

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

http://www.oraclePress.com

®

OCA/OCP Java® SE 7
Programmer I & II

Study Guide

(Exams 1Z0-803 & 1Z0-804)

00-FM.indd i 9/2/2014 5:46:25 PM

This page intentionally left blank

®

OCA/OCP Java® SE 7
Programmer I & II

Study Guide

(Exams 1Z0-803 & 1Z0-804)

Kathy Sierra
Bert Bates

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

McGraw-Hill Education is an independent entity from Oracle Corporation and is not

be used in assisting students to prepare for the OCA Java SE 7 Programmer I and
OCP Java SE 7 Programmer II exams. Neither Oracle Corporation nor McGraw-Hill

relevant exam. Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

00-FM.indd iii 9/2/2014 5:46:27 PM

affiliated with Oracle Corporation in any manner. This publication and digital content
 may

Education warrants that use of this publication and digital content will ensure passing the

Copyright © 2015 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-177199-3

MHID: 0-07-177199-9

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-177200-6,
MHID: 0-07-177200-6.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use
in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of
their respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human
or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness
of any information included in this work and is not responsible for any errors or omissions or the results obtained from the use of
such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work
is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right
to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill
Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if
any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www
.mhprofessional.com

CONTRIBUTORS

Kathy Sierra was a lead developer for the SCJP exam for Java 5 and Java 6. Kathy
worked as a Sun “master trainer,” and in 1997, founded JavaRanch.com, the world’s
largest Java community website. Her bestselling Java books have won multiple
Software Development Magazine awards, and she is a founding member of Oracle’s
Java Champions program.

These days, Kathy is developing advanced training programs in a variety of domains
(from horsemanship to computer programming), but the thread that ties all of her
projects together is helping learners reduce cognitive load.

Bert Bates was a lead developer for many of Sun’s Java certification exams,
including the SCJP for Java 5 and Java 6. Bert was also one of the lead developers
for Oracle’s OCA 7 and OCP 7 exams. He is a forum moderator on JavaRanch.com
and has been developing software for more than 30 years (argh!). Bert is the
co-author of several bestselling Java books, and he’s a founding member of Oracle’s
Java Champions program. Now that the book is done, Bert plans to go whack a few
tennis balls around and once again start riding his beautiful Icelandic horse,
Eyrraros fra Gufudal-Fremri.

About the Technical Review Team

This is the fourth edition of the book that we’ve cooked up. The first version we
worked on was for Java 2. Then we updated the book for the SCJP 5, again for the
SCJP 6, and now for the OCA 7 and OCP 7 exams. Every step of the way, we were
unbelievably fortunate to have fantastic, JavaRanch.com-centric technical review
teams at our sides. Over the course of the last 12 years, we’ve been “evolving” the
book more than rewriting it. Many sections from our original work on the Java 2
book are still intact. On the following pages, we’d like to acknowledge the members
of the various technical review teams who have saved our bacon over the years.

About the Java 2 Technical Review Team

Johannes de Jong has been the leader of our technical review teams forever and
ever. (He has more patience than any three people we know.) For the Java 2 book,
he led our biggest team ever. Our sincere thanks go out to the following volunteers
who were knowledgeable, diligent, patient, and picky, picky, picky!

Rob Ross, Nicholas Cheung, Jane Griscti, Ilja Preuss, Vincent Brabant, Kudret
Serin, Bill Seipel, Jing Yi, Ginu Jacob George, Radiya, LuAnn Mazza, Anshu
Mishra, Anandhi Navaneethakrishnan, Didier Varon, Mary McCartney, Harsha
Pherwani, Abhishek Misra, and Suman Das.

00-FM.indd v 9/2/2014 5:46:27 PM

http://www.JavaRanch.com
http://www.JavaRanch.com
http://www.JavaRanch.com

This page intentionally left blank

About the SCJP 5 Technical Review Team
We don’t know who
burned the most midnight
oil, but we can (and did)
count everybody’s edits—
so in order of most edits
made, we proudly present
our Superstars.

Our top honors go to
Kristin Stromberg—every
time you see a semicolon
used correctly, tip your hat
to Kristin. Next up is
Burk Hufnagel who fixed
more code than we care to
admit. Bill Mietelski and
Gian Franco Casula
caught every kind of error
we threw at them—
awesome job, guys!
Devender Thareja made
sure we didn’t use too
much slang, and Mark
Spritzler kept the humor
coming. Mikalai Zaikin
and Seema Manivannan
made great catches every
step of the way, and
Marilyn de Queiroz and
Valentin Crettaz both put
in another stellar
performance (saving our
butts yet again).

Marcelo Ortega, Jef Cumps (another veteran), Andrew Monkhouse, and Jeroen Sterken rounded
out our crew of Superstars—thanks to you all. Jim Yingst was a member of the Sun exam creation
team, and he helped us write and review some of the twistier questions in the book (bwa-ha-ha-ha).

As always, every time you read a clean page, thank our reviewers, and if you do catch an error, it’s
most certainly because your authors messed up. And oh, one last thanks to Johannes. You rule, dude!

Andrew

Bill M.
Burk

Devender

Gian

Jef Jeoren
Jim

Johannes
Kristin Marcelo Marilyn

Mark Mikalai Seema Valentin

00-FM.indd vii 9/2/2014 5:46:27 PM

About the SCJP 6 Technical Review Team
Since the upgrade

to the Java 6 exam was
like a small, surgical
strike we decided that
the technical review
team for this update to
the book needed to be
similarly fashioned. To
that end we hand-
picked an elite crew of
JavaRanch’s top gurus
to perform the review
for the Java 6 exam.

Our endless gratitude goes to Mikalai
Zaikin. Mikalai played a huge role in
the Java 5 book, and he returned to help
us out again for this Java 6 edition. We
need to thank Volha, Anastasia, and
Daria for letting us borrow Mikalai. His
comments and edits helped us make
huge improvements to the book.
Thanks, Mikalai!

Marc Peabody gets special kudos for helping us out on a double header! In addition to helping us
with Sun’s new SCWCD exam, Marc pitched in with a great set of edits for this book—you saved our
bacon this winter, Marc! (BTW, we didn’t learn until late in the game that Marc, Bryan Basham, and
Bert all share a passion for ultimate Frisbee!)

Like several of our reviewers, not only does Fred Rosenberger volunteer copious amounts of his
time moderating at JavaRanch, he also found time to help us out with this book. Stacey and Olivia,
you have our thanks for loaning us Fred for a while.

Marc Weber moderates at some of JavaRanch’s busiest forums. Marc knows his stuff, and
uncovered some really sneaky problems that were buried in the book. While we really appreciate
Marc’s help, we need to warn you all to watch out—he’s got a Phaser!

Finally, we send our thanks to Christophe Verre—if we can find him. It appears that Christophe
performs his JavaRanch moderation duties from various locations around the globe, including France,
Wales, and most recently Tokyo. On more than one occasion Christophe protected us from our own
lack of organization. Thanks for your patience, Christophe! It’s important to know that these guys all
donated their reviewer honorariums to JavaRanch! The JavaRanch community is in your debt.

Fred
Marc P.

Marc W.

Mikalai
Christophe

00-FM.indd viii 9/2/2014 5:46:28 PM

The OCA 7 and OCP 7 Team

Contributing Authors The OCA 7 exam is primarily a useful repackaging of some of the
objectives from the SCJP 6 exam. On the other hand, the OCP 7
exam introduced a vast array of brand-new topics. We enlisted
several talented Java gurus to help us cover some of the new
topics on the OCP 7 exam. Thanks and kudos to Tom McGinn
for his fantastic work in creating the massive JDBC chapter.
Several reviewers told us that Tom did an amazing job channeling
the informal tone we use throughout the book. Next, thanks to
Jeanne Boyarsky. Jeanne was truly a renaissance woman on this Tom

Roel

Jeanne

project. She contributed to several OCP chapters, she wrote some questions for the master exams, she
performed some project management activities, and as if that wasn’t enough, she was one of our most
energetic technical reviewers. Jeanne, we can’t thank you enough. Our thanks go to Matt Heimer for
his excellent work on the Concurrent chapter. A really tough topic, nicely handled! Finally, Roel De
Nijs and Roberto Perillo made some nice contributions to the book and helped out on the technical
review team—thanks, guys!

Mikalai

Technical Review Team
Roel, what can we say? Your work as a technical reviewer is unparalleled. Roel caught so many technical

his focus, and made this book better in countless ways. Thank you, Roel!
In addition to her other contributions, Jeanne provided one of the

most thorough technical reviews we received. (We think she enlisted
her team of killer robots to help her!)

It seems like no K&B book would be complete without help from
our old friend Mikalai Zaikin. Somehow, between earning 812
different Java certifications, being a husband and father (thanks to
Volha, Anastasia, Daria, and Ivan), and being a “theoretical
fisherman” [sic], Mikalai made substantial contributions to the quality
of the book; we’re honored that you helped us again, Mikalai.

Next up, we’d like to thank Vijitha Kumara, JavaRanch moderator
and tech reviewer extraordinaire. We had many reviewers help out
during the long course of writing this book, but Vijitha was one of the

few who stuck with us from Chapter 1 all the way through the master exams and on to Chapter 15.
Vijitha, thank you for your help and persistence!

Finally, thanks to the rest of our review team: Roberto Perillo (who also wrote some killer exam
questions), Jim Yingst (was this your fourth time?), other repeat offenders: Fred Rosenberger,
Christophe Verre, Devaka Cooray, Marc Peabody, and newcomer Amit Ghorpade—thanks, guys!

Vijitha
Roberto

00-FM.indd ix 9/2/2014 5:46:29 PM

errors, it made our heads spin. Between the book and other digital
content, we estimate that there are over 1,500 pages of “stuff” here.
 It’s huge! Roel grinded through page after page, never lost

This page intentionally left blank

For Andi

For Bob

00-FM.indd xi 9/2/2014 5:46:30 PM

This page intentionally left blank

xiii

CONTENTS AT A GLANCE

Part I
OCA and OCP

1 Declarations and Access Control . 3

2 Object Orientation . 83

3 Assignments . 165

4 Operators . 223

5 Working with Strings, Arrays, and ArrayLists . 257

6 Flow Control and Exceptions . 307

Part II
OCP

7 Assertions and Java 7 Exceptions . 377

8 String Processing, Data Formatting, Resource Bundles 417

9 I/O and NIO . 477

10 Advanced OO and Design Patterns . 541

11 Generics and Collections . 573

12 Inner Classes . 681

13 Threads . 713

14 Concurrency . 785

15 JDBC . 841

 Index . 953

00-FM.indd xiii 9/2/2014 5:46:30 PM

A Serialization . A-1

B Classpaths and JARs Classpaths and JARs . B-1

C About the Download . 947

This page intentionally left blank

xv

CONTENTS

Contributors . v
Acknowledgments . xxvii
Preface . xxix
Introduction . xxxi

Part I
OCA and OCP

1 Declarations and Access Control 3

Java Refresher . 4
Identifiers and Keywords (OCA Objectives 1.2 and 2.1) 6

Legal Identifiers . 6
Oracle’s Java Code Conventions . 7

Define Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 9
Source File Declaration Rules . 10
Using the javac and java Commands . 11
Using public static void main(String[] args) 13
Import Statements and the Java API . 13
Static Import Statements . 15
Class Declarations and Modifiers . 17
Exercise 1-1: Creating an Abstract Superclass and

Concrete Subclass . 23
Use Interfaces (OCA Objective 7.6) . 24

Declaring an Interface . 24
Declaring Interface Constants . 27

Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5,
4.1, 4.2, 6.2, and 6.6) . 28

Access Modifiers . 29
Nonaccess Member Modifiers . 42
Constructor Declarations . 49
Variable Declarations . 50

00-FM.indd xv 9/2/2014 5:46:30 PM

xvi OCA/OCP Java SE 7 Programmer I & II Study Guide

Declare and Use enums (OCA Objective 1.2 and
OCP Objective 2.5) . 60

Declaring enums . 61
 ✓ Two-Minute Drill . 68
 Q&A Self Test . 75

Self Test Answers . 81

2 Object Orientation . 83

Encapsulation (OCA Objectives 6.1 and 6.7) 84
Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3) . . 88

IS-A . 92
HAS-A . 93

Polymorphism (OCA Objectives 7.2 and 7.3) 96
Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) . . . 100

Overridden Methods . 100
Overloaded Methods . 106

Casting (OCA Objectives 7.3 and 7.4) . 113
Implementing an Interface (OCA Objective 7.6) 116
Legal Return Types (OCA Objectives 2.2, 2.5, 6.1, and 6.3) 122

Return Type Declarations . 122
Returning a Value . 124

Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) . . 126
Determine Whether a Default Constructor Will Be Created . 130
Overloaded Constructors . 134
Initialization Blocks . 138

Statics (OCA Objective 6.2) . 140
Static Variables and Methods . 141

 ✓ Two-Minute Drill . 149
 Q&A Self Test . 154

Self Test Answers . 163

3 Assignments . 165

Stack and Heap—Quick Review . 166
Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3,

and Upgrade Objective 1.2) . 168
Literal Values for All Primitive Types 168

00-FM.indd xvi 9/2/2014 5:46:30 PM

Contents xvii

Assignment Operators . 172
Exercise 3-1: Casting Primitives . 178

Scope (OCA Objectives 1.1 and 2.5) . 182
Variable Initialization (OCA Objective 2.1) . 185

Using a Variable or Array Element That Is Uninitialized and
Unassigned . 185

Local (Stack, Automatic) Primitives and Objects 188
Passing Variables into Methods (OCA Objective 6.8) 194

Passing Object Reference Variables . 194
Does Java Use Pass-By-Value Semantics? 195
Passing Primitive Variables . 196

Garbage Collection (OCA Objective 2.4) . 199
Overview of Memory Management and Garbage Collection . . 199
Overview of Java’s Garbage Collector 200
Writing Code That Explicitly Makes Objects Eligible for

Collection . 202
Exercise 3-2: Garbage Collection Experiment 207

 ✓ Two-Minute Drill . 209
 Q&A Self Test . 212

Self Test Answers . 220

4 Operators . 223

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 224
Assignment Operators . 224
Relational Operators . 226
instanceof Comparison . 232
Arithmetic Operators . 235
Conditional Operator . 240
Logical Operators . 241

 ✓ Two-Minute Drill . 247
 Q&A Self Test . 249

Self Test Answers . 255

5 Working with Strings, Arrays, and ArrayLists 257

Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 258
The String Class . 258

00-FM.indd xvii 9/2/2014 5:46:30 PM

xviii OCA/OCP Java SE 7 Programmer I & II Study Guide

Important Facts About Strings and Memory 264
Important Methods in the String Class 265
The StringBuilder Class . 269
Important Methods in the StringBuilder Class 271

Using Arrays (OCA Objectives 4.1 and 4.2) . 273
Declaring an Array . 274
Constructing an Array . 275
Initializing an Array . 277

Using ArrayList (OCA Objective 4.3) . 289
When to Use ArrayLists . 289
ArrayList Methods in Action . 292
Important Methods in the ArrayList Class 293
Encapsulation for Reference Variables 294

 ✓ Two-Minute Drill . 296
 Q&A Self Test . 298

Self Test Answers . 305

6 Flow Control and Exceptions . 307

Using if and switch Statements (OCA Objectives 3.4 and 3.5—
also Upgrade Objective 1.1) . 308

if-else Branching . 308
switch Statements (OCA, OCP, and Upgrade Topic) 313

Exercise 6-1: Creating a switch-case Statement 320
Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4,

 and 5.5) . 321
Using while Loops . 321
Using do Loops . 323
Using for Loops . 323
Using break and continue . 330
Unlabeled Statements . 331
Labeled Statements . 331

Exercise 6-2: Creating a Labeled while Loop 333
Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 334

Catching an Exception Using try and catch 335
Using finally . 336
Propagating Uncaught Exceptions . 339

Exercise 6-3: Propagating and Catching an Exception 341

00-FM.indd xviii 9/2/2014 5:46:30 PM

Contents xix

Defining Exceptions . 342
Exception Hierarchy . 343
Handling an Entire Class Hierarchy of Exceptions 344
Exception Matching . 345
Exception Declaration and the Public Interface 347
Rethrowing the Same Exception . 353
Exercise 6-4: Creating an Exception 353

Common Exceptions and Errors (OCA Objective 8.5) 354
Where Exceptions Come From . 355
JVM Thrown Exceptions . 355
Programmatically Thrown Exceptions 356
A Summary of the Exam’s Exceptions and Errors 357
End of Part I—OCA . 357

 ✓ Two-Minute Drill . 361
 Q&A Self Test . 364

Self Test Answers . 373

Part II
OCP

7 Assertions and Java 7 Exceptions 377

Working with the Assertion Mechanism (OCP Objective 6.5) 378
Assertions Overview . 379
Enabling Assertions . 382
Using Assertions Appropriately . 386

Working with Java 7 Exception Handling
(OCP Objectives 6.2 and 6.3) . 389

Use the try Statement with multi-catch and finally Clauses . . 389
Autocloseable Resources with a try-with-resources

Statement . 396
 ✓ Two-Minute Drill . 404
 Q&A Self Test . 406

Self Test Answers . 414

00-FM.indd xix 9/2/2014 5:46:30 PM

xx OCA/OCP Java SE 7 Programmer I & II Study Guide

8 String Processing, Data Formatting, Resource Bundles . . 417

String, StringBuilder, and StringBuffer (OCP Objective 5.1) 418
Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1,

12.4, 12.5, and 12.6) . 418
Working with Dates, Numbers, and Currencies 419

Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2,
and 5.3) . 431

A Search Tutorial . 432
Locating Data via Pattern Matching . 443
Tokenizing . 446
Formatting with printf() and format() 451

Resource Bundles (OCP Objectives 12.2, 12.3, and 12.5) 454
Resource Bundles . 454
Property Resource Bundles . 456
Java Resource Bundles . 457
Default Locale . 458
Choosing the Right Resource Bundle 459

 ✓ Two-Minute Drill . 463
 Q&A Self Test . 466

Self Test Answers . 474

9 I/O and NIO . 477

File Navigation and I/O (OCP Objectives 7.1 and 7.2) 478
Creating Files Using the File Class . 480
Using FileWriter and FileReader . 482
Combining I/O Classes . 484
Working with Files and Directories . 487
The java.io.Console Class . 491

Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 493
Creating a Path . 495
Creating Files and Directories . 497
Copying, Moving, and Deleting Files 498
Retrieving Information about a Path . 500
Normalizing a Path . 501
Resolving a Path . 503
Relativizing a Path . 505

File and Directory Attributes (OCP Objective 8.3) 506
Reading and Writing Attributes the Easy Way 506

00-FM.indd xx 9/2/2014 5:46:30 PM

Contents xxi

Types of Attribute Interfaces . 508
Working with BasicFileAttributes . 509
Working with DosFileAttributes . 511
Working with PosixFileAttributes . 512
Reviewing Attributes . 513

DirectoryStream (OCP Objective 8.4) . 514
FileVisitor (OCP Objective 8.4) . 515
PathMatcher (OCP Objective 8.5) . 519
WatchService (OCP Objective 8.6) . 523
Serialization (Objective 7.2) . 526
 ✓ Two-Minute Drill . 528
 Q&A Self Test . 530

Self Test Answers . 538

10 Advanced OO and Design Patterns 541

IS-A and HAS-A (OCP Objectives 3.3 and 3.4) 542
Coupling and Cohesion . 543

Coupling . 543
Cohesion . 544

Object Composition Principles (OCP Objective 3.4) 545
Polymorphism . 548
Benefits of Composition . 549

Singleton Design Pattern (OCP Objective 3.5) 549
What Is a Design Pattern? . 549
Problem . 550
Solution . 551
Benefits . 554

DAO Design Pattern (OCP Objective 3.6) . 555
Problem . 555
Solution . 556
Benefits . 559

Factory Design Pattern (OCP Objective 3.7) . 560
Problem . 560
Solution . 560
Benefits . 563

 ✓ Two-Minute Drill . 565
 Q&A Self Test . 567

Self Test Answers . 571

00-FM.indd xxi 9/2/2014 5:46:30 PM

xxii OCA/OCP Java SE 7 Programmer I & II Study Guide

11 Generics and Collections . 573

toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) . . 574
The toString() Method . 575
Overriding equals() . 576
Overriding hashCode() . 581

Collections Overview (OCP Objectives 4.5 and 4.6) 588
So What Do You Do with a Collection? 588
Key Interfaces and Classes of the Collections Framework 589
List Interface . 593
Set Interface . 594
Map Interface . 595
Queue Interface . 596

Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) . . 598
ArrayList Basics . 598
Autoboxing with Collections . 600
The Java 7 “Diamond” Syntax . 603
Sorting Collections and Arrays . 604
Navigating (Searching) TreeSets and TreeMaps 620
Other Navigation Methods . 621
Backed Collections . 622
Using the PriorityQueue Class and the Deque Interface 625
Method Overview for Arrays and Collections 626
Method Overview for List, Set, Map, and Queue 626

Generic Types (OCP Objectives 4.1 and 4.3) . 629
The Legacy Way to Do Collections . 630
Generics and Legacy Code . 633
Mixing Generic and Nongeneric Collections 633
Polymorphism and Generics . 639
Generic Methods . 641
Generic Declarations . 652

 ✓ Two-Minute Drill . 661
 Q&A Self Test . 667

Self Test Answers . 678

00-FM.indd xxii 9/2/2014 5:46:30 PM

Contents xxiii

12 Inner Classes . 681

Nested Classes (OCP Objective 2.4) . 683
Inner Classes . 683

Coding a “Regular” Inner Class . 685
Referencing the Inner or Outer Instance from Within

the Inner Class . 688
Method-Local Inner Classes . 690

What a Method-Local Inner Object Can and Can’t Do 691
Anonymous Inner Classes . 692

Plain-Old Anonymous Inner Classes, Flavor One 693
Plain-Old Anonymous Inner Classes, Flavor Two 696
Argument-Defined Anonymous Inner Classes 697

Static Nested Classes . 699
Instantiating and Using Static Nested Classes 700

 ✓ Two-Minute Drill . 702
 Q&A Self Test . 704

Self Test Answers . 710

13 Threads . 713

Defining, Instantiating, and Starting Threads (OCP Objective 10.1) . . 714
Defining a Thread . 717
Instantiating a Thread . 718
Starting a Thread . 720

Thread States and Transitions (OCP Objective 10.2) 728
Thread States . 729
Preventing Thread Execution . 731
Sleeping . 731
Exercise 13-1: Creating a Thread and Putting It to Sleep . . 733
Thread Priorities and yield() . 734

Synchronizing Code, Thread Problems (OCP Objectives 10.3
and 10.4) . 738

Synchronization and Locks . 744
Exercise 13-2: Synchronizing a Block of Code 747
Thread Deadlock . 753

Thread Interaction (OCP Objectives 10.3 and 10.4) 755
Using notifyAll() When Many Threads May Be Waiting . . . 760

 ✓ Two-Minute Drill . 765
 Q&A Self Test . 769

00-FM.indd xxiii 9/2/2014 5:46:30 PM

xxiv OCA/OCP Java SE 7 Programmer I & II Study Guide

Self Test Answers . 781
Exercise Answers . 784

14 Concurrency . 785

Concurrency with the java.util.concurrent Package 786
Apply Atomic Variables and Locks (OCP Objective 11.2) 786

Atomic Variables . 787
Locks . 789

Use java.util.concurrent Collections (OCP Objective 11.1) and
Use a Deque (OCP Objective 4.5) . 797

Copy-on-Write Collections . 799
Concurrent Collections . 800
Blocking Queues . 801

Use Executors and ThreadPools (OCP Objective 11.3) 805
Identifying Parallel Tasks . 806
How Many Threads Can You Run? . 807
CPU-Intensive vs. I/O-Intensive Tasks 807
Fighting for a Turn . 808
Decoupling Tasks from Threads . 809

Use the Parallel Fork/Join Framework (OCP Objective 11.4) 815
Divide and Conquer . 816
ForkJoinPool . 817
ForkJoinTask . 817

 ✓ Two-Minute Drill . 829
 Q&A Self Test . 832

Self Test Answers . 838

15 JDBC . 841

Starting Out: Introduction to Databases and JDBC 842
Talking to a Database . 844
Bob’s Books, Our Test Database . 847

Core Interfaces of the JDBC API (OCP Objective 9.1) 851
Connect to a Database Using DriverManager (OCP Objective 9.2) . . 853

The DriverManager Class . 854
The JDBC URL . 858
JDBC Driver Implementation Versions 860

00-FM.indd xxiv 9/2/2014 5:46:30 PM

Contents xxv

Submit Queries and Read Results from the Database
(OCP Objective 9.3) . 861

All of Bob’s Customers . 861
Statements . 863
ResultSets . 868
Updating ResultSets (Not on the Exam!) 889
When Things Go Wrong—Exceptions and Warnings 901

Use PreparedStatement and CallableStatement Objects
(OCP Objective 9.6) . 906

PreparedStatement . 908
CallableStatement . 910

Construct and Use RowSet Objects (OCP Objective 9.5) 913
Working with RowSets . 914

JDBC Transactions (OCP Objective 9.4) . 921
JDBC Transaction Concepts . 922
Starting a Transaction Context in JDBC 922
Rolling Back a Transaction . 924
Using Savepoints with JDBC . 926

 ✓ Two-Minute Drill . 932
 Q&A Self Test . 935

Self Test Answers . 944

00-FM.indd xxv 9/2/2014 5:46:30 PM

Appendix A Serialization . A-1

Serialization (OCP 7 Objective 7.2) . A-2
Working with ObjectOutputStream and ObjectInputStream . A-2
Object Graphs . A-4
How Inheritance Affects Serialization A-10
Serialization Is Not for Statics . A-14

Certification Summary . A-15
Two-Minute Drill . A-16
Self Test . A-17
Self Test Answers . A-21

Appendix B Classpaths and JARs . B-1

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2,
and 7.5) . B-2

Compiling with javac . B-3
Launching Applications with java . B-5
Searching for Other Classes . B-8

JAR Files (Objective 7.5) . B-13
JAR Files and Searching . B-13

Using Static Imports (Objective 7.1) . B-16
Static Imports . B-16

Certification Summary . B-18
Two-Minute Drill . B-19
Self Test . B-21
Self Test Answers . B-29

Appendix C About the Download 947

System Requirements . 948
Downloading from McGraw-Hill Professional’s Media Center 948
Installing the Practice Exam Software . 949

Running the Practice Exam Software 950
Practice Exam Software Features . 950
Removing Installation . 951
Help . 951

Bonus Content . 951
Glossary . 951
Technical Support . 952

Windows 8 Troubleshooting . 952
McGraw-Hill Education Content Support 952

 Index . 953

xxvii

ACKNOWLEDGMENTS

Kathy and Bert would like to thank the following people:

■ All the incredibly hard-working folks at McGraw-Hill Education: Tim Green
(who’s been putting up with us for 12 years now), LeeAnn Pickrell (and
team), and Jim Kussow. Thanks for all your help, and for being so responsive,
patient, flexible, and professional, and the nicest group of people we could
hope to work with.

■ All of our friends at Kraftur (and our other horse-related friends) and most
especially to Sherry, Steinar, Stina and the girls, Jec, Lucy, Cait, and Jennifer,
Leslie and David, Annette and Bruce, Kacey, DJ, Gabrielle, and Mary.
Thanks to Pedro and Ely, who can’t believe it can take so long to finish
a book.

■ Some of the software professionals and friends who helped us in the early
days: Tom Bender, Peter Loerincs, Craig Matthews, Leonard Coyne, Morgan
Porter, and Mike Kavenaugh.

■ Dave Gustafson for his continued support, insights, and coaching.

■ Our new, wonderful, and talented team at Oracle: Linda Brown, Julia
Johnson, Peter Fernandez, and Harold Green.

■ The crew at Oracle who worked hard to build these exams: Tom McGinn,
Matt Heimer, Mike Williams, Stuart Marks, Cindy Church, Kenny
Somerville, Raymond Gallardo, Stacy Thurston, Sowmya Kannan, Jim
Holmlund, Mikalai Zaikin, Sharon Zakhour, Lawrence Chow, and Yamuna
Santhakumari.

■ Our old wonderful and talented certification team at Sun Educational
Services, primarily the most persistent get-it-done person we know, Evelyn
Cartagena.

■ Our great friends and gurus, Simon Roberts, Bryan Basham, and
Kathy Collina.

00-FM.indd xxvii 9/2/2014 5:46:30 PM

xxviii OCA/OCP Java SE 7 Programmer I & II Study Guide

■ Stu, Steve, Burt, and Eric for injecting some fun into the process.

■ To Eden and Skyler, for being horrified that adults—out of school—would
study this hard for an exam.

■ To the JavaRanch Trail Boss Paul Wheaton, for running the best Java
community site on the Web, and to all the generous and patient JavaRanch
moderators.

■ To all the past and present Sun Ed Java instructors for helping to make
learning Java a fun experience, including (to name only a few) Alan
Petersen, Jean Tordella, Georgianna Meagher, Anthony Orapallo, Jacqueline
Jones, James Cubeta, Teri Cubeta, Rob Weingruber, John Nyquist, Asok
Perumainar, Steve Stelting, Kimberly Bobrow, Keith Ratliff, and the most
caring and inspiring Java guy on the planet, Jari Paukku.

■ Our furry and feathered friends Eyra, Kara, Draumur, Vafi, Boi, Niki, and
Bokeh.

■ Finally, to Eric Freeman and Beth Robson for your continued inspiration.

00-FM.indd xxviii 9/2/2014 5:46:30 PM

xxix

PREFACE

This book’s primary objective is to help you prepare for and pass Oracle’s OCA Java SE 7
and OCP Java SE 7 Programmer I & II certification exams.

If you already have an SCJP certification, all of the topics covered in the OCP 7
Upgrade exam are covered here as well. And, if for some reason it’s appropriate for
you to obtain an OCPJP 5 or OCPJP 5 Java certification, the contents of the book

This book follows closely both the breadth and the depth of the real exams. For
instance, after reading this book, you probably won’t emerge as a regex guru, but if
you study the material and do well on the Self Tests, you’ll have a basic
understanding of regex, and you’ll do well on the exam. After completing this book,
you should feel confident that you have thoroughly reviewed all of the objectives
that Oracle has established for these exams.

In This Book

This book is organized in two parts to optimize your learning of the topics covered
by the OCA 7 exam in Part I and the OCP 7 exam in Part II. Whenever possible,
we’ve organized the chapters to parallel the Oracle objectives, but sometimes we’ll
mix up objectives or partially repeat them in order to present topics in an order
better suited to learning the material.

Serialization was a topic on the old SCJP 5 and SCJP 6 exams, and recently (as of
the summer of 2014), Oracle reintroduced serialization for the OCP 7 exam. Please

of serialization, right down to a Self Test. In addition to fully covering the OCA 7

chapters that cover important

00-FM.indd xxix 9/2/2014 5:46:30 PM

and the bonus material will help you cover all those bases.

see the Appendix A included with this book for in-depth, complete chapter coverage

and OCP 7 exams, Appendix B covers OCPJP 5 and OCPJP 6 topics, and eight
aspects of Oracle’s Java SE 6 Developer exam at

are available for download at McGraw-Hill Professional's Media Center
see Appendix C for details).

xxx OCA/OCP Java SE 7 Programmer I & II Study Guide

In Every Chapter

We’ve created a set of chapter components that call your attention to important
items, reinforce important points, and provide helpful exam-taking hints. Take a
look at what you’ll find in every chapter:

■ Every chapter begins with the Certification Objectives—what you need to
know in order to pass the section on the exam dealing with the chapter topic.
The Certification Objective headings identify the objectives within the
chapter, so you’ll always know an objective when you see it!

Exam Watch notes call attention to information about, and potential

pitfalls in, the exam. Since we were on the team that created these exams, we know what

you’re about to go through!

■ On the Job callouts discuss practical aspects of certification topics that might
not occur on the exam, but that will be useful in the real world.

■ Exercises are interspersed throughout the chapters. They help you master
skills that are likely to be an area of focus on the exam. Don’t just read
through the exercises; they are hands-on practice that you should be
comfortable completing. Learning by doing is an effective way to increase
your competency with a product.

■ From the Classroom sidebars describe the issues that come up most often in
the training classroom setting. These sidebars give you a valuable perspective
into certification- and product-related topics. They point out common
mistakes and address questions that have arisen from classroom discussions.

■ The Certification Summary is a succinct review of the chapter and a
restatement of salient points regarding the exam.

■ The Two-Minute Drill at the end of every chapter is a checklist of the main
points of the chapter. It can be used for last-minute review.

■ The Self Test offers questions similar to those found on the certification
exam, including multiple choice and pseudo drag-and-drop questions. The
answers to these questions, as well as explanations of the answers, can be
found at the end of every chapter. By taking the Self Test after completing
each chapter, you’ll reinforce what you’ve learned from that chapter, while
becoming familiar with the structure of the exam questions.

✓

Q&A

00-FM.indd xxx 9/2/2014 5:46:31 PM

xxxi

INTRODUCTION

Organization
This book is organized in such a way as to serve as an in-depth review for the OCA
Java SE 7 Programmer I and OCP Java SE 7 Programmer II exams for both
experienced Java professionals and those in the early stages of experience with Java
technologies. Each chapter covers at least one major aspect of the exam, with an
emphasis on the “why” as well as the “how to” of programming in the Java language.

OCPJP 6, and OCPJP 5 certifications. Also an
ingredients for a successful assessment of a project

■ OCA Java SE 7 Programmer I

■ OCP Java SE 7 Programmer II

■ Upgrade to Java SE 7 Programmer

■ OCP Java SE 6 Programmer

■ OCP Java SE 5 Programmer

■ Java SE 6 Developer

(two 60-question exams for OCA candidates and two 85-question
candidates)

What This Book Is Not
You will not find a beginner’s guide to learning Java in this book. All 1,000+ pages
of this book are dedicated solely to helping you pass the exams. If you are brand new
to Java, we suggest you spend a little time learning the basics. You should not start
with this book until you know how to write, compile, and run simple Java programs.
We do not, however, assume any level of prior knowledge of the individual topics
covered. In other words, for any given topic (driven exclusively by the actual exam
objectives), we start with the assumption that you are new to that topic. So we assume
you’re new to the individual topics, but we assume that you are not new to Java.

00-FM.indd xxxi 9/2/2014 5:46:31 PM

Appendix A and Appendix B complete the coverage necessary for the OCP 7,
in-depth review of the essential

submitted for the Oracle Java SE 6
Developer exam. is available for download at McGraw-Hill's Media Center
(see Appendix C).

Throughout this book and online content, you’ll find support for six exams:

Finally, the practice exam software with the equivalent of four practice exams
exams for OCP

is available for download (see Appendix C).

xxxii OCA/OCP Java SE 7 Programmer I & II Study Guide

We also do not pretend to be both preparing you for the exam and simultaneously
making you a complete Java being. This is a certification exam study guide, and it’s
very clear about its mission. That’s not to say that preparing for the exam won’t help
you become a better Java programmer! On the contrary, even the most experienced
Java developers often claim that having to prepare for the certification exam made
them far more knowledgeable and well-rounded programmers than they would have
been without the exam-driven studying.

Available for Download

Some Pointers
Once you’ve finished reading this book, set aside some time to do a thorough review.
You might want to return to the book several times and make use of all the methods
it offers for reviewing the material:

 1. Re-read all the Two-Minute Drills, or have someone quiz you. You also can use
the drills as a way to do a quick cram before the exam. You might want to
make some flash cards out of 3 × 5 index cards that have the Two-Minute
Drill material on them.

 2. Re-read all the Exam Watch notes. Remember that these notes are written by
authors who helped create the exam. They know what you should expect—
and what you should be on the lookout for.

 3. Re-take the Self Tests. Taking the tests right after you’ve read the chapter is
a good idea because the questions help reinforce what you’ve just learned.
However, it’s an even better idea to go back later and do all the questions in
the book in one sitting. Pretend that you’re taking the live exam. (Whenever
you take the Self Tests, mark your answers on a separate piece of paper. That
way, you can run through the questions as many times as you need to until
you feel comfortable with the material.)

 4. Complete the exercises. The exercises are designed to cover exam topics, and
there’s no better way to get to know this material than by practicing. Be sure
you understand why you are performing each step in each exercise. If there is
something you are not clear on, re-read that section in the chapter.

00-FM.indd Sec1:xxxii 9/2/2014 5:46:31 PM

For more information about online content, please see the Appendix C.

Introduction xxxiii

 5. Write lots of Java code. We’ll repeat this advice several times. When we
wrote this book, we wrote hundreds of small Java programs to help us do our
research. We have heard from hundreds of candidates who have passed the
exam, and in almost every case, the candidates who scored extremely well on
the exam wrote lots of code during their studies. Experiment with the code
samples in the book, create horrendous lists of compiler errors—put away
your IDE, crank up the command line, and write code!

Introduction to the Material in the Book
The OCP 7 exam is considered one of the hardest in the IT industry, and we can
tell you from experience that a large chunk of exam candidates goes in to the test
unprepared. As programmers, we tend to learn only what we need to complete our
current project, given the insane deadlines we’re usually under.

But this exam attempts to prove your complete understanding of the Java language,
not just the parts of it you’ve become familiar with in your work.

Experience alone will rarely get you through this exam with a passing mark,
because even the things you think you know might work just a little differently than
you imagined. It isn’t enough to be able to get your code to work correctly; you must
understand the core fundamentals in a deep way, and with enough breadth to cover
virtually anything that could crop up in the course of using the language.

your skill as a developer rather than simply your knowledge of the language or tools.
Becoming a Certified Java Developer is, by definition, a development experience.

Who Cares About Certifi cation?

Employers do. Headhunters do. Programmers do. Passing this exam proves three
important things to a current or prospective employer: you’re smart; you know how
to study and prepare for a challenging test; and, most of all, you know the Java
language. If an employer has a choice between a candidate who has passed the exam
and one who hasn’t, the employer knows that the certified programmer does not
have to take time to learn the Java language.

But does it mean that you can actually develop software in Java? Not necessarily,
but it’s a good head start. To really demonstrate your ability to develop (as opposed
to just your knowledge of the language), you should consider pursuing the Developer
Exam, where you’re given an assignment to build a program, start to finish, and
submit it for an assessor to evaluate and score.

00-FM.indd Sec1:xxxiii 9/2/2014 5:46:31 PM

The Oracle Java SE 6 Developer Exam (covered in chapters that are available
for download) is unique to the IT certification realm because it actually evaluates

xxxiv OCA/OCP Java SE 7 Programmer I & II Study Guide

Taking the Programmer’s Exam

In a perfect world, you would be assessed for your true knowledge of a subject, not
simply how you respond to a series of test questions. But life isn’t perfect, and it just
isn’t practical to evaluate everyone’s knowledge on a one-to-one basis.

For the majority of its certifications, Oracle evaluates candidates using a computer-
based testing service operated by Pearson VUE. To discourage simple memorization,
Oracle exams present a potentially different set of questions to different candidates.
In the development of the exam, hundreds of questions are compiled and refined
using beta testers. From this large collection, questions are pulled together from each
objective and assembled into many different versions of the exam.

Each Oracle exam has a specific number of questions, and the test’s duration is
designed to be generous. The time remaining is always displayed in the corner of the
testing screen. If time expires during an exam, the test terminates, and incomplete
answers are counted as incorrect.

Many experienced test-takers do not go back and change answers unless

they have a good reason to do so. Only change an answer when you feel you may have

misread or misinterpreted the question the fi rst time. Nervousness may make you second-

guess every answer and talk yourself out of a correct one.

After completing the exam, you will receive an email from Oracle telling you that
your results are available on the Web. As of summer 2014, your results can be found at
certview.oracle.com. If you want a printed copy of your certificate, you must make a
specific request.

Question Format
Oracle’s Java exams pose questions in multiple-choice format.

Multiple-Choice Questions

In earlier versions of the exam, when you encountered a multiple-choice question,
you were not told how many answers were correct, but with each version of the
exam, the questions have become more difficult, so today, each multiple-choice
question tells you how many answers to choose. The Self Test questions at the end of
each chapter closely match the format, wording, and difficulty of the real exam
questions, with two exceptions:

00-FM.indd Sec1:xxxiv 9/2/2014 5:46:31 PM

http://www.certview.oracle.com

Introduction xxxv

■ Whenever we can, our questions will not tell you how many correct answers
exist (we will say “Choose all that apply”). We do this to help you master
the material. Some savvy test-takers can eliminate wrong answers when
the number of correct answers is known. It’s also possible, if you know how
many answers are correct, to choose the most plausible answers. Our job is to
toughen you up for the real exam!

■ The real exam typically numbers lines of code in a question. Sometimes we do
not number lines of code—mostly so that we have the space to add comments
at key places. On the real exam, when a code listing starts with line 1, it
means that you’re looking at an entire source file. If a code listing starts at a
line number greater than 1, that means you’re looking at a partial source file.
When looking at a partial source file, assume that the code you can’t see is
correct. (For instance, unless explicitly stated, you can assume that a partial
source file will have the correct import and package statements.)

When you fi nd yourself stumped answering multiple-choice questions,

use your scratch paper (or whiteboard) to write down the two or three answers you

consider the strongest, then underline the answer you feel is most likely correct. Here is

an example of what your scratch paper might look like when you’ve gone through the

test once:

■ 21. B or C

■ 33. A or C

This is extremely helpful when you mark the question and continue on. You can then

return to the question and immediately pick up your thought process where you left off.

Use this technique to avoid having to re-read and rethink questions. You will also need

to use your scratch paper during complex, text-based scenario questions to create visual

images to better understand the question. This technique is especially helpful if you are a

visual learner.

Tips on Taking the Exam

The number of questions and passing percentages for every exam are subject to
change. Always check with Oracle before taking the exam, at www.Oracle.com.

00-FM.indd Sec1:xxxv 9/2/2014 5:46:31 PM

http://www.Oracle.com

xxxvi OCA/OCP Java SE 7 Programmer I & II Study Guide

You are allowed to answer questions in any order, and you can go back and check
your answers after you’ve gone through the test. There are no penalties for wrong
answers, so it’s better to at least attempt an answer than to not give one at all.

A good strategy for taking the exam is to go through once and answer all the
questions that come to you quickly. You can then go back and do the others.
Answering one question might jog your memory for how to answer a previous one.

Be very careful on the code examples. Check for syntax errors first: count curly
braces, semicolons, and parentheses and then make sure there are as many left ones
as right ones. Look for capitalization errors and other such syntax problems before
trying to figure out what the code does.

Many of the questions on the exam will hinge on subtleties of syntax. You will
need to have a thorough knowledge of the Java language in order to succeed.

This brings us to another issue that some candidates have reported. The testing
center is supposed to provide you with sufficient writing implements so that you can
work problems out “on paper.” In some cases, the centers have provided inadequate
markers and dry-erase boards that are too small and cumbersome to use effectively.
We recommend that you call ahead and verify that you will be supplied with a
sufficiently large whiteboard, sufficiently fine-tipped markers, and a good eraser.
What we’d really like to encourage is for everyone to complain to Oracle and
Pearson VUE and have them provide actual pencils and at least several sheets of
blank paper.

Tips on Studying for the Exam

First and foremost, give yourself plenty of time to study. Java is a complex
programming language, and you can’t expect to cram what you need to know into a
single study session. It is a field best learned over time, by studying a subject and
then applying your knowledge. Build yourself a study schedule and stick to it, but be
reasonable about the pressure you put on yourself, especially if you’re studying in
addition to your regular duties at work.

One easy technique to use in studying for certification exams is the 15-minutes-
per-day effort. Simply study for a minimum of 15 minutes every day. It is a small but
significant commitment. If you have a day where you just can’t focus, then give up at
15 minutes. If you have a day where it flows completely for you, study longer. As
long as you have more of the “flow days,” your chances of succeeding are excellent.

We strongly recommend you use flash cards when preparing for the programmer’s
exams. A flash card is simply a 3 × 5 or 4 × 6 index card with a question on the front
and the answer on the back. You construct these cards yourself as you go through a

00-FM.indd Sec1:xxxvi 9/2/2014 5:46:31 PM

Introduction xxxvii

chapter, capturing any topic you think might need more memorization or practice
time. You can drill yourself with them by reading the question, thinking through the
answer, and then turning the card over to see if you’re correct. Or you can get
another person to help you by holding up the card with the question facing you and
then verifying your answer. Most of our students have found these to be
tremendously helpful, especially because they’re so portable that while you’re in
study mode, you can take them everywhere. Best not to use them while driving,
though, except at red lights. We’ve taken ours everywhere—the doctor’s office,
restaurants, theaters, you name it.

Certification study groups are another excellent resource, and you won’t find a
larger or more willing community than on the JavaRanch.com Big Moose Saloon
certification forums. If you have a question from this book, or any other mock exam
question you may have stumbled upon, posting a question in a certification forum
will get you an answer in nearly all cases within a day—usually, within a few hours.
You’ll find us (the authors) there several times a week, helping those just starting out
on their exam preparation journey. (You won’t actually think of it as anything as
pleasant sounding as a “journey” by the time you’re ready to take the exam.)

Finally, we recommend that you write a lot of little Java programs! During the
course of writing this book, we wrote hundreds of small programs, and if you listen to
what the most successful candidates say (you know, those guys who got 98 percent),
they almost always report that they wrote a lot of code.

Scheduling Your Exam

You can purchase your exam voucher from Oracle or Pearson VUE. Visit Oracle.com
(follow the training/certification links) or visit PearsonVue.com for exam scheduling
details and locations of test centers.

Arriving at the Exam

As with any test, you’ll be tempted to cram the night before. Resist that temptation.
You should know the material by this point, and if you’re groggy in the morning, you
won’t remember what you studied anyway. Get a good night’s sleep.

Arrive early for your exam; it gives you time to relax and review key facts. Take
the opportunity to review your notes. If you get burned out on studying, you can
usually start your exam a few minutes early. We don’t recommend arriving late. Your
test could be cancelled, or you might not have enough time to complete the exam.

00-FM.indd Sec1:xxxvii 9/2/2014 5:46:31 PM

http://www.JavaRanch.com
http://www.Oracle.com
http://www.PearsonVue.com

xxxviii OCA/OCP Java SE 7 Programmer I & II Study Guide

When you arrive at the testing center, you’ll need to provide current, valid photo
identification. Visit PearsonVue.com for details on the ID requirements. They just
want to be sure that you don’t send your brilliant Java guru next-door-neighbor who
you’ve paid to take the exam for you.

Aside from a brain full of facts, you don’t need to bring anything else to the exam
room. In fact, your brain is about all you’re allowed to take into the exam!

All the tests are closed book, meaning you don’t get to bring any reference
materials with you. You’re also not allowed to take any notes out of the exam room.
The test administrator will provide you with a small marker board. If you’re allowed
to, we do recommend that you bring a water bottle or a juice bottle (call ahead for
details of what’s allowed). These exams are long and hard, and your brain functions
much better when it’s well hydrated. In terms of hydration, the ideal approach is to
take frequent, small sips. You should also verify how many “bio-breaks” you’ll be
allowed to take during the exam!

Leave your pager and telephone in the car, or turn them off. They only add stress
to the situation, since they are not allowed in the exam room, and can sometimes
still be heard if they ring outside of the room. Purses, books, and other materials
must be left with the administrator before entering the exam.

Once in the testing room, you’ll be briefed on the exam software. You might be
asked to complete a survey. The time you spend on the survey is not deducted from
your actual test time—nor do you get more time if you fill out the survey quickly.
Also, remember that the questions you get on the exam will not change depending
on how you answer the survey questions. Once you’re done with the survey, the real
clock starts ticking and the fun begins.

The testing software allows you to move forward and backward between
questions. Most important, there is a Mark check box on the screen—this will prove
to be a critical tool, as explained in the next section.

Test-Taking Techniques

Without a plan of attack, candidates can become overwhelmed by the exam or
become sidetracked and run out of time. For the most part, if you are comfortable
with the material, the allotted time is more than enough to complete the exam. The
trick is to keep the time from slipping away during any one particular problem.

Your obvious goal is to answer the questions correctly and quickly, but other
factors can distract you. Here are some tips for taking the exam more efficiently.

00-FM.indd Sec1:xxxviii 9/2/2014 5:46:31 PM

http://www.PearsonVue.com

Introduction xxxix

Size Up the Challenge

First, take a quick pass through all the questions in the exam. “Cherry-pick” the easy
questions, answering them on the spot. Briefly read each question, noticing the type
of question and the subject. As a guideline, try to spend less than 25 percent of your
testing time in this pass.

This step lets you assess the scope and complexity of the exam, and it helps you
determine how to pace your time. It also gives you an idea of where to find potential
answers to some of the questions. Sometimes the wording of one question might
lend clues or jog your thoughts for another question.

If you’re not entirely confident in your answer to a question, answer it anyway,
but check the Mark box to flag it for later review. In the event that you run out of
time, at least you’ve provided a “first guess” answer, rather than leaving it blank.

Second, go back through the entire test, using the insight you gained from the
first go-through. For example, if the entire test looks difficult, you’ll know better
than to spend more than a minute or two on each question. Create a pacing with
small milestones—for example, “I need to answer 10 questions every 15 minutes.”

At this stage, it’s probably a good idea to skip past the time-consuming questions,
marking them for the next pass. Try to finish this phase before you’re 50 to 60
percent through the testing time.

Third, go back through all the questions you marked for review, using the Review
Marked button in the question review screen. This step includes taking a second
look at all the questions you were unsure of in previous passes, as well as tackling the
time-consuming ones you deferred until now. Chisel away at this group of questions
until you’ve answered them all.

If you’re more comfortable with a previously marked question, unmark the
Review Marked button now. Otherwise, leave it marked. Work your way through the
time-consuming questions now, especially those requiring manual calculations.
Unmark them when you’re satisfied with the answer.

By the end of this step, you’ve answered every question in the test, despite having
reservations about some of your answers. If you run out of time in the next step, at
least you won’t lose points for lack of an answer. You’re in great shape if you still
have 10 to 20 percent of your time remaining.

Review Your Answers

Now you’re cruising! You’ve answered all the questions, and you’re ready to do a
quality check. Take yet another pass (yes, one more) through the entire test

00-FM.indd Sec1:xxxix 9/2/2014 5:46:31 PM

xl OCA/OCP Java SE 7 Programmer I & II Study Guide

(although you’ll probably want to skip a review of the drag-and-drop questions!),
briefly re-reading each question and your answer.

Carefully look over the questions again to check for “trick” questions. Be
particularly wary of those that include a choice of “Does not compile.” Be alert for
last-minute clues. You’re pretty familiar with nearly every question at this point, and
you may find a few clues that you missed before.

The Grand Finale

When you’re confident with all your answers, finish the exam by submitting it for
grading. After you finish your exam, you’ll receive an e-mail from Oracle giving you
a link to a page where your exam results will be available. As of this writing, you
must ask for a hard copy certificate specifically or one will not be sent to you.

Retesting

If you don’t pass the exam, don’t be discouraged. Try to have a good attitude about
the experience, and get ready to try again. Consider yourself a little more educated.
You’ll know the format of the test a little better, and you’ll have a good idea of the
difficulty level of the questions you’ll get next time around.

If you bounce back quickly, you’ll probably remember several of the questions you
might have missed. This will help you focus your study efforts in the right area.

Ultimately, remember that Oracle certifications are valuable because they’re hard
to get. After all, if anyone could get one, what value would it have? In the end, it
takes a good attitude and a lot of studying, but you can do it!

00-FM.indd Sec1:xl 9/2/2014 5:46:31 PM

Objectives Map xli

Objectives Map

The following four tables—one for the OCA Java SE 7 Programmer I Exam, one
for the OCP Java SE 7 Programmer II Exam, one for the Upgrade to Java SE 7
Programmer Exam, and one for the OCP Java Programmer 5 and OCP Java
Programmer 6 exams—describe the objectives and where you will find them in
the book.

Oracle Certifi ed Associate Java SE 7 Programmer (Exam 1Z0-803)

Official Objective Study Guide Coverage

Java Basics

Define the scope of variables (1.1) Chapter 3

Define the structure of a Java class (1.2) Chapter 1

Create executable Java applications with a main method (1.3) Chapter 1

Import other Java packages to make them accessible in your code (1.4) Chapter 1

Working with Java Data Types

Declare and initialize variables (2.1) Chapters 1 and 3

Differentiate between object reference variables and primitive variables (2.2) Chapter 2

Read or write to object fields (2.3) Whole book

Explain an object’s lifecycle (creation, “dereference,” and garbage collection) (2.4) Chapters 2 and 3

Call methods on objects (2.5) Whole book

Manipulate data using the StringBuilder class and its methods (2.6) Chapter 5

Create and manipulate Strings (2.7) Chapter 5

Using Operators and Decision Constructs

Use Java operators (3.1) Chapter 4

Use parentheses to override operator precedence (3.2) Chapter 4

Test equality between Strings and other objects using == and equals() (3.3) Chapter 4

Create if and if/else constructs (3.4) Chapter 6

Use a switch statement (3.5) Chapter 6

Creating and Using Arrays

Declare, instantiate, initialize and use a one-dimensional array (4.1) Chapter 5

Declare, instantiate, initialize and use multi-dimensional array (4.2) Chapter 5

Declare and use an ArrayList (4.3) Chapter 5

00-FM.indd Sec1:xli 9/2/2014 5:46:31 PM

xlii OCA/OCP Java SE 7 Programmer I & II Study Guide

Official Objective Study Guide Coverage

Using Loop Constructs

Create and use while loops (5.1) Chapter 6

Create and use for loops including the enhanced for loop (5.2) Chapter 6

Create and use do/while loops (5.3) Chapter 6

Compare loop constructs (5.4) Chapter 6

Use break and continue (5.5) Chapter 6

Working with Methods and Encapsulation

Create methods with arguments and return values (6.1) Chapters 2 and 3

Apply the static keyword to methods and fields (6.2) Chapter 1

Create an overloaded method (6.3) Chapter 2

Differentiate between default and user defined constructors (6.4) Chapter 2

Create and overload constructors (6.5) Chapter 2

Apply access modifiers (6.6) Chapter 1

Apply encapsulation principles to a class (6.7) Chapter 2

Determine the effect upon object references and primitive values when they are passed
into methods that change the values (6.8)

Chapter 3

Working with Inheritance

Implement inheritance (7.1) Chapter 2

Develop code that demonstrates the use of polymorphism (7.2) Chapter 2

Differentiate between the type of a reference and the type of an object (7.3) Chapter 2

Determine when casting is necessary (7.4) Chapter 2

Use super and this to access objects and constructors (7.5) Chapter 2

Use abstract classes and interfaces (7.6) Chapters 1 and 2

Handling Exceptions

Differentiate among checked exceptions, RuntimeExceptions, and Errors (8.1) Chapter 6

Create a try-catch block and determine how exceptions alter normal program flow (8.2) Chapter 6

Describe what exceptions are used for in Java (8.3) Chapter 6

Invoke a method that throws an exception (8.4) Chapter 6

Recognize common exception classes and categories (8.5) Chapter 6

OCA Java SE 7 Objectives (cont.)

00-FM.indd Sec1:xlii 9/2/2014 5:46:31 PM

Objectives Map xliii

Oracle Certifi ed Professional Java SE 7 Programmer II
(Exam IZ0-804)

Although the OCP objectives are not specifically listed in Part I of the book, many
of them are covered in those chapters, as detailed here, as material is duplicated
across the two exams.

Official Objective Study Guide Coverage

Java Class Design

Use access modifiers: private, protected, and public (1.1) Chapter 1

Override methods (1.2) Chapter 2

Overload constructors and methods (1.3) Chapter 2

Use the instanceof operator and casting (1.4) Chapter 2

Use virtual method invocation (1.5) Chapters 2 and 10

Override the hashcode, equals, and toString methods from the Object class to improve the
functionality of your class (1.6)

Chapter 11

Use package and import statements (1.7) Chapter 1

Advanced Class Design

Identify when and how to apply abstract classes (2.1) Chapter 1

Construct abstract Java classes and subclasses (2.2) Chapters 1 and 2

Use the static and final keywords (2.3) Chapter 1

Create top level and nested classes (2.4) Chapters 1–3, 12

Use enumerated types (2.5) Chapter 1

Object-Oriented Design Principles

Write code that declares, implements, and/or extends interfaces (3.1) Chapters 1 and 2

Choose between interface inheritance and class inheritance (3.2) Chapter 2

Apply cohesion, low-coupling, IS-A, and HAS-A principles (3.3) Chapters 2 and 10

Apply object composition principles (including HAS-A relationships) (3.4) Chapters 2 and 10

Design a class using a singleton design pattern (3.5) Chapter 10

Write code to implement the Data Access Object (DAO) (3.6) Chapter 10

Design and create objects using a factory and use factories from the API (3.7) Chapter 10

Generics and Collections

Create a generic class (4.1) Chapter 11

Use the diamond syntax to create a collection (4.2) Chapter 11

Analyze the interoperability of collections that use raw and generic types (4.3) Chapter 11

00-FM.indd Sec1:xliii 9/2/2014 5:46:31 PM

xliv OCA/OCP Java SE 7 Programmer I & II Study Guide

Official Objective Study Guide Coverage

Use wrapper classes and autoboxing (4.4) Chapter 11

Create and use a List, a Set, and a Deque (4.5) Chapters 11 and 14

Create and use a Map (4.6) Chapter 11

Use java.util.Comparator and java.lang.Comparable (4.7) Chapter 11

Sort and search arrays and lists (4.8) Chapter 11

String Processing

Search, parse, and build strings (including Scanner, StringTokenizer, StringBuilder, String,
and Formatter) (5.1)

Chapter 8

Search, parse, and replace strings by using regular expressions, using expression patterns for
matching limited to . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B, [], and ().
(5.2)

Chapter 8

Format strings using the formatting parameters %b, %c, %d, %f, and %s in format strings.
(5.3)

Chapter 8

Exceptions and Assertions

Use throw and throws statements (6.1) Chapters 6 and 7

Develop code that handles multiple Exception types in a single catch block (6.2) Chapter 7

Develop code that uses try-with-resources statements (including classes that implement the
AutoCloseable interface) (6.3)

Chapter 7

Create custom exceptions (6.4) Chapters 6 and 7

Test invariants by using assertions (6.5) Chapter 7

Java I/O Fundamentals

Read and write data from the console (7.1) Chapter 9

Use streams to read from and write to files by using classes in the java.io package,
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInputStream,
DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter (7.2)

Java File I/O (NIO.2)

Operate on file and directory paths with the Path class (8.1) Chapter 9

Check, delete, copy, or move a file or directory with the Files class (8.2) Chapter 9

Read and change file and directory attributes, focusing on the BasicFileAttributes,
DosFileAttributes, and PosixFileAttributes interfaces (8.3)

Chapter 9

Recursively access a directory tree using the DirectoryStream and FileVisitor interfaces (8.4) Chapter 9

Find a file with the PathMatcher interface (8.5) Chapter 9

Watch a directory for changes with the WatchService interface (8.6) Chapter 9

OCP Java SE 7 Objectives (cont.)

00-FM.indd Sec1:xliv 9/2/2014 5:46:31 PM

Chapter 9 and
downloadable content

Objectives Map xlv

Official Objective Study Guide Coverage

Building Database Applications with JDBC

Describe the interfaces that make up the core of the JDBC API (including the Driver,
Connection, Statement, and ResultSet interfaces and their relationships to provider
implementations) (9.1)

Chapter 15

Identify the components required to connect to a database using the DriverManager class
(including the JDBC URL) (9.2)

Chapter 15

Submit queries and read results from the database (including creating statements; returning
result sets; iterating through the results; and properly closing result sets, statements, and
connections) (9.3)

Chapter 15

Use JDBC transactions (including disabling auto-commit mode, committing and rolling back
transactions, and setting and rolling back to savepoints) (9.4)

Chapter 15

Construct and use RowSet objects using the RowSetProvider class and the RowSetFactory
interface (9.5)

Chapter 15

Create and use PreparedStatement and CallableStatement objects (9.6) Chapter 15

Threads

Create and use the Thread class and the Runnable interface (10.1) Chapter 13

Manage and control thread lifecycle (10.2) Chapter 13

Synchronize thread access to shared data (10.3) Chapter 13

Identify code that may not execute correctly in a multithreaded environment (10.4) Chapter 13

Concurrency

Use collections from the java.util.concurrent package with a focus on the advantages over
and differences from the traditional java.util collections (11.1)

Chapter 14

Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concurrent.locks
package to support lock-free thread-safe programming on single variables (11.2)

Chapter 14

Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks using
thread pools (11.3)

Chapter 14

Use the parallel Fork/Join Framework (11.4) Chapter 14

Localization

Read and set the locale using the Locale object (12.1) Chapter 8

Build a resource bundle for each locale (12.2) Chapter 8

Call a resource bundle from an application (12.3) Chapter 8

Format dates, numbers, and currency values for localization with the NumberFormat and
DateFormat classes (including number format patterns) (12.4)

Chapter 8

Describe the advantages of localizing an application (12.5) Chapter 8

Define a locale using language and country codes (12.6) Chapter 8

00-FM.indd Sec1:xlv 9/2/2014 5:46:31 PM

xlvi OCA/OCP Java SE 7 Programmer I & II Study Guide

Upgrade to Java SE 7 Programmer (Exam IZ0-805)

Official Objective Study Guide Coverage

Language Enhancements

Develop code that uses String objects in switch statements (1.1) Chapter 6

Develop code that uses binary literals and numeric literals with underscores (1.2) Chapter 3

Develop code that uses try-with-resources statements (including classes that implement
the AutoCloseable interface) (1.3)

Chapter 7

Develop code that handles multiple exception types in a single catch block (1.4) Chapter 7

Develop code that uses the diamond with generic declarations (1.5) Chapter 11

Design Patterns

Design a class using a singleton design pattern (2.1) Chapter 10

Apply object composition principles (including HAS-A relationships) (2.2) Chapters 2 and 10

Write code to implement the Data Access Object (DAO) (2.3) Chapter 10

Design and create objects using a factory pattern (2.4) Chapter 10

Database Applications with JDBC

Describe the interfaces that make up the core of the JDBC API (including the Driver,
Connection, Statement, and ResultSet interfaces and their relationships to provider
implementations) (3.1)

Chapter 15

Identify the components required to connect to a database using the DriverManager class
(including the JDBC URL) (3.2)

Chapter 15

Construct and use RowSet objects using the RowSetProvider class and the RowSetFactory
interface (3.3)

Chapter 15

Use JDBC transactions (including disabling auto-commit mode, committing and rolling back
transactions, and setting and rolling back to savepoints) (3.4)

Chapter 15

Submit queries and read results from the database (including creating statements; returning
result sets; iterating through the results; and properly closing result sets, statements, and
connections) (3.5)

Chapter 15

Create and use PreparedStatement and CallableStatement objects (3.6) Chapter 15

Concurrency

Identify code that may not execute correctly in a multithreaded environment (4.1) Chapter 13

Use collections from the java.util.concurrent package with a focus on the advantages over
and differences from the traditional java.util collections (4.2)

Chapter 14

Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concurrent.locks
package to support lock-free thread-safe programming on single variables (4.3)

Chapter 14

Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks using
thread pools (4.4)

Chapter 14

Use the parallel Fork/Join Framework (4.5) Chapter 14

00-FM.indd Sec1:xlvi 9/2/2014 5:46:31 PM

Objectives Map xlvii

Official Objective Study Guide Coverage

Localization

Describe the advantages of localizing an application (5.1) Chapter 8

Define a locale using language and country codes (5.2) Chapter 8

Read and set the locale by using the Locale object (5.3) Chapter 8

Build a resource bundle for each locale (5.4) Chapter 8

Call a resource bundle from an application (5.5) Chapter 8

Format dates, numbers, and currency values for localization with the NumberFormat and
DateFormat classes (including number format patterns) (5.6)

Chapter 8

Java File I/O (NIO.2)

Operate on file and directory paths with the Path class (6.1) Chapter 9

Check, delete, copy, or move a file or directory with the Files class (6.2) Chapter 9

Read and change file and directory attributes, focusing on the BasicFileAttributes,
DosFileAttributes, and PosixFileAttributes interfaces (6.3)

Chapter 9

Recursively access a directory tree using the DirectoryStream and FileVisitor interfaces (6.4) Chapter 9

Find a file with the PathMatcher interface (6.5) Chapter 9

Watch a directory for changes with the WatchService interface (6.6) Chapter 9

Java SE 5 Programmer and OCP Java Programmer 6

Official Objective Study Guide Coverage

1. Declarations, Initialization and Scoping Chapters 1–3, 5, and 12

2. Flow Control Chapters 6 and 7

3. API Contents Chapters 5, 8, 9, and 11

4. Concurrency Chapter 13

5. OO Concepts Chapters 2 and 10

6. Collections/Generics Chapter 11

00-FM.indd Sec1:xlvii 9/2/2014 5:46:31 PM

7. Fundamentals Chapters 1–4, Appendix B

This page intentionally left blank

Part IPart I
OCA and OCPOCA and OCP

CHAPTERS

1 Declarations and Assets

2 Object Orientation

3 Assignments

4 Operators

5 Working with Strings, Arrays, and ArrayLists

6 Flow Control and Exceptions

01-ch01.indd 1 9/2/2014 2:43:04 PM

This page intentionally left blank

11
Declarations and Declarations and
Access ControlAccess Control

CERTIFICATION OBJECTIVES

Identifiers and Keywords •
javac, java, main(), and Imports •
Declare Classes and Interfaces •
Declare Class Members •
Declare Constructors and Arrays •

Create static Class Members •
Use enu • ms

Two-Minute Drill ✓
Q&A Self Test

01-ch01.indd 3 9/2/2014 2:43:08 PM

4 Chapter 1: Declarations and Access Control

We assume that because you're planning on becoming certified, you already know
the basics of Java. If you're completely new to the language, this chapter—and the
rest of the book—will be confusing; so be sure you know at least the basics of the

language before diving into this book. That said, we're starting with a brief, high-level refresher to
put you back in the Java mood, in case you've been away for a while.

