. The human observer was, in this
case, almost ideal.

Detection of Pure Tones in Noise. One of the early applications
of detection theory, summarized in Green and Swets (1966), was to the de-
tection of tones in noisy backgrounds. The ideal observer for this problem
uses all the detail of the stimulus waveform, and is thus termed a signal-
known-exactly observer. The optimal analysis is to calculate a "cross-corre-
lation" between the observation interval and a remembered copy of the sig-
nal. To predict d', one calculates the average output of the cross-correlator
for Noise and Signal trials and divides the difference by the standard devia-
tion of this device. Human observers do not meet the prediction made in this
way. Their d' values are lower—they have efficiencies less than 1.0—indi-
cating that they are not able to use all the information (e.g., phase) required
by the cross-correlation strategy.

If observers are not ideal in solving this problem, what aspects of the
waveform do they take advantage of? One way to answer this question is to
examine the potential performance of some nonoptimal strategies. For ex-
ample, perhaps the observer simply calculates the energy in the observation
interval, discarding other information like phase and frequency. Energy de-
tectors do a much better job of predicting performance. An exact correspon-
dence could be interpreted to mean that human observers are ideal in using
the information they collect, even if they do not incorporate other informa-
tion that could raise their accuracy.

Combining Internal and External Noise. Because internal noise
is never exactly zero, sensitivity in tasks containing stimulus variation is
limited by a combination of internal and external noise. The most common
approach to modeling this situation is to imagine that the two types of vari-
ability are additive, so that the total variance limiting performance is simply
the sum of the external and internal contributions.
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Suppose, as in Lee and Janke (1964), that an observer is discriminating
two distributions of line lengths, with means of 10 and 14 cm and a com-
mon standard deviation of 2 cm. The ideal observer's sensitivity can be
written as

(12.1)

where Ml and M2 are the means of the distributions and CTE is the external
standard deviation. Thus the situation has ad' of 2 and an unbiased p(c) of
.84. If actual (unbiased) accuracy is only .76, so that d' = 1 .4 1 , how much of
the variability is internal and how much is external?

We assume that the effective variability is the sum of the external and in-
ternal variances and these two components are independent. Then

where o; is the internal standard deviation. The ratio of ideal to observed d'
can be used to estimate the ratio of internal to external variance because
(combining Eqs. 12.1 and 12.2)

In the example, this ratio equals 1.0, leading to the conclusion that the
amounts of internal and external variance are equal.

What exactly is "internal noise"? In Lee and Janke's length discrimina-
tion task, the fault probably lies in the decision rule rather than the encod-
ing process. Two ways in which decision making might be imperfect were
raised in the Essay in chapter 2. If the observer is completely inattentive on
a proportion 7 of trials, performance declines. In this case, the average
p(c) of .76 would equal (.5)7 + (.84)(1 - 7), so 7 = .24 — the observer is not
attending to about one quarter of the trials. Alternatively, as mentioned
earlier, the observer allows the criterion to vary. The equality of internal
and external variances implies that the standard deviation of criterion lo-
cation, like that of the length distribution itself, equals 2 cm.

Our simple model for combining internal and external noise allows us
to calculate the observer's efficiency, defined as the square of the ratio of
ideal to observed d' . A rearrangement of Equation 12.3 shows that in this
case it equals crE

2/(<TE
2 + of); for the line length example, efficiency

equals .5.
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Basic Processes in Multiple Dimensions

In one dimension, the ideal observer question is: Does the experimental par-
ticipant use all the information in the stimulus to make a decision, and if not
can the information that is lost be simply described? We now extrapolate
these questions to multivariate stimuli. Suppose the stimuli are the horizon-
tal and vertical positions of a dot on a computer screen (as—except for the
computer—in Lee, 1963). Depending on the distributions being discrimi-
nated, the observer needs to take account of both dimensions. In this sec-
tion, we show how the multidimensional tools developed in chapters 6 to 10
allow the investigator to determine which stimulus aspects enter into the ob-
server's decision and which are ignored.

We discuss three versions of this approach, all of which exploit the infor-
mation-combination ideas introduced in chapter 8. First, GRT theorists
have extended Lee's distribution-discrimination design to multiple dimen-
sions. Second, components of complex stimuli have been directly manipu-
lated to determine which ones affect overall sensitivity. The central
paradigm is the conditional-on-single-stimulus (COSS) design of Berg
(1989). Finally, Sorkin and his colleagues have extended the analysis to
groups of observers collaborating on a decision; the "components" of sensi-
tivity are individuals.

The GRT Approach

Ashby and Gott (1988) introduced the "general recognition randomization
technique" as a tool for studying pattern classification. Their stimuli were
horizontal and vertical line segments joined at the upper left corner. The
lengths of both segments were drawn from logistic distributions, and a par-
ticular stimulus could be represented as a point in two-dimensional space.
Repeated presentations thus defined a bivariate distribution, and the ob-
server's task was to discriminate between two such distributions. In one ex-
periment, for example, the mean of the distribution for Stimulus A was 400
horizontal and 500 vertical units, whereas for Stimulus B it was 500 hori-
zontal and 400 vertical units. The standard deviation for both distributions,
and for both segments, was 84. The distributions Ashby and Gott used are
shown in Fig. 12.3.

Observers classified items as A or B, and an optimal rule for making this
decision is to say "A" if the perceived difference between the vertical and
horizontal lengths v - h is greater zero and say "B" if it is not. If this differ-
ence is indeed the decision variable (and all three observers adopted rules
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tion strategies than the optimal one described here. In the GRT frame-
work, this is a question of the shape of the decision bound, a question we
explored in chapters 6 and 8. We now turn to a related strategy developed
largely in psychoacoustics.

TheCOSS Approach

Both the horizontal and vertical lengths in the Ashby and Gott experiment
are useful in making a classification decision. Let us examine each compo-
nent separately starting with the vertical segment. The longer this is, the
more likely it came from the A distribution, so the proportion of "A" re-
sponses should increase with vertical length. Figure 12.3 allows us to calcu-
late P("A") for vertical lengths in 50-unit categories (200-250, 250-300,
etc.) simply by counting the numbers of xs and «s in successive horizontal
strips. Proportion of "A" responses increases gradually from 0 to 1 in the
manner of a psychometric function. Such functions depend on one compo-
nent irrespective of others, leading Berg (1989) to call themconditional-on-
single-stimulus (COSS) functions. A similar analysis can be applied to the
horizontal segments. Because "B" becomes more likely as these lengths in-
crease, it is natural to look at />("B") rather than P("A"). COSS functions for
both segments are given in Table 12.1.

TABLE 12.1 COSS Functions for the Ashby and Gott
(1988) Experiment

Lengths

<250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

>600

Vertical

P("A") z[P{"A")]

0.00

0.09

0.03

0.17

0.44

0.72

0.94

0.95

1.00

-1.34

-1.88

-0.95

-0.15

0.58

1.56

1.64

Horizontal

P("B") z[P("B")]

0.00

0.00

0.11

0.13

0.36

0.71

0.85

0.92

1.00

-1.23

-1.13

-0.36

0.55

1.04

1.40

Because the A and B distributions are approximately normal, converting
the COSS functions to z scores should produce straight lines, and Fig. 12.4
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FIG. 12.3. Data reported by
Ashby and Gott (1988) for
one observer in a classifica-
tion experiment. Stimuli con-
sisted of a horizontal line seg-
ment joined to a vertical line
segment. The lengths of both
were varied by the experi-
menters and are represented
on the horizontal and vertical
axes, xs indicate stimuli that
the observer judged to come
from a distribution centered
at the point (400,500), «s indi-
cate stimuli judged to come
from one centered at (500,
400), and as indicate response
inconsistency. (Adapted with
permission from Fig. 7 in
Ashby and Gott, 1988.)

very much like it), the problem is converted into a one-dimensional one like
that of Lee and Janke (1964). To determine the optimal value of d', we first
find the difference between the two means from the Pythagorean Theorem;
it is (1002 + 1002)1/2 =141. The standard deviation of 84 is the same in all di-
rections, so d' = 141/84 = 1.68, and the value of/?(c) expected for an unbi-
ased observer is .80. All three observers obtained scores close to this (.88,
.82, and .79), leading to the conclusion that virtually all the variability limit-
ing a decision in this case was in the stimulus distributions themselves.

This conclusion is supported by a closer look at Fig. 12.3. The diagonal
line is the ideal decision boundary, v - h = 0. The xs and »s do not corre-
spond to the A versus B distributions, but to the responses given by the ob-
server. Virtually all the xs ("A" responses) and »s ("B" responses) were
consistent with the use of the ideal boundary, and the "errors" arose from
cases in which the A distribution produced stimuli in the "B" region and
vice versa. Put in terms of the previous section, these observers displayed
little internal noise.

The questions we have asked about classification of two-segment line
figures focus on overall performance, and the analysis has been quite sim-
ilar to that applied by Lee and Janke (1964) to classification of single
lines. The two-dimensional distributions also allow us to explore the way
in which the two components combine to determine overall performance,
and Ashby and Gott used their stimulus set to compare different integra-
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FIG. 12.4. COSS func-
tions constructed from the
Ashby and Gott data in

Line Lengths " Fig. 12.3.

shows that this is roughly true. The slopes of the lines (0.0124 for vertical
location and 0.0118 for horizontal) measure the effectiveness of the two
components in making the classification judgment and can be used to deter-
mine the weighting given to each dimension.

The decision rule assumed by COSS is to compare a weighted sum of
component observations with a criterion. Calling the horizontal dimension
jc, and the vertical dimension x2, the rule is to respond "A" if a^{ - a^x2 > c.
(The a;.s are weighting constants, and the minus sign arises from the nega-
tive relation between the two components.) Solving this relation, we find
that x2 must be greater than v2, where

y2 = (c + a,xl)la2 . (12.4)

This equation, which describes a line in the space of Fig. 12.3 with slope
ajav is the decision bound for the vertical segments. There is an analo-
gous boundary v, for the horizontal segment. Berg showed that the values
of the weights al and a2 depend on the variance of these variables in the
following way:

a\ ^var[y,J+(T2 (12.5)

a] var[y2]+a2

where cr,2 and (T2
2 are the external variances of the vertical and horizontal

length distributions. Intuitively, one component receives more weight than
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another if the variance of either the stimulus distribution or the observer's
responding is smaller.

Applying this analysis is straightforward. It turns out that the slope of
each COSS function [z(P("A"lv.)) vs v(.] equals the square root of the inverse
of var[y(], so

a 2 I
2_ _ .01242

2 1

842 (12.6)

.0118'

Because a{ and a2 must add to 1, the equation can be solved: al = .506 and a2

- .494. The two segments contribute nearly equally to the categorization de-
cision, and the decision bound in Fig. 12.3 has a slope of 1.02.

This conclusion seconds that of Ashby and Gott, which was based on a
different analysis of the data. They also found that the best-fitting linear
bound for this participant in the space of Fig. 12.3 had a slope of about ̂ im-
plying that jCj and x2 were equally weighted by their observers. Although
this example suggests that GRT and COSS analyses are just two mathemati-
cal translations of the same text, more complex perceptual situations reveal
advantages for each. GRT is more flexible when the independence assump-
tion is abandoned. As we saw in Part II, dependence between dimensions
can be defined in several diagnosable ways.

COSS analysis has an advantage when the number of components con-
tributing to a decision is greater than two. In an auditory experiment analo-
gous to those we have been discussing, Berg, Robinson, and Grantham
(1989; summarized in Berg, 1989) presented listeners with a sequence of up
to 10 tones, each drawn from a normal distribution with a mean of 1000 Hz
and a standard deviation of 100 Hz; or each drawn from a normal distribu-
tion with a mean of 1100 Hz and the same standard deviation. The COSS
approach assigns each position in the sequence its own weight ap and any
two positions can be compared using Equation 12.5. The requirement that
"La. = 1 allows just enough equations to estimate all the weights. One finding
in the Berg et al. study was that the greatest weight was assigned to the last
item in the sequence.

Groups of Observers

In some important real-life situations, groups of individuals (such as juries
or committees) must make a decision based on the same evidence. The
framework we have been describing for combining "dimensions" within a
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stimulus can be extended to the problem of combining information from
group members. Sorkin and his colleagues (Sorkin & Dai, 1994; Sorkin,
Hays, & West, 2001) have studied an experimental situation in which per-
formance of a group can be compared with various ideal models.

In a typical experiment, each member of a team of observers makes a
judgment in a visual discrimination task, and the votes are somehow com-
bined into a group response. One kind of model that can be used as a base-
line is the Condorcet group. In such a group, each individual casts an
unbiased vote, the votes are weighted equally, the judgments are treated as
independent, and a decision is reached by some type of majority rule. The
decision rule may be a simple majority, unanimity, or anything in between.
Ideal groups are superior to Condorcet groups in three respects: Individuals
make graded judgments rather than binary ones, their judgments are
weighted in proportion to their expertise (i.e., their d' values) and summed,
and the summed d' statistic is compared with a criterion to make a decision.

Both the ideal group and Condorcet groups with different majority rules
predict that performance will increase with the size of the group as shown in
Fig. 12.5. Also plotted in the figure are data points from an experiment con-
structed to remove any artificial constraints on group performance—graded
responses were made, a decision was made by consultation rather than strict
voting, and the expertise of the group members was known. As can be seen,
performance increased with group size in the manner predicted by a
Condorcet group operating on the basis of unanimity or near unanimity—a
nonoptimal rule. The discrepancy between observed performance and ideal
increased with group size, in that efficiency (the square of the d' ratio)
dropped from about 90% for a two-person group to 45% for seven people.

Because the analysis follows that developed in the multicomponent stim-
ulus context, tools developed there can be used. For example, Sorkin et al.
(2001) were able to apply the COSS method to determine the weights as-
signed to each individual in a group. Groups in this experiment weighted
observations roughly according to the expertise of the contributor, a com-
forting result. Judgments were essentially uncorrelated and, as predicted,
when a correlation was introduced experimentally (by correlating the
stimulus arrays), performance dropped.

Decision making by groups has been studied extensively by social psy-
chologists, and some of their findings are illuminated by these results. For
example, participants sometimes reduce their efforts when participating in
a group, a finding that has been called social loafing. In SDT modeling, this
result can be understood as a response to high correlations between individ-
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FIG. 12.5. Group perfor-
mance in a signal-detec-
tion task as a measure of
group size. Theoretical
curves describe the ideal
method of combining in-
formation and various sim-
pler "Condorcet" rules
based on unweighted tal-
lying of individual votes.
The data are most consis-
tent with the least optimal
Condorcet rules. (Adapted
with permission from Fig.
4 in Sorkin, Hays, & West,
2001.)

ual judgments or a low weighting assigned in group decision making. The
existence of Condorcet and ideal comparison models allows for more spe-
cific hypotheses in the study of such interesting phenomena.

Hierarchical Models

We have been describing models in which observer performance is com-
pared with ideal performance based on stimulus structure, but the general
approach can be elevated one step so that the comparison is between differ-
ent levels of processing. To make this work, we must construct two tasks
that use the same stimuli but require different kinds of treatment by the ob-
server. In the simplest case (and the only one we pursue here), one task de-
pends only on low-level mechanisms, the other on both low- and high-level
mechanisms.

An example of such an analysis was presented in chapters 5 and 7.
Durlach and Braida (1969) postulated that performance in a 2AFC discrim-
ination paradigm in which the same two stimuli (auditory pure tones) were
discriminated on every trial was essentially limited only by the sensory
noise that arises inevitably from neural coding. Identification accuracy is
also limited by this sensory variance, but also by context coding memory
noise; a comparison of discrimination and identification allows calculation
of the relative magnitude of these two sources of variance. Because Durlach
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and Braida assumed the two types of noise to be additive, this proportion
can be found from a variant of Equation 12.3 (cf. Eq. 5.5). A similar analysis
of 2AFC roving discrimination designs, in which the two stimuli to be dis-
criminated vary from trial to trial, proposes that sensory variance, context
coding, and time-dependent trace coding combine to determine sensitivity.
Each component can be estimated from a suitable data set; see chapters 5
and 7 for more detail.

A similar strategy has been applied to visual search experiments, which
are rather more complicated than pure-tone resolution. In a typical visual
search design, the observer must determine whether a target (say, a horizon-
tal line segment) is present in an array of distractors (say, vertical line seg-
ments). The dependent variable is usually response time, but accuracy may
also be measured. An important finding in this literature is that performance
is better when target and distractor differ by a single "feature" (as in the line
orientation case) than when two features are relevant (as in finding a red
horizontal segment in a field of red vertical and green horizontal segments).
A common interpretation of this finding (Treisman & Gelade, 1980) is that
additional processing is required in "conjunction" conditions to integrate
the two features.

Geisler and Chou (1995) asked whether low-level factors might be re-
sponsible for such differences in search performance and sought to measure
the low-level baseline for this task. Like Durlach and Braida, they measured
2AFC discrimination (in their case of a field with a target from a field that
consisted only of distractors), limited the range of stimuli (using an adap-
tive procedure like those described in chap. 11), and provided trial-by-trial
feedback. Data from these tests were summarized by a discrimination win-
dow describing performance over spatial area and stimulus duration; the
wider this window, the better the low-level processing.

If low-level mechanisms account substantially for visual search speed
and accuracy, then experimental conditions with larger windows should
produce faster and more accurate searches. A strong correlation of this type
is exactly what Geisler and Chou (1995) observed, and they concluded that
the slowness of conjunction searches compared to feature searches, "may
be due (at least in part) to low-level factors and not to complex aspects of the
attentional mechanisms" (p. 370). It is clear that high-level processes like
attention allocation play an important role in visual search, particularly in
multiple-fixation conditions, but accounting for more variance with low-
level mechanisms makes the task of developing a general model of visual
search both more manageable and more accurate.
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Essay: Psychophysics Versus Psychoacoustics (etc.)

In the community of auditory researchers, two terms are used to describe re-
search on the discrimination and classification of sounds, and it is useful to
draw a distinction between them. Psychophysics is the use of theoretically
grounded methodology to interpret perceptual measurements of sounds,
and psychoacoustics is the project of relating those measurements to the
sounds' physical characteristics. A similar distinction can be made in other
modalities and in cognitive applications as well.

Until the present chapter, this book has been almost entirely about
psychophysics: The questions of how to separate sensitivity and bias, com-
pare different discrimination paradigms, and relate classification to discrimi-
nation data have been taken up with the most modest of stimulus descriptions.
The variability limiting performance has often been partitioned between
components (sensory and memory, attention to one or more sources of infor-
mation), but these components have kept their distance from the stimuli.

In this chapter, we have taken a few steps toward adjusting the balance.
Although psychoacoustics has by no means received equal time, the models
here do include stimulus factors as explicit contributors to sensitivity or to
its limitations. Detection theory unifies approaches with varying degrees of
reliance on stimulus factors, and there is a discernable continuum of appli-
cation, from complete reliance on the stimulus to explain the data to
complete indifference to it.

One early line of detection theory research was heavily psycho-
acoustic. The path of this program moves from the ideal observer models
summarized in Green and Swets (1966) to studies of profile analysis
(Green, 1988) and Berg's (1989) COSS analysis. The undoubted success
of this body of work, however, was obtained at the cost of the introduction
of explicit variability into the stimulus sets. Detection of a noise incre-
ment in a noise background is well understood in terms of energy detec-
tion (Green, 1960), but the background noise is necessary to calculate the
variance that limits performance. This kind of ideal observer model would
not be able to predict the detectability of a noise burst in silence. Similarly,
both GRT and COSS do a good job of accounting for the discriminability
of distributions of line-segment pairs, but could not make much progress
if only two such pairs were being distinguished. When no external noise is
present, detection theoretic models still describe data (such as ROCs)
well, but the limiting variance is internal and not identified with any aspect
of the experimental situation. This is pure psychophysics, the other end of
the continuum.
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It is the in-between cases that are the most interesting. In the "ideal
group" analyses of Sorkin and his colleagues, experimental results are
compared with a baseline that represents the ideal performance under
particular stimulus conditions. The discrepancy is then interpreted in
terms of nonoptimal decision processes. Kingston and Macmillan's
(1995) analysis of the Garner paradigm showed that some tasks are in-
herently harder than others, so that the degree of "filtering loss" must be
understood in terms of ideal observers, not simple performance mea-
sures. For that matter, the many comparisons between discrimination
paradigms discussed in earlier chapters (and summarized in Figs. 10.1
and 10.2) show that inherent limitations in the decision space can ac-
count for a great deal of variance that might otherwise be understood in
psychological terms.

The "internal noise" that remains when inherent limitations are fac-
tored out can be conveniently (if not precisely) divided into cognitive and
sensory components. The cognitive category includes Durlach and
Braida's context memory, Geisler and Chou's high-level processes, and
explicit attentional manipulations. The sensory category is neural noise,
of the sort identified by Hecht et al., in vision and by auditory-nerve-based
models in hearing. This category includes processes whose neural sub-
strates are well understood, but of course all internal noise is neurally
based. One direction in which progress is being made is in providing a
neuroscience explanation of cognitive processes as well. As an example,
Patalano, Smith, and Jonides (2001) have shown that different parts of the
brain underlie prototype- and exemplar-based strategies in categorization
tasks, even within a single participant.

A sign of progress in research using resolution designs is that increas-
ingly complex tasks are being used; another is that detection theory
models are keeping pace. The psychophysical and psychoacoustic poles
with which we introduced this essay define an increasingly false dichot-
omy. Psychoacoustics is becoming more modest in its contributions to
moderately complex problems, as other components are better under-
stood, but more compelling in complex situations (e.g., sound localiza-
tion) in which models of the stimulus situation have advanced faster than
those of internal processing. Psychophysics is becoming more ambi-
tious, attempting to incorporate cognitive and neural processes into its
models. As our understanding of perception deepens, we can expect to
see fewer and fewer theories that rely on either one alone and more that
draw from many components of sensitivity.



314 Chapter 12

Summary

Detection theory provides strategies for partitioning the variance that limits
performance between external and internal sources, and among subcatego-
ries of each. An important tool is the distribution discrimination task, in
which participants must determine which of two overlapping distributions
led to an observation. The magnitude of the external noise arises from the
overlap, and the best possible, ideal performance is what would be found if
this were the only limiting factor. If accuracy falls below this level, the dis-
crepancy is attributed to internal noise.

When stimulus classes vary on more than one dimension, external vari-
ance can be divided among the dimensions. Discrimination can be de-
scribed with multidimensional detection theory, and the decision bound
between the distributions depends on both dimensions. The weighting as-
signed to a dimension depends on the variability of the distributions along
both dimensions (for the ideal observer) and on the slope of the
psychometric COSS functions (for real observers). Similar analyses can be
applied to features of geometric shapes, frequency regions of noise stimuli,
and individuals within a group.

A comparison of different experimental tasks permits division of internal
variance to multiple levels of processing, given a theoretical perspective
that determines what kind of processing is required for each task. This ap-
proach has been successful in such disparate areas as pure-tone resolution
and visual search.

Problems

12.1. Draw the ROC curve for the dice game. How is it similar to, and dif-
ferent from, other theoretical ROCs?

12.2. In the original dice game, there are 3 dice, 2 regular and 1 with half
3 s and half Os. Consider two modified games: (a) There are 4 dice, 3
regular and 1 with half 3s and half Os. (b) There are 3 dice, 2 regular
and 1 with half 2s and half Os. For each game, what are the underly-
ing distributions for total score? How do their means and variances
compare with those of the original game? (More difficult:) What is
the maximum possible proportion correct?

12.3. Suppose the observer in the Lee and Janke experiment adopts a cri-
terion location of 10 cm on half the trials and 14 cm on the other
half. What is the standard deviation of the criterion location? What
proportion correct will be obtained?
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12.4. (a) In an auditory experiment, the listener hears two noise bursts. The
average intensity of both bursts is 1 for samples of S1 and 2 for samples
of S2, and both samples have a variance of 1 (see Fig. 12.6.a). The task
is to decide which distribution generated the bursts. The experimenter
plots COSS functions for the first and second intervals separately and
finds that both have slope 1. What weights has the listener assigned to
the two bursts? What is the slope of the decision bound?
(b) Same as (a), but now the COSS function for Interval 2 has a
slope of 0.5.

12.5. Same as Problem 12.4, but the two samples have unequal variance:
Samples of S} have variance 1 and samples of 52 have variance 4
(see Fig. 12.6b). The experimenter plots COSS functions for the
first and second intervals separately and finds that both have slope
1. What weights has the listener assigned to the two bursts? What
decision bound does this imply? (b) Same as (a), but now the COSS
function for Interval 2 has a slope of 2.

FIG. 12.6. Distributions of intensity
for an experiment in which two noise
bursts are presented on each trial. The
value of burst 1 is represented on the
horizontal axis and that of burst 2 on
the vertical axis; the circles and ellip-
ses are equal-likelihood contours, as in
previous chapters. Both bursts are
drawn either from a distribution with
mean = 1 or from a distribution with
mean = 2. (a) variance = 1 in both in-
tervals (Problem 12.4), and (b) vari-
ance = 1 in interval 1, variance = 4 in
interval 2 (Problem 12.5).
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Statistics



13

Statistics and Detection Theory

Statistics is commonly divided into two parts. In descriptive statistics, a data
set is reduced to a useful measure—a statistic—such as the sample mean or
observed proportion. Detection theory includes many possible statistics of
sensitivity [d\ a, p(c), etc.] and of bias, and this book has been well stocked
with (descriptive) statistics.

Inferential statistics, on the other hand, provides strategies for generaliz-
ing beyond the data. In chapter 2, for example, we met an observer who was
able to correctly recognize 69 of 100 Old faces while producing only 31%
false alarms, and thus boasted a d' of 1.0. As a measure of sensitivity for
these 200 trials, this value cannot be gainsaid, but how much faith can we
have in it as a predictor of future performance? If the same observer were
tested again with another set of faces, might d' be only 0.6 or even 0.0?

The statistician views statistics, such as sensitivity measures, as esti-
mates of true or population parameters. In this chapter, we consider how
statistics can be used to draw conclusions about parameters. The two pri-
mary issues are: (a) How good an estimate have we made? What values, for
example, might true d' plausibly have? and (b) Can we be confident that the
parameter values, whatever they are, differ from particular values of interest
(like 0) or from each other? These two problems are called estimation and
hypothesis testing.

The chapter is in four sections. First, we consider the least processed sta-
tistics, hit and false-alarm rates. Second, we examine sensitivity and bias
measures. The third section treats an important side issue—the effects of
averaging data across stimuli, experimental sessions, or observers. For all
these topics, the primary model considered is equal-variance SDT, and the
discussion of hypothesis testing is limited to hypotheses about one parame-
ter or the difference between two parameters. The final section shows how

319
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the standard statistical technique of logistic regression can be used in test-
ing hypotheses within the basic model of Choice Theory and can be ex-
tended to SDT and other models.

Like the rest of the book, most of this chapter should be accessible to the
survivor of a one-semester undergraduate statistics course. Relevant con-
cepts from probability and statistics, some of which may be unfamiliar to
such a reader, are summarized in Appendix 1 .

Hit and False-Alarm Rates

A Single Observed Proportion

To start, consider a face-recognition experiment in which the proportion
correct is reported to be .69. Observed proportions vary from sample to
sample according to a well-known distribution, the binomial. If the true pro-
portion recognized is/7, then the observed proportion P varies across sepa-
rate tests. The expected value of P is the true value/?, and the variance of P is
p(l -p)IN, where N is the number of trials. We can estimate the variance in
our example by using the observed proportion P instead of/?; this estimate is
(.69)(.3 1)/100 = 0.002139, and the standard error is 0.0462.

When N is fairly large, as in this example, and the products Np and
N(l -/?) are not too small, the distribution of P is approximately nor-
mal. (For appropriate methods when these conditions are not satisfied,
see Darlington & Carlson, 1987.) In a normal distribution, about 95%
of scores are within 1 .96 standard deviations of the mean, the remain-
ing 5% being equally divided between the two extreme "tails." We can
use this fact to construct a 95% confidence interval around P:

In our example, approximating p by P,

/? = .69 ± (1.96)(0.0462) = .69 ± .09 .

That is, the true proportion is probably between .60 and .78.
The same strategy leads to hypothesis tests about binomial data. The ex-

perimenter can test the hypothesis that the true recognition proportion is .5
by simply noting that .5 is not in the 95% confidence interval. Thus, this hy-
pothesis can be rejected "at the .05 level."

Large and small proportions have less variance than intermediate ones:
/?(! -/?) equals 0.25 when/? = .5, but is only 0.09 when/? = .9 and falls to 0.01
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when p = .99. This suggests that estimation will be most accurate, other
things being equal, for large values of d' . Does this mean that, in choosing
experimental conditions, one should aim for very high performance levels?

For at least two reasons, the answer is no. The first reason is this: As pro-
portions near 0 or 1 , their variability does indeed decrease, but the probabil-
ity of obtaining an observed proportion of exactly 0 or 1 increases.
Observed proportions of 0 or 1 can be converted to z scores (or to log odds,
the Choice Theory transformation) only by a somewhat arbitrary adjust-
ment and are thus worth avoiding. Techniques for dealing with perfect pro-
portions attained by individuals in a group were introduced in chapter 1 and
are discussed further later. The second reason for avoiding very large and
small proportions in the first place is also addressed later.

Comparing Two Proportions

Binomial variability also affects comparisons of two data points, each in-
volving only one proportion. To extend the example, suppose a second ob-
server recognizes 89 of 100 faces: Is this a significantly greater proportion
than the first observer's .69? An important statistical theorem (see Appen-
dix 1 , Equations A 1 . 8 and A 1 .9) concerns differences between independent
variables: The mean of the difference is the difference between the means,
and the variance is the sum of the variances. In this case, Pl - P2, the differ-
ence in the success rates, has a mean value of pl -p2, the true population dif-
ference. The variance of Pl isp^l -p^/N^ the variance of P2 isp2(l -p2)/N2,
and if the two proportions are independent — as we assume — the variance of
the difference is the sum of these.1

Finally, the difference between two normal variables is also normal, so
the 95% confidence interval around the observed difference is:

Pl-p2 = P-P2± z^dptl -p^NJ + \p2(\ -p2)/AgP . (13.2)

For success rates of .89 and .69, again using observed P values to estimate
the p parameters,

p. -p2 = .20 ± (1.96)[0.00098 + 0.00214]* = .20 ± .11

'According to detection theory, H and F are related across conditions by an ROC or isobias curve, and
this is a form a dependence. But the statistical independence assumed here is that within an experimen-
tal condition the "yes" rates on Sj and S2 trials do not affect each other. This could be false if, for exam-
ple, the criterion shifts gradually during a set of trials.
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The true difference between the two proportions, we can be 95% sure, is be-
tween .09 and .31. Because 0 is not in this interval, we can reject the possi-
bility that the two observers' memories are equally good.

(False-Alarm, Hit) Pairs

When 5, and S2 trials—New and Old faces, say—are distinguished in an ex-
periment, two proportions (false-alarm and hit rates) are estimated, each
with its own binomial variability. The first step in comparing such pairs is to
apply the logic of the preceding section to each proportion.

Let us compare a control condition in which (F, H) = (.31, .69) with a con-
dition in which the observer is hypnotized and (F, H) = (.59, .89), assuming
that each of the four proportions is based on 100 trials. Both conditions can
be represented as points in ROC space. Because F and H are normally dis-
tributed, the distribution of the point (F, H) is bivariate normal (see Appen-
dix 1). Confidence regions around these points that include 95% of the mass
of the bivariate distribution are shown in Fig. 13.1. All points at the edge of
region have the same value of likelihood ratio. The regions turn out to be el-
liptical in shape, with a maximum radius of about 2.5 univariate standard-
deviation units. The two contours do not overlap, suggesting that the two
points are reliably different.

Figure 13.1 gives an indication of the variation we can expect in detec-
tion theory parameters. The confidence region for the ROC point from the
control condition includes the points (.23, .77) and (.39, .61), which corre-

FIG. 13.1 Bivariate bino-
mial (and therefore approxi-
mately normal) distributions
of (false-alarm, hit) pairs in
ROC space. Ellipses indicate
regions containing 95% of
the distributions.
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spond to d' values of 1.48 and 0.56. Also included are the points (.39, .77)
and (.23, .61), which correspond to c values of-0.23 and +0.23. Confidence
regions based on fewer trials are larger, the radii being inversely related to
the square root of the number of trials.

Sensitivity and Bias Measures

Usually our interest is not just in whether two ROC points could have arisen
from the same underlying (false-alarm, hit) pair, but in whether the two
points reflect the same sensitivity, or the same bias. (In the hypnotic recog-
nition example, both parameters are important.) We consider, in turn, the d'
and c parameters of SDT.

Sensitivity

Remember that a sensitivity parameter is computed by subtracting the
transformed hit and false-alarm rates: for example, d' = z(H) - z(F). Two
separate questions can be asked about this statistic: Is it, on average, equal to
true d' ? What is its variance? In our discussion of hit and false-alarm rates,
we were able to ignore the first, statistical bias, issue because observed pro-
portions are accurate—unbiased—estimators of population proportions.
Things are not so simple with d', and we must answer both questions.2

Statistical Bias ofd'. Miller (1996) evaluated the statistical accu-
racy problem in a straightforward way. Suppose the true hit rate in a yes-no
experiment is .69 and the true false-alarm rate is .31, so that true d' = 1.0. In an
experiment with 16 signal and 16 noise trials, what should we "expect" our
estimate of d' to be? The expected value is the one obtained, on the average,
in experiments of this type. One experiment might yield H= 12/16 = .75 and
F = 5/16 = .31 for an estimated d' of 1.170; in another, perhaps H = 10/16 =
.62 and F = 4/16 = .25, so d' = 0.979. The expected value can be calculated
from the binomial distributions of H and F. For this particular situation,
Miller found it to be 1.064, 6.4% greater than the true value.

Miller conducted this calculation for several values of true d' and the
number of trials; some results are shown in Table 13.1, an abbreviated ver-
sion of Miller's Table 1. Miller simplified his calculations by assuming

2The terminology is potentially confusing: Statistical bias is conceptually unrelated to response bias,
and statistical accuracy (unbiasedness) is unrelated to accuracy as measured by a sensitivity measure.
In this chapter, we avoid using the terms bias and accuracy without a qualifier unless the context makes
the usage clear.
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TABLE 13.1 Expected Yes-No d' and Percent Bias

Number of Signal and Noise Trials

True d'

0.5

1.0

2.0

3.0

4.0

8

d' % bias

0.555 11.0

1.096 9.6

2.036 1.8

2.641 -12.0

2.926 -26.8

32

d' % bias

0.514 2.8

1.029 2.9

2.084 4.2

3.135 4.5

3.879 3.0

128

d' % bias

0.503 0.6

1.007 0.7

2.019 1.0

3.048 1.6

4.122 3.0

572

d' % bias

0.501 0.2

1.002 0.2

2.004 0.2

3.011 0.4

4.032 0.8

equal response bias in all cases and also had to decide what to do about ob-
served hit rates of 1 and false-alarm rates of 0, a problem we examined in
chapter 1. Table 13.1 uses the correction in which a frequency of 0 is con-
verted to */2 and a frequency of N is converted to N -1/2.

Estimation is accurate if the appropriate table entry equals true d'. This is
most nearly true for estimates based on large numbers of trials—if true d' =
1, for example, the table shows that with 512 trials per stimulus the average
observed d' is 1.002, an error of just 0.2%. With fewer trials, unsurprisingly,
estimates are less accurate. The most problematic cases—those with the
greatest bias—are those in which the number of trials is small and true sen-
sitivity is high; these are the results for which the correction for 0 and 1 cells
is most often needed, and any correction leads to some distortion in the
estimate.

There are at least two ways in which the pattern in Table 13.1 might affect
substantive conclusions. First, sensitivity comparisons involving different
numbers of trials entail a constant error. If d' = 3.14 in a condition with 32
trials and d' - 3.05 in a condition with 128 trials, the apparent difference is
entirely attributable to different amounts of bias applied to a true d' of 3.0.
Typically, one can avoid such comparisons. The second threat is more insid-
ious: Comparisons of different sensitivity values based on the same number
of trials are also contaminated by error. For example, if in two conditions
with 32 trials each one measures d' values of 3.14 and 3.88, for a difference
of 0.74, the bias pattern implies that the true d' values are 3.0 and 4.0, for a
difference of 1.00.

Table 13.1 illustrates a potential distortion in data analysis, but fortu-
nately also contains the information needed to avoid the problem by "cor-
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reeling" estimates of d' for statistical bias. A d' of 1.10 based on eight trials
per stimulus should be adjusted, according to the table, to its most likely
true value of 1.00.

Standard Error ofd'. The problem of finding the standard error
of d' was first solved by Gourevitch and Galanter (1967) using an approxi-
mation. We begin with their approach, and then we consider the more exact
calculations of Miller (1996).

Because d' = z(H) - z(F), the first step in finding the variance (square of
the standard error) of d' is to compute the variances of the transformed pro-
portions. The variance of the difference between the two (independent)
variables is then the sum of their variances.

Gourevitch and Galanter showed that observed z scores have an approxi-
mately normal distribution, with variance

where N is the number of trials and 0(p) is the height of the normal density
function at z(p). As a result,

where N2 and TV, are the number of Signal (52) and Noise (51,) trials.
Values of the function 0 can be found in Table A5.1 or computed (com-

pare Equations 2.9 and A1.10):

Continuing our example, let us find a 95% confidence interval around
d' in the hypnotic condition. The hit and false-alarm rates are .89 and .59,
each based on 100 trials. Equation 13.5 reveals that 0(.89) = 0.1880 and
0(.59) = 0.3887. According to Equation 13.4, the variance associated with
d1 is 0.0277 + 0.0160 = 0.0437, and the standard error is (0.0437)l/2 =
0.209. The center of the confidence interval is about 1.00—Table 13.1
shows that the statistical bias is less than 1 % when Nis approximately 100.
The confidence interval extends 1.96 standard errors above and below ob-
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served d', that is, 1.00 ± (1.96)(0.209) = 1.00 ± 0.41. We can be 95% confi-
dent that true d' is between 0.59 and 1.41, and in particular that it is not 0.
The approach can be extended to hypothesis tests about more than two
ROC points (Marascuilo, 1970).

An interesting aspect of this example is that the variance associated with
the hit rate (0.0277) is substantially greater than the variance associated
with the false-alarm rate (0.0160). The general finding, pictured in Fig.
13.2, is that the variance associated with i scores increases as proportions
approach 0 or 1; this is true even though the variance associated with the
proportions themselves decreases in this region. Here is the promised sec-
ond reason to avoid extremely large or small proportions: Even if observa-
tions of 0 or 1 can be avoided, the variability associated with d' is large.

Miller (1996) extended the computational approach he used to estimate
bias, discussed earlier, to standard errors. Table 13.2 gives an abbreviated
version of his Table 2 (again for the l/2, N - l/i correction) and includes a
comparison of the direct calculation with the Gourevitch and Galanter
approximation.

A large number of trials lead to a small standard error. The variance should
be proportional to 1/N, and this is almost exactly true for the approximation:
For every increase in N by a factor of 4, the variance decreases by that factor.
Direct computation shows a much less regular pattern for small N particularly
at high sensitivity levels. Because they are exact, Miller's computations are to
be preferred to the Gourevitch and Galanter approximation, especially be-
cause in some cases the degree of discrepancy is quite large.

The approximation and direct method give exactly the same result, to
two decimal places, for the H = .89, F = .59 running example (letting N} =
N2 = 128 to allow for more direct reference to Tables 13.1 and 13.2). But

FIG. 13.2. The vari-
ance of a proportion p,
and of its z transform
z(p), as a function of p.
Variability of p is great-
est whenp = .5; variabil-
ity of z(p) is greatest
when p is near 0 or 1.
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TABLE 13.2 Variance of Yes-No d'

Computation

Direct

Approximation

Percent Error in
Approximation

Trued'

0.5

1.0

2.0

3.0

4.0

0.5

1.0

2.0

3.0

4.0

0.5

1.0

2.0

3.0

4.0

Number of Signal and Noise Trials

8

0.491

0.482

0.358

0.168

0.056

0.402

0.430

0.570

0.929

1.907

-18.1

-10.8

59.2

453

3305

32

0.106

0.117

0.173

0.224

0.121

0.100

0.108

0.142

0.232

0.477

-5.7

-7.7

-36.6

3.6

294

128

0.026

0.027

0.037

0.067

0.141

0.025

0.027

0.036

0.058

0.119

-3.8

0.0

-2.8

-13.4

-15.6

572

0.0063

0.0068

0.0090

0.0150

0.0333

0.0063

0.0067

0.0089

0.0145

0.0298

0.0

-1.5

-1.1

-3.3

-10.5

consider two cases with smaller N and higher d'. First, if true d' = 2 and N{

= N2 = 32, the approximation gives a variance of 0.142 (in Table 13.2), so
the 95% confidence interval is 2.00 ± (1.96)(0.142)1/2 = 2.00 ± 0.74. Direct
computation reveals a bias of 4.2% (Table 13.1) and a variance of 0.173
(Table 13.2), so the confidence interval for d' is 2.08 ± (1.96)(0.173)I/2 =
2.08 ± 0.82. The discrepancy here is moderate. For a more extreme ex-
ample, consider the case in which true d' = 3 and N}=N2 = 8. Now the ap-
proximation leads to a confidence interval of 3.00 ± 5.98 (i.e., it is un-
certain whether d' is even positive). Direct calculation is more reassur-
ing (d' = 2.64 ± 0.80), but this result is deceptive. The smaller standard
error results from the use of an approximation to eliminate undefined
values of d'. As Miller (1996) noted, if true d' is high enough, all the data
will fall at the maximum value allowed for perfect data, which in this case
is d' = z(7.5/8) - z(0.5/8) = 3.07. This is not really a precise estimate of
anything. Clearly one needs a very good excuse, and considerable caution,
to estimate sensitivity from a mere 16 trials.
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Response Bias

Bias and sensitivity are much alike statistically, because they are much alike
algebraically: d' is the difference between z(H) and z(F), and c is -0.5 times
the sum of these terms. The variance of c is found to be just one quarter the
variance of d'\

var(c) = var[-0.5(z(#) + z(F))] (13.6)

= 0.25var[z(#)-z(F)]
= 0.25 var(<f )•

If H = .89 and F = .59, so that var(d') = 0.0437 as in the previous section,
then var(c) = 0.0437/4=0.0109.

Chapter 2 describes a number of alternative bias measures. Of those de-
rived from SDT, c has the simplest statistical properties. Indeed these prop-
erties are one reason for using c (Banks, 1970).

Comparing Two Conditions

To evaluate differences in sensitivity or response bias between two condi-
tions, we apply Equation 13.4 twice, again using the theorem that the vari-
ance of the difference between two independent variables is the sum of their
variances. Continuing the example: Before training, an X-ray reader has a hit
rate of .89 and a false-alarm rate of .59, each based on 128 trials, for a d' of
1 .00 and c of -0.73. After training, the values are H = .92, F = .26, d' = 2.04,
and c = -0.37. Do the two conditions differ reliably in sensitivity? in bias?

The variance of the first d' is found, by the strategy illustrated in the pre-
vious section, to be 0.0437; that of the second, 0.0503. The 95% confidence
interval around the difference between the two d' values is 1.04 ±
(1.96)(0.0437 + 0.0503)* = 1.04 ± 0.60. Because zero is not in the interval,
the two ROC points reflect significantly different sensitivities. The vari-
ances of the two c values are 0.0109 and 0.0129, so the confidence interval
around the difference is 0.36 ± (1 .96)(0.0238)1/2 = 0.36 ± 0.30. Thus, the two
response biases can also be reliably distinguished from each other.

Designs Other Than One-Interval

Two-Alternative Forced Choice. The variance of d' can be calcu-
lated for other paradigms. For 2AFC, Bi, Ennis, and O'Mahony (1997) used
a method similar to that of Gourevitch and Galanter (1967) to find that
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This relation is the same as Equation 13.4 except for a factor of 2, which re-
sults from the usual analysis of the relation between yes-no and 2AFC (see
chap. 7). From this consideration alone, the variance of d' should be lower
in 2AFC than in yes-no. It is important to realize, however, that higher pro-
portions lead to smaller denominators in Equation 13.7 and thus higher
variance. The consequence, shown theoretically and empirically by
Jesteadt (2004), is that the variance of 2AFC d' is lower than that of yes-no
at low performance levels, but higher at high levels. The comparison is illus-
trated (for unbiased responding) in Table 13.3.

TABLE 13.3 Variance of d' for Several Paradigms
(64 Signal and 64 Noise Trials)

Paradigm

True d'

0.5

1.0

2.0

3.0

4.0

Yes-No

Direct

0.052

0.056

0.078

0.147

0.157

Approximation

0.050

0.054

0.071

0.116

0.238

2AFC

0.026

0.030

0.053

0.147

0.683

3AFC

0.021

0.022

0.034

0.084

0.364

Oddity

0.230

0.078

0.048

0.060

0.098

Same-
Different

a

0.207

0.097

0.105

0.148

Note: Yes-no "direct" data are from Miller (1996), yes-no approximation uses the
Gourevitch and Galanter (1967) formulas, same-different is from Bi (2002), and the others
are from Bietal . (1997).
"Table does not contain entries for proportion correct this low.

Same-Different and Other Paradigms. For the paradigms dis-
cussed in chapter 9, d' cannot be expressed as the difference between two
transformed variables, so the strategy we have been using for finding the
variance of d' fails. Bi et al. (1997) performed the appropriate calculation
for 3AFC, oddity, and "duo-trio" (not discussed in this book), as well as
2AFC. Bi (2002) provided a derivation and program for same-different (dif-
ferencing model only).

Table 13.3 gives a sampling of the results drawn from tables in the two ar-
ticles. The entries are for symmetric responding (i.e., no response bias) on
128 trials evenly divided among the stimulus alternatives. The two primary
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patterns concern the number of intervals and the level of performance. In a
comparison between 2AFC and 3AFC, variance declines with number of
intervals as one might expect. For these paradigms, variance increases mon-
otonically (although very nonlinearly) with performance level. This pattern
reflects the increase in the variance of z scores with greater deviation of H
and F from .5 (see Fig. 13.2).

Another consequence of this effect is that 2AFC has the highest variance
of any paradigm when d' is high, oddity and same-different the lowest. Dif-
ferences in proportion correct for a given value of d' (see Figs. 10.1 and
10.2) account for this result. Oddity and same-different have the highest
variance, however, for d' = 0.5 or 1.0.

ROC Curves

Fitting Methods. Rating experiments (see chap. 3) yield entire
ROC curves rather than single points. These curves can usually be summa-
rized by two parameters—for example, the slope of the curve and the distance
between the curve and the major diagonal at some fixed point. To find the
best-fitting curve, a maximum-likelihood procedure is used (see Appendix 1
and chap. 11). Assuming a specific form for the underlying distribution, the
parameter values most likely to have given rise to the observed data points are
found. The method provides answers to statistical questions that mirror those
about single ROC points: Does an ROC curve differ reliably from chance?
Does its slope differ from one? Does its intercept differ from zero?

This approach has been followed by Ogilvie and Creelman (1968) for lo-
gistic distributions and by Dorfman and Alf (1969) for normal distributions.
Dorfman and Alf's program has been updated and republished in Swets and
Pickett (1982). A solution is also available to the more complex problem of
testing apparent differences among ROCs (Metz & Kronman, 1980).

Statistics Derived From ROCs. The statistical properties of Ag,
the area under the ROC, are similar to those of a proportion. Pollack and
Hsieh (1969) showed that the variance of Ag is less than Ag (1 - Ag )/N, being
largest for low sensitivities (i.e., Ag approximately .5).

The statistical properties of Gaussian ROCs fit to rating data have been
studied by Macmillan, Rotello, and Miller (2004). Using simulations, they
measured the bias and standard error of ROC area Az, distance measure da,
and the slope s. The area measure turns out to be both accurate (low bias) and
precise (small standard error); the distance measure is slightly inferior on
both counts. Slope, however, can be quite biased and has considerable vari-
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ability, especially if criteria are spaced close together. A set of tables that per-
mit estimation of bias and standard error can be found at http://
www-unix.oit.umass.edu/~caren/Design/Assets/index.htm.

Sensitivity Estimates Based on Averaged Data

According to detection theory, the observer partitions a stable underlying
distribution by use of a fixed criterion. This story of the decision process is
most convincing if the experiment uses only one pair of stimuli, all data are
collected in one session, and the analysis is applied to a single observer. In
experiments with multiple stimuli, sessions, or observers—that is, all ex-
periments of real interest—some kind of averaging must be done. The data
analysis procedure most consistent with our assumptions is to calculate sen-
sitivity and bias separately for each combination of stimulus, session, and
observer, and then average the resulting estimates.

This idealized approach is often not possible because the number of trials
contributing to a single estimate is too small, so that sensitivity and bias can-
not be computed. An extreme example is provided by class discrimination
(e.g., recognition memory experiments), in which a single stimulus occurs
only once per observer. Less dramatically, a single session using a roving
design often contains few trials per stimulus. And with some observers—
infants, for example—a few trials is all one can hope for.

In this section, we consider an alternative strategy: Sensitivity is esti-
mated from data that have been combined across multiple stimuli, sessions,
or observers. The resulting statistic is called pooled sensitivity. We compare
this method with the ideal approach, in which parameter estimates from dif-
ferent subsets of the data are averaged to yield mean sensitivity. The ques-
tions to be asked fall into two classes. First, how much does pooled
sensitivity differ from mean sensitivity, that is, how much statistical bias
does the method entail? The second question is one of efficiency: How vari-
able are estimates of pooled sensitivity compared with those of mean sensi-
tivity? (The analogous questions about response bias, which we do not
consider, can be treated similarly,)

We shall conclude that pooled sensitivity is, under many conditions, an
acceptable performance index. This conclusion is tempered, however, by an
important caveat. Pooling is most necessary when a proportion of 0 is ob-
served, an event with two possible causes: (a) the true underlying d' is infi-
nite, or at least very large, or (b) the true underlying d' is of moderate size,
but the sampling variability associated with the small number of trials leads
to no errors. These alternatives can usually be distinguished pragmatically.
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If situation (b) seems to obtain, pooled d' is a useful statistic; in situation (a),
it is not. Experiments in which observers are able to respond unanimously
to stimuli are poorly suited for detection theory analysis—they display ceil-
ing effects—and should be redesigned. Often a simple change from two
responses to a rating design solves the problem.

Effects of Averaging on (Statistical) Bias

Participants With the Same Sensitivity but Different Response Bi-
ases. Two observers whose sensitivity is the same will produce hit and
false-alarm rates that lie on the same ROC curve, but (in general) at different
points. If their hit and false-alarm rates are averaged, the resulting point will be
halfway along a line connecting the original points. Because ROC curves are
concave downward, the average-performance point will be lower than the orig-
inal points and will yield a lower estimate of sensitivity, as shown in Fig. 13.3.

It is clear from Fig. 13.3 that the decrement in estimated sensitivity will
be severe only if the two points are quite discrepant in bias. The exact size of
the effect, for d' = 1, is shown in Fig. 13.4, in which pooled d' is plotted for
all values of the two observers' criteria that yield hit and false-alarm rates
between .02 and .98. Large decrements occur only when the criteria are very
different, perhaps 1.5 standard deviations apart. The average location of the
two criteria on the ROC matters little. Macmillan and Kaplan (1985)
showed that the effect illustrated in Fig. 13.4 is not a function of the true un-
derlying sensitivity: Pooled d', as a fraction of true d', depends only on the
difference between the criteria divided by d'.

FIG. 13.3 Averaging
two points on the same
ROC curve yields a
point on a curve with a
lower value of d'.
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FIG. 13.4 The effect of
averaging hit and false-
alarm rates from observ-
ers with the same d' but
different criteria. Appar-
ent d' is less than true d',
and the difference essen-
tially depends only on the
difference between crite-
ria, not on criterion loca-
tion. The decline in d' is
substantial only when the
criteria are substantially
different. The means of
the two distributions are at
Oandl .

Clearly it is desirable to average proportions from only those participants
whose criteria are similar. A possible procedure is to divide participants into
subgroups so that all members of a subgroup have similar response biases.
Pooled d' can be computed for each subgroup and the results averaged to es-
timate d' for the entire group.

Participants With the Same Response Bias but Different Sensitiv-
ities. What about ROC points that differ in sensitivity and not in bias?
There are many plausible candidates for a bias parameter, and therefore sev-
eral possible interpretations of "constant-bias." In this section, an observer
is said to maintain constant bias if, as d' varies, the criterion is always lo-
cated the same proportion of the distance between the two distribution
means—that is, if c1 remains the same.

The relation between proportion correct and d', for a constant relative
criterion, is nonlinear, as shown in Fig. 13.5, so pooled d' is generally lower
than mean d'. Figure 13.6 shows that this decrement is substantial only if
the original d' values differ substantially, say by 2.0. Thus, pooled d' esti-
mates are affected similarly by varying bias (Fig. 13.4) and varying sensi-
tivity. The actual values being averaged have little influence on the effect; it
is the difference between them that counts. Macmillan and Kaplan (1985)
showed that these conclusions generalize to a variety of absolute criterion
locations and to unequal variances.

The error introduced by pooling data from participants with different
sensitivities can be reduced by assigning observers to subgroups as de-
scribed in the previous section. Pooled d' for a subgroup is nearest to true
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FIG. 13.5 The relation between d' and proportion correct for three different cri-
teria. If two observers operate at Points A and B on the same curve, d' based on av-
erage proportion correct is always lower than average d' because the curve is con-
cave downward.

FIG. 13.6 Pooled d' as a fraction
of average d' for observers with dif-
ferent d' values but the same bias.
Relative criterion c' equals 0 in (a),
0.5 in (b). Pooled d' is less than true
d', and the difference essentially
depends only on the difference be-
tween the two, not on the particular
values. The decline in d' is substan-
tial only when the two values of d'
are very different.
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average a" if the participants in the subgroup have similar sensitivities as
well as similar biases.

Effects of Averaging on Variability

We turn now to the issue of variability: In many samples, will similar or
widely disparate values of pooled d' be produced? In particular, we calcu-
late the efficiency of pooled d', its variance divided into the variance of
mean d', for a constant number of trials.

Figure 13.7 illustrates the result of such a calculation using a technique
based on that of Gourevitch and Galanter (1967; see Macmillan & Kaplan,
1985, for details). Values greater than 1.0 imply that the pooled d' estimate
is less variable than the mean d' estimate. The figure reveals that pooled d'
is always less variable than average d', and that its variance decreases as the
discrepancy between the participants increases. There is also a tendency,
other things being equal, for variance to decrease (relative to that of mean
d'} as the false-alarm rates of the participants become more extreme.

These effects result from the fact, illustrated in Fig. 13.2, that the vari-
ability of a z score computed from an observed proportion increases non-
linearly with the absolute value of z. When data from two or more
participants are pooled, the z score of the average has less variability than
the average of the two z scores. The one important exception to this rule oc-
curs when hit or false-alarm rates equal 0 or 1: The variability of a z score for
those proportions is not finite. As previously discussed, whether true d' is
infinite must be assessed independently by the experimenter.

FIG 13.7 The efficiency of
pooled d' (its variance di-
vided into that of average d')
is shown for two participants
with the same hit rate and dif-
ferent false-alarm rates.
Pooled d' is always more effi-
cient, especially if the two
false-alarm rates are very dif-
ferent or if either of them is
extremely large or small.



336 Chapter 13

Hautus (1997) noted a tradeoff between two kinds of statistical bias in es-
timating d' from a sample of individuals. If individual values of d' are aver-
aged, the smaller number of trials for each subject will increase the
likelihood of observing H = 1 or F = 0, either of which require an adjust-
ment. If the data are pooled before computing d', however, the biases we
have just discussed come into play. In a series of simulations, he found that
pooling led to less biased estimates when the number of trials per observer
was small, whereas for larger numbers of trials pooled d' was more biased
than average d'. The crossover point ranged from about 10 to 100 and de-
pended on population values of d' and c, as well as the rule for adjusting
perfect scores.

Small-N versus Large-N Experiments

Suppose an experimenter wishes to determine whether a particular variable,
say divided versus unitary attention, affects the sensitivity and response
bias of an observer in a visual experiment. How many observers should be
used? How many trials per observer? The answers to these questions typi-
cally interact: If there are few trials per participant many participants are re-
quired, whereas with many trials one can justify fewer participants. A large
number of observations must be introduced somehow to overcome the in-
herent noisiness of the experimental situation.

SDT is easiest to apply in the few-participant, many-trials case: The ob-
servers can be analyzed separately and any individual differences dis-
cussed. Such designs are in fact popular for some perceptual problems. To
construct confidence intervals and test simple hypotheses for data from one
observer is fairly straightforward, as we have seen.

Other content areas or populations of participants require the opposite
tack. In recognition memory studies, repeating items to increase the number
of trials has effects on memory itself. For various special populations, in-
cluding infants, the experimenter is limited to a small number of trials, and
undefined values of d' and c can be expected. Pooling data can give reason-
able estimates of sensitivity and bias, at least under the limited conditions
we have explored, but this strategy suppresses the differences among indi-
viduals that are generally used to estimate the reliability of dependent vari-
ables. How could one conduct a hypothesis test that took the variability
among individuals into account?

This may seem to be an area in which detection theory brings more prob-
lems (undefined performance indexes) than solutions (good estimates of
sensitivity and bias), and a temptation is to fall back on proportion correct
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despite the problems with this index discussion in chapter 4. A compromise
approach was used by Maddox and Estes (1997), who pooled their data to
arrive at d' sensitivity estimates, but conducted inferential statistics on val-
ues of//- F. This latter statistic is equivalent to proportion correct, and thus
implies a threshold model, but Maddox and Estes argued that these charac-
teristics need not prevent its use provided that a detection-theoretic index is
found for the pooled data. Some degree of distortion is certainly introduced
by this approximation, but its degree is unknown.

Entire ROC Curves

Finally, ROC curves obtained by averaging data across participants require
special estimation techniques. This problem has been solved by Dorfman
and Bernbaum (1986), who used a "jackknife" statistical procedure. Their
article provides both a listing of their computer program and an explanation
of the jackknife method.

Systematic Statistical Frameworks for Detection Theory

We have seen that statistical treatment of single subjects can be accom-
plished with reference to the inherent binomial variability in their re-
sponses, and SDT parameters can be estimated and evaluated for groups of
subjects by prudent averaging. But realistic experimental situations provide
further complexities: Performance is measured in several conditions, and
multiple hypotheses must be evaluated.

Logistic regression provides a method for estimating parameters and testing
hypotheses in experiments with dichotomous (e.g., yes-no) or ordinal (rating)
responses. The technique makes use of logistic distributions, and thus merges
smoothly with Choice Theory models. Other distributional assumptions, like
normality, can be incorporated into generalized linear models, which build on
logistic regression. Our summary here draws from DeCarlo (1998).

Regression techniques attempt to account for variations in a dependent
variable as linear or nonlinear functions of independent variables. For ex-
ample, psychometric functions are often fit by regression, as we saw in
chapter 11. In this and other familiar cases, the data variables involved are
typically continuous. In the simplest case, with one independent variable,
the dependent variable y is predicted to be a linear function of the independ-
ent variable jc—that is, y = mx + b.

Logistic regression is suitable for detection theory analysis because it is
applied to frequency data. Again taking the simplest case, suppose we wish
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to write the hit and false-alarm rates as a function of trial type (S2 vs. 5,). The
function can be made linear by an appropriate transformation of response
rate, which for Choice Theory is logits, or log odds:

The "dummy" variable X equals 1 for S2 and 0 for 5P so this equation re-
duces to

This is the Choice Theory model, with k = \n(b) + ln(a) (the criterion as a
distance from the mean of the S, distribution) and d = 2 ln(a).

As a statistical model, Equation 13.8 is saturated—that is, it has just as
many parameters as data points. Therefore, it is possible to convert the hit
and false-alarm rates to measures of sensitivity and bias (as we have been
doing throughout the book), but not to perform statistical feats such as
goodness-of-fit evaluation. More realistic experiments do allow for such
work to be done. Consider the hypothetical face-recognition experiment
from chapter 2 in which H = .69 and F = .31 for an unhypnotized observer
(Condition 1) and H - .89 and F = .59 for a hypnotized observer (Condition
2). Each condition i has a criterion ki and a sensitivity d(, and the logistic re-
gression model is:

The terms Xl and X2 represent dummy variables: X{ equals 1 for Old items
and 0 for New items; X2 equals 1 for the hypnotized observer and 0 for the
unhypnotized observer.

Equation 13.9 has four parameters, and there are now four data points
(hit and false-alarm rates for two conditions), so this too is a saturated
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model. But it can be used to test the hypotheses that the conditions differ in
sensitivity (if not, the last coefficient is 0) or bias (if not, the second coeffi-
cient is 0). These reduced models have only three parameters, leaving one
degree of freedom for testing goodness of fit. DeCarlo (1998) applied the
model and found that the two conditions differ in response bias, but not in
sensitivity. His SPSS program is reproduced in the chapter appendix.

To convert the analysis to normal rather than logistic distributions, "link"
functions are used to rescale the data. Equation 13.8 becomes

This is the equal-variance SDT model, with k - c + d'/2 (the criterion as a
distance from the mean of the S{ distribution) and d = d'.

Logistic regression can also be applied to more complex experiments,
such as the rating design and identification. DeCarlo (1998) also described
these methods, illustrated their use (with data from chap. 10, as well as other
sources), and provided sample SAS programs.

Summary

Single proportions based on moderately large numbers of trials have a nor-
mal distribution, which can be used to construct confidence intervals and
perform simple hypothesis tests. The bivariate normal distribution charac-
terizes (false-alarm, hit) pairs under similar conditions. The SDT statistics
d' and c are also normally distributed, provided that N is reasonably large
and ceiling and floor effects on the hit and false-alarm rates are avoided.

Pooling data across stimuli, sessions, or observers may be necessary to
avoid observed frequencies of zero. Estimates of sensitivity obtained in this
way are biased, but the amount of bias is small unless estimates of very dif-
ferent bias or sensitivity are combined.

Logistic regression models, which are equivalent to those of Choice The-
ory, permit statistical evaluation of hypotheses about sensitivity and bias
parameters. They are particularly valuable for testing hypotheses about the
many main and interaction effects involving these parameters that arise in
factorial experiments.
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Computational Appendix

DeCarlo (1998) provided the following SPSS program for the example in
this chapter and others (starting in chap. 2) of face recognition by hypno-
tized and nonhypnotized subjects:

set width = 80 length = none

title "Face recognition".

*(Note—responses are coded yes = 1 and no = 0).

data list list /hypno signal yes count *.

begin data

00069

00131

01031

01 169

10041

1 0 1 59

1 1011

1 1 189

end data.

compute sighypno = signal*hypno.

weight by count.

logistic regression yes with hypno signal sighypno

/criteria lcon(O).

*Next is the restricted model without the interaction term.

*The -21og L can be used to test for constant d..

logistic regression yes with hypno signal

/criteria lcon(O).
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Problems

13.1. (a) Find the 95% confidence interval (CI) for a proportion correct
of .5 based on 50 trials.
(b) Find the CI for the difference between two proportions of .9 and
.5 based on 50 trials each. Use the CI to test the hypothesis that the
true difference is 0.
(c) Redo (a) and (b) assuming 200 instead of 50 trials.

13.2. Find the highest and lowest plausible (95%) true sensitivity and
true bias that could lead to the data point H = .75, F = .25, assuming
(a) 50 trials per stimulus, and (b) 200 trials per stimulus. (Hint: The
95% confidence area is 2.5 standard deviations wide atH= .75 and
circular in form.)

133. (a) Find the 95% CI for d' and c for each matrix in Problem 7.1. In
each case, test the hypothesis that the underlying parameter is 0.
(b) Find the CI for the difference between matrixes 3 and 4, and use
them to test hypotheses about whether the parameters are different.
(c) Multiply all cells by 5, and redo (a) and (b).

13.4. Suppose H = .66, F = .50 based on 50 trials each. Find the 95% CI if
this is (a) a one-interval experiment (b) 2AFC. Is sensitivity signifi-
cantly different from 0?

13.5. Consider the following data points generated by different observ-
ers: (F, H) = (.8, .9), (.5, .8), (.2, .5), (.1, .2). (a) Find average and
pooled d' and c. (b) Divide into two subgroups, keeping observers
with similar criteria together, and find the average of the two pooled
d' values, (c) Divide into two subgroups, keeping observers with
similar sensitivities together, and find the average of the two pooled
d' values.
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Appendix 1

Elements of Probability and Statistics

In this appendix, we offer a brief survey of the parts of probability theory
and its application to statistics that are most relevant to psychophysics. Be-
cause our aim is to make references to these ideas in the body of book more
comprehensible, we frequently allude to psychophysical applications.
Most concepts would be covered in a one-semester behavioral statistics
course, but some ideas (e.g., random variable) are not usually found at that
level. We do not believe, of course, that we have exhausted in this brief
chapter topics usually covered in a semester or two. Our incomplete discus-
sion is also relatively informal. Hays (1994) provided a thorough treatment
of all issues raised here.

Probability

Probability for Finite Sets

Definition of Probability. In the simplest probabilistic situation,
an elementary event is chosen at random from the sample space S. If A is a sub-
set of S, then the probability that an elementary event that is in A will occur is

P(A) = n(A)/n(S) , (Al.l)

where the function n counts the number of elementary events in a set. For ex-
ample, when a fair coin is tossed, the probability of a Head occurring is 1/2, as
is the probability of a Tail. When a die is tossed, the probability of a "2" is 1/6,
and the probability of an Even outcome ("2," "4," or "6") is 3/6 or 1/2.

Some important characteristics of probabilities are evident from these
examples: All probabilities must lie between 0 and 1, and the sum of proba-
bilities for all elementary events must be 1.

343



344 Appendix 1

An experimenter's choice of stimulus presentation is generally a ran-
dom event. In the typical two-alternative forced-choice paradigm, each of
the two possible orders has probability 1/2. In m-interval forced-choice,
the sample space has m elementary events (correct intervals); usually,
each is chosen with probability \lm.

True Versus Estimated Probabilities. Participants' responses
can also be thought of as probabilisitic events. The true probability of say-
ing "yes" in a one-interval experiment is a long-term tendency that cannot
be measured exactly. The corresponding estimated probability is found
from the outcomes of a finite number of observed trials. The "yes" probabil-
ity, for example, is estimated by dividing the number of "yes" responses by
the number of trials. Thus, if a participant responds "yes" on 30 of 50 trials,
P("yes") = .6.

Probabilities Not Defined by Counting. Equation Al. 1 does not
provide an adequate description of all probabilistic situations. In models of
discrimination, internal events are assigned probabilities. For example, in
high-threshold theory (chap. 4), stimulus S2 gives rise to state D2 with prob-
ability q and to state D, with probability 1 - q. The two events cannot be de-
composed into equiprobable elementary events, but the probabilities of
their occurrence have the same characteristics as in the earlier examples.