Java Refresher

A Java program is mostly a collection of objects talking to other objects by invoking
each other's methods. Every object is of a certain type, and that type is defined by a
class or an interface. Most Java programs use a collection of objects of many different
types. Following is a list of a few useful terms for this object-oriented (OO) language:

■ Class A template that describes the kinds of state and behavior that objects
of its type support.

■ Object At runtime, when the Java Virtual Machine (JVM) encounters the
new keyword, it will use the appropriate class to make an object that is an
instance of that class. That object will have its own state and access to all of
the behaviors defined by its class.

■ State (instance variables) Each object (instance of a class) will have its
own unique set of instance variables as defined in the class. Collectively, the
values assigned to an object's instance variables make up the object's state.

■ Behavior (methods) When a programmer creates a class, she creates
methods for that class. Methods are where the class's logic is stored and
where the real work gets done. They are where algorithms get executed and
data gets manipulated.

Identifiers and Keywords

All the Java components we just talked about—classes, variables, and methods—
need names. In Java, these names are called identifiers, and, as you might expect,
there are rules for what constitutes a legal Java identifier. Beyond what's legal,
though, Java (and Oracle) programmers have created conventions for naming
methods, variables, and classes.

Like all programming languages, Java has a set of built-in keywords. These
keywords must not be used as identifiers. Later in this chapter we'll review the
details of these naming rules, conventions, and the Java keywords.

01-ch01.indd 4 9/2/2014 2:43:08 PM

 Java Refresher 5

Inheritance

Central to Java and other OO languages is the concept of inheritance, which allows
code defined in one class to be reused in other classes. In Java, you can define a
general (more abstract) superclass, and then extend it with more specific subclasses.
The superclass knows nothing of the classes that inherit from it, but all of the
subclasses that inherit from the superclass must explicitly declare the inheritance
relationship. A subclass that inherits from a superclass is automatically given
accessible instance variables and methods defined by the superclass, but the subclass
is also free to override superclass methods to define more specific behavior. For
example, a Car superclass could define general methods common to all automobiles,
but a Ferrari subclass could override the accelerate() method that was already
defined in the Car class.

Interfaces

A powerful companion to inheritance is the use of interfaces. Interfaces are like a
100-percent abstract superclass that defines the methods a subclass must support, but
not how they must be supported. In other words, for example, an Animal interface
might declare that all Animal implementation classes have an eat() method, but
the Animal interface doesn't supply any logic for the eat() method. That means it's
up to the classes that implement the Animal interface to define the actual code for
how that particular Animal type behaves when its eat() method is invoked.

Finding Other Classes

As we'll see later in the book (for you OCP candidates), it's a good idea to make
your classes cohesive. That means that every class should have a focused set of
responsibilities. For instance, if you were creating a zoo simulation program, you'd
want to represent aardvarks with one class and zoo visitors with a different class. In
addition, you might have a Zookeeper class and a PopcornVendor class. The point
is that you don't want a class that has both Aardvark and PopcornVendor behaviors
(more on that in Chapter 10).

Even a simple Java program uses objects from many different classes: some that
you created, and some built by others (such as Oracle's Java API classes). Java
organizes classes into packages and uses import statements to give programmers a
consistent way to manage naming of, and access to, classes they need. The exam
covers a lot of concepts related to packages and class access; we'll explore the details
throughout the book.

01-ch01.indd 5 9/2/2014 2:43:09 PM

6 Chapter 1: Declarations and Access Control

CERTIFICATION OBJECTIVE

Identifiers and Keywords
(OCA Objectives 1.2 and 2.1)

1.2 Define the structure of a Java class.

2.1 Declare and initialize variables.

Remember that when we list one or more Certification Objectives in the book,
as we just did, it means that the following section covers at least some part of that
objective. Some objectives will be covered in several different chapters, so you'll see
the same objective in more than one place in the book. For example, this section
covers declarations and identifiers, but using the things you declare is covered
primarily in later chapters.

So, we'll start with Java identifiers. The two aspects of Java identifiers that we
cover here are

■ Legal identifiers The rules the compiler uses to determine whether a name
is legal.

■ Oracle's Java Code Conventions Oracle's recommendations for naming
classes, variables, and methods. We typically adhere to these standards
throughout the book, except when we're trying to show you how a tricky
exam question might be coded. You won't be asked questions about the Java
Code Conventions, but we strongly recommend that you use them.

Legal Identifi ers

Technically, legal identifiers must be composed of only Unicode characters, numbers,
currency symbols, and connecting characters (such as underscores). The exam doesn't
dive into the details of which ranges of the Unicode character set are considered to
qualify as letters and digits. So, for example, you won't need to know that Tibetan
digits range from \u0420 to \u0f29. Here are the rules you do need to know:

■ Identifiers must start with a letter, a currency character ($), or a connecting
character such as the underscore (_). Identifiers cannot start with a digit!

01-ch01.indd 6 9/2/2014 2:43:09 PM

Identifi ers and Keywords (OCA Objectives 1.2 and 2.1) 7

■ After the first character, identifiers can contain any combination of letters,
currency characters, connecting characters, or numbers.

■ In practice, there is no limit to the number of characters an identifier can
contain.

■ You can't use a Java keyword as an identifier. Table 1-1 lists all of the Java
keywords.

■ Identifiers in Java are case-sensitive; foo and FOO are two different identifiers.

Examples of legal and illegal identifiers follow. First some legal identifiers:

int _a;
int $c;
int ______2_w;
int _$;
int this_is_a_very_detailed_name_for_an_identifier;

The following are illegal (it's your job to recognize why):

int :b;
int -d;
int e#;
int .f;
int 7g;

 TABLE 1-1 Complete List of Java Keywords (assert added in 1.4, enum added in 1.5)

abstract boolean break byte case catch

char class const continue default do

double else extends final finally float

for goto if implements import instanceof

int interface long native new package

private protected public return short static

strictfp super switch synchronized this throw

throws transient try void volatile while

assert enum

Oracle's Java Code Conventions

Oracle estimates that over the lifetime of a standard piece of code, 20 percent of the
effort will go into the original creation and testing of the code, and 80 percent of
the effort will go into the subsequent maintenance and enhancement of the code.

01-ch01.indd 7 9/2/2014 2:43:09 PM

8 Chapter 1: Declarations and Access Control

Agreeing on, and coding to, a set of code standards helps to reduce the effort
involved in testing, maintaining, and enhancing any piece of code. Oracle has
created a set of coding standards for Java and published those standards in a
document cleverly titled "Java Code Conventions," which you can find if you start
at java.oracle.com. It's a great document, short, and easy to read, and we
recommend it highly.

That said, you'll find that many of the questions in the exam don't follow the
code conventions because of the limitations in the test engine that is used to deliver
the exam internationally. One of the great things about the Oracle certifications is
that the exams are administered uniformly throughout the world. To achieve that,
the code listings that you'll see in the real exam are often quite cramped and do not
follow Oracle's code standards. To toughen you up for the exam, we'll often present
code listings that have a similarly cramped look and feel, often indenting our code
only two spaces as opposed to the Oracle standard of four.

We'll also jam our curly braces together unnaturally, and we'll sometimes put
several statements on the same line…ouch! For example:

 1. class Wombat implements Runnable {
 2. private int i;
 3. public synchronized void run() {
 4. if (i%5 != 0) { i++; }
 5. for(int x=0; x<5; x++, i++)
 6. { if (x > 1) Thread.yield(); }
 7. System.out.print(i + " ");
 8. }
 9. public static void main(String[] args) {
10. Wombat n = new Wombat();
11. for(int x=100; x>0; --x) { new Thread(n).start(); }
12. } }

Consider yourself forewarned—you'll see lots of code listings, mock questions,
and real exam questions that are this sick and twisted. Nobody wants you to write
your code like this—not your employer, not your coworkers, not us, not Oracle, and
not the exam creation team! Code like this was created only so that complex
concepts could be tested within a universal testing tool. The only standards that are
followed as much as possible in the real exam are the naming standards. Here are the
naming standards that Oracle recommends and that we use in the exam and in most
of the book:

■ Classes and interfaces The first letter should be capitalized, and if several
words are linked together to form the name, the first letter of the inner words

01-ch01.indd 8 9/2/2014 2:43:09 PM

http://www.java.oracle.com

Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 9

should be uppercase (a format that's sometimes called "CamelCase"). For
classes, the names should typically be nouns. Here are some examples:
 Dog
 Account
 PrintWriter

 For interfaces, the names should typically be adjectives, like these:
 Runnable
 Serializable

■ Methods The first letter should be lowercase, and then normal CamelCase
rules should be used. In addition, the names should typically be verb-noun
pairs. For example:
 getBalance
 doCalculation
 setCustomerName

■ Variables Like methods, the CamelCase format should be used, but starting
with a lowercase letter. Oracle recommends short, meaningful names, which
sounds good to us. Some examples:
 buttonWidth
 accountBalance
 myString

■ Constants Java constants are created by marking variables static and
final. They should be named using uppercase letters with underscore
characters as separators:
 MIN_HEIGHT

CERTIFICATION OBJECTIVE

Define Classes
(OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6)

1.2 Define the structure of a Java class.

1.3 Create executable Java applications with a main method.

01-ch01.indd 9 9/2/2014 2:43:09 PM

10 Chapter 1: Declarations and Access Control

1.4 Import other Java packages to make them accessible in your code.

6.6 Apply access modifiers.

7.6 Use abstract classes and interfaces.

When you write code in Java, you're writing classes or interfaces. Within those
classes, as you know, are variables and methods (plus a few other things). How you
declare your classes, methods, and variables dramatically affects your code's behavior.
For example, a public method can be accessed from code running anywhere in your
application. Mark that method private, though, and it vanishes from everyone's
radar (except the class in which it was declared).

For this objective, we'll study the ways in which you can declare and modify (or
not) a class. You'll find that we cover modifiers in an extreme level of detail, and
although we know you're already familiar with them, we're starting from the very
beginning. Most Java programmers think they know how all the modifiers work, but
on closer study they often find out that they don't (at least not to the degree needed
for the exam). Subtle distinctions are everywhere, so you need to be absolutely certain
you're completely solid on everything in this section's objectives before taking the exam.

Source File Declaration Rules

Before we dig into class declarations, let's do a quick review of the rules associated with
declaring classes, import statements, and package statements in a source file:

■ There can be only one public class per source code file.

■ Comments can appear at the beginning or end of any line in the source code
file; they are independent of any of the positioning rules discussed here.

■ If there is a public class in a file, the name of the file must match the name
of the public class. For example, a class declared as public class Dog { }
must be in a source code file named Dog.java.

■ If the class is part of a package, the package statement must be the first line
in the source code file, before any import statements that may be present.

■ If there are import statements, they must go between the package statement
(if there is one) and the class declaration. If there isn't a package statement,
then the import statement(s) must be the first line(s) in the source code file.

01-ch01.indd 10 9/2/2014 2:43:09 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 11

If there are no package or import statements, the class declaration must be
the first line in the source code file.

■ import and package statements apply to all classes within a source code file.
In other words, there's no way to declare multiple classes in a file and have
them in different packages or use different imports.

■ A file can have more than one nonpublic class.

■ Files with no public classes can have a name that does not match any of the
classes in the file.

Using the javac and java Commands

In this book, we're going to talk about invoking the javac and java commands
about 1000 times. Although in the real world you'll probably use an integrated
development environment (IDE) most of the time, you could see a few questions on
the exam that use the command line instead, so we're going to review the basics.
(By the way, we did NOT use an IDE while writing this book. We still have a slight
preference for the command line while studying for the exam; all IDEs do their best
to be "helpful," and sometimes they'll fix your problems without telling you. That's
nice on the job, but maybe not so great when you're studying for a certification exam!)

Compiling with javac

The javac command is used to invoke Java's compiler. You can specify many
options when running javac. For example, there are options to generate debugging
information or compiler warnings. Here's the structural overview for javac:

javac [options] [source files]

There are additional command-line options called @argfiles, but they're rarely
used, and you won't need to study them for the exam. Both the [options] and the
[source files] are optional parts of the command, and both allow multiple
entries. The following are both legal javac commands:

javac -help
javac -version Foo.java Bar.java

The first invocation doesn't compile any files, but prints a summary of valid
options. The second invocation passes the compiler an option (-version, which
prints the version of the compiler you're using), and passes the compiler two .java
files to compile (Foo.java and Bar.java). Whenever you specify multiple options

01-ch01.indd 11 9/2/2014 2:43:09 PM

12 Chapter 1: Declarations and Access Control

and/or files, they should be separated by spaces. (Note: If you're studying for the
OCP 7, in Chapter 7 we'll talk about the assertion mechanism and when you might
use the -source option when compiling a file.)

Launching Applications with java

The java command is used to invoke the Java Virtual Machine (JVM). Here's the
basic structure of the command:

java [options] class [args]

The [options] and [args] parts of the java command are optional, and they
can both have multiple values. (Of the two exams, only the OCP 7 will use
[options].) You must specify exactly one class file to execute, and the java
command assumes you're talking about a .class file, so you don't specify the
.class extension on the command line. Here's an example:

java -version MyClass x 1

This command can be interpreted as "Show me the version of the JVM being
used, and then launch the file named MyClass.class and send it two String
arguments whose values are x and 1." Let's look at the following code:

public class MyClass {
 public static void main(String[] args) {
 System.out.println(args[0] + " " + args[1]);
 }
}

It's compiled and then invoked as follows:

java MyClass x 1

The output will be

x 1

We'll be getting into arrays in depth later, but for now it's enough to know that
args—like all arrays—uses a zero-based index. In other words, the first command line
argument is assigned to args[0], the second argument is assigned to args[1], and
so on.

Note: Again, for the OCP 7 candidates, in Chapter 7 we'll talk about the
assertion mechanism and when you might use flags such as -ea or -da when
launching an application.

01-ch01.indd 12 9/2/2014 2:43:09 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 13

Using public static void main(String[] args)

The use of the main() method is implied in most of the questions on the exam, and
on the OCA exam it is specifically covered. For the .0001% of you who don't know,
main() is the method that the JVM uses to start execution of a Java program.

First off, it's important for you to know that naming a method main() doesn't
give it the superpowers we normally associate with main(). As far as the compiler
and the JVM are concerned, the only version of main() with superpowers is the
main() with this signature:

public static void main(String[] args)

Other versions of main() with other signatures are perfectly legal, but they're
treated as normal methods. There is some flexibility in the declaration of the
"special" main() method (the one used to start a Java application): the order of its
modifiers can be altered a little, the String array doesn't have to be named args,
and as of Java 5 it can be declared using var-args syntax. The following are all legal
declarations for the "special" main():

static public void main(String[] args)
public static void main(String... x)
static public void main(String bang_a_gong[])

For the OCA exam, the only other thing that's important for you to know is that
main() can be overloaded. We'll cover overloading in detail in the next chapter.

Import Statements and the Java API

There are a gazillion Java classes in the world. The Java API has thousands of classes
and the Java community has written the rest. We'll go out on a limb and contend
that all Java programmers everywhere use a combination of classes they wrote and
classes that other programmers wrote. Suppose we created the following:

public class ArrayList {
 public static void main(String[] args) {
 System.out.println("fake ArrayList class");
 }
}

This is a perfectly legal class, but as it turns out, one of the most commonly used
classes in the Java API is also named ArrayList, or so it seems…. The API
version's actual name is java.util.ArrayList. That's its fully qualified name. The
use of fully qualified names is what helps Java developers make sure that two

01-ch01.indd 13 9/2/2014 2:43:09 PM

14 Chapter 1: Declarations and Access Control

versions of a class like ArrayList don't get confused. So now let's say that I want to
use the ArrayList class from the API:

public class MyClass {
 public static void main(String[] args) {
 java.util.ArrayList<String> a =
 new java.util.ArrayList<String>();
 }
}

(First off, trust us on the <String> syntax; we'll get to that later.) While this is
legal, it's also a LOT of keystrokes. Since we programmers are basically lazy (there,
we said it), we like to use other people's classes a LOT, AND we hate to type. If we
had a large program, we might end up using ArrayLists many times.

import statements to the rescue! Instead of the preceding code, our class could
look like this:

import java.util.ArrayList;
public class MyClass {
 public static void main(String[] args) {
 ArrayList<String> a = new ArrayList<String>();
 }
}

We can interpret the import statement as saying, "In the Java API there is a
package called 'util', and in that package is a class called 'ArrayList'. Whenever you
see the word 'ArrayList' in this class, it's just shorthand for: 'java.util.ArrayList'."
(Note: Lots more on packages to come!) If you're a C programmer, you might think
that the import statement is similar to an #include. Not really. All a Java import
statement does is save you some typing. That's it.

As we just implied, a package typically has many classes. The import statement
offers yet another keystroke-saving capability. Let's say you wanted to use a few
different classes from the java.util package: ArrayList and TreeSet. You can
add a wildcard character (*) to your import statement that means, "If you see a
reference to a class you're not sure of, you can look through the entire package for
that class," like so:

import java.util.*;
public class MyClass {
 public static void main(String[] args) {
 ArrayList<String> a = new ArrayList<String>();
 TreeSet<String> t = new TreeSet<String>();
 }
}

01-ch01.indd 14 9/2/2014 2:43:09 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 15

When the compiler and the JVM see this code, they'll know to look through
java.util for ArrayList and TreeSet. For the exam, the last thing you'll need to
remember about using import statements in your classes is that you're free to mix
and match. It's okay to say this:

ArrayList<String> a = new ArrayList<String>();
java.util.ArrayList<String> a2 = new java.util.ArrayList<String>();

Static Import Statements

Dear Reader, We really struggled with when to include this discussion of static
imports. From a learning perspective this is probably not the ideal location, but from
a reference perspective, we thought it made sense. As you're learning the material
for the first time, you might be confused by some of the ideas in this section. If that's
the case, we apologize. Put a sticky note on this page and circle back around after
you're finished with Chapter 3. On the other hand, once you're past the learning
stage and you're using this book as a reference, we think putting this section here
will be quite useful. Now, on to static imports.

Sometimes classes will contain static members. (We'll talk more about static class
members later, but since we were on the topic of imports we thought we'd toss in
static imports now.) Static class members can exist in the classes you write and in a
lot of the classes in the Java API.

As we said earlier, ultimately the only value import statements have is that they
save typing and they can make your code easier to read. In Java 5, the import
statement was enhanced to provide even greater keystroke-reduction capabilities,
although some would argue that this comes at the expense of readability. This
feature is known as static imports. Static imports can be used when you want to "save
typing" while using a class's static members. (You can use this feature on classes in
the API and on your own classes.) Here's a "before and after" example using a few
static class members provided by a commonly used class in the Java API, java.lang
.Integer. This example also uses a static member that you've used a thousand times,
probably without ever giving it much thought; the out field in the System class.

Before static imports:

public class TestStatic {
 public static void main(String[] args) {
 System.out.println(Integer.MAX_VALUE);
 System.out.println(Integer.toHexString(42));
 }
}

01-ch01.indd 15 9/2/2014 2:43:09 PM

16 Chapter 1: Declarations and Access Control

After static imports:

import static java.lang.System.out; // 1
import static java.lang.Integer.*; // 2
public class TestStaticImport {
 public static void main(String[] args) {
 out.println(MAX_VALUE); // 3
 out.println(toHexString(42)); // 4
 }
}

Both classes produce the same output:

2147483647
2a

Let's look at what's happening in the code that's using the static import feature:

 1. Even though the feature is commonly called "static import" the syntax
MUST be import static followed by the fully qualified name of the
static member you want to import, or a wildcard. In this case, we're doing
a static import on the System class out object.

 2. In this case we might want to use several of the static members of the
java.lang.Integer class. This static import statement uses the wildcard to
say, "I want to do static imports of ALL the static members in this class."

 3. Now we're finally seeing the benefit of the static import feature! We didn't
have to type the System in System.out.println! Wow! Second, we didn't
have to type the Integer in Integer.MAX_VALUE. So in this line of code we
were able to use a shortcut for a static method AND a constant.

 4. Finally, we do one more shortcut, this time for a method in the Integer class.

We've been a little sarcastic about this feature, but we're not the only ones. We're
not convinced that saving a few keystrokes is worth possibly making the code a little
harder to read, but enough developers requested it that it was added to the language.

Here are a couple of rules for using static imports:

■ You must say import static; you can't say static import.

■ Watch out for ambiguously named static members. For instance, if you do a
static import for both the Integer class and the Long class, referring to MAX_
VALUE will cause a compiler error, since both Integer and Long have a MAX_
VALUE constant, and Java won't know which MAX_VALUE you're referring to.

■ You can do a static import on static object references, constants (remember
they're static and final), and static methods.

01-ch01.indd 16 9/2/2014 2:43:09 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 17

As you've seen, when using import and import static statements,

sometimes you can use the wildcard character * to do some simple searching for you.

(You can search within a package or within a class.) As you saw earlier, if you want to

"search through the java.util package for class names," you can say this:

import java.util.*; // ok to search the java.util package

In a similar vein, if you want to "search through the java.lang.Integer class for static

members" you can say this:

import static java.lang.Integer.*; // ok to search the
 // java.lang.Integer class

But you can't create broader searches. For instance, you CANNOT use an import to

search through the entire Java API:

import java.*; // Legal, but this WILL NOT search across packages.

Class Declarations and Modifi ers

The class declarations we'll discuss in this section are limited to top-level classes.
Although nested classes (often called inner classes) are included on the OCP

exam, we'll save nested class declarations for Chapter 12. If you're an OCP
candidate, you're going to love that chapter. No, really. Seriously.

The following code is a bare-bones class declaration:

class MyClass { }

This code compiles just fine, but you can also add modifiers before the class
declaration. In general, modifiers fall into two categories:

■ Access modifiers (public, protected, private)

■ Nonaccess modifiers (including strictfp, final, and abstract)

We'll look at access modifiers first, so you'll learn how to restrict or allow access
to a class you create. Access control in Java is a little tricky, because there are four
access controls (levels of access) but only three access modifiers. The fourth access
control level (called default or package access) is what you get when you don't use
any of the three access modifiers. In other words, every class, method, and instance

01-ch01.indd 17 9/2/2014 2:43:09 PM

18 Chapter 1: Declarations and Access Control

variable you declare has an access control, whether you explicitly type one or not.
Although all four access controls (which means all three modifiers) work for most
method and variable declarations, a class can be declared with only public or
default access; the other two access control levels don't make sense for a class, as
you'll see.

Java is a package-centric language; the developers assumed that for good

organization and name scoping, you would put all your classes into packages.

They were right, and you should. Imagine this nightmare: Three different

programmers, in the same company but working on different parts of a

project, write a class named Utilities. If those three Utilities classes have

not been declared in any explicit package, and are in the classpath, you won't

have any way to tell the compiler or JVM which of the three you're trying to

reference. Oracle recommends that developers use reverse domain names,

appended with division and/or project names. For example, if your domain

name is geeksanonymous.com , and you're working on the client code for the

TwelvePointOSteps program, you would name your package something like

com.geeksanonymous.steps.client. That would essentially change the name

of your class to com.geeksanonymous.steps.client.Utilities. You might

still have name collisions within your company if you don't come up with

your own naming schemes, but you're guaranteed not to collide with classes

developed outside your company (assuming they follow Oracle's naming

convention, and if they don't, well, Really Bad Things could happen).

Class Access

What does it mean to access a class? When we say code from one class (class A) has
access to another class (class B), it means class A can do one of three things:

■ Create an instance of class B.

■ Extend class B (in other words, become a subclass of class B).

■ Access certain methods and variables within class B, depending on the access
control of those methods and variables.

In effect, access means visibility. If class A can't see class B, the access level of the
methods and variables within class B won't matter; class A won't have any way to
access those methods and variables.

01-ch01.indd 18 9/2/2014 2:43:10 PM

http://www.geeksanonymous.com

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 19

Default Access A class with default access has no modifier preceding it in the
declaration! It's the access control you get when you don't type a modifier in the
class declaration. Think of default access as package-level access, because a class with
default access can be seen only by classes within the same package. For example, if
class A and class B are in different packages, and class A has default access, class B
won't be able to create an instance of class A or even declare a variable or return
type of class A. In fact, class B has to pretend that class A doesn't even exist, or the
compiler will complain. Look at the following source file:

package cert;
class Beverage { }

Now look at the second source file:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

As you can see, the superclass (Beverage) is in a different package from the
subclass (Tea). The import statement at the top of the Tea file is trying (fingers
crossed) to import the Beverage class. The Beverage file compiles fine, but when
we try to compile the Tea file, we get something like this:
Can't access class cert.Beverage. Class or interface must be public, in same
package, or an accessible member class.
import cert.Beverage;

Tea won't compile because its superclass, Beverage, has default access and is in a
different package. You can do one of two things to make this work. You could put
both classes in the same package, or you could declare Beverage as public, as the
next section describes.

When you see a question with complex logic, be sure to look at the access
modifiers first. That way, if you spot an access violation (for example, a class in
package A trying to access a default class in package B), you'll know the code won't
compile so you don't have to bother working through the logic. It's not as if you
don't have anything better to do with your time while taking the exam. Just choose
the "Compilation fails" answer and zoom on to the next question.

Public Access

A class declaration with the public keyword gives all classes from all packages
access to the public class. In other words, all classes in the Java Universe (JU) have
access to a public class. Don't forget, though, that if a public class you're trying to

01-ch01.indd 19 9/2/2014 2:43:11 PM

20 Chapter 1: Declarations and Access Control

use is in a different package from the class you're writing, you'll still need to import
the public class.

In the example from the preceding section, we may not want to place the subclass
in the same package as the superclass. To make the code work, we need to add the
keyword public in front of the superclass (Beverage) declaration, as follows:

package cert;
public class Beverage { }

This changes the Beverage class so it will be visible to all classes in all packages.
The class can now be instantiated from all other classes, and any class is now free to
subclass (extend from) it—unless, that is, the class is also marked with the nonaccess
modifier final. Read on.

Other (Nonaccess) Class Modifiers

You can modify a class declaration using the keyword final, abstract, or
strictfp. These modifiers are in addition to whatever access control is on the class,
so you could, for example, declare a class as both public and final. But you can't
always mix nonaccess modifiers. You're free to use strictfp in combination with
final, for example, but you must never, ever, ever mark a class as both final and
abstract. You'll see why in the next two sections.

You won't need to know how strictfp works, so we're focusing only on
modifying a class as final or abstract. For the exam, you need to know only that
strictfp is a keyword and can be used to modify a class or a method, but never a
variable. Marking a class as strictfp means that any method code in the class will
conform to the IEEE 754 standard rules for floating points. Without that modifier,
floating points used in the methods might behave in a platform-dependent way. If
you don't declare a class as strictfp, you can still get strictfp behavior on a
method-by-method basis, by declaring a method as strictfp. If you don't know the
IEEE 754 standard, now's not the time to learn it. You have, as they say, bigger fish
to fry.

Final Classes

When used in a class declaration, the final keyword means the class can't be
subclassed. In other words, no other class can ever extend (inherit from) a final
class, and any attempts to do so will result in a compiler error.

So why would you ever mark a class final? After all, doesn't that violate the
whole OO notion of inheritance? You should make a final class only if you need an

01-ch01.indd 20 9/2/2014 2:43:11 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 21

absolute guarantee that none of the methods in that class will ever be overridden. If
you're deeply dependent on the implementations of certain methods, then using
final gives you the security that nobody can change the implementation out from
under you.

You'll notice many classes in the Java core libraries are final. For example, the
String class cannot be subclassed. Imagine the havoc if you couldn't guarantee how
a String object would work on any given system your application is running on! If
programmers were free to extend the String class (and thus substitute their new
String subclass instances where java.lang.String instances are expected),
civilization—as we know it—could collapse. So use final for safety, but only when
you're certain that your final class has indeed said all that ever needs to be said in
its methods. Marking a class final means, in essence, your class can't ever be
improved upon, or even specialized, by another programmer.

There's a benefit of having nonfinal classes is this scenario: Imagine that you find
a problem with a method in a class you're using, but you don't have the source code.
So you can't modify the source to improve the method, but you can extend the class
and override the method in your new subclass and substitute the subclass everywhere
the original superclass is expected. If the class is final, though, you're stuck.

Let's modify our Beverage example by placing the keyword final in the
declaration:

package cert;
public final class Beverage {
 public void importantMethod() { }
}

Now let's try to compile the Tea subclass:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

We get an error—something like this:

Can't subclass final classes: class
cert.Beverage class Tea extends Beverage{
1 error

In practice, you'll almost never make a final class. A final class obliterates a key
benefit of OO—extensibility. So unless you have a serious safety or security issue,
assume that someday another programmer will need to extend your class. If you
don't, the next programmer forced to maintain your code will hunt you down and
<insert really scary thing>.

01-ch01.indd 21 9/2/2014 2:43:11 PM

22 Chapter 1: Declarations and Access Control

Abstract Classes An abstract class can never be instantiated. Its sole
purpose, mission in life, raison d'être, is to be extended (subclassed). (Note,
however, that you can compile and execute an abstract class, as long as you don't
try to make an instance of it.) Why make a class if you can't make objects out of it?
Because the class might be just too, well, abstract. For example, imagine you have a
class Car that has generic methods common to all vehicles. But you don't want
anyone actually creating a generic, abstract Car object. How would they initialize its
state? What color would it be? How many seats? Horsepower? All-wheel drive? Or
more importantly, how would it behave? In other words, how would the methods be
implemented?

No, you need programmers to instantiate actual car types such as BMWBoxster
and SubaruOutback. We'll bet the Boxster owner will tell you his car does things
the Subaru can do "only in its dreams." Take a look at the following abstract class:

abstract class Car {
 private double price;
 private String model;
 private String year;
 public abstract void goFast();
 public abstract void goUpHill();
 public abstract void impressNeighbors();
 // Additional, important, and serious code goes here
}

The preceding code will compile fine. However, if you try to instantiate a Car in
another body of code, you'll get a compiler error something like this:

AnotherClass.java:7: class Car is an abstract
class. It can't be instantiated.
 Car x = new Car();
1 error

Notice that the methods marked abstract end in a semicolon rather than
curly braces.

Look for questions with a method declaration that ends with a semicolon, rather
than curly braces. If the method is in a class—as opposed to an interface—then both
the method and the class must be marked abstract. You might get a question that
asks how you could fix a code sample that includes a method ending in a semicolon,
but without an abstract modifier on the class or method. In that case, you could
either mark the method and class abstract or change the semicolon to code (like a
curly brace pair). Remember that if you change a method from abstract to
nonabstract, don't forget to change the semicolon at the end of the method
declaration into a curly brace pair!

01-ch01.indd 22 9/2/2014 2:43:11 PM

 Defi ne Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6) 23

We'll look at abstract methods in more detail later in this objective, but always
remember that if even a single method is abstract, the whole class must be
declared abstract. One abstract method spoils the whole bunch. You can,
however, put nonabstract methods in an abstract class. For example, you might
have methods with implementations that shouldn't change from Car type to Car
type, such as getColor() or setPrice(). By putting nonabstract methods in an
abstract class, you give all concrete subclasses (concrete just means not abstract)
inherited method implementations. The good news there is that concrete subclasses
get to inherit functionality and need to implement only the methods that define
subclass-specific behavior.

(By the way, if you think we misused raison d'être earlier, don't send an e-mail.
We'd like to see you work it into a programmer certification book.)

Coding with abstract class types (including interfaces, discussed later in this
chapter) lets you take advantage of polymorphism, and gives you the greatest degree
of flexibility and extensibility. You'll learn more about polymorphism in Chapter 2.

You can't mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a final class must not be
subclassed. If you see this combination of abstract and final modifiers used for a
class or method declaration, the code will not compile.

EXERCISE 1-1

Creating an Abstract Superclass and Concrete Subclass

The following exercise will test your knowledge of public, default, final, and
abstract classes. Create an abstract superclass named Fruit and a concrete
subclass named Apple. The superclass should belong to a package called food and
the subclass can belong to the default package (meaning it isn't put into a package
explicitly). Make the superclass public and give the subclass default access.

 1. Create the superclass as follows:
 package food;
 public abstract class Fruit{ /* any code you want */}

 2. Create the subclass in a separate file as follows:

 import food.Fruit;
 class Apple extends Fruit{ /* any code you want */}

01-ch01.indd 23 9/2/2014 2:43:11 PM

24 Chapter 1: Declarations and Access Control

 3. Create a directory called food off the directory in your class path setting.

 4. Attempt to compile the two files. If you want to use the Apple class, make
sure you place the Fruit.class file in the food subdirectory.

CERTIFICATION OBJECTIVE

Use Interfaces (OCA Objective 7.6)

7.6 Use abstract classes and interfaces.

Declaring an Interface

When you create an interface, you're defining a contract for what a class can do,
without saying anything about how the class will do it. An interface is a contract.
You could write an interface Bounceable, for example, that says in effect, "This is
the Bounceable interface. Any class type that implements this interface must agree
to write the code for the bounce() and setBounceFactor() methods."

By defining an interface for Bounceable, any class that wants to be treated as a
Bounceable thing can simply implement the Bounceable interface and provide
code for the interface's two methods.

Interfaces can be implemented by any class, from any inheritance tree. This lets
you take radically different classes and give them a common characteristic. For
example, you might want both a Ball and a Tire to have bounce behavior, but
Ball and Tire don't share any inheritance relationship; Ball extends Toy while
Tire extends only java.lang.Object. But by making both Ball and Tire
implement Bounceable, you're saying that Ball and Tire can be treated as,
"Things that can bounce," which in Java translates to, "Things on which you can
invoke the bounce() and setBounceFactor() methods." Figure 1-1 illustrates the
relationship between interfaces and classes.

Think of an interface as a 100-percent abstract class. Like an abstract class,
an interface defines abstract methods that take the following form:

abstract void bounce(); // Ends with a semicolon rather than
 // curly braces

01-ch01.indd 24 9/2/2014 2:43:11 PM

 Use Interfaces (OCA Objective 7.6) 25

But although an abstract class can define both abstract and nonabstract
methods, an interface can have only abstract methods. Another way interfaces
differ from abstract classes is that interfaces have very little flexibility in how the
methods and variables defined in the interface are declared. These rules are strict:

■ All interface methods are implicitly public and abstract. In other words,
you do not need to actually type the public or abstract modifiers in the
method declaration, but the method is still always public and abstract.

■ All variables defined in an interface must be public, static, and final—
in other words, interfaces can declare only constants, not instance variables.

■ Interface methods must not be static.

■ Because interface methods are abstract, they cannot be marked final,
strictfp, or native. (More on these modifiers later in the chapter.)

■ An interface can extend one or more other interfaces.

■ An interface cannot extend anything but another interface.

■ An interface cannot implement another interface or class.

 FIGURE 1-1

The relationship
between
interfaces and
classes

interface Bounceable

What you
declare.

What the
compiler
sees.

What the
implementing
class must do.

(All interface
methods must
be implemented,
and must be
marked public.)

void bounce();
void setBounceFactor(int bf);

interface Bounceable

Class Tire implements Bounceable
public void bounce(){...}
public void setBounceFactor(int bf){ }

public abstract void bounce();
public abstract void setBounceFactor(int bf);

01-ch01.indd 25 9/2/2014 2:43:11 PM

26 Chapter 1: Declarations and Access Control

■ An interface must be declared with the keyword interface.

■ Interface types can be used polymorphically (see Chapter 2 for more details).

The following is a legal interface declaration:

public abstract interface Rollable { }

Typing in the abstract modifier is considered redundant; interfaces are
implicitly abstract whether you type abstract or not. You just need to know that
both of these declarations are legal and functionally identical:

public abstract interface Rollable { }
public interface Rollable { }

The public modifier is required if you want the interface to have public rather
than default access.

We've looked at the interface declaration, but now we'll look closely at the
methods within an interface:

public interface Bounceable {
 public abstract void bounce();
 public abstract void setBounceFactor(int bf);
}

Typing in the public and abstract modifiers on the methods is redundant,
though, since all interface methods are implicitly public and abstract. Given that
rule, you can see that the following code is exactly equivalent to the preceding
interface:

public interface Bounceable {
 void bounce(); // No modifiers
 void setBounceFactor(int bf); // No modifiers
}

You must remember that all interface methods are public and abstract
regardless of what you see in the interface definition.

Look for interface methods declared with any combination of public, abstract,
or no modifiers. For example, the following five method declarations, if declared
within their own interfaces, are legal and identical!

void bounce();
public void bounce();
abstract void bounce();
public abstract void bounce();
abstract public void bounce();

01-ch01.indd 26 9/2/2014 2:43:11 PM

 Use Interfaces (OCA Objective 7.6) 27

The following interface method declarations won't compile:

final void bounce(); // final and abstract can never be used
 // together, and abstract is implied
static void bounce(); // interfaces define instance methods
private void bounce(); // interface methods are always public
protected void bounce(); // (same as above)

Declaring Interface Constants

You're allowed to put constants in an interface. By doing so, you guarantee that any
class implementing the interface will have access to the same constant. By placing
the constants right in the interface, any class that implements the interface has
direct access to the constants, just as if the class had inherited them.

You need to remember one key rule for interface constants. They must always be

public static final

So that sounds simple, right? After all, interface constants are no different from any
other publicly accessible constants, so they obviously must be declared public,
static, and final. But before you breeze past the rest of this discussion, think
about the implications: Because interface constants are defined in an interface,
they don't have to be declared as public, static, or final. They must be
public, static, and final, but you don't actually have to declare them that
way. Just as interface methods are always public and abstract whether you say so
in the code or not, any variable defined in an interface must be—and implicitly
is—a public constant. See if you can spot the problem with the following code
(assume two separate files):

interface Foo {
 int BAR = 42;
 void go();
}

class Zap implements Foo {
 public void go() {
 BAR = 27;
 }
}

You can't change the value of a constant! Once the value has been assigned, the
value can never be modified. The assignment happens in the interface itself (where
the constant is declared), so the implementing class can access it and use it, but as a
read-only value. So the BAR = 27 assignment will not compile.

01-ch01.indd 27 9/2/2014 2:43:11 PM

28 Chapter 1: Declarations and Access Control

Look for interface defi nitions that defi ne constants, but without explicitly

using the required modifi ers. For example, the following are all identical:

public int x = 1; // Looks non-static and non-final,
 // but isn't!
int x = 1; // Looks default, non-final,
 // non-static, but isn't!
static int x = 1; // Doesn't show final or public
final int x = 1; // Doesn't show static or public
public static int x = 1; // Doesn't show final
public final int x = 1; // Doesn't show static
static final int x = 1 // Doesn't show public
public static final int x = 1; // what you get implicitly

Any combination of the required (but implicit) modifi ers is legal, as is using no modifi ers

at all! On the exam, you can expect to see questions you won't be able to answer

correctly unless you know, for example, that an interface variable is final and can never

be given a value by the implementing (or any other) class.

CERTIFICATION OBJECTIVE

Declare Class Members (OCA Objectives 2.1,
2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6)

2.1 Declare and initialize variables.

2.2 Differentiate between object reference variables and primitive variables.

2.3 Read or write to object fields.

2.4 Explain an object's lifecycle.

2.5 Call methods on objects.

01-ch01.indd 28 9/2/2014 2:43:11 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 29

4.1 Declare, instantiate, initialize, and use a one-dimensional array.

4.2 Declare, instantiate, initialize, and use a multidimensional array.

6.2 Apply the static keyword to methods and fields.

6.6 Apply access modifiers.

We've looked at what it means to use a modifier in a class declaration, and now
we'll look at what it means to modify a method or variable declaration.

Methods and instance (nonlocal) variables are collectively known as members.
You can modify a member with both access and nonaccess modifiers, and you have
more modifiers to choose from (and combine) than when you're declaring a class.

Access Modifi ers

Because method and variable members are usually given access control in exactly
the same way, we'll cover both in this section.

Whereas a class can use just two of the four access control levels (default or
public), members can use all four:

■ public

■ protected

■ default

■ private

Default protection is what you get when you don't type an access modifier in the
member declaration. The default and protected access control types have almost
identical behavior, except for one difference that we will mentioned later.

It's crucial that you know access control inside and out for the exam. There will
be quite a few questions with access control playing a role. Some questions test
several concepts of access control at the same time, so not knowing one small part of
access control could mean you blow an entire question.

What does it mean for code in one class to have access to a member of another
class? For now, ignore any differences between methods and variables. If class A has
access to a member of class B, it means that class B's member is visible to class A.
When a class does not have access to another member, the compiler will slap you for
trying to access something that you're not even supposed to know exists!

01-ch01.indd 29 9/2/2014 2:43:11 PM

30 Chapter 1: Declarations and Access Control

You need to understand two different access issues:

■ Whether method code in one class can access a member of another class

■ Whether a subclass can inherit a member of its superclass

The first type of access occurs when a method in one class tries to access a
method or a variable of another class, using the dot operator (.) to invoke a method
or retrieve a variable. For example:

class Zoo {
 public String coolMethod() {
 return "Wow baby";
 }
}
class Moo {
 public void useAZoo() {
 Zoo z = new Zoo();
 // If the preceding line compiles Moo has access
 // to the Zoo class
 // But... does it have access to the coolMethod()?
 System.out.println("A Zoo says, " + z.coolMethod());
 // The preceding line works because Moo can access the
 // public method
 }
}

The second type of access revolves around which, if any, members of a superclass
a subclass can access through inheritance. We're not looking at whether the subclass
can, say, invoke a method on an instance of the superclass (which would just be an
example of the first type of access). Instead, we're looking at whether the subclass
inherits a member of its superclass. Remember, if a subclass inherits a member, it's
exactly as if the subclass actually declared the member itself. In other words, if a
subclass inherits a member, the subclass has the member. Here's an example:

class Zoo {
 public String coolMethod() {
 return "Wow baby";
 }
}
class Moo extends Zoo {
 public void useMyCoolMethod() {
 // Does an instance of Moo inherit the coolMethod()?
 System.out.println("Moo says, " + this.coolMethod());
 // The preceding line works because Moo can inherit the
 // public method
 // Can an instance of Moo invoke coolMethod() on an
 // instance of Zoo?

01-ch01.indd 30 9/2/2014 2:43:11 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 31

 Zoo z = new Zoo();
 System.out.println("Zoo says, " + z.coolMethod());
 // coolMethod() is public, so Moo can invoke it on a Zoo
 // reference
 }
}

Figure 1-2 compares a class inheriting a member of another class and accessing a
member of another class using a reference of an instance of that class.

Much of access control (both types) centers on whether the two classes involved
are in the same or different packages. Don't forget, though, that if class A itself can't
be accessed by class B, then no members within class A can be accessed by class B.

You need to know the effect of different combinations of class and member access
(such as a default class with a public variable). To figure this out, first look at the
access level of the class. If the class itself will not be visible to another class, then
none of the members will be visible either, even if the member is declared public.
Once you've confirmed that the class is visible, then it makes sense to look at access
levels on individual members.

Public Members

When a method or variable member is declared public, it means all other classes,
regardless of the package they belong to, can access the member (assuming the class
itself is visible).

Look at the following source file:

package book;
import cert.*; // Import all classes in the cert package
class Goo {
 public static void main(String[] args) {
 Sludge o = new Sludge();
 o.testIt();
 }
}

Now look at the second file:

package cert;
public class Sludge {
 public void testIt() { System.out.println("sludge"); }
}

As you can see, Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems, because both the Sludge class and
its testIt() method are marked public.

01-ch01.indd 31 9/2/2014 2:43:11 PM

32 Chapter 1: Declarations and Access Control

For a subclass, if a member of its superclass is declared public, the subclass
inherits that member regardless of whether both classes are in the same package:

package cert;
public class Roo {
 public String doRooThings() {
 // imagine the fun code that goes here
 return "fun";
 }
}

 FIGURE 1-2

Comparison of
inheritance vs.
dot operator for
member access

SportsCar

Convertible

Driver

doThings(){

doDriverStuff(){
SportsCar car = new SportsCar();

Convertible con = new Convertible();

SportsCar sc = new SportsCar();
sc.goFast();

car.goFast();

con.goFast();
}

doMore(){
goFast();
}

}

superclass

subclass

Three ways to access a method:

Invoking a method declared in the same class

Invoking a method using a reference of the class

Invoking an inherited method

D

R

R

R

D

R

I

I

 goFast()
doStuff(){
goFast();

}

{ }

01-ch01.indd 32 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 33

The Roo class declares the doRooThings() member as public. So if we make
a subclass of Roo, any code in that Roo subclass can call its own inherited
doRooThings() method.

Notice in the following code that the doRooThings() method is invoked
without having to preface it with a reference:

package notcert; // Not the package Roo is in
import cert.Roo;
class Cloo extends Roo {
 public void testCloo() {
 System.out.println(doRooThings());
 }
}

Remember, if you see a method invoked (or a variable accessed) without the dot
operator (.), it means the method or variable belongs to the class where you see that
code. It also means that the method or variable is implicitly being accessed using the
this reference. So in the preceding code, the call to doRooThings() in the Cloo
class could also have been written as this.doRooThings(). The reference this
always refers to the currently executing object—in other words, the object running
the code where you see the this reference. Because the this reference is implicit,
you don't need to preface your member access code with it, but it won't hurt. Some
programmers include it to make the code easier to read for new (or non) Java
programmers.

Besides being able to invoke the doRooThings() method on itself, code from
some other class can call doRooThings() on a Cloo instance, as in the following:

class Toon {
 public static void main(String[] args) {
 Cloo c = new Cloo();
 System.out.println(c.doRooThings()); // No problem; method
 // is public
 }
}

Private Members

Members marked private can't be accessed by code in any class other than the
class in which the private member was declared. Let's make a small change to the
Roo class from an earlier example:

package cert;
public class Roo {
 private String doRooThings() {
 // imagine the fun code that goes here, but only the Roo
 // class knows

01-ch01.indd 33 9/2/2014 2:43:12 PM

34 Chapter 1: Declarations and Access Control

 return "fun";
 }
}

The doRooThings() method is now private, so no other class can use it. If we
try to invoke the method from any other class, we'll run into trouble:

package notcert;
import cert.Roo;
class UseARoo {
 public void testIt() {
 Roo r = new Roo(); //So far so good; class Roo is public
 System.out.println(r.doRooThings()); // Compiler error!
 }
}

If we try to compile UseARoo, we get a compiler error something like this:

cannot find symbol
symbol : method doRooThings()

It's as if the method doRooThings() doesn't exist, and as far as any code outside of
the Roo class is concerned, this is true. A private member is invisible to any code
outside the member's own class.

What about a subclass that tries to inherit a private member of its superclass?
When a member is declared private, a subclass can't inherit it. For the exam, you
need to recognize that a subclass can't see, use, or even think about the private
members of its superclass. You can, however, declare a matching method in the
subclass. But regardless of how it looks, it is not an overriding method! It is simply a
method that happens to have the same name as a private method (which you're
not supposed to know about) in the superclass. The rules of overriding do not apply,
so you can make this newly-declared-but-just-happens-to-match method declare
new exceptions, or change the return type, or do anything else you want it to do.

package cert;
public class Roo {
 private String doRooThings() {
 // imagine the fun code that goes here, but no other class
 // will know
 return "fun";
 }
}

01-ch01.indd 34 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 35

The doRooThings() method is now off limits to all subclasses, even those in the
same package as the superclass:
package cert; // Cloo and Roo are in the same package
class Cloo extends Roo { // Still OK, superclass Roo is public
 public void testCloo() {
 System.out.println(doRooThings()); // Compiler error!
 }
}

If we try to compile the subclass Cloo, the compiler is delighted to spit out an
error something like this:

%javac Cloo.java
Cloo.java:4: Undefined method: doRooThings()
 System.out.println(doRooThings());
1 error

Can a private method be overridden by a subclass? That's an interesting
question, but the answer is technically no. Since the subclass, as we've seen, cannot
inherit a private method, it therefore cannot override the method—overriding
depends on inheritance. We'll cover the implications of this in more detail a little
later in this section as well as in Chapter 2, but for now just remember that a
method marked private cannot be overridden. Figure 1-3 illustrates the effects
of the public and private modifiers on classes from the same or different
packages.

Protected and Default Members

The protected and default access control levels are almost identical, but with one
critical difference. A default member may be accessed only if the class accessing the
member belongs to the same package, whereas a protected member can be accessed
(through inheritance) by a subclass even if the subclass is in a different package.

Take a look at the following two classes:

package certification;
public class OtherClass {
 void testIt() { // No modifier means method has default
 // access
 System.out.println("OtherClass");
 }
}

01-ch01.indd 35 9/2/2014 2:43:12 PM

36 Chapter 1: Declarations and Access Control

In another source code file you have the following:

package somethingElse;
import certification.OtherClass;
class AccessClass {
 static public void main(String[] args) {
 OtherClass o = new OtherClass();
 o.testIt();
 }
}

 FIGURE 1-3

Effects of public
and private access

SportsCar

Convertible

Driver

doThings(){

doDriverStuff(){
SportsCar car = new SportsCar();

Convertible con = new Convertible();

SportsCar sc = new SportsCar();
sc.goFast();

car.goFast();

con.goFast();
}

doMore(){
goFast();
}

}

superclass

The effect of private access control

subclass

Three ways to access a method:

Invoking a method declared in the same class

Invoking a method using a reference of the class

Invoking an inherited method

D

R

R

R

D

R

I

I

goFast()
private

doStuff(){
goFast();

}

{ }...

01-ch01.indd 36 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 37

As you can see, the testIt() method in the first file has default (think package-
level) access. Notice also that class OtherClass is in a different package from the
AccessClass. Will AccessClass be able to use the method testIt()? Will it
cause a compiler error? Will Daniel ever marry Francesca? Stay tuned.

No method matching testIt() found in class
certification.OtherClass. o.testIt();

From the preceding results, you can see that AccessClass can't use the
OtherClass method testIt() because testIt() has default access and
AccessClass is not in the same package as OtherClass. So AccessClass can't see
it, the compiler complains, and we have no idea who Daniel and Francesca are.

Default and protected behavior differ only when we talk about subclasses. If the
protected keyword is used to define a member, any subclass of the class declaring
the member can access it through inheritance. It doesn't matter if the superclass and
subclass are in different packages; the protected superclass member is still visible to
the subclass (although visible only in a very specific way as we'll see a little later).
This is in contrast to the default behavior, which doesn't allow a subclass to access a
superclass member unless the subclass is in the same package as the superclass.

Whereas default access doesn't extend any special consideration to subclasses
(you're either in the package or you're not), the protected modifier respects the
parent-child relationship, even when the child class moves away (and joins a new
package). So when you think of default access, think package restriction. No
exceptions. But when you think protected, think package + kids. A class with a
protected member is marking that member as having package-level access for all
classes, but with a special exception for subclasses outside the package.

But what does it mean for a subclass-outside-the-package to have access to a
superclass (parent) member? It means the subclass inherits the member. It does not,
however, mean the subclass-outside-the-package can access the member using a
reference to an instance of the superclass. In other words, protected = inheritance.
Protected does not mean that the subclass can treat the protected superclass
member as though it were public. So if the subclass-outside-the-package gets a
reference to the superclass (by, for example, creating an instance of the superclass
somewhere in the subclass' code), the subclass cannot use the dot operator on the
superclass reference to access the protected member. To a subclass-outside-the-
package, a protected member might as well be default (or even private), when
the subclass is using a reference to the superclass. The subclass can see the
protected member only through inheritance.

01-ch01.indd 37 9/2/2014 2:43:12 PM

38 Chapter 1: Declarations and Access Control

Are you confused? Hang in there and it will all become clearer with the next
batch of code examples.

Protected Details

Let's take a look at a protected instance variable (remember, an instance variable
is a member) of a superclass.

package certification;
public class Parent {
 protected int x = 9; // protected access
}

The preceding code declares the variable x as protected. This makes the
variable accessible to all other classes inside the certification package, as well as
inheritable by any subclasses outside the package.

Now let's create a subclass in a different package, and attempt to use the variable
x (that the subclass inherits):

package other; // Different package
import certification.Parent;
class Child extends Parent {
 public void testIt() {
 System.out.println("x is " + x); // No problem; Child
 // inherits x
 }
}

The preceding code compiles fine. Notice, though, that the Child class is
accessing the protected variable through inheritance. Remember that any time we
talk about a subclass having access to a superclass member, we could be talking about
the subclass inheriting the member, not simply accessing the member through a
reference to an instance of the superclass (the way any other nonsubclass would
access it). Watch what happens if the subclass Child (outside the superclass'
package) tries to access a protected variable using a Parent class reference:
package other;
import certification.Parent;
class Child extends Parent {
 public void testIt() {
 System.out.println("x is " + x); // No problem; Child
 // inherits x
 Parent p = new Parent(); // Can we access x using
 // the p reference?
 System.out.println("X in parent is " + p.x); // Compiler error!
 }
}

01-ch01.indd 38 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 39

The compiler is more than happy to show us the problem:

%javac -d . other/Child.java
other/Child.java:9: x has protected access in certification.Parent
System.out.println("X in parent is " + p.x);
 ^
1 error

So far, we've established that a protected member has essentially package-level
or default access to all classes except for subclasses. We've seen that subclasses
outside the package can inherit a protected member. Finally, we've seen that
subclasses outside the package can't use a superclass reference to access a protected
member. For a subclass outside the package, the protected member can be

accessed only through inheritance.

But there's still one more issue we haven't looked at: What does a protected
member look like to other classes trying to use the subclass-outside-the-package to
get to the subclass' inherited protected superclass member? For example, using our
previous Parent/Child classes, what happens if some other class—Neighbor, say—in
the same package as the Child (subclass), has a reference to a Child instance and
wants to access the member variable x ? In other words, how does that protected
member behave once the subclass has inherited it? Does it maintain its protected
status, such that classes in the Child's package can see it?

No! Once the subclass-outside-the-package inherits the protected member, that
member (as inherited by the subclass) becomes private to any code outside the
subclass, with the exception of subclasses of the subclass. So if class Neighbor
instantiates a Child object, then even if class Neighbor is in the same package as
class Child, class Neighbor won't have access to the Child's inherited (but
protected) variable x. Figure 1-4 illustrates the effect of protected access on
classes and subclasses in the same or different packages.

Whew! That wraps up protected, the most misunderstood modifier in Java.
Again, it's used only in very special cases, but you can count on it showing up on the
exam. Now that we've covered the protected modifier, we'll switch to default
member access, a piece of cake compared to protected.

Default Details

Let's start with the default behavior of a member in a superclass. We'll modify the
Parent's member x to make it default.

package certification;
public class Parent {
 int x = 9; // No access modifier, means default
 // (package) access
}

01-ch01.indd 39 9/2/2014 2:43:12 PM

40 Chapter 1: Declarations and Access Control

Notice we didn't place an access modifier in front of the variable x. Remember
that if you don't type an access modifier before a class or member declaration, the
access control is default, which means package level. We'll now attempt to access
the default member from the Child class that we saw earlier.

When we try to compile the Child.java file, we get an error something like this:

Child.java:4: Undefined variable: x
 System.out.println("Variable x is " + x);
1 error

 FIGURE 1-4

Effects of
protected
access

If goFast() is default If goFast()is protected

SportsCar

Convertible

Driver

Package A

goFast(){ }

goFast(){ } doThings
SportsCar
sc.goFastgoFast();

Where goFast
is Declared in the
same class.

Invoking goFast()
class in which goFast()

}

doStuff(){
doMore(){

}
goFast();

Invoking the
goFast()
method
Inherited from
a superclass.

D

R I

SportsCar

Convertible

Package A

goFast(){ }

D

Driver Convertible Convertible

Package B

Key:

Package B Package B

R R I R IR

D R I

Driver

R R

Driver

R R

SportsCar

Package A

goFast(){ }

D

SportsCar

Package A

protected goFast(){ }

D

R I

R R

sc = new SportsCar();
(){

();
}

was declared.
using a Reference to the

01-ch01.indd 40 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 41

The compiler gives the same error as when a member is declared as private. The
subclass Child (in a different package from the superclass Parent) can't see or use
the default superclass member x ! Now, what about default access for two classes in
the same package?

package certification;
public class Parent{
 int x = 9; // default access
}

And in the second class you have the following:

package certification;
class Child extends Parent{
 static public void main(String[] args) {
 Child sc = new Child();
 sc.testIt();
 }
 public void testIt() {
 System.out.println("Variable x is " + x); // No problem;
 }
}

The preceding source file compiles fine, and the class Child runs and displays the
value of x. Just remember that default members are visible to subclasses only if those
subclasses are in the same package as the superclass.

Local Variables and Access Modifiers

Can access modifiers be applied to local variables? NO!
There is never a case where an access modifier can be applied to a local variable,

so watch out for code like the following:

class Foo {
 void doStuff() {
 private int x = 7;
 this.doMore(x);
 }
}

You can be certain that any local variable declared with an access modifier will
not compile. In fact, there is only one modifier that can ever be applied to local
variables—final.

That about does it for our discussion on member access modifiers. Table 1-2 shows
all the combinations of access and visibility; you really should spend some time with
it. Next, we're going to dig into the other (nonaccess) modifiers that you can apply
to member declarations.

01-ch01.indd 41 9/2/2014 2:43:12 PM

42 Chapter 1: Declarations and Access Control

Visibility Public Protected Default Private

From the same class Yes Yes Yes Yes

From any class in the same package Yes Yes Yes No

From a subclass in the same package Yes Yes Yes No

From a subclass outside the same
package

Yes Yes, through
inheritance

No No

From any nonsubclass class outside
the package

Yes No No No

Nonaccess Member Modifi ers

We've discussed member access, which refers to whether code from one class can invoke
a method (or access an instance variable) from another class. That still leaves a boatload
of other modifiers you can use on member declarations. Two you're already familiar
with—final and abstract—because we applied them to class declarations earlier in
this chapter. But we still have to take a quick look at transient, synchronized,
native, strictfp, and then a long look at the Big One—static.

We'll look first at modifiers applied to methods, followed by a look at modifiers
applied to instance variables. We'll wrap up this section with a look at how static
works when applied to variables and methods.

Final Methods

The final keyword prevents a method from being overridden in a subclass, and is
often used to enforce the API functionality of a method. For example, the Thread
class has a method called isAlive() that checks whether a thread is still active. If
you extend the Thread class, though, there is really no way that you can correctly
implement this method yourself (it uses native code, for one thing), so the designers
have made it final. Just as you can't subclass the String class (because we need to
be able to trust in the behavior of a String object), you can't override many of the
methods in the core class libraries. This can't-be-overridden restriction provides for
safety and security, but you should use it with great caution. Preventing a subclass
from overriding a method stifles many of the benefits of OO including extensibility
through polymorphism. A typical final method declaration looks like this:

class SuperClass{
 public final void showSample() {
 System.out.println("One thing.");
 }
}

 TABLE 1-2 Determining Access to Class Members

01-ch01.indd 42 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 43

It's legal to extend SuperClass, since the class isn't marked final, but we can't
override the final method showSample(), as the following code attempts to do:

class SubClass extends SuperClass{
 public void showSample() { // Try to override the final
 // superclass method
 System.out.println("Another thing.");
 }
}

Attempting to compile the preceding code gives us something like this:

%javac FinalTest.java
FinalTest.java:5: The method void showSample() declared in class
SubClass cannot override the final method of the same signature
declared in class SuperClass.
Final methods cannot be overridden.
 public void showSample() { }
1 error

Final Arguments

Method arguments are the variable declarations that appear in between the
parentheses in a method declaration. A typical method declaration with multiple
arguments looks like this:

public Record getRecord(int fileNumber, int recNumber) {}

Method arguments are essentially the same as local variables. In the preceding
example, the variables fileNumber and recNumber will both follow all the rules
applied to local variables. This means they can also have the modifier final:

public Record getRecord(int fileNumber, final int recNumber) {}

In this example, the variable recNumber is declared as final, which of course
means it can't be modified within the method. In this case, "modified" means
reassigning a new value to the variable. In other words, a final argument must keep
the same value that the parameter had when it was passed into the method.