Probabilities That Depend on More Than One Event

Probabilities can be defined on subsets of the sample space. For example,
the estimated hit rate is the probability of saying "yes" when event S2 oc-
curs: H = P("yes"I.S2). We can find such conditional probabilities from

P(A\B) = P(A and B)/P(B) . (A1.2)

Suppose the data matrix for our experiment is

S2

S,

"yes "

20

10

"no"

5

15

Then P("yes"l52) = P("yes" and S2)/P(S2) = «("yes" and 52)/n(52) =
20/25 = .8. All of these are, of course, estimated probabilities.
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In the foregoing matrix, it is clear that the response variable depends, al-
beit imperfectly, on the stimulus variable, because the probability of saying
"yes" is different for the two stimulus events. We say the response and the
stimulus are not independent. Two events A and B are independent if

P(A\B) = P(A) , (A1.3)

or equivalently

Stimulus presentations on successive trials are independent in most psycho-
physical experiments: The probability that Sl is presented on trial n does not
depend on whether it was presented on trial n - 1 .

Discrete Random Variables and Their Probability Functions

Random Variables. The events in a sample space can be assigned
numerical values; a mathematical function that accomplishes this is called a
random variable. As an example, consider a single S2 trial; let X assign the
value 1 to "yes" responses, 0 to "no." Then ifp is the hit rate, the random
variable X can be summarized as follows:

The variable X is called a Bernoulli random variable; the table describes
its probability function. The event for which X = 1 is often called a "suc-
cess," that for which X = 0 a "failure."

Binomial Random Variables. A Bernoulli random variable
counts the number of successes in one trial; the number of successes in N in-
dependent trials is given by the binomial random variable. The number of
hits, when S2 is presented, is a binomial random variable. Binomial vari-
ables differ according to the probability of success on any one trial (the hit
rate, in this example) and the number of trials (number of S2 presentations).
The probability of k successes in N trials, when the Bernoulli success rate is
p, is given by
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(A1.5)

where NCk is the binomial coefficient, tabled in most statistics texts.
Equation A 1.5 is the probability function of the binomial; the Bernoulli

was represented by a table, but is actually a special case of the binomial
when N = 1. Probability functions can also be represented graphically; Fig-
ure A1.1 shows the probability function of the binomial for N -1,4, and 20,
when p = 1/2.

FIG. A 1.1. Three bino-
mial probability func-
tions, N= 1,4, and 20, p =
l/2. Each can be interpreted
as the distribution of the
number of successes in N
trials (X) or the proportion
of successes P = X/N.

Frequently, we are interested in the proportion rather than the number of
successes, that is, in the variable P = X/N rather than X. Figure A 1.1 shows
values of this binomial proportion random variable as well as values of the
binomial itself.

Mean and Variance of Random Variables

Definitions. The mean, or expectation, of a discrete random vari-
able is given by

(A1.6)

For the Bernoulli random variable, E(X) = p, the success rate.
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The variance of a random variable, a measure of its spread, is

The variance of the Bernoulli is p(\ -p). The square root of the variance is
called the standard deviation, denoted cr.

Mean and Variance of Linear Combinations. Some simple
rules tell us the mean and variance of a constant, of a variable multiplied by
a constant, and of the sum (or difference) of two variables. If X and Fare ran-
dom variables and a is a constant,

Equation Al,9c holds only if X and Y are independent.
These rules allow us to find the mean and variance of any new random

variable that is a linear combination (weighted sum) of old ones. For exam-
ple, it is often useful to express values of a random variable X in stan-
dard-deviation units from the mean. The resulting variable, denoted z,
equals (X-{J)I0. Application of Equations A 1.8 and A 1.9 reveals that z has
a mean of 0 and a variance of 1.

Mean and Variance of the Binomial. We can use rules A1.8c
and A1.9c to find the mean and variance of the binomial. The binomial ran-
dom variable, the number of successes in Af trials, equals the number of suc-
cesses on trial 1 plus the number of successes on trial 2, and so on. It is
therefore the sum of TV Bernoulli random variables. The mean of a binomial
is thus the sum of the means of the Af Bernoullis, orNp. The variance, simi-
larly, is the sum of the variances of the N Bernoullis, or Np(l -p).

Rules Al .8b and Al ,9b can be used to find the mean and variance of the
binomial proportion variable X/N. The mean of this variable is NpIN = p,
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the variance Np(l -p^lN2 =/?(! -p)/N. The expected value of an observed
proportion does not change as the number of trials increases, but its vari-
ance is reduced.

Continuous Random Variables and Their Density Functions

Binomial distributions are discrete: Only a countable number of values can
occur. Variables that can take on any value on a continuum are called contin-
uous. A curve of the sort shown in Fig. Al ,2(a) is called ^densityfunction.

The probability that a random variable takes on a value between two
points a and b is represented by the area under the density function between
those two points. (The total area under the curve, therefore, equals 1.) To ob-
tain such probabilities, we use the distribution function, which assigns to
each value of the random variable the probability of a score below that
value. Figure Al .2(b) shows the distribution function corresponding to the
density function of Fig. A1.2(a).

FIG. Al.2. (a) Density, and (b) distri-
bution functions for a continuous vari-
able. The distribution function gives the
area under the density function that is
less than each possible value of the ran-
dom variable.

A particularly important continuous distribution is called the normal or
Gaussian distribution. Its density function (which is in fact the function il-
lustrated in Figure Al.2[a]) is
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<AUQ)

Different normal distributions have different means and variances, but are
all the same function of z, namely,

(Al.ll)

The distribution function for this normal density is given in Tables AS. 1 and
A5.2, as is the density itself.

A second distribution of importance in this book is the logistic, defined by

The distribution function, unlike that of the normal, can be calculated di-
rectly; the equation is

The mean and variance of a continuous distribution are not computed
from Equations A1.6 and A1.7, but from analogous equations using inte-
grals. No explicit computation is needed to find the mean and variance of
the normal distribution plotted in Fig. A 1.2; because the plotted variable is
z, the mean is 0 and the variance is 1. The logistic distribution has mean 0
and variance 7C2/3.

Bivariate (Two-Dimensional) Distributions

Two Independent Variables. In several designs analyzed in Parts
II and HI of this book, we assumed that two variables are simultaneously
relevant to the observer's decision. In a same-different design, for example,
the magnitudes of sensation in both the first and second intervals (which we
call A and B) contribute information. The independence of two dimensions
can be represented graphically by placing the A and B axes perpendicular to
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FIG. A 1.3. A bivariate normal distribution. The probability of an observa-
tion for which A < a and B < b is the volume above the region to the left of a and
below b.

each other, as in Fig. Al .3. Because we have used two dimensions for values
of the random variables, probability density must be represented by height
above the (A, B) plane and probability by the volume under this bivariate
umbrella.

Writing general expressions for probabilities under bivariate distribu-
tions is complicated, but we can describe one special (and, fortunately, im-
portant) case. Suppose we wish to find the probability that both A < a and
B < b. Because the variables are independent, Equation Al .4 applies, and

P(A < a and B < b) = P(A < a) P(B < b) (A1.14)

This relation is termed the product rule (see chap. 6). Both terms on the
right side can be found from a table of the (univariate) normal distribu-
tion. One way to view the situation described by Equation A1.14 is to
first imagine that you are standing along Dimension A; your view of the
distribution "in silhouette" is of a univariate normal distribution. Simi-
larly, the view from along B is of another univariate normal distribution.
Probabilities from these two distributions are the ones on the right side
of Equation A 1.14.
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The three-dimensional picture in Fig. A 1.3 can be reduced to two in an-
other way by constructing an aerial view. To indicate the shape of the distri-
bution in this view, it is common to draw circles (or ellipses, if the variances
of A and B are unequal) to show locations of constant height. This strategy is
used extensively in Part II.

Correlation Between Variables. If the value of one variable does
not help in predicting the value of another, we say the variables are not cor-
related. The correlation between two variables is defined by

r = [E(XY) - E(X) E(Y)]/a a . (A1.15)

The correlation coefficient measures the degree of linear relation between X
and Y and ranges from -1 (complete negative correlation) to 0 (no correla-
tion) to +1 (complete positive correlation).

Independent variables are always uncorrelated. Uncorrelated variables
need not be independent, however, because the dependence may be nonlin-
ear. An important exception: Uncorrelated normal variables are always
independent.

Statistics

Definitions and Examples

A statistic is a function of data — that is, a summary measure that depends
on the results of a set of trials. Statistics is the mathematical treatment of
such measures. An important statistic in psychophysics is observed propor-
tion, the number of successes in N binomial trials, divided by N. When a
stimulus variable is being measured (rather than events simply being
counted, as in data matrixes), two important statistics are the sample mean
and sample variance:

M = IX/N (A1.16)

These statistics can be used to estimate from data the theoretical mean and
variance of a random variable.

Sampling Distributions

Theoretical means and variances are constant aspects of random variables,
but the corresponding sample statistics, which are estimated from data,
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vary. Distributions of sample statistics are called sampling distributions.
Important characteristics of sampling distributions are their shape, mean,
and variance.

Central Limit Theorem. An important truth in statistics is the
central limit theorem, which states that a variable that is the sum of many
variables, each with the same distribution, must have an approximately nor-
mal distribution. The central limit theorem applies to both the sample mean,
which depends on the sum of scores, and the observed number of successes,
which is the sum of observed successes on single trials.

Bias and Efficiency. We can use Equations Al .8 and Al .9 to find
the mean and variance of the sampling distributions for M and s. The sample
mean has a normal distribution with mean equal to the population (theoreti-
cal) mean and variance equal to the population variance divided by N', an
observed proportion has a normal distribution with mean equal to the popu-
lation proportion p and variance equal to p(l -p)/N. Statistics whose ex-
pected value equals the corresponding population parameter, like M and s,
are called unbiased. The efficiency of a statistic is reflected in its variance,
more efficient measures being less variable. The most important factor in-
fluencing efficiency is the number of trials.

Confidence Intervals. Suppose we observe a proportion of hits H
in N trials; what might the true proportion h be? If N is large, H has an ap-
proximately normal distribution with mean h and variance h(\ - h)IN. Be-
cause the distribution is normal, 95% of its area is within 1.96 standard
deviations of the mean (see Table A5.2), so we can be 95% sure that H dif-
fers from h by no more than 1.96 standard deviations. The 95% confidence
interval around H is therefore

H± l.96[h(l-h)/N]V2 . (A1.17)

For an approximate calculation, we can use H to estimate h in finding the
variance. For example, if His .8 in 25 trials, the 95% confidence interval is
.8 ± (1.96)(0.0064)l/2 or. 8 ±. 16. We can be confident that the true hit rate lies
somewhere between .64 and .96.

The sampling distribution of d' is also approximately normal when N is
not too small and d' is not too large, so confidence intervals can be con-
structed around this statistic using the normal distribution. For small N or
large d', the deviation from normality can be substantial. Both cases are dis-
cussed in chapter 13.
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Hypothesis Testing

Values of Population Parameters. Sometimes we wish to make
yes-or-no decisions about the value of a population statistic; for example,
we may wish to know whether a hit rate equals .5. The most common strat-
egy for doing this is to ask whether the value of interest lies within the con-
fidence interval; the hypothesized value is plausible if it does, implausible
if not. In the foregoing example, an observed hit rate of .8 based on 25 tri-
als is unlikely to have occurred if the true hit rate was .5, because .5 is not
in the 95% confidence interval around .8. We can thus reject the hypothe-
sis that h = .5.

Independence. Another important hypothesis that arises in
psychophysics is that of independence. In the data matrix given at the begin-
ning of this appendix, for example, we may ask whether the participant's re-
sponses are independent of the stimuli. If they were, then the true matrix
would be given by the numbers in parentheses:

20(15) 5(10)

10(15) 15(10)

Two similar statistics evaluate the discrepancy between the observed fre-
quencies (O) and the expected frequencies (£):

error, = I (10 - El - 0.5)2/£ (Al.lSa)

error2 = I O ln(0/E) (Al.lSb)

When TV is large and none of the expected frequencies are too small, the dis-
tribution of both error functions approximates a known form, called j£,
which is tabled in most statistics texts. The value of error, in this example is
6.75; a table reveals that less than 5% of the area under a %* distribution is
greater than this, so we can reject the hypothesis of independence. The esti-
mate provided by error2 is 8.65, which leads us to the same conclusion.

When matrixes with more than two rows or columns are evaluated, the
statistics in Equation A 1.18 still apply, with two changes: The 0.5 correc-
tion in error, is not used, and the distribution approximates a different mem-
ber of the tf family. Our example has used one degree of freedom; larger
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tables use (N- 1)(M-1) degrees of freedom, where N is the number of rows
and M the number of columns in the matrix. Tables of ̂  provide values for
many different degrees of freedom.

Model Fitting and Evaluation

In the preceding section we saw how to determine whether two observed
proportions are consistent with an independence hypothesis. This is an ex-
ample of a more general problem, in which data are compared to a theoreti-
cal model, and the investigator wishes to know how well the model "fits."
Two strategies for fitting models to data are important in this book: least-
squares and maximum-likelihood methods.

Least-Squares Fits. Consider first the case of determining a
psychometric function (chap. 11). Using either a fixed or adaptive method,
we measure d' for each of several stimulus values. Suppose we believe that
the psychometric function should have the shape of a cumulative normal
distribution function; we wish to find the particular curve (the particular
values of mean and variance) that best describes our data. A least-squares
technique finds the curve for which the sum of the squared deviations be-
tween the points and the curve is as small as possible. A measure of how
well the curve fits is the value of this sum, normalized by dividing by the
original variance of the d' values. If the curve is a straight line (or has been
transformed to a straight line, in this case by using z transformation), this
statistic equals one minus the square of the correlation coefficient, which
therefore provides an equivalent measure of goodness of fit. This procedure
is called linear regression.

Maximum-Likelihood Fits. The least-squares method is con-
cerned with deviations on only one variable (in this case, d' values); the
other variable (in this case, stimulus value) is fixed by the experimenter.
When the curve to be fitted relates two variables that both contribute vari-
ability, a different tack is taken. Consider the problem of fitting ROC curves
to points obtained in a rating experiment. An ROC point is determined by a
hit and false-alarm rate, each with binomial variability. If we believe that the
ROC is a straight line on z coordinates, how can we determine estimates for
its intercept and slope? For each possible pair of values for the slope and in-
tercept, we ask, what is the probability that our data would have arisen from
this model? One pair will give the largest probability or likelihood; these are
the maximum-likelihood estimates (MLEs) of the parameters. Because cal-
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dilating MLEs requires either differential calculus or an iterative computer
program, we do not work through an example here; but several MLE pro-
grams for ROC estimation are discussed in chapter 3 and are available on
the Internet (see Appendix 6).

Maximum-likelihood methods are also used in adaptive procedures
(chap. 11), where the parameter being estimated is a point on the observer's
psychometric function, and the data consist of all responses made in an ex-
perimental run.
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Appendix

Logarithms and Exponentials

All logarithms are defined with regard to a constant called a base. The loga-
rithm, or log, of a number is the power to which the base must be raised to
obtain the number. Thus, if the base is 10 (as in "common" logarithms),
log(l) = 0, log(10) = 2, log (1000) = 3, and so on. As this example illustrates,
the logarithm of a number increases monotonically with the number itself,
but not nearly as quickly.

Natural logarithms, the only kind appearing in this book, have abase of e
= 2.718281828... (The ellipsis indicates approximation: e cannot be ex-
actly expressed as a fraction or repeating decimal.) Some of the sensitivity
and bias measures in detection theory are defined as the natural logarithm of
other measures. Because the logarithm is a monotonic transformation, two
measures related by it are equivalent (i.e., have the same isosensitivity or
isobias curves).

The easiest way to compute a logarithm is with a hand calculator. On
most intermediate (statistical or scientific) calculators, the button relevant
to natural logarithms is labeled "In" ("log" being reserved for common log-
arithms). If you enter the number 10, and then In, the calculator should dis-
play 2.302585.

To calculate measures defined using logs, no deeper knowledge is
needed. To follow derivations, however, some other facts are useful:

1. Multiplication of numbers corresponds to addition of their loga-
rithms: ln(jty) = ln(x) + ln(v).

2. Division of numbers corresponds to subtraction of their loga-
rithms: ln(jt/y) = ln(;t) - ln(v).

3. Raising a number to a constant power corresponds to multiply-
ing its logarithm by that constant: In(^) = a\n(x).
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4. Taking the reciprocal of a number corresponds to taking the nega-
tive of its logarithm: ln(l/jc) = -l

The function that reverses the effect of the log transformation is the expo-
nential, denoted e* or exp(*). (It may also be denoted in either of these ways
on calculators.) An exponential increases monotonically with its argument,
but much faster: e° = 1 , el = 2.72, e2 = 7.39, e> = 20.09, and so on. Using a cal-
culator, entering 1 followed by e* should produce 2.718281828 (i.e., e},

The properties of exponentials parallel those of logarithms:

1 . Multiplication of exponentials corresponds to addition of their ex-
ponents: e*ey - e**y.

2. Division of exponentials corresponds to subtraction of their expo-
nents: e*ley = tTy.

3. Raising an exponential to a constant power corresponds to multi-
plying the exponent by that power: (e*}a - e?a.

4. Taking the reciprocal of an exponential corresponds to negating
the exponent: l/e* - e~x.

Because exponentials and logarithms are inverse functions, performing
the two operations successively leaves the initial value unchanged: \n(ex) =x
and e[n(x) = x. Thus, if ? has been calculated and x is desired, take the loga-
rithm of e*', if ln(x) has been calculated but x is desired, take the exponential
ofln(jc).
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Flowcharts to Sensitivity
and Bias Calculations

The following charts will guide you to the appropriate equations, tables, or
computer programs for finding sensitivity and bias. Start with Chart 1,
which directs you to other charts depending on the paradigm.

To use the charts, proceed from left to right. Whenever more than one
path is available, choose the one that corresponds to your specific applica-
tion. Each path ends with an outcome in the right-hand column.
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Chart 1: Guide to Subsequent Charts

A discrimination experiment measures the ability of an observer to distin-
guish two stimuli, A and B. If the experiment has one observation interval,
either A or B is presented on each trial. If it has more than one interval, a se-
quence of stimuli, each of which is either A or 5, is presented on each trial.
Three separate charts are needed to analyze experiments of the second type:
one to determine the design of the experiment (Chart 5), one to find the ap-
propriate index of sensitivity (Chart 6), and the last to find the bias index
(Chart 7).

Classification experiments measure the ability of an observer to label
stimuli (from sets of more than two).

In some designs, the stimuli to be judged are preceded or followed by a
specific, constant stimulus on each trial. The appropriate analyses for such
experiments are found by ignoring the constant stimulus.

1 interval

> 1 interval, 2 s

2 stimuli

(discrimination)

2 responses

(yes-no)

sensitivity

bias

> 2 responses (rating)

> 2 stimuli (classification)

timuli (discriminati Dn) sensitivity

bias

Chart 2

Chart3
Chart 4

Charts
Charts5&6

Charts5&7
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Chart 2: Yes-No Sensitivity

In this and later charts, two types of decisions are often made, one based on
the shape of the assumed underlying distributions, the other on the format of
the data. In choosing among the various distributional assumptions, we rec-
ommend Gaussian or logistic models. Rectangular-distribution models en-
tail undesirable threshold assumptions (see chap. 4); their only advantage is
that they are sometimes simpler to compute.

Data normally are reduced to hit and false-alarm rates (H and F), which
should be used whenever they are available. If only proportion correct
\p(c)} is given, it is necessary to assume that responding is unbiased.

For discussion, see chapters 1 and 4.

Gaussian
distributions

distance
measure d'

proportion
measures

logistic distributions
(Choice Theory)

rectangular
distributions
(threshold
theory)

1 -threshold
model

2-threshold
model

logistic distributions for low
sensitivity, rectangular distributions
for high sensitivity

from H and F

from p(c)

from H and F

from p(c)

from H and F

M^max

from p(c)

proportion
measure

proportion
measure

area measure

q

P(c)

A'

Eq. 1.5

Eq. 1.7

Eq.7.5

unchanged

BOB. 4.8, 4.9

%,4.19,
(§&i$d for 0)
si. 4.1 , ;

unchanged

Bq& 430,421
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Chart 3: Yes-No Response Bias

For discussion, see chapters 2 and 4.

Gaussian distributions

logistic distributions

rectangular distributions

criterion
location

relative
criterion

likelihood
ratio

criterion
location

relative
criterion

likelihood ratio
(equivalent)

criterion
location

relative
criterion

c

c'

ft

ln(*>)

b'

A,

B"

Eq.2,1

Eq.2.3

Bq.2.6

Eqs. 4.1 1,4.12

Bq.413

Eq.4.14

Ed. 4,23
! yes rate a^Jf+J5)

bror ratio = {1-IO/F
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Chart 4: Rating-Design Sensitivity

To analyze a rating experiment with normal-distribution assumptions, an
ROC is fitted to (F, H) pairs, and sensitivity and slope statistics are calcu-
lated from the curve. Fitting is best done by a maximum-likelihood com-
puter method (see Appendix 6 for pointers to such programs). The chart
assumes that ROC slope and sensitivity are obtained by one of these meth-
ods and shows how to obtain other measures.

For discussion, see chapter 3.

Gaussian
distributions
(any slope)

nonparametric

sensitivity

bias (criterion
location)

fit ROC using
trapezoidal
rule

distance
measures

rms standard
deviation

mean standard
deviation

area measure

rms standard deviation

mean standard deviation

area measure

*a

*e

\

Ca

Ce

As

Eqs. 3.4, 3.5

Eqs. 3.6, 3.7

lq.3.8

Bq. 3.13

Eq. 3.14

Eq.3,9
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Chart 5: Definitions of Multi-Interval Designs

A discrimination experiment tests the ability to distinguish two stimuli (A
and B), but may use a temporal or spatial sequence of stimuli on each trial.
We denote such sequences as bracketed lists; for example, <AB> means
Stimulus A followed by Stimulus B. In the lists of possible sequences, the
notation "vs" separates sequences with distinct corresponding (correct)
responses.

In some designs, the stimulus sequence to be judged is preceded or fol-
lowed by a specific, constant stimulus on each trial. The appropriate analy-
sis is the same as if these fixed stimuli were not present. Thus, if the only
possible sequences are <AABB> and <ABAB>, the design is the same as if
the possibilities were just <AB> and <BA> (i.e., 2AFC). As another exam-
ple, if the possible sequences are just <AAA> and <ABA>, the design is the
same as if the possibilities were just <A> and <B> (i.e., one-interval), and
Charts 2 and 3 should be consulted instead of Charts 6 and 7.

Number
of
intervals

2

3

m (m > 4)

Number
of
responses

2

2

3

m (m > 4)

Sequences

<AB>vs
<BA>

<AA>, <BB> vs
<AB>, <BA>

<ABA>, <BAB> vs
<ABB>, <BAA>

<ABB> vs
<BAB> vs
<BBA>

<ABB>, <BAA> vs
<BAB>, <ABA> vs
<BBA>, <AAB>

<ABB...B>vs
<BAB...B>vs...vs
<B...BBA>

Paradigm

2AFC

same-
different

ABX

3AFC

oddity

mAFC

Chapter

7

9

9

10

9

10
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Chart 6: Multi-Interval Sensitivity

Some designs in this chart have two models: one for "independent obser-
vations," the other for "differencing." As a rule of thumb, independent ob-
servation models are used for fixed designs (only two stimuli in a block of
trials) and differencing models for roving designs. As in the one-interval
designs, SDT models assume normal distributions. Choice Theory mod-
els, however, do not assume logistic distributions in designs other than
one-interval, even though a parameter of the one-interval experiment
[ln(a)] is estimated.

For discussion, see chapters 7, 9, and 10.

2AFC

mAFC

reminder

same-different
(Gaussian)

ABX
(Gaussian)

oddity [from
p(c) only]

SDT

Choice Theory

SDT

Choice Theory

distance measure

proportion
measure

distance measure

from p(c)

from p(c)

from full matrix

d'

PWmax

ln(ot)

d'

ln(a)

ln(or)

same as yes-no

independent-observation model from H and F

from p(c)

differencing model

independent-observation model

differencing model

independent-observation model

differencing model

Gaussian

Gaussian

logistic

Eqs.7.2,7.7

Eq.7.6

Eq.73

TaMeAS.7

BQ. 10.1

%10,2

Chart 2

B$. 9,7 and
Table A5.3

Bo. 9.3

T**fe5,4

TaWeASJ

. TtfteASJ

T»^A5.6

•WWeAS.5

TaMeASJ
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Chart 7: Multi-Interval Bias

For many designs, no bias measures have been developed. (Likelihood ratio
is always a possible statistic, but is often difficult to calculate.) If hit and
false-alarm rates are available, the yes-no methods of Chart 2 may be used,
although the yes-no interpretation (criterion location, likelihood ratio, etc.)
cannot be made. We call this a heuristic use of these methods.

2AFC

roAFC

same-different

other 2-response

oddity

same as yes-no

Choice Theory

independent-
observation
model

differencing
model

heuristic use

criterion

likelihood ratio

c;

A

heuristic use

criterion

likelihood ratio

Cd

fa

yes-no methods (heuristic use)

Chart3

EQ, 10.3

Chart 3

Chapter 9

Chapter 9

Charts
Chapter 9

Bq. 9.10

Charts

no method
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Chart 8: Classification

All models view sets of more than two stimuli as arranged in a perceptual
space. In general, the space may be of any dimension up to one less than the
number of stimuli. We consider in this chart only three special (but impor-
tant) cases: (a) all stimuli are represented on the same dimension, (b) the
stimulus set is feature-complete (i.e., orthogonally combines values on
multiple dimensions), and (c) all stimuli are orthogonal (i.e., each differs
from the other on a distinct dimension).

For discussion, see chapters 5 (one dimension) and 10 (more than one di-
mension).

one dimension

feature-complete

orthogonal

Thurstonian
models (Gaussian)

GRT models

all stimuli equally
discriminable,
no bias

above
assumptions not
made

unequal variances

equal variances

MSDA methods

SDT

Choice Theory

"constant" bias
(Choice Theory)

arbitrary bias

SchOnemann & Tucker
(1967)

Braida & Durlach
(1972)

Kadlec & Townsend
(1992a, 1992t>)

Table A5.7
Eqs. 10.1, 10.2

(see chap. 10 for
example)

Smith (1982b)
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Appendix

Some Useful Equations

The equations listed here are taken directly from the text. Only equations
useful for computing sensitivity and bias indexes (including all those to
which the user of the Appendix 3 flowcharts is directed), or for comparing
paradigms, are given. To find out when specific measures are appropriate,
see the flowcharts in Appendix 3. For further discussion, refer back to the
relevant chapter.

Yes-No Sensitivity

(1.5)

(1.7)

(4.8)

(4.9)

(7.4)

(7.5)

(2.1)
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Rating Experiments

(2.6)

(4.11)

(4.12)

(4.13)

(4.14)

(3.1)

(3.2)

(3.3)

(3.5)

(3.7)



(3.8)

Threshold and "Nonparametric"
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One-Dimensional Classification

(5.4)

(5.5)

(7.2)

(7.3)

(7.4)

(7.6)

(7.9)

(7-12)

(7.14)

(10.1)

(10.2)
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(10.3)

(10.5)

(9.3)

(9.4)

(9.9)

(13.1)

(13.3)

(13.4)

(13.6)
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Tables

Table A5.1: Normal Distribution (p to z) for Finding <f, c, and Other
SDT Statistics.

Instructions for the yes-no design:
To find d' and c. Look up H in either the p or the p' column and find the

corresponding value in the z column; if H is less than .50 (i.e., if it came
from the/?' column), take the negative of this value. Do the same for F, Then
d' is the difference between these values, and c is -0.5 times the sum.

To find P (likelihood ratio). The likelihood ratio j8 is the ratio of the en-
tries for H and F in the 0 column. Alternatively, find the z scores corre-
sponding to H and F as above. Then ln(/J) is -0.5 times the difference
between the squares of these values.
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TABLE A5.1 Normal Distribution (p to z)

p'
0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

P
0.999

0.998

0.997

0.996

0.995

0.994

0.993

0.992

0.991

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.90

0.89

0.88

0.87

0.86

0.85

0.84

0.83

0.82

0.81

0.80

z(p) =
-Z(p')

3.090

2.878

2.748

2.652

2.576

2.512

2.457

2.409

2.366

2.326

2.054

1.881

1.751

1.645

1.555

1.476

1.405

1.341

1.282

1.227

1.175

1.126

1.080

1.036

0.994

0.954

0.915

0.878

0.842

0
0.0034

0.0063

0.0091

0.0118

0.0145

0.0170

0.0195

0.0219

0.0243

0.0267

0.0484

0.0680

0.0862

0.1031

0.1191

0.1343

0.1487

0.1624

0.1755

0.1880

0.2000

0.2115

0.2226

0.2332

0.2433

0.2531

0.2624

0.2714

0.2800

P'
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

P
0.79

0.78

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.70

0.69

0.68

0.67

0.66

0.65

0.64

0.63

0.62

0.61

0.60

0.59

0.58

0.57

0.56

0.55

0.54

0.53

0.52

0.51

0.50

z(p) =
-Z(p')

0.806

0.772

0.739

0.706

0.674

0.643

0.613

0.583

0.553

0.524

0.496

0.468

0.440

0.412

0.385

0.358

0.332

0.305

0.279

0.253

0.228

0.202

0.176

0.151

0.126

0.100

0.075

0.050

0.025

0.000

0
0.2882

0.2961

0.3036

0.3109

0.3178

0.3244

0.3306

0.3366

0.3423

0.3477

0.3528

0.3576

0.3621

0.3664

0.3704

0.3741

0.3776

0.3808

0.3837

0.3863

0.3887

0.3909

0.3928

0.3944

0.3958

0.3969

0.3978

0.3984

0.3988

0.3989

375
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TABLE A5.2 Normal Distribution (z to p)
Given z,find O(z), the proportion less than z .

z
.00
.01
.02
.03
.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

.30

<&(*)
.5000000
.5039894
.5079783
.5119665
.5159534
.5199388

.5239222

.5279032

.5318814

.5358564

.5398278

.5437953

.5477584

.5517168

.5556700

.5596177

.5635595

.5674949

.5714237

.5753454

.5792597

.5831662

.5870604

.5909541

.5948349

.5987063

.6025681

.6064199

.6102612

.6140919

.6179114

z

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

.60

F(z)

.6217195

.6255158

.6293000

.6330717

.6368307

.6405764

.6443088

.6480273

.6517317

.6554217

.6590970

.6627573

.6664022

.6700314

.6736448

.6772419

.6808225

.6843863

.6879331

.6914625

.6949743

.6984682

.7019440

.7054015

.7088403

.7122603

.7156612

.7190427

.7224047

.7257469

z

.61

.62

.63

.64

.65

.66

.67

.68

.69

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

.90

«Kz)

.7290691

.7323.711

.7356527

.7389137

.7421539

.7453731

.7485711

.7517478

.7549029

.7580363

.7611479

.7642375

.7673049

.7703500

.7733726

.7763727

.7793501

.7823046

.7852361

.7881446

.7910299

.7938919

.7967306

.7995458

.8023375

.8051055

.8078498

.8105703

.8132671

.8159399
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TABLE A5.2 Normal Distribution (z to p)
(cent.)

z

.91

.92

.93

.94

.95

.96

.97

.98

.99
1.00

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18
1.19
1.20

<*>(z)

.8185887

.8212136

.8238145

.8263912

.8289439

.8314724

.8339768

.8364569

.8389129

.8413447

.8437524

.8461358

.8484950

.8508300

.8531409

.8554277

.8576903

.8599289

.8621434

.8643339

.8665005

.8686431

.8707619

.8728568

.8749281

.8769756

.8789995

.8809999

.8829768

.8849303

z

1.21
1.22
1.23
1.24
1.25

1.26
1.27
1.28
1.29
1.30

1.31
1.32
1.33
1.34
1.35

1.36
1.37
1.38
1.39
1.40

1.41
1.42
1.43
1.44
1.45

1.46
1.47
1.48
1.49
1.50

0(z)

.8868606

.8887676

.8906514

.8925123

.8943502

.8961653

.8979577

.8997274

.9014747

.9031995

.9049021

.9065825

.9082409

.9098773

.9114920

.9130850

.9146565

.9162067

.9177356

.9192433

.9207302

.9221962

.9236415

.9250663

.9264707

.9278550

.9292191

.9305634

.9318879

.9331928

z

1.51
1.52
1.53
1.54

1.55

1.56
1.57
1.58
1.59
1.60

1.61
1.62
1.63
1.64
1.65

1.66
1.67
1.68
1.69
1.70

1.71
1.72
1.73
1.74
1.75

1.76
1.77
1.78
1.79
1.80

«>(z)

.9344783

.9357445

.9369916

.9382198

.9394292

.9406201

.9417924

.9429466

.9440826

.9452007

.9463011

.9473839

.9484493

.9494974

.9505285

.9515428

.9525403

.9535213

.9544860

.9554345

.9563671

.9572838

.9581849

.9590705

.9599408

.9607961

.9616364

.9624620

.9632730

.9640697
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TABLE A5.2 Normal Distribution (z to p)
(cont.)

z
1.81
1.82
1.83
1.84
1.85

1.86
1.87
1.88
1.89
1.90

191
1.92
193
1.94
1.95

1.96
1.97
1.98
1.99
2.00

2.01
2.02
2.03
2.04
2.05

2.06
2.07
2.08
2.09
2.10

<&(z)
.9648521
.9656205
.9663750
.9671159
.9678432

.9685572

.9692581

.9699460

.9706210

.9712834

.9719334

.9725711

.9731966

.9738102

.9744119

.9750021

.9755808

.9761482

.9767045

.9772499

.9777844

.9783083

.9788217

.9793248

.9798178

.9803007

.9807738

.9812372

.9816911

.9821356

z
2.11
2.12
2.13
2.14
2.15

2.16
2.17
2.18
2.19
2.20

2.21
2.22
2.23
2.24
2.25

2.26
2.27
2.28
2.29
2.30

2.31
2.32
2.33
2.34
2.35

2.36
2.37
2.38
2.39
2.40

0(z)
.9825708
.9829970
.9834142
.9838226
.9842224

.9846137

.9849966

.9853713

.9857379

.9860966

.9864474

.9867906

.9871263

.9874545

.9877755

.9880894

.9883962

.9886962

.9889893

.9892759

.9895559

.9898296

.9900969

.9903581

.9906133

.9908625

.9911060

.9913437

.9915758

.9918025

z
2.41
2.42
2.43
2.44
2.45

2.46
2.47
2.48
2.49
2.50

2.51
2.52
2.53
2.54
2.55

2.56
2.57
2.58
2.59
2.60

2.70
2.80
2.90
3.00

3.20
3.40
3.60
3.80
4.00

*(z)
.9920237
.9922397
.9924506
.9926564
.9928572

.9930531

.9932443

.9934309

.9936128

.9937903

.9939634

.9941323

.9942969

.9944574

.9946139

.9947664

.9949151

.9950600

.9952012

.9953388

.9965330

.9974449

.9981342

.9986501

.9993129

.9996631

.9998409

.9999277

.9999683
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TABLE A5.2 Normal Distribution (z to p)
(com.)

4.50 .9999966
5.00 .9999997
5.50 .9999999

Source: Tables A5.1 and A5.2 excerpted from Tables for Statisticians and Biometricians, Part II, edited
by K. Pearson (1931). Reprinted by permission of the Biometrika Trustees.
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Table A5.3. Values of d' for Same-Different (Independent-Observation
Model) and ABX (Independent-Observation and Differencing Models).

To find d' from H and F, first calculate z(//) - z(F) and find the result in
the first column. Then look across to the appropriate design and model. If//
and F are not available, assume that the observer is unbiased: Find p(c) in
tjie second column and look across for d'.

z(H)-z(F)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.502

0.504

0.506

0.508

0.510

0.512

0.514

0.516

0.518

0.520

0.522

0.524

0.526

0.528

0.530

0.532

0.534

0.536

0.538

0.540

d'

Same-Different
(Independent
Observation)

0.16

0.22

0.28

0.32

0.36

0.39

0.42

0.45

0.48

0.51

0.53

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

ABX

Independent
Observation

0.13

0.19

0.23

0.27

0.30

0.33

0.35

0.38

0.40

0.43

0.45

0.47

0.49

0.51

0.52

0.54

0.56

0.58

0.59

0.61

Differencing

0.15

0.21

0.26

0.30

0.33

0.36

0.39

0.42

0.45

0.47

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68
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TABLE A5.3

z(H)-z(F)

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Values ofd' for Same-Different and ABX Models (cont.)

0.591

0.593

0.595

0.597

0.599

0.601

0.603

0.604

0.606

0.608

0.610

0.612

0.614

0.616

0.618

0.620

0.622

0.624

0.626

0.627

0.629

0.631

0.633

0.635

0.637

d'

Same-Different
(Independent
Observation)

1.13

1.14

1.15

1.17

1.18

1.19

1.20

1.22

1.23

1.24

1.25

1.27

1.28

1.29

1.30

1.32

1.33

1.34

1.35

1.36

1.38

1.39

1.40

1.41

1.42

ABX

Independent
Observation

0.95

0.96

0.97

0.98

0.99

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Differencing

1.06

1.07

1.08

1.09

1.11

1.12

1.13

1.14

1.16

1.17

1.18

1.19

1.20

1.22

1.23

1.24

1.25

1.26

1.27

1.29

1.30

1.31

1.32

1.33

1.34
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TABLE A5.3

z(H)-z(F)

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

Values ofd' for Same-Different and ABX Models (cont.)

0.542

0.544

0.546

0.548

0.550

0.552

0.554

0.556

0.558

0.560

0.562

0.564

0.566

0.567

0.569

0.571

0.573

0.575

0.577

0.579

0.581

0.583

0.585

0.587

0.589

d'

Same-Different
(Independent
Observation)

0.74

0.76

0.78

0.80

0.81

0.83

0.85

0.86

0.88

0.89

0.91

0.93

0.94

0.96

0.97

0.99

1.00

1.01

1.03

1.04

1.06

1.07

1.09

1.10

1.11

ABX

Independent
Observation

0.62

0.64

0.65

0.67

0.68

0.70

0.71

0.73

0.74

0.75

0.77

0.78

0.79

0.81

0.82

0.83

0.84

0.86

0.87

0.88

0.89

0.90

0.92

0.93

0.94

Differencing

0.69

0.71

0.73

0.74

0.76

0.78

0.79

0.81

0.82

0.84

0.85

0.87

0.88

0.90

0.91

0.92

0.94

0.95

0.96

0.98

0.99

1.00

1.02

1.03

1.04
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TABLE A5.3

z(H)-z(F)
0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Values ofd' for Same-Different and ABX Models (cont.)

0.684

0.686

0.688

0.690

0.691

0.693

0.695

0.697

0.698

0.700

0.702

0.704

0.705

0.707

0.709

0.711

0.712

0.714

0.716

0.717

0.719

0.721

0.722

0.724

0.726

d'

Same-Different
(Independent
Observation)

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

1.96

ABX

Independent
Observation

1.45

1.46

1.47

1.48

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.64

1.64

1.65

1.66

Differencing

1.62

1.63

1.64

1.65

1.66

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

1.87
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TABLE A5.3

z(H)-z(F)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Values ofd' for Same-Different and ABX Models (cont.)

0.639

0.641

0.642

0.644

0.646

0.648

0.650

0.652

0.654

0.655

0.657

0.659

0.661

0.663

0.665

0.666

0.668

0.670

0.672

0.674

0.675

0.677

0.679

0.681

0.683

d'

Same-Different
(Independent
Observation)

1.43

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.65

1.66

1.67

1.68

1.69

1.70

ABX

Independent
Observation

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.38

1.39

1.40

1.41

1.42

1.43

1.44

Differencing

1.35

1.36

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61
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TABLE A5.3

z(H)-z(F)
1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

Values ofd' for Same-Different and ABX Models (cont.)

0.727

0.729

0.731

0.732

0.734

0.736

0.737

0.739

0.741

0.742

0.744

0.745

0.747

0.749

0.750

0.752

0.753

0.755

0.756

0.758

0.760

0.761

0.763

0.764

0.766

d'

Same-Different
(Independent
Observation)

1.97

1.98

1.99

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

ABX

Independent
Observation

1.67

1.68

1.69

1.70

1.71

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.83

1.84

1.85

1.86

1.87

1.88

Differencing

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.10

2.11

2.12
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TABLE A5.3

z(H)-z(F)
1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

1.70

Values ofd' for Same-Different and ABX Models (cont.)

P^unb

0.767

0.769

0.770

0.772

0.773

0.775

0.776

0.778

0.779

0.781

0.782

0.784

0.785

0.787

0.788

0.790

0.791

0.792

0.794

0.795

0.797

0.798

0.800

0.801

0.802

d'

Same-Different
(Independent
Observation)

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

ABX

Independent
Observation

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.94

1.95

1.96

1.97

1.98

1.99

1.99

2.00

2.01

2.02

2.03

2.04

2.04

2.05

2.06

2.07

2.08

2.09

Differencing

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37
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TABLE A5.3

z(H)-z(F)
1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

Values of a" for Same-Different and ABX Models (cont.)

0.804

0.805

0.806

0.808

0.809

0.811

0.812

0.813

0.815

0.816

0.817

0.819

0.820

0.821

0.823

0.824

0.825

0.826

0.828

0.829

0.830

0.831

0.833

0.834

0.835

d'

Same-Different
(Independent
Observation)

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.60

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.67

ABX

Independent
Observation

2.10

2.10

2.11

2.12

2.13

2.14

2.15

2.15

2.16

2.17

2.18

2.19

2.20

2.20

2.21

2.22

2.23

2.24

2.25

2.25

2.26

2.27

2.28

2.29

2.30

Differencing

2.38

2.39

2.40

2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.60

2.61

2.62
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TABLE A5.3

z(H)-z(F)

1.96

1.97

1.98

1.99

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

Values ofd' for Same-Different and ABX Models (cont.)

0.836

0.838

0.839

0.840

0.841

0.843

0.844

0.845

0.846

0.847

0.848

0.850

0.851

0.852

0.853

0.854

0.855

0.857

0.858

0.859

0.860

0.861

0.862

0.863

0.864

d'

Same-Different
(Independent
Observation)

2.68

2.69

2.70

2.71

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79

2.79

2.80

2.81

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

2.90

2.91

ABX

Independent
Observation

2.30

2.31

2.32

2.33

2.34

2.35

2.35

2.36

2.37

2.38

2.39

2.40

2.40

2.41

2.42

2.43

2.44

2.45

2.45

2.46

2.47

2.48

2.49

2.50

2.50

Differencing

2.63

2.64

2.65

2.67

2.68

2.69

2.70

2.71

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79

2.80

2.81

2.82

2.83

2.84

2.85

2.86

2.87

2.88
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TABLE A5.3

z(H)-z(F)
2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

2.45

Values ofd' for Same-Different and ABX Models (cont.)

0.865

0.867

0.868

0.869

0.870

0.871

0.872

0.873

0.874

0.875

0.876

0.877

0.878

0.879

0.880

0.881

0.882

0.883

0.884

0.885

0.886

0.887

0.888

0.889

0.890

d'

Same -Different
(Independent
Observation)

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

3.10

3.11

3.12

3.13

3.13

ABX

Independent
Observation

2.51

2.52

2.53

2.54

2.55

2.55

2.56

2.57

2.58

2.59

2.60

2.60

2.61

2.62

2.63

2.64

2.65

2.65

2.66

2.67

2.68

2.69

2.70

2.70

2.71

Differencing

2.89

2.90

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.99

3.00

3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

3.10

3.11

3.12

3.13

3.14



390 Appendix 5

TABLE A5.3

z(H)-z(F)

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

2.60

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

2.69

2.70

Values ofd' for Same-Different and ABX Models (cont.)

0.891
0.892

0.893

0.893

0.894

0.895

0.896

0.897

0.898

0.899

0.900

0.901

0.901

0.902

0.903

0.904

0.905

0.906

0.907

0.907

0.908

0.909

0.910

0.911

0.911

d'

Same-Different
(Independent
Observation)

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.35

3.36

ABX

Independent
Observation

2.72

2.73

2.74

2.75

2.76

2.76

2.77

2.78

2.79

2.80

2.81

2.81

2.82

2.83

2.84

2.85

2.86

2.87

2.87

2.88

2.89

2.90

2.91

2.92

2.92

Differencing

3.15

3.16

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41
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TABLE A5.3

z(H)-z(F)
2.71

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79

2.80

2.81

2.82

2.83

2.84

2.85

2.86

2.87

2.88

2.89

2.90

2.91

2.92

2.93

2.94

2.95

Values ofd' for Same-Different and ABX Models (cont.)

0.912
0.913

0.914

0.915

0.915

0.916

0.917

0.918

0.918

0.919

0.920

0.921

0.921

0.922

0.923

0.924

0.924

0.925

0.926

0.926

0.927

0.928

0.929

0.929

0.930

d'

Same-Different
(Independent
Observation)

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.56

3.57

3.58

3.59

ABX

Independent
Observation

2.93

2.94

2.95

2.96

2.97

2.98

2.98

2.99

3.00

3.01

3.02

3.03

3.04

3.04

3.05

3.06

3.07

3.08

3.09

3.10

3.11

3.11

3.12

3.13

3.14

Differencing

3.42

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.62

3.63

3.65

3.66

3.67

3.68

3.69
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TABLE A5.3

z(H)-z(F)

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

Values ofd' for Same-Different and ABX Models (cont.)

0.931

0.931

0.932

0.933

0.933

0.934

0.934

0.935

0.936

0.936

0.937

0.938

0.938

0.939

0.939

0.940

0.941

0.941

0.942

0.942

0.943

0.944

0.944

0.945

0.945

d'

Same-Different
(Independent
Observation)

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.67

3.68

3.69

3.70

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.78

3.79

3.80

3.81

3.82

ABX

Independent
Observation

3.15

3.16

3.17

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.32

3.33

3.34

3.35

3.36

Differencing

3.70

3.71

3.72

3.74

3.75

3.76

3.77

3.78

3.79

3.80

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.90

3.91

3.92

3.93

3.94

3.95

3.96

3.98
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TABLE A5.3

z(H)-z(F)

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

3.45

Values ofd' for Same-Different and ABX Models (cont.)

0.946

0.946

0.947

0.947

0.948

0.948

0.949

0.949

0.950

0.951

0.951

0.952

0.952

0.953

0.953

0.954

0.954

0.954

0.955

0.955

0.956

0.956

0.957

0.957

0.958

d'

Same-Different
(Independent
Observation)

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90

3.90

3.91

3.92

3.93

3.94

3.95

3.96

3.97

3.98

3.99

4.00

4.01

4.02

4.02

4.03

4.04

4.05

ABX

Independent
Observation

3.37

3.38

3.39

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.57

3.58

Differencing

3.99

4.00

4.01

4.02

4.03

4.05

4.06

4.07

4.08

4.09

4.10

4.12

4.13

4.14

4.15

4.16

4.18

4.19

4.20

4.21

4.22

4.23

4.25

4.26

4.27
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TABLE A5.3

z(H)-z(F)

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

Values ofd' for Same-Different and ABX Models (cont.)

0.958

0.959

0.959

0.960

0.960

0.960

0.961

0.961

0.962

0.962

0.962

0.963

0.963

0.964

0.964

0.964

0.965

0.965

0.966

0.966

0.966

0.967

0.967

0.967

0.968

d'

Same-Different
(Independent
Observation)

4.06

4.07

4.08

4.09

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

ABX

Independent
Observation

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.67

3.68

3.69

3.70

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.79

3.79

3.80

3.81

Differencing

4.28

4.29

4.31

4.32

4.33

4.34

4.35

4.37

4.38

4.39

4.40

4.41

4.43

4.44

4.45

4.46

4.47

4.49

4.50

4.51

4.52

4.53

4.55

4.56

4.57
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TABLE A5.3

z(H)-z(F)

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.79

3.80

3.81

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90

3.91

3.92

3.93

3.94

3.95

Values ofd' for Same-Different and ABX Models (cont.)

0.968

0.969

0.969

0.969

0.970

0.970

0.970

0.971

0.971

0.971

0.972

0.972

0.972

0.973

0.973

0.973

0.974

0.974

0.974

0.974

0.975

0.975

0.975

0.976

0.976

d'

Same-Different
(Independent
Observation)

4.30

4.31

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.50

4.51

4.52

ABX

Independent
Observation

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90

3.91

3.92

3.93

3.94

3.95

3.95

3.96

3.97

3.98

3.99

4.00

4.01

4.02

4.03

4.04

4.05

Differencing

4.58

4.60

4.61

4.62

4.63

4.64

4.66

4.67

4.68

4.69

4.71

4.72

4.73

4.74

4.76

4.77

4.78

4.79

4.81

4.82

4.83

4.84

4.86

4.87

4.88
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TABLE A5.3

z(H)-z(F)

3.96

3.97

3.98

3.99

4.00

4.01

4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Values ofd' for Same-Different and ABX Models (cont.)

0.976

0.976

0.977

0.977

0.977

0.978

0.978

0.978

0.978

0.979

0.979

0.979

0.979

0.980

0.980

0.980

0.980

0.981

0.981

0.981

0.981

0.981

0.982

0.982

0.982

d'

Same-Different
(Independent
Observation)

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

4.75

4.76

4.77

ABX

Independent
Observation

4.06

4.07

4.08

4.09

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

Differencing

4.89

4.91

4.92

4.93

4.94

4.96

4.97

4.98

4.99

5.01

5.02

5.03

5.05

5.06

5.07

5.08

5.10

5.11

5.12

5.13

5.15

5.16

5.17

5.19

5.20
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TABLE A5.3

z(H)-z(F)

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

Values ofd' for Same-Different and ABX Models (cont.)

/*c)unb

0.982

0.983

0.983

0.983

0.983

0.983

0.984

0.984

0.984

0.984

0.984

0.985

0.985

0.985

0.985

0.985

0.986

0.986

0.986

0.986

0.986

0.986

0.987

0.987

0.987

d'

Same-Different
(Independent
Observation)

4.78

4.79

4.80

4.81

4.82

4.83

4.84

4.85

4.86

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.95

4.96

4.97

4.98

4.99

5.00

5.01

5.02

ABX

Independent
Observation

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

Differencing

5.21

5.23

5.24

5.25

5.26

5.28

5.29

5.30

5.32

5.33

5.34

5.36

5.37

5.38

5.40

5.41

5.42

5.43

5.45

5.46

5.47

5.49

5.50

5.51

5.53
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TABLE A5.3

z(H)-z(F)
4.46

4.47

4.48

4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

Values ofd' for Same-Different and ABX Models (cont.)

0.987
0.987

0.987

0.988

0.988

0.988

0.988

0.988

0.988

0.989

0.989

0.989

0.989

0.989

0.989

0.989

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.990

0.991

d'

Same-Different
(Independent
Observation)

5.03

5.04

5.05

5.06

5.07

5.08

5.09

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.25

5.26

5.27

5.28

ABX

Independent
Observation

4.56

4.57

4.58

4.59

4.60

4.62

4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

4.76

4.77

4.78

4.79

4.80

4.81

4.82

Differencing

5.54

5.56

5.57

5.58

5.60

5.61

5.62

5.64

5.65

5.66

5.68

5.69

5.70

5.72

5.73

5.75

5.76

5.77

5.79

5.80

5.81

5.83

5.84

5.86

5.87
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TABLE A5.3

z(H)-z(F)

4.71

4.72

4.73

4.74

4.75

4.76

4.77

4.78

4.79

4.80

4.81

4.82

4.83

4.84

4.85

4.86

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.95

Values ofd' for Same-Different and ABX Models (cont.)

0.991

0.991

0.991

0.991

0.991

0.991

0.991

0.992

0.992

0.992

0.992

0.992

0.992

0.992

0.992

0.992

0.993

0.993

0.993

0.993

0.993

0.993

0.993

0.993

0.993

d'

Same-Different
(Independent
Observation)

5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.49

5.50

5.51

5.52

5.53

5.54

5.55

ABX

Independent
Observation

4.83

4.84

4.85

4.87

4.88

4.89

4.90

4.91

4.92

4.93

4.94

4.96

4.97

4.98

4.99

5.00

5.01

5.03

5.04

5.05

5.06

5.07

5.08

5.10

5.11

Differencing

5.88

5.90

5.91

5.93

5.94

5.96

5.97

5.98

6.00

6.01

6.03

6.04

6.06

6.07

6.09

6.10

6.11

6.13

6.14

6.16

6.17

6.19

6.20

6.22

6.23
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Table A5.4. Values of d' for Same-Different (Differencing Model).

Ha

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

Fb

0.01

0.00

0.71

0.97

1.16

1.31

1.44

1.55

1.65

1.75

1.83

1.91

1.98

2.05

2.11

2.18

2.24

2.29

2.35

2.40

2.45

2.50

2.55

2.60

2.64

2.69

2.73

2.78

2.82

2.86

2.90

0.02

0.00

0.56

0.78

0.94

1.08

1.19

1.30

1.39

1.47

1.55

1.63

1.70

1.76

1.82

1.88

1.94

1.99

2.05

2.10

2.15

2.20

2.24

2.29

2.34

2.38

2.42

2.47

2.51

2.55

0.03

0.00

0.49

0.69

0.84

0.96

1.07

1.16

1.25

1.33

1.40

1.47

1.54

1.60

1.66

1.72

1.77

1.83

1.88

1.93

1.98

2.02

2.07

2.11

2.16

2.20

2.24

2.29

2.33

0.04

0.00

0.45

0.63

0.77

0.88

0.98

1.07

1.15

1.23

1.30

1.37

1.43

1.49

1.55

1.61

1.66

1.71

1.76

1.81

1.86

1.90

1.95

1.99

2.04

2.08

2.12

2.16

0.05

0.00

0.42

0.59

0.72

0.83

0.92

1.01

1.09

1.16

1.23

1.29

1.36

1.41

1.47

1.52

1.58

1.63

1.68

1.72

1.77

1.82

1.86

1.90

1.95

1.99

2.03

0.06

0.00

0.39

0.56

0.68

0.79

0.88

0.96

1.04

1.11

1.17

1.24

1.30

1.35

1.41

1.46

1.51

1.56

1.61

1.66

1.70

1.75

1.79

1.83

1.87

1.92

0.07

0.00

0.38

0.53

0.65

0.75

0.84

0.92

1.00

1.07

1.13

1.19

1.25

1.30

1.36

1.41

1.46

1.51

1.56

1.60

1.65

1.69

1.73

1.78

1.82

0.08

0.00

0.36

0.51

0.63

0.73

0.81

0.89

0.96

1.03

1.09

1.15

1.21

1.26

1.32

1.37

1.42

1.46

1.51

1.56

1.60

1.64

1.69

1.73

0.09

0.00

0.35

0.50

0.61

0.71

0.79

0.87

0.94

1.00

1.06

1.12

1.18

1.23

1.28

1.33

1.38

1.43

1.47

1.52

1.56

1.61

1.65

0.10

0.00

0.34

0.49

0.60

0.69

0.77

0.85

0.91

0.98

1.04

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.44

1.49

1.53

1.57

"H = hit rate = />("different" I Different).
*F = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

pb

0.01

2.94

2.98

3.02

3.06

3.10

3.14

3.17

3.21

3.25

3.28

3.32

3.36

3.39

3.43

3.47

3.50

3.54

3.57

3.61

3.64

3.68

3.71

3.75

3.78

3.82

3.86

3.89

3.93

3.96

4.00

Values 0/d' for Same-Different (Differencing Model)

0.02

2.59

2.63

2.67

2.71

2.74

2.78

2.82

2.86

2.89

2.93

2.97

3.00

3.04

3.08

3.11

3.15

3.18

3.22

3.25

3.29

3.33

3.36

3.40

3.43

3.47

3.50

3.54

3.58

3.61

3.65

0.03

2.37

2.41

2.45

2.49

2.52

2.56

2.60

2.64

2.67

2.71

2.75

2.78

2.82

2.86

2.89

2.93

2.96

3.00

3.03

3.07

3.10

3.14

3.18

3.21

3.25

3.28

3.32

3.35

3.39

3.43

0.04

2.20

2.24

2.28

2.32

2.36

2.40

2.43

2.47

2.51

2.55

2.58

2.62

2.65

2.69

2.73

2.76

2.80

2.83

2.87

2.90

2.94

2.98

3.01

3.05

3.08

3.12

3.15

3.19

3.23

3.26

0.05

2.07

2.11

2.15

2.1

2.23

2.26

2.30

2.34

2.38

2.41

2.45

2.49

2.52

2.56

2.59

2.63

2.67

2.70

2.74

2.77

2.81

2.84

2.88

2.91

2.95

2.99

3.02

3.06

3.09

3.13

0.06

1.96

2.00

2.04

2.07

2.11

2.15

2.19

2.23

2.26

2.30

2.34

2.37

2.41

2.45

2.48

2.52

2.55

2.59

2.62

2.66

2.70

2.73

2.77

2.80

2.84

2.87

2.91

2.95

2.98

3.02

0.07

1.86

1.90

1.94

1.98

2.02

2.05

2.09

2.13

2.17

2.20

2.24

2.28

2.31

2.35

2.38

2.42

2.46

2.49

2.53

2.56

2.60

2.63

2.67

2.70

2.74

2.78

2.81

2.85

2.88

2.92

0.08

1.77

1.81

1.85

1.89

1.93

1.97

2.00

2.04

2.08

2.12

2.15

2.19

2.22

2.26

2.30

2.33

2.37

2.40

2.44

2.48

2.51

2.55

2.58

2.62

2.65

2.69

2.72

2.76

2.80

2.83

0.09

1.69

1.73

1.77

1.81

1.85

1.89

1.92

1.96

2.00

2.04

2.07

2.11

2.15

2.18

2.22

2.25

2.29

2.33

2.36

2.40

2.43

2.47

2.50

2.54

2.57

2.61

2.65

2.68

2.72

2.76

0.10

1.61

1.66

1.70

1.73

1.77

1.81

1.85

1.89

1.93

1.96

2.00

2.04

2.07

2.11

2.15

2.18

2.22

2.25

2.29

2.32

2.36

2.40

2.43

2.47

2.50

2.54

2.57

2.61

2.65

2.68

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.).

Ha

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

F*
0.01

4.04

4.07

4.11

4.15

4.19

4.23

4.26

4.30

4.34

4.38

4.43

4.47

4.51

4.55

4.60

4.64

4.69

4.73

4.78

4.83

4.88

4.94

4.99

5.05

5.11

5.17

5.24

5.30

5.38

5.46

Values ofd' for Same-Different (Differencing Model)

0.02
3.68

3.72

3.76

3.80

3.83

3.87

3.91

3.95

3.99

4.03

4.07

4.11

4.16

4.20

4.24

4.29

4.33

4.38

4.43

4.48

4.53

4.58

4.64

4.70

4.76

4.82

4.88

4.95

5.02

5.10

0.03

3.46

3.50

3.54

3.58

3.61

3.65

3.69

3.73

3.77

3.81

3.85

3.89

3.94

3.98

4.02

4.07

4.11

4.16

4.21

4.26

4.31

4.36

4.42

4.48

4.53

4.60

4.66

4.73

4.80

4.88

0.04

3.30

3.34

3.37

3.41

3.45

3.49

3.53

3.57

3.61

3.65

3.69

3.73

3.77

3.81

3.86

3.90

3.95

4.00

4.04

4.09

4.15

4.20

4.25

4.31

4.37

4.43

4.50

4.57

4.64

4.72

0.05

3.17

3.20

3.24

3.28

3.32

3.36

3.39

3.43

3.47

3.51

3.55

3.60

3.64

3.68

3.73

3.77

3.82

3.86

3.91

3.96

4.01

4.07

4.12

4.18

4.24

4.30

4.36

4.43

4.51

4.58

0.06

3.05

3.09

3.13

3.17

3.20

3.24

3.28

3.32

3.36

3.40

3.44

3.48

3.53

3.57

3.61

3.66

3.70

3.75

3.80

3.85

3.90

3.95

4.01

4.07

4.13

4.19

4.25

4.32

4.39

4.47

0.07

2.96

2.99

3.03

3.07

3.11

3.15

3.18

3.22

3.26

3.30

3.34

3.39

3.43

3.47

3.52

3.56

3.61

3.65

3.70

3.75

3.80

3.86

3.91

3.97

4.03

4.09

4.16

4.22

4.30

4.37

0.08

2.87

2.91

2.94

2.98

3.02

3.06

3.10

3.14

3.18

3.22

3.26

3.30

3.34

3.39

3.43

3.47

3.52

3.57

3.62

3.67

3.72

3.77

3.83

3.88

3.94

4.00

4.07

4.14

4.21

4.29

0.09

2.79

2.83

2.87

2.90

2.94

2.98

3.02

3.06

3.10

3.14

3.18

3.22

3.26

3.31

3.35

3.40

3.44

3.49

3.54

3.59

3.64

3.69

3.75

3.80

3.86

3.93

3.99

4.06

4.13

4.21

0.10

2.72

2.76

2.79

2.83

2.87

2.91

2.95

2.99

3.03

3.07

3.11

3.15

3.19

3.24

3.28

3.32

3.37

3.42

3.47

3.52

3.57

3.62

3.68

3.73

3.79

3.85

3.92

3.99

4.06

4.14

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Values ofd' for Same-Different (Differencing Model)

F»

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0.01

5.54

5.63

5.73

5.84

5.97

6.12

6.30

6.55

6.93

0.02

5.19

5.28

5.38

5.49

5.62

5.77

5.95

6.19

6.58

0.03

4.97

5.06

5.16

5.27

5.40

5.54

5.73

5.97

6.36

0.04

4.80

4.89

4.99

5.10

5.23

5.38

5.56

5.81

6.19

0.05

4.67

4.76

4.86

4.97

5.10

5.25

5.43

5.68

6.06

0.06

4.56

4.65

4.75

4.86

4.99

5.14

5.32

5.56

5.95

0.07

4.46

4.55

4.65

4.76

4.89

5.04

5.22

5.47

5.85

0.08

4.37

4.46

4.56

4.67

4.80

4.95

5.14

5.38

5.77

0.09

4.29

4.38

4.48

4.60

4.72

4.87

5.06

5.30

5.69

0.10

4.22

4.31

4.41

4.52

4.65

4.80

4.99

5.23

5.62

Fb

Ha

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.11

0.00

0.34

0.48

0.58

0.67

0.75

0.83

0.89

0.96

1.02

1.07

1.13

1.18

1.23

1.28

1.33

1.37

1.42

1.46

1.50

0.12

0.00

0.33

0.47

0.57

0.66

0.74

0.81

0.88

0.94

1.00

1.05

1.11

1.16

1.21

1.26

1.30

1.35

1.39

1.44

0.13

0.00

0.32

0.46

0.56

0.65

0.73

0.80

0.86

0.93

0.98

1.04

1.09

1.14

1.19

1.24

1.28

1.33

1.37

0.14

0.00

0.32

0.45

0.55

0.64

0.72

0.79

0.85

0.91

0.97

1.02

1.08

1.13

1.17

1.22

1.27

1.31

0.15

0.00

0.31

0.44

0.55

0.63

0.71

0.78

0.84

0.90

0.96

1.01

1.06

1.11

1.16

1.21

1.25

0.16

0.00

0.31

0.44

0.54

0.62

0.70

0.77

0.83

0.89

0.95

1.00

1.05

1.10

1.15

1.20

0.17

0.00

0.31

0.43

0.53

0.62

0.69

0.76

0.82

0.88

0.94

0.99

1.04

1.09

1.14

0.18

0.00

0.30

0.43

0.53

0.61

0.69

0.75

0.82

0.87

0.93

0.98

1.03

1.08

0.19

0.00

0.30

0.43

0.52

0.61

0.68

0.75

0.81

0.87

0.92

0.97

1.03

0.20

0.00

0.30

0.42

0.52

0.60

0.68

0.74

0.80

0.86

0.92

0.97

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

f*
0.11

1.54

1.59

1.63

1.67

1.71

1.74

1.78

1.82

1.86

1.90

1.93

1.97

2.01

2.04

2.08

2.11

2.15

2.19

2.22

2.26

2.29

2.33

2.36

2.40

2.44

2.47

2.51

2.54

2.58

2.62

Values of d' for Same-Different (Differencing Model)

0.12

1.48

1.52

1.56

1.60

1.64

1.68

1.72

1.76

1.80

1.83

1.87

1.91

1.94

1.98

2.02

2.05

2.09

2.12

2.16

2.20

2.23

2.27

2.30

2.34

2.37

2.41

2.45

2.48

2.52

2.56

0.13

1.42

1.46

1.50

1.54

1.58

1.62

1.66

1.70

1.73

1.77

1.81

1.85

1.88

1.92

1.96

1.99

2.03

2.07

2.10

2.14

2.17

2.21

2.24

2.28

2.32

2.35

2.39

2.42

2.46

2.50

0.14

1.36

1.40

1.44

1.48

1.52

1.56

1.60

1.64

1.68

1.72

1.75

1.79

1.83

1.86

1.90

1.94

1.97

2.01

2.05

2.08

2.12

2.15

2.19

2.23

2.26

2.30

2.33

2.37

2.41

2.44

0.15

1.30

1.34

1.38

1.42

1.47

1.51

1.55

1.58

1.62

1.66

1.70

1.74

1.77

1.81

1.85

1.88

1.92

1.96

1.99

2.03

2.06

2.10

2.14

2.17

2.21

2.24

2.28

2.32

2.35

2.39

0.16

1.24

1.28

1.33

1.37

1.41

1.45

1.49

1.53

1.57

1.61

1.65

1.68

1.72

1.76

1.80

1.83

1.87

1.91

1.94

1.98

2.01

2.05

2.09

2.12

2.16

2.20

2.23

2.27

2.30

2.34

0.17

1.18

1.23

1.27

1.32

1.36

1.40

1.44

1.48

1.52

1.56

1.60

1.63

1.67

1.71

1.75

1.78

1.82

1.86

1.89

1.93

1.97

2.00

2.04

2.07

2.11

2.15

2.18

2.22

2.26

2.29

0.18

1.13

1.17

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.62

1.66

1.70

1.74

1.77

1.81

1.85

1.88

1.92

1.96

1.99

2.03

2.06

2.10

2.14

2.17

2.21

2.25

0.19

1.07

1.12

1.17

1.21

1.25

1.30

1.34

1.38

1.42

1.46

1.50

1.54

1.58

1.61

1.65

1.69

1.73

1.76

1.80

1.84

1.87

1.91

1.95

1.98

2.02

2.06

2.09

2.13

2.17

2.20

0.20

1.02

1.07

1.11

1.16

1.20

1.25

1.29

1.33

1.37

1.41

1.45

1.49

1.53

1.57

1.61

1.64

1.68

1.72

1.76

1.79

1.83

1.87

1.90

1.94

1.98

2.01

2.05

2.09

2.12

2.16

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(com.)