Abstract Methods

An abstract method is a method that's been declared (as abstract) but not
implemented. In other words, the method contains no functional code. And if you
recall from the earlier section "Abstract Classes," an abstract method declaration
doesn't even have curly braces for where the implementation code goes, but instead
closes with a semicolon. In other words, it has no method body. You mark a method
abstract when you want to force subclasses to provide the implementation. For

01-ch01.indd 43 9/2/2014 2:43:12 PM

44 Chapter 1: Declarations and Access Control

example, if you write an abstract class Car with a method goUpHill(), you might
want to force each subtype of Car to define its own goUpHill() behavior, specific
to that particular type of car.

public abstract void showSample();

Notice that the abstract method ends with a semicolon instead of curly braces.
It is illegal to have even a single abstract method in a class that is not explicitly
declared abstract! Look at the following illegal class:

public class IllegalClass{
 public abstract void doIt();
}

The preceding class will produce the following error if you try to compile it:

IllegalClass.java:1: class IllegalClass must be declared
abstract.
It does not define void doIt() from class IllegalClass.
public class IllegalClass{
1 error

You can, however, have an abstract class with no abstract methods. The
following example will compile fine:

public abstract class LegalClass{
 void goodMethod() {
 // lots of real implementation code here
 }
 }

In the preceding example, goodMethod() is not abstract. Three different clues
tell you it's not an abstract method:

■ The method is not marked abstract.

■ The method declaration includes curly braces, as opposed to ending in a
semicolon. In other words, the method has a method body.

■ The method might provide actual implementation code inside the curly braces.

Any class that extends an abstract class must implement all abstract methods
of the superclass, unless the subclass is also abstract. The rule is this:

The first concrete subclass of an abstract class must implement all abstract
methods of the superclass.

01-ch01.indd 44 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 45

Concrete just means nonabstract, so if you have an abstract class extending
another abstract class, the abstract subclass doesn't need to provide
implementations for the inherited abstract methods. Sooner or later, though,
somebody's going to make a nonabstract subclass (in other words, a class that can be
instantiated), and that subclass will have to implement all the abstract methods
from up the inheritance tree. The following example demonstrates an inheritance
tree with two abstract classes and one concrete class:

public abstract class Vehicle {
 private String type;
 public abstract void goUpHill(); // Abstract method
 public String getType() { // Non-abstract method
 return type;
 }
}

public abstract class Car extends Vehicle {
 public abstract void goUpHill(); // Still abstract
 public void doCarThings() {
 // special car code goes here
 }
}

public class Mini extends Car {
 public void goUpHill() {
 // Mini-specific going uphill code
 }
}

So how many methods does class Mini have? Three. It inherits both the
getType() and doCarThings() methods, because they're public and concrete
(nonabstract). But because goUpHill() is abstract in the superclass Vehicle, and
is never implemented in the Car class (so it remains abstract), it means class
Mini—as the first concrete class below Vehicle—must implement the goUpHill()
method. In other words, class Mini can't pass the buck (of abstract method
implementation) to the next class down the inheritance tree, but class Car can,
since Car, like Vehicle, is abstract. Figure 1-5 illustrates the effects of the
abstract modifier on concrete and abstract subclasses.

Look for concrete classes that don't provide method implementations for
abstract methods of the superclass. The following code won't compile:

public abstract class A {
 abstract void foo();
}
class B extends A {
 void foo(int I) { }
}

01-ch01.indd 45 9/2/2014 2:43:12 PM

46 Chapter 1: Declarations and Access Control

Class B won't compile because it doesn't implement the inherited abstract
method foo(). Although the foo(int I) method in class B might appear to be an
implementation of the superclass' abstract method, it is simply an overloaded
method (a method using the same identifier, but different arguments), so it doesn't
fulfill the requirements for implementing the superclass' abstract method. We'll
look at the differences between overloading and overriding in detail in Chapter 2.

A method can never, ever, ever be marked as both abstract and final, or both
abstract and private. Think about it—abstract methods must be implemented
(which essentially means overridden by a subclass) whereas final and private
methods cannot ever be overridden by a subclass. Or to phrase it another way, an
abstract designation means the superclass doesn't know anything about how the
subclasses should behave in that method, whereas a final designation means the
superclass knows everything about how all subclasses (however far down the
inheritance tree they may be) should behave in that method. The abstract and
final modifiers are virtually opposites. Because private methods cannot even be

abstract Car

startEngine()

SportsCar

startEngine()//optional
goForward()//Required
reverse()//Required
turn(int whichWay)//Required

Abstract methods must be implemented by a
nonabstract subclass. If the subclass is abstract,
it is not required to implement the abstract
methods, but it is allowed to implement any
or all of the superclass abstract methods. The
AcmeRover class is nonabstract, so it must
implement the abstract method declared in its
superclass, SUV, and it must also implement
turn(), which was not implemented by SUV.

stop()

abstract goForward()
abstract reverse()

abstract turn(int whichWay)

abstract SUV

enable4wd()

AcmeRover

enable4wd()//optional
goOffRoad()//Required
turn(int whichWay)//Required

goForward()
reverse()
abstract goOffRoad()

//turn()not implemented

 FIGURE 1-5

The effects of
the abstract
modifier on
concrete and
abstract
subclasses

01-ch01.indd 46 9/2/2014 2:43:12 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 47

seen by a subclass (let alone inherited), they, too, cannot be overridden, so they, too,
cannot be marked abstract.

Finally, you need to know that—for top-level classes—the abstract modifier
can never be combined with the static modifier. We'll cover static methods later
in this objective, but for now just remember that the following would be illegal:

abstract static void doStuff();

And it would give you an error that should be familiar by now:

MyClass.java:2: illegal combination of modifiers: abstract and static
 abstract static void doStuff();

Synchronized Methods

The synchronized keyword indicates that a method can be accessed by only one
thread at a time. We'll discuss this nearly to death in Chapter 13, but for now all
we're concerned with is knowing that the synchronized modifier can be applied
only to methods—not variables, not classes, just methods. A typical synchronized
declaration looks like this:

public synchronized Record retrieveUserInfo(int id) { }

You should also know that the synchronized modifier can be matched with any
of the four access control levels (which means it can be paired with any of the three
access modifier keywords).

Native Methods

The native modifier indicates that a method is implemented in platform-dependent
code, often in C. You don't need to know how to use native methods for the exam,
other than knowing that native is a modifier (thus a reserved keyword) and that
native can be applied only to methods—not classes, not variables, just methods.
Note that a native method's body must be a semicolon (;) (like abstract
methods), indicating that the implementation is omitted.

Strictfp Methods

We looked earlier at using strictfp as a class modifier, but even if you don't
declare a class as strictfp, you can still declare an individual method as strictfp.
Remember, strictfp forces floating points (and any floating-point operations) to
adhere to the IEEE 754 standard. With strictfp, you can predict how your floating
points will behave regardless of the underlying platform the JVM is running on. The

01-ch01.indd 47 9/2/2014 2:43:12 PM

48 Chapter 1: Declarations and Access Control

downside is that if the underlying platform is capable of supporting greater precision,
a strictfp method won't be able to take advantage of it.

You'll want to study the IEEE 754 if you need something to help you fall asleep.
For the exam, however, you don't need to know anything about strictfp other
than what it's used for, that it can modify a class or method declaration, and that a
variable can never be declared strictfp.

Methods with Variable Argument Lists (var-args)
(For OCP Candidates Only)

As of Java 5, Java allows you to create methods that can take a variable number of
arguments. Depending on where you look, you might hear this capability referred to
as "variable-length argument lists," "variable arguments," "var-args," "varargs," or our
personal favorite (from the department of obfuscation), "variable arity parameters."
They're all the same thing, and we'll use the term "var-args" from here on out.

As a bit of background, we'd like to clarify how we're going to use the terms
"argument" and "parameter" throughout this book.

■ arguments The things you specify between the parentheses when you're
invoking a method:
 doStuff("a", 2); // invoking doStuff, so "a" & 2 are
 // arguments

■ parameters The things in the method's signature that indicate what the
method must receive when it's invoked:
 void doStuff(String s, int a) { } // we're expecting two
 // parameters:
 // String and int

We'll cover using var-arg methods more in the next few chapters; for now let's
review the declaration rules for var-args:

■ Var-arg type When you declare a var-arg parameter, you must specify the
type of the argument(s) this parameter of your method can receive. (This can
be a primitive type or an object type.)

■ Basic syntax To declare a method using a var-arg parameter, you follow the
type with an ellipsis (...), a space, and then the name of the array that will
hold the parameters received.

■ Other parameters It's legal to have other parameters in a method that uses
a var-arg.

01-ch01.indd 48 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 49

■ Var-arg limits The var-arg must be the last parameter in the method's
signature, and you can have only one var-arg in a method.

Let's look at some legal and illegal var-arg declarations:
Legal:

void doStuff(int... x) { } // expects from 0 to many ints
 // as parameters
void doStuff2(char c, int... x) { } // expects first a char,
 // then 0 to many ints
void doStuff3(Animal... animal) { } // 0 to many Animals

Illegal:
void doStuff4(int x...) { } // bad syntax
void doStuff5(int... x, char... y) { } // too many var-args
void doStuff6(String... s, byte b) { } // var-arg must be last

Constructor Declarations

In Java, objects are constructed. Every time you make a new object, at least one
constructor is invoked. Every class has a constructor, although if you don't create
one explicitly, the compiler will build one for you. There are tons of rules concerning
constructors, and we're saving our detailed discussion for Chapter 2. For now, let's
focus on the basic declaration rules. Here's a simple example:
class Foo {
 protected Foo() { } // this is Foo's constructor
 protected void Foo() { } // this is a badly named, but legal, method
}

The first thing to notice is that constructors look an awful lot like methods. A
key difference is that a constructor can't ever, ever, ever, have a return type…ever!
Constructor declarations can however have all of the normal access modifiers, and
they can take arguments (including var-args), just like methods. The other BIG
RULE to understand about constructors is that they must have the same name as the
class in which they are declared. Constructors can't be marked static (they are
after all associated with object instantiation), and they can't be marked final or
abstract (because they can't be overridden). Here are some legal and illegal
constructor declarations:

class Foo2 {
 // legal constructors
 Foo2() { }
 private Foo2(byte b) { }
 Foo2(int x) { }

01-ch01.indd 49 9/2/2014 2:43:13 PM

50 Chapter 1: Declarations and Access Control

 Foo2(int x, int... y) { }
 // illegal constructors
 void Foo2() { } // it's a method, not a constructor
 Foo() { } // not a method or a constructor
 Foo2(short s); // looks like an abstract method
 static Foo2(float f) { } // can't be static
 final Foo2(long x) { } // can't be final
 abstract Foo2(char c) { } // can't be abstract
 Foo2(int... x, int t) { } // bad var-arg syntax
 }

Variable Declarations

There are two types of variables in Java:

■ Primitives A primitive can be one of eight types: char, boolean, byte,
short, int, long, double, or float. Once a primitive has been declared,
its primitive type can never change, although in most cases its value can
change.

■ Reference variables A reference variable is used to refer to (or access) an
object. A reference variable is declared to be of a specific type, and that type
can never be changed. A reference variable can be used to refer to any object
of the declared type or of a subtype of the declared type (a compatible type).
We'll talk a lot more about using a reference variable to refer to a subtype in
Chapter 2, when we discuss polymorphism.

Declaring Primitives and Primitive Ranges

Primitive variables can be declared as class variables (statics), instance variables,
method parameters, or local variables. You can declare one or more primitives, of the
same primitive type, in a single line. In Chapter 3 we will discuss the various ways in
which they can be initialized, but for now we'll leave you with a few examples of
primitive variable declarations:

byte b;
boolean myBooleanPrimitive;
int x, y, z; // declare three int primitives

On previous versions of the exam you needed to know how to calculate ranges for
all the Java primitives. For the current exam, you can skip some of that detail, but
it's still important to understand that for the integer types the sequence from small
to big is byte, short, int, and long, and that doubles are bigger than floats.

01-ch01.indd 50 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 51

You will also need to know that the number types (both integer and floating-
point types) are all signed, and how that affects their ranges. First, let's review the
concepts.

All six number types in Java are made up of a certain number of 8-bit bytes and
are signed, meaning they can be negative or positive. The leftmost bit (the most
significant digit) is used to represent the sign, where a 1 means negative and 0 means
positive, as shown in Figure 1-6. The rest of the bits represent the value, using two's
complement notation.

Table 1-3 shows the primitive types with their sizes and ranges. Figure 1-6 shows
that with a byte, for example, there are 256 possible numbers (or 28). Half of these
are negative, and half – 1 are positive. The positive range is one less than the
negative range because the number zero is stored as a positive binary number. We use
the formula –2(bits−1) to calculate the negative range, and we use 2(bits−1) – 1 for the
positive range. Again, if you know the first two columns of this table, you'll be in
good shape for the exam.

The range for floating-point numbers is complicated to determine, but luckily you
don’t need to know these for the exam (although you are expected to know that a
double holds 64 bits and a float 32).

 FIGURE 1-6

 The sign bit for
a byte

byte

sign bit: 0 = positive
 I = negative

byte: 7 bits can represent 27 or
128 different values:
0 thru 127 -or- –128 thru –1

short: 15 bits can represent
215 or 32768 values:
0 thru 32767 -or- –32768 thru –1

value bits:00100110

1111101000000111short

sign bit value bits

Type Bits Bytes Minimum Range Maximum Range

byte 8 1 –27 27 – 1
short 16 2 –215 215 – 1
int 32 4 –231 231 – 1
long 64 8 –263 263 – 1
float 32 4 n/a n/a
double 64 8 n/a n/a

 TABLE 1-3

Ranges of
Numeric
Primitives

01-ch01.indd 51 9/2/2014 2:43:13 PM

52 Chapter 1: Declarations and Access Control

There is not a range of boolean values; a boolean can be only true or false. If
someone asks you for the bit depth of a boolean, look them straight in the eye and
say, "That's virtual-machine dependent." They'll be impressed.

The char type (a character) contains a single, 16-bit Unicode character.
Although the extended ASCII set known as ISO Latin-1 needs only 8 bits (256
different characters), a larger range is needed to represent characters found in
languages other than English. Unicode characters are actually represented by
unsigned 16-bit integers, which means 216 possible values, ranging from 0 to 65535
(216 – 1). You'll learn in Chapter 3 that because a char is really an integer type, it
can be assigned to any number type large enough to hold 65535 (which means
anything larger than a short; although both chars and shorts are 16-bit types,
remember that a short uses 1 bit to represent the sign, so fewer positive numbers are
acceptable in a short).

Declaring Reference Variables

Reference variables can be declared as static variables, instance variables, method
parameters, or local variables. You can declare one or more reference variables, of
the same type, in a single line. In Chapter 3 we will discuss the various ways in
which they can be initialized, but for now we'll leave you with a few examples of
reference variable declarations:

Object o;
Dog myNewDogReferenceVariable;
String s1, s2, s3; // declare three String vars.

Instance Variables

Instance variables are defined inside the class, but outside of any method, and are
initialized only when the class is instantiated. Instance variables are the fields that
belong to each unique object. For example, the following code defines fields
(instance variables) for the name, title, and manager for employee objects:

class Employee {
 // define fields (instance variables) for employee instances
 private String name;
 private String title,
 private String manager;
 // other code goes here including access methods for private
 // fields
}

01-ch01.indd 52 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 53

The preceding Employee class says that each employee instance will know its
own name, title, and manager. In other words, each instance can have its own
unique values for those three fields. For the exam, you need to know that instance
variables

■ Can use any of the four access levels (which means they can be marked with
any of the three access modifiers)

■ Can be marked final

■ Can be marked transient

■ Cannot be marked abstract

■ Cannot be marked synchronized

■ Cannot be marked strictfp

■ Cannot be marked native

■ Cannot be marked static, because then they'd become class variables

We've already covered the effects of applying access control to instance variables
(it works the same way as it does for member methods). A little later in this chapter
we'll look at what it means to apply the final or transient modifier to an
instance variable. First, though, we'll take a quick look at the difference between
instance and local variables. Figure 1-7 compares the way in which modifiers can be
applied to methods vs. variables.

 FIGURE 1-7

Comparison
of modifiers
on variables vs.
methods

final final
public

protected
private
static

transient
volatile

final
public

protected
private
static

abstract
synchronized

strictfp
native

Local
Variables

Variables
(non-local) Methods

01-ch01.indd 53 9/2/2014 2:43:13 PM

54 Chapter 1: Declarations and Access Control

Local (Automatic/Stack/Method) Variables

A local variable is a variable declared within a method. That means the variable is
not just initialized within the method, but also declared within the method. Just as
the local variable starts its life inside the method, it's also destroyed when the
method has completed. Local variables are always on the stack, not the heap. (We'll
talk more about the stack and the heap in Chapter 3.) Although the value of the
variable might be passed into, say, another method that then stores the value in an
instance variable, the variable itself lives only within the scope of the method.

Just don't forget that while the local variable is on the stack, if the variable is an
object reference, the object itself will still be created on the heap. There is no such
thing as a stack object, only a stack variable. You'll often hear programmers use the
phrase "local object," but what they really mean is, "locally declared reference
variable." So if you hear a programmer use that expression, you'll know that he's just
too lazy to phrase it in a technically precise way. You can tell him we said that—
unless he knows where we live.

Local variable declarations can't use most of the modifiers that can be applied to
instance variables, such as public (or the other access modifiers), transient,
volatile, abstract, or static, but as we saw earlier, local variables can be
marked final. And as you'll learn in Chapter 3 (but here's a preview), before a
local variable can be used, it must be initialized with a value. For instance:

class TestServer {
 public void logIn() {
 int count = 10;
 }
}

Typically, you'll initialize a local variable in the same line in which you declare it,
although you might still need to reassign it later in the method. The key is to
remember that a local variable must be initialized before you try to use it. The
compiler will reject any code that tries to use a local variable that hasn't been
assigned a value, because—unlike instance variables—local variables don't get
default values.

A local variable can't be referenced in any code outside the method in which it's
declared. In the preceding code example, it would be impossible to refer to the
variable count anywhere else in the class except within the scope of the method
logIn(). Again, that's not to say that the value of count can't be passed out of the
method to take on a new life. But the variable holding that value, count, can't be
accessed once the method is complete, as the following illegal code demonstrates:

01-ch01.indd 54 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 55

class TestServer {
 public void logIn() {
 int count = 10;
 }
 public void doSomething(int i) {
 count = i; // Won't compile! Can't access count outside
 // method logIn()
 }
}

It is possible to declare a local variable with the same name as an instance
variable. It's known as shadowing, as the following code demonstrates:

class TestServer {
 int count = 9; // Declare an instance variable named count
 public void logIn() {
 int count = 10; // Declare a local variable named count
 System.out.println("local variable count is " + count);
 }
 public void count() {
 System.out.println("instance variable count is " + count);
 }
 public static void main(String[] args) {
 new TestServer().logIn();
 new TestServer().count();
 }
}

The preceding code produces the following output:

local variable count is 10
instance variable count is 9

Why on Earth (or the planet of your choice) would you want to do that?
Normally, you won't. But one of the more common reasons is to name a parameter
with the same name as the instance variable to which the parameter will be
assigned.

The following (wrong) code is trying to set an instance variable's value using a
parameter:

class Foo {
 int size = 27;
 public void setSize(int size) {
 size = size; // ??? which size equals which size???
 }
}

So you've decided that—for overall readability—you want to give the parameter
the same name as the instance variable its value is destined for, but how do you

01-ch01.indd 55 9/2/2014 2:43:13 PM

56 Chapter 1: Declarations and Access Control

resolve the naming collision? Use the keyword this. The keyword this always,
always, always refers to the object currently running. The following code shows this
in action:

class Foo {
 int size = 27;
 public void setSize(int size) {
 this.size = size; // this.size means the current object's
 // instance variable, size. The size
 // on the right is the parameter
 }
}

Array Declarations

In Java, arrays are objects that store multiple variables of the same type or variables
that are all subclasses of the same type. Arrays can hold either primitives or object
references, but an array itself will always be an object on the heap, even if the array
is declared to hold primitive elements. In other words, there is no such thing as a
primitive array, but you can make an array of primitives.

For the exam, you need to know three things:

■ How to make an array reference variable (declare)

■ How to make an array object (construct)

■ How to populate the array with elements (initialize)

For this objective, you only need to know how to declare an array; we'll cover
constructing and initializing arrays in Chapter 5.

Arrays are efficient, but many times you'll want to use one of the Collection

types from java.util (including HashMap, ArrayList, and TreeSet). Collection

classes offer more flexible ways to access an object (for insertion, deletion,

reading, and so on) and unlike arrays, can expand or contract dynamically

as you add or remove elements. There are Collection types for a wide range

of needs. Do you need a fast sort? A group of objects with no duplicates? A

way to access a name-value pair? For OCA candidates, Chapter 5 discusses

ArrayList, and for OCP candidates, Chapter 11 covers Collections in more

detail.

Arrays are declared by stating the type of elements the array will hold (an object
or a primitive), followed by square brackets to either side of the identifier.

01-ch01.indd 56 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 57

Declaring an Array of Primitives

int[] key; // Square brackets before name (recommended)
int key []; // Square brackets after name (legal but less
 // readable)

Declaring an Array of Object References

Thread[] threads; // Recommended
Thread threads []; // Legal but less readable

When declaring an array reference, you should always put the array brackets

immediately after the declared type, rather than after the identifier (variable

name). That way, anyone reading the code can easily tell that, for example,

key is a reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[][][] occupantName;
String[] managerName [];

The first example is a three-dimensional array (an array of arrays of arrays) and the
second is a two-dimensional array. Notice in the second example we have one square
bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

It is never legal to include the size of the array in your declaration. Yes, we

know you can do that in some other languages, which is why you might see a question or

two that include code similar to the following:

int[5] scores;

The preceding code won't compile. Remember, the JVM doesn't allocate space until you

actually instantiate the array object. That's when size matters.

In Chapter 5, we'll spend a lot of time discussing arrays, how to initialize and use
them, and how to deal with multidimensional arrays…stay tuned!

01-ch01.indd 57 9/2/2014 2:43:13 PM

58 Chapter 1: Declarations and Access Control

Final Variables

Declaring a variable with the final keyword makes it impossible to reassign that
variable once it has been initialized with an explicit value (notice we said explicit
rather than default). For primitives, this means that once the variable is assigned a
value, the value can't be altered. For example, if you assign 10 to the int variable x,
then x is going to stay 10, forever. So that's straightforward for primitives, but what
does it mean to have a final object reference variable? A reference variable marked
final can't ever be reassigned to refer to a different object. The data within the
object can be modified, but the reference variable cannot be changed. In other
words, a final reference still allows you to modify the state of the object it refers to,
but you can't modify the reference variable to make it refer to a different object.
Burn this in: there are no final objects, only final references. We'll explain this in
more detail in Chapter 3.

We've now covered how the final modifier can be applied to classes, methods,
and variables. Figure 1-8 highlights the key points and differences of the various
applications of final.

Transient Variables

If you mark an instance variable as transient, you're telling the JVM to skip
(ignore) this variable when you attempt to serialize the object containing it.
Serialization is one of the coolest features of Java; it lets you save (sometimes called
"flatten") an object by writing its state (in other words, the value of its instance
variables) to a special type of I/O stream. With serialization, you can save an object
to a file or even ship it over a wire for reinflating (deserializing) at the other end, in
another JVM. We were happy when serialization was added to the exam as of Java 5,
but we're sad to say that as of Java 7, serialization is no longer on the exam.

Volatile Variables

The volatile modifier tells the JVM that a thread accessing the variable must
always reconcile its own private copy of the variable with the master copy in
memory. Say what? Don't worry about it. For the exam, all you need to know about
volatile is that, as with transient, it can be applied only to instance variables.
Make no mistake: the idea of multiple threads accessing an instance variable is scary
stuff, and very important for any Java programmer to understand. But as you'll see in
Chapter 13, you'll probably use synchronization, rather than the volatile modifier,
to make your data thread-safe.

01-ch01.indd 58 9/2/2014 2:43:13 PM

 Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6) 59

The volatile modifier may also be applied to project managers :)

Static Variables and Methods

The static modifier is used to create variables and methods that will exist
independently of any instances created for the class. All static members exist
before you ever make a new instance of a class, and there will be only one copy of a

 FIGURE 1-8

Effect of final
on variables,
methods, and
classes

final
class

final class Foo

class Bar extends Foo

class Baz

final void go()

final void go()

class Roo

final int size = 42;

void changeSize(){
size = 16;

}

class Bat extends Baz

final
method

final
variable

final method
cannot be
overridden by
a subclass

final variable cannot be
assigned a new value, once
the initial method is made
(the initial assignment of a
value must happen before
the constructor completes).

final class
cannot be
subclassed

01-ch01.indd 59 9/2/2014 2:43:13 PM

60 Chapter 1: Declarations and Access Control

static member regardless of the number of instances of that class. In other words,
all instances of a given class share the same value for any given static variable.
We'll cover static members in great detail in the next chapter.

Things you can mark as static:

■ Methods

■ Variables

■ A class nested within another class, but not within a method (more on this in
Chapter 12)

■ Initialization blocks

Things you can't mark as static:

■ Constructors (makes no sense; a constructor is used only to create instances)

■ Classes (unless they are nested)

■ Interfaces (unless they are nested)

■ Method local inner classes (we'll explore this in Chapter 12)

■ Inner class methods and instance variables

■ Local variables

CERTIFICATION OBJECTIVE

Declare and Use enums
(OCA Objective 1.2 and OCP Objective 2.5)

2.5 Use enumerated types.

Note: During the creation of this book, Oracle adjusted some of the objectives for
the OCA and OCP exams. We’re not 100 percent sure that the topic of enums is
included in the OCA exam, but we’ve decided that it’s better to be safe than sorry,
so we recommend that OCA candidates study this section. In any case, you’re likely
to encounter the use of enums in the Java code you read, so learning about them will
pay off regardless.

01-ch01.indd 60 9/2/2014 2:43:13 PM

 Declare and Use enums (OCA Objective 1.2 and OCP Objective 2.5) 61

Declaring enums

As of Java 5, Java lets you restrict a variable to having one of only a few predefined
values—in other words, one value from an enumerated list. (The items in the
enumerated list are called, surprisingly, enums.)

Using enums can help reduce the bugs in your code. For instance, in your coffee
shop application you might want to restrict your CoffeeSize selections to BIG,
HUGE, and OVERWHELMING. If you let an order for a LARGE or a GRANDE slip in, it
might cause an error. enums to the rescue. With the following simple declaration,
you can guarantee that the compiler will stop you from assigning anything to a
CoffeeSize except BIG, HUGE, or OVERWHELMING:

enum CoffeeSize { BIG, HUGE, OVERWHELMING };

From then on, the only way to get a CoffeeSize will be with a statement
something like this:

CoffeeSize cs = CoffeeSize.BIG;

It's not required that enum constants be in all caps, but borrowing from the Oracle
code convention that constants are named in caps, it's a good idea.

The basic components of an enum are its constants (that is, BIG, HUGE, and
OVERWHELMING), although in a minute you'll see that there can be a lot more to an
enum. enums can be declared as their own separate class or as a class member;
however, they must not be declared within a method!

Here's an example declaring an enum outside a class:

enum CoffeeSize { BIG, HUGE, OVERWHELMING } // this cannot be
 // private or protected
class Coffee {
 CoffeeSize size;
}
public class CoffeeTest1 {
 public static void main(String[] args) {
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG; // enum outside class
 }
}

The preceding code can be part of a single file. (Remember, the file must be
named CoffeeTest1.java because that's the name of the public class in the file.)
The key point to remember is that an enum that isn't enclosed in a class can be

01-ch01.indd 61 9/2/2014 2:43:13 PM

62 Chapter 1: Declarations and Access Control

declared with only the public or default modifier, just like a non-inner class. Here's
an example of declaring an enum inside a class:

class Coffee2 {
 enum CoffeeSize {BIG, HUGE, OVERWHELMING }
 CoffeeSize size;
}
public class CoffeeTest2 {
 public static void main(String[] args) {
 Coffee2 drink = new Coffee2();
 drink.size = Coffee2.CoffeeSize.BIG; // enclosing class
 // name required
 }
}

The key points to take away from these examples are that enums can be declared
as their own class or enclosed in another class, and that the syntax for accessing an
enum's members depends on where the enum was declared.

The following is NOT legal:

public class CoffeeTest1 {
 public static void main(String[] args) {
 enum CoffeeSize { BIG, HUGE, OVERWHELMING } // WRONG! Cannot
 // declare enums
 // in methods
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG;
 }
}

To make it more confusing for you, the Java language designers made it optional
to put a semicolon at the end of the enum declaration (when no other declarations
for this enum follow):

public class CoffeeTest1 {
 enum CoffeeSize { BIG, HUGE, OVERWHELMING }; // <--semicolon
 // is optional here
 public static void main(String[] args) {
 Coffee drink = new Coffee();
 drink.size = CoffeeSize.BIG;
 }
}

So what gets created when you make an enum? The most important thing to
remember is that enums are not Strings or ints! Each of the enumerated
CoffeeSize types is actually an instance of CoffeeSize. In other words, BIG is of
type CoffeeSize. Think of an enum as a kind of class that looks something (but not
exactly) like this:

01-ch01.indd 62 9/2/2014 2:43:13 PM

 Declare and Use enums (OCA Objective 1.2 and OCP Objective 2.5) 63

// conceptual example of how you can think
// about enums
class CoffeeSize {
 public static final CoffeeSize BIG =
 new CoffeeSize("BIG", 0);
 public static final CoffeeSize HUGE =
 new CoffeeSize("HUGE", 1);
 public static final CoffeeSize OVERWHELMING =
 new CoffeeSize("OVERWHELMING", 2);

 CoffeeSize(String enumName, int index) {
 // stuff here
 }
 public static void main(String[] args) {
 System.out.println(CoffeeSize.BIG);
 }
}

Notice how each of the enumerated values, BIG, HUGE, and OVERWHELMING, is an
instance of type CoffeeSize. They're represented as static and final, which in
the Java world, is thought of as a constant. Also notice that each enum value knows
its index or position—in other words, the order in which enum values are declared
matters. You can think of the CoffeeSize enums as existing in an array of type
CoffeeSize, and as you'll see in a later chapter, you can iterate through the values
of an enum by invoking the values() method on any enum type. (Don't worry about
that in this chapter.)

Declaring Constructors, Methods, and Variables in an enum

Because an enum really is a special kind of class, you can do more than just list the
enumerated constant values. You can add constructors, instance variables, methods,
and something really strange known as a constant specific class body. To understand
why you might need more in your enum, think about this scenario: Imagine you want
to know the actual size, in ounces, that map to each of the three CoffeeSize
constants. For example, you want to know that BIG is 8 ounces, HUGE is 10 ounces,
and OVERWHELMING is a whopping 16 ounces.

You could make some kind of a lookup table using some other data structure, but
that would be a poor design and hard to maintain. The simplest way is to treat your
enum values (BIG, HUGE, and OVERWHELMING) as objects, each of which can have its
own instance variables. Then you can assign those values at the time the enums are
initialized, by passing a value to the enum constructor. This takes a little explaining,
but first look at the following code.

01-ch01.indd 63 9/2/2014 2:43:13 PM

64 Chapter 1: Declarations and Access Control

enum CoffeeSize {
 // 8, 10 & 16 are passed to the constructor
 BIG(8), HUGE(10), OVERWHELMING(16);
 CoffeeSize(int ounces) { // constructor
 this.ounces = ounces;
 }

 private int ounces; // an instance variable
 public int getOunces() {
 return ounces;
 }
}

class Coffee {
 CoffeeSize size; // each instance of Coffee has an enum

 public static void main(String[] args) {
 Coffee drink1 = new Coffee();
 drink1.size = CoffeeSize.BIG;

 Coffee drink2 = new Coffee();
 drink2.size = CoffeeSize.OVERWHELMING;

 System.out.println(drink1.size.getOunces()); // prints 8
 for(CoffeeSize cs: CoffeeSize.values())
 System.out.println(cs + " " + cs.getOunces());
 }
}

which produces:

8
BIG 8
HUGE 10
OVERWHELMING 16

Note: Every enum has a static method, values(), that returns an array of the
enum's values in the order they're declared.

The key points to remember about enum constructors are

■ You can NEVER invoke an enum constructor directly. The enum constructor
is invoked automatically, with the arguments you define after the constant
value. For example, BIG(8) invokes the CoffeeSize constructor that takes
an int, passing the int literal 8 to the constructor. (Behind the scenes, of
course, you can imagine that BIG is also passed to the constructor, but we
don't have to know—or care—about the details.)

■ You can define more than one argument to the constructor, and you can
overload the enum constructors, just as you can overload a normal class

01-ch01.indd 64 9/2/2014 2:43:13 PM

Declare and Use enums (OCA Objective 1.2 and OCP Objective 2.5) 65

constructor. We discuss constructors in much more detail in Chapter 2.
To initialize a CoffeeSize with both the number of ounces and, say, a lid
type, you'd pass two arguments to the constructor as BIG(8, "A"), which
means you have a constructor in CoffeeSize that takes both an int and
a String.

And, finally, you can define something really strange in an enum that looks like
an anonymous inner class (which we talk about in Chapter 8). It's known as a
constant specific class body, and you use it when you need a particular constant to
override a method defined in the enum.

Imagine this scenario: You want enums to have two methods—one for ounces and
one for lid code (a String). Now imagine that most coffee sizes use the same lid
code, "B", but the OVERWHELMING size uses type "A". You can define a getLidCode()
method in the CoffeeSize enum that returns "B", but then you need a way to
override it for OVERWHELMING. You don't want to do some hard-to-maintain if/then
code in the getLidCode() method, so the best approach might be to somehow have
the OVERWHELMING constant override the getLidCode() method.

This looks strange, but you need to understand the basic declaration rules:

enum CoffeeSize {
 BIG(8),
 HUGE(10),
 OVERWHELMING(16) { // start a code block that defines
 // the "body" for this constant

 public String getLidCode() { // override the method
 // defined in CoffeeSize
 return "A";
 }
 }; // the semicolon is REQUIRED when more code follows

 CoffeeSize(int ounces) {
 this.ounces = ounces;
 }

 private int ounces;

 public int getOunces() {
 return ounces;
 }
 public String getLidCode() { // this method is overridden
 // by the OVERWHELMING constant

 return "B"; // the default value we want to
 // return for CoffeeSize constants
 }
}

01-ch01.indd 65 9/2/2014 2:43:13 PM

66 Chapter 1: Declarations and Access Control

CERTIFICATION SUMMARY

After absorbing the material in this chapter, you should be familiar with some of the
nuances of the Java language. You may also be experiencing confusion around why
you ever wanted to take this exam in the first place. That's normal at this point. If
you hear yourself asking, "What was I thinking?" just lie down until it passes. We
would like to tell you that it gets easier…that this was the toughest chapter and it's
all downhill from here.

Let's briefly review what you'll need to know for the exam:
There will be many questions dealing with keywords indirectly, so be sure you can

identify which are keywords and which aren't.
You need to understand the rules associated with creating legal identifiers and the

rules associated with source code declarations, including the use of package and
import statements.

You learned the basic syntax for the java and javac command-line programs.
You learned about when main() has superpowers and when it doesn't.
We covered the basics of import and import static statements. It's tempting

to think that there's more to them than saving a bit of typing, but there isn't.
You now have a good understanding of access control as it relates to classes,

methods, and variables. You've looked at how access modifiers (public, protected,
and private) define the access control of a class or member.

You learned that abstract classes can contain both abstract and nonabstract
methods, but that if even a single method is marked abstract, the class must be
marked abstract. Don't forget that a concrete (nonabstract) subclass of an
abstract class must provide implementations for all the abstract methods of the
superclass, but that an abstract class does not have to implement the abstract
methods from its superclass. An abstract subclass can "pass the buck" to the first
concrete subclass.

We covered interface implementation. Remember that interfaces can extend
another interface (even multiple interfaces), and that any class that implements an
interface must implement all methods from all the interfaces in the inheritance tree
of the interface the class is implementing.

You've also looked at the other modifiers including static, final, abstract,
synchronized, and so on. You've learned how some modifiers can never be
combined in a declaration, such as mixing abstract with either final or private.

Keep in mind that there are no final objects in Java. A reference variable
marked final can never be changed, but the object it refers to can be modified.

01-ch01.indd 66 9/2/2014 2:43:14 PM

Certifi cation Summary 67

You've seen that final applied to methods means a subclass can't override them,
and when applied to a class, the final class can't be subclassed.

Remember that as of Java 5, methods can be declared with a var-arg parameter
(which can take from zero to many arguments of the declared type), but that you can
have only one var-arg per method, and it must be the method's last parameter.

Make sure you're familiar with the relative sizes of the numeric primitives.
Remember that while the values of nonfinal variables can change, a reference
variable's type can never change.

You also learned that arrays are objects that contain many variables of the same
type. Arrays can also contain other arrays.

Remember what you've learned about static variables and methods, especially
that static members are per-class as opposed to per-instance. Don't forget that a
static method can't directly access an instance variable from the class it's in,
because it doesn't have an explicit reference to any particular instance of the class.

Finally, we covered a feature new as of Java 5: enums. An enum is a much safer and
more flexible way to implement constants than was possible in earlier versions of
Java. Because they are a special kind of class, enums can be declared very simply, or
they can be quite complex—including such attributes as methods, variables,
constructors, and a special type of inner class called a constant specific class body.

Before you hurl yourself at the practice test, spend some time with the following
optimistically named "Two-Minute Drill." Come back to this particular drill often, as
you work through this book and especially when you're doing that last-minute
cramming. Because—and here's the advice you wished your mother had given you
before you left for college—it's not what you know, it's when you know it.

For the exam, knowing what you can't do with the Java language is just as
important as knowing what you can do. Give the sample questions a try! They're
very similar to the difficulty and structure of the real exam questions and should be
an eye opener for how difficult the exam can be. Don't worry if you get a lot of them
wrong. If you find a topic that you are weak in, spend more time reviewing and
studying. Many programmers need two or three serious passes through a chapter (or
an individual objective) before they can answer the questions confidently.

01-ch01.indd 67 9/2/2014 2:43:14 PM

68 Chapter 1: Declarations and Access Control

TWO-MINUTE DRILL

Remember that in this chapter, when we talk about classes, we're referring to
non-inner classes, or top-level classes. For OCP 7 candidates only, we'll devote all
of Chapter 12 to inner classes. Note on OCA 7 vs. OCP 7 objectives: Part I of this
book is necessary for BOTH OCA 7 and OCP 7 candidates. Since you must now
pass the OCA 7 exam before taking the OCP 7 exam, the references to objectives
in the two-minute drills in the first part of the book are usually for OCA
objectives only.

Identifiers (OCA Objective 2.1)

❑ Identifiers can begin with a letter, an underscore, or a currency character.

❑ After the first character, identifiers can also include digits.

❑ Identifiers can be of any length.

Executable Java Files and main() (OCA Objective 1.3)

❑ You can compile and execute Java programs using the command-line
programs javac and java, respectively. Both programs support a variety of
command-line options.

❑ The only versions of main() methods with special powers are those
versions with method signatures equivalent to public static void
main(String[] args).

❑ main() can be overloaded.

Imports (OCA Objective 1.4)

❑ An import statement's only job is to save keystrokes.

❑ You can use an asterisk (*) to search through the contents of a single
package.

❑ Although referred to as "static imports," the syntax is import static….

❑ You can import API classes and/or custom classes.

✓

01-ch01.indd 68 9/2/2014 2:43:14 PM

Two-Minute Drill 69

Source File Declaration Rules (OCA Objective 1.2)

❑ A source code file can have only one public class.

❑ If the source file contains a public class, the filename must match the
public class name.

❑ A file can have only one package statement, but it can have multiple
imports.

❑ The package statement (if any) must be the first (noncomment) line in a
source file.

❑ The import statements (if any) must come after the package and before the
class declaration.

❑ If there is no package statement, import statements must be the first
(noncomment) statements in the source file.

❑ package and import statements apply to all classes in the file.

❑ A file can have more than one nonpublic class.

❑ Files with no public classes have no naming restrictions.

Class Access Modifiers (OCA Objective 6.6)

❑ There are three access modifiers: public, protected, and private.

❑ There are four access levels: public, protected, default, and private.

❑ Classes can have only public or default access.

❑ A class with default access can be seen only by classes within the same
package.

❑ A class with public access can be seen by all classes from all packages.

❑ Class visibility revolves around whether code in one class can

❑ Create an instance of another class

❑ Extend (or subclass) another class

❑ Access methods and variables of another class

Class Modifiers (Nonaccess) (OCA Objective 7.6)

❑ Classes can also be modified with final, abstract, or strictfp.

❑ A class cannot be both final and abstract.

❑ A final class cannot be subclassed.

01-ch01.indd 69 9/2/2014 2:43:14 PM

70 Chapter 1: Declarations and Access Control

❑ An abstract class cannot be instantiated.

❑ A single abstract method in a class means the whole class must be
abstract.

❑ An abstract class can have both abstract and nonabstract methods.

❑ The first concrete class to extend an abstract class must implement all of its
abstract methods.

Interface Implementation (OCA Objective 7.6)

❑ Interfaces are contracts for what a class can do, but they say nothing about
the way in which the class must do it.

❑ Interfaces can be implemented by any class, from any inheritance tree.

❑ An interface is like a 100-percent abstract class and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

❑ An interface can have only abstract methods, no concrete methods
allowed.

❑ Interface methods are by default public and abstract—explicit declaration
of these modifiers is optional.

❑ Interfaces can have constants, which are always implicitly public,
static, and final.

❑ Interface constant declarations of public, static, and final are optional
in any combination.

❑ Note: This section uses some concepts that we HAVE NOT yet covered.
Don't panic: once you've read through all of Part I of the book, this section
will make sense as a reference.
A legal nonabstract implementing class has the following properties:

❑ It provides concrete implementations for the interface's methods.

❑ It must follow all legal override rules for the methods it implements.

❑ It must not declare any new checked exceptions for an implementation
method.

❑ It must not declare any checked exceptions that are broader than the
exceptions declared in the interface method.

❑ It may declare runtime exceptions on any interface method
implementation regardless of the interface declaration.

01-ch01.indd 70 9/2/2014 2:43:15 PM

Two-Minute Drill 71

❑ It must maintain the exact signature (allowing for covariant returns) and
return type of the methods it implements (but does not have to declare
the exceptions of the interface).

❑ A class implementing an interface can itself be abstract.

❑ An abstract implementing class does not have to implement the interface
methods (but the first concrete subclass must).

❑ A class can extend only one class (no multiple inheritance), but it can
implement many interfaces.

❑ Interfaces can extend one or more other interfaces.

❑ Interfaces cannot extend a class or implement a class or interface.

❑ When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

Member Access Modifiers (OCA Objective 6.6)

❑ Methods and instance (nonlocal) variables are known as "members."

❑ Members can use all four access levels: public, protected, default, and
private.

❑ Member access comes in two forms:

❑ Code in one class can access a member of another class.

❑ A subclass can inherit a member of its superclass.

❑ If a class cannot be accessed, its members cannot be accessed.

❑ Determine class visibility before determining member visibility.

❑ public members can be accessed by all other classes, even in other packages.

❑ If a superclass member is public, the subclass inherits it—regardless of
package.

❑ Members accessed without the dot operator (.) must belong to the same
class.

❑ this. always refers to the currently executing object.

❑ this.aMethod() is the same as just invoking aMethod().

❑ private members can be accessed only by code in the same class.

❑ private members are not visible to subclasses, so private members cannot
be inherited.

01-ch01.indd 71 9/2/2014 2:43:15 PM

72 Chapter 1: Declarations and Access Control

❑ Default and protected members differ only when subclasses are involved:

❑ Default members can be accessed only by classes in the same package.

❑ protected members can be accessed by other classes in the same
package, plus subclasses regardless of package.

❑ protected = package + kids (kids meaning subclasses).

❑ For subclasses outside the package, the protected member can be
accessed only through inheritance; a subclass outside the package cannot
access a protected member by using a reference to a superclass instance.
(In other words, inheritance is the only mechanism for a subclass outside
the package to access a protected member of its superclass.)

❑ A protected member inherited by a subclass from another package is
not accessible to any other class in the subclass package, except for the
subclass' own subclasses.

Local Variables (OCA Objective 2.1)

❑ Local (method, automatic, or stack) variable declarations cannot have access
modifiers.

❑ final is the only modifier available to local variables.

❑ Local variables don't get default values, so they must be initialized before use.

Other Modifiers—Members (OCA Objective 6.6)

❑ final methods cannot be overridden in a subclass.

❑ abstract methods are declared with a signature, a return type, and an
optional throws clause, but they are not implemented.

❑ abstract methods end in a semicolon—no curly braces.

❑ Three ways to spot a nonabstract method:

❑ The method is not marked abstract.

❑ The method has curly braces.

❑ The method MIGHT have code between the curly braces.

❑ The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class' abstract methods.

❑ The synchronized modifier applies only to methods and code blocks.

❑ synchronized methods can have any access control and can also be marked
final.

01-ch01.indd 72 9/2/2014 2:43:16 PM

Two-Minute Drill 73

❑ abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

❑ abstract methods cannot be private.

❑ abstract methods cannot be final.

❑ The native modifier applies only to methods.

❑ The strictfp modifier applies only to classes and methods.

Methods with var-args (OCP Only, OCP Objective 1.3)

❑ As of Java 5, methods can declare a parameter that accepts from zero to many
arguments, a so-called var-arg method.

❑ A var-arg parameter is declared with the syntax type... name; for instance:
doStuff(int... x) { }.

❑ A var-arg method can have only one var-arg parameter.

❑ In methods with normal parameters and a var-arg, the var-arg must come last.

Variable Declarations (OCA Objective 2.1)

❑ Instance variables can

❑ Have any access control

❑ Be marked final or transient

❑ Instance variables can't be abstract, synchronized, native, or strictfp.

❑ It is legal to declare a local variable with the same name as an instance
variable; this is called "shadowing."

❑ final variables have the following properties:

❑ final variables cannot be reassigned once assigned a value.

❑ final reference variables cannot refer to a different object once the
object has been assigned to the final variable.

❑ final variables must be initialized before the constructor completes.

❑ There is no such thing as a final object. An object reference marked
final does NOT mean the object itself can't change.

❑ The transient modifier applies only to instance variables.

❑ The volatile modifier applies only to instance variables.

01-ch01.indd 73 9/2/2014 2:43:16 PM

74 Chapter 1: Declarations and Access Control

Array Declarations (OCA Objectives 4.1 and 4.2)

❑ Arrays can hold primitives or objects, but the array itself is always an object.

❑ When you declare an array, the brackets can be to the left or to the right of
the variable name.

❑ It is never legal to include the size of an array in the declaration.

❑ An array of objects can hold any object that passes the IS-A (or
instanceof) test for the declared type of the array. For example, if Horse
extends Animal, then a Horse object can go into an Animal array.

Static Variables and Methods (OCA Objective 6.2)

❑ They are not tied to any particular instance of a class.

❑ No class instances are needed in order to use static members of the class.

❑ There is only one copy of a static variable/class and all instances share it.

❑ static methods do not have direct access to nonstatic members.

enums (OCA Objective 1.2 and OCP Objective 2.5)

❑ An enum specifies a list of constant values assigned to a type.

❑ An enum is NOT a String or an int; an enum constant's type is the enum
type. For example, SUMMER and FALL are of the enum type Season.

❑ An enum can be declared outside or inside a class, but NOT in a method.

❑ An enum declared outside a class must NOT be marked static, final,
abstract, protected, or private.

❑ enums can contain constructors, methods, variables, and constant-specific
class bodies.

❑ enum constants can send arguments to the enum constructor, using the syntax
BIG(8), where the int literal 8 is passed to the enum constructor.

❑ enum constructors can have arguments and can be overloaded.

❑ enum constructors can NEVER be invoked directly in code. They are always
called automatically when an enum is initialized.

❑ The semicolon at the end of an enum declaration is optional. These are legal:

❑ enum Foo { ONE, TWO, THREE}
enum Foo { ONE, TWO, THREE};

❑ MyEnum.values() returns an array of MyEnum's values.

01-ch01.indd 74 9/2/2014 2:43:17 PM

 75Self Test 75

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

If you have a rough time with these at first, don't beat yourself up. Be positive. Repeat nice affir-
mations to yourself like, "I am smart enough to understand enums" and "OK, so that other guy knows
enums better than I do, but I bet he can't <insert something you are good at> like me."

 1. Which are true? (Choose all that apply.)
 A. "X extends Y" is correct if and only if X is a class and Y is an interface.
 B. "X extends Y" is correct if and only if X is an interface and Y is a class.
 C. "X extends Y" is correct if X and Y are either both classes or both interfaces.
 D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces.

 2. Given:

class Rocket {
 private void blastOff() { System.out.print("bang "); }
}
public class Shuttle extends Rocket {
 public static void main(String[] args) {
 new Shuttle().go();
 }
 void go() {
 blastOff();
 // Rocket.blastOff(); // line A
 }
 private void blastOff() { System.out.print("sh-bang "); }
}

 Which are true? (Choose all that apply.)
 A. As the code stands, the output is bang
 B. As the code stands, the output is sh-bang
 C. As the code stands, compilation fails.
 D. If line A is uncommented, the output is bang bang
 E. If line A is uncommented, the output is sh-bang bang
 F. If line A is uncommented, compilation fails.

 3. Given that the for loop's syntax is correct, and given:

import static java.lang.System.*;
class _ {

01-ch01.indd 75 9/2/2014 2:43:21 PM

76 Chapter 1: Declarations and Access Control76 Chapter 1: Declarations and Access Control

 static public void main(String[] __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;) // for loop
 $ += __A_V_[x];
 out.println($);
 }
}

 And the command line:

java _ - A .

 What is the result?
 A. -A

 B. A.
 C. -A.
 D. _A.
 E. _-A.
 F. Compilation fails
 G. An exception is thrown at runtime

 4. Given:

 1. enum Animals {
 2. DOG("woof"), CAT("meow"), FISH("burble");
 3. String sound;
 4. Animals(String s) { sound = s; }
 5. }
 6. class TestEnum {
 7. static Animals a;
 8. public static void main(String[] args) {
 9. System.out.println(a.DOG.sound + " " + a.FISH.sound);
10. }
11. }

 What is the result?
 A. woof burble

 B. Multiple compilation errors
 C. Compilation fails due to an error on line 2
 D. Compilation fails due to an error on line 3
 E. Compilation fails due to an error on line 4
 F. Compilation fails due to an error on line 9

01-ch01.indd 76 9/2/2014 2:43:21 PM

Self Test 77

 5. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. public int c = 7;
 6. }

 3. package pkgB;
 4. import pkgA.*;
 5. public class Baz {
 6. public static void main(String[] args) {
 7. Foo f = new Foo();
 8. System.out.print(" " + f.a);
 9. System.out.print(" " + f.b);
10. System.out.println(" " + f.c);
11. }
12. }

 What is the result? (Choose all that apply.)
 A. 5 6 7

 B. 5 followed by an exception
 C. Compilation fails with an error on line 7
 D. Compilation fails with an error on line 8
 E. Compilation fails with an error on line 9
 F. Compilation fails with an error on line 10

 6. Given:

 1. public class Electronic implements Device
 { public void doIt() { } }
 2.
 3. abstract class Phone1 extends Electronic { }
 4.
 5. abstract class Phone2 extends Electronic
 { public void doIt(int x) { } }
 6.
 7. class Phone3 extends Electronic implements Device
 { public void doStuff() { } }
 8.
 9. interface Device { public void doIt(); }

01-ch01.indd 77 9/2/2014 2:43:21 PM

78 Chapter 1: Declarations and Access Control

 What is the result? (Choose all that apply.)
 A. Compilation succeeds
 B. Compilation fails with an error on line 1
 C. Compilation fails with an error on line 3
 D. Compilation fails with an error on line 5
 E. Compilation fails with an error on line 7
 F. Compilation fails with an error on line 9

 7. Given:

 4. class Announce {
 5. public static void main(String[] args) {
 6. for(int __x = 0; __x < 3; __x++) ;
 7. int #lb = 7;
 8. long [] x [5];
 9. Boolean []ba[];
10. }
11. }

 What is the result? (Choose all that apply.)
 A. Compilation succeeds
 B. Compilation fails with an error on line 6
 C. Compilation fails with an error on line 7
 D. Compilation fails with an error on line 8
 E. Compilation fails with an error on line 9

 8. Given:

 3. public class TestDays {
 4. public enum Days { MON, TUE, WED };
 5. public static void main(String[] args) {
 6. for(Days d : Days.values())
 7. ;
 8. Days [] d2 = Days.values();
 9. System.out.println(d2[2]);
10. }
11. }

 What is the result? (Choose all that apply.)
 A. TUE

 B. WED

01-ch01.indd 78 9/2/2014 2:43:21 PM

Self Test 79

 C. The output is unpredictable
 D. Compilation fails due to an error on line 4
 E. Compilation fails due to an error on line 6
 F. Compilation fails due to an error on line 8
 G. Compilation fails due to an error on line 9

 9. Given:

 4. public class Frodo extends Hobbit
 5. public static void main(String[] args) {
 6. int myGold = 7;
 7. System.out.println(countGold(myGold, 6));
 8. }
 9. }
10. class Hobbit {
11. int countGold(int x, int y) { return x + y; }
12. }

 What is the result?
 A. 13

 B. Compilation fails due to multiple errors
 C. Compilation fails due to an error on line 6
 D. Compilation fails due to an error on line 7
 E. Compilation fails due to an error on line 11

 10. Given:

interface Gadget {
 void doStuff();
}
abstract class Electronic {
 void getPower() { System.out.print("plug in "); }
}
public class Tablet extends Electronic implements Gadget {
 void doStuff() { System.out.print("show book "); }
 public static void main(String[] args) {
 new Tablet().getPower();
 new Tablet().doStuff();
 }
}

 Which are true? (Choose all that apply.)
 A. The class Tablet will NOT compile
 B. The interface Gadget will NOT compile

01-ch01.indd 79 9/2/2014 2:43:21 PM

80 Chapter 1: Declarations and Access Control

 C. The output will be plug in show book
 D. The abstract class Electronic will NOT compile
 E. The class Tablet CANNOT both extend and implement

 11. Given that the Integer class is in the java.lang package, and given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)
 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. static import java.lang.Integer.*;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

01-ch01.indd 80 9/2/2014 2:43:21 PM

 Self Test Answers 81

SELF TEST ANSWERS

 1. ☑ C is correct.
☐✗ A is incorrect because classes implement interfaces, they don't extend them. B is incorrect
because interfaces only "inherit from" other interfaces. D is incorrect based on the preceding
rules. (OCA Objective 7.6)

 2. ☑ B and F are correct. Since Rocket.blastOff() is private, it can't be overridden, and it
is invisible to class Shuttle.
☐✗ A, C, D, and E are incorrect based on the above. (OCA Objective 6.6)

 3. ☑ B is correct. This question is using valid (but inappropriate and weird) identifiers, static
imports, main(), and pre-incrementing logic.
☐✗ A, C, D, E, F, and G are incorrect based on the above. (OCA Objective 1.2 and OCA
Objectives 1.3, 1.4, and 2.1)

 4. ☑ A is correct; enums can have constructors and variables.
☐✗ B, C, D, E, and F are incorrect; these lines all use correct syntax. (OCP Objective 2.5)

 5. ☑ D and E are correct. Variable a has default access, so it cannot be accessed from outside the
package. Variable b has protected access in pkgA.
☐✗ A, B, C, and F are incorrect based on the above information. (OCA Objectives 1.4
and 6.6)

 6. ☑ A is correct; all of these are legal declarations.
☐✗ B, C, D, E, and F are incorrect based on the above information. (OCA Objective 7.6)

 7. ☑ C and D are correct. Variable names cannot begin with a #, and an array declaration can't
include a size without an instantiation. The rest of the code is valid.
☐✗ A, B, and E are incorrect based on the above. (OCA Objective 2.1)

 8. ☑ B is correct. Every enum comes with a static values() method that returns an array of
the enum's values, in the order in which they are declared in the enum.
☐✗ A, C, D, E, F, and G are incorrect based on the above information. (OCP Objective 2.5)

 9. ☑ D is correct. The countGold() method cannot be invoked from a static context.
☐✗ A, B, C, and E are incorrect based on the above information. (OCA Objectives 2.5
and 6.2)

01-ch01.indd 81 9/2/2014 2:43:21 PM

82 Chapter 1: Declarations and Access Control

 10. ☑ A is correct. By default, an interface's methods are public so the Tablet.doStuff
method must be public, too. The rest of the code is valid.
☐✗ B, C, D, and E are incorrect based on the above. (OCA Objective 7.6)

 11. ☑ C and E are correct syntax for static imports. Line 4 isn't making use of static imports,
so the code will also compile with none of the imports.
☐✗ A, B, D, and F are incorrect based on the above. (OCA Objective 1.4)

01-ch01.indd 82 9/2/2014 2:43:21 PM

22
Object OrientationObject Orientation

CERTIFICATION OBJECTIVES

Describe Encapsulation •
Implement Inheritance •
Use IS-A and HAS-A Relationships (OCP) •
Use Polymorphism •
Use Overriding and Overloading •
Understand Casting •

Use Interfaces •
Understand and Use Return Types •
Develop Constructors •
Use static Members •
Two-Minute Drill ✓

Q&A Self Test

02-ch02.indd 83 8/28/2014 3:45:23 PM

84 Chapter 2: Object Orientation

Being an Oracle Certified Associate (OCA) 7 means you must be at one with the object-
oriented aspects of Java. You must dream of inheritance hierarchies, the power of
polymorphism must flow through you, and encapsulation must become second nature

to you. (Coupling, cohesion, composition, and design patterns will become your bread and butter
when you're an Oracle Certified Professional [OCP] 7.) This chapter will prepare you for all of the
object-oriented objectives and questions you'll encounter on the exam. We have heard of many
experienced Java programmers who haven't really become fluent with the object-oriented tools
that Java provides, so we'll start at the beginning.

CERTIFICATION OBJECTIVE

Encapsulation (OCA Objectives 6.1 and 6.7)

6.1 Create methods with arguments and return values.

6.7 Apply encapsulation principles to a class.

Imagine you wrote the code for a class and another dozen programmers from your
company all wrote programs that used your class. Now imagine that later on, you
didn't like the way the class behaved, because some of its instance variables were
being set (by the other programmers from within their code) to values you hadn't
anticipated. Their code brought out errors in your code. (Relax, this is just hypothetical.)
Well, it is a Java program, so you should be able just to ship out a newer version of
the class, which they could replace in their programs without changing any of their
own code.

This scenario highlights two of the promises/benefits of an object-oriented (OO)
language: flexibility and maintainability. But those benefits don't come automatically.
You have to do something. You have to write your classes and code in a way that
supports flexibility and maintainability. So what if Java supports OO? It can't design
your code for you. For example, imagine you made your class with public instance
variables, and those other programmers were setting the instance variables directly,
as the following code demonstrates:

02-ch02.indd 84 8/28/2014 3:45:27 PM

Encapsulation (OCA Objectives 6.1 and 6.7) 85

public class BadOO {
 public int size;
 public int weight;
 ...
}
public class ExploitBadOO {
 public static void main (String [] args) {
 BadOO b = new BadOO();
 b.size = -5; // Legal but bad!!
 }
}

And now you're in trouble. How are you going to change the class in a way that
lets you handle the issues that come up when somebody changes the size variable
to a value that causes problems? Your only choice is to go back in and write method
code for adjusting size (a setSize(int a) method, for example), and then
insulate the size variable with, say, a private access modifier. But as soon as you
make that change to your code, you break everyone else's!

The ability to make changes in your implementation code without breaking the
code of others who use your code is a key benefit of encapsulation. You want to hide
implementation details behind a public programming interface. By interface, we
mean the set of accessible methods your code makes available for other code to
call—in other words, your code's API. By hiding implementation details, you can
rework your method code (perhaps also altering the way variables are used by your
class) without forcing a change in the code that calls your changed method.

If you want maintainability, flexibility, and extensibility (and of course, you do),
your design must include encapsulation. How do you do that?

■ Keep instance variables protected (with an access modifier, often private).

■ Make public accessor methods, and force calling code to use those methods
rather than directly accessing the instance variable. These so-called accessor
methods allow users of your class to set a variable's value or get a variable's
value.

■ For these accessor methods, use the most common naming convention of
set<someProperty> and get<someProperty>.

Figure 2-1 illustrates the idea that encapsulation forces callers of our code to go
through methods rather than accessing variables directly.

We call the access methods getters and setters, although some prefer the fancier
terms accessors and mutators. (Personally, we don't like the word "mutate.")
Regardless of what you call them, they're methods that other programmers must go

02-ch02.indd 85 8/28/2014 3:45:27 PM

86 Chapter 2: Object Orientation

through in order to access your instance variables. They look simple, and you've
probably been using them forever:

public class Box {
 // protect the instance variable; only an instance
 // of Box can access it
 private int size;
 // Provide public getters and setters
 public int getSize() {
 return size;
 }
 public void setSize(int newSize) {
 size = newSize;
 }
}

Class A

B b = new B();

getSize()

setSize()

getName()

setName()

getColor()

setColor()

int x = b.getSize();

b.setSize(34);

b.setName("Fred");

b.setColor(blue);

String s = b.getName();

Color c = b.getColor();

Class B

size

name

color

Class A cannot access Class B instance variable data
without going through getter and setter methods. Data is

marked private; only the accessor methods are public.

private
public

 FIGURE 2-1 The nature of encapsulation

02-ch02.indd 86 8/28/2014 3:45:27 PM

Encapsulation (OCA Objectives 6.1 and 6.7) 87

Wait a minute. How useful is the previous code? It doesn't even do any validation
or processing. What benefit can there be from having getters and setters that add no
functionality? The point is, you can change your mind later and add more code to
your methods without breaking your API. Even if today you don't think you really
need validation or processing of the data, good OO design dictates that you plan for
the future. To be safe, force calling code to go through your methods rather than
going directly to instance variables. Always. Then you're free to rework your method
implementations later, without risking the wrath of those dozen programmers who
know where you live.

Note: In Chapter 5 we'll be revisiting the topic of encapsulation as it applies to
instance variables that are also reference variables. It's trickier than you might think,
so stay tuned! (Also, we'll wait until Chapter 5 to challenge you with encapsulation-
themed mock questions.)