Ha

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Fb

0.11

2.65

2.69

2.73

2.77

2.80

2.84

2.88

2.92

2.96

3.00

3.04

3.08

3.13

3.17

3.21

3.26

3.30

3.35

3.40

3.45

3.50

3.55

3.61

3.67

3.73

3.79

3.85

3.92

3.99

4.07

Values of d' for Same-Different (Differencing Model)

0.12

2.59

2.63

2.67

2.70

2.74

2.78

2.82

2.86

2.90

2.94

2.98

3.02

3.07

3.11

3.15

3.20

3.24

3.29

3.34

3.39

3.44

3.49

3.55

3.61

3.66

3.73

3.79

3.86

3.93

4.01

0.13

2.53

2.57

2.61

2.65

2.68

2.72

2.76

2.80

2.84

2.88

2.92

2.96

3.01

3.05

2.09

3.14

3.19

3.23

3.28

3.33

3.38

3.44

3.49

3.55

3.61

3.67

3.73

3.80

3.88

3.95

0.14

2.48

2.52

2.55

2.59

2.63

2.67

2.71

2.75

2.79

2.83

2.87

2.91

2.95

3.00

3.04

3.09

3.13

2.18

3.23

3.28

3.33

3.38

3.44

3.49

3.55

3.61

3.68

3.75

3.82

3.90

0.15

2.43

2.47

2.50

2.54

2.58

2.62

2.66

2.70

2.74

2.78

2.82

2.86

2.90

2.94

2.99

3.03

3.08

3.13

3.18

3.23

3.28

3.33

3.38

3.44

3.50

3.56

3.63

3.70

3.77

3.85

0.16

2.38

2.42

2.45

2.49

2.53

2.57

2.61

2.65

2.69

2.73

2.77

2.81

2.85

2.90

2.94

2.98

3.03

3.08

3.13

3.18

3.23

3.28

3.34

3.39

3.45

3.51

3.58

3.65

3.72

3.80

0.17

2.33

2.37

2.41

2.44

2.48

2.52

2.56

2.60

2.64

2.68

2.72

2.76

2.81

2.85

2.89

2.94

2.98

3.03

3.08

3.13

3.18

3.23

3.29

3.35

3.41

3.47

3.53

3.60

3.67

3.75

0.18

2.29

2.32

2.36

2.40

2.44

2.48

2.51

2.55

2.59

2.63

2.68

2.72

2.76

2.80

2.85

2.89

2.94

2.99

3.04

3.09

3.14

3.19

3.24

3.30

3.36

3.42

3.49

3.56

3.63

3.71

0.19

2.24

2.28

2.32

2.35

2.39

2.43

2.47

2.51

2.55

2.59

2.63

2.67

2.72

2.76

2.81

2.85

2.90

2.94

2.99

3.04

3.09

3.15

3.20

3.26

3.32

3.38

3.45

3.51

3.59

3.67

0.20

2.20

2.24

2.27

2.31

2.35

2.39

2.43

2.47

2.51

2.55

2.59

2.63

2.68

2.72

2.76

2.81

2.86

2.90

2.95

3.00

3.05

3.11

3.16

3.22

3.28

3.34

3.40

3.47

3.55

3.62

"H = hit rate = P("different" I Different).
*F = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ha

pb

0.11

4.16

4.25

4.35

4.46

4.59

4.74

4.92

5.16

5.55

pb

0.21

Values of d' for Same-Different (Differencing Model)

0.12

4.09

4.19

4.29

4.40

4.52

4.67

4.86

5.10

5.49

0.22

0.13

4.04

4.13

4.23

4.34

4.47

4.62

4.80

5.05

5.43

0.23

0.14

3.98

4.07

4.17

4.29

4.41

4.56

4.75

4.99

5.38

0.24

0.15

3.93

4.02

4.12

4.23

4.36

4.51

4.70

4.94

5.33

0.25

0.16

3.88

3.97

4.07

4.19

4.31

4.46

4.65

4.89

5.28

0.26

0.17

3.84

3.93

4.03

4.14

4.27

4.42

4.60

4.85

5.23

0.27

0.18

3.79

3.88

3.98

4.09

4.22

4.37

4.56

4.80

5.19

0.28

0.19

3.75

3.84

3.94

4.05

4.18

4.33

4.51

4.76

5.14

0.29

0.20

3.71

3.80

3.90

4.01

4.14

4.29

4.47

4.72

5.10

0.30

0.21 0.00

0.22 0.30 0.00

0.23 0.42 0.30 0.00

0.24 0.52 0.42 0.29 0.00

0.25 0.60 0.51 0.42 0.29 0.00

0.26 0.67 0.60 0.51 0.41 0.29 0.00

0.27 0.74 0.67 0.59 0.51 0.41 0.29 0.00

0.28 0.80 0.73 0.66 0.59 0.51 0.41 0.29 0.00

0.29 0.86 0.79 0.73 0.66 0.59 0.51 0.41 0.29 0.00

0.30 0.91 0.85 0.79 0.73 0.66 0.59 0.51 0.41 0.29 0.00

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.96

1.01

1.06

1.11

1.15

1.20

1.24

1.28

1.32

1.37

0.91

0.96

1.01

1.06

1.10

1.15

1.19

1.24

1.28

1.32

0.85

0.90

0.95

1.00

1.05

1.10

1.14

1.19

1.23

1.27

0.79

0.85

0.90

0.95

1.00

1.05

1.10

1.14

1.18

1.23

0.73

0.79

0.84

0.90

0.95

1.00

1.05

1.09

1.14

1.18

0.66

0.72

0.78

0.84

0.89

0.95

1.00

1.04

1.09

1.14

0.59

0.66

0.72

0.78

0.84

0.89

0.94

0.99

1.04

1.09

0.50

0.58

0.66

0.72

0.78

0.84

0.89

0.94

0.99

1.04

0.41

0.50

0.58

0.65

0.72

0.78

0.84

0.89

0.94

0.99

0.29

0.41

0.50

0.58

0.65

0.72

0.78

0.84

0.89

0.94

"H = hit rate = /T'different" I Different).
bF = false-alarm rate = /"("different" I Same).
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TABLE A5.4 Values of d' for Same-Different (Differencing Model)
(cont.)

Ha

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

F*

0.21

1.41

1.45

1.49

1.52

1.56

1.60

1.64

1.68

1.71

1.75

1.79

1.82

1.86

1.90

1.93

1.97

2.01

2.05

2.08

2.12

2.16

2.20

2.23

2.27

2.31

2.35

2.39

2.43

2.47

2.51

0.22

1.36

1.40

1.44

1.48

1.52

1.56

1.60

1.63

1.67

1.71

1.75

1.78

1.82

1.86

1.89

1.93

1.97

2.01

2.04

2.08

2.12

2.16

2.19

2.23

2.27

2.31

2.35

2.39

2.43

2.47

0.23

1.32

1.36

1.40

1.44

1.48

1.51

1.55

1.59

1.63

1.67

1.70

1.74

1.78

1.82

1.85

1.89

1.93

1.97

2.00

2.04

2.08

2.12

2.15

2.19

2.23

2.27

2.31

2.35

2.39

2.43

0.24

1.27

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.63

1.66

1.70

1.74

1.78

1.81

1.85

1.89

1.93

1.96

2.00

2.04

2.08

2.12

2.16

2.19

2.23

2.27

2.31

2.35

2.39

0.25

1.22

1.27

1.31

1.35

1.39

1.13

1.47

1.51

1.55

1.59

1.62

1.66

1.70

1.74

1.78

1.81

1.85

1.89

1.93

1.96

2.00

2.04

2.08

2.12

2.16

2.20

2.24

2.28

2.32

2.36

0.26

1.18

1.22

1.27

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.58

1.62

1.66

1.70

1.74

1.78

1.81

1.85

1.89

1.93

1.97

2.00

2.04

2.08

2.12

2.16

2.20

2.24

2.28

2.32

0.27

1.13

1.18

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.58

1.62

1.66

1.70

1.74

1.78

1.81

1.85

1.89

1.93

1.97

2.01

2.05

2.09

2.13

2.17

2.21

2.25

2.29

0.28

1.09

1.13

1.18

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.62

1.66

1.70

1.74

1.78

1.82

1.86

1.89

1.93

1.97

2.01

2.05

2.09

2.13

2.17

2.21

2.25

0.29

1.04

1.09

1.13

1.18

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.63

1.66

1.70

1.74

1.78

1.82

1.86

1.90

1.94

1.98

2.02

2.06

2.10

2.14

2.18

2.22

0.30

0.99

1.04

1.09

1.13

1.18

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.63

1.67

1.71

1.75

1.78

1.82

1.86

1.90

1.94

1.98

2.02

2.06

2.10

2.15

2.19

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4 Values ofd' for Same-Different (Differencing Model)
(cont.)

**
Ha 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

0.71 2.55 2.51 2.47 2.44 2.40 2.36 2.33 2.30 2.26 2.23

0.72 2.59 2.55 2.52 2.48 2.44 2.41 2.37 2.34 2.31 2.27

0.73 2.64 2.60 2.56 2.52 2.49 2.45 2.42 2.38 2.35 2.32

0.74 2.68 2.64 2.60 2.57 2.53 2.49 2.46 2.43 2.39 2.36

0.75 2.72 2.68 2.65 2.61 2.57 2.54 2.50 2.47 2.44 2.41

0.76 2.77 2.73 2.69 2.66 2.62 2.58 2.55 2.52 2.48 2.45

0.77 2.81 2.78 2.74 2.70 2.67 2.63 2.60 2.56 2.53 2.50

0.78 2.86 2.82 2.79 2.75 2.71 2.68 2.64 2.61 2.58 2.55

0.79 2.91 2.87 2.83 2.80 2.76 2.73 2.69 2.66 2.63 2.60

0.80 2.96 2.92 2.88 2.85 2.81 2.78 2.74 2.71 2.68 2.65

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

3.01

3.07

3.12

3.18

3.24

3.30

3.36

3.43

3.51

3.58

3.67

3.76

3.86

3.97

4.10

4.25

4.43

4.68

5.06

2.97

3.03

3.08

3.14

3.20

3.26

3.33

3.40

3.47

3.55

3.63

3.72

3.82

3.93

4.06

4.21

4.39

4.64

5.02

2.94

2.99

3.04

3.10

3.16

3.22

3.29

3.36

3.43

3.51

3.59

3.68

3.78

3.90

4.02

4.17

4.36

4.60

4.99

2.90

2.95

3.01

3.07

3.13

3.19

3.25

3.32

3.39

3.47

3.56

3.65

3.75

3.86

3.99

4.14

4.32

4.57

4.95

2.86

2.92

2.97

3.03

3.09

3.15

3.22

3.29

3.36

3.44

3.52

3.61

3.71

3.82

3.95

4.10

4.29

4.53

4.92

2.83

2.88

2.94

2.00

3.06

3.12

3.18

3.25

3.33

3.40

3.49

3.58

3.68

3.79

3.92

4.07

4.25

4.50

4.88

2.80

2.85

2.90

2.96

3.02

3.08

3.15

3.22

3.29

3.37

3.45

3.55

3.65

3.76

3.89

4.04

4.22

4.46

4.85

2.76

2.82

2.87

2.93

2.99

3.05

3.12

3.19

3.26

3.34

3.42

3.51

3.61

3.73

3.85

4.00

4.19

4.43

4.82

2.73

2.78

2.84

2.90

2.96

3.02

3.09

3.15

3.23

3.31

3.39

3.48

3.58

3.69

3.82

3.97

4.16

4.40

4.79

2.70

2.75

2.81

2.87

2.93

2.99

3.05

3.12

3.20

3.27

3.36

3.45

3.55

3.66

3.79

3.94

4.12

4.37

4.76

"H = hit rate = /^'different" I Different).
*F = false-alarm rate = P("different" I Same).
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TABLE A5.4 Values ofd' for Same-Different (Differencing Model)
(cont.)

pb

Ha 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

0.31 0.00

0.32 0.29 0.00

0.33 0.41 0.29 0.00

0.34 0.50 0.41 0.29 0.00

0.35 0.58 0.50 0.41 0.29 0.00

0.36 0.65 0.58 0.50 0.41 0.29 0.00

0.37 0.72 0.65 0.58 0.50 0.41 0.29 0.00

0.38 0.78 0.72 0.65 0.58 0.50 0.41 0.29 0.00

0.39 0.84 0.78 0.72 0.66 0.59 0.51 0.41 0.29 0.00

0.40 0.89 0.84 0.78 0.72 0.66 0.59 0.51 0.41 0.29 0.00

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.94

0.99

1.04

1.09

1.13

1.18

1.22

1.26

1.31

1.35

1.39

1.43

1.47

1.51

1.55

1.59

1.63

1.67

1.71

1.75

0.89

0.94

0.99

1.04

1.09

1.13

1.18

1.22

1.27

1.31

1.35

1.39

1.43

1.47

1.51

1.56

1.60

1.64

1.68

1.71

0.84

0.89

0.94

0.99

1.04

1.09

1.14

1.18

1.23

1.27

1.31

1.35

1.40

1.44

1.48

1.52

1.56

1.60

1.64

1.68

0.78

0.84

0.89

0.95

1.01

1.04

1.09

1.14

1.18

1.23

1.27

1.31

1.36

1.40

1.44

1.48

1.52

1.56

1.60

1.65

0.72

0.78

0.84

0.90

0.95

1.00

1.05

1.09

1.14

1.19

1.23

1.28

1.32

1.36

1.40

1.45

1.49

1.53

1.57

1.61

0.66

0.72

0.78

0.84

0.90

0.95

1.00

1.05

1.10

1.14

1.19

1.23

1.28

1.32

1.37

1.41

1.45

1.49

1.53

1.58

0.59

0.66

0.73

0.79

0.84

0.90

0.95

1.00

1.05

1.10

1.15

1.19

1.24

1.28

1.33

1.37

1.41

1.46

1.50

1.54

0.51

0.59

0.66

0.73

0.79

0.85

0.90

0.96

1.01

1.06

1.10

1.15

1.20

1.24

1.29

1.33

1.38

1.42

1.46

1.51

0.41

0.51

0.59

0.66

0.73

0.79

0.85

0.91

0.96

1.01

1.06

1.11

1.16

1.20

1.25

1.29

1.34

1.38

1.43

1.47

0.29

0.42

0.51

0.59

0.67

0.73

0.79

0.85

0.91

0.96

1.01

1.06

1.11

1.16

1.21

1.25

1.30

1.34

1.39

1.43

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

pb

0.31

1.79

1.83

1.87

1.91

1.95

1.99

2.03

2.07

2.11

2.15

2.20

2.24

2.28

2.33

2.37

2.42

2.47

2.52

2.56

2.62

2.67

2.72

2.78

2.83

2.89

2.96

3.02

3.09

3.17

3.24

Values of d' for Same-Different (Differencing Model)

0.32

1.75

1.79

1.83

1.88

1.92

1.96

2.00

2.04

2.08

2.12

2.17

2.21

2.25

2.30

2.34

2.39

2.44

2.48

2.53

2.58

2.64

2.69

2.75

2.80

2.86

2.93

2.99

3.06

3.14

3.21

0.33

1.73

1.76

1.80

1.84

1.88

1.92

1.96

2.01

2.05

2.09

2.13

2.18

2.22

2.27

2.31

2.36

2.41

2.45

2.50

2.55

2.61

2.66

2.72

2.77

2.83

2.90

2.96

3.03

3.11

3.18

0.34

1.69

1.73

1.77

1.81

1.85

1.89

1.93

1.97

2.02

2.06

2.10

2.15

2.19

2.23

2.28

2.33

2.37

2.42

2.47

2.52

2.58

2.63

2.69

2.74

2.81

2.87

2.93

3.00

3.08

3.16

0.35

1.65

1.69

1.73

1.78

1.82

1.86

1.90

1.94

1.98

2.03

2.07

2.11

2.16

2.20

2.25

2.30

2.34

2.39

2.44

2.49

2.55

2.60

2.66

2.72

2.78

2.84

2.91

2.98

3.05

3.13

0.36

1.62

1.66

1.70

1.74

1.78

1.83

1.87

1.91

1.95

2.00

2.04

2.08

2.13

2.17

2.22

2.27

2.31

2.36

2.41

2.47

2.52

2.57

2.63

2.69

2.75

2.81

2.88

2.95

3.02

3.10

0.37

1.58

1.62

1.67

1.71

1.75

1.79

1.84

1.88

1.92

1.96

2.01

2.05

2.10

2.14

2.19

2.24

2.28

2.33

2.38

2.44

2.49

2.54

2.60

2.66

2.72

2.78

2.85

2.92

2.99

3.07

0.38

1.55

1.59

1.63

1.68

1.72

1.76

1.80

1.85

1.89

1.93

1.98

2.02

2.07

2.11

2.16

2.21

2.26

2.30

2.36

2.41

2.46

2.51

2.57

2.63

2.69

2.75

2.82

2.89

2.97

3.04

0.39

1.51

1.56

1.60

1.64

1.68

1.73

1.77

1.81

1.86

1.90

1.95

1.99

2.04

2.08

2.13

2.18

2.23

2.28

2.33

2.38

2.43

2.49

2.54

2.60

2.66

2.73

2.79

2.86

2.94

3.02

0.40

1.48

1.52

1.56

1.61

1.65

1.69

1.74

1.78

1.83

1.87

1.92

1.96

2.01

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.46

2.52

2.57

2.64

2.70

2.77

2.84

2.91

2.99
"H = hit rate = P("different" I Different).
*F = false-alarm rate = /'("different" I Same).
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TABLE A5.4 Values ofd' for Same-Different (Differencing Model)
(cont.)

pb
Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0.31

3.33

3.42

3.52

3.63

3.76

3.91

4.09

4.34

4.73

0.32

3.30

3.39

3.49

3.60

3.73

3.88

4.07

4.31

4.70

0.33

3.27

3.36

3.46

3.57

3.70

3.85

4.04

4.28

4.67

0.34

3.24

3.33

3.43

3.54

3.67

3.82

4.01

4.25

4.64

0.35

3.21

3.30

3.40

3.52

3.64

3.80

3.98

4.22

4.61

0.36

3.18

3.28

3.38

3.49

3.62

3.77

3.95

4.20

4.58

0.37

3.16

3.25

3.35

3.46

3.59

3.74

3.93

4.17

4.56

0.38

3.13

3.22

3.32

3.43

3.56

3.71

3.90

4.14

4.53

0.39

3.10

3.19

3.30

3.41

3.54

3.69

3.87

4.12

4.50

0.40

3.08

3.17

3.27

3.38

3.51

3.66

3.85

4.09

4.48

f*

Ha 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50

0.41 0.00

0.42 0.29 0.00

0.43 0.42 0.29 0.00

0.44 0.51 0.42 0.30 0.00

0.45 0.59 0.51 0.42 0.30 0.00

0.46 0.67 0.60 0.52 0.42 0.30 0.00

0.47 0.73 0.67 0.60 0.52 0.42 0.30 0.00

0.48 0.80 0.74 0.67 0.60 0.52 0.43 0.30 0.00

0.49 0.86 0.80 0.74 0.68 0.61 0.52 0.43 0.30 0.00

0.50 0.91 0.86 0.80 0.74 0.68 0.61 0.53 0.43 0.31 0.00

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.97

1.07

1.07

1.12

1.17

1.21

1.26

1.31

1.35

1.40

0.92

0.97

1.02

1.07

1.12

1.17

1.22

1.27

1.31

1.36

0.86

0.92

0.98

1.03

1.08

1.13

1.18

1.23

1.27

1.32

0.81

0.87

0.93

0.98

1.03

1.09

1.14

1.19

1.23

1.28

0.75

0.81

0.87

0.93

0.99

1.04

1.09

1.14

1.19

1.24

0.68

0.75

0.82

0.88

0.94

0.99

1.05

1.10

1.15

1.20

0.61

0.69

0.76

0.82

0.88

0.94

1.00

1.05

1.11

1.16

0.53

0.62

0.69

0.76

0.83

0.88

0.95

1.01

1.06

1.11

0.43

0.53

0.62

0.70

0.77

0.83

0.90

0.95

1.01

1.07

0.31

0.44

0.54

0.62

0.70

0.77

0.84

0.90

0.96

1.02

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.61
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

pb

0.41

1.44

1.49

1.53

1.57

1.62

1.66

1.71

1.75

1.79

1.84

1.88

1.93

1.98

2.02

2.07

2.12

2.17

2.22

2.27

2.32

2.37

2.43

2.49

2.55

2.61

2.67

2.74

2.81

2.96

2.96

Values ofd' for Same-Different (Differencing Model)

0.42

1.40

1.45

1.49

1.54

1.58

1.63

1.67

1.72

1.76

1.81

1.85

1.90

1.95

1.99

2.04

2.09

2.14

2.19

2.24

2.29

2.35

2.40

2.46

2.52

2.58

2.64

2.71

2.78

2.86

2.94

0.43

1.37

1.41

1.46

1.50

1.55

1.59

1.64

1.68

1.73

1.78

1.82

1.87

1.92

1.96

2.01

2.06

2.11

2.16

2.21

2.26

2.32

2.37

2.43

2.49

2.55

2.62

2.69

2.76

2.83

2.91

0.44

1.33

1.38

1.42

1.47

1.51

1.56

1.61

1.65

1.70

1.74

1.79

1.84

1.88

1.93

1.98

2.03

2.08

2.13

2.18

2.24

2.29

2.35

2.40

2.46

2.53

2.59

2.66

2.73

2.80

2.88

0.45

1.29

1.34

1.39

1.43

1.48

1.53

1.57

1.62

1.66

1.71

1.76

1.81

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.21

2.26

2.32

2.38

2.44

2.50

2.56

2.63

2.70

2.78

2.86

0.46

1.25

1.30

1.35

1.39

1.44

1.49

1.54

1.58

1.63

1.68

1.73

1.77

1.82

1.87

1.92

1.97

2.02

2.07

2.13

2.18

2.23

2.29

2.35

2.41

2.47

2.54

2.61

2.68

2.75

2.83

0.47

1.21

1.26

1.31

1.36

1.41

1.45

1.50

1.55

1.60

1.65

1.69

1.74

1.79

1.84

1.89

1.94

1.99

2.04

2.10

2.15

2.21

2.26

2.32

2.38

2.44

2.51

2.58

2.65

2.73

2.81

0.48

1.17

1.22

1.27

1.32

1.37

1.42

1.47

1.51

1.56

1.61

1.66

1.71

1.76

1.81

1.86

1.91

1.96

2.01

2.07

2.12

2.18

2.23

2.29

2.35

2.42

2.48

2.55

2.62

2.70

2.78

0.49

1.12

1.18

1.23

1.28

1.33

1.38

1.43

1.48

1.53

1.58

1.63

1.68

1.73

1.78

1.83

1.88

1.93

1.98

2.04

2.09

2.15

2.21

2.27

2.33

2.39

2.46

2.53

2.60

2.67

2.76

0.50

1.08

1.13

1.18

1.24

1.29

1.34

1.39

1.44

1.49

1.54

1.59

1.64

1.69

1.74

1.80

1.85

1.90

1.95

2.01

2.06

2.12

2.18

2.24

2.30

2.36

2.43

2.50

2.57

2.65

2.73

"H = hit rate = P("different" I Different).
bF = false-alarm rate = /'("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ha

pb

0.41

3.05

3.14

3.24

3.36

3.48

3.64

3.82

4.07

4.45

f*
0.51

Values of d' for Same-Different (Differencing Model)

0.42

3.02

3.12

3.22

3.33

3.46

3.61

3.80

4.04

4.43

0.52

0.43

3.00

3.09

3.19

3.30

3.43

3.58

3.77

4.02

4.40

0.53

0.44

2.97

3.06

3.17

3.28

3.41

3.56

3.75

3.99

4.38

0.54

0.45

2.94

3.04

3.14

3.25

3.38

3.53

3.72

3.97

4.35

0.55

0.46

2.92

3.01

3.11

3.23

3.36

3.51

3.70

3.94

4.33

0.56

0.47

2.89

2.99

3.09

3.20

3.33

3.49

3.67

3.92

4.31

0.57

0.48

2.87

2.96

3.06

3.18

3.31

3.46

3.65

3.90

4.28

0.58

0.49

2.84

2.94

3.04

3.15

3.28

3.44

3.62

3.87

4.26

0.59

0.50

2.82

2.91

3.01

3.13

3.26

3.41

3.60

3.85

4.24

0.60

0.51 0.00

0.52 0.31 0.00

0.53 0.44 0.31 0.00

0.54 0.54 0.44 0.31 0.00

0.55 0.63 0.54 0.45 0.32 0.00

0.56 0.71 0.63 0.55 0.45 0.32 0.00

0.57 0.78 0.71 0.64 0.55 0.45 0.32 0.00

0.58 0.84 0.78 0.72 0.64 0.56 0.46 0.32 0.00

0.59 0.91 0.85 0.79 0.72 0.65 0.56 0.46 0.33 0.00

0.60 0.97 0.92 0.86 0.80 0.73 0.65 0.57 0.47 0.33 0.00

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.69

0.70

1.03

1.08

1.14

1.19

1.25

1.30

1.35

1.45

1.51

0.98

1.04

1.09

1.15

1.20

1.26

1.31

1.42

1.47

0.92

0.99

1.05

1.10

1.16

1.22

1.27

1.38

1.43

0.87

0.93

0.99

1.05

1.11

1.17

1.23

1.34

1.39

0.80

0.87

0.94

1.00

1.06

1.12

1.18

1.30

1.35

0.74

0.81

0.88

0.95

1.01

1.07

1.14

1.25

1.31

0.66

0.74

0.82

0.89

0.96

1.02

1.09

1.21

1.27

0.57

0.67

0.75

0.83

0.90

0.97

1.03

1.16

1.22

0.47

0.58

0.67

0.76

0.84

0.91

0.98

1.11

1.17

0.33

0.47

0.58

0.68

0.77

0.84

0.92

1.06

1.12

"H = hit rate = P("different" I Different).
*F = false-alarm rate = P("different" I Same).
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TABLE A5.4 Values ofd' for Same-Different (Differencing Model)
(cont.)

Ha

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Fb

0.61

0.00

0.34

0.48

0.59

0.69

0.77

0.85

0.93

1.00

1.07

1.14

1.20

1.27

1.33

1.39

1.46

1.52

1.58

1.64

1.71

1.77

1.84

1.90

1.97

2.04

2.11

2.19

2.27

2.35

2.43

0.62

0.00

0.34

0.48

0.60

0.70

0.78

0.86

0.94

1.01

1.08

1.15

1.22

1.28

1.35

1.41

1.48

1.54

1.60

1.67

1.73

1.80

1.87

1.94

2.01

2.08

2.16

2.24

2.32

2.41

0.63

0.00

0.34

0.49

0.60

0.70

0.79

0.87

0.95

1.03

1.10

1.17

1.23

1.30

1.37

1.43

1.50

1.56

1.63

1.70

1.76

1.83

1.90

1.97

2.05

2.13

2.21

2.29

2.38

0.64

0.00

0.35

0.50

0.61

0.71

0.80

0.89

0.96

1.04

1.11

1.18

1.25

1.32

1.39

1.46

1.52

1.59

1.66

1.73

1.80

1.87

1.94

2.02

2.09

2.17

2.26

2.35

0.65

0.00

0.35

0.50

0.62

0.72

0.81

0.90

0.98

1.05

1.13

1.20

1.27

1.34

1.41

1.48

1.55

1.62

1.69

1.76

1.83

1.90

1.98

2.06

2.14

2.23

2.32

0.66

0.00

0.36

0.51

0.63

0.73

0.82

0.91

0.99

1.07

1.15

1.22

1.29

1.36

1.43

1.50

1.58

1.65

1.72

1.79

1.87

1.95

2.02

2.11

2.19

2.28

0.67

0.00

0.36

0.52

0.64

0.74

0.84

0.92

1.01

1.09

1.16

1.24

1.31

1.39

1.46

1.53

1.60

1.68

1.75

1.83

1.91

1.99

2.07

2.16

2.25

0.68

0.00

0.37

0.52

0.65

0.75

0.85

0.94

1.02

1.10

1.18

1.26

1.34

1.41

1.49

1.56

1.64

1.71

1.79

1.87

1.95

2.04

2.13

2.22

0.69

0.00

0.37

0.53

0.66

0.76

0.86

0.95

1.04

1.12

1.20

1.28

1.36

1.44

1.51

1.59

1.67

1.75

1.83

1.91

2.00

2.09

2.18

0.70

0.00

0.38

0.54

0.67

0.78

0.88

0.97

1.06

1.14

1.22

1.31

1.39

1.47

1.55

1.63

1.71

1.79

1.87

1.96

2.05

2.15

"H = hit rate = PO'different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(com.)

Ha

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

F*

0.51

1.56

1.61

1.66

1.71

1.76

1.82

1.87

1.92

1.98

2.03

2.09

2.15

2.21

2.27

2.34

2.40

2.47

2.55

2.62

2.70

2.79

2.89

2.99

3.11

3.24

3.39

3.58

3.83

4.21

Values ofd' for Same-Different (Differencing Model)

0.52

1.52

1.57

1.62

1.68

1.73

1.78

1.84

1.89

1.95

2.00

2.06

2.12

2.18

2.24

2.31

2.37

2.45

2.52

2.60

2.68

2.77

2.86

2.97

3.08

3.21

3.37

3.55

3.80

4.19

0.53

1.48

1.54

1.59

1.64

1.70

1.75

1.80

1.86

1.92

1.97

2.03

2.09

2.15

2.21

2.28

2.35

2.42

2.49

2.57

2.65

2.74

2.84

2.94

3.06

3.19

3.34

3.53

3.78

4.17

0.54

1.45

1.50

1.55

1.61

1.66

1.72

1.71

1.83

1.88

1.94

2.00

2.06

2.12

2.19

2.25

2.32

2.39

2.46

2.54

2.63

2.71

2.81

2.92

3.03

3.16

3.32

3.51

3.76

4.15

0.55

1.41

1.46

1.52

1.57

1.63

1.68

1.74

1.80

1.85

1.91

1.97

2.03

2.09

2.16

2.22

2.29

2.36

2.44

2.52

2.60

2.69

2.78

2.89

3.01

3.14

3.29

3.48

3.73

4.12

0.56

1.37

1.42

1.48

1.54

1.59

1.65

1.70

1.76

1.82

1.88

1.94

2.00

2.06

2.13

2.19

2.26

2.33

2.41

2.49

2.57

2.66

2.76

2.86

2.98

3.11

3.27

3.46

3.71

4.10

0.57

1.32

1.38

1.44

1.50

1.55

1.61

1.67

1.73

1.79

1.85

1.91

1.97

2.03

2.10

2.16

2.23

2.31

2.38

2.46

2.55

2.64

2.73

2.84

2.96

3.09

3.25

3.44

3.69

4.08

0.58

1.28

1.34

1.40

1.46

1.52

1.57

1.63

1.69

1.75

1.81

1.87

1.94

2.00

2.07

2.13

2.20

2.28

2.35

2.43

2.52

2.61

2.71

2.81

2.93

3.07

3.22

3.41

3.66

4.06

0.59

1.24

1.30

1.36

1.42

1.48

1.54

1.60

1.66

1.72

1.78

1.84

1.90

1.97

2.04

2.10

2.17

2.25

2.33

2.41

2.49

2.58

2.68

2.79

2.91

3.04

3.20

3.39

3.64

4.03

0.60

1.19

1.25

1.31

1.37

1.44

1.50

1.56

1.62

1.68

1.74

1.81

1.87

1.94

2.00

2.07

2.14

2.22

2.30

2.38

2.46

2.56

2.65

2.76

2.88

3.02

3.17

3.36

3.62

4.01

"H= hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ha

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

F*

0.61

2.53

2.63

2.73

2.85

2.99

3.15

3.34

3.59

3.99

Fb

0.71

0.00

0.38

0.55

0.68

0.79

0.89

0.99

1.08

1.16

1.25

1.33

1.41

1.50

1.58

1.66

1.75

1.83

1.92

2.01

2.11

Values of d' for Same-Different (Differencing Model)

0.62

2.50

2.60

2.71

2.83

2.96

3.12

3.32

3.57

3.97

0.72

0.00

0.39

0.56

0.69

0.80

0.91

1.00

1.10

1.19

1.27

1.36

1.44

1.53

1.61

1.70

1.79

1.88

1.97

2.07

0.63

2.47

2.57

2.68

2.80

2.94

3.10

3.29

3.55

3.94

0.73

0.00

0.40

0.57

0.70

0.82

0.92

1.02

1.12

1.21

1.30

1.39

1.48

1.56

1.65

1.74

1.84

1.93

2.03

0.64

2.44

2.54

2.65

2.77

2.91

3.07

3.27

3.52

3.92

0.74

0.00

0.40

0.58

0.71

0.83

0.94

1.04

1.14

1.24

1.33

1.42

1.51

1.60

1.70

1.79

1.89

1.99

0.65

2.41

2.51

2.62

2.75

2.89

3.05

3.24

3.50

3.90

0.75

0.00

0.41

0.59

0.73

0.85

0.96

1.07

1.17

1.26

1.36

1.45

1.55

1.64

1.74

1.84

1.95

0.66

2.38

2.48

2.60

2.72

2.86

3.02

3.22

3.47

3.87

0.76

0.00

0.42

0.60

0.74

0.87

0.98

1.09

1.19

1.29

1.39

1.49

1.59

1.69

1.79

1.90

0.67

2.35

2.45

2.57

2.69

2.83

2.99

3.19

3.45

3.85

0.77

0.00

0.43

0.61

0.76

0.89

1.00

1.12

1.22

1.33

1.43

1.53

1.64

1.74

1.85

0.68

2.32

2.42

2.54

2.66

2.80

2.97

3.16

3.42

3.83

0.78

0.00

0.44

0.63

0.78

0.91

1.03

1.14

1.25

1.36

1.47

1.58

1.69

1.80

0.69

2.28

2.39

2.50

2.63

2.77

2.94

3.14

3.40

3.80

0.79

0.00

0.45

0.64

0.79

0.93

1.06

1.17

1.29

1.40

1.51

1.63

1.74

0.70

2.25

2.36

2.47

2.60

2.74

2.91

3.11

3.37

3.78

0.80

0.00

0.46

0.66

0.81

0.95

1.08

1.21

1.33

1.44

1.56

1.68

"H = hit rate = P("different" I Different).
bF = false-alarm rate = PC'different" I Same).
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TABLE A5.4
(cont.)