Look out for code that appears to be asking about the behavior of a

method, when the problem is actually a lack of encapsulation. Look at the following

example, and see if you can fi gure out what's going on:

class Foo {
 public int left = 9;
 public int right = 3;
 public void setLeft(int leftNum) {
 left = leftNum;
 right = leftNum/3;
 }
 // lots of complex test code here
}

Now consider this question: Is the value of right always going to be one-third the value

of left? It looks like it will, until you realize that users of the Foo class don't need to use

the setLeft() method! They can simply go straight to the instance variables and change

them to any arbitrary int value.

02-ch02.indd 87 8/28/2014 3:45:27 PM

88 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Inheritance and Polymorphism
(OCA Objectives 7.1, 7.2, and 7.3)

7.1 Implement inheritance.

7.2 Develop code that demonstrates the use of polymorphism.

7.3 Differentiate between the type of a reference and the type of an object.

Inheritance is everywhere in Java. It's safe to say that it's almost (almost?)
impossible to write even the tiniest Java program without using inheritance. To
explore this topic, we're going to use the instanceof operator, which we'll discuss
in more detail in Chapter 5. For now, just remember that instanceof returns true
if the reference variable being tested is of the type being compared to. This code

class Test {
 public static void main(String [] args) {
 Test t1 = new Test();
 Test t2 = new Test();
 if (!t1.equals(t2))
 System.out.println("they're not equal");
 if (t1 instanceof Object)
 System.out.println("t1's an Object");
 }
}

produces this output:

they're not equal
t1's an Object

Where did that equals method come from? The reference variable t1 is of type
Test, and there's no equals method in the Test class. Or is there? The second if
test asks whether t1 is an instance of class Object, and because it is (more on that
soon), the if test succeeds.

Hold on…how can t1 be an instance of type Object, when we just said it was of
type Test? I'm sure you're way ahead of us here, but it turns out that every class in
Java is a subclass of class Object (except of course class Object itself). In other
words, every class you'll ever use or ever write will inherit from class Object. You'll
always have an equals method, a clone method, notify, wait, and others

02-ch02.indd 88 8/28/2014 3:45:27 PM

Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3) 89

available to use. Whenever you create a class, you automatically inherit all of class
Object's methods.

Why? Let's look at that equals method for instance. Java's creators correctly
assumed that it would be very common for Java programmers to want to compare
instances of their classes to check for equality. If class Object didn't have an equals
method, you'd have to write one yourself—you and every other Java programmer.
That one equals method has been inherited billions of times. (To be fair, equals
has also been overridden billions of times, but we're getting ahead of ourselves.)

For the exam, you'll need to know that you can create inheritance relationships
in Java by extending a class. It's also important to understand that the two most
common reasons to use inheritance are

■ To promote code reuse

■ To use polymorphism

Let's start with reuse. A common design approach is to create a fairly generic
version of a class with the intention of creating more specialized subclasses that
inherit from it. For example:

class GameShape {
 public void displayShape() {
 System.out.println("displaying shape");
 }
 // more code
}

class PlayerPiece extends GameShape {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 // more code
}

public class TestShapes {
 public static void main (String[] args) {
 PlayerPiece shape = new PlayerPiece();
 shape.displayShape();
 shape.movePiece();
 }
}

outputs:

displaying shape
moving game piece

02-ch02.indd 89 8/28/2014 3:45:28 PM

90 Chapter 2: Object Orientation

Notice that the PlayerPiece class inherits the generic displayShape()
method from the less-specialized class GameShape and also adds its own method,
movePiece(). Code reuse through inheritance means that methods with generic
functionality—such as displayShape(), which could apply to a wide range of
different kinds of shapes in a game—don't have to be reimplemented. That means
all specialized subclasses of GameShape are guaranteed to have the capabilities of the
more generic superclass. You don't want to have to rewrite the displayShape()
code in each of your specialized components of an online game.

But you knew that. You've experienced the pain of duplicate code when you make
a change in one place and have to track down all the other places where that same
(or very similar) code exists.

The second (and related) use of inheritance is to allow your classes to be accessed
polymorphically—a capability provided by interfaces as well, but we'll get to that in
a minute. Let's say that you have a GameLauncher class that wants to loop through a
list of different kinds of GameShape objects and invoke displayShape() on each of
them. At the time you write this class, you don't know every possible kind of
GameShape subclass that anyone else will ever write. And you sure don't want to
have to redo your code just because somebody decided to build a dice shape six
months later.

The beautiful thing about polymorphism ("many forms") is that you can treat any
subclass of GameShape as a GameShape. In other words, you can write code in your
GameLauncher class that says, "I don't care what kind of object you are as long as
you inherit from (extend) GameShape. And as far as I'm concerned, if you extend
GameShape, then you've definitely got a displayShape() method, so I know I can
call it."

Imagine we now have two specialized subclasses that extend the more generic
GameShape class, PlayerPiece and TilePiece:

class GameShape {
 public void displayShape() {
 System.out.println("displaying shape");
 }
 // more code
}

class PlayerPiece extends GameShape {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 // more code
}

class TilePiece extends GameShape {
 public void getAdjacent() {

02-ch02.indd 90 8/28/2014 3:45:28 PM

Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3) 91

 System.out.println("getting adjacent tiles");
 }
 // more code
}

Now imagine a test class has a method with a declared argument type of
GameShape, which means it can take any kind of GameShape. In other words, any
subclass of GameShape can be passed to a method with an argument of type
GameShape. This code

public class TestShapes {
 public static void main (String[] args) {
 PlayerPiece player = new PlayerPiece();
 TilePiece tile = new TilePiece();
 doShapes(player);
 doShapes(tile);
 }

 public static void doShapes(GameShape shape) {
 shape.displayShape();
 }
}

outputs:

displaying shape
displaying shape

The key point is that the doShapes() method is declared with a GameShape
argument but can be passed any subtype (in this example, a subclass) of GameShape.
The method can then invoke any method of GameShape, without any concern for
the actual runtime class type of the object passed to the method. There are
implications, though. The doShapes() method knows only that the objects are a
type of GameShape, since that's how the parameter is declared. And using a
reference variable declared as type GameShape—regardless of whether the variable is
a method parameter, local variable, or instance variable—means that only the
methods of GameShape can be invoked on it. The methods you can call on a
reference are totally dependent on the declared type of the variable, no matter what
the actual object is, that the reference is referring to. That means you can't use a
GameShape variable to call, say, the getAdjacent() method even if the object
passed in is of type TilePiece. (We'll see this again when we look at interfaces.)

IS-A and HAS-A Relationships (*OCP Objective 3.3)

Note: As of the Spring of 2014, the OCA 7 exam won't ask you directly about IS-A
and HAS-A relationships. But, understanding IS-A and HAS-A relationships will
help OCA 7 candidates with many of the questions on the exam.

02-ch02.indd 91 8/28/2014 3:45:28 PM

92 Chapter 2: Object Orientation

Given the above, for the OCP exam you need to be able to look at code and
determine whether the code demonstrates an IS-A or HAS-A relationship. The
rules are simple, so this should be one of the few areas where answering the questions
correctly is almost a no-brainer.

IS-A

In OO, the concept of IS-A is based on class inheritance or interface
implementation. IS-A is a way of saying, "This thing is a type of that thing." For
example, a Mustang is a type of Horse, so in OO terms we can say, "Mustang IS-A
Horse." Subaru IS-A Car. Broccoli IS-A Vegetable (not a very fun one, but it still
counts). You express the IS-A relationship in Java through the keywords extends
(for class inheritance) and implements (for interface implementation).

public class Car {
 // Cool Car code goes here
}

public class Subaru extends Car {
 // Important Subaru-specific stuff goes here
 // Don't forget Subaru inherits accessible Car members which
 // can include both methods and variables.
}

A Car is a type of Vehicle, so the inheritance tree might start from the Vehicle
class as follows:

public class Vehicle { ... }
public class Car extends Vehicle { ... }
public class Subaru extends Car { ... }

In OO terms, you can say the following:

Vehicle is the superclass of Car.
Car is the subclass of Vehicle.
Car is the superclass of Subaru.
Subaru is the subclass of Vehicle.
Car inherits from Vehicle.
Subaru inherits from both Vehicle and Car.
Subaru is derived from Car.
Car is derived from Vehicle.
Subaru is derived from Vehicle.
Subaru is a subtype of both Vehicle and Car.

02-ch02.indd 92 8/28/2014 3:45:28 PM

Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3) 93

Returning to our IS-A relationship, the following statements are true:

"Car extends Vehicle" means "Car IS-A Vehicle."
"Subaru extends Car" means "Subaru IS-A Car."

And we can also say:

"Subaru IS-A Vehicle"

because a class is said to be "a type of" anything further up in its inheritance tree. If
the expression (Foo instanceof Bar) is true, then class Foo IS-A Bar, even if
Foo doesn't directly extend Bar, but instead extends some other class that is a
subclass of Bar. Figure 2-2 illustrates the inheritance tree for Vehicle, Car, and
Subaru. The arrows move from the subclass to the superclass. In other words, a class'
arrow points toward the class from which it extends.

HAS-A

HAS-A relationships are based on usage, rather than inheritance. In other words,
class A HAS-A B if code in class A has a reference to an instance of class B. For
example, you can say the following:

A Horse IS-A Animal. A Horse HAS-A Halter.

The code might look like this:

public class Animal { }
public class Horse extends Animal {
 private Halter myHalter;
}

In this code, the Horse class has an instance variable of type Halter (a halter is a
piece of gear you might have if you have a horse), so you can say that a "Horse

 FIGURE 2-2

Inheritance tree
for Vehicle,
Car, Subaru

Vehicle

Car extends Vehicle

Subaru extends Car

02-ch02.indd 93 8/28/2014 3:45:28 PM

94 Chapter 2: Object Orientation

HAS-A Halter." In other words, Horse has a reference to a Halter. Horse code
can use that Halter reference to invoke methods on the Halter, and get Halter
behavior without having Halter-related code (methods) in the Horse class itself.
Figure 2-3 illustrates the HAS-A relationship between Horse and Halter.

HAS-A relationships allow you to design classes that follow good OO practices
by not having monolithic classes that do a gazillion different things. Classes (and
their resulting objects) should be specialists. As our friend Andrew says, "Specialized
classes can actually help reduce bugs." The more specialized the class, the more
likely it is that you can reuse the class in other applications. If you put all the
Halter-related code directly into the Horse class, you'll end up duplicating code in
the Cow class, UnpaidIntern class, and any other class that might need Halter
behavior. By keeping the Halter code in a separate, specialized Halter class, you
have the chance to reuse the Halter class in multiple applications.

Users of the Horse class (that is, code that calls methods on a Horse instance)
think that the Horse class has Halter behavior. The Horse class might have a
tie(LeadRope rope) method, for example. Users of the Horse class should never
have to know that when they invoke the tie() method, the Horse object turns
around and delegates the call to its Halter class by invoking myHalter.tie(rope).
The scenario just described might look like this:

public class Horse extends Animal {
 private Halter myHalter = new Halter();
 public void tie(LeadRope rope) {
 myHalter.tie(rope); // Delegate tie behavior to the
 // Halter object
 }
}
public class Halter {
 public void tie(LeadRope aRope) {
 // Do the actual tie work here
 }
}

 FIGURE 2-3

HAS-A relationship
between Horse and
Halter

Horse

Halter h

tie(Rope r) tie(Rope r)

Halter

Horse class has a Halter, because Horse
declares an instance variable of type Halter.
When code invokes tie() on a Horse instance,
the Horse invokes tie() on the Horse
object’s Halter instance variable.

02-ch02.indd 94 8/28/2014 3:45:28 PM

Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3) 95

In OO, we don't want callers to worry about which class or object is actually
doing the real work. To make that happen, the Horse class hides implementation
details from Horse users. Horse users ask the Horse object to do things (in this case,
tie itself up), and the Horse will either do it or, as in this example, ask something
else to do it. To the caller, though, it always appears that the Horse object takes care
of itself. Users of a Horse should not even need to know that there is such a thing as
a Halter class.

FROM THE CLASSROOM

Object-Oriented Design

IS-A and HAS-A relationships and encap-
sulation are just the tip of the iceberg when
it comes to OO design. Many books and
graduate theses have been dedicated to this
topic. The reason for the emphasis on proper
design is simple: money. The cost to deliver
a software application has been estimated to
be as much as ten times more expensive for
poorly designed programs.

Even the best OO designers (often called
architects) make mistakes. It is difficult to
visualize the relationships between hundreds,
or even thousands, of classes. When mistakes
are discovered during the implementation
(code writing) phase of a project, the amount
of code that has to be rewritten can some-
times mean programming teams have to start
over from scratch.

The software industry has evolved to aid
the designer. Visual object modeling languag-
es, such as the Unified Modeling Language
(UML), allow designers to design and easily

modify classes without having to write code
first, because OO components are represented
graphically. This allows the designer to create
a map of the class relationships and helps
them recognize errors before coding begins.
Another innovation in OO design is design
patterns. Designers noticed that many OO
designs apply consistently from project to
project, and that it was useful to apply the
same designs because it reduced the potential
to introduce new design errors. OO designers
then started to share these designs with each
other. Now there are many catalogs of these
design patterns both on the Internet and in
book form.

Although passing the Java certification
exam does not require you to understand
OO design this thoroughly, hopefully this
background information will help you bet-
ter appreciate why the test writers chose to
include encapsulation and IS-A and HAS-A
relationships on the exam.

—Jonathan Meeks, Sun Certified Java Programmer

FROM THE CLASSROOM

02-ch02.indd 95 8/28/2014 3:45:28 PM

96 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Polymorphism (OCA Objectives 7.2 and 7.3)

7.2 Develop code that demonstrates the use of polymorphism.

7.3 Differentiate between the type of a reference and the type of an object.

Remember that any Java object that can pass more than one IS-A test can be
considered polymorphic. Other than objects of type Object, all Java objects are
polymorphic in that they pass the IS-A test for their own type and for class Object.

Remember, too, that the only way to access an object is through a reference
variable. There are a few key things you should know about references:

■ A reference variable can be of only one type, and once declared, that type
can never be changed (although the object it references can change).

■ A reference is a variable, so it can be reassigned to other objects (unless the
reference is declared final).

■ A reference variable's type determines the methods that can be invoked on
the object the variable is referencing.

■ A reference variable can refer to any object of the same type as the declared
reference, or—this is the big one—it can refer to any subtype of the declared
type!

■ A reference variable can be declared as a class type or an interface type. If
the variable is declared as an interface type, it can reference any object of any
class that implements the interface.

Earlier we created a GameShape class that was extended by two other classes,
PlayerPiece and TilePiece. Now imagine you want to animate some of the
shapes on the gameboard. But not all shapes are able to be animated, so what do you
do with class inheritance?

Could we create a class with an animate() method, and have only some of the
GameShape subclasses inherit from that class? If we can, then we could have
PlayerPiece, for example, extend both the GameShape class and Animatable class,
while the TilePiece would extend only GameShape. But no, this won't work! Java
supports only single inheritance! That means a class can have only one immediate
superclass. In other words, if PlayerPiece is a class, there is no way to say
something like this:

02-ch02.indd 96 8/28/2014 3:45:28 PM

Polymorphism (OCA Objective 7.2 and 7.3) 97

class PlayerPiece extends GameShape, Animatable { // NO!
 // more code
}

A class cannot extend more than one class: that means one parent per class. A
class can have multiple ancestors, however, since class B could extend class A, and
class C could extend class B, and so on. So any given class might have multiple
classes up its inheritance tree, but that's not the same as saying a class directly
extends two classes.

Some languages (such as C++) allow a class to extend more than one other

class. This capability is known as "multiple inheritance." The reason that

Java's creators chose not to allow multiple inheritance is that it can become

quite messy. In a nutshell, the problem is that if a class extended two other

classes, and both superclasses had, say, a doStuff() method, which version of

doStuff() would the subclass inherit? This issue can lead to a scenario known

as the "Deadly Diamond of Death," because of the shape of the class diagram

that can be created in a multiple inheritance design. The diamond is formed

when classes B and C both extend A, and both B and C inherit a method from

A. If class D extends both B and C, and both B and C have overridden the

method in A, class D has, in theory, inherited two different implementations

of the same method. Drawn as a class diagram, the shape of the four classes

looks like a diamond.

So if that doesn't work, what else could you do? You could simply put the animate()
code in GameShape, and then disable the method in classes that can't be animated.
But that's a bad design choice for many reasons—it's more error-prone, it makes the
GameShape class less cohesive (more on cohesion in Chapter 10), and it means the
GameShape API "advertises" that all shapes can be animated, when in fact that's not
true since only some of the GameShape subclasses will be able to run the animate()
method successfully.

So what else could you do? You already know the answer—create an Animatable
interface, and have only the GameShape subclasses that can be animated implement
that interface. Here's the interface:

public interface Animatable {
 public void animate();
}

02-ch02.indd 97 8/28/2014 3:45:28 PM

98 Chapter 2: Object Orientation

And here's the modified PlayerPiece class that implements the interface:

class PlayerPiece extends GameShape implements Animatable {
 public void movePiece() {
 System.out.println("moving game piece");
 }
 public void animate() {
 System.out.println("animating...");
 }
 // more code
}

So now we have a PlayerPiece that passes the IS-A test for both the GameShape
class and the Animatable interface. That means a PlayerPiece can be treated
polymorphically as one of four things at any given time, depending on the declared
type of the reference variable:

■ An Object (since any object inherits from Object)

■ A GameShape (since PlayerPiece extends GameShape)

■ A PlayerPiece (since that's what it really is)

■ An Animatable (since PlayerPiece implements Animatable)

The following are all legal declarations. Look closely:

PlayerPiece player = new PlayerPiece();
Object o = player;
GameShape shape = player;
Animatable mover = player;

There's only one object here—an instance of type PlayerPiece—but there are
four different types of reference variables, all referring to that one object on the
heap. Pop quiz: Which of the preceding reference variables can invoke the
displayShape() method? Hint: Only two of the four declarations can be used to
invoke the displayShape() method.

Remember that method invocations allowed by the compiler are based solely on
the declared type of the reference, regardless of the object type. So looking at the
four reference types again—Object, GameShape, PlayerPiece, and Animatable—
which of these four types know about the displayShape() method?

You guessed it—both the GameShape class and the PlayerPiece class are known
(by the compiler) to have a displayShape() method, so either of those reference
types can be used to invoke displayShape(). Remember that to the compiler, a
PlayerPiece IS-A GameShape, so the compiler says, "I see that the declared type is
PlayerPiece, and since PlayerPiece extends GameShape, that means PlayerPiece

02-ch02.indd 98 8/28/2014 3:45:28 PM

 Polymorphism (OCA Objective 7.2 and 7.3) 99

inherited the displayShape() method. Therefore, PlayerPiece can be used to
invoke the displayShape() method."

Which methods can be invoked when the PlayerPiece object is being referred
to using a reference declared as type Animatable? Only the animate() method. Of
course, the cool thing here is that any class from any inheritance tree can also
implement Animatable, so that means if you have a method with an argument
declared as type Animatable, you can pass in PlayerPiece objects, SpinningLogo
objects, and anything else that's an instance of a class that implements Animatable.
And you can use that parameter (of type Animatable) to invoke the animate()
method but not the displayShape() method (which it might not even have), or
anything other than what is known to the compiler based on the reference type. The
compiler always knows, though, that you can invoke the methods of class Object on
any object, so those are safe to call regardless of the reference—class or interface—
used to refer to the object.

We've left out one big part of all this, which is that even though the compiler only
knows about the declared reference type, the Java Virtual Machine (JVM) at runtime
knows what the object really is. And that means that even if the PlayerPiece
object's displayShape() method is called using a GameShape reference variable, if
the PlayerPiece overrides the displayShape() method, the JVM will invoke the
PlayerPiece version! The JVM looks at the real object at the other end of the
reference, "sees" that it has overridden the method of the declared reference variable
type, and invokes the method of the object's actual class. But there is one other
thing to keep in mind:

Polymorphic method invocations apply only to instance methods. You can always
refer to an object with a more general reference variable type (a superclass or
interface), but at runtime, the ONLY things that are dynamically selected based
on the actual object (rather than the reference type) are instance methods. Not
static methods. Not variables. Only overridden instance methods are dynamically
invoked based on the real object's type.

Because this definition depends on a clear understanding of overriding and the
distinction between static methods and instance methods, we'll cover those next.

02-ch02.indd 99 8/28/2014 3:45:28 PM

100 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Overriding / Overloading
(OCA Objectives 6.1, 6.3,7.2, and 7.3)

6.1 Create methods with arguments and return values.

6.3 Create an overloaded method.

7.2 Develop code that demonstrates the use of polymorphism.

7.3 Differentiate between the type of a reference and the type of an object.

The exam will use overridden and overloaded methods on many, many questions.
These two concepts are often confused (perhaps because they have similar names?),
but each has its own unique and complex set of rules. It's important to get really
clear about which "over" uses which rules!

Overridden Methods

Any time a class inherits a method from a superclass, you have the opportunity to
override the method (unless, as you learned earlier, the method is marked final).
The key benefit of overriding is the ability to define behavior that's specific to a
particular subclass type. The following example demonstrates a Horse subclass of
Animal overriding the Animal version of the eat() method:

public class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
}

For abstract methods you inherit from a superclass, you have no choice: You must
implement the method in the subclass unless the subclass is also abstract. Abstract
methods must be implemented by the concrete subclass, but this is a lot like saying

02-ch02.indd 100 8/28/2014 3:45:28 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 101

that the concrete subclass overrides the abstract methods of the superclass. So you
could think of abstract methods as methods you're forced to override.

The Animal class creator might have decided that for the purposes of polymorphism,
all Animal subtypes should have an eat() method defined in a unique, specific way.
Polymorphically, when an Animal reference refers not to an Animal instance, but
to an Animal subclass instance, the caller should be able to invoke eat() on the
Animal reference, but the actual runtime object (say, a Horse instance) will run its
own specific eat() method. Marking the eat() method abstract is the Animal
programmer's way of saying to all subclass developers, "It doesn't make any sense for
your new subtype to use a generic eat() method, so you have to come up with your
own eat() method implementation!" A (nonabstract), example of using polymorphism
looks like this:

public class TestAnimals {
 public static void main (String [] args) {
 Animal a = new Animal();
 Animal b = new Horse(); // Animal ref, but a Horse object
 a.eat(); // Runs the Animal version of eat()
 b.eat(); // Runs the Horse version of eat()
 }
}
class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
 public void buck() { }
}

In the preceding code, the test class uses an Animal reference to invoke a method
on a Horse object. Remember, the compiler will allow only methods in class Animal
to be invoked when using a reference to an Animal. The following would not be
legal given the preceding code:

Animal c = new Horse();
c.buck(); // Can't invoke buck();
 // Animal class doesn't have that method

To reiterate, the compiler looks only at the reference type, not the instance type.
Polymorphism lets you use a more abstract supertype (including an interface)
reference to one of its subtypes (including interface implementers).

02-ch02.indd 101 8/28/2014 3:45:28 PM

102 Chapter 2: Object Orientation

The overriding method cannot have a more restrictive access modifier than the
method being overridden (for example, you can't override a method marked public
and make it protected). Think about it: If the Animal class advertises a public
eat() method and someone has an Animal reference (in other words, a reference
declared as type Animal), that someone will assume it's safe to call eat() on the
Animal reference regardless of the actual instance that the Animal reference is
referring to. If a subclass were allowed to sneak in and change the access modifier on
the overriding method, then suddenly at runtime—when the JVM invokes the true
object's (Horse) version of the method rather than the reference type's (Animal)
version—the program would die a horrible death. (Not to mention the emotional
distress for the one who was betrayed by the rogue subclass.)

Let's modify the polymorphic example we saw earlier in this section:

public class TestAnimals {
 public static void main (String [] args) {
 Animal a = new Animal();
 Animal b = new Horse(); // Animal ref, but a Horse object
 a.eat(); // Runs the Animal version of eat()
 b.eat(); // Runs the Horse version of eat()
 }
}
class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal {
 private void eat() { // whoa! - it's private!
 System.out.println("Horse eating hay, oats, "
 + "and horse treats");
 }
}

If this code compiled (which it doesn't), the following would fail at runtime:

Animal b = new Horse(); // Animal ref, but a Horse
 // object, so far so good
b.eat(); // Meltdown at runtime!

The variable b is of type Animal, which has a public eat() method. But
remember that at runtime, Java uses virtual method invocation to dynamically select
the actual version of the method that will run, based on the actual instance. An
Animal reference can always refer to a Horse instance, because Horse IS-A(n)
Animal. What makes that superclass reference to a subclass instance possible is that
the subclass is guaranteed to be able to do everything the superclass can do. Whether
the Horse instance overrides the inherited methods of Animal or simply inherits

02-ch02.indd 102 8/28/2014 3:45:28 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 103

them, anyone with an Animal reference to a Horse instance is free to call all
accessible Animal methods. For that reason, an overriding method must fulfill the
contract of the superclass.

Note: In Chapter 6 we will explore exception handling in detail. Once you've
studied Chapter 6, you'll appreciate this handy, single list of overriding rules. The
rules for overriding a method are as follows:

■ The argument list must exactly match that of the overridden method. If they
don't match, you can end up with an overloaded method you didn't intend.

■ The return type must be the same as, or a subtype of, the return type declared
in the original overridden method in the superclass. (More on this in a few
pages when we discuss covariant returns.)

■ The access level can't be more restrictive than that of the overridden method.

■ The access level CAN be less restrictive than that of the overridden method.

■ Instance methods can be overridden only if they are inherited by the subclass.
A subclass within the same package as the instance's superclass can override
any superclass method that is not marked private or final. A subclass in a
different package can override only those nonfinal methods marked public
or protected (since protected methods are inherited by the subclass).

■ The overriding method CAN throw any unchecked (runtime) exception,
regardless of whether the overridden method declares the exception. (More
in Chapter 6.)

■ The overriding method must NOT throw checked exceptions that are new
or broader than those declared by the overridden method. For example, a
method that declares a FileNotFoundException cannot be overridden by
a method that declares a SQLException, Exception, or any other non-
runtime exception unless it's a subclass of FileNotFoundException.

■ The overriding method can throw narrower or fewer exceptions. Just because
an overridden method "takes risks" doesn't mean that the overriding subclass'
exception takes the same risks. Bottom line: An overriding method doesn't
have to declare any exceptions that it will never throw, regardless of what the
overridden method declares.

■ You cannot override a method marked final.

■ You cannot override a method marked static. We'll look at an example in a
few pages when we discuss static methods in more detail.

02-ch02.indd 103 8/28/2014 3:45:28 PM

104 Chapter 2: Object Orientation

■ If a method can't be inherited, you cannot override it. Remember that
overriding implies that you're reimplementing a method you inherited! For
example, the following code is not legal, and even if you added an eat()
method to Horse, it wouldn't be an override of Animal's eat() method.

public class TestAnimals {
 public static void main (String [] args) {
 Horse h = new Horse();
 h.eat(); // Not legal because Horse didn't inherit eat()
 }
}
class Animal {
 private void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
class Horse extends Animal { }

Invoking a Superclass Version of an Overridden Method

Often, you'll want to take advantage of some of the code in the superclass version of
a method, yet still override it to provide some additional specific behavior. It's like
saying, "Run the superclass version of the method, and then come back down here
and finish with my subclass additional method code." (Note that there's no requirement
that the superclass version run before the subclass code.) It's easy to do in code using
the keyword super as follows:

public class Animal {
 public void eat() { }
 public void printYourself() {
 // Useful printing code goes here
 }
}
class Horse extends Animal {
 public void printYourself() {
 // Take advantage of Animal code, then add some more
 super.printYourself(); // Invoke the superclass
 // (Animal) code
 // Then do Horse-specific
 // print work here
 }
}

Note: Using super to invoke an overridden method applies only to instance
methods. (Remember that static methods can't be overridden.) And you can use
super only to access a method in a class' superclass, not the superclass of the
superclass—that is, you can't say super.super.doStuff().

02-ch02.indd 104 8/28/2014 3:45:28 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 105

Examples of Illegal Method Overrides

Let's take a look at overriding the eat() method of Animal:

public class Animal {
 public void eat() { }
}

Table 2-1 lists examples of illegal overrides of the Animal eat() method, given
the preceding version of the Animal class.

If a method is overridden but you use a polymorphic (supertype)

reference to refer to the subtype object with the overriding method, the compiler

assumes you're calling the supertype version of the method. If the supertype version

declares a checked exception, but the overriding subtype method does not, the compiler

still thinks you are calling a method that declares an exception (more in Chapter 6). Let's

take a look at an example:

class Animal {
 public void eat() throws Exception {
 // throws an Exception
 }
}
class Dog2 extends Animal {
 public void eat() { /* no Exceptions */}
 public static void main(String [] args) {
 Animal a = new Dog2();
 Dog2 d = new Dog2();
 d.eat(); // ok
 a.eat(); // compiler error -
 // unreported exception
 }
}

This code will not compile because of the Exception declared on the Animal eat()

method. This happens even though, at runtime, the eat() method used would be the Dog

version, which does not declare the exception.

02-ch02.indd 105 8/28/2014 3:45:29 PM

106 Chapter 2: Object Orientation

Illegal Override Code Problem with the Code

private void eat() { } Access modifier is more restrictive
public void eat() throws
IOException { }

Declares a checked exception not defined by superclass
version

public void eat(String food) { } A legal overload, not an override, because the argument list
changed

public String eat() { } Not an override because of the return type, and not an
overload either because there's no change in the argument list

Overloaded Methods

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and, optionally, a different return type). Overloading a method
often means you're being a little nicer to those who call your methods, because your
code takes on the burden of coping with different argument types rather than forcing
the caller to do conversions prior to invoking your method. The rules aren't too
complex:

■ Overloaded methods MUST change the argument list.

■ Overloaded methods CAN change the return type.

■ Overloaded methods CAN change the access modifier.

■ Overloaded methods CAN declare new or broader checked exceptions.

■ A method can be overloaded in the same class or in a subclass. In other words,
if class A defines a doStuff(int i) method, the subclass B could define a
doStuff(String s) method without overriding the superclass version that
takes an int. So two methods with the same name but in different classes
can still be considered overloaded if the subclass inherits one version of the
method and then declares another overloaded version in its class definition.

 TABLE 2-1 Examples of Illegal Overrides

02-ch02.indd 106 8/28/2014 3:45:29 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 107

Legal Overloads

Let's look at a method we want to overload:

public void changeSize(int size, String name, float pattern) { }

The following methods are legal overloads of the changeSize() method:

public void changeSize(int size, String name) { }
private int changeSize(int size, float pattern) { }
public void changeSize(float pattern, String name)
 throws IOException { }

Invoking Overloaded Methods

Note for OCP candidates: In Chapter 11 we will look at how boxing and var-args
impact overloading. (You still have to pay attention to what's covered here, however.)

When a method is invoked, more than one method of the same name might exist
for the object type you're invoking a method on. For example, the Horse class might
have three methods with the same name but with different argument lists, which
means the method is overloaded.

Less experienced Java developers are often confused about the subtle

differences between overloaded and overridden methods. Be careful to recognize when a

method is overloaded rather than overridden. You might see a method that appears to be

violating a rule for overriding, but that is actually a legal overload, as follows:

public class Foo {
 public void doStuff(int y, String s) { }
 public void moreThings(int x) { }
}
class Bar extends Foo {
 public void doStuff(int y, long s) throws IOException { }
}

It's tempting to see the IOException as the problem, because the overridden doStuff()

method doesn't declare an exception and IOException is checked by the compiler. But

the doStuff() method is not overridden! Subclass Bar overloads the doStuff() method

by varying the argument list, so the IOException is fi ne.

02-ch02.indd 107 8/28/2014 3:45:29 PM

108 Chapter 2: Object Orientation

Deciding which of the matching methods to invoke is based on the arguments. If
you invoke the method with a String argument, the overloaded version that takes a
String is called. If you invoke a method of the same name but pass it a float, the
overloaded version that takes a float will run. If you invoke the method of the
same name but pass it a Foo object, and there isn't an overloaded version that takes
a Foo, then the compiler will complain that it can't find a match. The following are
examples of invoking overloaded methods:
class Adder {
 public int addThem(int x, int y) {
 return x + y;
 }

 // Overload the addThem method to add doubles instead of ints
 public double addThem(double x, double y) {
 return x + y;
 }
}
 // From another class, invoke the addThem() method
public class TestAdder {
 public static void main (String [] args) {
 Adder a = new Adder();
 int b = 27;
 int c = 3;
 int result = a.addThem(b,c); // Which addThem is invoked?
 double doubleResult = a.addThem(22.5,9.3); // Which addThem?
 }
}

In this TestAdder code, the first call to a.addThem(b,c) passes two ints to the
method, so the first version of addThem()—the overloaded version that takes two
int arguments—is called. The second call to a.addThem(22.5, 9.3) passes two
doubles to the method, so the second version of addThem()—the overloaded
version that takes two double arguments—is called.

Invoking overloaded methods that take object references rather than primitives is
a little more interesting. Say you have an overloaded method such that one version
takes an Animal and one takes a Horse (subclass of Animal). If you pass a Horse
object in the method invocation, you'll invoke the overloaded version that takes a
Horse. Or so it looks at first glance:

class Animal { }
class Horse extends Animal { }
class UseAnimals {
 public void doStuff(Animal a) {
 System.out.println("In the Animal version");
 }

02-ch02.indd 108 8/28/2014 3:45:29 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 109

 public void doStuff(Horse h) {
 System.out.println("In the Horse version");
 }
 public static void main (String [] args) {
 UseAnimals ua = new UseAnimals();
 Animal animalObj = new Animal();
 Horse horseObj = new Horse();
 ua.doStuff(animalObj);
 ua.doStuff(horseObj);
 }
}

The output is what you expect:

In the Animal version
In the Horse version

But what if you use an Animal reference to a Horse object?

Animal animalRefToHorse = new Horse();
 ua.doStuff(animalRefToHorse);

Which of the overloaded versions is invoked? You might want to answer, "The one
that takes a Horse, since it's a Horse object at runtime that's being passed to the
method." But that's not how it works. The preceding code would actually print this:

in the Animal version

Even though the actual object at runtime is a Horse and not an Animal, the choice
of which overloaded method to call (in other words, the signature of the method) is
NOT dynamically decided at runtime.

Just remember that, the reference type (not the object type) determines which
overloaded method is invoked! To summarize, which overridden version of the
method to call (in other words, from which class in the inheritance tree) is decided
at runtime based on object type, but which overloaded version of the method to call is
based on the reference type of the argument passed at compile time. If you invoke a
method passing it an Animal reference to a Horse object, the compiler knows only
about the Animal, so it chooses the overloaded version of the method that takes an
Animal. It does not matter that at runtime a Horse is actually being passed.

02-ch02.indd 109 8/28/2014 3:45:29 PM

110 Chapter 2: Object Orientation

Polymorphism in Overloaded and Overridden Methods How does
polymorphism work with overloaded methods? From what we just looked at, it
doesn't appear that polymorphism matters when a method is overloaded. If you pass
an Animal reference, the overloaded method that takes an Animal will be invoked,
even if the actual object passed is a Horse. Once the Horse masquerading as Animal
gets in to the method, however, the Horse object is still a Horse despite being
passed into a method expecting an Animal. So it's true that polymorphism doesn't
determine which overloaded version is called; polymorphism does come into play
when the decision is about which overridden version of a method is called. But
sometimes a method is both overloaded and overridden. Imagine that the Animal
and Horse classes look like this:

public class Animal {
 public void eat() {
 System.out.println("Generic Animal Eating Generically");
 }
}
public class Horse extends Animal {
 public void eat() {
 System.out.println("Horse eating hay ");
 }
 public void eat(String s) {
 System.out.println("Horse eating " + s);
 }
}

Notice that the Horse class has both overloaded and overridden the eat()
method. Table 2-2 shows which version of the three eat() methods will run
depending on how they are invoked.

Can main() be overloaded?

class DuoMain {
 public static void main(String[] args) {
 main(1);
 }
 static void main(int i) {
 System.out.println("overloaded main");
 }
}

Absolutely! But the only main() with JVM superpowers is the one with the signature

you've seen about 100 times already in this book.

02-ch02.indd 110 8/28/2014 3:45:29 PM

 Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3) 111

Method Invocation Code Result

Animal a = new Animal();
a.eat();

Generic Animal Eating Generically

Horse h = new Horse();
h.eat();

Horse eating hay

Animal ah = new Horse();
ah.eat();

Horse eating hay
Polymorphism works—the actual object type (Horse), not the
reference type (Animal), is used to determine which eat() is
called.

Horse he = new Horse();
he.eat("Apples");

Horse eating Apples
The overloaded eat(String s) method is invoked.

Animal a2 = new Animal();
a2.eat("treats");

Compiler error! Compiler sees that the Animal class doesn't have
an eat() method that takes a String.

Animal ah2 = new Horse();
ah2.eat("Carrots");

Compiler error! Compiler still looks only at the reference and sees
that Animal doesn't have an eat() method that takes a String.
Compiler doesn't care that the actual object might be a Horse at
runtime.

 TABLE 2-2 Examples of Legal and Illegal Overrides

Don't be fooled by a method that's overloaded but not overridden by a

subclass. It's perfectly legal to do the following:

public class Foo {
 void doStuff() { }
}
class Bar extends Foo {
 void doStuff(String s) { }
}

The Bar class has two doStuff() methods: the no-arg version it inherits from Foo (and

does not override) and the overloaded doStuff(String s) defi ned in the Bar class. Code

with a reference to a Foo can invoke only the no-arg version, but code with a reference to

a Bar can invoke either of the overloaded versions.

02-ch02.indd 111 8/28/2014 3:45:29 PM

112 Chapter 2: Object Orientation

Table 2-3 summarizes the difference between overloaded and overridden methods.

Overloaded Method Overridden Method

Argument(s) Must change. Must not change.

Return type Can change. Can't change except for
covariant returns. (Covered
later this chapter.)

Exceptions Can change. Can reduce or eliminate. Must
not throw new or broader
checked exceptions.

Access Can change. Must not make more restrictive
(can be less restrictive).

Invocation Reference type determines which overloaded version
(based on declared argument types) is selected. Happens
at compile time. The actual method that's invoked is still a
virtual method invocation that happens at runtime, but
the compiler will already know the signature of the method
to be invoked. So at runtime, the argument match will
already have been nailed down, just not the class in which
the method lives.

Object type (in other words, the
type of the actual instance on the
heap) determines which method
is selected. Happens at runtime.

We'll cover constructor overloading later in the chapter, where we'll also cover
the other constructor-related topics that are on the exam. Figure 2-4 illustrates the
way overloaded and overridden methods appear in class relationships.

 TABLE 1-2 Differences Between Overloaded and Overridden Methods

 FIGURE 2-4

Overloaded
and overridden
methods in class
relationships

Overriding

Tree

showLeaves()

Oak

showLeaves()

Oak

setFeatures(String name, int leafSize)
setFeatures(int leafSize)

Tree

setFeatures(String name)

Overloading

02-ch02.indd 112 8/28/2014 3:45:30 PM

Casting (OCA Objectives 7.3 and 7.4) 113

CERTIFICATION OBJECTIVE

Casting (OCA Objectives 7.3 and 7.4)

7.3 Differentiate between the type of a reference and the type of an object.

7.4 Determine when casting is necessary.

You've seen how it's both possible and common to use generic reference variable
types to refer to more specific object types. It's at the heart of polymorphism. For
example, this line of code should be second nature by now:

Animal animal = new Dog();

But what happens when you want to use that animal reference variable to invoke
a method that only class Dog has? You know it's referring to a Dog, and you want to
do a Dog-specific thing? In the following code, we've got an array of Animals, and
whenever we find a Dog in the array, we want to do a special Dog thing. Let's agree
for now that all of this code is okay, except that we're not sure about the line of code
that invokes the playDead method.

class Animal {
 void makeNoise() {System.out.println("generic noise"); }
}
class Dog extends Animal {
 void makeNoise() {System.out.println("bark"); }
 void playDead() { System.out.println("roll over"); }
}

class CastTest2 {
 public static void main(String [] args) {
 Animal [] a = {new Animal(), new Dog(), new Animal() };
 for(Animal animal : a) {
 animal.makeNoise();
 if(animal instanceof Dog) {
 animal.playDead(); // try to do a Dog behavior?
 }
 }
 }
}

When we try to compile this code, the compiler says something like this:

cannot find symbol

02-ch02.indd 113 8/28/2014 3:45:30 PM

114 Chapter 2: Object Orientation

The compiler is saying, "Hey, class Animal doesn't have a playDead() method."
Let's modify the if code block:

if(animal instanceof Dog) {
 Dog d = (Dog) animal; // casting the ref. var.
 d.playDead();
}

The new and improved code block contains a cast, which in this case is
sometimes called a downcast, because we're casting down the inheritance tree to a
more specific class. Now the compiler is happy. Before we try to invoke playDead,
we cast the animal variable to type Dog. What we're saying to the compiler is, "We
know it's really referring to a Dog object, so it's okay to make a new Dog reference
variable to refer to that object." In this case we're safe, because before we ever try the
cast, we do an instanceof test to make sure.

It's important to know that the compiler is forced to trust us when we do a
downcast, even when we screw up:

class Animal { }
class Dog extends Animal { }
class DogTest {
 public static void main(String [] args) {
 Animal animal = new Animal();
 Dog d = (Dog) animal; // compiles but fails later
 }
}

It can be maddening! This code compiles! When we try to run it, we'll get an
exception something like this:

java.lang.ClassCastException

Why can't we trust the compiler to help us out here? Can't it see that animal is
of type Animal? All the compiler can do is verify that the two types are in the same
inheritance tree, so that depending on whatever code might have come before the
downcast, it's possible that animal is of type Dog. The compiler must allow things
that might possibly work at runtime. However, if the compiler knows with certainty
that the cast could not possibly work, compilation will fail. The following
replacement code block will NOT compile:

Animal animal = new Animal();
Dog d = (Dog) animal;
String s = (String) animal; // animal can't EVER be a String

In this case, you'll get an error something like this:

inconvertible types

02-ch02.indd 114 8/28/2014 3:45:30 PM

Casting (OCA Objectives 7.3 and 7.4) 115

Unlike downcasting, upcasting (casting up the inheritance tree to a more general
type) works implicitly (that is, you don't have to type in the cast) because when you
upcast you're implicitly restricting the number of methods you can invoke, as
opposed to downcasting, which implies that later on, you might want to invoke a
more specific method. Here's an example:

class Animal { }
class Dog extends Animal { }

class DogTest {
 public static void main(String [] args) {
 Dog d = new Dog();
 Animal a1 = d; // upcast ok with no explicit cast
 Animal a2 = (Animal) d; // upcast ok with an explicit cast
 }
}

Both of the previous upcasts will compile and run without exception, because a
Dog IS-A(n) Animal, which means that anything an Animal can do, a Dog can do.
A Dog can do more, of course, but the point is that anyone with an Animal
reference can safely call Animal methods on a Dog instance. The Animal methods
may have been overridden in the Dog class, but all we care about now is that a Dog
can always do at least everything an Animal can do. The compiler and JVM know it,
too, so the implicit upcast is always legal for assigning an object of a subtype to a
reference of one of its supertype classes (or interfaces). If Dog implements Pet, and
Pet defines beFriendly(), then a Dog can be implicitly cast to a Pet, but the only
Dog method you can invoke then is beFriendly(), which Dog was forced to
implement because Dog implements the Pet interface.

One more thing…if Dog implements Pet, then if Beagle extends Dog, but Beagle
does not declare that it implements Pet, Beagle is still a Pet! Beagle is a Pet simply
because it extends Dog, and Dog's already taken care of the Pet parts for itself, and for
all its children. The Beagle class can always override any method it inherits from
Dog, including methods that Dog implemented to fulfill its interface contract.

And just one more thing…if Beagle does declare that it implements Pet, just so
that others looking at the Beagle class API can easily see that Beagle IS-A Pet
without having to look at Beagle's superclasses, Beagle still doesn't need to
implement the beFriendly() method if the Dog class (Beagle's superclass) has
already taken care of that. In other words, if Beagle IS-A Dog, and Dog IS-A Pet,
then Beagle IS-A Pet and has already met its Pet obligations for implementing the
beFriendly() method since it inherits the beFriendly() method. The compiler is
smart enough to say, "I know Beagle already IS a Dog, but it's okay to make it more
obvious by adding a cast."

02-ch02.indd 115 8/28/2014 3:45:30 PM

116 Chapter 2: Object Orientation

So don't be fooled by code that shows a concrete class that declares that it
implements an interface but doesn't implement the methods of the interface. Before
you can tell whether the code is legal, you must know what the superclasses of this
implementing class have declared. If any superclass in its inheritance tree has already
provided concrete (that is, nonabstract) method implementations, then regardless of
whether the superclass declares that it implements the interface, the subclass is
under no obligation to reimplement (override) those methods.

The exam creators will tell you that they're forced to jam tons of code

into little spaces "because of the exam engine." Although that's partially true, they ALSO

like to obfuscate. The following code

Animal a = new Dog();
Dog d = (Dog) a;
d.doDogStuff();

can be replaced with this easy-to-read bit of fun:

Animal a = new Dog();
((Dog)a).doDogStuff();

In this case the compiler needs all of those parentheses; otherwise it thinks it's been

handed an incomplete statement.

CERTIFICATION OBJECTIVE

Implementing an Interface (OCA Objective 7.6)

7.6 Use abstract classes and interfaces.

When you implement an interface, you're agreeing to adhere to the contract
defined in the interface. That means you're agreeing to provide legal implementations
for every method defined in the interface, and that anyone who knows what the
interface methods look like (not how they're implemented, but how they can be
called and what they return) can rest assured that they can invoke those methods on
an instance of your implementing class.

02-ch02.indd 116 8/28/2014 3:45:30 PM

 Implementing an Interface (OCA Objective 7.6) 117

For example, if you create a class that implements the Runnable interface (so
that your code can be executed by a specific thread), you must provide the public
void run() method. Otherwise, the poor thread could be told to go execute your
Runnable object's code and—surprise, surprise—the thread then discovers the
object has no run() method! (At which point, the thread would blow up and the
JVM would crash in a spectacular yet horrible explosion.) Thankfully, Java prevents
this meltdown from occurring by running a compiler check on any class that claims
to implement an interface. If the class says it's implementing an interface, it darn
well better have an implementation for each method in the interface (with a few
exceptions we'll look at in a moment).

Assuming an interface, Bounceable, with two methods, bounce() and
setBounceFactor(), the following class will compile:

public class Ball implements Bounceable { // Keyword
 // 'implements'
 public void bounce() { }
 public void setBounceFactor(int bf) { }
}

Okay, we know what you're thinking: "This has got to be the worst implementation
class in the history of implementation classes." It compiles, though. And it runs. The
interface contract guarantees that a class will have the method (in other words,
others can call the method subject to access control), but it never guaranteed a good
implementation—or even any actual implementation code in the body of the method.
(Keep in mind, though, that if the interface declares that a method is NOT void,
your class's implementation code will have to include a return statement.) The compiler
will never say to you, "Um, excuse me, but did you really mean to put nothing between
those curly braces? HELLO. This is a method after all, so shouldn't it do something?"

Implementation classes must adhere to the same rules for method implementation
as a class extending an abstract class. To be a legal implementation class, a
nonabstract implementation class must do the following:

■ Provide concrete (nonabstract) implementations for all methods from the
declared interface.

■ Follow all the rules for legal overrides, such as the following:

■ Declare no checked exceptions on implementation methods other than
those declared by the interface method, or subclasses of those declared by
the interface method.

■ Maintain the signature of the interface method, and maintain the same
return type (or a subtype). (But it does not have to declare the exceptions
declared in the interface method declaration.)

02-ch02.indd 117 8/28/2014 3:45:30 PM

118 Chapter 2: Object Orientation

But wait, there's more! An implementation class can itself be abstract! For
example, the following is legal for a class Ball implementing Bounceable:

abstract class Ball implements Bounceable { }

Notice anything missing? We never provided the implementation methods. And
that's okay. If the implementation class is abstract, it can simply pass the buck to
its first concrete subclass. For example, if class BeachBall extends Ball, and
BeachBall is not abstract, then BeachBall will have to provide all the methods
from Bounceable:

class BeachBall extends Ball {
 // Even though we don't say it in the class declaration above,
 // BeachBall implements Bounceable, since BeachBall's abstract
 // superclass (Ball) implements Bounceable

 public void bounce() {
 // interesting BeachBall-specific bounce code

 }
 public void setBounceFactor(int bf) {
 // clever BeachBall-specific code for setting
 // a bounce factor

 }
 // if class Ball defined any abstract methods,
 // they'll have to be
 // implemented here as well.
}

Look for classes that claim to implement an interface but don't provide the correct
method implementations. Unless the implementing class is abstract, the implementing
class must provide implementations for all methods defined in the interface.

You need to know two more rules, and then we can put this topic to sleep (or put
you to sleep; we always get those two confused):

 1. A class can implement more than one interface. It's perfectly legal to say, for
example, the following:
public class Ball implements Bounceable, Serializable, Runnable { ... }

You can extend only one class, but you can implement many interfaces. But
remember that subclassing defines who and what you are, whereas implementing
defines a role you can play or a hat you can wear, d espite how different you might
be from some other class implementing the same interface (but from a different
inheritance tree). For example, a Person extends HumanBeing (although for some,
that's debatable). But a Person may also implement Programmer, Snowboarder,
Employee, Parent, or PersonCrazyEnoughToTakeThisExam.

02-ch02.indd 118 8/28/2014 3:45:30 PM

 Implementing an Interface (OCA Objective 7.6) 119

 2. An interface can itself extend another interface, but it can never implement
anything. The following code is perfectly legal:
public interface Bounceable extends Moveable { } // ok!

What does that mean? The first concrete (nonabstract) implementation class of
Bounceable must implement all the methods of Bounceable, plus all the methods
of Moveable! The subinterface, as we call it, simply adds more requirements to the
contract of the superinterface. You'll see this concept applied in many areas of Java,
especially Java EE, where you'll often have to build your own interface that extends
one of the Java EE interfaces.

Hold on, though, because here's where it gets strange. An interface can extend
more than one interface! Think about that for a moment. You know that when we're
talking about classes, the following is illegal:

public class Programmer extends Employee, Geek { } // Illegal!

As we mentioned earlier, a class is not allowed to extend multiple classes in Java.
An interface, however, is free to extend multiple interfaces:

interface Bounceable extends Moveable, Spherical { // ok!
 void bounce();
 void setBounceFactor(int bf);
}
interface Moveable {
 void moveIt();
}
interface Spherical {
 void doSphericalThing();
}

In the next example, Ball is required to implement Bounceable, plus all
methods from the interfaces that Bounceable extends (including any interfaces
those interfaces extend, and so on until you reach the top of the stack—or is it the
bottom of the stack?). So Ball would need to look like the following:

class Ball implements Bounceable {

 public void bounce() { } // Implement Bounceable's methods
 public void setBounceFactor(int bf) { }

 public void moveIt() { } // Implement Moveable's method

 public void doSphericalThing() { } // Implement Spherical
}

If class Ball fails to implement any of the methods from Bounceable, Moveable,
or Spherical, the compiler will jump up and down wildly, red in the face, until it
does. Unless, that is, class Ball is marked abstract. In that case, Ball could choose

02-ch02.indd 119 8/28/2014 3:45:30 PM

120 Chapter 2: Object Orientation

to implement any, all, or none of the methods from any of the interfaces, thus leaving
the rest of the implementations to a concrete subclass of Ball, as follows:

abstract class Ball implements Bounceable {
 public void bounce() { ... } // Define bounce behavior
 public void setBounceFactor(int bf) { ... }
 // Don't implement the rest; leave it for a subclass
}
class SoccerBall extends Ball { // class SoccerBall must
 // implement the interface
 // methods that Ball didn't
 public void moveIt() { ... }
 public void doSphericalThing() { ... }
 // SoccerBall can choose to override the Bounceable methods
 // implemented by Ball
 public void bounce() { ... }
}

Figure 2-5 compares concrete and abstract examples of extends and implements,
for both classes and interfaces.

Because BeachBall is the first concrete class to implement Bounceable,
it must provide implementations for all methods of Bounceable, except
those defined in the abstract class Ball. Because Ball did not provide
implementations of Bounceable methods, BeachBall was required to
implement all of them.

interface Bounceable

void bounce();
void setBounceFactor(int bf);

class Tire implements Bounceable

abstract Ball implements Bounceable

class BeachBall extends Ball

public void bounce(){ }
public void setBounceFactor (int bf){ }

/*beSpherical is not abstract
so BeachBall is not
required to implement it.*/

/*no methods of
Bounceable are
implemented
in Ball */

void beSpherical(){}

public void bounce(){ }
public void setBounceFactor (int bf){ }

 FIGURE 2-5 Comparing concrete and abstract examples of extends and implements

02-ch02.indd 120 8/28/2014 3:45:30 PM

 Implementing an Interface (OCA Objective 7.6) 121

Look for illegal uses of extends and implements. The following shows

examples of legal and illegal class and interface declarations:

class Foo { } // OK
class Bar implements Foo { } // No! Can't implement a class
interface Baz { } // OK
interface Fi { } // OK
interface Fee implements Baz { } // No! an interface can't
 // implement an interface
interface Zee implements Foo { } // No! an interface can't
 // implement a class
interface Zoo extends Foo { } // No! an interface can't
 // extend a class
interface Boo extends Fi { } // OK. An interface can extend
 // an interface
class Toon extends Foo, Button { } // No! a class can't extend
 // multiple classes
class Zoom implements Fi, Baz { } // OK. A class can implement
 // multiple interfaces
interface Vroom extends Fi, Baz { } // OK. An interface can extend
 // multiple interfaces
class Yow extends Foo implements Fi { } // OK. A class can do both
 // (extends must be 1st)
class Yow extends Foo implements Fi, Baz { } // OK. A class can do all three
 // (extends must be 1st)

Burn these in, and watch for abuses in the questions you get on the exam. Regardless of

what the question appears to be testing, the real problem might be the class or interface

declaration. Before you get caught up in, say, tracing a complex threading fl ow, check to

see if the code will even compile. (Just that tip alone may be worth your putting us in

your will!) (You'll be impressed by the effort the exam developers put into distracting you

from the real problem.) (How did people manage to write anything before parentheses

were invented?)

02-ch02.indd 121 8/28/2014 3:45:30 PM

122 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Legal Return Types
(OCA Objectives 2.2, 2.5, 6.1, and 6.3)

2.2 Differentiate between object reference variables and primitive variables.

2.5 Call methods on objects.

6.1 Create methods with arguments and return values.

6.3 Create an overloaded method.

This section covers two aspects of return types: what you can declare as a return
type, and what you can actually return as a value. What you can and cannot declare
is pretty straightforward, but it all depends on whether you're overriding an inherited
method or simply declaring a new method (which includes overloaded methods).
We'll take just a quick look at the difference between return type rules for overloaded
and overriding methods, because we've already covered that in this chapter. We'll
cover a small bit of new ground, though, when we look at polymorphic return types
and the rules for what is and is not legal to actually return.

Return Type Declarations

This section looks at what you're allowed to declare as a return type, which depends
primarily on whether you are overriding, overloading, or declaring a new method.

Return Types on Overloaded Methods

Remember that method overloading is not much more than name reuse. The
overloaded method is a completely different method from any other method of the
same name. So if you inherit a method but overload it in a subclass, you're not
subject to the restrictions of overriding, which means you can declare any return
type you like. What you can't do is change only the return type. To overload a
method, remember, you must change the argument list. The following code shows an
overloaded method:

02-ch02.indd 122 8/28/2014 3:45:30 PM

 Legal Return Types (OCA Objectives 2.2, 2.5, 6.1, and 6.3) 123

public class Foo{
 void go() { }
}
public class Bar extends Foo {
 String go(int x) {
 return null;
 }
}

Notice that the Bar version of the method uses a different return type. That's
perfectly fine. As long as you've changed the argument list, you're overloading the
method, so the return type doesn't have to match that of the superclass version.
What you're NOT allowed to do is this:

public class Foo{
 void go() { }
}
public class Bar extends Foo {
 String go() { // Not legal! Can't change only the return type
 return null;
 }
}

Overriding and Return Types, and Covariant Returns

When a subclass wants to change the method implementation of an inherited
method (an override), the subclass must define a method that matches the inherited
version exactly. Or, as of Java 5, you're allowed to change the return type in the
overriding method as long as the new return type is a subtype of the declared return
type of the overridden (superclass) method.

Let's look at a covariant return in action:

class Alpha {
 Alpha doStuff(char c) {
 return new Alpha();
 }
}

class Beta extends Alpha {
 Beta doStuff(char c) { // legal override in Java 1.5
 return new Beta();
 }
}

As of Java 5, this code will compile. If you were to attempt to compile this code with
a 1.4 compiler or with the source flag as follows,

javac -source 1.4 Beta.java

02-ch02.indd 123 8/28/2014 3:45:30 PM

124 Chapter 2: Object Orientation

you would get a compiler error something like this:

attempting to use incompatible return type

(We'll talk more about compiler flags in Chapter 8.)
Other rules apply to overriding, including those for access modifiers and declared

exceptions, but those rules aren't relevant to the return type discussion.

For the exam, be sure you know that overloaded methods can change

the return type, but overriding methods can do so only within the bounds of covariant

returns. Just that knowledge alone will help you through a wide range of exam questions.

Returning a Value

You have to remember only six rules for returning a value:

 1. You can return null in a method with an object reference return type.
public Button doStuff() {
 return null;
}

 2. An array is a perfectly legal return type.
public String[] go() {
 return new String[] {"Fred", "Barney", "Wilma"};
}

 3. In a method with a primitive return type, you can return any value or vari-
able that can be implicitly converted to the declared return type.
public int foo() {
 char c = 'c';
 return c; // char is compatible with int
}

 4. In a method with a primitive return type, you can return any value or vari-
able that can be explicitly cast to the declared return type.
public int foo () {
 float f = 32.5f;
 return (int) f;
}

02-ch02.indd 124 8/28/2014 3:45:31 PM

 Legal Return Types (OCA Objectives 2.2, 2.5, 6.1, and 6.3) 125

 5. You must not return anything from a method with a void return type.
public void bar() {
 return "this is it"; // Not legal!!
}

 (Although you can say return;)

 6. In a method with an object reference return type, you can return any object
type that can be implicitly cast to the declared return type.
public Animal getAnimal() {
 return new Horse(); // Assume Horse extends Animal
}

public Object getObject() {
 int[] nums = {1,2,3};
 return nums; // Return an int array, which is still an object
}

public interface Chewable { }
public class Gum implements Chewable { }

public class TestChewable {
 // Method with an interface return type
 public Chewable getChewable() {
 return new Gum(); // Return interface implementer
 }
}

Watch for methods that declare an abstract class or interface return type,

and know that any object that passes the IS-A test (in other words, would test true using

the instanceof operator) can be returned from that method. For example:

public abstract class Animal { }
public class Bear extends Animal { }
public class Test {
 public Animal go() {
 return new Bear(); // OK, Bear "is-a" Animal
 }
}

This code will compile, and the return value is a subtype.

02-ch02.indd 125 8/28/2014 3:45:31 PM

126 Chapter 2: Object Orientation

CERTIFICATION OBJECTIVE

Constructors and Instantiation
(OCA Objectives 6.4, 6.5, and 7.5)

6.4 Differentiate between default and user-defined constructors.

6.5 Create and overload constructors.

7.5 Use super and this to access objects and constructors.

Objects are constructed. You CANNOT make a new object without invoking a
constructor. In fact, you can't make a new object without invoking not just the
constructor of the object's actual class type, but also the constructor of each of its
superclasses! Constructors are the code that runs whenever you use the keyword new.
(Okay, to be a bit more accurate, there can also be initialization blocks that run
when you say new, and we're going to cover init blocks, and their static initialization
counterparts, after we discuss constructors.) We've got plenty to talk about here—
we'll look at how constructors are coded, who codes them, and how they work at
runtime. So grab your hardhat and a hammer, and let's do some object building.

Constructor Basics

Every class, including abstract classes, MUST have a constructor. Burn that into your
brain. But just because a class must have a constructor doesn't mean the programmer
has to type it. A constructor looks like this:

class Foo {
 Foo() { } // The constructor for the Foo class
}

Notice what's missing? There's no return type! Two key points to remember about
constructors are that they have no return type and their names must exactly match
the class name. Typically, constructors are used to initialize instance variable state, as
follows:

class Foo {
 int size;
 String name;
 Foo(String name, int size) {
 this.name = name;
 this.size = size;
 }
}

02-ch02.indd 126 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 127

In the preceding code example, the Foo class does not have a no-arg constructor.
That means the following will fail to compile,

Foo f = new Foo(); // Won't compile, no matching constructor

but the following will compile:

Foo f = new Foo("Fred", 43); // No problem. Arguments match
 // the Foo constructor.

So it's very common (and desirable) for a class to have a no-arg constructor,
regardless of how many other overloaded constructors are in the class (yes,
constructors can be overloaded). You can't always make that work for your classes;
occasionally you have a class where it makes no sense to create an instance without
supplying information to the constructor. A java.awt.Color object, for example,
can't be created by calling a no-arg constructor, because that would be like saying to
the JVM, "Make me a new Color object, and I really don't care what color it is...you
pick." Do you seriously want the JVM making your style decisions?

Constructor Chaining

We know that constructors are invoked at runtime when you say new on some class
type as follows:

Horse h = new Horse();

But what really happens when you say new Horse()? (Assume Horse extends
Animal and Animal extends Object.)

 1. Horse constructor is invoked. Every constructor invokes the constructor
of its superclass with an (implicit) call to super(), unless the constructor
invokes an overloaded constructor of the same class (more on that in a
minute).

 2. Animal constructor is invoked (Animal is the superclass of Horse).

 3. Object constructor is invoked (Object is the ultimate superclass of all
classes, so class Animal extends Object even though you don't actually type
"extends Object" into the Animal class declaration. It's implicit.) At this
point we're on the top of the stack.

 4. Object instance variables are given their explicit values. By explicit values,
we mean values that are assigned at the time the variables are declared, such
as int x = 27, where 27 is the explicit value (as opposed to the default
value) of the instance variable.

02-ch02.indd 127 8/28/2014 3:45:32 PM

128 Chapter 2: Object Orientation

 5. Object constructor completes.

 6. Animal instance variables are given their explicit values (if any).

 7. Animal constructor completes.

 8. Horse instance variables are given their explicit values (if any).

 9. Horse constructor completes.

Figure 2-6 shows how constructors work on the call stack.

Rules for Constructors

The following list summarizes the rules you'll need to know for the exam (and to
understand the rest of this section). You MUST remember these, so be sure to study
them more than once.

■ Constructors can use any access modifier, including private. (A private
constructor means only code within the class itself can instantiate an object
of that type, so if the private constructor class wants to allow an instance
of the class to be used, the class must provide a static method or variable that
allows access to an instance created from within the class.)

■ The constructor name must match the name of the class.