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ha

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Fb

0.71

2.21

2.32

2.44

2.57

2.71

2.88

3.08

3.35

3.75

F»

0.81

0.00

0.47

0.67

0.84

0.98

1.12

1.24

1.37

1.49

1.62

Values ofd' for Same-Different (Differencing Model)

0.72

2.18

2.29

2.41

2.54

2.68

2.85

3.05

3.32

3.73

0.82

0.00

0.48

0.69

0.86

1.01

1.15

1.28

1.42

1.55

0.73

2.14

2.25

2.37

2.50

2.65

2.82

3.02

3.29

3.70

0.83

0.00

0.50

0.71

0.89

1.04

1.19

1.33

1.47

0.74

2.10

2.21

2.33

2.47

2.62

2.79

2.99

3.26

3.68

0.84

0.00

0.51

0.74

0.92

1.08

1.23

1.38

0.75

2.06

2.17

2.29

2.43

2.58

2.75

2.96

3.23

3.65

0.85

0.00

0.53

0.75

0.95

1.12

1.28

0.76

2.01

2.13

2.25

2.39

2.54

2.72

2.93

3.20

3.62

0.86

0.00

0.55

0.79

0.99

1.17

0.77

1.97

2.08

2.21

2.35

2.51

2.68

2.89

3.17

3.59

0.87

0.00

0.57

0.82

1.03

0.78

1.92

2.04

2.17

2.31

2.47

2.65

2.86

3.14

3.56

0.88

0.00

0.59

0.86

0.79

1.86

1.99

2.12

2.27

2.42

2.61

2.82

3.10

3.53

0.89

0.00

0.62

0.80

1.81

1.94

2.07

2.22

2.38

2.56

2.78

3.07

3.50

0.90

0.00

"H = hit rate = P("different" I Different).
bF = false-alarm rate = P("different" I Same).
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TABLE A5.4
(cont.)

Ha

0.91
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Ha

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

f*
0.81

1.75

1.88

2.02

2.17

2.33

2.52

2.74

3.03

3.46

pb

0.91

0.00

0.69

1.00

1.28

1.54

1.80

2.10

2.46

2.97

Values ofd' for Same-Different (Differencing Model)

0.82

1.68

1.82

1.96

2.11

2.28

2.47

2.70

2.99

3.43

0.92

0.00

0.73

1.07

1.37

1.67

1.98

2.36

2.89

0.83

1.61

1.75

1.90

2.06

2.23

2.42

2.65

2.95

3.39

0.93

0.00

0.79

1.16

1.50

1.84

2.24

2.79

0.84

1.53

1.68

1.83

1.99

2.17

2.37

2.61

2.90

3.35

0.94

0.00

0.85

1.27

1.67

2.10

2.68

0.85

1.44

1.60

1.76

1.93

2.11

2.31

2.55

2.86

3.31

0.95

0.00

0.95

1.43

1.92

2.54

0.86

1.34

1.50

1.67

1.85

2.04

2.25

2.50

2.80

3.27

0.96

0.00

1.07

1.67

2.36

0.87

1.22

1.40

1.58

1.77

1.96

2.18

2.43

2.75

3.22

0.97

0.00

1.27

2.10

0.88

1.08

1.28

1.47

1.67

1.88

2.10

2.36

2.69

3.16

0.98

0.00

1.67

0.89

0.90

1.13

1.35

1.56

1.78

2.02

2.29

2.62

3.11

0.99

0.00

0.90

0.65

0.95

1.20

1.43

1.67

1.92

2.20

2.54

3.04

"H = hit rate = P("different" I Different).
*F = false-alarm rate = P("different" I Same).

Source: Adapted from Kaplan etal. (1978) by permission of The Psychonomic Society, Inc.
Hit and false-alarm rates, defined here in terms of the "different" response, were defined by Kaplan et al.
in terms of the "same" response. In addition, some entries are slightly different because of an improved
algorithm.
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TABLE A5.5 Values of d' for Oddity, Gaussian Model
(M = Number of Intervals).

M

p(c} 3 4 5 6

001

0 f>9

nm

7 8 9 10 11 12 16 24 32

0.04 - - - - - - - - - - - - -

0.05 - - - - - - - - - - - 0.32 0.51

0.06 - - - - - - - - - - - 0.46 0.62

0.07 - - - - - - - - - - 0.27 0.58 0.72

0.08 _ _ _ - _ _ _ _ - - 0.41 0.67 0.80

0.09 - - - - - - - - - 0.24 0.51 0.75 0.88

0 . 1 0 - - - - - - - 0.00 0.28 0.38 0.60 0.82 0.95

0.11 - - - - - - - 0.29 0.40 0.48 0.68 0.88 1.01

0 . 1 2 - - - - - - 0.27 0.40 0.50 0.56 0.74 0.94 1.07

0.13 - - - - - 0.20 0.39 0.49 0.57 0.63 0.81 1.00 1.12

0.14 - - - - - 0.34 0.48 0.57 0.64 0.70 0.86 1.05 1.17

0.15 - 0.23 0.44 0.56 0.64 0.71 0.76 0.92 1.10 1.22

0.16 - 0.36 0.52 0.63 0.70 0.76 0.82 0.97 1.15 1.27

0.17 - - - 0.17 0.46 0.59 0.69 0.76 0.82 0.87 1.02 1.20 1.31

0.18 - - - 0.32 0.53 0.66 0.75 0.81 0.87 0.92 1.06 1.24 1.35

0.19 - - - 0.42 0.60 0.72 0.80 0.87 0.92 0.96 1.11 1.28 1.40

0.20 - - 0.00 0.51 0.67 0.77 0.85 0.91 0.97 1.01 1.15 1.32 1.44

0.21 - - 0.28 0.58 0.72 0.82 0.90 0.96 1.01 1.05 1.19 1.36 1.47

0.22 - - 0.40 0.64 0.78 0.87 0.94 1.00 1.05 1.10 1.23 1.40 1.51

0.23 - - 0.49 0.70 0.83 0.92 0.99 1.04 1.09 1.14 1.27 1.44 1.55

0.24 - - 0.56 0.76 0.88 0.96 1.03 1.09 1.13 1.18 1.31 1.47 1.59

0.25 - 0.00 0.63 0.81 0.92 1.01 1.07 1.13 1.17 1.21 1.34 1.51 1.62

0.26 - 0.29 0.69 0.86 0.97 1.05 1.11 1.16 1.21 1.25 1.38 1.54 1.65

0.27 - 0.42 0.75 0.91 1.01 1.09 1.15 1.20 1.25 1.29 1.41 1.58 1.69

0.28 - 0.51 0.80 0.95 1.05 1.13 1.19 1.24 1.28 1.32 1.45 1.61 1.72

0.29 - 0.59 0.86 1.00 1.09 1.17 1.23 1.28 1.32 1.36 1.48 1.64 1.75

0.30 - 0.66 0.90 1.04 1.13 1.20 1.26 1.31 1.36 1.39 1.52 1.68 1.79
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TABLE A5.5 Values of d; for Oddity, Gaussian Model
(M = Number of Intervals) (cont.)

M

p(c) 3 4 5 6 7 8 9 10 11 12 16 24 32

0.61 2.03 2.04 2.09 2.13 2.17 2.22 2.25 2.29 2.32 2.35 2.44 2.58 2.68

0.62 2.08 2.08 2.12 2.17 2.21 2.25 2.29 2.32 2.35 2.38 2.47 2.61 2.71

0.63 2.13 2.12 2.16 2.20 2.24 2.28 2.32 2.35 2.38 2.41 2.50 2.64 2.74

0.64 2.18 2.17 2.20 2.24 2.28 2.32 2.35 2.38 2.41 2.44 2.54 2.67 2.77

0.65 2.23 2.21 2.24 2.27 2.31 2.35 2.38 2.42 2.44 2.47 2.57 2.70 2.80

0.66 2.29 2.25 2.27 2.31 2.35 2.38 2.42 2.45 2.48 2.51 2.60 2.73 2.83

0.67 2.34 2.29 2.31 2.35 2.38 2.42 2.45 2.48 2.51 2.54 2.63 2.77 2.86

0.68 2.39 2.34 2.35 2.38 2.42 2.45 2.48 2.52 2.54 2.57 2.66 2.80 2.89

0.69 2.45 2.38 2.39 2.42 2.45 2.49 2.52 2.55 2.58 2.61 2.70 2.83 2.92

0.70 2.50 2.42 2.43 2.46 2.49 2.52 2.55 2.59 2.61 2.64 2.73 2.86 2.96

0.71 2.56 2.47 2.47 2.50 2.53 2.56 2.59 2.62 2.65 2.67 2.76 2.89 2.99

0.72 2.62 2.52 2.51 2.54 2.57 2.60 2.63 2.66 2.68 2.71 2.80 2.93 3.02

0.73 2.68 2.56 2.56 2.58 2.61 2.64 2.67 2.69 2.72 2.74 2.83 2.96 3.05

0.74 2.74 2.61 2.60 2.62 2.65 2.67 2.70 2.73 2.76 2.78 2.87 3.00 3.09

0.75 2.80 2.66 2.64 2.66 2.69 2.71 2.74 2.77 2.79 2.82 2.90 3.03 3.12

0.76 2.86 2.71 2.69 2.70 2.73 2.75 2.78 2.81 2.83 2.86 2.94 3.07 3.16

0.77 2.92 2.76 2.74 2.75 2.77 2.80 2.82 2.85 2.87 2.90 2.98 3.11 3.20

0.78 2.99 2.81 2.78 2.79 2.81 2.84 2.86 2.89 2.91 2.94 3.02 3.14 3.23

0.79 3.06 2.87 2.83 2.84 2.86 2.88 2.91 2.93 2.96 2.98 3.06 3.18 3.27

0.80 3.13 2.92 2.88 2.89 2.90 2.93 2.95 2.97 3.00 3.02 3.10 3.22 3.31

0.81 3.20 2.98 2.94 2.94 2.95 2.97 3.00 3.02 3.04 3.06 3.14 3.26 3.35

0.82 3.28 3.04 2.99 2.99 3.00 3.02 3.04 3.06 3.09 3.11 3.19 3.31 3.40

0.83 3.35 3.10 3.05 3.04 3.05 3.07 3.09 3.11 3.13 3.16 3.23 3.35 3.44

0.84 3.44 3.17 3.11 3.10 3.10 3.12 3.14 3.16 3.18 3.21 3.28 3.40 3.49

0.85 3.52 3.24 3.17 3.15 3.16 3.17 3.19 3.22 3.23 3.26 3.33 3.45 3.53

0.86 3.61 3.31 3.23 3.21 3.22 3.23 3.25 3.27 3.29 3.31 3.38 3.50 3.58

0.87 3.71 3.38 3.30 3.27 3.28 3.29 3.31 3.33 3.35 3.37 3.44 3.55 3.64

0.88 3.81 3.46 3.37 3.34 3.34 3.36 3.37 3.39 3.41 3.42 3.49 3.61 3.69

0.89 3.91 3.55 3.44 3.41 3.41 3.42 3.44 3.45 3.47 3.49 3.55 3.67 3.75

0.90 4.03 3.64 3.52 3.49 3.48 3.49 3.51 3.52 3.54 3.55 3.62 3.73 3.81
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TABLE A5.5 Values of d' for Oddity, Gaussian Model
(M = Number of Intervals) (cont.)

M

p(c) 3 4 5 6 7 8 9 10 11 12 16 24 32

0.31 - 0.72 0.95 1.08 1.17 1.24 1.30 1.35 1.39 1.43 1.55 1.71 1.82

0.32 - 0.79 1.00 1.12 1.21 1.28 1.33 1.38 1.42 1.46 1.58 1.74 1.85

0.33 0.00 0.84 1.04 1.16 1.24 1.31 1.37 1.42 1.46 1.50 1.61 1.77 1.88

0.34 0.27 0.90 1.09 1.20 1.28 1.35 1.40 1.45 1.49 1.53 1.64 1.80 1.91

0.35 0.43 0.95 1.13 1.24 1.32 1.38 1.44 1.48 1.52 1.56 1.68 1.83 1.94

0.36 0.55 1.00 1.17 1.27 1.35 1.41 1.47 1.51 1.55 1.59 1.71 1.86 1.97

0.37 0.64 1.05 1.21 1.31 1.39 1.45 1.50 1.55 1.59 1.62 1.74 1.89 2.00

0.38 0.73 1.10 1.25 1.35 1.42 1.48 1.53 1.58 1.62 1.65 1.77 1.92 2.03

0.39 0.81 1.14 1.29 1.38 1.46 1.51 1.57 1.61 1.65 1.68 1.80 1.95 2.06

0.40 0.88 1.19 1.32 1.42 1.49 1.55 1.60 1.64 1.68 1.72 1.83 1.98 2.09

0.41 0.95 1.23 1.36 1.45 1.52 1.58 1.63 1.67 1.71 1.75 1.86 2.01 2.12

0.42 1.01 1.27 1.40 1.49 1.56 1.61 1.66 1.70 1.74 1.78 1.89 2.04 2.14

0.43 1.07 1.32 1.44 1.52 1.59 1.64 1.69 1.74 1.77 1.81 1.92 2.07 2.17

0.44 1.13 1.36 1.47 1.56 1.62 1.68 1.72 1.77 1.80 1.84 1.95 2.10 2.20

0.45 1.19 1.40 1.51 1.59 1.65 1.71 1.75 1.80 1.83 1.87 1.98 2.13 2.23

0.46 1.25 1.44 1.55 1.62 1.69 1.74 1.79 1.83 1.86 1.90 2.00 2.15 2.26

0.47 1.31 1.48 1.58 1.66 1.72 1.77 1.82 1.86 1.89 1.93 2.03 2.18 2.28

0.48 1.36 1.52 1.62 1.69 1.75 1.80 1.85 1.89 1.92 1.96 2.06 2.21 2.31

0.49 1.41 1.56 1.65 1.73 1.78 1.83 1.88 1.92 1.95 1.99 2.09 2.24 2.34

0.50 1.47 1.60 1.69 1.76 1.82 1.86 1.91 1.95 1.98 2.02 2.12 2.27 2.37

0.51 1.52 1.64 1.73 1.79 1.85 1.90 1.94 1.98 2.01 2.04 2.15 2.29 2.40

0.52 1.57 1.68 1.76 1.83 1.88 1.93 1.97 2.01 2.04 2.07 2.18 2.32 2.42

0.53 1.62 1.72 1.80 1.86 1.91 1.96 2.00 2.04 2.07 2.10 2.21 2.35 2.45

0.54 1.67 1.76 1.83 1.89 1.95 1.99 2.03 2.07 2.10 2.13 2.24 2.38 2.48

0.55 1.72 1.80 1.87 1.93 1.98 2.02 2.06 2.10 2.13 2.16 2.27 2.41 2.51

0.56 1.77 1.84 1.90 1.96 2.01 2.05 2.09 2.13 2.16 2.19 2.30 2.44 2.54

0.57 1.82 1.88 1.94 1.99 2.04 2.09 2.12 2.16 2.19 2.22 2.32 2.47 2.56

0.58 1.87 1.92 1.98 2.03 2.07 2.12 2.16 2.19 2.22 2.26 2.35 2.50 2.59

0.59 1.92 1.96 2.01 2.06 2.11 2.15 2.19 2.22 2.26 2.29 2.38 2.52 2.62

0.60 1.98 2.00 2.05 2.10 2.14 2.18 2.22 2.25 2.29 2.32 2.41 2.55 2.65
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TABLE A5.5 Values of d' for Oddity, Gaussian Model
(M - Number of Intervals) (cont.)

M

p(c) 3 4 5 6 7 8 9 10 11 12 16 24 32

0.91 4.15 3.73 3.61 3.57 3.56 3.57 3.58 3.59 3.61 3.63 3.69 3.80 3.88

0.92 4.29 3.84 3.71 3.66 3.65 3.65 3.66 3.67 3.69 3.71 3.77 3.87 3.95

0.93 4.44 3.96 3.81 3.76 3.74 3.74 3.75 3.76 3.78 3.79 3.85 3.95 4.03

0.94 4.61 4.09 3.93 3.87 3.85 3.85 3.85 3.86 3.88 3.89 3.95 4.04 4.12

0.95 4.80 4.24 4.07 4.00 3.97 3.97 3.97 3.98 3.99 4.00 4.05 4.15 4.23

0.96 5.03 4.42 4.23 4.15 4.12 4.11 4.11 4.11 4.12 4.13 4.18 4.27 4.35

0.97 5.32 4.64 4.43 4.34 4.30 4.28 4.27 4.28 4.29 4.29 4.34 4.43 4.50

0.98 5.70 4.94 4.70 4.59 4.54 4.51 4.50 4.50 4.50 4.51 4.55 4.63 4.70

0.99 6.31 5.42 5.12 4.99 4.92 4.88 4.86 4.85 4.85 4.86 4.88 4.95 5.02

Source: Reprinted from Craven (1992) by permission of the author and the Psychonomic Society.
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TABLE A5.6 Values of p(c) given d' for Oddity (Differencing and
Independent-Observation Model, Normal), and for mAFC.

m = 3

Oddity

d'

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

AFC

0.333

0.362

0.391

0.422

0.452

0.483

0.512

0.543

0.574

0.604

0.633

0.663

0.690

0.716

0.741

0.765

0.788

0.810

0.831

0.848

0.865

0.881

0.896

0.909

0.921

0.931

0.941

0.949

0.957

0.963

0.968

£2=0

0.333

0.334

0.337

0.342

0.348

0.356

0.365

0.376

0.389

0.403

0.418

0.434

0.452

0.468

0.488

0.507

0.525

0.546

0.565

0.585

0.605

0.624

0.645

0.663

0.682

0.700

0.718

0.734

0.751

0.766

0.783

£2 = 1

0.333

0.335

0.338

0.345

0.353

0.364

0.376

0.392

0.409

0.427

0.446

0.468

0.491

0.513

0.536

0.560

0.584

0.608

0.631

0.654

0.677

0.699

0.722

0.742

0.763

0.781

0.799

0.816

0.832

0.847

0.862

AFC

0.250

0.277

0.304

0.333

0.362

0.393

0.424

0.456

0.487

0.520

0.552

0.583

0.615

0.644

0.673

0.702

0.729

0.755

0.779

0.802

0.823

0.842

0.860

0.877

0.893

0.907

0.919

0.930

0.941

0.949

0.957

m = 4

Oddity

£2=0

0.250

0.252

0.255

0.261

0.268

0.279

0.292

0.306

0.321

0.339

0.360

0.381

0.404

0.426

0.449

0.475

0.499

0.524

0.549

0.575

0.600

0.624

0.649

0.672

0.695

0.716

0.738

0.758

0.778

0.796

0.813

e2 = l

0.250

0.252

0.257

0.267

0.279

0.295

0.313

0.334

0.358

0.385

0.413

0.443

0.474

0.506

0.538

0.571

0.603

0.635

0.665

0.696

0.725

0.751

0.777

0.801

0.824

0.845

0.864

0.882

0.898

0.911

0.924

AFC

0.200

0.224

0.249

0.278

0.305

0.334

0.366

0.397

0.428

0.461

0.495

0.528

0.559

0.591

0.624

0.653

0.683

0.711

0.738

0.764

0.788

0.810

0.831

0.851

0.869

0.885

0.900

0.914

0.925

0.936

0.945

m = 5

Oddity

E2=0

0.200

0.201

0.205

0.211

0.221

0.232

0.246

0.261

0.279

0.299

0.321

0.344

0.368

0.394

0.420

0.447

0.475

0.503

0.531

0.559

0.586

0.614

0.640

0.667

0.692

0.716

0.740

0.762

0.783

0.803

0.821

£2 = 1

0.200

0.202

0.208

0.219

0.234

0.252

0.275

0.299

0.327

0.357

0.391

0.426

0.460

0.496

0.533

0.568

0.604

0.639

0.673

0.705

0.735

0.764

0.791

0.816

0.839

0.859

0.878

0.895

0.910

0.924

0.935
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TABLE A5.6 Values of p(c) given d' for Oddity (Differencing and
Independent-Observation Model, Normal), and for mAFC (cont.)

m = 3 m = 4 m = 5

Oddity

d'

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

AFC

0.974

0.978

0.981

0.985

0.987

0.990

0.991

0.993

0.995

0.995

0.996

0.997

0.998

0.998

0.999

0.999

0.999

0.999

0.999

1.000

£2=0

0.795

0.810

0.823

0.836

0.848

0.858

0.870

0.879

0.889

0.898

0.906

0.914

0.921

0.927

0.934

0.939

0.946

0.950

0.955

0.959

£2 = 1

0.874

0.886

0.897

0.908

0.917

0.926

0.934

0.941

0.947

0.953

0.959

0.964

0.968

0.972

0.976

0.978

0.981

0.983

0.986

0.987

AFC

0.963

0.969

0.974

0.978

0.982

0.985

0.988

0.990

0.992

0.993

0.995

0.996

0.997

0.997

0.998

0.998

0.999

0.999

0.999

0.999

Oddity

£2 = 0

0.829

0.845

0.859

0.873

0.885

0.896

0.907

0.916

0.925

0.933

0.941

0.948

0.953

0.959

0.964

0.968

0.972

0.976

0.979

0.981

£2- l

0.935

0.945

0.953

0.961

0.967

0.973

0.978

0.982

0.985

0.988

0.990

0.992

0.994

0.995

0.996

0.997

0.997

0.998

0.998

0.999

AFC

0.953

0.961

0.967

0.972

0.977

0.981

0.984

0.987

0.990

0.992

0.993

0.995

0.996

0.996

0.997

0.998

0.998

0.999

0.999

0.999

Oddity

£2=0

0.839

0.855

0.870

0.884

0.897

0.908

0.919

0.928

0.938

0.945

0.952

0.958

0.964

0.969

0.973

0.977

0.980

0.983

0.986

0.988

e2 = 7

0.945

0.954

0.962

0.969

0.974

0.979

0.983

0.985

0.989

0.991

0.993

0.994

0.995

0.996

0.997

0.998

0.998

0.999

0.999

0.999

Note: e 2 = 0 is the differencing model, e 2 = 1 is independent-observations. Table from Versfeld et al.
(1996) with permission of the authors and The Psychonomic Society.



TABLE A5.7 Values of d' for m-Interval Forced Choice or Identification.

P\» 10 11 12 16 24 32 256 1000

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

-3.29

-2.90

-2.66

-2.48

-2.33

-2.20

-2.09

-1.99

-1.90

-1.81

-1.73

-1.66

-1.59

-1.53

-1.47

-1.41

-1.35

-1.29

-1.24

-1.19

-2.42

-2.08

-1.86

-1.69

-1.56

-1.44

-1.34

-1.25

-1.17

-1.09

-1.02

-0.96

-0.89

-0.83

-0.78

-0.72

-0.67

-0.62

-0.57

-0.53

-2.02

-1.69

-1.48

-1.32

-1.19

-1.08

-0.98

-0.90

-0.82

-0.75

-0.68

-0.62

-0.56

-0.50

-0.45

-0.39

-0.35

-0.30

-0.25

-0.21

-1.77

-1.45

-1.24

-1.09

-0.96

-0.85

-0.76

-0.68

-0.60

-0.53

-0.46

-0.40

-0.34

-0.29

-0.23

-0.18

-0.13

-0.09

-0.04

0.00

-1.59

-1.28

-1.07

-0.92

-0.80

-0.69

-0.60

-0.52

-0.44

-0.37

-0.31

-0.25

-0.19

-0.13

-0.08

-0.03

0.02

0.06

0.11

0.15

-1.46

-1.14

-0.94

-0.79

-0.67

-0.57

-0.48

-0.39

-0.32

-0.25

-0.19

-0.13

-0.07

-0.01

0.04

0.09

0.13

0.18

0.22

0.26

-1.35

-1.04

-0.84

-0.69

-0.57

-0.47

-0.38

-0.29

-0.22

-0.15

-0.09

-0.03

0.03

0.08

0.13

0.18

0.23

0.27

0.32

0.36

-1.26

-0.95

-0.75

-0.61

-0.49

-0.38

-0.29

-0.21

-0.14

-0.07

-0.01

0.05

0.11

0.16

0.21

0.26

0.31

0.35

0.39

0.44

-1.18

-0.88

-0.68

-0.53

-0.41

-0.31

-0.22

-0.14

-0.07

0.00

0.06

0.12

0.18

0.23

0.28

0.33

0.37

0.42

0.46

0.50

-1.12

-0.81

-0.62

-0.47

-0.35

-0.25

-0.16

-0.08

-0.01

0.06

0.12

0.18

0.24

0.29

0.34

0.39

0.43

0.48

0.52

0.56

-1.06

-0.75

-0.56

-0.41

-0.29

-0.19

-0.11

-0.03

0.05

0.11

0.18

0.24

0.29

0.34

0.39

0.44

0.49

0.53

0.57

0.61

-0.88

-0.58

-0.39

-0.24

-0.12

-0.02

0.07

0.14

0.22

0.28

0.34

0.40

0.46

0.51

0.56

0.60

0.65

0.69

0.73

0.77

-0.65

-0.35

-0.16

-0.02

0.10

0.19

0.28

0.36

0.43

0.50

0.56

0.61

0.67

0.72

0.77

0.81

0.86

0.90

0.94

0.98

-0.50

-0.21

-0.02

0.12

0.24

0.34

0.42

0.50

0.57

0.63

0.69

0.75

0.80

0.85

0.90

0.95

0.99

1.04

1.08

1.12

0.35

0.64

0.82

0.96

1.07

1.16

1.25

1.32

1.39

1.45

1.51

1.57

1.62

1.67

1.71

1.76

1.80

1.84

1.88

1.92

0.80

1.08

1.26

1.40

1.51

1.60

1.68

1.76

1.82

1.89

1.94

2.00

2.05

2.10

2.14

2.19

2.23

2.27

2.31

2.35



TABLE A5.7 Values ofd' for m-Interval Forced Choice or Identification (cont.)

p\m

.21

.22

.23

.24

.25

.26

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

.40

2

-1.14

-1.09

-1.04

-1.00

-0.95

-0.91

-0.87

-0.82

-0.78

-0.74

-0.70

-0.66

-0.62

-0.58

-0.55

-0.51

-0.47

-0.43

-0.40

-0.36

3
-0.48

-0.44

-0.40

-0.35

-0.31

-0.27

-0.23

-0.20

-0.16

-0.12

-0.08

-0.05

-0.01

0.02

0.06

0.09

0.13

0.16

0.20

0.23

4

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.11

0.15

0.19

0.22

0.26

0.29

0.32

0.36

0.39

0.42

0.46

0.49

0.52

5

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.31

0.35

0.38

0.42

0.45

0.48

0.52

0.55

0.58

0.62

0.65

0.68

0.71

6

0.19

0.23

0.27

0.31

0.35

0.38

0.42

0.46

0.49

0.53

0.56

0.59

0.63

0.66

0.69

0.72

0.76

0.79

0.82

0.85

7
0.31

0.35

0.38

0.42

0.46

0.50

0.53

0.57

0.60

0.64

0.67

0.70

0.74

0.77

0.80

0.83

0.86

0.89

0.93

0.96

8
0.40

0.44

0.48

0.52

0.55

0.59

0.62

0.66

0.69

0.73

0.76

0.79

0.83

0.86

0.89

0.92

0.95

0.98

1.01

1.04

9

0.48

0.52

0.56

0.59

0.63

0.66

0.70

0.74

0.77

0.80

0.84

0.87

0.90

0.93

0.96

1.00

1.03

1.06

1.09

1.12

10
0.54

0.58

0.62

0.66

0.70

0.73

0.77

0.80

0.83

0.87

0.90

0.93

0.97

1.00

1.03

1.06

1.09

1.12

1.15

1.18

11

0.60

0.64

0.68

0.72

0.75

0.79

0.82

0.86

0.89

0.92

0.96

0.99

1.02

1.05

1.08

1.12

1.15

1.18

1.21

1.24

12

0.65

0.69

0.73

0.77

0.80

0.84

0.87

0.91

0.94

0.97

1.01

1.04

1.07

1.10

1.13

1.16

1.19

1.23

1.26

1.29

16
0.81

0.85

0.89

0.93

0.96

1.00

1.03

1.07

1.10

1.13

1.16

1.20

1.23

1.26

1.29

1.32

1.35

1.38

1.41

1.44

24
1.02

1.06

1.10

1.13

1.17

1.20

1.24

1.27

1.30

1.33

1.37

1.40

1.43

1.46

1.49

1.52

1.55

1.58

1.61

1.64

32

1.16

1.19

1.23

1.27

1.30

1.34

1.37

1.40

1.43

1.47

1.50

1.53

1.56

1.59

1.62

1.65

1.68

1.71

1.74

1.77

256
1.96

1.99

2.03

2.06

2.10

2.13

2.17

2.20

2.23

2.26

2.29

2.32

2.35

2.38

2.41

2.44

2.46

2.49

2.52

2.55

1000

2.39

2.42

2.46

2.49

2.52

2.56

2.59

2.62

2.65

2.68

2.71

2.74

2.77

2.80

2.83

2.86

2.89

2.91

2.94

2.97
to



TABLE A5 .7 Values of d ' for m-Interval Forced Choice or Identification (cont. )

P\m

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

.60

2
-0.32
-0.29
-0.25
-0.21
-0.18
-0.14
-0.11
-0.07
-0.04

0.00

0.04

0.07
0.11
0.14
0.18
0.21

0.25
0.29
0.32
0.36

3

0.26
0.30
0.33
0.36
0.39
0.43
0.46
0.49
0.52
0.56

0.59
0.62

0.65
0.69
0.72
0.75
0.78
0.82
0.85
0.89

4

0.55
0.59
0.62
0.65
0.68
0.71
0.74
0.77
0.81
0.84

0.87
0.90
0.93
0.96
0.99
1.02
1.06
1.09
1.12

1.15

5
0.74
0.77
0.80
0.84
0.87
0.90
0.93
0.96
0.99
1.02

1.05
1.08
1.11
1.14
1.17
1.20
1.23
1.27
1.30
1.33

6

0.88
0.91
0.94
0.97
1.00
1.03
1.06
1.09
1.12
1.15

1.18
1.21
1.24
1.27
1.30
1.33
1.37
1.39
1.43
1.46

7
0.99
1.02
1.05
1.08
1.11
1.14
1.17
1.20
1.23
1.26

1.29
1.32
1.35
1.38
1.41
1.44
1.47
1.50
1.53
1.56

8

1.07
1.10
1.13
1.16
1.19
1.22
1.25
1.28
1.31
1.34

1.37
1.40
1.43
1.46
1.49
1.52
1.55
1.58
1.61
1.64

9
1.15
1.18
1.21
1.24
1.27
1.30
1.33
1.35
1.38
1.41

1.44
1 .41
1.50
1.53
1.56
1.59
1.62
1.65
1.68
1.71

10
1.21
1.24
1.27
1.30
1.33
1.36
1.39
1.42
1.45
1.47

1.50
1.53
1.56
1.59
1.62
1.65
1.68
1.71
1.74
1.77

11

1.27
1.30
1.33
1.35
1.38
1.41
1.44
1.47
1.50
1.53

1.56
1.59
1.62
1.65
1.67
1.70
1.73
1.76
1.79
1.82

12

1.31
1.34
1.37
1.40
1.43
1.46
1.49
1.52
1.55
1.58

1.61
1.63
1.66
1.69
1.72
1.75
1.78
1.81
1.84
1.87

16
1.47
1.50
1.53
1.55
1.58
1.61
1.64
1.67
1.70
1.73

1.75
1.78
1.81
1.84
1.87
1.90
1.93
1.96
1.99
2.02

24

1.67
1.69
1.72
1.75
1.78
1.81
1.84
1.86
1.89
1.92

1.95
1.98
2.01
2.03
2.06
2.09
2.12

2.15
2.18
2.21

32

1.79
1.82
1.85
1.88
1.91
1.94
1.96
1.99
2.02
2.05

2.08
2.10
2.13
2.16
2.19
2.22
2.24
2.27
2.30
2.33

256
2.58
2.60
2.63
2.66
2.68
2.71
2.74
2.77
2.79
2.82

2.85
2.87
2.90
2.93
2.95
2.98
3.01
3.04
3.06
3.09

1000
3.00
3.02
3.05
3.08
3.10
3.13
3.16
3.18
3.21
3.24

3.26
3.29
3.32
3.34
3.37
3.40
3.42
3.45
3.48
3.51



TABLE A5.7 Values ofd

P\m

.61

.62

.63

.64

.65

.66

.67

.68

.69

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.80

2
0.40
0.43
0.47
0.51
0.54
0.58
0.62
0.66
0.70
0.74

0.78
0.82
0.87
0.91
0.95
1.00
1.05
1.09
1.14
1.19

3
0.92
0.95
0.99
1.02
1.06
1.09
1.13
1.16
1.20
1.24

1.28
1.31
1.35
1.39
1.43
1.47
1.52
1.56
1.61
1.65

4

1.19
1.22
1.25
1.29
1.32
1.35
1.39
1.42
1.46
1.49

1.53
1.57
1.60
1.64
1.68
1.72
1.76
1.81
1.85
1.89

' for m-Interval Forced Choice or Identification (cont.)