■ Constructors must not have a return type.

■ It's legal (but stupid) to have a method with the same name as the class,
but that doesn't make it a constructor. If you see a return type, it's a method
rather than a constructor. In fact, you could have both a method and a
constructor with the same name—the name of the class—in the same class,
and that's not a problem for Java. Be careful not to mistake a method for a
constructor—be sure to look for a return type.

■ If you don't type a constructor into your class code, a default constructor will
be automatically generated by the compiler.

■ The default constructor is ALWAYS a no-arg constructor.

 FIGURE 2-6

Constructors on
the call stack

4.

3.

2.

1.

Object()

Animal() calls super()

Horse() calls super()

main() calls new Horse()

02-ch02.indd 128 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 129

■ If you want a no-arg constructor and you've typed any other constructor(s)
into your class code, the compiler won't provide the no-arg constructor
(or any other constructor) for you. In other words, if you've typed in a
constructor with arguments, you won't have a no-arg constructor unless you
type it in yourself!

■ Every constructor has, as its first statement, either a call to an overloaded
constructor (this()) or a call to the superclass constructor (super()),
although remember that this call can be inserted by the compiler.

■ If you do type in a constructor (as opposed to relying on the compiler-
generated default constructor), and you do not type in the call to super() or
a call to this(), the compiler will insert a no-arg call to super() for you, as
the very first statement in the constructor.

■ A call to super() can either be a no-arg call or can include arguments passed
to the super constructor.

■ A no-arg constructor is not necessarily the default (that is, compiler-supplied)
constructor, although the default constructor is always a no-arg constructor.
The default constructor is the one the compiler provides! Although the
default constructor is always a no-arg constructor, you're free to put in your
own no-arg constructor.

■ You cannot make a call to an instance method or access an instance variable
until after the super constructor runs.

■ Only static variables and methods can be accessed as part of the call to
super() or this(). (Example: super(Animal.NAME) is OK, because NAME
is declared as a static variable.)

■ Abstract classes have constructors, and those constructors are always called
when a concrete subclass is instantiated.

■ Interfaces do not have constructors. Interfaces are not part of an object's
inheritance tree.

■ The only way a constructor can be invoked is from within another constructor.
In other words, you can't write code that actually calls a constructor as follows:
class Horse {
 Horse() { } // constructor
 void doStuff() {
 Horse(); // calling the constructor - illegal!
 }
}

02-ch02.indd 129 8/28/2014 3:45:32 PM

130 Chapter 2: Object Orientation

Determine Whether a Default Constructor Will Be Created

The following example shows a Horse class with two constructors:

class Horse {
 Horse() { }
 Horse(String name) { }
}

Will the compiler put in a default constructor for the class above? No!
How about for the following variation of the class?

class Horse {
 Horse(String name) { }
}

Now will the compiler insert a default constructor? No!
What about this class?

class Horse { }

Now we're talking. The compiler will generate a default constructor for this class,
because the class doesn't have any constructors defined.

Okay, what about this class?

class Horse {
 void Horse() { }
}

It might look like the compiler won't create a constructor, since one is already in the
Horse class. Or is it? Take another look at the preceding Horse class.

What's wrong with the Horse() constructor? It isn't a constructor at all! It's
simply a method that happens to have the same name as the class. Remember, the
return type is a dead giveaway that we're looking at a method, and not a constructor.

How do you know for sure whether a default constructor
will be created?
Because you didn't write any constructors in your class.

How do you know what the default constructor will look like?
Because...

■ The default constructor has the same access modifier as the class.

■ The default constructor has no arguments.

02-ch02.indd 130 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 131

■ The default constructor includes a no-arg call to the super constructor
(super()).

Table 2-4 shows what the compiler will (or won't) generate for your class.

Class Code (What You Type) Compiler-Generated Constructor Code (in Bold)

class Foo { } class Foo {
 Foo() {
 super();
 }
}

class Foo {
 Foo() { }
}

class Foo {
 Foo() {
 super();
 }
}

public class Foo { } public class Foo {
 public Foo() {
 super();
 }
}

class Foo {
 Foo(String s) { }
}

class Foo {
 Foo(String s) {
 super();
 }
}

class Foo {
 Foo(String s) {
 super();
 }
}

Nothing; compiler doesn't need to insert anything.

class Foo {
 void Foo() { }
}

class Foo {
 void Foo() { }
 Foo() {
 super();
 }
}
(void Foo() is a method, not a constructor.)

 TABLE 2-4 Compiler-Generated Constructor Code

02-ch02.indd 131 8/28/2014 3:45:32 PM

132 Chapter 2: Object Orientation

What happens if the super constructor has arguments?
Constructors can have arguments just as methods can, and if you try to invoke a
method that takes, say, an int, but you don't pass anything to the method, the
compiler will complain as follows:

class Bar {
 void takeInt(int x) { }
}

class UseBar {
 public static void main (String [] args) {
 Bar b = new Bar();
 b.takeInt(); // Try to invoke a no-arg takeInt() method
 }
}

The compiler will complain that you can't invoke takeInt() without passing an
int. Of course, the compiler enjoys the occasional riddle, so the message it spits out
on some versions of the JVM (your mileage may vary) is less than obvious:

UseBar.java:7: takeInt(int) in Bar cannot be applied to ()
 b.takeInt();
 ^

But you get the idea. The bottom line is that there must be a match for the
method. And by match, we mean that the argument types must be able to accept
the values or variables you're passing, and in the order you're passing them. Which
brings us back to constructors (and here you were thinking we'd never get there),
which work exactly the same way.

So if your super constructor (that is, the constructor of your immediate superclass/
parent) has arguments, you must type in the call to super(), supplying the appropriate
arguments. Crucial point: If your superclass does not have a no-arg constructor, you
must type a constructor in your class (the subclass) because you need a place to put
in the call to super() with the appropriate arguments.

The following is an example of the problem:

class Animal {
 Animal(String name) { }
}

class Horse extends Animal {
 Horse() {
 super(); // Problem!
 }
}

02-ch02.indd 132 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 133

And once again the compiler treats us with stunning lucidity:

Horse.java:7: cannot resolve symbol
symbol : constructor Animal ()
location: class Animal
 super(); // Problem!
 ^

If you're lucky (and it's a full moon), your compiler might be a little more explicit.
But again, the problem is that there just isn't a match for what we're trying to invoke
with super()—an Animal constructor with no arguments.

Another way to put this is that if your superclass does not have a no-arg constructor,
then in your subclass you will not be able to use the default constructor supplied by
the compiler. It's that simple. Because the compiler can only put in a call to a no-arg
super(), you won't even be able to compile something like this:

class Clothing {
 Clothing(String s) { }
}
class TShirt extends Clothing { }

Trying to compile this code gives us exactly the same error we got when we put a
constructor in the subclass with a call to the no-arg version of super():

Clothing.java:4: cannot resolve symbol
symbol : constructor Clothing ()
location: class Clothing
class TShirt extends Clothing { }
^

In fact, the preceding Clothing and TShirt code is implicitly the same as the
following code, where we've supplied a constructor for TShirt that's identical to the
default constructor supplied by the compiler:

class Clothing {
 Clothing(String s) { }
}
class TShirt extends Clothing {
 // Constructor identical to compiler-supplied
 // default constructor
 TShirt() {
 super(); // Won't work!
 } // tries to invoke a no-arg Clothing constructor
 // but there isn't one
}

One last point on the whole default constructor thing (and it's probably very
obvious, but we have to say it or we'll feel guilty for years), constructors are never

02-ch02.indd 133 8/28/2014 3:45:32 PM

134 Chapter 2: Object Orientation

inherited. They aren't methods. They can't be overridden (because they aren't
methods, and only instance methods can be overridden). So the type of constructor(s)
your superclass has in no way determines the type of default constructor you'll get.
Some folks mistakenly believe that the default constructor somehow matches the
super constructor, either by the arguments the default constructor will have
(remember, the default constructor is always a no-arg) or by the arguments used in
the compiler-supplied call to super().

So although constructors can't be overridden, you've already seen that they can
be overloaded, and typically are.

Overloaded Constructors

Overloading a constructor means typing in multiple versions of the constructor, each
having a different argument list, like the following examples:

class Foo {
 Foo() { }
 Foo(String s) { }
}

The preceding Foo class has two overloaded constructors: one that takes a string,
and one with no arguments. Because there's no code in the no-arg version, it's
actually identical to the default constructor the compiler supplies—but remember,
since there's already a constructor in this class (the one that takes a string), the
compiler won't supply a default constructor. If you want a no-arg constructor to
overload the with-args version you already have, you're going to have to type it
yourself, just as in the Foo example.

Overloading a constructor is typically used to provide alternate ways for clients to
instantiate objects of your class. For example, if a client knows the animal name,
they can pass that to an Animal constructor that takes a string. But if they don't
know the name, the client can call the no-arg constructor and that constructor can
supply a default name. Here's what it looks like:

 1. public class Animal {
 2. String name;
 3. Animal(String name) {
 4. this.name = name;
 5. }
 6.
 7. Animal() {
 8. this(makeRandomName());
 9. }
10.
11. static String makeRandomName() {

02-ch02.indd 134 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 135

12. int x = (int) (Math.random() * 5);
13. String name = new String[] {"Fluffy", "Fido",
 "Rover", "Spike",
 "Gigi"}[x];
14. return name;
15. }
16.
17. public static void main (String [] args) {
18. Animal a = new Animal();
19. System.out.println(a.name);
20. Animal b = new Animal("Zeus");
21. System.out.println(b.name);
22. }
23. }

Running the code four times produces this output:

% java Animal
Gigi
Zeus

% java Animal
Fluffy
Zeus

% java Animal
Rover
Zeus

% java Animal
Fluffy
Zeus

There's a lot going on in the preceding code. Figure 2-7 shows the call stack for
constructor invocations when a constructor is overloaded. Take a look at the call
stack, and then let's walk through the code straight from the top.

■ Line 2 Declare a String instance variable name.

■ Lines 3–5 Constructor that takes a String and assigns it to instance
variable name.

 FIGURE 2-7

Overloaded
constructors on
the call stack

4.

3.

2.

1.

Object()

Animal(String s) calls super()

Animal() calls this(randomlyChosenNameString)

main() calls new Animal()

02-ch02.indd 135 8/28/2014 3:45:32 PM

136 Chapter 2: Object Orientation

■ Line 7 Here's where it gets fun. Assume every animal needs a name, but
the client (calling code) might not always know what the name should be,
so you'll assign a random name. The no-arg constructor generates a name by
invoking the makeRandomName() method.

■ Line 8 The no-arg constructor invokes its own overloaded constructor
that takes a String, in effect calling it the same way it would be called if
client code were doing a new to instantiate an object, passing it a String
for the name. The overloaded invocation uses the keyword this, but uses
it as though it were a method name this(). So line 8 is simply calling the
constructor on line 3, passing it a randomly selected String rather than a
client-code chosen name.

■ Line 11 Notice that the makeRandomName() method is marked static!
That's because you cannot invoke an instance (in other words, nonstatic)
method (or access an instance variable) until after the super constructor has
run. And since the super constructor will be invoked from the constructor
on line 3, rather than from the one on line 7, line 8 can use only a static
method to generate the name. If we wanted all animals not specifically
named by the caller to have the same default name, say, "Fred," then line 8
could have read this("Fred"); rather than calling a method that returns a
string with the randomly chosen name.

■ Line 12 This doesn't have anything to do with constructors, but since we're
all here to learn, it generates a random integer between 0 and 4.

■ Line 13 Weird syntax, we know. We're creating a new String object (just
a single String instance), but we want the string to be selected randomly
from a list. Except we don't have the list, so we need to make it. So in that
one line of code we

 1. Declare a String variable, name.

 2. Create a String array (anonymously—we don't assign the array itself to
anything).

 3. Retrieve the string at index [x] (x being the random number generated
on line 12) of the newly created String array.

 4. Assign the string retrieved from the array to the declared instance vari-
able name. We could have made it much easier to read if we'd just written
String[] nameList = {"Fluffy", "Fido", "Rover", "Spike",
 "Gigi"};

String name = nameList[x];

02-ch02.indd 136 8/28/2014 3:45:32 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 137

 But where's the fun in that? Throwing in unusual syntax (especially for code
wholly unrelated to the real question) is in the spirit of the exam. Don't be
startled! (Okay, be startled, but then just say to yourself, "Whoa!" and get on
with it.)

■ Line 18 We're invoking the no-arg version of the constructor (causing a
random name from the list to be passed to the other constructor).

■ Line 20 We're invoking the overloaded constructor that takes a string
representing the name.

The key point to get from this code example is in line 8. Rather than calling
super(), we're calling this(), and this() always means a call to another
constructor in the same class. Okay, fine, but what happens after the call to this()?
Sooner or later the super() constructor gets called, right? Yes indeed. A call to
this() just means you're delaying the inevitable. Some constructor, somewhere,
must make the call to super().

Key Rule: The first line in a constructor must be a call to super()
or a call to this().

No exceptions. If you have neither of those calls in your constructor, the compiler
will insert the no-arg call to super(). In other words, if constructor A() has a call to
this(), the compiler knows that constructor A() will not be the one to invoke
super().

The preceding rule means a constructor can never have both a call to super()
and a call to this(). Because each of those calls must be the first statement in a
constructor, you can't legally use both in the same constructor. That also means the
compiler will not put a call to super() in any constructor that has a call to this().

Thought question: What do you think will happen if you try to compile the
following code?

class A {
 A() {
 this("foo");
 }
 A(String s) {
 this();
 }
}

Your compiler may not actually catch the problem (it varies depending on your
compiler, but most won't catch the problem). It assumes you know what you're
doing. Can you spot the flaw? Given that a super constructor must always be called,

02-ch02.indd 137 8/28/2014 3:45:32 PM

138 Chapter 2: Object Orientation

where would the call to super() go? Remember, the compiler won't put in a default
constructor if you've already got one or more constructors in your class. And when
the compiler doesn't put in a default constructor, it still inserts a call to super() in
any constructor that doesn't explicitly have a call to the super constructor—unless,
that is, the constructor already has a call to this(). So in the preceding code, where
can super() go? The only two constructors in the class both have calls to this(),
and in fact you'll get exactly what you'd get if you typed the following method code:

public void go() {
 doStuff();
}

public void doStuff() {
 go();
}

Now can you see the problem? Of course you can. The stack explodes! It gets
higher and higher and higher until it just bursts open and method code goes spilling
out, oozing out of the JVM right onto the floor. Two overloaded constructors both
calling this() are two constructors calling each other. Over and over and over,
resulting in this:

% java A
Exception in thread "main" java.lang.StackOverflowError

The benefit of having overloaded constructors is that you offer flexible ways to
instantiate objects from your class. The benefit of having one constructor invoke
another overloaded constructor is to avoid code duplication. In the Animal example,
there wasn't any code other than setting the name, but imagine if after line 4 there
was still more work to be done in the constructor. By putting all the other constructor
work in just one constructor, and then having the other constructors invoke it, you
don't have to write and maintain multiple versions of that other important constructor
code. Basically, each of the other not-the-real-one overloaded constructors will call
another overloaded constructor, passing it whatever data it needs (data the client
code didn't supply).

Constructors and instantiation become even more exciting (just when you
thought it was safe) when you get to inner classes, but we know you can stand to
have only so much fun in one chapter, so we're holding the rest of the discussion on
instantiating inner classes until Chapter 12.

Initialization Blocks

We've talked about two places in a class where you can put code that performs
operations: methods and constructors. Initialization blocks are the third place in a

02-ch02.indd 138 8/28/2014 3:45:33 PM

 Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5) 139

Java program where operations can be performed. Initialization blocks run when the
class is first loaded (a static initialization block) or when an instance is created (an
instance initialization block). Let's look at an example:

 class SmallInit {
 static int x;
 int y;

 static { x = 7 ; } // static init block
 { y = 8; } // instance init block
}

As you can see, the syntax for initialization blocks is pretty terse. They don't have
names, they can't take arguments, and they don't return anything. A static initialization
block runs once, when the class is first loaded. An instance initialization block runs once
every time a new instance is created. Remember when we talked about the order in which
constructor code executed? Instance init block code runs right after the call to
super() in a constructor—in other words, after all super constructors have run.

You can have many initialization blocks in a class. It is important to note that
unlike methods or constructors, the order in which initialization blocks appear in a class
matters. When it's time for initialization blocks to run, if a class has more than one,
they will run in the order in which they appear in the class file—in other words,
from the top down. Based on the rules we just discussed, can you determine the
output of the following program?

class Init {
 Init(int x) { System.out.println("1-arg const"); }
 Init() { System.out.println("no-arg const"); }
 static { System.out.println("1st static init"); }
 { System.out.println("1st instance init"); }
 { System.out.println("2nd instance init"); }
 static { System.out.println("2nd static init"); }

 public static void main(String [] args) {
 new Init();
 new Init(7);
 }
}

To figure this out, remember these rules:

■ init blocks execute in the order in which they appear.

■ Static init blocks run once, when the class is first loaded.

■ Instance init blocks run every time a class instance is created.

■ Instance init blocks run after the constructor's call to super().

02-ch02.indd 139 8/28/2014 3:45:33 PM

140 Chapter 2: Object Orientation

With those rules in mind, the following output should make sense:

1st static init
2nd static init
1st instance init
2nd instance init
no-arg const
1st instance init
2nd instance init
1-arg const

As you can see, the instance init blocks each ran twice. Instance init blocks
are often used as a place to put code that all the constructors in a class should share.
That way, the code doesn't have to be duplicated across constructors.

Finally, if you make a mistake in your static init block, the JVM can throw an
ExceptionInInitializerError. Let's look at an example:

class InitError {
 static int [] x = new int[4];
 static { x[4] = 5; } // bad array index!
 public static void main(String [] args) { }
}

It produces something like this:

Exception in thread "main" java.lang.ExceptionInInitializerError
Caused by: java.lang.ArrayIndexOutOfBoundsException: 4
 at InitError.<clinit>(InitError.java:3)

By convention, init blocks usually appear near the top of the class fi le,

somewhere around the constructors. However, these are the OCA and OCP exams we're

talking about. Don't be surprised if you fi nd an init block tucked in between a couple of

methods, looking for all the world like a compiler error waiting to happen!

CERTIFICATION OBJECTIVE

Statics (OCA Objective 6.2)

6.2 Apply the static keyword to methods and fields.

02-ch02.indd 140 8/28/2014 3:45:33 PM

Statics (OCA Objective 6.2) 141

Static Variables and Methods

The static modifier has such a profound impact on the behavior of a method or
variable that we're treating it as a concept entirely separate from the other modifiers.
To understand the way a static member works, we'll look first at a reason for using
one. Imagine you've got a utility class with a method that always runs the same way;
its sole function is to return, say, a random number. It wouldn't matter which instance
of the class performed the method—it would always behave exactly the same way. In
other words, the method's behavior has no dependency on the state (instance
variable values) of an object. So why, then, do you need an object when the method
will never be instance-specific? Why not just ask the class itself to run the method?

Let's imagine another scenario: Suppose you want to keep a running count of all
instances instantiated from a particular class. Where do you actually keep that
variable? It won't work to keep it as an instance variable within the class whose
instances you're tracking, because the count will just be initialized back to a default
value with each new instance. The answer to both the utility-method-always-runs-
the-same scenario and the keep-a-running-total-of-instances scenario is to use the
static modifier. Variables and methods marked static belong to the class, rather
than to any particular instance. In fact, you can use a static method or variable
without having any instances of that class at all. You need only have the class
available to be able to invoke a static method or access a static variable. static
variables, too, can be accessed without having an instance of a class. But if there are
instances, a static variable of a class will be shared by all instances of that class;
there is only one copy.

The following code declares and uses a static counter variable:

class Frog {
 static int frogCount = 0; // Declare and initialize
 // static variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.println("Frog count is now " + frogCount);
 }
}

In the preceding code, the static frogCount variable is set to zero when the
Frog class is first loaded by the JVM, before any Frog instances are created! (By the
way, you don't actually need to initialize a static variable to zero; static variables get

02-ch02.indd 141 8/28/2014 3:45:33 PM

142 Chapter 2: Object Orientation

the same default values instance variables get.) Whenever a Frog instance is created,
the Frog constructor runs and increments the static frogCount variable. When
this code executes, three Frog instances are created in main(), and the result is

Frog count is now 3

Now imagine what would happen if frogCount were an instance variable (in
other words, nonstatic):

class Frog {
 int frogCount = 0; // Declare and initialize
 // instance variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.println("Frog count is now " + frogCount);
 }
}

When this code executes, it should still create three Frog instances in main(),
but the result is...a compiler error! We can't get this code to compile, let alone run.

Frog.java:11: nonstatic variable frogCount cannot be referenced
from a static context
 System.out.println("Frog count is " + frogCount);
 ^
 1 error

The JVM doesn't know which Frog object's frogCount you're trying to access.
The problem is that main() is itself a static method and thus isn't running against
any particular instance of the class; instead it's running on the class itself. A static
method can't access a nonstatic (instance) variable because there is no instance!
That's not to say there aren't instances of the class alive on the heap, but rather that
even if there are, the static method doesn't know anything about them. The same
applies to instance methods; a static method can't directly invoke a nonstatic
method. Think static = class, nonstatic = instance. Making the method called by the
JVM (main()) a static method means the JVM doesn't have to create an instance
of your class just to start running code.

02-ch02.indd 142 8/28/2014 3:45:33 PM

Statics (OCA Objective 6.2) 143

Accessing Static Methods and Variables

Since you don't need to have an instance in order to invoke a static method or
access a static variable, how do you invoke or use a static member? What's the

One of the mistakes most often made by new Java programmers is

attempting to access an instance variable (which means nonstatic variable) from the

static main() method (which doesn't know anything about any instances, so it can't

access the variable). The following code is an example of illegal access of a nonstatic

variable from a static method:

class Foo {
 int x = 3;
 public static void main (String [] args) {
 System.out.println("x is " + x);
 }
}

Understand that this code will never compile, because you can't access a nonstatic

(instance) variable from a static method. Just think of the compiler saying, "Hey, I have

no idea which Foo object's x variable you're trying to print!" Remember, it's the class

running the main() method, not an instance of the class.

Of course, the tricky part for the exam is that the question won't look as obvious as

the preceding code. The problem you're being tested for—accessing a nonstatic variable

from a static method—will be buried in code that might appear to be testing something

else. For example, the preceding code would be more likely to appear as

class Foo {
 int x = 3;
 float y = 4.3f;
 public static void main (String [] args) {
 for (int z = x; z < ++x; z--, y = y + z)
 // complicated looping and branching code
 }
}

So while you're trying to follow the logic, the real issue is that x and y can't be used

within main(), because x and y are instance, not static, variables! The same applies for

accessing nonstatic methods from a static method. The rule is, a static method of a

class can't access a nonstatic (instance) method or variable of its own class.

02-ch02.indd 143 8/28/2014 3:45:33 PM

144 Chapter 2: Object Orientation

syntax? We know that with a regular old instance method, you use the dot operator
on a reference to an instance:

class Frog {
 int frogSize = 0;
 public int getFrogSize() {
 return frogSize;
 }
 public Frog(int s) {
 frogSize = s;
 }
 public static void main (String [] args) {
 Frog f = new Frog(25);
 System.out.println(f.getFrogSize()); // Access instance
 // method using f
 }
}

In the preceding code, we instantiate a Frog, assign it to the reference variable f,
and then use that f reference to invoke a method on the Frog instance we just
created. In other words, the getFrogSize() method is being invoked on a specific
Frog object on the heap.

But this approach (using a reference to an object) isn't appropriate for accessing a
static method, because there might not be any instances of the class at all! So, the
way we access a static method (or static variable) is to use the dot operator on
the class name, as opposed to using it on a reference to an instance, as follows:

class Frog {
 static int frogCount = 0; // Declare and initialize
 // static variable
 public Frog() {
 frogCount += 1; // Modify the value in the constructor
 }
}

class TestFrog {
 public static void main (String [] args) {
 new Frog();
 new Frog();
 new Frog();
 System.out.print("frogCount:"+Frog.frogCount); // Access
 // static variable
 }
}

02-ch02.indd 144 8/28/2014 3:45:33 PM

 Statics (OCA Objective 6.2) 145

But just to make it really confusing, the Java language also allows you to use an
object reference variable to access a static member:

Frog f = new Frog();
int frogs = f.frogCount; // Access static variable
 // FrogCount using f

In the preceding code, we instantiate a Frog, assign the new Frog object to the
reference variable f, and then use the f reference to invoke a static method! But
even though we are using a specific Frog instance to access the static method, the
rules haven't changed. This is merely a syntax trick to let you use an object reference
variable (but not the object it refers to) to get to a static method or variable, but
the static member is still unaware of the particular instance used to invoke the
static member. In the Frog example, the compiler knows that the reference variable
f is of type Frog, and so the Frog class static method is run with no awareness or
concern for the Frog instance at the other end of the f reference. In other words, the
compiler cares only that reference variable f is declared as type Frog. Figure 2-8
illustrates the effects of the static modifier on methods and variables.

 FIGURE 2-8

The effects of
static on
methods and
variables

class Foo

class Bar

class Baz

static int count;
static void woo(){ }
static void doMore(){

woo();
int x = count;

}

void go(){}
static void doMore(){

go();
}

int size = 42;
static void doMore(){

int x = size;
}

static method cannot
access an instance
(non-static) variable

static method cannot
access a non-static
method

static method
can access a static
method or variable

02-ch02.indd 145 8/28/2014 3:45:33 PM

146 Chapter 2: Object Orientation

Finally, remember that static methods can't be overridden! This doesn't mean
they can't be redefined in a subclass, but redefining and overriding aren't the same
thing. Let's take a look at an example of a redefined (remember, not overridden)
static method:

class Animal {
 static void doStuff() {
 System.out.print("a ");
 }
}
class Dog extends Animal {
 static void doStuff() { // it's a redefinition,
 // not an override
 System.out.print("d ");
 }
 public static void main(String [] args) {
 Animal [] a = {new Animal(), new Dog(), new Animal()};
 for(int x = 0; x < a.length; x++) {
 a[x].doStuff(); // invoke the static method
 }
 Dog.doStuff(); // invoke using the class name
 }
}

Running this code produces this output:

a a a d

Remember, the syntax a [x].doStuff() is just a shortcut (the syntax trick)—
the compiler is going to substitute something like Animal.doStuff() instead.
Notice also that you can invoke a static method by using the class name.

Notice that we didn't use the Java 5 enhanced for loop here (covered in Chapter 6),
even though we could have. Expect to see a mix of both Java 1.4 and Java 5–7 coding
styles and practices on the exam.

02-ch02.indd 146 8/28/2014 3:45:34 PM

Certifi cation Summary 147

CERTIFICATION SUMMARY

We started the chapter by discussing the importance of encapsulation in good OO
design, and then we talked about how good encapsulation is implemented: with
private instance variables and public getters and setters.

Next, we covered the importance of inheritance, so that you can grasp overriding,
overloading, polymorphism, reference casting, return types, and constructors.

We covered IS-A and HAS-A. IS-A is implemented using inheritance, and
HAS-A is implemented by using instance variables that refer to other objects.

Polymorphism was next. Although a reference variable's type can't be changed, it
can be used to refer to an object whose type is a subtype of its own. We learned how
to determine what methods are invocable for a given reference variable.

We looked at the difference between overridden and overloaded methods,
learning that an overridden method occurs when a subclass inherits a method from a
superclass, and then reimplements the method to add more specialized behavior. We
learned that, at runtime, the JVM will invoke the subclass version on an instance of
a subclass and the superclass version on an instance of the superclass. Abstract
methods must be "overridden" (technically, abstract methods must be implemented,
as opposed to overridden, since there really isn't anything to override).

We saw that overriding methods must declare the same argument list and return
type (or, as of Java 5, they can return a subtype of the declared return type of the
superclass overridden method), and that the access modifier can't be more
restrictive. The overriding method also can't throw any new or broader checked
exceptions that weren't declared in the overridden method. You also learned that
the overridden method can be invoked using the syntax super.doSomething();.

Overloaded methods let you reuse the same method name in a class, but with
different arguments (and, optionally, a different return type). Whereas overriding
methods must not change the argument list, overloaded methods must. But unlike
overriding methods, overloaded methods are free to vary the return type, access
modifier, and declared exceptions any way they like.

We learned the mechanics of casting (mostly downcasting) reference variables
and when it's necessary to do so.

Implementing interfaces came next. An interface describes a contract that the
implementing class must follow. The rules for implementing an interface are similar
to those for extending an abstract class. Also remember that a class can implement
more than one interface and that interfaces can extend another interface.

We also looked at method return types and saw that you can declare any return
type you like (assuming you have access to a class for an object reference return

02-ch02.indd 147 8/28/2014 3:45:34 PM

148 Chapter 2: Object Orientation

type), unless you're overriding a method. Barring a covariant return, an overriding
method must have the same return type as the overridden method of the superclass.
We saw that, although overriding methods must not change the return type,
overloaded methods can (as long as they also change the argument list).

Finally, you learned that it is legal to return any value or variable that can be
implicitly converted to the declared return type. So, for example, a short can be
returned when the return type is declared as an int. And (assuming Horse extends
Animal), a Horse reference can be returned when the return type is declared an
Animal.

We covered constructors in detail, learning that if you don't provide a constructor
for your class, the compiler will insert one. The compiler-generated constructor is
called the default constructor, and it is always a no-arg constructor with a no-arg
call to super(). The default constructor will never be generated if even a single
constructor exists in your class (regardless of the arguments of that constructor), so if
you need more than one constructor in your class and you want a no-arg constructor,
you'll have to write it yourself. We also saw that constructors are not inherited and
that you can be confused by a method that has the same name as the class (which is
legal). The return type is the giveaway that a method is not a constructor, since
constructors do not have return types.

We saw how all of the constructors in an object's inheritance tree will always be
invoked when the object is instantiated using new. We also saw that constructors
can be overloaded, which means defining constructors with different argument lists.
A constructor can invoke another constructor of the same class using the keyword
this(), as though the constructor were a method named this(). We saw that
every constructor must have either this() or super() as the first statement
(although the compiler can insert it for you).

After constructors, we discussed the two kinds of initialization blocks and how
and when their code runs.

We looked at static methods and variables. static members are tied to the
class, not an instance, so there is only one copy of any static member. A common
mistake is to attempt to reference an instance variable from a static method. Use
the class name with the dot operator to access static members.

And, once again, you learned that the exam includes tricky questions designed
largely to test your ability to recognize just how tricky the questions can be.

02-ch02.indd 148 8/28/2014 3:45:34 PM

Two-Minute Drill 149

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.

Encapsulation, IS-A, HAS-A (OCA Objective 6.7)

❑ Encapsulation helps hide implementation behind an interface (or API).

❑ Encapsulated code has two features:

❑ Instance variables are kept protected (usually with the private modifier).

❑ Getter and setter methods provide access to instance variables.

❑ IS-A refers to inheritance or implementation.

❑ IS-A is expressed with the keyword extends or implements.

❑ IS-A, "inherits from," and "is a subtype of" are all equivalent expressions.

❑ HAS-A means an instance of one class "has a" reference to an instance of
another class or another instance of the same class.

Inheritance (OCA Objectives 7.1 and 7.3)

❑ Inheritance allows a class to be a subclass of a superclass and thereby inherit
public and protected variables and methods of the superclass.

❑ Inheritance is a key concept that underlies IS-A, polymorphism, overriding,
overloading, and casting.

❑ All classes (except class Object) are subclasses of type Object, and therefore
they inherit Object's methods.

Polymorphism (OCA Objectives 7.2 and 7.3)

❑ Polymorphism means "many forms."

❑ A reference variable is always of a single, unchangeable type, but it can refer
to a subtype object.

❑ A single object can be referred to by reference variables of many different
types—as long as they are the same type or a supertype of the object.

❑ The reference variable's type (not the object's type) determines which
methods can be called!

❑ Polymorphic method invocations apply only to overridden instance methods.

✓

02-ch02.indd 149 8/28/2014 3:45:34 PM

150 Chapter 2: Object Orientation

Overriding and Overloading (OCA Objective 6.3)

❑ Methods can be overridden or overloaded; constructors can be overloaded
but not overridden.

❑ With respect to the method it overrides, the overriding method

❑ Must have the same argument list

❑ Must have the same return type, except that, as of Java 5, the return type
can be a subclass, and this is known as a covariant return

❑ Must not have a more restrictive access modifier

❑ May have a less restrictive access modifier

❑ Must not throw new or broader checked exceptions

❑ May throw fewer or narrower checked exceptions, or any unchecked
exception

❑ final methods cannot be overridden.

❑ Only inherited methods may be overridden, and remember that private
methods are not inherited.

❑ A subclass uses super.overriddenMethodName() to call the superclass
version of an overridden method.

❑ Overloading means reusing a method name but with different arguments.

❑ Overloaded methods

❑ Must have different argument lists

❑ May have different return types, if argument lists are also different

❑ May have different access modifiers

❑ May throw different exceptions

❑ Methods from a superclass can be overloaded in a subclass.

❑ Polymorphism applies to overriding, not to overloading.

❑ Object type (not the reference variable's type) determines which overridden
method is used at runtime.

❑ Reference type determines which overloaded method will be used at
compile time.

02-ch02.indd 150 8/28/2014 3:45:34 PM

Two-Minute Drill 151

Reference Variable Casting (OCA Objectives 7.3 and 7.4)

❑ There are two types of reference variable casting: downcasting and upcasting.

❑ Downcasting If you have a reference variable that refers to a subtype
object, you can assign it to a reference variable of the subtype. You must
make an explicit cast to do this, and the result is that you can access the
subtype's members with this new reference variable.

❑ Upcasting You can assign a reference variable to a supertype reference
variable explicitly or implicitly. This is an inherently safe operation
because the assignment restricts the access capabilities of the new
variable.

Implementing an Interface (OCA Objective 7.6)

❑ When you implement an interface, you are fulfilling its contract.

❑ You implement an interface by properly and concretely implementing all of
the methods defined by the interface.

❑ A single class can implement many interfaces.

Return Types (OCA Objectives 6.1 and 6.3)

❑ Overloaded methods can change return types; overridden methods cannot,
except in the case of covariant returns.

❑ Object reference return types can accept null as a return value.

❑ An array is a legal return type, both to declare and return as a value.

❑ For methods with primitive return types, any value that can be implicitly
converted to the return type can be returned.

❑ Nothing can be returned from a void, but you can return nothing. You're
allowed to simply say return in any method with a void return type to bust
out of a method early. But you can't return nothing from a method with a
non-void return type.

❑ Methods with an object reference return type can return a subtype.

❑ Methods with an interface return type can return any implementer.

02-ch02.indd 151 8/28/2014 3:45:55 PM

152 Chapter 2: Object Orientation

Constructors and Instantiation (OCA Objectives 6.5 and 7.5)

❑ A constructor is always invoked when a new object is created.

❑ Each superclass in an object's inheritance tree will have a constructor called.

❑ Every class, even an abstract class, has at least one constructor.

❑ Constructors must have the same name as the class.

❑ Constructors don't have a return type. If you see code with a return type, it's
a method with the same name as the class; it's not a constructor.

❑ Typical constructor execution occurs as follows:

❑ The constructor calls its superclass constructor, which calls its superclass
constructor, and so on all the way up to the Object constructor.

❑ The Object constructor executes and then returns to the calling con-
structor, which runs to completion and then returns to its calling con-
structor, and so on back down to the completion of the constructor of the
actual instance being created.

❑ Constructors can use any access modifier (even private!).

❑ The compiler will create a default constructor if you don't create any con-
structors in your class.

❑ The default constructor is a no-arg constructor with a no-arg call to super().

❑ The first statement of every constructor must be a call either to this() (an
overloaded constructor) or to super().

❑ The compiler will add a call to super() unless you have already put in a call
to this() or super().

❑ Instance members are accessible only after the super constructor runs.

❑ Abstract classes have constructors that are called when a concrete subclass
is instantiated.

❑ Interfaces do not have constructors.

❑ If your superclass does not have a no-arg constructor, you must create a con-
structor and insert a call to super() with arguments matching those of the
superclass constructor.

❑ Constructors are never inherited; thus they cannot be overridden.

❑ A constructor can be directly invoked only by another constructor (using a
call to super() or this()).

02-ch02.indd 152 8/28/2014 3:46:00 PM

Two-Minute Drill 153

❑ Regarding issues with calls to this():

❑ They may appear only as the first statement in a constructor.

❑ The argument list determines which overloaded constructor is called.

❑ Constructors can call constructors, and so on, but sooner or later one of
them better call super() or the stack will explode.

❑ Calls to this() and super() cannot be in the same constructor. You can
have one or the other, but never both.

Initialization Blocks (OCA Objective 6.5-ish)

❑ Use static init blocks—static { /* code here */ }—for code you
want to have run once, when the class is first loaded. Multiple blocks run
from the top down.

❑ Use normal init blocks—{ /* code here }—for code you want to have
run for every new instance, right after all the super constructors have run.
Again, multiple blocks run from the top of the class down.

Statics (OCA Objective 6.2)

❑ Use static methods to implement behaviors that are not affected by the
state of any instances.

❑ Use static variables to hold data that is class specific as opposed to instance
specific—there will be only one copy of a static variable.

❑ All static members belong to the class, not to any instance.

❑ A static method can't access an instance variable directly.

❑ Use the dot operator to access static members, but remember that using a
reference variable with the dot operator is really a syntax trick, and the com-
piler will substitute the class name for the reference variable; for instance:

d.doStuff();

becomes
Dog.doStuff();

❑ static methods can't be overridden, but they can be redefined.

02-ch02.indd 153 8/28/2014 3:46:02 PM

154 Chapter 2: Object Orientation

SELF TEST

 1. Given:

public abstract interface Frobnicate { public void twiddle(String s); }

 Which is a correct class? (Choose all that apply.)
 A. public abstract class Frob implements Frobnicate {

 public abstract void twiddle(String s) { }

 }

 B. public abstract class Frob implements Frobnicate { }

 C. public class Frob extends Frobnicate {

 public void twiddle(Integer i) { }

 }

 D. public class Frob implements Frobnicate {
 public void twiddle(Integer i) { }

 }

 E. public class Frob implements Frobnicate {
 public void twiddle(String i) { }
 public void twiddle(Integer s) { }

 }

 2. Given:

class Top {
 public Top(String s) { System.out.print("B"); }
}
public class Bottom2 extends Top {
 public Bottom2(String s) { System.out.print("D"); }
 public static void main(String [] args) {
 new Bottom2("C");
 System.out.println(" ");
 }
}

 What is the result?
 A. BD

 B. DB

 C. BDC

 D. DBC

 E. Compilation fails

02-ch02.indd 154 8/28/2014 3:46:04 PM

Self Test 155

 3. Given:

class Clidder {
 private final void flipper() { System.out.println("Clidder"); }
}

public class Clidlet extends Clidder {
 public final void flipper() { System.out.println("Clidlet"); }
 public static void main(String [] args) {
 new Clidlet().flipper();
 }
}

 What is the result?
 A. Clidlet

 B. Clidder

 C. Clidder

 Clidlet

 D. Clidlet

 Clidder

 E. Compilation fails

 Special Note: The next question crudely simulates a style of question known as "drag-and-
drop." Up through the SCJP 6 exam, drag-and-drop questions were included on the exam. As of
the Spring of 2014, Oracle DOES NOT include any drag-and-drop questions on its Java exams,
but just in case Oracle's policy changes, we left a few in the book.

 4. Using the fragments below, complete the following code so it compiles. Note that you may not
have to fill all of the slots.

 Code:

class AgedP {
 __________ __________ __________ __________ __________
 public AgedP(int x) {
 __________ __________ __________ __________ __________
 }
}
public class Kinder extends AgedP {
 __________ __________ __________ _________ ________ __________
 public Kinder(int x) {
 __________ __________ __________ __________ __________ ();
 }
}

02-ch02.indd 155 8/28/2014 3:46:05 PM

156 Chapter 2: Object Orientation

 Fragments: Use the following fragments zero or more times:

AgedP super this

({ }

;

 5. Given:

class Bird {
 { System.out.print("b1 "); }
 public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird {
 static { System.out.print("r1 "); }
 public Raptor() { System.out.print("r2 "); }
 { System.out.print("r3 "); }
 static { System.out.print("r4 "); }
}
class Hawk extends Raptor {
 public static void main(String[] args) {
 System.out.print("pre ");
 new Hawk();
 System.out.println("hawk ");
 }
}

 What is the result?
 A. pre b1 b2 r3 r2 hawk

 B. pre b2 b1 r2 r3 hawk

 C. pre b2 b1 r2 r3 hawk r1 r4

 D. r1 r4 pre b1 b2 r3 r2 hawk

 E. r1 r4 pre b2 b1 r2 r3 hawk

 F. pre r1 r4 b1 b2 r3 r2 hawk

 G. pre r1 r4 b2 b1 r2 r3 hawk

 H. The order of output cannot be predicted
 I. Compilation fails

 Note: You'll probably never see this many choices on the real exam!

02-ch02.indd 156 8/28/2014 3:46:05 PM

Self Test 157

 6. Given the following:

 1. class X { void do1() { } }
 2. class Y extends X { void do2() { } }
 3.
 4. class Chrome {
 5. public static void main(String [] args) {
 6. X x1 = new X();
 7. X x2 = new Y();
 8. Y y1 = new Y();
 9. // insert code here
10. } }

 Which of the following, inserted at line 9, will compile? (Choose all that apply.)
 A. x2.do2();

 B. (Y)x2.do2();

 C. ((Y)x2).do2();

 D. None of the above statements will compile

 7. Given:

public class Locomotive {
 Locomotive() { main("hi"); }

 public static void main(String[] args) {
 System.out.print("2 ");
 }
 public static void main(String args) {
 System.out.print("3 " + args);
 }
}

 What is the result? (Choose all that apply.)
 A. 2 will be included in the output
 B. 3 will be included in the output
 C. hi will be included in the output
 D. Compilation fails
 E. An exception is thrown at runtime

02-ch02.indd 157 8/28/2014 3:46:05 PM

158 Chapter 2: Object Orientation

 8. Given:

 3. class Dog {
 4. public void bark() { System.out.print("woof "); }
 5. }
 6. class Hound extends Dog {
 7. public void sniff() { System.out.print("sniff "); }
 8. public void bark() { System.out.print("howl "); }
 9. }
10. public class DogShow {
11. public static void main(String[] args) { new DogShow().go(); }
12. void go() {
13. new Hound().bark();
14. ((Dog) new Hound()).bark();
15. ((Dog) new Hound()).sniff();
16. }
17. }

 What is the result? (Choose all that apply.)
 A. howl howl sniff

 B. howl woof sniff

 C. howl howl followed by an exception
 D. howl woof followed by an exception
 E. Compilation fails with an error at line 14
 F. Compilation fails with an error at line 15

 9. Given:

 3. public class Redwood extends Tree {
 4. public static void main(String[] args) {
 5. new Redwood().go();
 6. }
 7. void go() {
 8. go2(new Tree(), new Redwood());
 9. go2((Redwood) new Tree(), new Redwood());
10. }
11. void go2(Tree t1, Redwood r1) {
12. Redwood r2 = (Redwood)t1;
13. Tree t2 = (Tree)r1;
14. }
15. }
16. class Tree { }

02-ch02.indd 158 8/28/2014 3:46:05 PM

Self Test 159

 What is the result? (Choose all that apply.)
 A. An exception is thrown at runtime
 B. The code compiles and runs with no output
 C. Compilation fails with an error at line 8
 D. Compilation fails with an error at line 9
 E. Compilation fails with an error at line 12
 F. Compilation fails with an error at line 13

 10. Given:

 3. public class Tenor extends Singer {
 4. public static String sing() { return "fa"; }
 5. public static void main(String[] args) {
 6. Tenor t = new Tenor();
 7. Singer s = new Tenor();
 8. System.out.println(t.sing() + " " + s.sing());
 9. }
10. }
11. class Singer { public static String sing() { return "la"; } }

 What is the result?
 A. fa fa

 B. fa la

 C. la la

 D. Compilation fails
 E. An exception is thrown at runtime

 11. Given:

 3. class Alpha {
 4. static String s = " ";
 5. protected Alpha() { s += "alpha "; }
 6. }
 7. class SubAlpha extends Alpha {
 8. private SubAlpha() { s += "sub "; }
 9. }
10. public class SubSubAlpha extends Alpha {
11. private SubSubAlpha() { s += "subsub "; }
12. public static void main(String[] args) {
13. new SubSubAlpha();
14. System.out.println(s);
15. }
16. }

02-ch02.indd 159 8/28/2014 3:46:06 PM

160 Chapter 2: Object Orientation

 What is the result?
 A. subsub

 B. sub subsub

 C. alpha subsub

 D. alpha sub subsub

 E. Compilation fails
 F. An exception is thrown at runtime

 12. Given:

 3. class Building {
 4. Building() { System.out.print("b "); }
 5. Building(String name) {
 6. this(); System.out.print("bn " + name);
 7. }
 8. }
 9. public class House extends Building {
10. House() { System.out.print("h "); }
11. House(String name) {
12. this(); System.out.print("hn " + name);
13. }
14. public static void main(String[] args) { new House("x "); }
15. }

 What is the result?
 A. h hn x

 B. hn x h

 C. b h hn x

 D. b hn x h

 E. bn x h hn x

 F. b bn x h hn x

 G. bn x b h hn x

 H. Compilation fails

02-ch02.indd 160 8/28/2014 3:46:06 PM

Self Test 161

 13. Given:

 3. class Mammal {
 4. String name = "furry ";
 5. String makeNoise() { return "generic noise"; }
 6. }
 7. class Zebra extends Mammal {
 8. String name = "stripes ";
 9. String makeNoise() { return "bray"; }
10. }
11. public class ZooKeeper {
12. public static void main(String[] args) { new ZooKeeper().go(); }
13. void go() {
14. Mammal m = new Zebra();
15. System.out.println(m.name + m.makeNoise());
16. }
17. }

 What is the result?
 A. furry bray

 B. stripes bray

 C. furry generic noise

 D. stripes generic noise

 E. Compilation fails
 F. An exception is thrown at runtime

 14. (OCP Only) Given:

 You're designing a new online board game in which Floozels are a type of Jammers, Jammers
can have Quizels, Quizels are a type of Klakker, and Floozels can have several Floozets.
Which of the following fragments represent this design? (Choose all that apply.)

 A. import java.util.*;

 interface Klakker { }

 class Jammer { Set<Quizel> q; }

 class Quizel implements Klakker { }

 public class Floozel extends Jammer { List<Floozet> f; }

 interface Floozet { }

02-ch02.indd 161 8/28/2014 3:46:06 PM

162 Chapter 2: Object Orientation

 B. import java.util.*;

 class Klakker { Set<Quizel> q; }

 class Quizel extends Klakker { }

 class Jammer { List<Floozel> f; }

 class Floozet extends Floozel { }

 public class Floozel { Set<Klakker> k; }

 C. import java.util.*;

 class Floozet { }

 class Quizel implements Klakker { }

 class Jammer { List<Quizel> q; }

 interface Klakker { }

 class Floozel extends Jammer { List<Floozet> f; }

 D. import java.util.*;

 interface Jammer extends Quizel { }

 interface Klakker { }

 interface Quizel extends Klakker { }

 interface Floozel extends Jammer, Floozet { }

 interface Floozet { }

02-ch02.indd 162 8/28/2014 3:46:06 PM

 Self Test Answers 163

SELF TEST ANSWERS

 1. ☑ B and E are correct. B is correct because an abstract class need not implement any or all
of an interface's methods. E is correct because the class implements the interface method and
additionally overloads the twiddle() method.
☐✗ A, C, and D are incorrect. A is incorrect because abstract methods have no body. C is
incorrect because classes implement interfaces; they don't extend them. D is incorrect because
overloading a method is not implementing it. (OCA Objectives 7.1 and 7.6)

 2. ☑ E is correct. The implied super() call in Bottom2's constructor cannot be satisfied
because there is no no-arg constructor in Top. A default, no-arg constructor is generated by the
compiler only if the class has no constructor defined explicitly.
☐✗ A, B, C, and D are incorrect based on the above. (OCA Objectives 6.5 and 7.5)

 3. ☑ A is correct. Although a final method cannot be overridden, in this case, the method
is private, and therefore hidden. The effect is that a new, accessible, method flipper is created.
Therefore, no polymorphism occurs in this example, the method invoked is simply that of the
child class, and no error occurs.
☐✗ B, C, D, and E are incorrect based on the preceding. (OCA Objectives 7.1 and 7.2)

 Special Note: This next question crudely simulates a style of question known as "drag-and-drop."
Up through the SCJP 6 exam, drag-and-drop questions were included on the exam. As of the
Spring of 2014, Oracle DOES NOT include any drag-and-drop questions on its Java exams, but
just in case Oracle's policy changes, we left a few in the book.

 4. Here is the answer:
class AgedP {
 AgedP() {}
 public AgedP(int x) {
 }
}
public class Kinder extends AgedP {
 public Kinder(int x) {
 super();
 }
}

 As there is no droppable tile for the variable x and the parentheses (in the Kinder constructor)
are already in place and empty, there is no way to construct a call to the superclass constructor
that takes an argument. Therefore, the only remaining possibility is to create a call to the
no-arg superclass constructor. This is done as super();. The line cannot be left blank, as the
parentheses are already in place. Further, since the superclass constructor called is the no-arg
version, this constructor must be created. It will not be created by the compiler because another
constructor is already present. (OCA Objectives 6.5, 7.1, and 7.5)
Note: As you can see, many questions test for OCA Objective 7.1.

02-ch02.indd 163 8/28/2014 3:46:06 PM

164 Chapter 2: Object Orientation

 5. ☑ D is correct. Static init blocks are executed at class loading time; instance init blocks
run right after the call to super() in a constructor. When multiple init blocks of a single type
occur in a class, they run in order, from the top down.
☐✗ A, B, C, E, F, G, H, and I are incorrect based on the above. Note: You'll probably never
see this many choices on the real exam! (OCA Objectives 6.5 and 7.5)

 6. ☑ C is correct. Before you can invoke Y's do2 method, you have to cast x2 to be of type Y.
☐✗ A, B, and D are incorrect based on the preceding. B looks like a proper cast, but without
the second set of parentheses, the compiler thinks it's an incomplete statement. (OCA
Objective 7.4)

 7. ☑ A is correct. It's legal to overload main(). Since no instances of Locomotive are created,
the constructor does not run and the overloaded version of main() does not run.
☐✗ B, C, D, and E are incorrect based on the preceding. (OCA Objectives 1.3 and 6.3)

 8. ☑ F is correct. Class Dog doesn't have a sniff method.
☐✗ A, B, C, D, and E are incorrect based on the above information. (OCA Objectives 7.2 and 7.4)

 9. ☑ A is correct. A ClassCastException will be thrown when the code attempts to downcast
a Tree to a Redwood.
☐✗ B, C, D, E, and F are incorrect based on the above information. (OCA Objective 7.4)

 10. ☑ B is correct. The code is correct, but polymorphism doesn't apply to static methods.
☐✗ A, C, D, and E are incorrect based on the above information. (OCA Objectives 6.2 and 7.2)

 11. ☑ C is correct. Watch out, because SubSubAlpha extends Alpha! Since the code doesn't
attempt to make a SubAlpha, the private constructor in SubAlpha is okay.
☐✗ A, B, D, E, and F are incorrect based on the above information. (OCA Objectives 6.5 and 7.5)

 12. ☑ C is correct. Remember that constructors call their superclass constructors, which execute
first, and that constructors can be overloaded.
☐✗ A, B, D, E, F, G, and H are incorrect based on the above information. (OCA Objectives
6.5 and 7.5)

 13. ☑ A is correct. Polymorphism is only for instance methods, not instance variables.
☐✗ B, C, D, E, and F are incorrect based on the above information. (OCA Objectives 6.2 and
7.2)

 14. ☑ A and C are correct. The phrase "type of" indicates an IS-A relationship (extends or
implements), and the word "have" of course indicates a HAS-A relationship (usually instance
variables).
☐✗ B and D are incorrect based on the above information. (OCP Objective 3.3)

02-ch02.indd 164 8/28/2014 3:46:07 PM

33
AssignmentsAssignments

CERTIFICATION OBJECTIVES

Use Class Members •
Understand Primitive Casting •
Understand Variable Scope •
Differentiate Between Primitive Variables •
and Reference Variables

Determine the Effects of Passing Variables •
into Methods

Understand Object Lifecycle and Garbage •
Collection

Two-Minute Drill ✓
Q&A Self Test

03-ch03.indd 165 8/28/2014 3:50:50 PM

166 Chapter 3: Assignments

Stack and Heap—Quick Review

For most people, understanding the basics of the stack and the heap makes it far
easier to understand topics like argument passing, polymorphism, threads,
exceptions, and garbage collection. In this section, we'll stick to an overview, but
we'll expand these topics several more times throughout the book.

For the most part, the various pieces (methods, variables, and objects) of Java
programs live in one of two places in memory: the stack or the heap. For now, we're
concerned about only three types of things—instance variables, local variables, and
objects:

■ Instance variables and objects live on the heap.

■ Local variables live on the stack.

Let's take a look at a Java program and how its various pieces are created and map
into the stack and the heap:

 1. class Collar { }
 2.
 3. class Dog {
 4. Collar c; // instance variable
 5. String name; // instance variable
 6.
 7. public static void main(String [] args) {
 8.
 9. Dog d; // local variable: d
10. d = new Dog();
11. d.go(d);
12. }
13. void go(Dog dog) { // local variable: dog
14. c = new Collar();
15. dog.setName("Aiko");
16. }
17. void setName(String dogName) { // local var: dogName
18. name = dogName;
19. // do more stuff
20. }
21. }

Figure 3-1 shows the state of the stack and the heap once the program reaches
line 19. Following are some key points:

■ Line 7—main() is placed on the stack.

■ Line 9—Reference variable d is created on the stack, but there's no Dog
object yet.

03-ch03.indd 166 8/28/2014 3:50:53 PM

Stack and Heap—Quick Review 167

■ Line 10—A new Dog object is created and is assigned to the d reference
variable.

■ Line 11—A copy of the reference variable d is passed to the go() method.

■ Line 13—The go() method is placed on the stack, with the dog parameter as
a local variable.

■ Line 14—A new Collar object is created on the heap and assigned to Dog's
instance variable.

■ Line 17—setName() is added to the stack, with the dogName parameter as
its local variable.

■ Line 18—The name instance variable now also refers to the String object.

■ Notice that two different local variables refer to the same Dog object.

■ Notice that one local variable and one instance variable both refer to the
same String Aiko.

■ After Line 19 completes, setName() completes and is removed from the
stack. At this point the local variable dogName disappears, too, although the
String object it referred to is still on the heap.

Instance
variables:
- name
- c

Collar object

Dog object

String object

"Aiko"

The Heap

setName() dogName

go() dog

main() d

method local
 variables
 The Stack

 FIGURE 3-1

Overview of the
stack and the
heap

03-ch03.indd 167 8/28/2014 3:50:53 PM

168 Chapter 3: Assignments

CERTIFICATION OBJECTIVE

Literals, Assignments, and Variables
(OCA Objectives 2.1, 2.2, 2.3, and
Upgrade Objective 1.2)

2.1 Declare and initialize variables.

2.2 Differentiate between object references and primitive variables.

2.3 Read or write to object fields.

Literal Values for All Primitive Types

A primitive literal is merely a source code representation of the primitive data
types—in other words, an integer, floating-point number, boolean, or character that
you type in while writing code. The following are examples of primitive literals:

'b' // char literal
42 // int literal
false // boolean literal
2546789.343 // double literal

Integer Literals

There are four ways to represent integer numbers in the Java language: decimal (base
10), octal (base 8), hexadecimal (base 16), and as of Java 7, binary (base 2). Most
exam questions with integer literals use decimal representations, but the few that
use octal, hexadecimal, or binary are worth studying for. Even though the odds that
you'll ever actually use octal in the real world are astronomically tiny, they were
included in the exam just for fun. Before we look at the four ways to represent integer
numbers, let's first discuss a new feature added to Java 7, literals with underscores.

Numeric Literals with Underscores (Upgrade Exam Topic 1.2) As of
Java 7, numeric literals can be declared using underscore characters (_), ostensibly
to improve readability. Let's compare a pre-Java 7 declaration to an easier to read
Java 7 declaration:

03-ch03.indd 168 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 169

int pre7 = 1000000; // pre Java 7 – we hope it's a million
int with7 = 1_000_000; // much clearer!

The main rule you have to keep track of is that you CANNOT use the underscore
literal at the beginning or end of the literal. The potential gotcha here is that you're
free to use the underscore in "weird" places:

int i1 = _1_000_000; // illegal, can't begin with an "_"
int i2 = 10_0000_0; // legal, but confusing

As a final note, remember that you can use the underscore character for any of
the numeric types (including doubles and floats), but for doubles and floats, you
CANNOT add an underscore character directly next to the decimal point.

Decimal Literals Decimal integers need no explanation; you've been using
them since grade one or earlier. Chances are you don't keep your checkbook in hex.
(If you do, there's a Geeks Anonymous [GA] group ready to help.) In the Java
language, they are represented as is, with no prefix of any kind, as follows:

int length = 343;

Binary Literals (Upgrade Exam Topic 1.2) Also new to Java 7 is the
addition of binary literals. Binary literals can use only the digits 0 and 1. Binary
literals must start with either 0B or 0b, as shown:

int b1 = 0B101010; // set b1 to binary 101010 (decimal 42)
int b2 = 0b00011; // set b2 to binary 11 (decimal 3)

Octal Literals Octal integers use only the digits 0 to 7. In Java, you represent an
integer in octal form by placing a zero in front of the number, as follows:

class Octal {
 public static void main(String [] args) {
 int six = 06; // Equal to decimal 6
 int seven = 07; // Equal to decimal 7
 int eight = 010; // Equal to decimal 8
 int nine = 011; // Equal to decimal 9
 System.out.println("Octal 010 = " + eight);
 }
}

You can have up to 21 digits in an octal number, not including the leading zero. If
we run the preceding program, it displays the following:

Octal 010 = 8

03-ch03.indd 169 8/28/2014 3:50:54 PM

170 Chapter 3: Assignments

Hexadecimal Literals Hexadecimal (hex for short) numbers are constructed
using 16 distinct symbols. Because we never invented single-digit symbols for the
numbers 10 through 15, we use alphabetic characters to represent these digits.
Counting from 0 through 15 in hex looks like this:

0 1 2 3 4 5 6 7 8 9 a b c d e f

Java will accept uppercase or lowercase letters for the extra digits (one of the few
places Java is not case-sensitive!). You are allowed up to 16 digits in a hexadecimal
number, not including the prefix 0x (or 0X) or the optional suffix extension L, which
will be explained a bit later in the chapter. All of the following hexadecimal
assignments are legal:

class HexTest {
 public static void main (String [] args) {
 int x = 0X0001;
 int y = 0x7fffffff;
 int z = 0xDeadCafe;
 System.out.println("x = " + x + " y = " + y + " z = " + z);
 }
}

Running HexTest produces the following output:

x = 1 y = 2147483647 z = -559035650

Don't be misled by changes in case for a hexadecimal digit or the x preceding it.
0XCAFE and 0xcafe are both legal and have the same value.

All four integer literals (binary, octal, decimal, and hexadecimal) are defined as
int by default, but they may also be specified as long by placing a suffix of L or l
after the number:

long jo = 110599L;
long so = 0xFFFFl; // Note the lowercase 'l'

Floating-point Literals

Floating-point numbers are defined as a number, a decimal symbol, and more
numbers representing the fraction. In the following example, the number
11301874.9881024 is the literal value:

double d = 11301874.9881024;

Floating-point literals are defined as double (64 bits) by default, so if you want to
assign a floating-point literal to a variable of type float (32 bits), you must attach
the suffix F or f to the number. If you don't do this, the compiler will complain

03-ch03.indd 170 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 171

about a possible loss of precision, because you're trying to fit a number into a
(potentially) less precise "container." The F suffix gives you a way to tell the
compiler, "Hey, I know what I'm doing, and I'll take the risk, thank you very much."

float f = 23.467890; // Compiler error, possible loss
 // of precision
float g = 49837849.029847F; // OK; has the suffix "F"

You may also optionally attach a D or d to double literals, but it is not necessary
because this is the default behavior.

double d = 110599.995011D; // Optional, not required
double g = 987.897; // No 'D' suffix, but OK because the
 // literal is a double by default

Look for numeric literals that include a comma; here's an example:

int x = 25,343; // Won't compile because of the comma

Boolean Literals

Boolean literals are the source code representation for boolean values. A boolean
value can be defined only as true or false. Although in C (and some other
languages) it is common to use numbers to represent true or false, this will not
work in Java. Again, repeat after me: "Java is not C++."

boolean t = true; // Legal
boolean f = 0; // Compiler error!

Be on the lookout for questions that use numbers where booleans are required.
You might see an if test that uses a number, as in the following:

int x = 1; if (x) { } // Compiler error!

Character Literals

A char literal is represented by a single character in single quotes:

char a = 'a';
char b = '@';

You can also type in the Unicode value of the character, using the Unicode
notation of prefixing the value with \u as follows:

char letterN = '\u004E'; // The letter 'N'

03-ch03.indd 171 8/28/2014 3:50:54 PM

172 Chapter 3: Assignments

Remember, characters are just 16-bit unsigned integers under the hood. That
means you can assign a number literal, assuming it will fit into the unsigned 16-bit
range (0 to 65535). For example, the following are all legal:

char a = 0x892; // hexadecimal literal
char b = 982; // int literal
char c = (char)70000; // The cast is required; 70000 is
 // out of char range
char d = (char) -98; // Ridiculous, but legal

And the following are not legal and produce compiler errors:

char e = -29; // Possible loss of precision; needs a cast
char f = 70000; // Possible loss of precision; needs a cast

You can also use an escape code (the backslash) if you want to represent a
character that can't be typed in as a literal, including the characters for linefeed,
newline, horizontal tab, backspace, and quotes:

char c = '\"'; // A double quote
char d = '\n'; // A newline
char tab = '\t'; // A tab

Literal Values for Strings

A string literal is a source code representation of a value of a String object. The
following is an example of two ways to represent a string literal:

String s = "Bill Joy";
System.out.println("Bill" + " Joy");

Although strings are not primitives, they're included in this section because they
can be represented as literals—in other words, they can be typed directly into code.
The only other nonprimitive type that has a literal representation is an array, which
we'll look at later in the chapter.

Thread t = ??? // what literal value could possibly go here?

Assignment Operators

Assigning a value to a variable seems straightforward enough; you simply assign the
stuff on the right side of the = to the variable on the left. Well, sure, but don't expect
to be tested on something like this:

x = 6;

03-ch03.indd 172 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 173

No, you won't be tested on the no-brainer (technical term) assignments. You will,
however, be tested on the trickier assignments involving complex expressions and
casting. We'll look at both primitive and reference variable assignments. But before
we begin, let's back up and peek inside a variable. What is a variable? How are the
variable and its value related?

Variables are just bit holders, with a designated type. You can have an int holder,
a double holder, a Button holder, and even a String[] holder. Within that holder
is a bunch of bits representing the value. For primitives, the bits represent a numeric
value (although we don't know what that bit pattern looks like for boolean, luckily,
we don't care). A byte with a value of 6, for example, means that the bit pattern in
the variable (the byte holder) is 00000110, representing the 8 bits.

So the value of a primitive variable is clear, but what's inside an object holder? If
you say,

Button b = new Button();

what's inside the Button holder b? Is it the Button object? No! A variable referring
to an object is just that—a reference variable. A reference variable bit holder
contains bits representing a way to get to the object. We don't know what the format
is. The way in which object references are stored is virtual-machine specific (it's a
pointer to something, we just don't know what that something really is). All we can
say for sure is that the variable's value is not the object, but rather a value
representing a specific object on the heap. Or null. If the reference variable has not
been assigned a value or has been explicitly assigned a value of null, the variable
holds bits representing—you guessed it—null. You can read

Button b = null;

as "The Button variable b is not referring to any object."
So now that we know a variable is just a little box o' bits, we can get on with the

work of changing those bits. We'll look first at assigning values to primitives and
then finish with assignments to reference variables.

Primitive Assignments

The equal (=) sign is used for assigning a value to a variable, and it's cleverly named
the assignment operator. There are actually 12 assignment operators, but only the 5
most commonly used assignment operators are on the exam, and they are covered in
Chapter 4.

You can assign a primitive variable using a literal or the result of an expression.

03-ch03.indd 173 8/28/2014 3:50:54 PM

174 Chapter 3: Assignments

Take a look at the following:

int x = 7; // literal assignment
int y = x + 2; // assignment with an expression
 // (including a literal)
int z = x * y; // assignment with an expression

The most important point to remember is that a literal integer (such as 7) is
always implicitly an int. Thinking back to Chapter 1, you'll recall that an int is a
32-bit value. No big deal if you're assigning a value to an int or a long variable, but
what if you're assigning to a byte variable? After all, a byte-sized holder can't hold
as many bits as an int-sized holder. Here's where it gets weird. The following is
legal,

byte b = 27;

but only because the compiler automatically narrows the literal value to a byte. In
other words, the compiler puts in the cast. The preceding code is identical to the
following:

byte b = (byte) 27; // Explicitly cast the int literal to a byte

It looks as though the compiler gives you a break and lets you take a shortcut with
assignments to integer variables smaller than an int. (Everything we're saying about
byte applies equally to char and short, both of which are smaller than an int.)
We're not actually at the weird part yet, by the way.

We know that a literal integer is always an int, but more importantly, the result
of an expression involving anything int-sized or smaller is always an int. In other
words, add two bytes together and you'll get an int—even if those two bytes are
tiny. Multiply an int and a short and you'll get an int. Divide a short by a byte
and you'll get…an int. Okay, now we're at the weird part. Check this out:

byte a = 3; // No problem, 3 fits in a byte
byte b = 8; // No problem, 8 fits in a byte
byte c = a + b; // Should be no problem, sum of the two bytes
 // fits in a byte

The last line won't compile! You'll get an error something like this:

TestBytes.java:5: possible loss of precision
found : int
required: byte
 byte c = a + b;
 ^

03-ch03.indd 174 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 175

We tried to assign the sum of two bytes to a byte variable, the result of which
(11) was definitely small enough to fit into a byte, but the compiler didn't care. It
knew the rule about int-or-smaller expressions always resulting in an int. It would
have compiled if we'd done the explicit cast:

byte c = (byte) (a + b);

We were struggling to fi nd a good way to teach this topic, and our friend,

co-JavaRanch moderator, and repeat technical reviewer Marc Peabody came up with the

following. We think he did a great job: It's perfectly legal to declare multiple variables of

the same type with a single line by placing a comma between each variable:

int a, b, c;

You also have the option to initialize any number of those variables right in place:

int j, k=1, l, m=3;

And these variables are each evaluated in the order that you read them, left to right. It's

just as if you were to declare each one on a separate line:

int j;
int k=1;
int l;
int m=3;

But the order is important. This is legal:

int j, k=1, l, m=k+3; // legal: k is initialized before m uses it

But these are not:

int j, k=m+3, l, m=1; // illegal: m is not initialized before k uses it
int x, y=x+1, z; // illegal: x is not initialized before y uses it

03-ch03.indd 175 8/28/2014 3:50:54 PM

176 Chapter 3: Assignments

Primitive Casting

Casting lets you convert primitive values from one type to another. We mentioned
primitive casting in the previous section, but now we're going to take a deeper look.
(Object casting was covered in Chapter 2.)

Casts can be implicit or explicit. An implicit cast means you don't have to write
code for the cast; the conversion happens automatically. Typically, an implicit cast
happens when you're doing a widening conversion—in other words, putting a
smaller thing (say, a byte) into a bigger container (such as an int). Remember
those "possible loss of precision" compiler errors we saw in the assignments
section? Those happened when we tried to put a larger thing (say, a long) into a
smaller container (such as a short). The large-value-into-small-container conversion
is referred to as narrowing and requires an explicit cast, where you tell the compiler
that you're aware of the danger and accept full responsibility.

First we'll look at an implicit cast:

int a = 100;
long b = a; // Implicit cast, an int value always fits in a long

An explicit casts looks like this:

float a = 100.001f;
int b = (int)a; // Explicit cast, the float could lose info

Integer values may be assigned to a double variable without explicit casting, because
any integer value can fit in a 64-bit double. The following line demonstrates this:

double d = 100L; // Implicit cast

In the preceding statement, a double is initialized with a long value (as denoted
by the L after the numeric value). No cast is needed in this case because a double
can hold every piece of information that a long can store. If, however, we want to
assign a double value to an integer type, we're attempting a narrowing conversion
and the compiler knows it:

class Casting {
 public static void main(String [] args) {
 int x = 3957.229; // illegal
 }
}

If we try to compile the preceding code, we get an error something like this:

%javac Casting.java
Casting.java:3: Incompatible type for declaration. Explicit cast
needed to convert double to int.
 int x = 3957.229; // illegal
1 error

03-ch03.indd 176 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 177

In the preceding code, a floating-point value is being assigned to an integer
variable. Because an integer is not capable of storing decimal places, an error occurs.
To make this work, we'll cast the floating-point number to an int:

class Casting {
 public static void main(String [] args) {
 int x = (int)3957.229; // legal cast
 System.out.println("int x = " + x);
 }
}

When you cast a floating-point number to an integer type, the value loses all the
digits after the decimal. The preceding code will produce the following output:

int x = 3957

We can also cast a larger number type, such as a long, into a smaller number
type, such as a byte. Look at the following:

class Casting {
 public static void main(String [] args) {
 long l = 56L;
 byte b = (byte)l;
 System.out.println("The byte is " + b);
 }
}

The preceding code will compile and run fine. But what happens if the long
value is larger than 127 (the largest number a byte can store)? Let's modify the
code:

class Casting {
 public static void main(String [] args) {
 long l = 130L;
 byte b = (byte)l;
 System.out.println("The byte is " + b);
 }
}

The code compiles fine, and when we run it we get the following:

%java Casting
The byte is -126

We don't get a runtime error, even when the value being narrowed is too large for
the type. The bits to the left of the lower 8 just…go away. If the leftmost bit (the
sign bit) in the byte (or any integer primitive) now happens to be a 1, the primitive
will have a negative value.

03-ch03.indd 177 8/28/2014 3:50:54 PM

178 Chapter 3: Assignments

EXERCISE 3-1

Casting Primitives

Create a float number type of any value, and assign it to a short using casting.

 1. Declare a float variable: float f = 234.56F;

 2. Assign the float to a short: short s = (short)f;

Assigning Floating-point Numbers

Floating-point numbers have slightly different assignment behavior than integer
types. First, you must know that every floating-point literal is implicitly a double
(64 bits), not a float. So the literal 32.3, for example, is considered a double. If
you try to assign a double to a float, the compiler knows you don't have enough
room in a 32-bit float container to hold the precision of a 64-bit double, and it
lets you know. The following code looks good, but it won't compile:

float f = 32.3;

You can see that 32.3 should fit just fine into a float-sized variable, but the
compiler won't allow it. In order to assign a floating-point literal to a float
variable, you must either cast the value or append an f to the end of the literal.
The following assignments will compile:

float f = (float) 32.3;
float g = 32.3f;
float h = 32.3F;

Assigning a Literal That Is Too Large for the Variable

We'll also get a compiler error if we try to assign a literal value that the compiler
knows is too big to fit into the variable.

byte a = 128; // byte can only hold up to 127

The preceding code gives us an error something like this:

TestBytes.java:5: possible loss of precision
found : int
required: byte
byte a = 128;

03-ch03.indd 178 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 179

We can fix it with a cast:

byte a = (byte) 128;

But then what's the result? When you narrow a primitive, Java simply truncates
the higher-order bits that won't fit. In other words, it loses all the bits to the left of
the bits you're narrowing to.

Let's take a look at what happens in the preceding code. There, 128 is the bit
pattern 10000000. It takes a full 8 bits to represent 128. But because the literal 128
is an int, we actually get 32 bits, with the 128 living in the rightmost (lower order)
8 bits. So a literal 128 is actually

00000000000000000000000010000000

Take our word for it; there are 32 bits there.
To narrow the 32 bits representing 128, Java simply lops off the leftmost (higher

order) 24 bits. What remains is just the 10000000. But remember that a byte is
signed, with the leftmost bit representing the sign (and not part of the value of the
variable). So we end up with a negative number (the 1 that used to represent 128
now represents the negative sign bit). Remember, to find out the value of a negative
number using 2's complement notation, you flip all of the bits and then add 1.
Flipping the 8 bits gives us 01111111, and adding 1 to that gives us 10000000, or
back to 128! And when we apply the sign bit, we end up with –128.

You must use an explicit cast to assign 128 to a byte, and the assignment leaves
you with the value –128. A cast is nothing more than your way of saying to the
compiler, "Trust me. I'm a professional. I take full responsibility for anything weird
that happens when those top bits are chopped off."

That brings us to the compound assignment operators. This will compile:

byte b = 3;
b += 7; // No problem - adds 7 to b (result is 10)

and it is equivalent to this:

byte b = 3;
b = (byte) (b + 7); // Won't compile without the
 // cast, since b + 7 results in an int

The compound assignment operator += lets you add to the value of b, without
putting in an explicit cast. In fact, +=, -=, *=, and /= will all put in an implicit cast.

03-ch03.indd 179 8/28/2014 3:50:54 PM

180 Chapter 3: Assignments

Assigning One Primitive Variable to Another Primitive Variable

When you assign one primitive variable to another, the contents of the right-hand
variable are copied. For example:

int a = 6;
int b = a;

This code can be read as, "Assign the bit pattern for the number 6 to the int
variable a. Then copy the bit pattern in a, and place the copy into variable b."

So, both variables now hold a bit pattern for 6, but the two variables have no
other relationship. We used the variable a only to copy its contents. At this point,
a and b have identical contents (in other words, identical values), but if we change
the contents of either a or b, the other variable won't be affected.

Take a look at the following example:

class ValueTest {
 public static void main (String [] args) {
 int a = 10; // Assign a value to a
 System.out.println("a = " + a);
 int b = a;
 b = 30;
 System.out.println("a = " + a + " after change to b");
 }
}

The output from this program is

%java ValueTest
a = 10
a = 10 after change to b

Notice the value of a stayed at 10. The key point to remember is that even after
you assign a to b, a and b are not referring to the same place in memory. The a and
b variables do not share a single value; they have identical copies.

Reference Variable Assignments

You can assign a newly created object to an object reference variable as follows:

Button b = new Button();

03-ch03.indd 180 8/28/2014 3:50:54 PM

 Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2) 181

The preceding line does three key things:

■ Makes a reference variable named b, of type Button

■ Creates a new Button object on the heap

■ Assigns the newly created Button object to the reference variable b

You can also assign null to an object reference variable, which simply means the
variable is not referring to any object:

Button c = null;

The preceding line creates space for the Button reference variable (the bit holder
for a reference value), but it doesn't create an actual Button object.

As we discussed in the last chapter, you can also use a reference variable to refer
to any object that is a subclass of the declared reference variable type, as follows:

public class Foo {
 public void doFooStuff() { }
}
public class Bar extends Foo {
 public void doBarStuff() { }
}
class Test {
 public static void main (String [] args) {
 Foo reallyABar = new Bar(); // Legal because Bar is a
 // subclass of Foo
 Bar reallyAFoo = new Foo(); // Illegal! Foo is not a
 // subclass of Bar
 }
}

The rule is that you can assign a subclass of the declared type but not a superclass
of the declared type. Remember, a Bar object is guaranteed to be able to do anything
a Foo can do, so anyone with a Foo reference can invoke Foo methods even though
the object is actually a Bar.

In the preceding code, we see that Foo has a method doFooStuff() that
someone with a Foo reference might try to invoke. If the object referenced by the
Foo variable is really a Foo, no problem. But it's also no problem if the object is a
Bar, since Bar inherited the doFooStuff() method. You can't make it work in
reverse, however. If somebody has a Bar reference, they're going to invoke
doBarStuff(), but if the object is a Foo, it won't know how to respond.

03-ch03.indd 181 8/28/2014 3:50:54 PM

182 Chapter 3: Assignments

CERTIFICATION OBJECTIVE

Scope (OCA Objectives 1.1 and 2.5)

1.1 Determine the scope of variables.

2.5 Call methods on objects.

Variable Scope

Once you've declared and initialized a variable, a natural question is, "How long will
this variable be around?" This is a question regarding the scope of variables. And not
only is scope an important thing to understand in general, it also plays a big part in
the exam. Let's start by looking at a class file:

class Layout { // class
 static int s = 343; // static variable
 int x; // instance variable
 { x = 7; int x2 = 5; } // initialization block
 Layout() { x += 8; int x3 = 6;} // constructor

You might see questions on the exam that use "wrapper" objects like so:

Long x = new Long(42); // create an instance of Long with value 42
Short s = new Short("57"); // create an instance of Short with value 57

The OCA 7 exam touches on wrappers very lightly, so for now all you'll need to know

about wrappers follows:

A wrapper object is an object that holds the value of a primitive. Every kind of primitive

has an associated wrapper class: Boolean, Byte, Character, Double, Float, Integer, Long,

and Short. Printing the value of the wrappers above,

System.out.println(x + " " + s);

produces the following output:

42 57

We'll be diving much more deeply into wrappers in Chapter 11.

03-ch03.indd 182 8/28/2014 3:50:54 PM

Scope (OCA Objectives 1.1 and 2.5) 183

 void doStuff() { // method
 int y = 0; // local variable
 for(int z = 0; z < 4; z++) { // 'for' code block
 y += z + x;
 }
 }
}

As with variables in all Java programs, the variables in this program (s, x, x2, x3,
y, and z) all have a scope:

■ s is a static variable.

■ x is an instance variable.

■ y is a local variable (sometimes called a "method local" variable).

■ z is a block variable.

■ x2 is an init block variable, a flavor of local variable.

■ x3 is a constructor variable, a flavor of local variable.

For the purposes of discussing the scope of variables, we can say that there are four
basic scopes:

■ Static variables have the longest scope; they are created when the class is
loaded, and they survive as long as the class stays loaded in the Java Virtual
Machine (JVM).

■ Instance variables are the next most long-lived; they are created when a new
instance is created, and they live until the instance is removed.

■ Local variables are next; they live as long as their method remains on the stack.
As we'll soon see, however, local variables can be alive and still be "out of scope."

■ Block variables live only as long as the code block is executing.

Scoping errors come in many sizes and shapes. One common mistake happens
when a variable is shadowed and two scopes overlap. We'll take a detailed look at
shadowing in a few pages. The most common reason for scoping errors is an attempt
to access a variable that is not in scope. Let's look at three common examples of this
type of error.

■ Attempting to access an instance variable from a static context (typically
from main()):
class ScopeErrors {
 int x = 5;

03-ch03.indd 183 8/28/2014 3:50:55 PM

184 Chapter 3: Assignments

 public static void main(String[] args) {
 x++; // won't compile, x is an 'instance' variable
 }
}

■ Attempting to access a local variable from a nested method.
When a method, say go(), invokes another method, say go2(), go2() won't
have access to go()'s local variables. While go2() is executing, go()'s local
variables are still alive, but they are out of scope. When go2() completes, it
is removed from the stack, and go() resumes execution. At this point, all of
go()'s previously declared variables are back in scope. For example:
class ScopeErrors {
 public static void main(String [] args) {
 ScopeErrors s = new ScopeErrors();
 s.go();
 }
 void go() {
 int y = 5;
 go2();
 y++; // once go2() completes, y is back in scope
 }
 void go2() {
 y++; // won't compile, y is local to go()
 }
}

■ Attempting to use a block variable after the code block has completed.
It's very common to declare and use a variable within a code block, but be
careful not to try to use the variable once the block has completed:
void go3() {
 for(int z = 0; z < 5; z++) {
 boolean test = false;
 if(z == 3) {
 test = true;
 break;
 }
 }
 System.out.print(test); // 'test' is an ex-variable,
 // it has ceased to be...
}

In the last two examples, the compiler will say something like this:

cannot find symbol

This is the compiler's way of saying, "That variable you just tried to use? Well, it
might have been valid in the distant past (like one line of code ago), but this is
Internet time, baby, I have no memory of such a variable."

03-ch03.indd 184 8/28/2014 3:50:55 PM

 Variable Initialization (OCA Objective 2.1) 185

CERTIFICATION OBJECTIVE

Variable Initialization (OCA Objective 2.1)

2.1 Declare and initialize variables.

Using a Variable or Array Element That Is
Uninitialized and Unassigned

Java gives us the option of initializing a declared variable or leaving it uninitialized.
When we attempt to use the uninitialized variable, we can get different behavior
depending on what type of variable or array we are dealing with (primitives or
objects). The behavior also depends on the level (scope) at which we are declaring
our variable. An instance variable is declared within the class but outside any
method or constructor, whereas a local variable is declared within a method (or in
the argument list of the method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what you call
them. Although you can leave a local variable uninitialized, the compiler complains
if you try to use a local variable before initializing it with a value, as we shall see.

Primitive and Object Type Instance Variables

Instance variables (also called member variables) are variables defined at the class
level. That means the variable declaration is not made within a method, constructor,
or any other initializer block. Instance variables are initialized to a default value
each time a new instance is created, although they may be given an explicit value
after the object's superconstructors have completed. Table 3-1 lists the default values
for primitive and object types.

Pay extra attention to code block scoping errors. You might see them in

switches, try-catches, for, do, and while loops.

03-ch03.indd 185 8/28/2014 3:50:55 PM

186 Chapter 3: Assignments

Variable Type Default Value

Object reference null (not referencing any object)

byte, short, int, long 0

float, double 0.0

boolean false

char '\u0000'

Primitive Instance Variables

In the following example, the integer year is defined as a class member because it is
within the initial curly braces of the class and not within a method's curly braces:

public class BirthDate {
 int year; // Instance variable
 public static void main(String [] args) {
 BirthDate bd = new BirthDate();
 bd.showYear();
 }
 public void showYear() {
 System.out.println("The year is " + year);
 }
}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

It's a good idea to initialize all your variables, even if you're assigning them

with the default value. Your code will be easier to read; programmers who

have to maintain your code (after you win the lottery and move to Tahiti) will

be grateful.

Object Reference Instance Variables

When compared with uninitialized primitive variables, object references that aren't
initialized are a completely different story. Let's look at the following code:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 System.out.println("The title is " + b.getTitle());
 }
}

 TABLE 3-1

Default Values for
Primitives and
Reference Types

03-ch03.indd 186 8/28/2014 3:50:55 PM

 Variable Initialization (OCA Objective 2.1) 187

This code will compile fine. When we run it, the output is

The title is null

The title variable has not been explicitly initialized with a String assignment,
so the instance variable value is null. Remember that null is not the same as an
empty String (""). A null value means the reference variable is not referring to any
object on the heap. The following modification to the Book code runs into trouble:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 String t = s.toLowerCase(); // Runtime Exception!
 }
}

When we try to run the Book class, the JVM will produce something like this:

Exception in thread "main" java.lang.NullPointerException
 at Book.main(Book.java:9)

We get this error because the reference variable title does not point (refer) to an
object. We can check to see whether an object has been instantiated by using the
keyword null, as the following revised code shows:

public class Book {
 private String title; // instance reference variable
 public String getTitle() {
 return title;
 }
 public static void main(String [] args) {
 Book b = new Book();
 String s = b.getTitle(); // Compiles and runs
 if (s != null) {
 String t = s.toLowerCase();
 }
 }
}

The preceding code checks to make sure the object referenced by the variable s is
not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of null. In the preceding code, for example, you look at the
instance variable declaration for title, see that there's no explicit initialization,
recognize that the title variable will be given the default value of null, and then

03-ch03.indd 187 8/28/2014 3:50:55 PM

188 Chapter 3: Assignments

realize that the variable s will also have a value of null. Remember, the value of s is
a copy of the value of title (as returned by the getTitle() method), so if title
is a null reference, s will be, too.

Array Instance Variables

In Chapter 5 we'll be taking a very detailed look at declaring, constructing, and
initializing arrays and multidimensional arrays. For now, we're just going to look at
the rule for an array element's default values.

An array is an object; thus, an array instance variable that's declared but not
explicitly initialized will have a value of null, just as any other object reference
instance variable. But…if the array is initialized, what happens to the elements
contained in the array? All array elements are given their default values—the same
default values that elements of that type get when they're instance variables. The
bottom line: Array elements are always, always, always given default values, regardless of
where the array itself is declared or instantiated.

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the
array year will contain 100 integers that all equal zero by default:

public class BirthDays {
 static int [] year = new int[100];
 public static void main(String [] args) {
 for(int i=0;i<100;i++)
 System.out.println("year[" + i + "] = " + year[i]);
 }
}

When the preceding code runs, the output indicates that all 100 integers in the array
have a value of zero.

Local (Stack, Automatic) Primitives and Objects

Local variables are defined within a method, and they include a method's parameters.

"Automatic" is just another term for "local variable." It does not mean

the automatic variable is automatically assigned a value! In fact, the opposite is true. An

automatic variable must be assigned a value in the code or the compiler will complain.

03-ch03.indd 188 8/28/2014 3:50:55 PM

 Variable Initialization (OCA Objective 2.1) 189

Local Primitives

In the following time-travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method:

public class TimeTravel {
 public static void main(String [] args) {
 int year = 2050;
 System.out.println("The year is " + year);
 }
}

Local variables, including primitives, always, always, always must be initialized
before you attempt to use them (though not necessarily on the same line of code).
Java does not give local variables a default value; you must explicitly initialize them
with a value, as in the preceding example. If you try to use an uninitialized primitive
in your code, you'll get a compiler error:

public class TimeTravel {
 public static void main(String [] args) {
 int year; // Local variable (declared but not initialized)
 System.out.println("The year is " + year); // Compiler error
 }
}

Compiling produces output something like this:

%javac TimeTravel.java
TimeTravel.java:4: Variable year may not have been initialized.
 System.out.println("The year is " + year);
1 error

To correct our code, we must give the integer year a value. In this updated
example, we declare it on a separate line, which is perfectly valid:

public class TimeTravel {
 public static void main(String [] args) {
 int year; // Declared but not initialized
 int day; // Declared but not initialized
 System.out.println("You step into the portal.");
 year = 2050; // Initialize (assign an explicit value)
 System.out.println("Welcome to the year " + year);
 }
}

Notice in the preceding example we declared an integer called day that never
gets initialized, yet the code compiles and runs fine. Legally, you can declare a local
variable without initializing it as long as you don't use the variable—but, let's face it,
if you declared it, you probably had a reason (although we have heard of programmers
declaring random local variables just for sport, to see if they can figure out how and
why they're being used).

03-ch03.indd 189 8/28/2014 3:50:55 PM

190 Chapter 3: Assignments

The compiler can't always tell whether a local variable has been initialized

before use. For example, if you initialize within a logically conditional block

(in other words, a code block that may not run, such as an if block or for loop

without a literal value of true or false in the test), the compiler knows that the

initialization might not happen and can produce an error. The following code

upsets the compiler:

public class TestLocal {
 public static void main(String [] args) {
 int x;
 if (args[0] != null) { // assume you know this is true
 x = 7; // compiler can't tell that this
 // statement will run
 }
 int y = x; // the compiler will choke here
 }
}

The compiler will produce an error something like this:

TestLocal.java:9: variable x might not have been initialized

Because of the compiler-can't-tell-for-certain problem, you will sometimes

need to initialize your variable outside the conditional block, just to make the

compiler happy. You know why that's important if you've seen the bumper

sticker, "When the compiler's not happy, ain't nobody happy."

Local Object References

Objects references, too, behave differently when declared within a method rather
than as instance variables. With instance variable object references, you can get
away with leaving an object reference uninitialized, as long as the code checks to
make sure the reference isn't null before using it. Remember, to the compiler, null
is a value. You can't use the dot operator on a null reference, because there is no
object at the other end of it, but a null reference is not the same as an uninitialized
reference. Locally declared references can't get away with checking for null before
use, unless you explicitly initialize the local variable to null. The compiler will
complain about the following code:

import java.util.Date;
public class TimeTravel {
 public static void main(String [] args) {
 Date date;
 if (date == null)
 System.out.println("date is null");
 }
}

03-ch03.indd 190 8/28/2014 3:50:55 PM

 Variable Initialization (OCA Objective 2.1) 191

Compiling the code results in an error similar to the following:

%javac TimeTravel.java
TimeTravel.java:5: Variable date may not have been initialized.
 if (date == null)
1 error

Instance variable references are always given a default value of null, until they
are explicitly initialized to something else. But local references are not given a
default value; in other words, they aren't null. If you don't initialize a local reference
variable, then by default, its value is—well that's the whole point: it doesn't have
any value at all! So we'll make this simple: Just set the darn thing to null explicitly,
until you're ready to initialize it to something else. The following local variable will
compile properly:

Date date = null; // Explicitly set the local reference
 // variable to null

Local Arrays

Just like any other object reference, array references declared within a method must
be assigned a value before use. That just means you must declare and construct the
array. You do not, however, need to explicitly initialize the elements of an array.
We've said it before, but it's important enough to repeat: Array elements are given
their default values (0, false, null, '\u0000', and so on) regardless of whether the
array is declared as an instance or local variable. The array object itself, however,
will not be initialized if it's declared locally. In other words, you must explicitly
initialize an array reference if it's declared and used within a method, but at the
moment you construct an array object, all of its elements are assigned their default
values.

Assigning One Reference Variable to Another

With primitive variables, an assignment of one variable to another means the
contents (bit pattern) of one variable are copied into another. Object reference
variables work exactly the same way. The contents of a reference variable are a bit
pattern, so if you assign reference variable a1 to reference variable b1, the bit
pattern in a1 is copied and the new copy is placed into b1. (Some people have
created a game around counting how many times we use the word copy in this
chapter…this copy concept is a biggie!) If we assign an existing instance of an object
to a new reference variable, then two reference variables will hold the same bit

03-ch03.indd 191 8/28/2014 3:50:55 PM

192 Chapter 3: Assignments

pattern—a bit pattern referring to a specific object on the heap. Look at the
following code:

import java.awt.Dimension;
class ReferenceTest {
 public static void main (String [] args) {
 Dimension a1 = new Dimension(5,10);
 System.out.println("a1.height = " + a1.height);
 Dimension b1 = a1;
 b1.height = 30;
 System.out.println("a1.height = " + a1.height +
 " after change to b");
 }
}

In the preceding example, a Dimension object a1 is declared and initialized with
a width of 5 and a height of 10. Next, Dimension b1 is declared and assigned the
value of a1. At this point, both variables (a1 and b1) hold identical values, because
the contents of a1 were copied into b1. There is still only one Dimension object—
the one that both a1 and b1 refer to. Finally, the height property is changed using
the b1 reference. Now think for a minute: is this going to change the height
property of a1 as well? Let's see what the output will be:

%java ReferenceTest
a.height = 10
a.height = 30 after change to b

From this output, we can conclude that both variables refer to the same instance of
the Dimension object. When we made a change to b1, the height property was also
changed for a1.

One exception to the way object references are assigned is String. In Java,
String objects are given special treatment. For one thing, String objects are
immutable; you can't change the value of a String object (lots more on this concept
in Chapter 5). But it sure looks as though you can. Examine the following code:

class StringTest {
 public static void main(String [] args) {
 String x = "Java"; // Assign a value to x
 String y = x; // Now y and x refer to the same
 // String object

 System.out.println("y string = " + y);
 x = x + " Bean"; // Now modify the object using
 // the x reference
 System.out.println("y string = " + y);
 }
}

03-ch03.indd 192 8/28/2014 3:50:55 PM

 Variable Initialization (OCA Objective 2.1) 193

You might think String y will contain the characters Java Bean after the
variable x is changed, because Strings are objects. Let's see what the output is:

%java StringTest
y string = Java
y string = Java

As you can see, even though y is a reference variable to the same object that x
refers to, when we change x, it doesn't change y! For any other object type, where
two references refer to the same object, if either reference is used to modify the
object, both references will see the change because there is still only a single object.
But any time we make any changes at all to a String, the VM will update the reference
variable to refer to a different object. The different object might be a new object, or it
might not be, but it will definitely be a different object. The reason we can't say for
sure whether a new object is created is because of the String constant pool, which
we'll cover in Chapter 5.

You need to understand what happens when you use a String reference variable
to modify a string:

■ A new string is created (or a matching String is found in the String pool),
leaving the original String object untouched.

■ The reference used to modify the String (or rather, make a new String
by modifying a copy of the original) is then assigned the brand new String
object.

So when you say,

1. String s = "Fred";
2. String t = s; // Now t and s refer to the same
 // String object
3. t.toUpperCase(); // Invoke a String method that changes
 // the String

you haven't changed the original String object created on line 1. When line 2
completes, both t and s reference the same String object. But when line 3 runs,
rather than modifying the object referred to by t and s (which is the one and only
String object up to this point), a brand new String object is created. And then it's
abandoned. Because the new String isn't assigned to a String variable, the newly
created String (which holds the string "FRED") is toast. So although two String
objects were created in the preceding code, only one is actually referenced, and both
t and s refer to it. The behavior of Strings is extremely important in the exam, so
we'll cover it in much more detail in Chapter 5.

03-ch03.indd 193 8/28/2014 3:50:55 PM

194 Chapter 3: Assignments

CERTIFICATION OBJECTIVE

Passing Variables into Methods
(OCA Objective 6.8)

6.8 Determine the effect upon object references and primitive values when they are passed
into methods that change the values.

Methods can be declared to take primitives and/or object references. You need to
know how (or if) the caller's variable can be affected by the called method. The
difference between object reference and primitive variables, when passed into
methods, is huge and important. To understand this section, you'll need to be
comfortable with the information covered in the "Literals, Assignments, and
Variables" section in the early part of this chapter.

Passing Object Reference Variables

When you pass an object variable into a method, you must keep in mind that you're
passing the object reference, and not the actual object itself. Remember that a
reference variable holds bits that represent (to the underlying VM) a way to get to a
specific object in memory (on the heap). More importantly, you must remember that
you aren't even passing the actual reference variable, but rather a copy of the
reference variable. A copy of a variable means you get a copy of the bits in that
variable, so when you pass a reference variable, you're passing a copy of the bits
representing how to get to a specific object. In other words, both the caller and the
called method will now have identical copies of the reference; thus, both will refer
to the same exact (not a copy) object on the heap.

For this example, we'll use the Dimension class from the java.awt package:

 1. import java.awt.Dimension;
 2. class ReferenceTest {
 3. public static void main (String [] args) {
 4. Dimension d = new Dimension(5,10);
 5. ReferenceTest rt = new ReferenceTest();
 6. System.out.println("Before modify() d.height = "
 + d.height);
 7. rt.modify(d);
 8. System.out.println("After modify() d.height = "
 + d.height);
 9. }

03-ch03.indd 194 8/28/2014 3:50:55 PM

 Passing Variables into Methods (OCA Objective 6.8) 195

10. void modify(Dimension dim) {
11. dim.height = dim.height + 1;
12. System.out.println("dim = " + dim.height);
13. }
14. }

When we run this class, we can see that the modify() method was indeed able to
modify the original (and only) Dimension object created on line 4.

C:\Java Projects\Reference>java ReferenceTest
Before modify() d.height = 10
dim = 11
After modify() d.height = 11

Notice when the Dimension object on line 4 is passed to the modify() method,
any changes to the object that occur inside the method are being made to the object
whose reference was passed. In the preceding example, reference variables d and dim
both point to the same object.

Does Java Use Pass-By-Value Semantics?

If Java passes objects by passing the reference variable instead, does that mean Java
uses pass-by-reference for objects? Not exactly, although you'll often hear and read
that it does. Java is actually pass-by-value for all variables running within a single
VM. Pass-by-value means pass-by-variable-value. And that means pass-by-copy-of-
the-variable! (There's that word copy again!)

It makes no difference if you're passing primitive or reference variables; you are
always passing a copy of the bits in the variable. So for a primitive variable, you're
passing a copy of the bits representing the value. For example, if you pass an int
variable with the value of 3, you're passing a copy of the bits representing 3. The
called method then gets its own copy of the value to do with it what it likes.

And if you're passing an object reference variable, you're passing a copy of the bits
representing the reference to an object. The called method then gets its own copy of
the reference variable to do with it what it likes. But because two identical reference
variables refer to the exact same object, if the called method modifies the object (by
invoking setter methods, for example), the caller will see that the object the caller's
original variable refers to has also been changed. In the next section, we'll look at
how the picture changes when we're talking about primitives.

The bottom line on pass-by-value: The called method can't change the caller's
variable, although for object reference variables, the called method can change the
object the variable referred to. What's the difference between changing the variable
and changing the object? For object references, it means the called method can't

03-ch03.indd 195 8/28/2014 3:50:55 PM

196 Chapter 3: Assignments

reassign the caller's original reference variable and make it refer to a different object
or null. For example, in the following code fragment,

void bar() {
 Foo f = new Foo();
 doStuff(f);
}
void doStuff(Foo g) {
 g.setName("Boo");
 g = new Foo();
}

reassigning g does not reassign f! At the end of the bar() method, two Foo objects
have been created: one referenced by the local variable f and one referenced by the
local (argument) variable g. Because the doStuff() method has a copy of the
reference variable, it has a way to get to the original Foo object, for instance to call
the setName() method. But the doStuff() method does not have a way to get to
the f reference variable. So doStuff() can change values within the object f refers
to, but doStuff() can't change the actual contents (bit pattern) of f. In other
words, doStuff() can change the state of the object that f refers to, but it can't
make f refer to a different object!

Passing Primitive Variables

Let's look at what happens when a primitive variable is passed to a method:

class ReferenceTest {
 public static void main (String [] args) {
 int a = 1;
 ReferenceTest rt = new ReferenceTest();
 System.out.println("Before modify() a = " + a);
 rt.modify(a);
 System.out.println("After modify() a = " + a);
 }
 void modify(int number) {
 number = number + 1;
 System.out.println("number = " + number);
 }
}

In this simple program, the variable a is passed to a method called modify(),
which increments the variable by 1. The resulting output looks like this:

Before modify() a = 1
number = 2
After modify() a = 1

03-ch03.indd 196 8/28/2014 3:50:55 PM

 Passing Variables into Methods (OCA Objective 6.8) 197

Notice that a did not change after it was passed to the method. Remember, it was
a copy of a that was passed to the method. When a primitive variable is passed to a
method, it is passed by value, which means pass-by-copy-of-the-bits-in-the-variable.

FROM THE CLASSROOM

The Shadowy World of Variables

Just when you think you've got it all figured out, you see a piece of code with variables not
behaving the way you think they should. You might have stumbled into code with a shadowed
variable. You can shadow a variable in several ways. We'll look at one way that might trip you
up: hiding a static variable by shadowing it with a local variable.

Shadowing involves reusing a variable name that's already been declared somewhere
else. The effect of shadowing is to hide the previously declared variable in such a way that it
may look as though you're using the hidden variable, but you're actually using the shadowing
variable. You might find reasons to shadow a variable intentionally, but typically it happens
by accident and causes hard-to-find bugs. On the exam, you can expect to see questions where
shadowing plays a role.

You can shadow a variable by declaring a local variable of the same name, either directly or
as part of an argument:

class Foo {
 static int size = 7;
 static void changeIt(int size) {
 size = size + 200;
 System.out.println("size in changeIt is " + size);
 }
 public static void main (String [] args) {
 Foo f = new Foo();
 System.out.println("size = " + size);
 changeIt(size);
 System.out.println("size after changeIt is " + size);
 }
}

The preceding code appears to change the static size variable in the changeIt() method,
but because changeIt() has a parameter named size, the local size variable is modified
while the static size variable is untouched.

FROM THE CLASSROOM

03-ch03.indd 197 8/28/2014 3:50:55 PM

198 Chapter 3: Assignments

FROM THE CLASSROOM

Running class Foo prints this:

%java Foo
size = 7
size in changeIt is 207
size after changeIt is 7

Things become more interesting when the shadowed variable is an object reference, rather
than a primitive:

class Bar {
 int barNum = 28;
}

class Foo {
 Bar myBar = new Bar();
 void changeIt(Bar myBar) {
 myBar.barNum = 99;
 System.out.println("myBar.barNum in changeIt is " + myBar.barNum);
 myBar = new Bar();
 myBar.barNum = 420;
 System.out.println("myBar.barNum in changeIt is now " + myBar.barNum);
 }
 public static void main (String [] args) {
 Foo f = new Foo();
 System.out.println("f.myBar.barNum is " + f.myBar.barNum);
 f.changeIt(f.myBar);
 System.out.println("f.myBar.barNum after changeIt is "
 + f.myBar.barNum);
 }
}

The preceding code prints out this:

f.myBar.barNum is 28
myBar.barNum in changeIt is 99
myBar.barNum in changeIt is now 420
f.myBar.barNum after changeIt is 99

You can see that the shadowing variable (the local parameter myBar in changeIt()) can
still affect the myBar instance variable, because the myBar parameter receives a reference to
the same Bar object. But when the local myBar is reassigned a new Bar object, which we then
modify by changing its barNum value, Foo's original myBar instance variable is untouched.

FROM THE CLASSROOM

03-ch03.indd 198 8/28/2014 3:50:55 PM

 Garbage Collection (OCA Objective 2.4) 199

CERTIFICATION OBJECTIVE

Garbage Collection (OCA Objective 2.4)

2.4 Explain an object's lifecycle.

As of Spring 2014, the official exam objectives don't use the phrases "garbage
collection" or "memory management." These two concepts are implied when the
objective uses the phrase "object's lifecycle."

Overview of Memory Management and Garbage Collection

This is the section you've been waiting for! It's finally time to dig into the wonderful
world of memory management and garbage collection.

Memory management is a crucial element in many types of applications. Consider
a program that reads in large amounts of data, say from somewhere else on a
network, and then writes that data into a database on a hard drive. A typical design
would be to read the data into some sort of collection in memory, perform some
operations on the data, and then write the data into the database. After the data is
written into the database, the collection that stored the data temporarily must be
emptied of old data or deleted and re-created before processing the next batch. This
operation might be performed thousands of times, and in languages like C or C++
that do not offer automatic garbage collection, a small flaw in the logic that manually
empties or deletes the collection data structures can allow small amounts of memory
to be improperly reclaimed or lost. Forever. These small losses are called memory leaks,
and over many thousands of iterations they can make enough memory inaccessible
that programs will eventually crash. Creating code that performs manual memory
management cleanly and thoroughly is a nontrivial and complex task, and while
estimates vary, it is arguable that manual memory management can double the
development effort for a complex program.

Java's garbage collector provides an automatic solution to memory management.
In most cases it frees you from having to add any memory management logic to your
application. The downside to automatic garbage collection is that you can't
completely control when it runs and when it doesn't.

03-ch03.indd 199 8/28/2014 3:50:55 PM

200 Chapter 3: Assignments

Overview of Java's Garbage Collector

Let's look at what we mean when we talk about garbage collection in the land of
Java. From the 30,000 ft. level, garbage collection is the phrase used to describe
automatic memory management in Java. Whenever a software program executes (in
Java, C, C++, Lisp, Ruby, and so on), it uses memory in several different ways. We're
not going to get into Computer Science 101 here, but it's typical for memory to be
used to create a stack, a heap, in Java's case constant pools and method areas. The
heap is that part of memory where Java objects live, and it's the one and only part
of memory that is in any way involved in the garbage collection process.

A heap is a heap is a heap. For the exam, it's important that you know that you
can call it the heap, you can call it the garbage collectible heap, or you can call it
Johnson, but there is one and only one heap.

So, all of garbage collection revolves around making sure that the heap has as
much free space as possible. For the purpose of the exam, what this boils down to is
deleting any objects that are no longer reachable by the Java program running. We'll
talk more about what "reachable" means in a minute, but let's drill this point in.
When the garbage collector runs, its purpose is to find and delete objects that
cannot be reached. If you think of a Java program as being in a constant cycle of
creating the objects it needs (which occupy space on the heap), and then discarding
them when they're no longer needed, creating new objects, discarding them, and so
on, the missing piece of the puzzle is the garbage collector. When it runs, it looks for
those discarded objects and deletes them from memory so that the cycle of using
memory and releasing it can continue. Ah, the great circle of life.

When Does the Garbage Collector Run?

The garbage collector is under the control of the JVM; JVM decides when to run the
garbage collector. From within your Java program you can ask the JVM to run the
garbage collector, but there are no guarantees, under any circumstances, that the
JVM will comply. Left to its own devices, the JVM will typically run the garbage
collector when it senses that memory is running low. Experience indicates that when
your Java program makes a request for garbage collection, the JVM will usually grant
your request in short order, but there are no guarantees. Just when you think you can
count on it, the JVM will decide to ignore your request.

03-ch03.indd 200 8/28/2014 3:50:55 PM

 Garbage Collection (OCA Objective 2.4) 201

How Does the Garbage Collector Work?

You just can't be sure. You might hear that the garbage collector uses a mark and
sweep algorithm, and for any given Java implementation that might be true, but the
Java specification doesn't guarantee any particular implementation. You might hear
that the garbage collector uses reference counting; once again maybe yes, maybe no.
The important concept for you to understand for the exam is, When does an object
become eligible for garbage collection? To answer this question fully, we have to
jump ahead a little bit and talk about threads. (See Chapter 13 for the real scoop on
threads.)

In a nutshell, every Java program has from one to many threads. Each thread has
its own little execution stack. Normally, you (the programmer) cause at least one
thread to run in a Java program, the one with the main() method at the bottom of
the stack. However, as you'll learn in excruciating detail in Chapter 13, there are
many really cool reasons to launch additional threads from your initial thread. In
addition to having its own little execution stack, each thread has its own lifecycle.
For now, all you need to know is that threads can be alive or dead.

With this background information, we can now say with stunning clarity and
resolve that an object is eligible for garbage collection when no live thread can access it.
(Note: Due to the vagaries of the String constant pool, the exam focuses its garbage
collection questions on non-String objects, and so our garbage collection
discussions apply to only non-String objects too.)

Based on that definition, the garbage collector performs some magical, unknown
operations, and when it discovers an object that can't be reached by any live thread,
it will consider that object as eligible for deletion, and it might even delete it at
some point. (You guessed it: it also might never delete it.) When we talk about
reaching an object, we're really talking about having a reachable reference variable
that refers to the object in question. If our Java program has a reference variable that
refers to an object, and that reference variable is available to a live thread, then that
object is considered reachable. We'll talk more about how objects can become
unreachable in the following section.

Can a Java application run out of memory? Yes. The garbage collection system
attempts to remove objects from memory when they are not used. However, if you
maintain too many live objects (objects referenced from other live objects), the
system can run out of memory. Garbage collection cannot ensure that there is
enough memory, only that the memory that is available will be managed as
efficiently as possible.

03-ch03.indd 201 8/28/2014 3:50:55 PM

202 Chapter 3: Assignments

Writing Code That Explicitly Makes Objects Eligible for Collection

In the preceding section, you learned the theories behind Java garbage collection. In this
section, we show how to make objects eligible for garbage collection using actual code.
We also discuss how to attempt to force garbage collection if it is necessary, and how you
can perform additional cleanup on objects before they are removed from memory.

Nulling a Reference

As we discussed earlier, an object becomes eligible for garbage collection when there
are no more reachable references to it. Obviously, if there are no reachable
references, it doesn't matter what happens to the object. For our purposes it is just
floating in space, unused, inaccessible, and no longer needed.

The first way to remove a reference to an object is to set the reference variable
that refers to the object to null. Examine the following code:

1. public class GarbageTruck {
2. public static void main(String [] args) {
3. StringBuffer sb = new StringBuffer("hello");
4. System.out.println(sb);
5. // The StringBuffer object is not eligible for collection
6. sb = null;
7. // Now the StringBuffer object is eligible for collection
8. }
9. }

The StringBuffer object with the value hello is assigned to the reference
variable sb in the third line. To make the object eligible (for garbage collection),
we set the reference variable sb to null, which removes the single reference that
existed to the StringBuffer object. Once line 6 has run, our happy little hello
StringBuffer object is doomed, eligible for garbage collection.

Reassigning a Reference Variable

We can also decouple a reference variable from an object by setting the reference
variable to refer to another object. Examine the following code:

class GarbageTruck {
 public static void main(String [] args) {
 StringBuffer s1 = new StringBuffer("hello");
 StringBuffer s2 = new StringBuffer("goodbye");
 System.out.println(s1);
 // At this point the StringBuffer "hello" is not eligible
 s1 = s2; // Redirects s1 to refer to the "goodbye" object
 // Now the StringBuffer "hello" is eligible for collection
 }
}

03-ch03.indd 202 8/28/2014 3:50:55 PM

 Garbage Collection (OCA Objective 2.4) 203

Objects that are created in a method also need to be considered. When a method
is invoked, any local variables created exist only for the duration of the method.
Once the method has returned, the objects created in the method are eligible for
garbage collection. There is an obvious exception, however. If an object is returned
from the method, its reference might be assigned to a reference variable in the
method that called it; hence, it will not be eligible for collection. Examine the
following code:

import java.util.Date;
public class GarbageFactory {
 public static void main(String [] args) {
 Date d = getDate();
 doComplicatedStuff();
 System.out.println("d = " + d);
 }

 public static Date getDate() {
 Date d2 = new Date();
 StringBuffer now = new StringBuffer(d2.toString());
 System.out.println(now);
 return d2;
 }
}

In the preceding example, we created a method called getDate() that returns a
Date object. This method creates two objects: a Date and a StringBuffer
containing the date information. Since the method returns a reference to the Date
object and this reference is assigned to a local variable, it will not be eligible for
collection even after the getDate() method has completed. The StringBuffer
object, though, will be eligible, even though we didn't explicitly set the now variable
to null.

Isolating a Reference

There is another way in which objects can become eligible for garbage collection,
even if they still have valid references! We call this scenario "islands of isolation."

A simple example is a class that has an instance variable that is a reference
variable to another instance of the same class. Now imagine that two such instances
exist and that they refer to each other. If all other references to these two objects are
removed, then even though each object still has a valid reference, there will be no
way for any live thread to access either object. When the garbage collector runs, it
can usually discover any such islands of objects and remove them. As you can

03-ch03.indd 203 8/28/2014 3:50:55 PM

204 Chapter 3: Assignments

imagine, such islands can become quite large, theoretically containing hundreds of
objects. Examine the following code:

public class Island {
 Island i;
 public static void main(String [] args) {

 Island i2 = new Island();
 Island i3 = new Island();
 Island i4 = new Island();

 i2.i = i3; // i2 refers to i3
 i3.i = i4; // i3 refers to i4
 i4.i = i2; // i4 refers to i2

 i2 = null;
 i3 = null;
 i4 = null;

 // do complicated, memory intensive stuff
 }
}

When the code reaches // do complicated, the three Island objects
(previously known as i2, i3, and i4) have instance variables so that they refer to
each other, but their links to the outside world (i2, i3, and i4) have been nulled.
These three objects are eligible for garbage collection.

This covers everything you will need to know about making objects eligible for
garbage collection. Study Figure 3-2 to reinforce the concepts of objects without
references and islands of isolation.

Forcing Garbage Collection (OCP 5 Candidates Only)

The first thing that we should mention here is that, contrary to this section's title,
garbage collection cannot be forced. However, Java provides some methods that
allow you to request that the JVM perform garbage collection.

Note: As of the Java 6 exam, the topic of using System.gc() has been removed
from the exam. The garbage collector has evolved to such an advanced state that
it's recommended that you never invoke System.gc() in your code—leave it to
the JVM. We are leaving this section in the book in case you're studying for the
OCP 5 exam.

In reality, it is possible only to suggest to the JVM that it perform garbage
collection. However, there are no guarantees the JVM will actually remove all of the

03-ch03.indd 204 8/28/2014 3:50:55 PM

 Garbage Collection (OCA Objective 2.4) 205

unused objects from memory (even if garbage collection is run). It is essential that
you understand this concept for the exam.

The garbage collection routines that Java provides are members of the Runtime
class. The Runtime class is a special class that has a single object (a Singleton) for
each main program. The Runtime object provides a mechanism for communicating
directly with the virtual machine. To get the Runtime instance, you can use the
method Runtime.getRuntime(), which returns the Singleton. Once you have
the Singleton, you can invoke the garbage collector using the gc() method.
Alternatively, you can call the same method on the System class, which has static
methods that can do the work of obtaining the Singleton for you. The simplest
way to ask for garbage collection (remember—just a request) is

System.gc();

 FIGURE 3-2 Island objects eligible for garbage collection

i2

i3
i3.n

Three island Objects

i2.n

i4.n

The heap

Indicated an
active reference

x

Indicates a
deleted reference

Lost Object

i4

public class Island (

Island i2 = new Island();
Island i3 = new Island();
Island i4 = new Island();
i2.n = i3;
i3.n = i4;

i2 = null;
i3 = null;
i4 = null;
doComplexStuff();

public class Lost
public static void main(String
Lost x = new Lost ();
x = null;
doComplexStuff();

args)

i4.n = i2;

public static void main(String [] args) {

{

[{]

}

}

}

}

Island n;

03-ch03.indd 205 8/28/2014 3:50:56 PM

206 Chapter 3: Assignments

Theoretically, after calling System.gc(), you will have as much free memory as
possible. We say "theoretically" because this routine does not always work that way.
First, your JVM may not have implemented this routine; the language specification
allows this routine to do nothing at all. Second, another thread (see Chapter 13) might
grab lots of memory right after you run the garbage collector.

This is not to say that System.gc() is a useless method—it's much better than
nothing. You just can't rely on System.gc() to free up enough memory so that you
don't have to worry about running out of memory. The Certification Exam is
interested in guaranteed behavior, not probable behavior.

Now that you are somewhat familiar with how this works, let's do a little
experiment to see the effects of garbage collection. The following program lets us
know how much total memory the JVM has available to it and how much free
memory it has. It then creates 10,000 Date objects. After this, it tells us how much
memory is left and then calls the garbage collector (which, if it decides to run,
should halt the program until all unused objects are removed). The final free
memory result should indicate whether it has run. Let's look at the program:

 1. import java.util.Date;
 2. public class CheckGC {
 3. public static void main(String [] args) {
 4. Runtime rt = Runtime.getRuntime();
 5. System.out.println("Total JVM memory: "
 + rt.totalMemory());
 6. System.out.println("Before Memory = "
 + rt.freeMemory());
 7. Date d = null;
 8. for(int i = 0;i<10000;i++) {
 9. d = new Date();
10. d = null;
11. }
12. System.out.println("After Memory = "
 + rt.freeMemory());
13. rt.gc(); // an alternate to System.gc()
14. System.out.println("After GC Memory = "
 + rt.freeMemory());
15. }
16. }

Now, let's run the program and check the results:

Total JVM memory: 1048568
Before Memory = 703008
After Memory = 458048
After GC Memory = 818272

03-ch03.indd 206 8/28/2014 3:50:56 PM

 Garbage Collection (OCA Objective 2.4) 207

As you can see, the JVM actually did decide to garbage collect (that is, delete)
the eligible objects. In the preceding example, we suggested that the JVM to perform
garbage collection with 458,048 bytes of memory remaining, and it honored our
request. This program has only one user thread running, so there was nothing else
going on when we called rt.gc(). Keep in mind that the behavior when gc() is
called may be different for different JVMs, so there is no guarantee that the unused
objects will be removed from memory. About the only thing you can guarantee is
that if you are running very low on memory, the garbage collector will run before it
throws an OutOfMemoryException.

EXERCISE 3-2

Garbage Collection Experiment

Try changing the CheckGC program by putting lines 13 and 14 inside a loop. You
might see that not all memory is released on any given run of the GC.

Cleaning Up Before Garbage Collection—the finalize() Method

Java provides a mechanism that lets you run some code just before your object is
deleted by the garbage collector. This code is located in a method named finalize()
that all classes inherit from class Object. On the surface, this sounds like a great
idea; maybe your object opened up some resources, and you'd like to close them
before your object is deleted. The problem is that, as you may have gathered by now,
you can never count on the garbage collector to delete an object. So, any code that
you put into your class's overridden finalize() method is not guaranteed to run.
Because the finalize() method for any given object might run, but you can't
count on it, don't put any essential code into your finalize() method. In fact, we
recommend that in general you don't override finalize() at all.

Tricky Little finalize() Gotchas

There are a couple of concepts concerning finalize() that you need to remember:

■ For any given object, finalize() will be called only once (at most) by the
garbage collector.

■ Calling finalize() can actually result in saving an object from deletion.

03-ch03.indd 207 8/28/2014 3:50:56 PM

208 Chapter 3: Assignments

Let's look into these statements a little further. First of all, remember that any
code you can put into a normal method you can put into finalize(). For example,
in the finalize() method you could write code that passes a reference to the
object in question back to another object, effectively ineligible-izing the object for
garbage collection. If at some point later on this same object becomes eligible for
garbage collection again, the garbage collector can still process the object and delete
it. The garbage collector, however, will remember that, for this object, finalize()
already ran, and it will not run finalize() again.

CERTIFICATION SUMMARY

This chapter covered a wide range of topics. Don't worry if you have to review some
of these topics as you get into later chapters. This chapter includes a lot of
foundational stuff that will come into play later.

We started the chapter by reviewing the stack and the heap; remember that local
variables live on the stack and instance variables live with their objects on the heap.

We reviewed legal literals for primitives and Strings, and then we discussed the
basics of assigning values to primitives and reference variables, and the rules for
casting primitives.

Next we discussed the concept of scope, or "How long will this variable live?"
Remember the four basic scopes, in order of lessening life span: static, instance,
local, and block.

We covered the implications of using uninitialized variables, and the importance
of the fact that local variables MUST be assigned a value explicitly. We talked
about some of the tricky aspects of assigning one reference variable to another and
some of the finer points of passing variables into methods, including a discussion of
"shadowing."

Finally, we dove into garbage collection, Java's automatic memory management
feature. We learned that the heap is where objects live and where all the cool
garbage collection activity takes place. We learned that in the end, the JVM will
perform garbage collection whenever it wants to. You (the programmer) can request
a garbage collection run, but you can't force it. We talked about garbage collection
only applying to objects that are eligible, and that eligible means "inaccessible from
any live thread." Finally, we discussed the rarely useful finalize() method and
what you'll have to know about it for the exam. All in all, this was one fascinating
chapter.

03-ch03.indd 208 8/28/2014 3:50:56 PM

Two-Minute Drill 209

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Stack and Heap

❑ Local variables (method variables) live on the stack.

❑ Objects and their instance variables live on the heap.

Literals and Primitive Casting (OCA Objective 2.1)

❑ Integer literals can be binary, decimal, octal (such as 013), or hexadecimal
(such as 0x3d).

❑ Literals for longs end in L or l.

❑ Float literals end in F or f, and double literals end in a digit or D or d.

❑ The boolean literals are true and false.

❑ Literals for chars are a single character inside single quotes: 'd'.

Scope (OCA Objective 1.1)

❑ Scope refers to the lifetime of a variable.

❑ There are four basic scopes:

❑ Static variables live basically as long as their class lives.

❑ Instance variables live as long as their object lives.

❑ Local variables live as long as their method is on the stack; however, if
their method invokes another method, they are temporarily unavailable.

❑ Block variables (for example, in a for or an if) live until the block
completes.

✓

03-ch03.indd 209 8/28/2014 3:50:56 PM

210 Chapter 3: Assignments

Basic Assignments (OCA Objectives 2.1, 2.2, and 2.3)

❑ Literal integers are implicitly ints.

❑ Integer expressions always result in an int-sized result, never smaller.

❑ Floating-point numbers are implicitly doubles (64 bits).

❑ Narrowing a primitive truncates the high order bits.

❑ Compound assignments (such as +=) perform an automatic cast.

❑ A reference variable holds the bits that are used to refer to an object.

❑ Reference variables can refer to subclasses of the declared type but not to
superclasses.

❑ When you create a new object, such as Button b = new Button();, the
JVM does three things:

❑ Makes a reference variable named b, of type Button.

❑ Creates a new Button object.

❑ Assigns the Button object to the reference variable b.

Using a Variable or Array Element That Is Uninitialized and
Unassigned (OCA Objectives 4.1 and 4.2)

❑ When an array of objects is instantiated, objects within the array are not in-
stantiated automatically, but all the references get the default value of null.

❑ When an array of primitives is instantiated, elements get default values.

❑ Instance variables are always initialized with a default value.

❑ Local/automatic/method variables are never given a default value. If you at-
tempt to use one before initializing it, you'll get a compiler error.

03-ch03.indd 210 8/28/2014 3:50:57 PM

Two-Minute Drill 211

Passing Variables into Methods (OCA Objective 6.8)

❑ Methods can take primitives and/or object references as arguments.

❑ Method arguments are always copies.

❑ Method arguments are never actual objects (they can be references to
objects).

❑ A primitive argument is an unattached copy of the original primitive.

❑ A reference argument is another copy of a reference to the original object.

❑ Shadowing occurs when two variables with different scopes share the same
name. This leads to hard-to-find bugs and hard-to-answer exam questions.

Garbage Collection (OCA Objective 2.4)

❑ In Java, garbage collection (GC) provides automated memory management.

❑ The purpose of GC is to delete objects that can't be reached.

❑ Only the JVM decides when to run the GC; you can only suggest it.

❑ You can't know the GC algorithm for sure.

❑ Objects must be considered eligible before they can be garbage collected.

❑ An object is eligible when no live thread can reach it.

❑ To reach an object, you must have a live, reachable reference to that object.

❑ Java applications can run out of memory.

❑ Islands of objects can be garbage collected, even though they refer to each
other.

❑ Request garbage collection with System.gc(); (for OCP 5 candidates only).

❑ The Class object has a finalize() method.

❑ The finalize() method is guaranteed to run once and only once before the
garbage collector deletes an object.

❑ The garbage collector makes no guarantees; finalize() may never run.

❑ You can ineligible-ize an object for GC from within finalize().