5
1.36
1.39
1.42
1.46
1.49
1.52
1.56
1.59
1.63
1.66

1.70
1.73
1.77
1.81
1.85
1.89
1.93
1.97
2.01
2.05

6
1.49
1.52
1.55
1.58
1.62

1.65
1.68
L72
1,75
1.79

1.82

1.86
1.89
1.93
1.97
2.01
2.05
2.09
2.13
2.17

7
1.59
1.62
1.65
1.68
1.72

1.75
1.78
1.81
1.85
1.89

1.92
1.95
1.99
2.03
2.06
2.10
2.14

2.18
2.22
2.26

8
1.67
1.70
1.73
1.77
1.80
1.83
1.86
1.89
1.93
1.96

2.00
2.03
2.07
2.10
2.14

2.18
2.22

2.26
2.30
2.34

9
1.74
1.77
1.80
1.83
1.87
1.90
1.93
1.96
2.00
2.03

2.06
2.10
2.13
2.17
2.21
2.24

2.28
2.32

2.36
2.40

10
1.80
1.83
1.86
1.89
1.92
1.96
1.99
2.02
2.05
2.09

2.12
2jl6
2.19
2.23
2.26
2.30
2.34

2.38
2.42

2.46

11
1.85
1.88
1.91
1.94
1.98
2.01
2.04
2.07
2.10
2.14

2.17
2.21
2.24
2.28
2.31
2.35
2.39
2.43
2.47
2.51

12
1.90
1.93
1.96
1.99
2.02
2.05
2.09
2.12
2.15
2.18

2.22
2.25
2.29
2.32
2.36
2.40
2.43
2.47
2.51
2.55

16
2.05
2.07
2.10
2.14
2.17
2.20
2.23
2.26
2.29
2.33

2.36
2.39
2.43
2.46
2.50
2.54
2.57
2.61
2.65
2.69

24
2.23
2.26
2.29
2.32
2.35
2.38
2.42
2.45
2.48
2.51

2.54

2.58
2.61
2.65
2.68
2.72
2.75
2.79
2.83
2.87

32
2.36
2.39
2.42
2.45
2.48
2.51
2.54
2.57
2.60
2.63

2.67
2.70
2.73
2.77
2.80
2.84
2.87
2.91
2.95
2.99

256
3.12
3.15
3.18
3.20
3.23
3.26
3.29
3.32

3.35
3.38

3.42

3.45
3.48
3.51
3.54

3.58
3.61
3.65
3.69
3.73

1000

3.53
3.56
3.59
3.62
3.64
3.67
3.70
3.73
3.76
3.79

3.82
3.85
3.89
3.92
3.95
3.99
4.02
4.06
4.09
4.13



TABLE A5.7 Values of d' for m-Interval Forced Choice or Identification (cont.)

p\m

.81

.82

.83

.84

.85

.86

.87

.88

.89

.90

.91

.92

.93

.94

.95

.96

.97

.98

.99

2
1.24
1.29
1.35
1.41
1.47
1.53
1.59
1.66
1.73

1.81

1.90
1.99
2.09
2.20
2.33
2.48
2.66
2.90
3.29

3
1.70
1.75
1.80
1.85
1.91
1.97
2.03
2.09
2.16
2.23

2.31
2.39
2.49
2.59
2.71
2.85
3.02

3.25
3.62

4
1.94

1.99
2.04
2.09
2.14
2.20
2.25
2.32
2.38
2.45

2.53
2.61
2.70
2.80
2.92
3.05
3.22
3.44
3.80

5

2.10
2.14
2.19
2.24
2.29
2.35
2.41
2.47
2.53
2.60

2.67
2.75
2.84
2.94
3.06
3.19
3.35
3.57
3.92

6
2.22
2.26
2.31
2.36
2.41
2.46
2.52
2.58
2.64

2.71

2.78
2.86
2.95
3.05
3.16
3.29
3.45
3.67
4.01

7
2.31

2.35
2.40
2.45
2.50
2.55
2.61
2.67
2.73
2.80

2.87
2.95
3.03
3.13
3.24
3.37
3.53
3.75
4.09

8
2.38
2.43
2.47
2.52
2.57
2.63
2.68
2.74
2.80
2.87

2.94
3.02
3.10
3.20
3.31
3.44
3.60
3.81
4.15

9
2.45
2.49
2.54
.2.59
2.64
2.69
2.74
2.80
2.86
2.93

3.00
3.08
3.16
3.26
3.37
3.50
3.65
3.87
4.20

10
2.50
2.55
2.59
2.64
2.69
2.74

2.80
2.86
2.92
2.98

3.05
3.13
3.22

3.31
3.42
3.55
3.70
3.91
4.25

11
2.55
2.60
2.64

2.69
2.74
2.79
2.85
2.90
2.96
3.03

3.10
3.18
3.26
3.35
3.46
3.59
3.75
3.95
4.29

12
2.60
2.64
2.68
2.73
2.78
2.83
2.89
2.95
3.01
3.07

3.14
3.22

3.30
3.39
3.50
3.63
3.78
3.99
4.32

16
2.73
2.78
2.82
2.87
2.92
2.97
3.02
3.08
3.14
3.20

3.27
3.35
3.43
3.52
3.63
3.75
3.91
4.11
4.44

24
2.91
2.96
3.00
3.05
3.09
3.14

3.20
3.25
3.31
3.37

3.44
3.52
3.60
3.69
3.79
3.92
4.07
4.27
4.59

32
3.03
3.07
3.12

3.16
3.21
3.26
3.31
3.37
3.43
3.49

3.56
3.63
3.71
3.80
3.91
4.03
4.18
4.38
4.69

256
3.77
3.81
3.85
3.89
3.94
3.99
4.04
4.09
4.15
4.20

4.27
4.34
4.42
4.50
4.60
4.72
4.86
5.05
5.36

1000

4.17
4.21
4.25
4.29
4.34
4.39
4.44
4.49
4.54
4.60

4.67
4.73
4.81
4.90
4.99
5.11
5.25
5.44
5.73

Note: Equal detectability and unbiased responding is assumed.
Source: Reprinted from Hacker and Ratcliff (1979) by permission of the authors and The Psychonomic Society, Inc.



Appendix O

Software for Detection Theory

In this appendix, we describe software available for doing the calculations
presented in the book. The descriptions take two forms. First, the listing of a
program for basic calculation (e.g., of yes-no d', c, and ft) is given. Second,
we list Web sites from which useful programs can be downloaded. We thank
the colleagues who have agreed to publicize their sites in this way.

Listing

The following Pascal program calculates d', c, and j8 for frequency data
typed into a keyboard. It consists of a subroutine for estimating z and a sim-
ple driver program. To deal with perfect proportions, it uses the l/2, N-l/z
rule described in chapter 1 .

program sdtdrive;

function z(p:real):real; {Odeh & Evans}

var y:real;

begin
y: = sqrt(-2*ln(p));
z: = -y + ((((0.0000453642210148*y + 0.020423 12 10245) *y +
0.342242088547)*y + l)*y + 0.32223243 1088)/

((((0.0038560700634*y + 0.10353775285)*y + 0.531103462366)*y
0.58858 1570495)*y + 0.099348462606)

431



432 Appendix 6

end;

var Nhits,Nmisses,Nfa,Ncr,N2,N 1 : real;
hitrate,farate,dp,cr,beta,zh,zf: real;
answer: char;
adjustment: boolean;

begin
writelnfFollow all responses by <RETURN>');
writeln;
repeat

adjustment: = false;
writeln;
write('# of hits: ');
read(Nhits);
write(' #of misses: ');
readln(Nmisses);
write ('# of false alarms: ');
read (Nfa);
write(' # of correct rejections: ');
readln(Ncr);
N2: = Nhits + Nmisses;
Nl:=Nfa + Ncr;
if (Nhits < = 0) or (Nmisses < 0) or (Nfa < 0) or (Ncr < = 0)

then writeln('Bad data')
else begin

if Nmisses = 0 then begin
Nmisses: = 1\2;
Nhits: = Nhits - 1\2;
adjustment: = true
end;

if Nfa = 0 then begin
Nfa: = 1\2;
Ncr: = Ncr-l\2;
adjustment: = true
end;

nitrate: = Nhits/N2;
farate: =Nfa/Nl;
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zh: = z(hitrate);
zf: = z(farate);
dp: = zh - zf;
cr: = -0.5*(zh + zf);
beta: = exp(-0.5*(zh*zh - zf*zf));
writeln;
if adjustment = true

then writeln('Data have been adjusted');
writeln('H = ',hitrate:4:3,' F = ',farate:6:3);
writeln('d" = ',dp:4:3,', c = ',

cr:6:3,', beta = ',beta:6:3)
end;

writeln;
write('Continue? (y/n)');
readln(answer);
until answer = 'n'

end.

Web Sites

A useful site for exploring the use of spreadsheets in detection theory (Bob
Sorkin):
http://www.psych.ufl.edu/~sorkin

A program for finding d' and other statistics for data collected under a wide
variety of paradigms is d'plus (Macmillan & Creelman, 1997), available at
http://psych.utoronto.ca/~creelman

Programs for fitting ROCs using maximum-likelihood techniques can be
found at sites maintained by Lew Harvey and Charles Metz:
http ://psych. Colorado .eduMharvey
http://www.xray.bsd.uchicago.edu/krl/KRL_ROC/software_index.htm

The MSDA method (Helena Kadlec) is available at
http://castle.uvic.ca/psyc/kadlec/research.htm
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Several programs permitting statistical evaluation of SDT data (Larry DeCarlo)
are at
http://www.columbia.edu/~ld208

Information about the statistical accuracy and efficiency of ROC parameters
(Caren Rotello) is located at
http://www-unix.oit.umass.edu/~caren/Design/Assets/index.htm



Appendix /

Solutions to Selected Problems

Most answers were obtained using the tables (Appendix 5). Answers that
have been found by interpolation carry asterisks.

Chapter 1

1.1. If the person being tested tells a lie, a hit occurs if the polygraph re-
sponds positively, a miss if it responds negatively. If the person tells the
truth, a false alarm is a positive response, a correct rejection a negative one.

1.2.
Problem

(a)

(b)

(c)

H

.6

.55

.45

F

.47

.17

.83

H-F

.13

.38

-.38

p(c)

.57

.69

.31

p(c)*

.57

.62

.38

p(c) is always greater than H- F except when both equal 1 (draw a graph of
Eq. 1.3).

1.3. (a) Computationally, "base rates" do not affect the calculation of con-
ditional probabilities or/?(c), but do affectp(c)*. Experimentally, the likeli-
hood of a "yes" response may well depend on these rates. For more detail,
see chapter 2. (b) Yes, p(c) for S2 trials is simply the hit rate.

1.4. (a) 1.99, 4.65, 0 (b) 1.03, 1.28, 2.93.

1.5. (a) 1.68 assuming no bias, (b) H = .65 and d' = 2.03.

435
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1.7. Problem d'from HandF d'fromp(c)

(a) 0.336* 0.330*

(b) 1.080 0.992

(c) -1.080 -0.992

1.8. Yes, in both cases, because the implied ROCs of both d' and p(c) are
symmetric.

1.9. For (.2, .6), d' = 1.095. For (.2, .91) and (.03, .6), d' = 2.190.

1.11. If no cell contains a frequency of 0, the largest d' is 1.85, and the
smallest -1.11. If a 0 cell does occur, the largest d' is 2.31 and the smallest is
-1.47.

Chapter 2

2.1. p(c) - .65 before training, .785, .656, and .825 after.

2.2.

2.3.

2.4.

7,5

H
.6

.55

.45

F

.47

.17

.83

d' c

0.328 -0.089

1.08 0.414

-1.08 0.414

c'

-0.271

0.383

-0.383

(a) A vertical line, (b) A line with slope

H
.6

.79

.71

.83

F

.2

.08

.05

.11

d'

1.095

2.211

2.141

2.181

c

0.2945

0.2995

ln(P)

-0.029

0.447

-0.447

-1.

c'

0.269

0.268

ft

0.971

1.564

0.639

ft
1.38

1.35
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2.6. The false-alarm rate [1 - P("truth"ltruth)], c, and d' are as follows:

Experimental group F e d '

Interrogators .34 -0.215 1.254

Sheriffs .44 -0.294 0.890

Clinical psychologists .36 -0.098 0.911

Academic psychologists .42 0.013 0.378

Trained interrogators are probably a bit better at detecting lying than sheriffs
or clinical psychologists, and academic psychologists are—as a group—ter-
rible. It is also interesting that sheriffs and interrogators showed a strong bias
toward stating that a person was lying, whereas the psychologists were rela-
tively neutral.

2.7. (a) Payoff matrix is 10,0, 0, 10.

2.7. (b-d)

P(S2) LR c H F

.5

.25

.1

1

3

9

0

1.1

2.2

.69

.27

.04

.31

.05

.003

2.10. (a) (F, H) = (.07, .69), (.31, .93); (b) (F, H) = (.02, .5), (.5, .98).

Chapter 3

3.1. (a) The first (F, H) point is (.12, .52), the second (.36, .80). (If you did
not get the second point, remember that the response categories have to be
in order of confidence from one alternative to the other.) (b) d' = 1.225 and
1.200.

3.2. If three "not sure" responses of each type are assigned to "sure in
tune" and the rest to "sure out of tune," estimated d' will drop to 1.064.

3.3. Condition 1: da = 2.44, s = 0.59, Az = .96, ca = 0.453, -0.147, -0.287.
Condition 2: d = 1.15, s = 0.76, A = .79, c = 1.00, -0.433, -0.299.
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3.4. 1.235,0.850,0.152.

3.5. da = 2.21, d'e = 2.22, Az = .94.

3.6. For low-frequency words, Ag = .879 and Az = .90. For high-frequency
words, A =.752 and A =.76.

8 '

Chapter 4

4.1. (a) .75, .6, 0. (b) .2. u always equals F.

4.2. (a) You can't, (b) On the upper limb, because it is above the minor di-
agonal.

4.3. /?(c) = .7atF = 0,and.5atF=l;d'=2.098atF=.01,and0.186at
F=.99.

4.4. (a) For (.4, .9),p(c) = .75, yes rate = .65, error ratio = (1 -H)/F=Q.25.
For (.2, .9), p(c) = .85, yes rate = .55, error ratio = 0.5. (b) The v-intercept
(lowest hit rate) is 2p(c) - 1, and the jc-intercept (highest false-alarm rate) is

4.5. .83, .75, .875

4.6. .8, .2.

4.8. (a) Area under two-limbed curve = .75, A' = .835, d' = 1.366, Az =
.833. (b) Area under two-limbed curve = .695, A' = .842, d' = 2.073, Az =
.93.

4.9. It is systematically greater than for the low-threshold area. It will be
similar to the area for high-threshold theory if the point is near the minor di-
agonal and similar to that for double high-threshold theory if accuracy is
high.

4.10. (a) For both points, d' = 1.095, ln(a) = 0.90,/?(c) = .7, and A' = .646.
(b) .667, .5. (c) H = .75, F = .25.

4.13. Forbothpoints, ft =0.429 andfl''=-4).4.1n(fc)=-1.52and-0.675.
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Chapter 5

5.1. (a) d' = 3 (b) p(c) = .93 . No additivity in/?(c) itself, need to convert to z
scores: z[/?(c)AB] + z[p(c\c] ~ z\P(c\J' Th*8 ^s me same as Equation 5.1
(except for a factor of 2). (c) d' = 5, so p(c) is very close to 1.0.

5.2. No. If 5 = 0.5 for both comparisons, then the standard deviations of
distributions A, B, and C can be set to 1, 2, and 4, with means at 0, 1, and 5.

5.3. (a) 1 .168 for 1 presentation, 1 .621 for 2, and 2.320 for 4. Criterion is
.915 above mean of New distribution, (b) d' = 1.15, p(c) = .72.

5.4. For each stimulus, find P("higher") and convert this to a i score.
These scores are -0.842, -0.253, 0.253, 0.842, and 1.282. The PSE is at
999.5 Hz. The jnd is VX 1000.7 -998.3) = 1.2 Hz (interpolate to find the val-
ues for which z = ± 0.675).

5.5. 84% and 16%.

5-O. Stimulus d' cumulative d'

10

15

20

25

30

35

40

0.440

0.457

0.638

0.392

0.675

0.524

0

0.440

0.897

1.535

1.927

2.602

3.126

Criteria are at cumulative d' = 1.282 and 2.602, which correspond to ap-
proximately 23 and 35 cm.
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-*•'' Stimulus

10

15

20

25

30

35

40

d'

0.363

0.348

0.616

0.318

0.674

0.362

cumulative d'

0

0.363

0.711

1.327

1.645

2.319

2.681

Criterion is at cumulative d' - 1.645, which corresponds to 30 cm.

5.9. Stimulus d' cumulative d'

1 (the letter E)

2

3

4

5 (the letter F)

0.599

1.029

1.095

0.440

0

0.599

1.628

2.723

3.163

Criterion is at cumulative d'= 1.881, about stimulus 3.
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5.10. Stimulus pair

1,2

2,3

3,4

4,5

1,3

2,4

3,5

SDT

.62

.70

.71

.59

.79

.86

.78

threshold

.502

.545

.580

.505

.568

.745

.625

5.11. 0.599, 2.60, and 5.40.

5.12. Distribution means are 0, 0.589, 1.366, and 2.732. Criteria are
0.253, 0.842, and 2.208.

Chapter 6

6.1. .98, .50, .16, .31.

6.2. (a) .92. (b) no change; .84. (c) ignore sound; .98.

6.3. (a) Same decision axis; .5. (b) Decision axis and criterion are both ro-
tated clockwise compared to Fig. 6.5, by an angle less than 45°.

6.4. (a), (i) and (ii) .5, (iii) and (iv) .25. (b) (i) no (ii) no (iii) yes. (c) (i) and
(ii) .07, (iii) .07 x .07, (iv) .93 x .93. (d) (i) no (ii) yes (iii) yes.

6.5. .61, .63, .65.

6.6. Additivity holds in both cases although the d' calculation in (b) is
heuristic only.
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7.1.

7.2.

Notes:
andF.
mum"

Chapter?

2AFC
Matrix d'

A

B

C

D

Matrix

A

B

C

D

0.358

0.536

0.568

-0.132

yes-no
d'

0.506

0.758

0.803

-0.187

c (

0

-0.903

1.244

0.346

H+l-F)/2

.6

.6

.575

.467

p(c)*

.6

.6

.575

.556

P(c'ma\

.6

.65

.66

.46

(a) p(c)max is the same for 2AFC and yes-no — it depends only on H
(b) p(c)max is actually smaller than p(c) for Matrix D; it is a "maxi-
in that it represents a point that is maximally different from chance.

7.3. (a) d' = 1.33 in both cases, c = 0.25 for item recognition and -0.33 for
source discrimination. (b)/?(c)max = .83, so the prediction is exactly right, (c)
See if you can account for this by assuming decisional separability.

7.4. (a) da = 1.19 independent of s. (b) d'2=0.94 assuming s = 0.5, but 1.88
assuming 5 = 2. An advantage of da is that it can be predicted from p(c)max

without knowing s.

Chapter 8

8.1. d' 1000 = 1.478, d' 1200 = 1.079, identification d'- 1.830.

8.2. p(c) = .86,.71.

8.3. (a) Yes: p(c) in the uncertain condition is about .59.

8.4. Unbiasedp(c) for Sl detection is .84, for 52 detection and 512 recogni-
tion, .69.
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8.7. Matrix 1 supports the independent-observation model, and Matrix 2
the integration model.

8.9. = .79.

8.10. p(c) = .71.

8.11.

9.1.

= .91.

Chapter 9

H d'

.6

.9

.2

.6

.4

.7

.05

.667

independent-
observation

1.19

1.49

1.54

-0.70

differencing

1.43

2.15

1.58

-0.92

9.2. Xc)yes_no = -9; P(c)same.different = -82 according to the threshold and inde-
pendent-observation models, .75 for differencing.

9.3. Threshold model makes no obvious prediction; if/?(c) is still .82, then
H is .69. According to the independent-observations model, H - .57 and
p(c) = .76; according to the differencing model, H = .44 and p(c) = .70.

9.4. 5, versus 52, H- .55, F= .25. S2 versus 53, H= .65, F= . 15. Same trials
count more heavily. Overall, p(c) = .686, but average of Hand 1 -Fis .70.

9 5y.j.

9.7.

= 974*- -7/*t , = 997- .yy i .

matrix d'

A

B

C

D

independent-
observation

1.01

1.26

1.30

-0.59

differencing

1.12

1.41

1.45

-0.66
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9.8. Entries are p(c):

Design

yes-no

2AFC

ABX

same-different

oddity

d'

1

.69

.76

.600

.573

.45

2

.84

.92

.788

.732

.68

9.9. Entries are p(c):

Design

ABX

same-different

oddity

d'
1

.583

.55

.42

2

.747

.675*

.60

Results for other paradigms are the same as in Problem 9.8.

Chapter 10

10.1. p(c)25AFC = .20; p(c)5AFC = .49; p(c)2AFC = .76.

10.2. Entries in last three columns are p(c).

m SDT Choice Theory Boundary

3

4

8

32

1,000

.62

.54

.37

.16

.015*

.60

.50

.30

.088

.003

.56

.42

.13

.00013

(.75)999

10.3. d' = 2.160 for any pak; points in representation form an equilateral
triangle.

10.4. (a) 0.777; (b) 0.817, -0.217, -0.327, -0.597
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10.5.

10.7. Hit rates are .915 and .790, false-alarm rates are .47 and .28. Both
are reliably different, so there is no marginal response invariance. Values of
d' are 1.45 and 1.39 (not different), criteria are 1.37 and 0.81 (different).
This pattern implies PS, but not DS.

Chapter 11

11.1. (a) .0000558 (most likely), (b) .000046. (c) .000035.

1 1 .2. (a) .000028. (b) .000029 (most likely), (c) .000017.

11.3. (a) Trials 4 (+), 12 (+), 14 (+), 18 (-).

(b) Trials 2 (+), 4 (+), 6 (-), 7 (+), 9 (-), 1 1 (+), 12 (+), 13 (+), 14 (+), 16 (-),

(c) Trials 2(+), 4(+), 7(+), 11(+), 12(+), 13(+), 14(+), 18(-).

1 1 .4. After 20 trials, level is (a) 80, (b) 40, (c) 56.

Chapter 12

12.1. Smooth and symmetric, like a normal-normal curve. Consists of
points corresponding to the possible cutpoint decision rules, and line seg-
ments connecting them corresponding to a mixture of two adjacent criteria.

12.2. (a) Mean difference unchanged, both variances increase. Best/?(c)
is .70. (b) Mean difference decreases by 0.5, variances unchanged. Best
p(c) is .65.

12.4. (a) a, and a2 both equal 0.5, decision bound has slope -a2/a} = -1 . (b)
0j = 0.4, a2 = 0.6, decision bound has slope -a2/al = -1.5.

12.5. (a) a, = 0.4, a2 = 0.6, decision bound has slope -ajal = -1.5. (a) a, =
0.33, a2 = 0.67, decision bound has slope -aja^ = -2.



Glossary

The number in parentheses following each entry gives the chapter in which
the term is introduced. Part I is denoted by I, Appendix 1 by Al, and so on.

2AFC (7). Two-alternative forced-choice.

a (4). Sensitivity measure for Choice Theory.

A' (area under the ROC) (4). An estimate of the area under the ROC based
on a single point in ROC space. A measure of sensitivity.

Ag (minimum area under the ROC) (4). An estimate of the area under the
ROC based on more than one point in ROC space. A measure of
sensitivity.

Az (3). Area under an SDT ROC (i.e., one that is linear on z coordinates). A
measure of sensitivity.

absolute identification (5). A classification experiment in which the number
of responses equals the number of stimuli.

absolute judgment (5). Same as absolute identification.

ABX (9). A discrimination design in which three stimuli are presented on
each trial, and the observer must decide whether the third matches
the first or the second.

accuracy (1,13). (a) Same as sensitivity, (b) In statistics, the degree to which
the expected value of an estimator equals the parameter being esti-
mated.

adaptation level theory (5). A theory that states that judgments in identifica-
tion are relative to a central point, the adaptation level.

adaptive probit estimation (APE) (11). An adaptive procedure that estimates
psychometric function slope as well as threshold.

447
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Chapter 13

Note: Statistically significant results are indicated by $.

13.1. (a) .38 to .62.
(b) .25 to .55$.
(c) .44 to .56; .33 to AT.

13.2. J'max =
(d' = 1.438 for both).

13.3. (a) matrix 1: d' = 0.506 ± 0.786, c = 0 ± 0.393
matrix 2: d'= 0.758 ± 0.946, c = -0.903 ± 0.473$

matrix 3: d'= 0.803 ± 1.118, c = 1.244 ± 0.559$

matrix 4: d' = -0.187 ± 1.467, c = -0.347 ± 0.735$

(b) d\ - d'4 = 0.990 ± 1.847; c, - c2 = 0.903 ± 0.615$

13.4. (a) 0.412 ± 0.499
(b) 0.291 ± 0.353

13.5. (a) average = 0.641, pooled = 0.5 16
(b) 0.651
(c) 0.5 11
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adaptive procedure (11). A method for estimating empirical thresholds by
choosing stimuli in reaction to the observer's previous responses.

area theorem (7). The equivalence between area under the yes-no ROC and
the proportion correct obtainable by an unbiased observer in 2AFC.

attention operating characteristic (AOC) (8). In a divided attention para-
digm, accuracy on one task versus accuracy on another as attention
is shifted from one to the other.

j8 (2). In SDT, likelihood ratio for two Gaussian distributions. A measure of
response bias.

ft (4). In Choice Theory, likelihood ratio for two logistic distributions. A
measure of response bias.

ft (9). Likelihood ratio for the differencing model of the same-different
paradigm. A measure of response bias.

ft (9). Likelihood ratio for the independent-observation model of the
same-different paradigm. A measure of response bias.

b (4). In Choice Theory, ln(b) is the location of the criterion in standard de-
viation units from the equal-bias point. A measure of response bias.

b' (4). In Choice Theory, the relative criterion. A measure of response bias.

B", B'H (4). Bias measures based on the geometry of ROC space.

Bayesian (11). Referring to the result that the odds in favor of a hypothesis
before an observation is made, multiplied by the likelihood ratio of
the observation, equal the odds after the observation.

Bekesy audiometry (11). An adaptive procedure, psychophysically infor-
mal, in which the observer provides a continuous detection re-
sponse to a continuously changing stimulus.

Bernoulli random variable (Al). A random variable that can take on only
two values, 0 and 1.

bias, response (2). See response bias.

bias, statistical (Al, 11,13). The average amount by which an estimate dif-
fers from the parameter being estimated.

binomial distribution (13, A1). Distribution of a binomial random variable.

binomial proportion distribution (Al). Distribution of the proportion of suc-
cesses in N trials (i.e., of a binomial random variable divided by AO-
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binomial random variable (Al). A random variable that is the sum of N
Bernoulli random variables; the number of successes in N trials.

bivariate distribution (13, Al). Probability distribution of two variables.

boundary theorem (10). A generalization of the area theorem that predicts a
lower bound on mAFC performance, given 2AFC performance.

c (2). In SDT, the location of the criterion in z units from the equal-bias
point. A measure of response bias.

c' (2). In SDT, the relative criterion. A measure of response bias.

ca (3). Criterion location in units of the root mean square standard deviation.

cd (9). Criterion location for the differencing model for the same-different
task. A measure of response bias.

ce (3). Criterion location in units of the average standard deviation.

ci (9). Criterion location for the independent-observation model for the
same-different task. A measure of response bias.

categorical perception hypothesis (5). The hypothesis that sensitivity in
classification is the same as in discrimination and/or that discrimi-
nation sensitivity reaches a peak at an intermediate point on a con-
tinuum.

categorization (5). A classification experiment in which the number of re-
sponses is less than the number of possible stimuli.

category scaling (5). Categorization, usually with stimuli that vary along a
single continuum.

central limit theorem (Al). The result that the sum of many independent
variables, each with the same distribution, has a normal distribu-
tion.

channels (8). Theoretical analyzers of multidimensional stimuli, often as-
sumed independent.

choice axiom (4). Basic tenet of Choice Theory. States that the odds of
choosing one stimulus over a second are unaffected by the avail-
ability of other possible stimuli.

Choice Theory (4). (a) A theory of choice behavior, derived from the choice
axiom, in which responses are determined by the strengths of corre-
sponding stimuli and by response biases, (b) For the yes-no experi-
ment, equivalent to a version of detection theory in which
underlying distributions are assumed to be logistic.
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city-block metric (1, 8). A distance measure for multidimensional stimuli
equal to the sum of the distances on each dimension.

classification experiment (5). An experiment in which one stimulus, from a
set of more than two, is presented on each trial.

comparison design (7). Discrimination paradigm with two intervals that can
be represented with two underlying distributions.

comparison stimulus (5). Stimulus that varies from trial to trial, in an exper-
iment that contains a standard stimulus (which does not).

complete correspondence experiment (Intro). See correspondence experiment,

compound detection (6). Detection of a multidimensional stimulus.

conditional-on-single-stimulus analysis (12). Method for determining the
sensitivity of single components in multidimensional stimuli.

conditional probability (Al). A probability defined on a subset of a sample
space; the probability of one event given that another occurs.

Condorcet group (12). Group that makes decisions by counting unweighted
votes.

confidence interval (13, A1). Interval within which, with some degree of
confidence, a population parameter falls.

constant-ratio rule (10). The assertion that the ratio of response frequencies
in a stimulus-response matrix is unchanged by the addition or re-
moval of items to the stimulus set.

context coding (5). Perceptual process in which stimuli being judged are
compared with the context provided by previous trials.

context variance (5). Variability in perceptual process contributed by con-
text coding.

continuous random variable (Al). A random variable that can take on any
value in a (finite or infinite) interval.

correct rejection (1). In a yes-no experiment, a response of "no" to 5, (the
stimulus class for which "no" is correct).

correct rejection rate (1). The proportion of correct rejections on 5, trials.

correction for guessing (4). A formula for computing q, the "corrected" hit
rate. Equivalent to high-threshold theory.

correlation (Al). The tendency for two variables to covary.
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correspondence experiment (Intro). An experiment in which each possible
stimulus class is associated with one "correct" response from
among a finite set. The determination of which response is correct
may be rigidly set by the experimenter or may be limited to a class
of possibilities.

COSS (12). See conditional-on-single-stimulus analysis.

criterion (1). The point on a decision axis that divides one response from an-
other. See also decision boundary.

criterion variability (2). Setting the criterion at different locations on differ-
ent trials in the same experimental condition.

cumulative sensitivity (5). Sensitivity to the difference between a stimulus
and an endpoint stimulus, sometimes inferred from sensitivities to
adjacent stimulus pairs.

d' (1). Sensitivity measure for SDT, assuming equal-variance distributions.

da (3). Measure of sensitivity for SDT, assuming unequal-variance un-
derlying distributions and using the root-mean-square standard
deviation.

d'e (3). Measure of sensitivity for SDT, assuming unequal-variance under-
lying distributions and using the average standard deviation.

DYN (3). In ROC space on z coordinates, the minimum distance from the ori-
gin to the ROC.

decision space (1). The underlying distributions in an experiment, together
with the observer's decision rule for making responses.

decision boundary (6). Multidimensional generalization of the criterion:
the locus of points in a decision space that divides one response
from another.

decisional separability (6). In a multidimensional representation, a decision
rule that depends on only one dimension.

density function (Al). Function representing the likelihoods of possible
values of a continuous random variable.

detection (I). Discrimination experiment in which one stimulus is the Null
stimulus, or noise.

detection theory (1). A theory relating choice behavior to a psychological
decision space. An observer's choices are determined by the dis-
tances between distributions due to different stimuli in this space
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(sensitivities) and by the manner in which the space is partitioned
into regions corresponding to the possible responses.

detection with uncertainty (8). An experiment in which the stimulus to be
detected varies from trial to trial.

deviation limit (11). In PEST and other adaptive procedures, the extent to
which observed p(c) must differ from p(T) before the stimulus is
changed.

difference threshold (1,5). Empirical threshold in a discrimination experi-
ment not involving the Null stimulus.

differencing models (7, 9). Models in which the observer uses the differ-
ence between observations from multiple intervals or dimensions
as the basis for decision.

discrete random variable (Al). A random variable that takes on only a finite
or countable number of values.

discrimination (I). The ability to distinguish between two stimulus classes,
one of which may or may not be the Null stimulus, or noise. Also an
experiment to measure this ability.

distance measure (1). A measure that has the characteristics of a distance.
The sensitivity statistics d' and ln(a) are distance measures.

distribution discrimination (12). Task in which stimuli are drawn from ex-
plicit distributions and the observer must determine which of them
is the source of the stimulus presented.

distribution function (Al). Function giving the probability that a random
variable is less than or equal to some value. For continuous vari-
ables, the integral of the density function up to that value; for dis-
crete ones, the sum.

divided attention (8). Task in which attention to more than one dimension or
channel is required for an optimal decision.

double high-threshold theory (4). A theory with three internal states and
two high thresholds.

efficiency, relative (11, 12, 13). (a) In adaptive procedures, the ratio be-
tween the sweat factors of two statistics (or of the variances, if the
number of trials is equal); a measure of relative precision, or repeat-
ability over estimates, (b) In model comparisons, the square of the
d' ratio, (c) In statistics, the ratio of the variances of two estimators
of a parameter.
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elementary event (Al). One of a finite number of equally probable events in
a sample space.

empirical ROC (3). See ROC.

equivalent measures (1). Measures that are related by a monotonic transfor-
mation. Equivalent sensitivity measures have the same implied
ROC, and equivalent bias measures have the same implied isobias
curve.

error ratio (4). In a yes-no experiment, the ratio of misses to false alarms. A
measure of response bias.

estimated probability (A1). A proportion used to estimate a true probability.

estimation (13). Process of approximating a population parameter from
data.

Euclidean distance (1). Distance measured by the Pythagorean theorem,

expectation (Al). The mean of a random variable.

external noise (12). Variability limiting performance that arises from the
stimulus itself rather than within the observer.

extrinsic uncertainty (8). Decline in performance due to uncertainty be-
cause of inherent limitation in the stimulus array.