03-ch03.indd 211 8/28/2014 3:50:57 PM

212 Chapter 3: Assignments

SELF TEST

 1. Given:
class CardBoard {
 Short story = 200;
 CardBoard go(CardBoard cb) {
 cb = null;
 return cb;
 }
 public static void main(String[] args) {
 CardBoard c1 = new CardBoard();
 CardBoard c2 = new CardBoard();
 CardBoard c3 = c1.go(c2);
 c1 = null;
 // do Stuff
} }

 When // do Stuff is reached, how many objects are eligible for garbage collection?
 A. 0
 B. 1
 C. 2
 D. Compilation fails
 E. It is not possible to know
 F. An exception is thrown at runtime

 2. Given:
public class Fishing {
 byte b1 = 4;
 int i1 = 123456;
 long L1 = (long)i1; // line A
 short s2 = (short)i1; // line B
 byte b2 = (byte)i1; // line C
 int i2 = (int)123.456; // line D
 byte b3 = b1 + 7; // line E
}

 Which lines WILL NOT compile? (Choose all that apply.)
 A. Line A
 B. Line B
 C. Line C
 D. Line D
 E. Line E

03-ch03.indd 212 8/28/2014 3:50:58 PM

Self Test 213

 3. Given:

public class Literally {
 public static void main(String[] args) {
 int i1 = 1_000; // line A
 int i2 = 10_00; // line B
 int i3 = _10_000; // line C
 int i4 = 0b101010; // line D
 int i5 = 0B10_1010; // line E
 int i6 = 0x2_a; // line F
 }
}

 Which lines WILL NOT compile? (Choose all that apply.)
 A. Line A
 B. Line B
 C. Line C
 D. Line D
 E. Line E
 F. Line F

 4. Given:

class Mixer {
 Mixer() { }
 Mixer(Mixer m) { m1 = m; }
 Mixer m1;
 public static void main(String[] args) {
 Mixer m2 = new Mixer();
 Mixer m3 = new Mixer(m2); m3.go();
 Mixer m4 = m3.m1; m4.go();
 Mixer m5 = m2.m1; m5.go();
 }
 void go() { System.out.print("hi "); }
}

 What is the result?
 A. hi

 B. hi hi

 C. hi hi hi

 D. Compilation fails
 E. hi, followed by an exception
 F. hi hi, followed by an exception

03-ch03.indd 213 8/28/2014 3:50:58 PM

214 Chapter 3: Assignments

 5. Given:

class Fizz {
 int x = 5;
 public static void main(String[] args) {
 final Fizz f1 = new Fizz();
 Fizz f2 = new Fizz();
 Fizz f3 = FizzSwitch(f1,f2);
 System.out.println((f1 == f3) + " " + (f1.x == f3.x));
 }
 static Fizz FizzSwitch(Fizz x, Fizz y) {
 final Fizz z = x;
 z.x = 6;
 return z;
} }

 What is the result?
 A. true true

 B. false true

 C. true false

 D. false false

 E. Compilation fails
 F. An exception is thrown at runtime

 6. Given:

public class Mirror {
 int size = 7;
 public static void main(String[] args) {
 Mirror m1 = new Mirror();
 Mirror m2 = m1;
 int i1 = 10;
 int i2 = i1;
 go(m2, i2);
 System.out.println(m1.size + " " + i1);
 }
 static void go(Mirror m, int i) {
 m.size = 8;
 i = 12;
 }
}

03-ch03.indd 214 8/28/2014 3:50:58 PM

Self Test 215

 What is the result?
 A. 7 10

 B. 8 10

 C. 7 12

 D. 8 12

 E. Compilation fails
 F. An exception is thrown at runtime

 7. Given:

public class Wind {
 int id;
 Wind(int i) { id = i; }
 public static void main(String[] args) {
 new Wind(3).go();
 // commented line
 }
 void go() {
 Wind w1 = new Wind(1);
 Wind w2 = new Wind(2);
 System.out.println(w1.id + " " + w2.id);
 }
}

 When execution reaches the commented line, which are true? (Choose all that apply.)
 A. The output contains 1
 B. The output contains 2
 C. The output contains 3
 D. Zero objects are eligible for garbage collection
 E. One object is eligible for garbage collection
 F. Two objects are eligible for garbage collection
 G. Three objects are eligible for garbage collection

03-ch03.indd 215 8/28/2014 3:50:58 PM

216 Chapter 3: Assignments

 8. Given:

 3. public class Ouch {
 4. static int ouch = 7;
 5. public static void main(String[] args) {
 6. new Ouch().go(ouch);
 7. System.out.print(" " + ouch);
 8. }
 9. void go(int ouch) {
10. ouch++;
11. for(int ouch = 3; ouch < 6; ouch++)
12. ;
13. System.out.print(" " + ouch);
14. }
15. }

 What is the result?
 A. 5 7

 B. 5 8

 C. 8 7

 D. 8 8

 E. Compilation fails
 F. An exception is thrown at runtime

 9. Given:

public class Happy {
 int id;
 Happy(int i) { id = i; }
 public static void main(String[] args) {
 Happy h1 = new Happy(1);
 Happy h2 = h1.go(h1);
 System.out.println(h2.id);
 }
 Happy go(Happy h) {
 Happy h3 = h;
 h3.id = 2;
 h1.id = 3;
 return h1;
 }
}

03-ch03.indd 216 8/28/2014 3:50:58 PM

Self Test 217

 What is the result?
 A. 1

 B. 2

 C. 3

 D. Compilation fails
 E. An exception is thrown at runtime

 10. Given:

public class Network {
 Network(int x, Network n) {
 id = x;
 p = this;
 if(n != null) p = n;
 }
 int id;
 Network p;
 public static void main(String[] args) {
 Network n1 = new Network(1, null);
 n1.go(n1);
 }
 void go(Network n1) {
 Network n2 = new Network(2, n1);
 Network n3 = new Network(3, n2);
 System.out.println(n3.p.p.id);
 }
}

 What is the result?
 A. 1

 B. 2

 C. 3

 D. null

 E. Compilation fails

03-ch03.indd 217 8/28/2014 3:50:58 PM

218 Chapter 3: Assignments

 11. Given:

 3. class Beta { }
 4. class Alpha {
 5. static Beta b1;
 6. Beta b2;
 7. }
 8. public class Tester {
 9. public static void main(String[] args) {
10. Beta b1 = new Beta(); Beta b2 = new Beta();
11. Alpha a1 = new Alpha(); Alpha a2 = new Alpha();
12. a1.b1 = b1;
13. a1.b2 = b1;
14. a2.b2 = b2;
15. a1 = null; b1 = null; b2 = null;
16. // do stuff
17. }
18. }

 When line 16 is reached, how many objects will be eligible for garbage collection?
 A. 0
 B. 1
 C. 2
 D. 3
 E. 4
 F. 5

 12. Given:

public class Telescope {
 static int magnify = 2;
 public static void main(String[] args) {
 go();
 }
 static void go() {
 int magnify = 3;
 zoomIn();
 }
 static void zoomIn() {
 magnify *= 5;
 zoomMore(magnify);
 System.out.println(magnify);
 }
 static void zoomMore(int magnify) {
 magnify *= 7;
 }
}

03-ch03.indd 218 8/28/2014 3:50:58 PM

Self Test 219

 What is the result?
 A. 2

 B. 10

 C. 15

 D. 30

 E. 70

 F. 105

 G. Compilation fails

 13. Given:

 3. public class Dark {
 4. int x = 3;
 5. public static void main(String[] args) {
 6. new Dark().go1();
 7. }
 8. void go1() {
 9. int x;
10. go2(++x);
11. }
12. void go2(int y) {
13. int x = ++y;
14. System.out.println(x);
15. }
16. }

 What is the result?
 A. 2
 B. 3
 C. 4
 D. 5
 E. Compilation fails
 F. An exception is thrown at runtime

03-ch03.indd 219 8/28/2014 3:50:58 PM

220 Chapter 3: Assignments

SELF TEST ANSWERS

 1. ☑ C is correct. Only one CardBoard object (c1) is eligible, but it has an associated Short
wrapper object that is also eligible.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCA Objective 2.4)

 2. ☑ E is correct; compilation of line E fails. When a mathematical operation is performed on
any primitives smaller than ints, the result is automatically cast to an integer.
☐✗ A, B, C, and D are all legal primitive casts. (OCA Objective 2.1)

 3. ☑ C is correct; line C will NOT compile. As of Java 7, underscores can be included in
numeric literals, but not at the beginning or the end.
☐✗ A, B, D, E, and G are incorrect. A and B are legal numeric literals. D and E are examples
of valid binary literals, which are also new to Java 7, and G is a valid hexadecimal literal that
uses an underscore. (OCA Objective 2.1 and Upgrade Objective 1.2)

 4. ☑ F is correct. The m2 object's m1 instance variable is never initialized, so when m5 tries to use
it a NullPointerException is thrown.
☐✗ A, B, C, D, and E are incorrect based on the above. (OCA Objectives 2.1, 2.3, and 2.5)

 5. ☑ A is correct. The references f1, z, and f3 all refer to the same instance of Fizz. The
final modifier assures that a reference variable cannot be referred to a different object, but
final doesn't keep the object's state from changing.
☐✗ B, C, D, E, and F are incorrect based on the above. (OCA Objective 2.2)

 6. ☑ B is correct. In the go() method, m refers to the single Mirror instance, but the int i is a
new int variable, a detached copy of i2.
☐✗ A, C, D, E, and F are incorrect based on the above. (OCA Objectives 2.2 and 2.3)

 7. ☑ A, B, and G are correct. The constructor sets the value of id for w1 and w2. When the
commented line is reached, none of the three Wind objects can be accessed, so they are eligible
to be garbage collected.
☐✗ C, D, E, and F are incorrect based on the above. (OCA Objectives 1.1, 2.3, and 2.4)

 8. ☑ E is correct. The parameter declared on line 9 is valid (although ugly), but the variable
name ouch cannot be declared again on line 11 in the same scope as the declaration on line 9.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCA Objectives 1.1, 2.1, and 2.5)

 9. ☑ D is correct. Inside the go() method, h1 is out of scope.
☐✗ A, B, C, and E are incorrect based on the above. (OCA Objectives 1.1 and 6.1)

 10. ☑ A is correct. Three Network objects are created. The n2 object has a reference to the n1
object, and the n3 object has a reference to the n2 object. The S.O.P. can be read as, "Use the
n3 object's Network reference (the first p), to find that object's reference (n2), and use that
object's reference (the second p) to find that object's (n1's) id, and print that id."
☐✗ B, C, D, and E are incorrect based on the above. (OCA Objectives, 2.2, 2.3, and 6.4)

03-ch03.indd 220 8/28/2014 3:50:58 PM

Self Test Answers 221

 11. ☑ B is correct. It should be clear that there is still a reference to the object referred to by a2,
and that there is still a reference to the object referred to by a2.b2. What might be less clear is
that you can still access the other Beta object through the static variable a2.b1—because it's
static.
☐✗ A, C, D, E, and F are incorrect based on the above. (OCA Objective 2.4)

 12. ☑ B is correct. In the Telescope class, there are three different variables named magnify.
The go() method's version and the zoomMore() method's version are not used in the
zoomIn() method. The zoomIn() method multiplies the class variable * 5. The result (10) is
sent to zoomMore(), but what happens in zoomMore() stays in zoomMore(). The S.O.P. prints
the value of zoomIn()'s magnify.
☐✗ A, C, D, E, F, and G are incorrect based on the above. (OCA Objectives 1.1 and 6.8)

 13. ☑ E is correct. In go1() the local variable x is not initialized.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCA Objectives 2.1, 2.3, and 2.5)

03-ch03.indd 221 8/28/2014 3:50:58 PM

This page intentionally left blank

44
OperatorsOperators

CERTIFICATION OBJECTIVES

Using Java Operators •
Use Parentheses to Override Operator •
Precedence

Test Equality Between Strings and Other •
Objects Using == and equals()

Two-Minute Drill ✓
Q&A Self Test

04-ch04.indd 223 9/2/2014 2:45:43 PM

224 Chapter 4: Operators

If you've got variables, you're going to modify them. You'll increment them, add them together,
and compare one to another (in about a dozen different ways). In this chapter, you'll learn
how to do all that in Java. For an added bonus, you'll learn how to do things that you'll

probably never use in the real world, but that will almost certainly be on the exam.

CERTIFICATION OBJECTIVE

Java Operators (OCA Objectives 3.1, 3.2, and 3.3)

3.1 Use Java operators.

3.2 Use parentheses to override operator precedence.

3.3 Test equality between strings and other objects using == and equals().

Java operators produce new values from one or more operands. (Just so we're all
clear, remember that operands are the things on the right or left side of the
operator.) The result of most operations is either a boolean or numeric value.
Because you know by now that Java is not C++, you won't be surprised that Java
operators aren't typically overloaded. There are, however, a few exceptional
operators that come overloaded:

■ The + operator can be used to add two numeric primitives together or to
perform a concatenation operation if either operand is a String.

■ The &, |, and ^ operators can all be used in two different ways, although on
this version of the exam, their bit-twiddling capabilities won't be tested.

Stay awake. Operators are often the section of the exam where candidates see
their lowest scores. Additionally, operators and assignments are a part of many
questions dealing with other topics—it would be a shame to nail a really tricky
threads question, only to blow it on a pre-increment statement.

Assignment Operators

We covered most of the functionality of the equal (=) assignment operator in
Chapter 3. To summarize:

04-ch04.indd 224 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 225

■ When assigning a value to a primitive, size matters. Be sure you know when
implicit casting will occur, when explicit casting is necessary, and when
truncation might occur.

■ Remember that a reference variable isn't an object; it's a way to get to an
object. (We know all you C++ programmers are just dying for us to say, "it's a
pointer," but we're not going to.)

■ When assigning a value to a reference variable, type matters. Remember the
rules for supertypes, subtypes, and arrays.

Next we'll cover a few more details about the assignment operators that are on
the exam, and when we get to the next chapter, we'll take a look at how the
assignment operator = works with Strings (which are immutable).

Don’t spend time preparing for topics that are no longer on the exam!

The following topics have NOT been on the exam since Java 1.4:

bit-shifting operators
bitwise operators
two’s complement
divide-by-zero stuff

It’s not that these aren’t important topics; it’s just that they’re not on the exam anymore,

and we’re really focused on the exam. (Note: The reason we bring this up at all is

because you might encounter mock exam questions on these topics—you can ignore

those questions!)

Compound Assignment Operators

There are actually 11 or so compound assignment operators, but only the 4 most
commonly used (+=, -=, *=, and /=) are on the exam. The compound assignment
operators let lazy typists shave a few keystrokes off their workload.

Here are several example assignments, first without using a compound operator:

y = y - 6;
x = x + 2 * 5;

04-ch04.indd 225 9/2/2014 2:45:47 PM

226 Chapter 4: Operators

Now, with compound operators:

y -= 6;
x += 2 * 5;

The last two assignments give the same result as the first two.

Earlier versions of the exam put big emphasis on operator precedence

(such as, What’s the result of x = y++ + ++x/z;). Other than having a very basic

knowledge of precedence (such as * and / are higher precedence than + and -), you

won’t need to study operator precedence. But you do need to know that when using a

compound operator, the expression on the right side of the = will always be evaluated

fi rst. For example, you might expect

x *= 2 + 5;

to be evaluated like this,

x = (x * 2) + 5; // incorrect precedence

because multiplication has higher precedence than addition. Instead, however, the

expression on the right is always placed inside parentheses. It is evaluated like this:

x = x * (2 + 5);

Relational Operators

The exam covers six relational operators (<, <=, >, >=, ==, and !=). Relational
operators always result in a boolean (true or false) value. This boolean value is
most often used in an if test, as follows:

int x = 8;
if (x < 9) {
 // do something
}

But the resulting value can also be assigned directly to a boolean primitive:

class CompareTest {
 public static void main(String [] args) {
 boolean b = 100 > 99;
 System.out.println("The value of b is " + b);
 }
}

04-ch04.indd 226 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 227

Java has four relational operators that can be used to compare any combination of
integers, floating-point numbers, or characters:

■ > Greater than

■ >= Greater than or equal to

■ < Less than

■ <= Less than or equal to

Let's look at some legal comparisons:

class GuessAnimal {
 public static void main(String[] args) {
 String animal = "unknown";
 int weight = 700;
 char sex = 'm';
 double colorWaveLength = 1.630;
 if (weight >= 500) { animal = "elephant"; }
 if (colorWaveLength > 1.621) { animal = "gray " + animal; }
 if (sex <= 'f') { animal = "female " + animal; }
 System.out.println("The animal is a " + animal);
 }
}

In the preceding code, we are using a comparison between characters. It's also
legal to compare a character primitive with any number (though it isn't great
programming style). Running the preceding class will output the following:

The animal is a gray elephant

We mentioned that characters can be used in comparison operators. When
comparing a character with a character or a character with a number, Java will use
the Unicode value of the character as the numerical value, for comparison.

"Equality" Operators

Java also has two relational operators (sometimes called "equality operators") that
compare two similar "things" and return a boolean (true or false) that represents
what's true about the two "things" being equal. These operators are

■ == Equal (also known as equal to)

■ != Not equal (also known as not equal to)

Each individual comparison can involve two numbers (including char), two
boolean values, or two object reference variables. You can't compare incompatible

04-ch04.indd 227 9/2/2014 2:45:47 PM

228 Chapter 4: Operators

types, however. What would it mean to ask if a boolean is equal to a char? Or if a
Button is equal to a String array? (This is nonsense, which is why you can't do it.)
There are four different types of things that can be tested:

■ Numbers

■ Characters

■ Boolean primitives

■ Object reference variables

So what does == look at? The value in the variable—in other words, the bit
pattern.

Equality for Primitives

Most programmers are familiar with comparing primitive values. The following code
shows some equality tests on primitive variables:

class ComparePrimitives {
 public static void main(String[] args) {
 System.out.println("char 'a' == 'a'? " + ('a' == 'a'));
 System.out.println("char 'a' == 'b'? " + ('a' == 'b'));
 System.out.println("5 != 6? " + (5 != 6));
 System.out.println("5.0 == 5L? " + (5.0 == 5L));
 System.out.println("true == false? " + (true == false));
 }
}

This program produces the following output:

char 'a' == 'a'? true
char 'a' == 'b'? false
5 != 6? true
5.0 == 5L? true
true == false? false

As you can see, if a floating-point number is compared with an integer and the
values are the same, the == operator usually returns true as expected.

Equality for Reference Variables

As you saw earlier, two reference variables can refer to the same object, as the
following code snippet demonstrates:

JButton a = new JButton("Exit");
JButton b = a;

04-ch04.indd 228 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 229

After running this code, both variable a and variable b will refer to the same
object (a JButton with the label Exit). Reference variables can be tested to see if
they refer to the same object by using the == operator. Remember, the == operator is
looking at the bits in the variable, so for reference variables, this means that if the
bits in both reference variables are identical, then both refer to the same object.
Look at the following code:

import javax.swing.JButton;
class CompareReference {
 public static void main(String[] args) {
 JButton a = new JButton("Exit");
 JButton b = new JButton("Exit");
 JButton c = a;
 System.out.println("Is reference a == b? " + (a == b));
 System.out.println("Is reference a == c? " + (a == c));
 }
}

Don't mistake = for == in a boolean expression. The following is legal:

11. boolean b = false;
12. if (b = true) { System.out.println("b is true");
13. } else { System.out.println("b is false"); }

Look carefully! You might be tempted to think the output is b is false, but look at the

boolean test in line 12. The boolean variable b is not being compared to true; it's being

set to true. Once b is set to true, the println executes and we get b is true. The result

of any assignment expression is the value of the variable following the assignment. This

substitution of = for == works only with boolean variables, since the if test can be done

only on boolean expressions. Thus, this does not compile:

7. int x = 1;
8. if (x = 0) { }

Because x is an integer (and not a boolean), the result of (x = 0) is 0 (the result of the

assignment). Primitive ints cannot be used where a boolean value is expected, so the

code in line 8 won't work unless it’s changed from an assignment (=) to an equality test

(==) as follows:

8. if (x == 0) { }

04-ch04.indd 229 9/2/2014 2:45:47 PM

230 Chapter 4: Operators

This code creates three reference variables. The first two, a and b, are separate
JButton objects that happen to have the same label. The third reference variable, c,
is initialized to refer to the same object that a refers to. When this program runs, the
following output is produced:

Is reference a == b? false
Is reference a == c? true

This shows us that a and c reference the same instance of a JButton. The ==
operator will not test whether two objects are "meaningfully equivalent," a concept
we'll cover in much more detail in Chapter 11, when we look at the equals()
method (as opposed to the equals operator we're looking at here).

Equality for Strings and java.lang.Object.equals()

We just used == to determine whether two reference variables refer to the same
object. Because objects are so central to Java, every class in Java inherits a method
from class Object that tests to see if two objects of the class are "equal." Not
surprisingly, this method is called equals(). In this case of the equals() method,
the phrase "meaningfully equivalent" should be used instead of the word "equal.".
So the equals() method is used to determine if two objects of the same class are
"meaningfully equivalent." For classes that you create, you have the option of
overriding the equals() method that your class inherited from class Object, and
creating your own definition of "meaningfully equivalent" for instances of your class.
(There's lots more about overriding equals() in Chapter 11.)

In terms of understanding the equals() method for the OCA exam, you need to
understand two aspects of the equals() method:

■ What equals() means in class Object

■ What equals() means in class String

The equals() Method in Class Object The equals() method in class
Object works the same way that the == operator works. If two references point to
the same object, the equals() method will return true. If two references point to
different objects, even if they have the same values, the method will return false.

The equals() Method in Class String The equals() method in class
String has been overridden. When the equals() method is used to compare two
strings, it will return true if the strings have the same value, and it will return false if
the strings have different values. For String's equals() method, values ARE case
sensitive.

04-ch04.indd 230 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 231

Let's take a look at how the equals() method works in action (notice that the
Budgie class did NOT override Object.equals()):
class Budgie {
 public static void main(String[] args) {
 Budgie b1 = new Budgie();
 Budgie b2 = new Budgie();
 Budgie b3 = b1;

 String s1 = "Bob";
 String s2 = "Bob";
 String s3 = "bob"; // lower case "b"

 System.out.println(b1.equals(b2)); // false, different objects
 System.out.println(b1.equals(b3)); // true, same objects
 System.out.println(s1.equals(s2)); // true, same values
 System.out.println(s1.equals(s3)); // false, values are case sensitive
 }
}

which produces the output:

false
true
true
false

As we mentioned earlier, when we get to Chapter 11, we'll take a deep dive into
overriding equals()—and its companion hashCode()—but for the OCA, this is
all you need to know.

Equality for enums (OCP Only)

Once you've declared an enum, it's not expandable. At runtime, there's no way to
make additional enum constants. Of course, you can have as many variables as you'd
like, refer to a given enum constant, so it's important to be able to compare two enum
reference variables to see if they're "equal"—that is, do they refer to the same enum
constant. You can use either the == operator or the equals() method to determine
whether two variables are referring to the same enum constant:

class EnumEqual {
 enum Color {RED, BLUE} // ; is optional
 public static void main(String[] args) {
 Color c1 = Color.RED; Color c2 = Color.RED;
 if(c1 == c2) { System.out.println("=="); }
 if(c1.equals(c2)) { System.out.println("dot equals"); }
} }

04-ch04.indd 231 9/2/2014 2:45:47 PM

232 Chapter 4: Operators

(We know } } is ugly; we're prepping you.) This produces the output:

==
dot equals

instanceof Comparison

The instanceof operator is used for object reference variables only, and you can
use it to check whether an object is of a particular type. By "type," we mean class or
interface type—in other words, whether the object referred to by the variable on the
left side of the operator passes the IS-A test for the class or interface type on the
right side. (Chapter 2 covered IS-A relationships in detail.) The following simple
example,

public static void main(String[] args) {
 String s = new String("foo");
 if (s instanceof String) {
 System.out.print("s is a String");
 }
}

prints this:

s is a String

Even if the object being tested is not an actual instantiation of the class type on
the right side of the operator, instanceof will still return true if the object being
compared is assignment compatible with the type on the right.

The following example demonstrates a common use for instanceof: testing an
object to see if it's an instance of one of its subtypes, before attempting a downcast:

class A { }
class B extends A {
 public static void main (String [] args) {
 A myA = new B();
 m2(myA);
 }
 public static void m2(A a) {
 if (a instanceof B)
 ((B)a).doBstuff(); // downcasting an A reference
 // to a B reference
 }
 public static void doBstuff() {
 System.out.println("'a' refers to a B");
 }
}

04-ch04.indd 232 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 233

The code compiles and produces this output:

'a' refers to a B

In examples like this, the use of the instanceof operator protects the program
from attempting an illegal downcast.

You can test an object reference against its own class type or any of its superclasses.
This means that any object reference will evaluate to true if you use the instanceof
operator against type Object, as follows:

B b = new B();
if (b instanceof Object) {
 System.out.print("b is definitely an Object");
}

This prints

b is definitely an Object

Look for instanceof questions that test whether an object is an instance

of an interface, when the object's class implements the interface indirectly. An indirect

implementation occurs when one of an object's superclasses implements an interface, but

the actual class of the instance does not. In this example,

interface Foo { }
class A implements Foo { }
class B extends A { }
...
A a = new A();
B b = new B();

the following are true:

a instanceof Foo
b instanceof A
b instanceof Foo // implemented indirectly

An object is said to be of a particular interface type (meaning it will pass the instanceof

test) if any of the object's superclasses implement the interface.

04-ch04.indd 233 9/2/2014 2:45:47 PM

234 Chapter 4: Operators

In addition, it is legal to test whether the null reference is an instance of a class.
This will always result in false, of course. This example,

class InstanceTest {
 public static void main(String [] args) {
 String a = null;
 boolean b = null instanceof String;
 boolean c = a instanceof String;
 System.out.println(b + " " + c);
 }
}

prints this:

false false

instanceof Compiler Error

You can't use the instanceof operator to test across two different class hierarchies.
For instance, the following will NOT compile:

class Cat { }
class Dog {
 public static void main(String [] args) {
 Dog d = new Dog();
 System.out.println(d instanceof Cat);
 }
}

Compilation fails—there's no way d could ever refer to a Cat or a subtype of Cat.

Remember that arrays are objects, even if the array is an array of

primitives. Watch for questions that look something like this:

int [] nums = new int[3];
if (nums instanceof Object) { } // result is true

An array is always an instance of Object. Any array.

Table 4-1 summarizes the use of the instanceof operator given the following:

interface Face { }
class Bar implements Face{ }
class Foo extends Bar { }

04-ch04.indd 234 9/2/2014 2:45:47 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 235

First Operand

(Reference Being Tested)

instanceof Operand

(Type We’re Comparing)

the Reference Against)

Result

null Any class or interface type false

Foo instance Foo, Bar, Face, Object true

Bar instance Bar, Face, Object true

Bar instance Foo false

Foo [] Foo, Bar, Face false

Foo [] Object true

Foo [1] Foo, Bar, Face, Object true

Arithmetic Operators

We're sure you're familiar with the basic arithmetic operators:

■ + addition

■ – subtraction

■ * multiplication

■ / division

These can be used in the standard way:

int x = 5 * 3;
int y = x - 4;
System.out.println("x - 4 is " + y); // Prints 11

The Remainder (%) Operator (a.k.a. the Modulus Operator)

One operator you might not be as familiar with is the remainder operator, %. The
remainder operator divides the left operand by the right operand, and the result is
the remainder, as the following code demonstrates:

class MathTest {
 public static void main (String [] args) {
 int x = 15;
 int y = x % 4;
 System.out.println("The result of 15 % 4 is the "
 + "remainder of 15 divided by 4. The remainder is " + y);
 }
}

 TABLE 4-1

Operands and
Results Using
instanceof
Operator

04-ch04.indd 235 9/2/2014 2:45:48 PM

236 Chapter 4: Operators

Running class MathTest prints the following:
The result of 15 % 4 is the remainder of 15 divided by 4. The remainder is 3

(Remember: Expressions are evaluated from left to right by default. You can
change this sequence, or precedence, by adding parentheses. Also remember that the
*, /, and % operators have a higher precedence than the + and - operators.)

When working with ints, the remainder operator (a.k.a. the modulus

operator) and the division operator relate to each other in an interesting way:

■ The modulus operator throws out everything but the remainder.

■ The division operator throws out the remainder.

String Concatenation Operator

The plus sign can also be used to concatenate two strings together, as we saw earlier
(and as we'll definitely see again):

String animal = "Gray " + "elephant";

String concatenation gets interesting when you combine numbers with Strings.
Check out the following:

String a = "String";
int b = 3;
int c = 7;
System.out.println(a + b + c);

Will the + operator act as a plus sign when adding the int variables b and c? Or
will the + operator treat 3 and 7 as characters, and concatenate them individually?
Will the result be String10 or String37? Okay, you've had long enough to think
about it.

The int values were simply treated as characters and glued on to the right side of
the String, giving the result:

String37

So we could read the previous code as

04-ch04.indd 236 9/2/2014 2:45:48 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 237

"Start with the value String, and concatenate the character 3 (the value of b)
to it, to produce a new string String3, and then concatenate the character 7
(the value of c) to that, to produce a new string String37. Then print it out."

However, if you put parentheses around the two int variables, as follows,

System.out.println(a + (b + c));

you'll get this:

String10

Using parentheses causes the (b + c) to evaluate first, so the rightmost +
operator functions as the addition operator, given that both operands are int values.
The key point here is that within the parentheses, the left-hand operand is not a
String. If it were, then the + operator would perform String concatenation. The
previous code can be read as

"Add the values of b and c together, and then take the sum and convert it to
a String and concatenate it with the String from variable a."

The rule to remember is this:

If either operand is a String, the + operator becomes a String concatenation
operator. If both operands are numbers, the + operator is the addition operator.

You'll find that sometimes you might have trouble deciding whether, say, the
left-hand operator is a String or not. On the exam, don't expect it always to be
obvious. (Actually, now that we think about it, don't expect it ever to be obvious.)
Look at the following code:

System.out.println(x.foo() + 7);

You can't know how the + operator is being used until you find out what the foo()
method returns! If foo() returns a String, then 7 is concatenated to the returned
String. But if foo() returns a number, then the + operator is used to add 7 to the
return value of foo().

Finally, you need to know that it's legal to mush together the compound additive
operator (+=) and Strings, like so:

String s = "123";
s += "45";
s += 67;
System.out.println(s);

04-ch04.indd 237 9/2/2014 2:45:48 PM

238 Chapter 4: Operators

Since both times the += operator was used and the left operand was a String,
both operations were concatenations, resulting in

1234567

If you don't understand how String concatenation works, especially

within a print statement, you could actually fail the exam even if you know the rest of

the answers to the questions! Because so many questions ask, "What is the result?", you

need to know not only the result of the code running, but also how that result is printed.

Although at least a few questions will directly test your String knowledge, String

concatenation shows up in other questions on virtually every objective. Experiment! For

example, you might see a line such as this:

int b = 2;
System.out.println("" + b + 3);

It prints this:

23

But if the print statement changes to this:

System.out.println(b + 3);

The printed result becomes

5

Increment and Decrement Operators

Java has two operators that will increment or decrement a variable by exactly one.
These operators are either two plus signs (++) or two minus signs (--):

■ ++ Increment (prefix and postfix)

■ -- Decrement (prefix and postfix)

The operator is placed either before (prefix) or after (postfix) a variable to change
its value. Whether the operator comes before or after the operand can change the
outcome of an expression. Examine the following:

04-ch04.indd 238 9/2/2014 2:45:48 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 239

1. class MathTest {
2. static int players = 0;
3. public static void main (String [] args) {
4. System.out.println("players online: " + players++);
5. System.out.println("The value of players is "
 + players);
6. System.out.println("The value of players is now "
 + ++players);
7. }
8. }

Notice that in the fourth line of the program the increment operator is after the
variable players. That means we're using the postfix increment operator, which
causes players to be incremented by one but only after the value of players is used
in the expression. When we run this program, it outputs the following:

%java MathTest
players online: 0
The value of players is 1
The value of players is now 2

Notice that when the variable is written to the screen, at first it says the value is 0.
Because we used the postfix increment operator, the increment doesn't happen until
after the players variable is used in the print statement. Get it? The "post" in
postfix means after. Line 5 doesn't increment players; it just outputs its value to
the screen, so the newly incremented value displayed is 1. Line 6 applies the prefix
increment operator to players, which means the increment happens before the
value of the variable is used, so the output is 2.

Expect to see questions mixing the increment and decrement operators with
other operators, as in the following example:

int x = 2; int y = 3;
if ((y == x++) | (x < ++y)) {
 System.out.println("x = " + x + " y = " + y);
 }

The preceding code prints this:

x = 3 y = 4

You can read the code as follows: "If 3 is equal to 2 OR 3 < 4"
The first expression compares x and y, and the result is false, because the

increment on x doesn't happen until after the == test is made. Next, we increment x,
so now x is 3. Then we check to see if x is less than y, but we increment y before
comparing it with x! So the second logical test is (3 < 4). The result is true, so the
print statement runs.

04-ch04.indd 239 9/2/2014 2:45:48 PM

240 Chapter 4: Operators

As with String concatenation, the increment and decrement operators are used
throughout the exam, even on questions that aren't trying to test your knowledge of
how those operators work. You might see them in questions on for loops, exceptions,
or even threads. Be ready.

Look out for questions that use the increment or decrement operators

on a final variable. Because final variables can't be changed, the increment and

decrement operators can't be used with them, and any attempt to do so will result in a

compiler error. The following code won't compile:

final int x = 5;
int y = x++;

It produces this error:

Test.java:4: cannot assign a value to final variable x
int y = x++;
 ^

You can expect a violation like this to be buried deep in a complex piece of code. If you

spot it, you know the code won't compile and you can move on without working through

the rest of the code.

This question might seem to be testing you on some complex arithmetic operator

trivia, when in fact it’s testing you on your knowledge of the final modifi er.

Conditional Operator

The conditional operator is a ternary operator (it has three operands) and is used to
evaluate boolean expressions, much like an if statement, except instead of
executing a block of code if the test is true, a conditional operator will assign a
value to a variable. In other words, the goal of the conditional operator is to decide
which of two values to assign to a variable. This operator is constructed using a ?
(question mark) and a : (colon). The parentheses are optional. Here is its structure:
x = (boolean expression) ? value to assign if true : value to assign if false

Let's take a look at a conditional operator in code:

04-ch04.indd 240 9/2/2014 2:45:48 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 241

class Salary {
 public static void main(String [] args) {
 int numOfPets = 3;
 String status = (numOfPets<4) ? "Pet limit not exceeded"
 : "too many pets";
 System.out.println("This pet status is " + status);
 }
}

You can read the preceding code as "Set numOfPets equal to 3".
Next we're going to assign a String to the status variable. If numOfPets is less

than 4, assign "Pet limit not exceeded" to the status variable; otherwise,
assign "too many pets" to the status variable.

A conditional operator starts with a boolean operation, followed by two possible
values for the variable to the left of the assignment (=) operator. The first value (the
one to the left of the colon) is assigned if the conditional (boolean) test is true,
and the second value is assigned if the conditional test is false. You can even nest
conditional operators into one statement:

class AssignmentOps {
 public static void main(String [] args) {
 int sizeOfYard = 10;
 int numOfPets = 3;
 String status = (numOfPets<4)?"Pet count OK"
 :(sizeOfYard > 8)? "Pet limit on the edge"
 :"too many pets";
 System.out.println("Pet status is " + status);
 }
}

Don't expect many questions using conditional operators, but remember that
conditional operators are sometimes confused with assertion statements, so be
certain you can tell the difference. Chapter 7 covers assertions in detail.

Logical Operators

The exam objectives specify six "logical" operators (&, |, ^, !, &&, and ||). Some
Oracle documentation uses other terminology for these operators, but for our
purposes and in the exam objectives, these six are the logical operators.

Bitwise Operators (For OCJP 5 Candidates Only!)

Okay, this is going to be confusing. Of the six logical operators listed above, three
of them (&, |, and ^) can also be used as "bitwise" operators. Bitwise operators
were included in previous versions of the exam, but they're NOT on the Java 6 or
Java 7 exam.

04-ch04.indd 241 9/2/2014 2:45:48 PM

242 Chapter 4: Operators

Here are several legal statements that use bitwise operators:

byte b1 = 6 & 8;
byte b2 = 7 | 9;
byte b3 = 5 ^ 4;
System.out.println(b1 + " " + b2 + " " + b3);

Bitwise operators compare two variables bit-by-bit and return a variable whose
bits have been set based on whether the two variables being compared had
respective bits that were either both "on" (&), one or the other "on" (|), or exactly
one "on" (^). By the way, when we run the preceding code, we get

0 15 1

Having said all this about bitwise operators, the key thing to remember is

this:

BITWISE OPERATORS ARE NOT ON THE Java 6 or Java 7 EXAM!

Short-Circuit Logical Operators

Five logical operators on the exam are used to evaluate statements that contain more
than one boolean expression. The most commonly used of the five are the two
short-circuit logical operators:

■ && Short-circuit AND

■ || Short-circuit OR

They are used to link little boolean expressions together to form bigger boolean
expressions. The && and || operators evaluate only boolean values. For an AND
(&&) expression to be true, both operands must be true. For example:

if ((2 < 3) && (3 < 4)) { }

The preceding expression evaluates to true because both operand one (2 < 3) and
operand two (3 < 4) evaluate to true.

The short-circuit feature of the && operator is so named because it doesn't waste its time
on pointless evaluations. A short-circuit && evaluates the left side of the operation first
(operand one), and if it resolves to false, the && operator doesn't bother looking at
the right side of the expression (operand two) since the && operator already knows
that the complete expression can't possibly be true.

04-ch04.indd 242 9/2/2014 2:45:48 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 243

class Logical {
 public static void main(String [] args) {
 boolean b1 = false, b2 = false;
 boolean b3 = (b1 == true) && (b2 = true); // will b2 be set to true?
 System.out.println(b3 + " " + b2);
 }
}

When we run the preceding code, the assignment (b2 = true) never runs
because of the short-circuit operator, so the output is

%java Logical
false false

The || operator is similar to the && operator, except that it evaluates to true if
EITHER of the operands is true. If the first operand in an OR operation is true, the
result will be true, so the short-circuit || doesn't waste time looking at the right
side of the equation. If the first operand is false, however, the short-circuit || has
to evaluate the second operand to see if the result of the OR operation will be true
or false. Pay close attention to the following example; you'll see quite a few
questions like this on the exam:

 1. class TestOR {
 2. public static void main(String[] args) {
 3. if ((isItSmall(3)) || (isItSmall(7))) {
 4. System.out.println("Result is true");
 5. }
 6. if ((isItSmall(6)) || (isItSmall(9))) {
 7. System.out.println("Result is true");
 8. }
 9. }
10.
11. public static boolean isItSmall(int i) {
12. if (i < 5) {
13. System.out.println("i < 5");
14. return true;
15. } else {
16. System.out.println("i >= 5");
17. return false;
18. }
19. }
20. }

What is the result?

% java TestOR
i < 5
Result is true
i >= 5
i >= 5

04-ch04.indd 243 9/2/2014 2:45:48 PM

244 Chapter 4: Operators

Here's what happened when the main() method ran:

 1. When we hit line 3, the first operand in the || expression (in other words,
the left side of the || operation) is evaluated.

 2. The isItSmall(3) method is invoked, prints "i < 5", and returns true.

 3. Because the first operand in the || expression on line 3 is true, the ||
operator doesn't bother evaluating the second operand. So we never see the
"i >= 5" that would have printed had the second operand been evaluated
(which would have invoked isItSmall(7)).

 4. Line 6 is evaluated, beginning with the first operand in the || expression.

 5. The isItSmall(6) method is called, prints "i >= 5", and returns false.

 6. Because the first operand in the || expression on line 6 is false, the ||
operator can't skip the second operand; there's still a chance the expression
can be true, if the second operand evaluates to true.

 7. The isItSmall(9) method is invoked and prints "i >= 5".

 8. The isItSmall(9) method returns false, so the expression on line 6 is
false, and thus line 7 never executes.

The || and && operators work only with boolean operands. The exam

may try to fool you by using integers with these operators:

if (5 && 6) { }

It looks as though we're trying to do a bitwise AND on the bits representing the integers

5 and 6, but the code won't even compile.

Logical Operators (not Short-Circuit)

There are two non-short-circuit logical operators:

■ & Non-short-circuit AND

■ | Non-short-circuit OR

These operators are used in logical expressions just like the && and || operators
are used, but because they aren't the short-circuit operators, they evaluate both sides

04-ch04.indd 244 9/2/2014 2:45:48 PM

Java Operators (OCA Objectives 3.1, 3.2, and 3.3) 245

of the expression—always! They're inefficient. For example, even if the first operand
(left side) in an & expression is false, the second operand will still be evaluated—
even though it's now impossible for the result to be true! And the | is just as
inefficient: if the first operand is true, the Java Virtual Machine (JVM) still plows
ahead and evaluates the second operand even when it knows the expression will be
true regardless.

You'll find a lot of questions on the exam that use both the short-circuit and
non-short-circuit logical operators. You'll have to know exactly which operands are
evaluated and which are not, since the result will vary depending on whether the
second operand in the expression is evaluated. Consider this,

int z = 5;
if(++z > 5 || ++z > 6) z++; // z = 7 after this code

versus this:

int z = 5;
if(++z > 5 | ++z > 6) z++; // z = 8 after this code

Logical Operators ^ and !

The last two logical operators on the exam are

■ ^ Exclusive-OR (XOR)

■ ! Boolean invert

The ^ (exclusive-OR) operator evaluates only boolean values. The ^ operator is
related to the non-short-circuit operators we just reviewed, in that it always
evaluates both the left and right operands in an expression. For an exclusive-OR (^)
expression to be true, EXACTLY one operand must be true. This example,

System.out.println("xor " + ((2 < 3) ^ (4 > 3)));

produces this output:

xor false

The preceding expression evaluates to false because BOTH operand one (2 <
3) and operand two (4 > 3) evaluate to true.

The ! (boolean invert) operator returns the opposite of a boolean's current value.
The following statement,

 if(!(7 == 5)) { System.out.println("not equal"); }

04-ch04.indd 245 9/2/2014 2:45:48 PM

246 Chapter 4: Operators

can be read "If it's not true that 7 == 5," and the statement produces this output:

not equal

Here's another example using booleans:

boolean t = true;
boolean f = false;
System.out.println("! " + (t & !f) + " " + f);

It produces this output:

! true false

In the preceding example, notice that the & test succeeded (printing true) and
that the value of the boolean variable f did not change, so it printed false.

CERTIFICATION SUMMARY

If you've studied this chapter diligently, you should have a firm grasp on Java
operators, and you should understand what equality means when tested with the ==
operator. Let's review the highlights of what you've learned in this chapter.

The logical operators (&&, ||, &, |, and ^) can be used only to evaluate two
boolean expressions. The difference between && and & is that the && operator won't
bother testing the right operand if the left evaluates to false, because the result of
the && expression can never be true. The difference between || and | is that the ||
operator won't bother testing the right operand if the left evaluates to true, because
the result is already known to be true at that point.

The == operator can be used to compare values of primitives, but it can also be
used to determine whether two reference variables refer to the same object.

The instanceof operator is used to determine whether the object referred to by
a reference variable passes the IS-A test for a specified type.

The + operator is overloaded to perform String concatenation tasks and can also
concatenate Strings and primitives, but be careful—concatenation can be tricky.

The conditional operator (a.k.a. the "ternary operator") has an unusual, three-
operand syntax—don't mistake it for a complex assert statement.

The ++ and -- operators will be used throughout the exam, and you must pay
attention to whether they are prefixed or postfixed to the variable being updated.

Be prepared for a lot of exam questions involving the topics from this chapter.
Even within questions testing your knowledge of another objective, the code will
frequently use operators, assignments, object and primitive passing, and so on.

04-ch04.indd 246 9/2/2014 2:45:48 PM

Two-Minute Drill 247

TWO-MINUTE DRILL

Here are some of the key points from each section in this chapter.

Relational Operators (OCA Objectives 3.1 and 3.3)

❑ Relational operators always result in a boolean value (true or false).

❑ There are six relational operators: >, >=, <, <=, ==, and !=. The last two
(== and !=) are sometimes referred to as equality operators.

❑ When comparing characters, Java uses the Unicode value of the character as
the numerical value.

❑ Equality operators

❑ There are two equality operators: == and !=.

❑ Four types of things can be tested: numbers, characters, booleans, and
reference variables.

❑ When comparing reference variables, == returns true only if both references
refer to the same object.

instanceof Operator (OCA Objective 3.1)

❑ instanceof is for reference variables only; it checks whether the object is of
a particular type.

❑ The instanceof operator can be used only to test objects (or null) against
class types that are in the same class hierarchy.

❑ For interfaces, an object passes the instanceof test if any of its superclasses
implement the interface on the right side of the instanceof operator.

Arithmetic Operators (OCA Objectives 3.1 and 3.2)

❑ The four primary math operators are add (+), subtract (–), multiply (*), and
divide (/).

❑ The remainder (a.k.a. modulus) operator (%) returns the remainder of a division.

❑ Expressions are evaluated from left to right, unless you add parentheses, or
unless some operators in the expression have higher precedence than others.

❑ The *, /, and % operators have higher precedence than + and –.

✓

04-ch04.indd 247 9/2/2014 2:45:48 PM

248 Chapter 1: Declarations and Access Control

String Concatenation Operator (OCA Objective 3.1)

❑ If either operand is a String, the + operator concatenates the operands.

❑ If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators (OCA Objectives 3.1 and 3.2)

❑ Prefix operators (for example, ++x and --x) run before the value is used in
the expression.

❑ Postfix operators (for example, x++ and x--) run after the value is used in the
expression.

❑ In any expression, both operands are fully evaluated before the operator is applied.

❑ Variables marked final cannot be incremented or decremented.

Ternary (Conditional) Operator (OCA Objective 3.1)

❑ Returns one of two values based on whether its boolean expression is true
or false.

❑ Returns the value after the ? if the expression is true.

❑ Returns the value after the : if the expression is false.

Logical Operators (OCA Objective 3.1)

❑ The exam covers six "logical" operators: &, |, ^, !, &&, and ||.

❑ Logical operators work with two expressions (except for !) that must resolve
to boolean values.

❑ The && and & operators return true only if both operands are true.

❑ The || and | operators return true if either or both operands are true.

❑ The && and || operators are known as short-circuit operators.

❑ The && operator does not evaluate the right operand if the left operand
is false.

❑ The || does not evaluate the right operand if the left operand is true.

❑ The & and | operators always evaluate both operands.

❑ The ^ operator (called the "logical XOR") returns true if exactly one
operand is true.

❑ The ! operator (called the "inversion" operator) returns the opposite value of
the boolean operand it precedes.

04-ch04.indd 248 9/2/2014 2:45:49 PM

Self Test 249

SELF TEST

 1. Given:

class Hexy {
 public static void main(String[] args) {
 int i = 42;
 String s = (i<40)?"life":(i>50)?"universe":"everything";
 System.out.println(s);
 }
}

 What is the result?
 A. null

 B. life

 C. universe

 D. everything

 E. Compilation fails
 F. An exception is thrown at runtime

 2. Given:

public class Dog {
 String name;
 Dog(String s) { name = s; }
 public static void main(String[] args) {
 Dog d1 = new Dog("Boi");
 Dog d2 = new Dog("Tyri");
 System.out.print((d1 == d2) + " ");
 Dog d3 = new Dog("Boi");
 d2 = d1;
 System.out.print((d1 == d2) + " ");
 System.out.print((d1 == d3) + " ");
 }
}

 What is the result?
 A. true true true

 B. true true false

 C. false true false

 D. false true true

 E. false false false

 F. An exception will be thrown at runtime

04-ch04.indd 249 9/2/2014 2:45:49 PM

250 Chapter 4: Operators

 3. Given:

class Fork {
 public static void main(String[] args) {
 if(args.length == 1 | args[1].equals("test")) {
 System.out.println("test case");
 } else {
 System.out.println("production " + args[0]);
 }
 }
}

 And the command-line invocation:

java Fork live2

 What is the result?
 A. test case

 B. production live2

 C. test case live2

 D. Compilation fails
 E. An exception is thrown at runtime

 4. Given:

class Feline {
 public static void main(String[] args) {
 long x = 42L;
 long y = 44L;
 System.out.print(" " + 7 + 2 + " ");
 System.out.print(foo() + x + 5 + " ");
 System.out.println(x + y + foo());
 }
 static String foo() { return "foo"; }
}

 What is the result?
 A. 9 foo47 86foo

 B. 9 foo47 4244foo

 C. 9 foo425 86foo

 D. 9 foo425 4244foo

 E. 72 foo47 86foo

04-ch04.indd 250 9/2/2014 2:45:49 PM

Self Test 251

 F. 72 foo47 4244foo

 G. 72 foo425 86foo

 H. 72 foo425 4244foo

 I. Compilation fails

 5. Note: Here’s another old-style drag-and-drop question…just in case.

 Place the fragments into the code to produce the output 33. Note that you must use each
fragment exactly once.

CODE:
class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x ___ ___;
 ___ ___ ___;
 ___ ___ ___;
 ___ ___ ___;

 System.out.println(x);
 }
}

 FRAGMENTS:

 y y y y

 y x x

 -= *= *= *=

04-ch04.indd 251 9/2/2014 2:45:49 PM

252 Chapter 4: Operators

 6. Given:

public class Cowboys {
 public static void main(String[] args) {
 int x = 12;
 int a = 5;
 int b = 7;
 System.out.println(x/a + " " + x/b);
 }
}

 What is the result? (Choose all that apply.)
 A. 2 1

 B. 2 2

 C. 3 1

 D. 3 2

 E. An exception is thrown at runtime

 7. (OCP Only) Given:

 3. public class McGee {
 4. public static void main(String[] args) {
 5. Days d1 = Days.TH;
 6. Days d2 = Days.M;
 7. for(Days d: Days.values()) {
 8. if(d.equals(Days.F)) break;
 9. d2 = d;
10. }
11. System.out.println((d1 == d2)?"same old" : "newly new");
12. }
13. enum Days {M, T, W, TH, F, SA, SU};
14. }

 What is the result?
 A. same old

 B. newly new

 C. Compilation fails due to multiple errors
 D. Compilation fails due only to an error on line 7
 E. Compilation fails due only to an error on line 8
 F. Compilation fails due only to an error on line 11
 G. Compilation fails due only to an error on line 13

04-ch04.indd 252 9/2/2014 2:45:49 PM

Self Test 253

 8. Given:

 4. public class SpecialOps {
 5. public static void main(String[] args) {
 6. String s = "";
 7. boolean b1 = true;
 8. boolean b2 = false;
 9. if((b2 = false) | (21%5) > 2) s += "x";
10. if(b1 || (b2 == true)) s += "y";
11. if(b2 == true) s += "z";
12. System.out.println(s);
13. }
14. }

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. x will be included in the output
 C. y will be included in the output
 D. z will be included in the output
 E. An exception is thrown at runtime

 9. Given:

 3. public class Spock {
 4. public static void main(String[] args) {
 5. int mask = 0;
 6. int count = 0;
 7. if(((5<7) || (++count < 10)) | mask++ < 10) mask = mask + 1;
 8. if((6 > 8) ^ false) mask = mask + 10;
 9. if(!(mask > 1) && ++count > 1) mask = mask + 100;
10. System.out.println(mask + " " + count);
11. }
12. }

 Which two are true about the value of mask and the value of count at line 10? (Choose two.)
 A. mask is 0
 B. mask is 1
 C. mask is 2
 D. mask is 10
 E. mask is greater than 10
 F. count is 0
 G. count is greater than 0

04-ch04.indd 253 9/2/2014 2:45:49 PM

254 Chapter 4: Operators

 10. Given:

 3. interface Vessel { }
 4. interface Toy { }
 5. class Boat implements Vessel { }
 6. class Speedboat extends Boat implements Toy { }
 7. public class Tree {
 8. public static void main(String[] args) {
 9. String s = "0";
10. Boat b = new Boat();
11. Boat b2 = new Speedboat();
12. Speedboat s2 = new Speedboat();
13. if((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out.println(s);
16. }
17. }

 What is the result?
 A. 0

 B. 01

 C. 02

 D. 012

 E. Compilation fails
 F. An exception is thrown at runtime

04-ch04.indd 254 9/2/2014 2:45:49 PM

Self Test Answers 255

SELF TEST ANSWERS

 1. ☑ D is correct. This is a ternary nested in a ternary. Both of the ternary expressions
are false.
☐✗ A, B, C, E, and F are incorrect based on the above. (OCA Objective 3.1)

 2. ☑ C is correct. The == operator tests for reference variable equality, not object equality.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCA Objectives 3.1 and 3.3)

 3. ☑ E is correct. Because the short circuit (||) is not used, both operands are evaluated.
Since args[1] is past the args array bounds, an ArrayIndexOutOfBoundsException is
thrown.
☐✗ A, B, C, and D are incorrect based on the above. (OCA Objectives 3.1 and 3.3)

 4. ☑ G is correct. Concatenation runs from left to right, and if either operand is a String,
the operands are concatenated. If both operands are numbers, they are added together.
☐✗ A, B, C, D, E, F, H, and I are incorrect based on the above. (OCA Objective 3.1)

 5. Answer:

class Incr {
 public static void main(String[] args) {
 Integer x = 7;
 int y = 2;

 x *= x;
 y *= y;
 y *= y;
 x -= y;

 System.out.println(x);
 }
}

 Yeah, we know it’s kind of puzzle-y, but you might encounter something like it on the real
exam if Oracle reinstates this type of question. (OCA Objective 3.1)

 6. ☑ A is correct. When dividing ints, remainders are always rounded down.
☐✗ B, C, D, and E are incorrect based on the above. (OCA Objective 3.1)

 7. ☑ A is correct. All of this syntax is correct. The for-each iterates through the enum using
the values() method to return an array. An enum can be compared using either equals()
or ==. An enum can be used in a ternary operator's boolean test.
☐✗ B, C, D, E, F, and G are incorrect based on the above. (OCA Objectives 3.1 and 3.3)

04-ch04.indd 255 9/2/2014 2:45:49 PM

256 Chapter 4: Operators

 8. ☑ C is correct. Line 9 uses the modulus operator, which returns the remainder of the divi-
sion, which in this case is 1. Also, line 9 sets b2 to false, and it doesn't test b2's value. Line
10 sets b2 to true, and it doesn’t test its value; however, the short-circuit operator keeps the
expression b2 = true from being executed.
☐✗ A, B, D, and E are incorrect based on the above. (OCA Objectives 3.1, 3.2, and 3.3)

 9. ☑ C and F are correct. At line 7 the || keeps count from being incremented, but the |
allows mask to be incremented. At line 8 the ^ returns true only if exactly one operand is
true. At line 9 mask is 2 and the && keeps count from being incremented.
☐✗ A, B, D, E, and G are incorrect based on the above. (OCA Objectives 3.1 and 3.2)

 10. ☑ D is correct. First, remember that instanceof can look up through multiple levels of
an inheritance tree. Also remember that instanceof is commonly used before attempt-
ing a downcast, so in this case, after line 15, it would be possible to say Speedboat s3 =
(Speedboat)b2;.
☐✗ A, B, C, E, and F are incorrect based on the above. (OCA Objectives 3.1 and 3.2)

04-ch04.indd 256 9/2/2014 2:45:49 PM

55
Working with Working with
Strings, Arrays, Strings, Arrays,
and ArrayListsand ArrayLists

CERTIFICATION OBJECTIVES

Create and Manipulate Strings •
Manipulate Data Using the StringBuilder •
Class and Its Methods

Declare, Instantiate, Initialize, and Use a •
One-Dimensional Array

Declare, Instantiate, Initialize, and Use a •
Multidimensional Array

Declare and Use an ArrayList •
Use Encapsulation for Reference Variables •
Two-Minute Drill ✓

Q&A Self Test

05-ch05.indd 257 9/2/2014 2:48:59 PM

258 Chapter 5: Working with Strings, Arrays, and ArrayLists

CERTIFICATION OBJECTIVE

Using String and StringBuilder
(OCA Objectives 2.7 and 2.6)

2.7 Create and manipulate strings.

2.6 Manipulate data using the StringBuilder class and its methods.

Everything you needed to know about strings in the older OCJP exams, you'll
need to know for the OCA 7 and OCP 7 exams. Closely related to the String class
are the StringBuilder class and the almost identical StringBuffer class. (For the
exam, the only thing you need to know about the StringBuffer class is that it has
exactly the same methods as the StringBuilder class, but StringBuilder is
faster because its methods aren't synchronized.) Both classes, StringBuilder and
StringBuffer, give you String-like objects that handle some of the String class's
shortcomings (such as immutability).

The String Class

This section covers the String class, and the key concept for you to understand is
that once a String object is created, it can never be changed. So, then, what is
happening when a String object seems to be changing? Let's find out.

Strings Are Immutable Objects

We'll start with a little background information about strings. You may not need
this for the test, but a little context will help. Handling "strings" of characters is a
fundamental aspect of most programming languages. In Java, each character in a
string is a 16-bit Unicode character. Because Unicode characters are 16 bits (not the
skimpy 7 or 8 bits that ASCII provides), a rich, international set of characters is
easily represented in Unicode.

In Java, strings are objects. As with other objects, you can create an instance of a
string with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String and assigns it to the reference
variable s.

05-ch05.indd 258 9/2/2014 2:49:02 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 259

So far, String objects seem just like other objects. Now, let's give the string a
value:

s = "abcdef";

(As you'll find out shortly, these two lines of code aren't quite what they seem, so
stay tuned.)

It turns out that the String class has about a zillion constructors, so you can use
a more efficient shortcut:

String s = new String("abcdef");

And this is even more concise:

String s = "abcdef";

There are some subtle differences between these options that we'll discuss later,
but what they have in common is that they all create a new String object, with a
value of "abcdef", and assign it to a reference variable s. Now let's say that you
want a second reference to the String object referred to by s:

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what's all the fuss about? Immutability! (What the heck is immutability?) Once you
have assigned a String a value, that value can never change—it's immutable, frozen
solid, won't budge, fini, done. (We'll talk about why later; don't let us forget.) The
good news is that although the String object is immutable, its reference variable is
not, so to continue with our previous example, consider this:

s = s.concat(" more stuff"); // the concat() method 'appends'
 // a literal to the end

Now, wait just a minute, didn't we just say that String objects were immutable? So
what's all this "appending to the end of the string" talk? Excellent question: let's
look at what really happened.

The Java Virtual Machine (JVM) took the value of string s (which was "abcdef")
and tacked " more stuff" onto the end, giving us the value "abcdef more
stuff". Since strings are immutable, the JVM couldn't stuff this new value into the
old String referenced by s, so it created a new String object, gave it the value
"abcdef more stuff", and made s refer to it. At this point in our example, we
have two String objects: the first one we created, with the value "abcdef", and
the second one with the value "abcdef more stuff". Technically there are now
three String objects, because the literal argument to concat, " more stuff", is

05-ch05.indd 259 9/2/2014 2:49:03 PM

260 Chapter 5: Working with Strings, Arrays, and ArrayLists

itself a new String object. But we have references only to "abcdef" (referenced by
s2) and "abcdef more stuff" (referenced by s).

What if we didn't have the foresight or luck to create a second reference variable
for the "abcdef" string before we called s = s.concat(" more stuff");? In
that case, the original, unchanged string containing "abcdef" would still exist in
memory, but it would be considered "lost." No code in our program has any way to
reference it—it is lost to us. Note, however, that the original "abcdef" string didn't
change (it can't, remember; it's immutable); only the reference variable s was
changed so that it would refer to a different string.

Figure 5-1 shows what happens on the heap when you reassign a reference
variable. Note that the dashed line indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with
 // value "abcdef", refer s to it
String s2 = s; // create a 2nd reference variable
 // referring to the same String

// create a new String object, with value "abcdef more stuff",
// refer s to it. (Change s's reference from the old String
// to the new String.) (Remember s2 is still referring to
// the original "abcdef" String.)

s = s.concat(" more stuff");

Let's look at another example:

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x); // the output is "x = Java"

The first line is straightforward: Create a new String object, give it the value
"Java", and refer x to it. Next the JVM creates a second String object with the
value "Java Rules!" but nothing refers to it. The second String object is
instantly lost; you can't get to it. The reference variable x still refers to the original
String with the value "Java". Figure 5-2 shows creating a String without
assigning a reference to it.

Let's expand this current example. We started with

String x = "Java";
x.concat(" Rules!");
System.out.println("x = " + x); // the output is: x = Java

Now let's add

x.toUpperCase();
System.out.println("x = " + x); // the output is still:
 // x = Java

05-ch05.indd 260 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 261

The heap

String objectString reference
variable

String reference
variable

String reference
variable

String reference
variable

String reference
variable

s

s2

s

s2

s

String s = "abc";

"abc"

The heap

String object

"abc"

The heap

String object

String object

"abc"

"abcdef"

Step 1:

String s2 = s;Step 2:

s = s.concat ("def");Step 3:

 FIGURE 5-1

String
objects and
their reference
variables

(We actually did just create a new String object with the value "JAVA", but it
was lost, and x still refers to the original, unchanged string "Java".) How about
adding this:

x.replace('a', 'X');
System.out.println("x = " + x); // the output is still:
 // x = Java

05-ch05.indd 261 9/2/2014 2:49:03 PM

262 Chapter 5: Working with Strings, Arrays, and ArrayLists

Can you determine what happened? The JVM created yet another new String
object, with the value "JXvX", (replacing the a's with X's), but once again this new
String was lost, leaving x to refer to the original unchanged and unchangeable
String object, with the value "Java". In all of these cases, we called various string
methods to create a new String by altering an existing String, but we never
assigned the newly created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java";
x = x.concat(" Rules!"); // Now we're assigning the
 // new String to x
System.out.println("x = " + x); // the output will be:
 // x = Java Rules!

This time, when the JVM runs the second line, a new String object is created with
the value "Java Rules!", and x is set to reference it. But wait…there's more—now
the original String object, "Java", has been lost, and no one is referring to it. So in

 FIGURE 5-2

A String
object is
abandoned
upon creation.

String reference
variable

String reference
variable

Notice that no reference
variable is created to access
the "Java Rules!" String.

String object

String object

String object

The heap

The heap

Step 1: String x = "Java";

Step 2: x.concat (" Rules!");

x

x

"Java"

"Java"

"Java Rules!"

05-ch05.indd 262 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 263

both examples, we created two String objects and only one reference variable, so
one of the two String objects was left out in the cold. See Figure 5-3 for a graphic
depiction of this sad story. The dashed line indicates a deleted reference.

Let's take this example a little further:

String x = "Java";
x = x.concat(" Rules!");
System.out.println("x = " + x); // the output is:
 // x = Java Rules!

x.toLowerCase(); // no assignment, create a
 // new, abandoned String

System.out.println("x = " + x); // no assignment, the output
 // is still: x = Java Rules!

x = x.toLowerCase(); // create a new String,
 // assigned to x
System.out.println("x = " + x); // the assignment causes the
 // output: x = java rules!

 FIGURE 5-3

An old String
object being
abandoned String reference

variable

String reference
variable

Notice in step 2 that there is no
valid reference to the "Java" String;
that object has been "abandoned,"
and a new object created.

String object

String object

String object

The heap

The heap

Step 1: String x = "Java";

Step 2: x = x.concat (" Rules!");

x

x

"Java"

"Java"

"Java Rules!"

05-ch05.indd 263 9/2/2014 2:49:03 PM

264 Chapter 5: Working with Strings, Arrays, and ArrayLists

The preceding discussion contains the keys to understanding Java string
immutability. If you really, really get the examples and diagrams, backward and
forward, you should get 80 percent of the String questions on the exam correct.

We will cover more details about strings next, but make no mistake—in terms of
bang for your buck, what we've already covered is by far the most important part of
understanding how String objects work in Java.

We'll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on
paper. (Hint: try to keep track of how many objects and reference variables there are,
and which ones refer to which.)

String s1 = "spring ";
String s2 = s1 + "summer ";
s1.concat("fall ");
s2.concat(s1);
s1 += "winter ";
System.out.println(s1 + " " + s2);

What is the output? For extra credit, how many String objects and how many
reference variables were created prior to the println statement?

Answer: The result of this code fragment is spring winter spring summer.
There are two reference variables: s1 and s2. A total of eight String objects were
created as follows: "spring ", "summer " (lost), "spring summer ", "fall "
(lost), "spring fall " (lost), "spring summer spring " (lost), "winter "
(lost), "spring winter " (at this point "spring " is lost). Only two of the eight
String objects are not lost in this process.

Important Facts About Strings and Memory

In this section we'll discuss how Java handles String objects in memory and some
of the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use of
memory. As an application grows, it's very common for string literals to occupy large
amounts of a program's memory, and there is often a lot of redundancy within the
universe of String literals for a program. To make Java more memory efficient, the
JVM sets aside a special area of memory called the String constant pool. When the
compiler encounters a String literal, it checks the pool to see if an identical
String already exists. If a match is found, the reference to the new literal is directed
to the existing String, and no new String literal object is created. (The existing
String simply has an additional reference.) Now you can start to see why making

05-ch05.indd 264 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 265

String objects immutable is such a good idea. If several reference variables refer to
the same String without even knowing it, it would be very bad if any of them could
change the String's value.

You might say, "Well that's all well and good, but what if someone overrides the
String class functionality; couldn't that cause problems in the pool?" That's one of
the main reasons that the String class is marked final. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String
objects you are counting on to be immutable will, in fact, be immutable.

Creating New Strings

Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let's look at a couple of examples of how a String
might be created, and let's further assume that no other String objects exist in the
pool. In this simple case, "abc" will go in the pool and s will refer to it:

String s = "abc"; // creates one String object and one
 // reference variable

In the next case, because we used the new keyword, Java will create a new String
object in normal (nonpool) memory and s will refer to it. In addition, the literal
"abc" will be placed in the pool:

String s = new String("abc"); // creates two objects,
 // and one reference variable

Important Methods in the String Class

The following methods are some of the more commonly used methods in the
String class, and they are also the ones that you're most likely to encounter on the
exam.