F (1). The false-alarm rate.

false alarm (1). In a yes-no experiment, a response of "yes" to Sl (the stimu-
lus class for which "no" is correct).

false-alarm/hit pair (1). The false-alarm and hit rates considered as an or-
dered pair; graphically, a point in ROC space.

false-alarm rate (1). The proportion of false alarms on Sj trials.

feature-complete factorial design (10). Identification design in which each
value of one variable is combined with each value of the others.

feedback (3,5). Information provided at the end of a trial about whether the
response was correct.

fixed discrimination (5). A discrimination task in which only two stimulus
classes can occur in a block of trials, so that only one sensitivity pa-
rameter is estimated.

forced choice (7, 10). A discrimination experiment in which m stimuli are
presented on each trial, one containing a sample of 52, the others
samples of S{.
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General Recognition Theory (CRT) (6). Formulation of multidimensional
SDT.

H(l). The hit rate.

high-threshold theory (4). A threshold theory with a finite number of inter-
nal states, one or more of which can only be activated by a specific
corresponding stimulus. See single high-threshold theory and dou-
ble high-threshold theory.

hit (1). In a yes-no experiment, a response of "yes" to S2 (the stimulus class
for which "yes" is correct).

hit rate (1). The proportion of hits on S2 trials.

hypothesis testing (13). Statistical evaluation of statements about popula-
tion parameters.

ideal observer (12). Decision strategy that uses all available information
and thus maximizes performance.

identification (I, 5, 10). (a) absolute identification, (b) classification.

identification operating characteristic (10). In a simultaneous detection and
identification experiment, the function relating the probability of
both a correct detection and a correct identification to the probabil-
ity of a false alarm.

implied ROC (1). See ROC.

incomplete correspondence experiments (Introduction). See correspon-
dence experiment.

independent channels (10). Channels whose outputs are independent ran-
dom variables.

independent-observation rule (8,9). Rule by which the observer independ-
ently combines the observations in multiple intervals or channels to
reach a decision.

independent random variables (Al). Two or more variables whose joint dis-
tribution is such that the value of one variable does not affect the
value of another.

index (1). Same as statistic.

integrality (8). Dependence between dimensions, as measured operation-
ally in the Garner paradigm.

integration rule (6). Rule for combining information by adding or subtract-
ing values of multiple dimensions.



Glossary 455

internal noise (12). Variability limiting performance that arises within the
observer rather than from the stimulus itself.

internal representation (1). Same as decision space.

intrinsic uncertainty (8). Decline in performance due to uncertainty because
of nonoptimal processing by the observer.

IOC (10). See identification operating characteristic.

isobias curve (2). A curve in ROC space connecting points with the same re-
sponse bias but different sensitivities. An isobias curve may be the-
oretical (implied by a theory or sensitivity parameter) or empirical
(observed in an experiment).

isosensitivity curve (1). Same as ROC.

joint distribution (6). Distribution of more than one variable.

just-noticeable-difference (jnd) (1,5). See difference threshold.

least-squares fit (Al). Method of approximating data by a model so that the
sum of the squared deviations between the model and data is as
small as possible.

likelihood ratio (2). The odds that an event arose from one distribution
rather than another. When the distributions are underlying ones due
to two possible stimulus classes, a measure of response bias.

log odds transformation (1). A transformation that converts a proportion/?
to the natural log of /?/(! -/?).

logistic distribution (1). The form of underlying distribution assumed by
Choice Theory for the one-interval design.

logistic regression (13). A statistical technique that can be used to test hy-
potheses about detection theory parameters.

logit (4). Unit proportional to the standard deviation of the logistic distribu-
tion, and equal to the natural log of pl(\ -/?).

low-threshold theory (4). A threshold theory with two internal states, each
of which can be activated by either of the possible stimuli.

m-alternative forced choice (mAFC) (10). An m-interval experiment in
which the observer must determine which interval contains a sam-
ple of S2 (all others containing samples of S,).

matching to sample (9). Same as ABX.

maximum-likelihood estimation (11, 13). Estimation of a parameter by
finding the value for which the observed data are most likely.
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one-interval design (I). A paradigm in which one stimulus is presented on
each trial.

optimal decision rule (3). A decision rule that serves to maximize some per-
formance criterion, such as payoffs.

parameter (13). A characteristic of some population, according to a theory.

Parameter Estimation by Sequential Testing (PEST) (11). An adaptive pro-
cedure in which the decision to change stimuli is based on a Wald
test, and the amount by which the stimulus is changed depends on
the past history of the experimental run.

payoff function or matrix (3). The rewards associated with each stimulus-
response outcome in a correspondence experiment.

p(c) (1). Proportion correct.

/?(c)max (6). Maximum possible value of p(c).

perceptual dimensionality (6). Number of dimensions needed to describe
sensitivities to all pairs of stimuli in the stimulus set.

perceptual independence (6). Property of a joint distribution in a decision
space that is equal to the product of its marginal distributions.

perceptual integrality (8). Dependence between two dimensions of an un-
derlying representation, measured across the entire stimulus set.

perceptual separability (8). Dependence between two dimensions of an un-
derlying representation, measured within a single stimulus class.

point of subjective equality (5). In a two-response classification experi-
ment, the stimulus for which each response is equally likely.

pooled estimate (13). Estimate of a parameter obtained by averaging re-
sponse frequencies before other calculations.

positivity (1). The property of being always positive or zero.

presentation probability (3). The probability of presenting one of the possi-
ble stimulus classes.

probability function (Al). For a discrete random variable, the function giv-
ing the probability of each value of the variable.

probability summation (6). Advantage in performance due to multiple
chances at success.

probit analysis (11). A procedure for fitting the normal distribution function
to psychometric function data.
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maximum rule (6). A decision rule in which observations on all dimensions
must exceed the respective criteria for a positive response to be
made.

maximum p(c) (6). The highest value of p(c) that could be obtained by an
observer with a given value of sensitivity (e.g., value of d').

mean category scale (5). A scale constructed from category scaling data, as-
signing to each stimulus the average of the categories used in re-
sponding to it.

mean sensitivity (13). Estimate of a parameter obtained by averaging esti-
mates based on individual stimuli, sessions, or subjects.

mean (shift) integrality (8). Type of perceptual integrality in which the de-
pendence between two dimensions is reflected by distribution
means.

measure (1). Same as statistic.

method of constant stimuli (5,11). A classification design in which a stan-
dard stimulus is followed by one of a set of comparison stimuli.

minimum rule (6). A decision rule in which an observation above criterion
on any dimension is sufficient for a positive response to be made.

miss (1). In a yes-no experiment, a response of "no" to S2 (the stimulus class
for which "yes" is correct).

miss rate (1). The proportion of misses on S2 trials.

Multidimensional Signal Detection Analysis (MSDA) (10). Method for as-
sessing various types of independence in a feature-complete identi-
fication design.

multiple-look experiment (8). Design in which a sample of one stimulus
class or the other is presented in each of several intervals.

Ney man-Pear son objective (2). Maximizing the hit rate while keeping the
false-alarm rate at some fixed low level.

nonparametric measure (4). A measure making no distributional assump-
tions.

normal distribution (1). The form of underlying distribution assumed by
SDT.

oddity (9). A design in which three (or more) stimuli are presented on each
trial, one from one stimulus class, the rest from the other. The ob-
server must choose the "odd" interval.
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product rule (6). In a two-dimensional representation, the probability that
X < a and Y< b equals the probability that X < a times the probabil-
ity that Y <b.

projection (6). A technique for reducing a two-dimensional representation
to one dimension.

proportion correct (1). Either (a) the number of correct responses (hits and
correct rejections) divided by the number of trials or (b) the average
of the hit and correct-rejection rates. A measure of sensitivity.

PSE (5). Point of subjective equality.

pseudo-d'(5). Sensitivity between two stimuli that correspond to the same
response.

psychoacoustics (12). Study of the relations between (auditory) stimulus
characteristics and psychological measures.

psychometric function (5, 11). In a discrimination task, function relating
probability of response, or sensitivity, to stimulus value.

psychophysics (12). Study of the relations between methodological charac-
teristics and psychological measures.

p(T) (11). See target proportion.

q (4). The hit rate "corrected" by the single high-threshold correction for
guessing.

#2AFC, qmAFC (7, 10). The "corrected" hit rates in 2AFC and mAFC, found
from the single high-threshold correction for guessing.

QUEST (11). An adaptive procedure incorporating an a priori distribution,
and based on Bayesian principles.

random variable (Al). A function defined on a sample space, taking on dif-
ferent values probabilistically.

range-frequency model (5). A theory of category scaling according to
which responses depend on the range of stimuli and the frequencies
with which they are presented.

rating experiment (3). A one-interval experiment in which the set of (more
than two) possible responses is used to express confidence that Sl or
S2 was presented.

ratio scale (1). A scale that has a nonarbitrary zero, and that can be used to
make meaningful statements about ratios. Distance measures are
ratio scaled.



460 Glossary

sampling distribution (13, Al). Distribution of a statistic across repeated
measurements.

saturated model (13). A model that fits the data perfectly and in which every
possible effect is included.

sensitivity (1). (a) The ability to discriminate, that is, to capture the experi-
menter-defined correspondence by appropriate responding, (b) A
measure of discriminability that is not affected by response bias.

sensory variance (5). Variability in sensitivity contributed by sensory cod-
ing.

separability (8). Independence between dimensions, as measured opera-
tionally in the Garner paradigm.

Signal Detection Theory (SDT) (1). (a) A version of detection theory in
which underlying distributions are assumed to be normal, (b) Same
as detection theory. [In this book, definition (a) always applies.]

simultaneous detection and identification (10). A task in which the observer
must detect the presence of a stimulus, and also report which of sev-
eral possible stimuli occurred.

simultaneous simple and compound detection (8). A detection task in
which simple, null, or compound stimuli may occur.

single high-threshold theory (4). A theory with two internal states and a
high threshold.

staircase method (11). An adaptive procedure in which the stimulus levels
are chosen from a fixed (often uniformly spaced) set.

standard stimulus (5). Stimulus presented on every trial as a reference point
for judging the comparison stimulus.

state diagram (4). A representation of the decision space for threshold theo-
ries, giving the probabilities with which each state arises from each
stimulus and leads to each response.

statistic (1). A function of data, usually calculated to estimate the parameter
of a theory.

subliminal perception (4, 10). In a simultaneous detection and recognition
experiment, above-chance recognition performance on trials on
which the detection response is "no," or for which detection sensi-
tivity is zero.

summation rule (8). See integration rule.
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receiver operating characteristic (1). See ROC.

recognition (1,10). (a) A discrimination experiment in which neither stimu-
lus is Null, (b) An identification experiment.

regularity (1). A characteristic of ROCs. Regular ROCs increase from (0,0)
to (1,1). The hit rate cannot be 1 unless the false-alarm rate is also 1,
and the false-alarm rate cannot be 0 unless the hit rate is also 0.

relative context variance (5). Context variance divided by sensory variance,

relative criterion (2). The criterion location relative to a sensitivity measure.

reminder design (7). Paradigm in which a fixed "reminder" stimulus is pre-
sented on every trial.

response bias (1). The tendency to use a response with some frequency irre-
spective of the stimulus presented.

reversal (11). In an adaptive procedure, a change in stimulus value in the op-
posite direction of the previous change.

rms (3). Root-mean-square.

ROC (curve) (1). Receiver operating characteristic. A curve in ROC space
connecting points with the same sensitivity but different response
biases. An ROC may be theoretical (implied by a theory or sensitiv-
ity parameter) or empirical (observed in an experiment).

ROC space (1). The unit square, with false-alarm rate on the *-axis and hit
rate on the y-axis.

root-mean-square (3). The square root of the average of the squares; a kind
of average.

roving discrimination (7). A discrimination task in which more than two
stimulus classes can occur in a block of trials, so that more than one
sensitivity parameter is estimated.

s (slope of ROC) (3). Slope of the ROC, according to SDT, on z-transformed
coordinates.

5" (4). Nonparametric measure of sensitivity in the two-response rating de-
sign.

same-different experiment (9). A two-interval experiment in which the ob-
server must determine whether the two stimuli are the same or dif-
ferent.

sample space (Al). Set of all possible events that can, with some probabil-
ity, occur.
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sweat factor (11). Variance of an estimator multiplied by the number of tri-
als needed to obtain it.

symmetry (1). Property of distance measures: distance from A to B equals
distance from B to A.

target proportion (11). Level of p(c) on the psychometric function corre-
sponding to the empirical threshold being estimated by an adaptive
procedure.

threshold, empirical (5, 11). The stimulus or stimulus difference corre-
sponding, on the psychometric function, to a specific level of per-
formance.

threshold, theoretical (4). The point in a decision space that, according to a
threshold theory, divides one internal state from another.

threshold theory (4). A theory of discrimination postulating a small number
of internal sensory states.

time-order error (7). The tendency for performance in a two-interval task to
depend on the order of the stimuli and the time between them.

total sensitivity (5). Sensitivity to the difference between two endpoint
stimuli, sometimes inferred from sensitivities to adjacent stimulus
pairs.

trace variance (7). Variability in discrimination due to time lapse between
intervals.

trading relations (5). Changes in two variables that result in the same re-
sponse rate or sensitivity.

transformation (1). A function that converts input values to (generally) dif-
ferent output values.

transformed ROC (1). An ROC plotted on the coordinates f(H) andflF),
where/is the transformation applied to H and F to compute sensi-
tivity. In SDT,/= z.

triangle inequality (1). A characteristic of distance measures: The distance
from A to C must be less than or equal to the distance from Ato B
plus that from B to C.

triangular method (9). Oddity design with three intervals,

true probability (Al). Value of a probability in the population.

two-alternative forced-choice (5). A two-interval discrimination experi-
ment in which Sl and S2 are presented in either order, m-alternative
forced-choice for m = 2.
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type-2 ROC (3). Graph in ROC space relating confidence judgments on cor-
rect trials to confidence judgments on incorrect trials.

UDTR (11). Up-down transformed method.

unboundedness (1). The property of having no theoretical maximum or
minimum magnitude.

uncertain detection (8). See detection with uncertainty.

underlying distributions (1). The distributions of internal events arising
from a stimulus set.

unsaturated model (13). A model in which not every possible effect is in-
cluded; used to evaluate the statistical significance of the omitted
effects.

up-down transformed method (11). An adaptive procedure in which the se-
quence of correct and incorrect responses since the last stimulus
change determines the next stimulus according to a staircase
method.

variance of a random variable (Al). Average squared deviation of values
from the expectation.

Wald test (11). A decision process in which the stimulus is changed when-
ever p(c) deviates sufficiently fromp(T).

yes rate (4). In a yes-no experiment, the proportion of "yes" responses. A
measure of response bias.

yes-no design (I). A one-interval experiment in which there are two possible
responses, which may or may not be "yes" and "no."

zROC (1). ROC on z coordinates.

z transformation (1). A transformation that converts a proportion to the z
score such that the proportion of the area under a normal distribu-
tion below that z score is p.
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see also Simultaneous simple and com-

pound detection
Computer programs, 431-434
Computer simulations

of adaptive methods, 290
of Wald rule, 279-281

Conditional-on-Single-Stimulus(COSS)
design, 306-309

Condorcet group, 309
Confidence intervals, see Parameter esti-

mation
Consciousness and detection theory, 47,

106, 259
Constant ratio rule, 247-249

see also Choice axiom; Choice Theory
Constant stimuli, method of, 120

see also Classification, one-dimen-
sional

Context coding, 134-135
Correction for guessing

in mAFC, 251-252
for psychometric function, 276,

287-289
in 2AFC, 172-173, 287-289
in yes-no, 82
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Correct rejection, 4, 142-144
Correlation, 351

between decision axes in ABX, 233-234
between decision axes in oddity, 236-237
between decision axes in Tanner's

model, 191-193
between sensitivities in roving discrim-

ination, 221
between successive intervals or trials,

183
Correspondence (experiment), xvii
Criterion location, 17, 29-31

in Choice Theory, see b
in SDT, see c
in threshold theory, see False-alarm

rate, as response-bias mea-
sure; Yes rate

variability of, 46-47
Criterion location, relative, 33

in Choice Theory, see b'
in SDT, see c'
in threshold theory, see Error ratio
in unequal variance model, 67-68

Cumulative d', see d', cumulative

D

d' (sensitivity measure in SDT), 8
and a, 95-96
calculation of, 8-9, 20-21, 374-375,

431^34
confidence intervals, 325-330
cumulative, 114
in multi-interval designs, see "sensitiv-

ity" under specific designs
and p(c), 9-13
total, 114

d}' (sensitivity measure in SDT), 59-60
d2' (sensitivity measure in SDT), 59-60
da (sensitivity measure in SDT), 61-62,

330-331
Data zeroes, see Sensitivity, near-perfect
de' (sensitivity measure in SDT), 62-63
Decision boundary, 145
Decision goals, 42^44
Decision rule, 17,42-44

likelihood ratio, 42-44
nonoptimal, 46-47
see also Differencing models; Inde-

pendent-observation models;
Integration models

Decision space, 16
multidimensional, 152-153, 191-193
for multi-interval designs, see "deci-

sion space " under specific
design

for one-interval designs, 16, 82-91,
98-100,116-119,142-144

see also Underlying distributions
Decision theory, statistical, 23-24
Decisional separability, 154, 260-262

in reminder paradigm, 180-181
in 2AFC, 170

Degrees of freedom, 353-354
Density function, 348-349
Designs (for discrimination measurement),

xviii, 360, 364
comparisons among, 234, 252-255,

263-264
fixed, 177-179, 216, 230
multi-interval, see ABX; mAFC; Odd-

ity; Same-different; 2AFC
one-interval, see Rating experiment;

Yes-no
roving, 177-179, 221, 233
see also Classification, multidimen-

sional; Classification, one-
dimensional; Compound
detection; Identification;
Simultaneous detection and
identification; Simultaneous
simple and compound detec-
tion; Uncertain detection

see also specific design
Detection, 1

auditory, 115-119, 176, 251, 259,
270-271, 302-303

bimodal, 141-142, 152-159, 196-202
compound, see Compound detection
uncertain, see Uncertain detection
visual, 300-302
of X-rays, 28-39,256-259
see also Simultaneous detection and

identification; Simultaneous
simple and compound detec-
tion

Deviation limit, see Wald rule in adaptive
methods

df, see Degrees of freedom
Dice game, 298-300, 314
Difference threshold, see jnd
Differencing models, 181
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see also "differencing model" under
specific design

Dimensionality, perceptual, 114-115
Discrimination, 1

vs classification, 132-135
color, 227
frequency, auditory, 176, 182, 228, 234
frequency modulation, auditory, 182
intensity, auditory, 127-129, 176-178,

189-191, 234
intensity, visual, 271-272, 300
line length, 40,120,228, 303
number, 234, 300
orientation, 227
phase, auditory, 176, 228, 234
phase of visual gratings, 114
pictures, 214-220
pluck bow, 234
shape, 229-233
size, 234
speech, 106, 228
taste, 228, 235-236, 255
tone sequences, 308

Distance
city-block, 15,193
Euclidean, 15
measures, 15,173

Distribution discrimination, 234, 298-300,
304-308

Distribution function, 348-349
Distributions, see Binomial distribution; %*

distribution; Logistic distribu-
tion; Normal distribution;
Poisson distribution; Rectangular
distribution

E

Efficiency
of d' estimates, 325-327
of pooled sensitivity estimates,

335-337
of real vs ideal observers, 303
of statistics, 352
of threshold estimates, 290-291

Empirical isobias curve, see Isobias curve,
empirical

Empirical ROC, see ROC, empirical
Equivalence of measures, 7
Error ratio, 93
Euclidean distance, see Distance, Euclidean

Exponentials, 357-358
External noise, see Variance, external

False alarm, xviii, 4,142-144
False-alarm rate, 5

calculated from parameters, 44 46
in multi-interval designs, see "hit and

false-alarm rates" under
specific design

in rating experiment, 53-54
as response-bias measure, 85-86
in yes-no, 5

False fame, 123-124
False memory, 120-123
Feature-complete factorial design, 246,

260
Feedback, 129-130
Filtering, see Attention, selective
Fixed discrimination, see Designs, fixed
Floor effects, see Sensitivity, near-chance
Forced choice, 166

see also 2AFC, 3AFC, mAFC

G

Garner paradigm, 194-195, 205-206
Gaussian distribution, see Normal

distribution
General Recognition Theory, 259-262,

304-308
see also Decisional separability;

Multidimensional signal
detection analysis; Perceptual
independence; Perceptual
separability

Generalized linear models, 337-339
Group decisions, 308-310

H

Hall's adaptive method, 294
Hierarchical models, 310-311
Hit, 4,142-144
Hit rate, 5

calculated from parameters, 44—46
in multi-interval designs, see "hit and

false-alarm rates" under
specific design

in rating experiment, 53-54
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as sensitivity measure, 6
in yes-no, 5

Hypnosis, 27-28
Hypothesis testing, 319, 353-354

and decision rules, 44
and discrete thinking, 106
independence, 353-354
with logistic regression models,

337-339
proportions, 320-322
response bias, 328
ROC points, 322-323
sensitivity, 325-330

Ideal observers, 267, 290, 299-303
Identifiability, 104
Identification, 2

absolute, 113,245
curvature, 260-262
vs detection, 191-193
intensity, auditory, 127-130
multidimensional, 245-266

of objects, 246-249
sensitivity, 246-249

one-dimensional, 126-135
sensitivity, 127-132

orientation, 260-262
speech, 106, 124-126
vs uncertain detection, 255-259
X-rays, 256
see also mAFC; Simultaneous

detection and identification
Identification operating characteristics, see

IOC
Implied ROC, see ROC
Importance ratio, 43
Independence

of events, 344-345
of perceptual channels or dimensions,

191-193
see also Correlation; Independent-

observation models; Percep-
tual independence; Percep-
tual separability

Independent-observation models, 198-202
see also "independent-observation

model" under specific
designs

Information theory, 132

Instructions, 71-72
Integrality, 194-195
Integration models, 200-202
Internal noise, see Variance, internal
Interstimulus interval, see ISI
IOC (identification operating characteris-

tic), 256-258
ISI (interstimulus interval), 176-177
Isobias curve, 35-41, 93-94, 98

for Choice Theory measures, 98
in multi-interval designs, see "isobias

curve " under specific design
monotonicity of, 40-41
in same-different, 219-220, 226-227
for SDT measures, 35^41
for threshold measures, 93-94

Isobias curve, empirical, 39-40
Isosensitivity curve, see ROC

Jittering, 181
jnd (just-noticeable difference), 22,

120-121
Joint distribution, 146

K

Kaernbach's adaptive method, 277, 282,
292, 293

Least-squares estimation, 354
Lie detection, 6, 49
Likelihood ratio

Choice Theory, see f ^ , B'H, andB"
decision rule, 42-44
in multi-interval designs, see "response

bias " under specific designs
as response bias measure, see B'', ft,

ftL,andB'l{
as ROC slope, 33-34
SDT, see ft
for unequal-variance model, 67-69

Logarithms, 357-358
Logistic distribution, 108-109, 349

as psychometric function, 275, 284
see also Underlying distributions,

Choice Theory; Log-odds
transformation
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Logistic regression, 337-339
Log-odds transformation, 95-96

and Choice Theory, 95-96
and logistic regression, 337-339

M

mAFC, 246
in adaptive methods, 293
decision space, 249-250
as an example of multidimensional

identification, 249-250
vs other designs, 253-255
psychometric functions, 253
response bias, 250-251
sensitivity, 250, 426-430
statistical properties of d', 329-330
threshold model, 251-252
vs2AFC, 249, 251,293

Market research, 250-251
Matching experiment, 182-183

brightness, 271-272
Matching-to-sample, see ABX
Maximum-likelihood estimation, 291,

354-355
of empirical thresholds, 284-285, 294
ofROCs,70, 330

Maximum (-output) rule, 154-158
see also Independent-observation

models
Mean category scale, 130-131
Mean (-shift) integrality, 195-196
Memory as limitation in perception,

133-135, 175-179
Method of constant stimuli, see Constant

stimuli, method of
Minimum (-output) rule, 154-158
Miss, xviii, 4, 142-144
MLE, see Maximum-likelihood estimation
Monte Carlo techniques, see Computer

simulations
Multidimensional Signal Detection Analy-

sis (MSDA), 260-262, 433
Multiple-choice exams, 249-252
Multiple-look experiments, 206-207

N

Noise, external, see Variance, external
Noise, internal, see Variance, internal
Nonparametric analysis, 100-104,

130-132

Normal distribution, 35, 320-322,
348-349, 374-378

bivariate, 144-152, 322-323, 349-351
as psychometric function, 117-120,

274
see also Underlying distributions, in

SDT; z-transformation

O

Oddity, 235-238
decision space, 236-237
differencing model, 236-237
independent-observation model, 237
vs other designs, 253-255
sensitivity, 236-238, 420-425
statistical properties of d', 329-330
threshold model, 238

One-interval design, 1
vs other designs, see specific design
see also Rating experiment; Yes-no

design
Optimality

see Decision rule, likelihood ratio;
Ideal observers

Parameter estimation, 319
pooled sensitivity and bias, 331-337
proportions, 320-322
response bias, 328
ROC points, 322-323
sensitivity, 323-330
see also Least-squares estimation;

Maximum-likelihood estima-
tion

Parameter Estimation by Sequential
Testing, see PEST

Payoffs, 71
p(c) (proportion correct), 7

and d', 9-13
as sensitivity measure in yes-no, 7
as sensitivity measure in 2AFC,

170-175
as sensitivity measure in identification,

131-132
see also p(c)m^

p(c)* (proportion correct with unequal
presentation probabilities), 7

p(c)max (unbiased proportion correct), 153
in 2AFC, 170-175
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in yes-no, 153, 171-172
see also "sensitivity" under specific

designs
Perceptual dependence and independence,

149, 260, 262
Perceptual integrality, 195-196, 260-262
Perceptual separability, 195-196, 260-262
Perfect performance, see Sensitivity,

near-perfect
PEST, 282-287

MOUSE and RAT modes, 286
vs other methods, 291
stepping rules, 282-283

0 (contingency statistic), 103
<t> (normal density), see Normal distribution
O (normal distribution function), see

Normal distribution
Point of subjective equality, see PSE
Poisson distribution, 301-302
Pooled data, 331-337
Presentation probabilities, 7

and bias, 42^4
in one-dimensional classification,

129-130
and ROC generation, 72

Probability, 343-351
Probit analysis, 274, 293

see also Normal distribution, as
psychometric function

Product rule, 151,350
Projection of multidimensional distribu-

tions, 146-149
Proportion correct, see p(c)
PSE, 120-121, 273
Pseudo-J', 122, 124
Psychometric function, 119, 272-276

shape of, 273-276
slope, 293
in 2AFC, 273-274
in mAFC, 253
see also Logistic distribution;

Normal distribution;
Weibull function

Psychophysics
history, 22-24
vs psychoacoustics, 312-313

Q

QUEST, 284-286
vs other methods, 286, 291

R

Radiology, see X-ray reading
Random variables, 345-349
Range-frequency model, 130
Rating experiment, 2, 51-70

calculating response rates, 53-57
decision space, 64-69
design, 51-52
graphing data, 55-57
response sets, 52
see also ROC

Receiver operating characteristic, see ROC
Recognition, 1

of faces, 3-6
of letters, 246-249
of odors, 51-57, 64-66
of words, 40, 57-59, 90-92, 160-161,

166-170,185, 193-194
Rectangular distribution, see Underlying

distributions, in threshold theory
Relative operating characteristic, see ROC
Reminder paradigm, 180-182, 255

vs other designs, 181-183
see also Standard stimulus

Response bias, 27-44, 362, 366
in below-chance performance, 41
as criterion location, 29-31
in multi-interval designs, see "response

bias " under specific design
Response bias measures, 362, 363, 366

characteristics of, 28-29
comparisons of, 36—42
Choice Theory, see b,b',B", B'H , &
in multi-interval designs, see "response

bias " under specific design
nonparametric, see B",B'H
for rating experiment, 64-69
SDT, see c, c', ft
and sensitivity measures, 41—42
threshold theory, 85-86
see also Error ratio; False-alarm rate, as

response-bias measure; Yes
rate

Reversal (in adaptive methods), 283-286
Reward function, see Payoffs
ROC, 10,51-77

for A'
empirical, 55-59, 66-77
fitting to data, 70, 330,433
generation methods, 71-72
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for group data, 337
implied, 9-13
in multi-interval designs, see "ROC"

under specific design
regularity, 11,18
symmetry, 14
threshold, 12-13, 83-84, 89-92, 110
Type-2, 73-74
in z-coordinates, 11, 55-59
see also Maximum-likelihood estima-

tion, ROC; Rating experiment
ROC slope (linear coordinates), 11, 33-34
ROC slope (z-coordinates), 14, 59,

330-331
in multi-interval designs, see "ROC"

under specific design
nonunit slope, 57-59
and sensitivity, 74-77
and uncertainty, 76
unit slope, 14

ROC space, 10
Roving discrimination, see Designs, roving

5, see ROC slope (^-coordinates)
S', (sensitivity measure for rating design),

104
Same-different, 214-228

decision space, 215-218, 222-224
differencing model, 221-227
hit and false-alarm rates, 215, 223
independent-observation model,

216-217
isobias curves, 219-220, 226-227
vs other designs, 216-217,228,253-255
response bias, 218-220, 225-227
ROC, 220, 223-225
sensitivity, 216-220, 223-225,

380-419
statistical properties of d', 329-330
threshold model, 217-218

Sampling distribution, 351-352
Saturated model, see Logistic regression
Sensitivity, 3, 361, 363, 365

as mean difference in decision space,
18-20

medical use of term, 6
in multi-interval designs, see "sensitiv-

ity" under specific design

near-chance, 8-9,40-41
near-perfect, 8-9,129, 224-225, 321,

336
as perceptual distance, 15

Sensitivity measures, 3, 361, 362, 365
area-based, see A', Ag, Area theorem,

^and bias measures, 41-42
characteristics of, 5-7
in Choice Theory, see a
in classification, one-dimensional; see

Classification, one-dimen-
sional, sensitivity

in multi-interval designs, see "sensitiv-
ity" under specific design

nonparametric, see A',Ag, S'
for nonunit-slope ROCs, see Az, d\, d'2,

da,d'e
in ROC space, 12, 59-64
in SDT, see Az, d', d\, d'2, da, d'e
in threshold theory, 82-89
for unit-slope ROCs, see d', a
see also p(c\ p(c)mm

Separability, 194-195
Sequential effects, 183
Simulations, see Computer simulations
Simultaneous detection and identification,

255-259
Simultaneous simple and compound detec-

tion, 200-202
Specificity, 6
Staircase procedure, 281-282
Standard stimulus, 113-114

see also Reminder experiment
State diagram, 81
Statistical bias, 352

of d' estimates, 323-325
of pooled sensitivity estimates,

331-335
of threshold estimates, 290

Statistics, 351-355
and detection theory, 319-341
see also Hypothesis testing; Maxi-

mum-likelihood estimation;
Parameter estimation

Stimulus repetition, see Compound
detection; Multiple look
experiments

Subliminal perception, 105-106, 258-259
Sweat factor, 290
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Target proportion (of an adaptive method),
see Adaptive methods, target
proportion

3AFC (three-alternative forced-choice),
249-252, 426-430

vs other designs, 251-255
Threshold, compared with criterion, 22-23
Threshold, empirical, 119-120, 269-296

and response bias, 287-289
Threshold theories, 81-94,104-107

double high-threshold, 88-94
for multi-interval designs, see specific

design
low threshold, 86-88
single high-threshold, 82-86
three-state, 110

Thurstonian scaling, see Classification,
one-dimensional

Time order errors, 176-177
Total d', see d', total
Trace coding, 178-179
Trace-context theory, 133-135, 178-179,

310-311
Trading relations, 114, 124-126
Training, effects of, 46
Transformations

arcsine, 103
logarithmic and exponential, 274,357-358
log-odds, 95
z, see z-transformation

Triangular method, see Oddity
2AFC (two-alternative forced-choice),

166-179
advantages, 179
decision space, 168-170
hit and false-alarm rates, 167
vs one-interval, 167-168, 175-176,

181-182
vs other designs, 181-183, 234, 251,

253-255
for psychometric functions, see

psychometric function, 2AFC
response bias, 170, 287-289
ROC, 173-174
sensitivity, 168, 170-175, 426-430
statistical properties of d', 328-329
unbiased performance, 170-171

Type-I error, 44

U

UDTR, 278, 281, 289
decision rule, 278
vs other methods, 292

Unbiased performance, see p(c)max

Uncertain detection, 188-202
vs identification, see Simultaneous de-

tection and identification
independent-observation rule, 197-199
on one dimension, 189-191
optimal model, 199
summation rule, 196-197

Uncertainty
extrinsic vs intrinsic, 188
see also Uncertain detection

Underlying distributions, 16
in Choice Theory, 98-100
multidimensional, 144-152
in multi-interval designs, see "decision

space " under specific design
in SDT, 16-20
in threshold theory, 82-91
and transformations, 19-20
with unequal variances, 57-64,

173-175
yes-no, 16
see also Decision space

Unsaturated model, see Logistic regression
Up-Down Transformed Method, see

UDTR

Variance, external, 297-298, 302-303
Variance, internal, 297-298, 302-303

context, 134-135
sensory, 134-135, 178-179
trace, 178-179
see also Attention, incomplete

Variance (in statistics), see "confidence in-
terval" under specific statistic

Visual search, 311

W

Wald rule in adaptive methods, 278-280
Weibull function, 275-276



492 Subject Index

X-ray reading, 28-35 z-transformation! 8
for one-dimensional classification,

Y 117-128
for psychometric functions, 117-121

Yes-no design, 1-50, 361-362 for ROCs j W2 55_
in adaptive methods 271-272 293 yariance Qf 325_32?

vs other designs, 167-168,175-176,
181-182, 228, 234, 253-255

Yes rate, 92-93