■ charAt() Returns the character located at the specified index

■ concat() Appends one string to the end of another (+ also works)

■ equalsIgnoreCase() Determines the equality of two strings, ignoring case

■ length() Returns the number of characters in a string

■ replace() Replaces occurrences of a character with a new character

■ substring() Returns a part of a string

■ toLowerCase() Returns a string, with uppercase characters converted to
lowercase

05-ch05.indd 265 9/2/2014 2:49:03 PM

266 Chapter 5: Working with Strings, Arrays, and ArrayLists

■ toString() Returns the value of a string

■ toUpperCase() Returns a string, with lowercase characters converted to
uppercase

■ trim() Removes whitespace from both ends of a string

Let's look at these methods in more detail.

public char charAt(int index) This method returns the character located at
the String's specified index. Remember, String indexes are zero-based—here's an
example:

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s) This method returns a string with the value of
the String passed in to the method appended to the end of the String used to
invoke the method—here's an example:

String x = "taxi";
System.out.println(x.concat(" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat()
method—here's an example:

String x = "library";
System.out.println(x + " card"); // output is "library card"

String x = "Atlantic";
x+= " ocean";
System.out.println(x); // output is "Atlantic ocean"

In the preceding "Atlantic ocean" example, notice that the value of x really
did change! Remember that the += operator is an assignment operator, so line 2 is
really creating a new string, "Atlantic ocean", and assigning it to the x variable.
After line 2 executes, the original string x was referring to, "Atlantic", is abandoned.

public boolean equalsIgnoreCase(String s) This method returns a boolean
value (true or false) depending on whether the value of the String in the
argument is the same as the value of the String used to invoke the method. This
method will return true even when characters in the String objects being compared
have differing cases—here's an example:

05-ch05.indd 266 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 267

String x = "Exit";
System.out.println(x.equalsIgnoreCase("EXIT")); // is "true"
System.out.println(x.equalsIgnoreCase("tixe")); // is "false"

public int length() This method returns the length of the String used to
invoke the method—here's an example:

String x = "01234567";
System.out.println(x.length()); // returns "8"

Arrays have an attribute (not a method) called length. You may

encounter questions in the exam that attempt to use the length() method on an array

or that attempt to use the length attribute on a String. Both cause compiler errors—

consider these, for example:

String x = "test";
System.out.println(x.length); // compiler error

and

String[] x = new String[3];
System.out.println(x.length()); // compiler error

public String replace(char old, char new) This method returns a String
whose value is that of the String used to invoke the method, updated so that any
occurrence of the char in the first argument is replaced by the char in the second
argument—here's an example:

String x = "oxoxoxox";
System.out.println(x.replace('x', 'X')); // output is "oXoXoXoX"

public String substring(int begin) and public String substring(int begin,
int end) The substring() method is used to return a part (or substring) of the
String used to invoke the method. The first argument represents the starting
location (zero-based) of the substring. If the call has only one argument, the
substring returned will include the characters at the end of the original String. If
the call has two arguments, the substring returned will end with the character
located in the nth position of the original String where n is the second argument.

05-ch05.indd 267 9/2/2014 2:49:03 PM

268 Chapter 5: Working with Strings, Arrays, and ArrayLists

Unfortunately, the ending argument is not zero-based, so if the second argument is 7,
the last character in the returned String will be in the original String's 7 position,
which is index 6 (ouch). Let's look at some examples:
String x = "0123456789"; // as if by magic, the value of each
 // char is the same as its index!
System.out.println(x.substring(5)); // output is "56789"
System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: Start at index 5 and return the rest of the String.
The second example should be read as follows: Start at index 5 and return the
characters up to and including the 8th position (index 7).

public String toLowerCase() Converts all characters of a String to
lowercase—here's an example:

String x = "A New Moon";
System.out.println(x.toLowerCase()); // output is "a new moon"

public String toString() This method returns the value of the String used to
invoke the method. What? Why would you need such a seemingly "do nothing"
method? All objects in Java must have a toString() method, which typically
returns a String that in some meaningful way describes the object in question. In
the case of a String object, what's a more meaningful way than the String's value?
For the sake of consistency, here's an example:
String x = "big surprise";
System.out.println(x.toString()); // output? [reader's exercise :-)]

public String toUpperCase() Converts all characters of a String to
uppercase—here's an example:

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is "A NEW MOON"

public String trim() This method returns a String whose value is the String
used to invoke the method, but with any leading or trailing whitespace removed—
here's an example:

String x = " hi ";
System.out.println(x + "t"); // output is " hi t"
System.out.println(x.trim() + "t"); // output is "hit"

05-ch05.indd 268 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 269

The StringBuilder Class

The java.lang.StringBuilder class should be used when you have to make a lot
of modifications to strings of characters. As discussed in the previous section,
String objects are immutable, so if you choose to do a lot of manipulations with
String objects, you will end up with a lot of abandoned String objects in the
String pool. (Even in these days of gigabytes of RAM, it's not a good idea to waste
precious memory on discarded String pool objects.) On the other hand, objects of
type StringBuilder can be modified over and over again without leaving behind a
great effluence of discarded String objects.

A common use for StringBuilders is file I/O when large, ever-changing

streams of input are being handled by the program. In these cases, large blocks

of characters are handled as units, and StringBuilder objects are the ideal

way to handle a block of data, pass it on, and then reuse the same memory to

handle the next block of data.

Prefer StringBuilder to StringBuffer

The StringBuilder class was added in Java 5. It has exactly the same API as the
StringBuffer class, except StringBuilder is not thread-safe. In other words, its
methods are not synchronized. (More about thread safety in Chapter 13.) Oracle
recommends that you use StringBuilder instead of StringBuffer whenever
possible, because StringBuilder will run faster (and perhaps jump higher). So
apart from synchronization, anything we say about StringBuilder's methods holds
true for StringBuffer's methods, and vice versa. That said, for the OCA 7 and
OCP 7 exams, StringBuffer is not tested.

Using StringBuilder
(and This Is the Last Time We'll Say This: StringBuffer)

In the previous section, you saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat("def");
System.out.println("x = " + x); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat() method was abandoned instantly. You also saw examples like this:

String x = "abc";
x = x.concat("def");
System.out.println("x = " + x); // output is "x = abcdef"

05-ch05.indd 269 9/2/2014 2:49:03 PM

270 Chapter 5: Working with Strings, Arrays, and ArrayLists

We got a nice new String out of the deal, but the downside is that the old
String "abc" has been lost in the String pool, thus wasting memory. If we were
using a StringBuilder instead of a String, the code would look like this:

StringBuilder sb = new StringBuilder("abc");
sb.append("def");
System.out.println("sb = " + sb); // output is "sb = abcdef"

All of the StringBuilder methods we will discuss operate on the value of the
StringBuilder object invoking the method. So a call to sb.append("def"); is
actually appending "def" to itself (StringBuilder sb). In fact, these method calls
can be chained to each other—here's an example:

StringBuilder sb = new StringBuilder("abc");
sb.append("def").reverse().insert(3, "---");
System.out.println(sb); // output is "fed---cba"

Notice that in each of the previous two examples, there was a single call to new,
so in each example we weren't creating any extra objects. Each example needed only
a single StringBuilder object to execute.

So far we've seen StringBuilders being built with an argument

specifying an initial value. StringBuilders can also be built empty, and they can also be

constructed with a specifi c size or, more formally, a "capacity." For the exam, there are

three ways to create a new StringBuilder:

1. new StringBuilder(); // default cap. = 16 chars
2. new StringBuilder("ab"); // cap. = 16 + arg's length
3. new StringBuilder(x); // capacity = x (an integer)

The two most common ways to work with StringBuilders is via an append() method

or an insert() method. In terms of a StringBuilder's capacity, there are three rules to

keep in mind when appending and inserting:

If an • append() grows a StringBuilder past its capacity, the capacity is updated

 automatically.

If an • insert() starts within a StringBuilder's capacity, but ends after the

 current capacity, the capacity is updated automatically.

If an • insert() attempts to start at an index after the StringBuilder's current

 length, an exception will be thrown.

05-ch05.indd 270 9/2/2014 2:49:03 PM

 Using String and StringBuilder (OCA Objectives 2.7 and 2.6) 271

Important Methods in the StringBuilder Class

The StringBuilder class has a zillion methods. Following are the methods you're
most likely to use in the real world and, happily, the ones you're most likely to find
on the exam.

public StringBuilder append(String s) As you've seen earlier, this method
will update the value of the object that invoked the method, whether or not the
returned value is assigned to a variable. This method will take many different
arguments, including boolean, char, double, float, int, long, and others, but
the most likely use on the exam will be a String argument—for example,

StringBuilder sb = new StringBuilder("set ");
sb.append("point");
System.out.println(sb); // output is "set point"
StringBuilder sb2 = new StringBuilder("pi = ");
sb2.append(3.14159f);
System.out.println(sb2); // output is "pi = 3.14159"

public StringBuilder delete(int start, int end) This method modifies the
value of the StringBuilder object used to invoke it. The starting index of the
substring to be removed is defined by the first argument (which is zero-based), and
the ending index of the substring to be removed is defined by the second argument
(but it is one-based)! Study the following example carefully:

StringBuilder sb = new StringBuilder("0123456789");
System.out.println(sb.delete(4,6)); // output is "01236789"

The exam will probably test your knowledge of the difference between

String and StringBuilder objects. Because StringBuilder objects are changeable, the

following code fragment will behave differently than a similar code fragment that uses

String objects:

StringBuilder sb = new StringBuilder("abc");
sb.append("def");
System.out.println(sb);

In this case, the output will be: "abcdef"

05-ch05.indd 271 9/2/2014 2:49:03 PM

272 Chapter 5: Working with Strings, Arrays, and ArrayLists

public StringBuilder insert(int offset, String s) This method updates the
value of the StringBuilder object that invoked the method call. The String
passed in to the second argument is inserted into the StringBuilder starting at the
offset location represented by the first argument (the offset is zero-based). Again,
other types of data can be passed in through the second argument (boolean, char,
double, float, int, long, and so on), but the String argument is the one you're
most likely to see:

StringBuilder sb = new StringBuilder("01234567");
sb.insert(4, "---");
System.out.println(sb); // output is "0123---4567"

public StringBuilder reverse() This method updates the value of the
StringBuilder object that invoked the method call. When invoked, the characters
in the StringBuilder are reversed—the first character becoming the last, the
second becoming the second to the last, and so on:

StringBuilder s = new StringBuilder("A man a plan a canal Panama");
sb.reverse();
System.out.println(sb); // output: "amanaP lanac a nalp a nam A"

public String toString() This method returns the value of the StringBuilder
object that invoked the method call as a String:

StringBuilder sb = new StringBuilder("test string");
System.out.println(sb.toString()); // output is "test string"

That's it for StringBuilders. If you take only one thing away from this section,
it's that unlike String objects, StringBuilder objects can be changed.

Many of the exam questions covering this chapter's topics use a tricky bit

of Java syntax known as "chained methods." A statement with chained methods has this

general form:

result = method1().method2().method3();

In theory, any number of methods can be chained in this fashion, although typically you

won't see more than three. Here's how to decipher these "handy Java shortcuts" when

you encounter them:

05-ch05.indd 272 9/2/2014 2:49:03 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 273

CERTIFICATION OBJECTIVE

Using Arrays (OCA Objectives 4.1 and 4.2)

4.1 Declare, instantiate, initialize, and use a one-dimensional array.

4.2 Declare, instantiate, initialize, and use a multi-dimensional array.

Arrays are objects in Java that store multiple variables of the same type. Arrays
can hold either primitives or object references, but the array itself will always be an
object on the heap, even if the array is declared to hold primitive elements. In other
words, there is no such thing as a primitive array, but you can make an array of
primitives. For this objective, you need to know three things:

■ How to make an array reference variable (declare)

■ How to make an array object (construct)

■ How to populate the array with elements (initialize)

There are several different ways to do each of these, and you need to know about all
of them for the exam.

Determine what the leftmost method call will return (let's call it 1. x).

Use 2. x as the object invoking the second (from the left) method. If there are only two

 chained methods, the result of the second method call is the expression's result.

If there is a third method, the result of the second method call is used to invoke 3.

 the third method, whose result is the expression's result—for example,

String x = "abc";
String y = x.concat("def").toUpperCase().replace('C','x'); //chained methods
System.out.println("y = " + y); // result is "y = ABxDEF"

Let's look at what happened. The literal def was concatenated to abc, creating a temporary,

intermediate String (soon to be lost), with the value abcdef. The toUpperCase() method

was called on this String, which created a new (soon to be lost) temporary String with the

value ABCDEF. The replace() method was then called on this second String object, which

created a fi nal String with the value ABxDEF and referred y to it.

05-ch05.indd 273 9/2/2014 2:49:03 PM

274 Chapter 5: Working with Strings, Arrays, and ArrayLists

Arrays are efficient, but most of the time you'll want to use one of the

Collection types from java.util (including HashMap, ArrayList, TreeSet).

Collection classes offer more flexible ways to access an object (for insertion,

deletion, and so on) and unlike arrays, they can expand or contract

dynamically as you add or remove elements (they're really managed arrays,

since they use arrays behind the scenes). There's a Collection type for a wide

range of needs. Do you need a fast sort? A group of objects with no duplicates?

A way to access a name/value pair? A linked list? Chapter 11 covers collections

in more detail.

Declaring an Array

Arrays are declared by stating the type of element the array will hold, which can be an
object or a primitive, followed by square brackets to the left or right of the identifier.

Declaring an array of primitives:

int[] key; // brackets before name (recommended)
int key []; // brackets after name (legal but less readable)
 // spaces between the name and [] legal, but bad

Declaring an array of object references:

Thread[] threads; // Recommended
Thread threads[]; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable name).
That way, anyone reading the code can easily tell that, for example, key is a
reference to an int array object and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[][][] occupantName; // recommended
String[] managerName []; // yucky, but legal

The first example is a three-dimensional array (an array of arrays of arrays) and the
second is a two-dimensional array. Notice in the second example we have one square
bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

It is never legal to include the size of the array in your declaration. Yes, we know
you can do that in some other languages, which is why you might see a question or
two in the exam that include code similar to the following:

int[5] scores; // will NOT compile

05-ch05.indd 274 9/2/2014 2:49:03 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 275

The preceding code won't make it past the compiler. Remember, the JVM doesn't
allocate space until you actually instantiate the array object. That's when size matters.

Constructing an Array

Constructing an array means creating the array object on the heap (where all
objects live)—that is, doing a new on the array type. To create an array object, Java
must know how much space to allocate on the heap, so you must specify the size of
the array at creation time. The size of the array is the number of elements the array
will hold.

Constructing One-Dimensional Arrays

The most straightforward way to construct an array is to use the keyword new
followed by the array type, with a bracket specifying how many elements of that type
the array will hold. The following is an example of constructing an array of type int:

int[] testScores; // Declares the array of ints
testScores = new int[4]; // constructs an array and assigns it
 // to the testScores variable

The preceding code puts one new object on the heap—an array object holding four
elements—with each element containing an int with a default value of 0. Think of
this code as saying to the compiler, "Create an array object that will hold four ints,
and assign it to the reference variable named testScores. Also, go ahead and set
each int element to zero. Thanks." (The compiler appreciates good manners.)

Figure 5-4 shows the testScores array on the heap, after construction.

 FIGURE 5-4

A one-
dimensional array
on the heap

testScores

0 0 0 0

0 1 2 3

int[]array
reference
variable

int[]array object

The heap

Values

Indices

05-ch05.indd 275 9/2/2014 2:49:03 PM

276 Chapter 5: Working with Strings, Arrays, and ArrayLists

You can also declare and construct an array in one statement, as follows:

int[] testScores = new int[4];

This single statement produces the same result as the two previous statements.
Arrays of object types can be constructed in the same way:

Thread[] threads = new Thread[5]; // no Thread objects created!
 // one Thread array created

Remember that, despite how the code appears, the Thread constructor is not being
invoked. We're not creating a Thread instance, but rather a single Thread array
object. After the preceding statement, there are still no actual Thread objects!

Think carefully about how many objects are on the heap after a code

statement or block executes. The exam will expect you to know, for example, that the

preceding code produces just one object (the array assigned to the reference variable

named threads). The single object referenced by threads holds fi ve Thread reference

variables, but no Thread objects have been created or assigned to those references.

Remember, arrays must always be given a size at the time they are constructed.
The JVM needs the size to allocate the appropriate space on the heap for the new
array object. It is never legal, for example, to do the following:

int[] carList = new int[]; // Will not compile; needs a size

So don't do it, and if you see it on the test, run screaming toward the nearest answer
marked "Compilation fails."

You may see the words "construct", "create", and "instantiate" used

interchangeably. They all mean, "An object is built on the heap." This also implies that

the object's constructor runs, as a result of the construct/create/instantiate code. You can

say with certainty, for example, that any code that uses the keyword new will (if it runs

successfully) cause the class constructor and all superclass constructors to run.

05-ch05.indd 276 9/2/2014 2:49:03 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 277

In addition to being constructed with new, arrays can also be created using a kind
of syntax shorthand that creates the array while simultaneously initializing the array
elements to values supplied in code (as opposed to default values). We'll look at that
in the next section. For now, understand that because of these syntax shortcuts,
objects can still be created even without you ever using or seeing the keyword new.

Constructing Multidimensional Arrays

Multidimensional arrays, remember, are simply arrays of arrays. So a two-dimensional
array of type int is really an object of type int array (int []), with each element
in that array holding a reference to another int array. The second dimension holds
the actual int primitives.

The following code declares and constructs a two-dimensional array of type int:

int[][] myArray = new int[3][];

Notice that only the first brackets are given a size. That's acceptable in Java, since
the JVM needs to know only the size of the object assigned to the variable myArray.

Figure 5-5 shows how a two-dimensional int array works on the heap.

Initializing an Array

Initializing an array means putting things into it. The "things" in the array are the
array's elements, and they're either primitive values (2, x, false, and so on) or objects
referred to by the reference variables in the array. If you have an array of objects (as
opposed to primitives), the array doesn't actually hold the objects, just as any other
nonprimitive variable never actually holds the object, but instead holds a reference to
the object. But we talk about arrays as, for example, "an array of five strings," even
though what we really mean is, "an array of five references to String objects." Then
the big question becomes whether or not those references are actually pointing (oops,
this is Java, we mean referring) to real String objects or are simply null. Remember,
a reference that has not had an object assigned to it is a null reference. And if you
actually try to use that null reference by, say, applying the dot operator to invoke a
method on it, you'll get the infamous NullPointerException.

The individual elements in the array can be accessed with an index number. The
index number always begins with zero (0), so for an array of ten objects the index
numbers will run from 0 through 9. Suppose we create an array of three Animals as
follows:

Animal [] pets = new Animal[3];

05-ch05.indd 277 9/2/2014 2:49:04 PM

278 Chapter 5: Working with Strings, Arrays, and ArrayLists

We have one array object on the heap, with three null references of type
Animal, but we don't have any Animal objects. The next step is to create some
Animal objects and assign them to index positions in the array referenced by pets:

pets[0] = new Animal();
pets[1] = new Animal();
pets[2] = new Animal();

This code puts three new Animal objects on the heap and assigns them to the three
index positions (elements) in the pets array.

 FIGURE 5-5

A two-dimensional
array on the heap

int[]array object

int[][] (2-D array)
reference variable

int[][] myArray = new int[3][];
myArray[0] = new int[2];
myArray[0][0] = 6;
myArray[0][1] = 7;
myArray[1] = new int[3];
myArray[1][0] = 9;
myArray[1][1] = 8;
myArray[1][2] = 5;

Picture demonstrates the result of the following code:

myArray

null

2-D int[][]array object

int[]array object

myArray[0]

myArray[1]

The heap

05-ch05.indd 278 9/2/2014 2:49:04 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 279

A two-dimensional array (an array of arrays) can be initialized as follows:

int[][] scores = new int[3][];
// Declare and create an array (scores) holding three references
// to int arrays

scores[0] = new int[4];
// the first element in the scores array is an int array
// of four int elements

scores[1] = new int[6];
// the second element is an int array of six int elements

scores[2] = new int[1];
// the third element is an int array of one int element

Initializing Elements in a Loop

Array objects have a single public variable, length, that gives you the number of
elements in the array. The last index value, then, is always one less than the length.

Look for code that tries to access an out-of-range array index. For

example, if an array has three elements, trying to access the element [3] will raise an

ArrayIndexOutOfBoundsException, because in an array of three elements, the legal

index values are 0, 1, and 2. You also might see an attempt to use a negative number as

an array index. The following are examples of legal and illegal array access attempts. Be

sure to recognize that these cause runtime exceptions and not compiler errors!

Nearly all of the exam questions list both runtime exception and compiler error as

possible answers:

int[] x = new int[5];
x[4] = 2; // OK, the last element is at index 4
x[5] = 3; // Runtime exception. There is no element at index 5!

int[] z = new int[2];
int y = -3;
z[y] = 4; // Runtime exception. y is a negative number

These can be hard to spot in a complex loop, but that's where you're most likely to see

array index problems in exam questions.

05-ch05.indd 279 9/2/2014 2:49:04 PM

280 Chapter 5: Working with Strings, Arrays, and ArrayLists

For example, if the length of an array is 4, the index values are from 0 through 3.
Often, you'll see array elements initialized in a loop, as follows:

Dog[] myDogs = new Dog[6]; // creates an array of 6 Dog references
for(int x = 0; x < myDogs.length; x++) {
 myDogs[x] = new Dog(); // assign a new Dog to index position x
}

The length variable tells us how many elements the array holds, but it does not
tell us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line

You can use two different array-specific syntax shortcuts both to initialize (put
explicit values into an array's elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement, as follows:

1. int x = 9;
2. int[] dots = {6,x,8};

Line 2 in the preceding code does four things:

■ Declares an int array reference variable named dots.

■ Creates an int array with a length of three (three elements).

■ Populates the array's elements with the values 6, 9, and 8.

■ Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of comma-separated
items between the curly braces. The code is functionally equivalent to the following
longer code:

int[] dots;
dots = new int[3];
int x = 9;
dots[0] = 6;
dots[1] = x;
dots[2] = 8;

This begs the question, "Why would anyone use the longer way?" One reason
comes to mind. You might not know—at the time you create the array—the values
that will be assigned to the array's elements.

05-ch05.indd 280 9/2/2014 2:49:04 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 281

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo");
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable myDogs, with a
length of three elements. It assigns a previously created Dog object (assigned to the
reference variable puppy) to the first element in the array. It also creates two new
Dog objects (Clover and Aiko) and adds them to the last two Dog reference variable
elements in the myDogs array. This array shortcut alone (combined with the
stimulating prose) is worth the price of this book. Figure 5-6 shows the result.

 FIGURE 5-6

Declaring,
constructing,
and initializing an
array of objects

puppy

myDogs

Dog puppy = new Dog ("Frodo");
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

0 1 2

Frodo
Clover

Aiko

Dog object
Dog object

Dog object
Dog reference
variable

Dog[]array
reference variable

Four objects are created:

1 Dog object referenced by puppy and by myDogs[0]
1 Dog[] array referenced by myDogs
2 Dog object referenced by myDogs[1]and myDogs[2]

Picture demonstrates the result of the following code:

Dog[]array object

The heap

05-ch05.indd 281 9/2/2014 2:49:04 PM

282 Chapter 5: Working with Strings, Arrays, and ArrayLists

You can also use the shortcut syntax with multidimensional arrays, as follows:

int[][] scores = {{5,2,4,7}, {9,2}, {3,4}};

This code creates a total of four objects on the heap. First, an array of int arrays is
constructed (the object that will be assigned to the scores reference variable). The
scores array has a length of three, derived from the number of comma-separated
items between the outer curly braces. Each of the three elements in the scores
array is a reference variable to an int array, so the three int arrays are constructed
and assigned to the three elements in the scores array.

The size of each of the three int arrays is derived from the number of items
within the corresponding inner curly braces. For example, the first array has a length
of four, the second array has a length of two, and the third array has a length of two.
So far, we have four objects: one array of int arrays (each element is a reference to
an int array), and three int arrays (each element in the three int arrays is an int
value). Finally, the three int arrays are initialized with the actual int values within
the inner curly braces. Thus, the first int array contains the values 5,2,4,7. The
following code shows the values of some of the elements in this two-dimensional array:

scores[0] // an array of 4 ints
scores[1] // an array of 2 ints
scores[2] // an array of 2 ints
scores[0][1] // the int value 2
scores[2][1] // the int value 4

Figure 5-7 shows the result of declaring, constructing, and initializing a two-
dimensional array in one statement.

Constructing and Initializing an Anonymous Array

The second shortcut is called "anonymous array creation" and can be used to
construct and initialize an array, and then assign the array to a previously declared
array reference variable:

int[] testScores;
testScores = new int[] {4,7,2};

The preceding code creates a new int array with three elements; initializes the
three elements with the values 4, 7, and 2; and then assigns the new array to the
previously declared int array reference variable testScores. We call this
anonymous array creation because with this syntax, you don't even need to assign
the new array to anything. Maybe you're wondering, "What good is an array if you
don't assign it to a reference variable?" You can use it to create a just-in-time array to
use, for example, as an argument to a method that takes an array parameter. The
following code demonstrates a just-in-time array argument:

05-ch05.indd 282 9/2/2014 2:49:04 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 283

 FIGURE 5-7

Declaring,
constructing, and
initializing a two-
dimensional array

Cat

Cat[]array
object

Cat[][] myCats =
new Cat("Bilbo"), new Cat("Legolas"), new Cat("Bert")

{{

{

}

}}
new Cat("Fluffy"), new Cat("Zeus") ,

Cat[]array
object

2-D Cat[][] array object

Picture demonstrates the result of the following code:

Cat[][] array
reference variable

Eight objects are created:
1 2-D Cat[][] array object
2 Cat[] array object
5 Cat object

Fluffy

0 0 21

0 1

1

Zeus Bilbo
Legolas

Bert

object
Cat object

Cat object

Cat object

Cat object

The heap

public class JIT {
 void takesAnArray(int[] someArray) {
 // use the array parameter
 }
 public static void main (String [] args) {
 JIT j = new JIT();
 j.takesAnArray(new int[] {7,7,8,2,5}); // pass an array
 }
}

05-ch05.indd 283 9/2/2014 2:49:04 PM

284 Chapter 5: Working with Strings, Arrays, and ArrayLists

Legal Array Element Assignments

What can you put in a particular array? For the exam, you need to know that arrays
can have only one declared type (int[], Dog[], String[], and so on), but that
doesn't necessarily mean that only objects or primitives of the declared type can be
assigned to the array elements. And what about the array reference itself? What kind
of array object can be assigned to a particular array reference? For the exam, you'll
need to know the answers to all of these questions. And, as if by magic, we're
actually covering those very same topics in the following sections. Pay attention.

Arrays of Primitives

Primitive arrays can accept any value that can be promoted implicitly to the
declared type of the array. For example, an int array can hold any value that can fit
into a 32-bit int variable. Thus, the following code is legal:

int[] weightList = new int[5];
byte b = 4;
char c = 'c';
short s = 7;
weightList[0] = b; // OK, byte is smaller than int
weightList[1] = c; // OK, char is smaller than int
weightList[2] = s; // OK, short is smaller than int

Arrays of Object References

If the declared array type is a class, you can put objects of any subclass of the
declared type into the array. For example, if Subaru is a subclass of Car, you can put
both Subaru objects and Car objects into an array of type Car as follows:

Remember that you do not specify a size when using anonymous array

creation syntax. The size is derived from the number of items (comma-separated)

between the curly braces. Pay very close attention to the array syntax used in exam

questions (and there will be a lot of them). You might see syntax such as this:

 new Object[3] {null, new Object(), new Object()};
 // not legal; size must not be specified

05-ch05.indd 284 9/2/2014 2:49:04 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 285

class Car {}
class Subaru extends Car {}
class Ferrari extends Car {}
...
Car [] myCars = {new Subaru(), new Car(), new Ferrari()};

It helps to remember that the elements in a Car array are nothing more than Car
reference variables. So anything that can be assigned to a Car reference variable can
be legally assigned to a Car array element.

If the array is declared as an interface type, the array elements can refer to any
instance of any class that implements the declared interface. The following code
demonstrates the use of an interface as an array type:

interface Sporty {
 void beSporty();
}
class Ferrari extends Car implements Sporty {
 public void beSporty() {
 // implement cool sporty method in a Ferrari-specific way
 }
}
class RacingFlats extends AthleticShoe implements Sporty {
 public void beSporty() {
 // implement cool sporty method in a RacingFlat-specific way
 }
}
class GolfClub { }
class TestSportyThings {
 public static void main (String [] args) {
 Sporty[] sportyThings = new Sporty [3];
 sportyThings[0] = new Ferrari(); // OK, Ferrari
 // implements Sporty
 sportyThings[1] = new RacingFlats(); // OK, RacingFlats
 // implements Sporty
 sportyThings[2] = new GolfClub(); // NOT ok..

 // Not OK; GolfClub does not implement Sporty
 // I don't care what anyone says
 }
}

The bottom line is this: Any object that passes the IS-A test for the declared
array type can be assigned to an element of that array.

05-ch05.indd 285 9/2/2014 2:49:04 PM

286 Chapter 5: Working with Strings, Arrays, and ArrayLists

Array Reference Assignments for One-Dimensional Arrays

For the exam, you need to recognize legal and illegal assignments for array reference
variables. We're not talking about references in the array (in other words, array
elements), but rather references to the array object. For example, if you declare an
int array, the reference variable you declared can be reassigned to any int array (of
any size), but the variable cannot be reassigned to anything that is not an int array,
including an int value. Remember, all arrays are objects, so an int array reference
cannot refer to an int primitive. The following code demonstrates legal and illegal
assignments for primitive arrays:

int[] splats;
int[] dats = new int[4];
char[] letters = new char[5];
splats = dats; // OK, dats refers to an int array
splats = letters; // NOT OK, letters refers to a char array

It's tempting to assume that because a variable of type byte, short, or char can
be explicitly promoted and assigned to an int, an array of any of those types could
be assigned to an int array. You can't do that in Java, but it would be just like those
cruel, heartless (but otherwise attractive) exam developers to put tricky array
assignment questions in the exam.

Arrays that hold object references, as opposed to primitives, aren't as restrictive.
Just as you can put a Honda object in a Car array (because Honda extends Car), you
can assign an array of type Honda to a Car array reference variable as follows:

Car[] cars;
Honda[] cuteCars = new Honda[5];
cars = cuteCars; // OK because Honda is a type of Car
Beer[] beers = new Beer [99];
cars = beers; // NOT OK, Beer is not a type of Car

Apply the IS-A test to help sort the legal from the illegal. Honda IS-A Car, so a
Honda array can be assigned to a Car array. Beer IS-A Car is not true; Beer does not
extend Car (plus it doesn't make sense, unless you've already had too much of it).

The rules for array assignment apply to interfaces as well as classes. An array
declared as an interface type can reference an array of any type that implements the
interface. Remember, any object from a class implementing a particular interface will
pass the IS-A (instanceof) test for that interface. For example, if Box implements
Foldable, the following is legal:

05-ch05.indd 286 9/2/2014 2:49:05 PM

 Using Arrays (OCA Objectives 4.1 and 4.2) 287

Foldable[] foldingThings;
Box[] boxThings = new Box[3];
foldingThings = boxThings;
// OK, Box implements Foldable, so Box IS-A Foldable

You cannot reverse the legal assignments. A Car array cannot be assigned

to a Honda array. A Car is not necessarily a Honda, so if you've declared a Honda array, it

might blow up if you assigned a Car array to the Honda reference variable. Think about

it: a Car array could hold a reference to a Ferrari, so someone who thinks they have an

array of Hondas could suddenly fi nd themselves with a Ferrari. Remember that the IS-A

test can be checked in code using the instanceof operator.

Array Reference Assignments for Multidimensional Arrays

When you assign an array to a previously declared array reference, the array you're
assigning must be in the same dimension as the reference you're assigning it to. For
example, a two-dimensional array of int arrays cannot be assigned to a regular int
array reference, as follows:

int[] blots;
int[][] squeegees = new int[3][];
blots = squeegees; // NOT OK, squeegees is a
 // two-d array of int arrays
int[] blocks = new int[6];
blots = blocks; // OK, blocks is an int array

Pay particular attention to array assignments using different dimensions. You
might, for example, be asked if it's legal to assign an int array to the first element in
an array of int arrays, as follows:

int[][] books = new int[3][];
int[] numbers = new int[6];
int aNumber = 7;
books[0] = aNumber; // NO, expecting an int array not an int
books[0] = numbers; // OK, numbers is an int array

Figure 5-8 shows an example of legal and illegal assignments for references to
an array.

05-ch05.indd 287 9/2/2014 2:49:05 PM

288 Chapter 5: Working with Strings, Arrays, and ArrayLists

 FIGURE 5-8 Legal and illegal array assignments

moreCats

Cat[]array
reference variable
Array reference variable can
ONLY refer to a 1-D Cat array

Cat[][]2-D array
reference variable
2-D reference variable can
ONLY refer to a 2-D Cat array

myCats = myCats[0];
Can't assign a 1-D array to a 2-D array reference

myCats = myCats[0][0];
Can't assign a nonarray object to a 2-D array reference

myCats[1] = myCats[1][2];
Can't assign a nonarray object to a 1-D array reference

myCats[0][1] = moreCats;

 myCats[0][1] can only refer to a Cat object
Can't assign an array object to a nonarray reference

2-D Cat[][]array object
Element in a 2-D Cat array can ONLY
refer to a 1-D Cat array

Legal

Illegal

Cat[]array
object

Cat[]array
object

Cat[]array
object

0 1

0 1

0 1

0 1 2

The heap

Cat object

B

A

Illegal Array Reference Assignments

A

B

C

D

D

C

KEY

myCats

Cat object

null

Cat object
Cat object

Cat object

Element in a 1-D Cat array can
ONLY refer to a Cat object

Fluffy Zeus Bilbo
Legolas

Bert

//

//

//

//
//

05-ch05.indd 288 9/2/2014 2:49:05 PM

Using ArrayList (OCA Objective 4.3) 289

CERTIFICATION OBJECTIVE

Using ArrayList (OCA Objective 4.3)

4.3 Declare and use an ArrayList.

Data structures are a part of almost every application you'll ever work on. The Java API
provides an extensive range of classes that support common data structures such as Lists,
Sets, Maps, and Queues. For the purpose of the OCA exam, you should remember
that the classes that support these common data structures are a part of what is
known as "The Collection API" (one of its many aliases). (The OCP exam covers
the most common implementations of all the structures listed above, which, along
with the Collection API, we'll discuss in Chapter 11.)

When to Use ArrayLists

We've already talked about arrays. Arrays seem useful and pretty darned flexible. So
why do we need more functionality than arrays provide? Consider these two
situations:

■ You need to be able to increase and decrease the size of your list of things.

■ The order of things in your list is important and might change.

Both of these situations can be handled with arrays, but it's not easy....
Suppose you want to plan a vacation to Europe? You have several destinations in

mind (Paris, Oslo, Rome), but you're not yet sure in what order you want to visit
these cities, and as your planning progresses you might want to add or subtract cities
from your list. Let's say your first idea is to travel from north to south, so your list
looks like this:

Oslo, Paris, Rome.

If we were using an array, we could start with this:

String[] cities = {"Oslo", "Paris", "Rome"};

But now imagine that you remember that you REALLY want to go to London
too! You've got two problems:

■ Your cities array is already full.

■ If you're going from north to south, you need to insert London before Paris.

05-ch05.indd 289 9/2/2014 2:49:05 PM

290 Chapter 5: Working with Strings, Arrays, and ArrayLists

Of course, you can figure out a way to do this. Maybe you create a second array,
and you copy cities from one array to the other, and at the correct moment you add
London to the second array. Doable, but difficult.

Now let's see how you could do the same thing with an ArrayList:
import java.util.*; // ArrayList lives in .util
public class Cities {
 public static void main(String[] args) {

 List<String> c = new ArrayList<String>(); // create an ArrayList, c
 c.add("Oslo"); // add original cities
 c.add("Paris");
 c.add("Rome");
 int index = c.indexOf("Paris"); // find Paris' index
 System.out.println(c + " " + index);
 c.add(index, "London"); // add London before Paris
 System.out.println(c); // show the contents of c
 }
}

The output will be something like this:

[Oslo, Paris, Rome] 1
[Oslo, London, Paris, Rome]

By reviewing the code, we can learn some important facts about ArrayLists:

■ The ArrayList class is in the java.util package.

■ Similar to arrays, when you build an ArrayList you have to declare what
kind of objects it can contain. In this case, we're building an ArrayList of
String objects. (We'll look at the line of code that creates the ArrayList in
a lot more detail in a minute.)

■ ArrayList implements the List interface.

■ We work with the ArrayList through methods. In this case we used a
couple of versions of add(), we used indexOf(), and, indirectly, we used
toString() to display the ArrayList's contents. (More on toString() in
a minute.)

■ Like arrays, indexes for ArrayLists are zero-based.

■ We didn't declare how big the ArrayList was when we built it.

■ We were able to add a new element to the ArrayList on the fly.

■ We were able to add the new element in the middle of the list.

■ The ArrayList maintained its order.

05-ch05.indd 290 9/2/2014 2:49:05 PM

Using ArrayList (OCA Objective 4.3) 291

As promised, we need to look at the following line of code more closely:

List<String> c = new ArrayList<String>();

First off, we see that this is a polymorphic declaration. As we said earlier,
ArrayList implements the List interface (also in java.util). If you plan to take the
OCP 7 exam after you've aced the OCA 7, we'll be talking a lot more about why we
might want to do a polymorphic declaration in the OCP part of the book. For now,
imagine that someday you might want to create a List of your ArrayLists.

Next we have this weird looking syntax with the < and > characters. This syntax
was added to the language in Java 5, and it has to do with "generics." Generics aren't
really included in the OCA exam, so we don't want to spend a lot of time on them
here, but what's important to know is that this is how you tell the compiler and the
JVM that for this particular ArrayList you want only Strings to be allowed. What
this means is that if the compiler can tell that you're trying to add a "not-a-String"
object to this ArrayList, your code won't compile. This is a good thing!

Also as promised, let's look at THIS line of code:

System.out.println(c);

Remember that all classes ultimately inherit from class Object. Class Object
contains a method called toString(). Again, toString() isn't "officially" on the
OCA exam (of course it IS in the OCP exam!), but you need to understand it a bit
for now. When you pass an object reference to either System.out.print() or
System.out.println(), you're telling them to invoke that object's toString()
method. (Whenever you make a new class, you can optionally override the
toString() method your class inherited from Object, to show useful information
about your class's objects.) The API developers were nice enough to override
ArrayList's toString() method for you to show the contents of the ArrayList,
as you saw in the program's output. Hooray!

ArrayLists and Duplicates

As you're planning your trip to Europe, you realize that halfway through your stay in
Rome, there's going to be a fantastic music festival in Naples! Naples is just down

05-ch05.indd 291 9/2/2014 2:49:05 PM

292 Chapter 5: Working with Strings, Arrays, and ArrayLists

the coast from Rome! You've got to add that side trip to your itinerary. The question
is, can an ArrayList have duplicate entries? Is it legal to say this:

c.add("Rome");
c.add("Naples");
c.add("Rome");

And the short answer is: Yes, ArrayLists can have duplicates. Now if you stop
and think about it, the notion of "duplicate Java objects" is actually a bit tricky.
Relax, because you won't have to get into that trickiness until you study for the
OCP 7.

Technically speaking, ArrayLists hold only object references, not actual

objects, and not primitives. If you see code like this,

myArrayList.add(7);

what's really happening is that the int is being autoboxed (converted) into an Integer

object and then added to the ArrayList. We'll talk more about autoboxing in the OCP

part of the book.

ArrayList Methods in Action

Let's look at another piece of code that shows off most of the ArrayList methods
you need to know for the exam:
import java.util.*;
public class TweakLists {
 public static void main(String[] args) {

 List<String> myList = new ArrayList<String>();

 myList.add("z");
 myList.add("x");
 myList.add(1, "y"); // zero based
 myList.add(0, "w"); // " "
 System.out.println(myList); // [w, z, y, x]

 myList.clear(); // remove everything
 myList.add("b");
 myList.add("a");

05-ch05.indd 292 9/2/2014 2:49:05 PM

 Using ArrayList (OCA Objective 4.3) 293

 myList.add("c");
 System.out.println(myList); // [b, a, c]
 System.out.println(myList.contains("a") + " " + myList.contains("x"));

 System.out.println("get 1: " + myList.get(1));
 System.out.println("index of c: " + myList.indexOf("c"));

 myList.remove(1); // remove "a"
 System.out.println("size: " + myList.size() + " contents: " + myList);
 }
}

which should produce something like this:

[w, z, y, x]
[b, a, c]
true false
get 1: a
index of c: 2
size: 2 contents: [b, c]

A couple of quick notes about this code: First off, notice that contains() returns
a boolean. This makes contains() great to use in "if" tests. Second, notice that
ArrayList has a size() method. It's important to remember that arrays have a
length attribute and ArrayLists have a size() method.

Important Methods in the ArrayList Class

The following methods are some of the more commonly used methods in the
ArrayList class and also those that you're most likely to encounter on the exam:

■ add(element) Adds this element to the end of the ArrayList

■ add(index, element) Adds this element at the index point and shifts
the remaining elements back (for example, what was at index is now at
index + 1)

■ clear() Removes all the elements from the ArrayList

■ boolean contains(element) Returns whether the element is in the list

■ Object get(index) Returns the Object located at index

■ int indexOf(Object) Returns the (int) location of the element, or -1 if
the Object is not found

■ remove(index) Removes the element at that index and shifts later
elements toward the beginning one space

05-ch05.indd 293 9/2/2014 2:49:05 PM

294 Chapter 5: Working with Strings, Arrays, and ArrayLists

■ remove(Object) Removes the first occurrence of the Object and shifts
later elements toward the beginning one space

■ int size() Returns the number of elements in the ArrayList

■ To summarize, the OCA 7 exam tests only for very basic knowledge of
ArrayLists. If you go on to take the OCP 7 exam, you'll learn a lot more
about ArrayLists and other common, collections-oriented classes.

Encapsulation for Reference Variables

In Chapter 2 we began our discussion of the object-oriented concept of
encapsulation. At that point we limited our discussion to protecting a class's
primitive fields and (immutable) String fields. Now that you've learned more about
what it means to "pass-by-copy" and we've looked at non-primitive ways of handling
data such as arrays, StringBuilders, and ArrayLists, it's time to take a closer look
at encapsulation.

Let's say we have some special data whose value we're saving in a StringBuilder.
We're happy to share the value with other programmers, but we don't want them to
change the value:

class Special {
 private StringBuilder s = new StringBuilder("bob"); // our special data
 StringBuilder getName() { return s; }
 void printName() { System.out.println(s); } // verify our special
 // data
}
public class TestSpecial {
 public static void main(String[] args) {
 Special sp = new Special();
 StringBuilder s2 = sp.getName();
 s2.append("fred");
 sp.printName();
 }
}

When we run the code we get this:

bobfred

Uh oh! It looks like we practiced good encapsulation techniques by making our field
private and providing a "getter" method, but based on the output, it's clear that we
didn't do a very good job of protecting the data in the Special class. Can you figure
out why? Take a minute….

05-ch05.indd 294 9/2/2014 2:49:05 PM

Certifi cation Summary 295

Okay—just to verify your answer—when we invoke getName(), we do in fact
return a copy, just like Java always does. But, we're not returning a copy of the
StringBuilder object; we're returning a copy of the reference variable that
points to (I know) the one-and-only StringBuilder object we ever built. So, at the
point that getName() returns, we have one StringBuilder object and two
reference variables pointing to it (s and s2).

For the purpose of the OCA exam, the key point is this: When encapsulating a
mutable object like a StringBuilder, or an array, or an ArrayList, if you want to
let outside classes have a copy of the object, you must actually copy the object and
return a reference variable to the object that is a copy. If all you do is return a copy
of the original object's reference variable, you DO NOT have encapsulation.

CERTIFICATION SUMMARY

The most important thing to remember about Strings is that String objects are
immutable, but references to Strings are not! You can make a new String by using
an existing String as a starting point, but if you don't assign a reference variable to
the new String it will be lost to your program—you will have no way to access your
new String. Review the important methods in the String class.

The StringBuilder class was added in Java 5. It has exactly the same methods
as the old StringBuffer class, except StringBuilder's methods aren't thread-safe.
Because StringBuilder's methods are not thread-safe, they tend to run faster than
StringBuffer methods, so choose StringBuilder whenever threading is not an
issue. Both StringBuffer and StringBuilder objects can have their value
changed over and over without your having to create new objects. If you're doing a
lot of string manipulation, these objects will be more efficient than immutable
String objects, which are, more or less, "use once, remain in memory forever."
Remember, these methods ALWAYS change the invoking object's value, even with
no explicit assignment.

The next topic was arrays. We talked about declaring, constructing, and initializing
one-dimensional and multidimensional arrays. We talked about anonymous arrays and
the fact that arrays of objects are actually arrays of references to objects.

Finally, we discussed the basics of ArrayLists. ArrayLists are like arrays with
superpowers that allow them to grow and shrink dynamically and to make it easy for
you to insert and delete elements at locations of your choosing within the list.

05-ch05.indd 295 9/2/2014 2:49:05 PM

296 Chapter 5: Working with Strings, Arrays, and ArrayLists

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using String and StringBuilder (OCA Objectives 2.6 and 2.7)

❑ String objects are immutable, and String reference variables are not.

❑ If you create a new String without assigning it, it will be lost to your program.

❑ If you redirect a String reference to a new String, the old String can be lost.

❑ String methods use zero-based indexes, except for the second argument of
substring().

❑ The String class is final—it cannot be extended.

❑ When the JVM finds a String literal, it is added to the String literal pool.

❑ Strings have a method called length()—arrays have an attribute named length.

❑ StringBuilder objects are mutable—they can change without creating a
new object.

❑ StringBuilder methods act on the invoking object, and objects can change
without an explicit assignment in the statement.

❑ Remember that chained methods are evaluated from left to right.

❑ String methods to remember: charAt(), concat(), equalsIgnoreCase(),
length(), replace(), substring(), toLowerCase(), toString(),
toUpperCase(), and trim().

❑ StringBuilder methods to remember: append(), delete(), insert(),
reverse(), and toString().

Using Arrays (OCA Objectives 4.1 and 4.2)

❑ Arrays can hold primitives or objects, but the array itself is always an object.

❑ When you declare an array, the brackets can be to the left or right of the name.

❑ It is never legal to include the size of an array in the declaration.

❑ You must include the size of an array when you construct it (using new) unless
you are creating an anonymous array.

❑ Elements in an array of objects are not automatically created, although
primitive array elements are given default values.

❑ You'll get a NullPointerException if you try to use an array element in an
object array, if that element does not refer to a real object.

✓

05-ch05.indd 296 9/2/2014 2:49:05 PM

Two-Minute Drill 297

❑ Arrays are indexed beginning with zero.

❑ An ArrayIndexOutOfBoundsException occurs if you use a bad index value.

❑ Arrays have a length attribute whose value is the number of array elements.

❑ The last index you can access is always one less than the length of the array.

❑ Multidimensional arrays are just arrays of arrays.

❑ The dimensions in a multidimensional array can have different lengths.

❑ An array of primitives can accept any value that can be promoted implicitly to
the array's declared type—for example, a byte variable can go in an int array.

❑ An array of objects can hold any object that passes the IS-A (or
instanceof) test for the declared type of the array. For example, if Horse
extends Animal, then a Horse object can go into an Animal array.

❑ If you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to.

❑ You can assign an array of one type to a previously declared array reference of
one of its supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Using ArrayList (OCA Objective 4.3)

❑ ArrayLists allow you to resize your list and make insertions and deletions to
your list far more easily than arrays.

❑ For the OCA 7 exam, the only ArrayList declarations you need to know are
of this form:
ArrayList<type> myList = new ArrayList<type>();
List<type> myList2 = new ArrayList<type>(); // polymorphic

❑ ArrayLists can hold only objects, not primitives, but remember that
autoboxing can make it look like you're adding primitives to an ArrayList
when in fact you're adding a wrapper version of a primitive.

❑ An ArrayList's index starts at 0.

❑ ArrayLists can have duplicate entries. Note: Determining whether two
objects are duplicates is trickier than it seems and doesn't come up until the
OCP 7 exam.

❑ ArrayList methods to remember: add(element), add(index, element),
clear(), contains(), get(index), indexOf(), remove(index),
remove(object), and size().

05-ch05.indd 297 9/2/2014 2:49:07 PM

298 Chapter 5: Working with Strings, Arrays, and ArrayLists

SELF TEST

 1. Given:

public class Mutant {
 public static void main(String[] args) {
 StringBuilder sb = new StringBuilder("abc");
 String s = "abc";
 sb.reverse().append("d");
 s.toUpperCase().concat("d");
 System.out.println("." + sb + ". ." + s + ".");
 }
}

 Which two substrings will be included in the result? (Choose two.)
 A. .abc.
 B. .ABCd.
 C. .ABCD.
 D. .cbad.
 E. .dcba.

 2. Given:

public class Hilltop {
 public static void main(String[] args) {
 String[] horses = new String[5];
 horses[4] = null;
 for(int i = 0; i < horses.length; i++) {
 if(i < args.length)
 horses[i] = args[i];
 System.out.print(horses[i].toUpperCase() + " ");
 }
 }
}

 And, if the code compiles, the command line:

java Hilltop eyra vafi draumur kara

 What is the result?
 A. EYRA VAFI DRAUMUR KARA

 B. EYRA VAFI DRAUMUR KARA null

05-ch05.indd 298 9/2/2014 2:49:08 PM

Self Test 299

 C. An exception is thrown with no other output
 D. EYRA VAFI DRAUMUR KARA, and then a NullPointerException
 E. EYRA VAFI DRAUMUR KARA, and then an ArrayIndexOutOfBoundsException
 F. Compilation fails

 3. Given:

public class Actors {
 public static void main(String[] args) {
 char[] ca = {0x4e, \u004e, 78};
 System.out.println((ca[0] == ca[1]) + " " + (ca[0] == ca[2]));
 }
}

 What is the result?
 A. true true

 B. true false

 C. false true

 D. false false

 E. Compilation fails

 4. Given:

 1. class Dims {
 2. public static void main(String[] args) {
 3. int[][] a = {{1,2}, {3,4}};
 4. int[] b = (int[]) a[1];
 5. Object o1 = a;
 6. int[][] a2 = (int[][]) o1;
 7. int[] b2 = (int[]) o1;
 8. System.out.println(b[1]);
 9. } }

 What is the result? (Choose all that apply.)
 A. 2

 B. 4

 C. An exception is thrown at runtime
 D. Compilation fails due to an error on line 4
 E. Compilation fails due to an error on line 5
 F. Compilation fails due to an error on line 6
 G. Compilation fails due to an error on line 7

05-ch05.indd 299 9/2/2014 2:49:08 PM

300 Chapter 5: Working with Strings, Arrays, and ArrayLists

 5. Given:

import java.util.*;
public class Sequence {
 public static void main(String[] args) {
 ArrayList<String> myList = new ArrayList<String>();
 myList.add("apple");
 myList.add("carrot");
 myList.add("banana");
 myList.add(1, "plum");
 System.out.print(myList);
 }
}

 What is the result?
 A. [apple, banana, carrot, plum]

 B. [apple, plum, carrot, banana]

 C. [apple, plum, banana, carrot]

 D. [plum, banana, carrot, apple]

 E. [plum, apple, carrot, banana]

 F. [banana, plum, carrot, apple]

 G. Compilation fails

 6. Given:

 3. class Dozens {
 4. int[] dz = {1,2,3,4,5,6,7,8,9,10,11,12};
 5. }
 6. public class Eggs {
 7. public static void main(String[] args) {
 8. Dozens [] da = new Dozens[3];
 9. da[0] = new Dozens();
10. Dozens d = new Dozens();
11. da[1] = d;
12. d = null;
13. da[1] = null;
14. // do stuff
15. }
16. }

 Which two are true about the objects created within main(), and which are eligible for garbage
collection when line 14 is reached?

05-ch05.indd 300 9/2/2014 2:49:08 PM

Self Test 301

 A. Three objects were created
 B. Four objects were created
 C. Five objects were created
 D. Zero objects are eligible for GC
 E. One object is eligible for GC
 F. Two objects are eligible for GC
 G. Three objects are eligible for GC

 7. Given:

public class Tailor {
 public static void main(String[] args) {
 byte[][] ba = {{1,2,3,4}, {1,2,3}};
 System.out.println(ba[1].length + " " + ba.length);
 }
}

 What is the result?
 A. 2 4

 B. 2 7

 C. 3 2

 D. 3 7

 E. 4 2

 F. 4 7

 G. Compilation fails

 8. Given:

 3. public class Theory {
 4. public static void main(String[] args) {
 5. String s1 = "abc";
 6. String s2 = s1;
 7. s1 += "d";
 8. System.out.println(s1 + " " + s2 + " " + (s1==s2));
 9.
10. StringBuilder sb1 = new StringBuilder("abc");
11. StringBuilder sb2 = sb1;
12. sb1.append("d");
13. System.out.println(sb1 + " " + sb2 + " " + (sb1==sb2));
14. }
15. }

05-ch05.indd 301 9/2/2014 2:49:08 PM

302 Chapter 5: Working with Strings, Arrays, and ArrayLists

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The first line of output is abc abc true
 C. The first line of output is abc abc false
 D. The first line of output is abcd abc false
 E. The second line of output is abcd abc false
 F. The second line of output is abcd abcd true
 G. The second line of output is abcd abcd false

 9. Given:

 public class Mounds {
 public static void main(String[] args) {
 StringBuilder sb = new StringBuilder();
 String s = new String();
 for(int i = 0; i < 1000; i++) {
 s = " " + i;
 sb.append(s);
 }
 // done with loop
 }
}

 If the garbage collector does NOT run while this code is executing, approximately how many
objects will exist in memory when the loop is done?

 A. Less than 10
 B. About 1000
 C. About 2000
 D. About 3000
 E. About 4000

 10. Given:

3. class Box {
 4. int size;
 5. Box(int s) { size = s; }
 6. }
 7. public class Laser {
 8. public static void main(String[] args) {
 9. Box b1 = new Box(5);
10. Box[] ba = go(b1, new Box(6));
11. ba[0] = b1;

05-ch05.indd 302 9/2/2014 2:49:08 PM

Self Test 303

12. for(Box b : ba) System.out.print(b.size + " ");
13. }
14. static Box[] go(Box b1, Box b2) {
15. b1.size = 4;
16. Box[] ma = {b2, b1};
17. return ma;
18. }
19. }

 What is the result?
 A. 4 4

 B. 5 4

 C. 6 4

 D. 4 5

 E. 5 5

 F. Compilation fails

 11. Given:

public class Hedges {
 public static void main(String[] args) {
 String s = "JAVA";
 s = s + "rocks";
 s = s.substring(4,8);
 s.toUpperCase();
 System.out.println(s);
 }
}

 What is the result?
 A. JAVA

 B. JAVAROCKS

 C. rocks

 D. rock

 E. ROCKS

 F. ROCK

 G. Compilation fails

05-ch05.indd 303 9/2/2014 2:49:08 PM

304 Chapter 5: Working with Strings, Arrays, and ArrayLists

 12. Given:

 1. import java.util.*;
 2. class Fortress {
 3. private String name;
 4. private ArrayList<Integer> list;
 5. Fortress() { list = new ArrayList<Integer>(); }
 6.
 7. String getName() { return name; }
 8. void addToList(int x) { list.add(x); }
 9. ArrayList getList() { return list; }
10. }

 Which lines of code (if any) break encapsulation? (Choose all that apply.)
 A. Line 3
 B. Line 4
 C. Line 5
 D. Line 7
 E. Line 8
 F. Line 9
 G. The class is already well encapsulated

05-ch05.indd 304 9/2/2014 2:49:08 PM

Self Test Answers 305

SELF TEST ANSWERS

 1. ☑ A and D are correct. The String operations are working on a new (lost) String not
String s. The StringBuilder operations work from left to right.
☐✗ B, C, and E are incorrect based on the above. (OCA Objectives 2.6 and 2.7)

 2. ☑ D is correct. The horses array's first four elements contain Strings, but the fifth is null,
so the toUpperCase() invocation for the fifth element throws a NullPointerException.
☐✗ A, B, C, E, and F are incorrect based on the above. (OCA Objectives 2.7 and 4.1)

 3. ☑ E is correct. The Unicode declaration must be enclosed in single quotes: '\u004e'. If this
were done, the answer would be A, but knowing that equality isn't on the OCA exam.
☐✗ A, B, C, and D are incorrect based on the above. (OCA Objectives 2.1 and 4.1)

 4. ☑ C is correct. A ClassCastException is thrown at line 7 because o1 refers to an int[][],
not an int[]. If line 7 were removed, the output would be 4.
☐✗ A, B, D, E, F, and G are incorrect based on the above. (OCA Objectives 4.2 and 7.4)

 5. ☑ B is correct. ArrayList elements are automatically inserted in the order of entry; they are
not automatically sorted. ArrayLists use zero-based indexes and the last add() inserts a new
element and shifts the remaining elements back.
☐✗ A, C, D, E, F, and G are incorrect based on the above. (OCA Objective 4.3)

 6. ☑ C and F are correct. da refers to an object of type "Dozens array" and each Dozens object
that is created comes with its own "int array" object. When line 14 is reached, only the second
Dozens object (and its "int array" object) are not reachable.
☐✗ A, B, D, E, and G are incorrect based on the above. (OCA Objectives 4.1 and 2.4)

 7. ☑ C is correct. A two-dimensional array is an "array of arrays." The length of ba is 2 because
it contains two, one-dimensional arrays. Array indexes are zero-based, so ba[1] refers to ba's
second array.
☐✗ A, B, D, E, F, and G are incorrect based on the above. (OCA Objective 4.2)

 8. ☑ D and F are correct. Although String objects are immutable, references to Strings
are mutable. The code s1 += "d"; creates a new String object. StringBuilder objects
are mutable, so the append() is changing the single StringBuilder object to which both
StringBuilder references refer.
☐✗ A, B, C, E, and G are incorrect based on the above. (OCA Objectives 2.6 and 2.7)

 9. ☑ B is correct. StringBuilders are mutable, so all of the append() invocations are acting
upon the same StringBuilder object over and over. Strings, however, are immutable, so
every String concatenation operation results in a new String object. Also, the string " " is
created once and reused in every loop iteration.
☐✗ A, C, D, and E are incorrect based on the above. (OCA Objectives 2.6 and 2.7)

05-ch05.indd 305 9/2/2014 2:49:08 PM

306 Chapter 5: Working with Strings, Arrays, and ArrayLists

 10. ☑ A is correct. Although main()'s b1 is a different reference variable than go()'s b1, they
refer to the same Box object.
☐✗ B, C, D, E, and F are incorrect based on the above. (OCA Objectives 4.1, 6.1, and 6.8)

 11. ☑ D is correct. The substring() invocation uses a zero-based index and the second
argument is exclusive, so the character at index 8 is NOT included. The toUpperCase()
invocation makes a new String object that is instantly lost. The toUpperCase() invocation
does NOT affect the String referred to by s.
☐✗ A, B, C, E, F, and G are incorrect based on the above. (OCA Objectives 2.6 and 2.7)

 12. ☑ F is correct. When encapsulating a mutable object like an ArrayList, your getter must
return a reference to a copy of the object, not just the reference to the original object.
☐✗ A, B, C, D, E, and G are incorrect based on the above. (OCA Objective 6.7)

05-ch05.indd 306 9/2/2014 2:49:08 PM

Use if and switch Statements •
Develop for, do, and while Loops •
Use break and continue Statements •
Use try, catch, and finally Statements •

State the Effects of Exceptions •
Recognize Common Exceptions •
Two-Minute Drill ✓

Q&A Self Test

66
Flow Control Flow Control
and Exceptionsand Exceptions

CERTIFICATION OBJECTIVES

06-ch06.indd 307 8/28/2014 4:10:51 PM

308 Chapter 6: Flow Control and Exceptions

Can you imagine trying to write code using a language that didn't give you a way to
execute statements conditionally? Flow control is a key part of most any useful
programming language, and Java offers several ways to accomplish it. Some statements,

such as if statements and for loops, are common to most languages. But Java also throws in a
couple of flow control features you might not have used before—exceptions and assertions. (We'll
discuss assertions in the next chapter.)

The if statement and the switch statement are types of conditional/decision
controls that allow your program to behave differently at a "fork in the road,"
depending on the result of a logical test. Java also provides three different looping
constructs—for, while, and do—so you can execute the same code over and over
again depending on some condition being true. Exceptions give you a clean, simple
way to organize code that deals with problems that might crop up at runtime.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that
include flow control as part of the question code, even on questions that aren't
testing your knowledge of flow control.

CERTIFICATION OBJECTIVE

Using if and switch Statements (OCA Objectives
3.4 and 3.5—also Upgrade Objective 1.1)

3.4 Create if and if-else constructs.

3.5 Use a switch statement.

The if and switch statements are commonly referred to as decision statements.
When you use decision statements in your program, you're asking the program to
evaluate a given expression to determine which course of action to take. We'll look
at the if statement first.

if-else Branching

The basic format of an if statement is as follows:

06-ch06.indd 308 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 309

if (booleanExpression) {
 System.out.println("Inside if statement");
}

The expression in parentheses must evaluate to (a boolean) true or false.
Typically you're testing something to see if it's true, and then running a code block
(one or more statements) if it is true and (optionally) another block of code if it
isn't. The following code demonstrates a legal if-else statement:

if (x > 3) {
 System.out.println("x is greater than 3");
} else {
 System.out.println("x is not greater than 3");
}

The else block is optional, so you can also use the following:

if (x > 3) {
 y = 2;
}
z += 8;
a = y + x;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless. Even the curly braces are
optional if you have only one statement to execute within the body of the conditional
block. The following code example is legal (although not recommended for readability):

if (x > 3) // bad practice, but seen on the exam
 y = 2;
z += 8;
a = y + x;

Most developers consider it good practice to enclose blocks within curly braces,
even if there's only one statement in the block. Be careful with code like the
preceding, because you might think it should read as

"If x is greater than 3, then set y to 2, z to z + 8, and a to y + x."
But the last two lines are going to execute no matter what! They aren't part of the
conditional flow. You might find it even more misleading if the code were indented
as follows:

if (x > 3)
 y = 2;
 z += 8;
 a = y + x;

You might have a need to nest if-else statements (although, again, it's not
recommended for readability, so nested if tests should be kept to a minimum). You
can set up an if-else statement to test for multiple conditions. The following

06-ch06.indd 309 8/28/2014 4:10:55 PM

310 Chapter 6: Flow Control and Exceptions

example uses two conditions so that if the first test fails, we want to perform a
second test before deciding what to do:

if (price < 300) {
 buyProduct();
} else {
 if (price < 400) {
 getApproval();
 }
 else {
 dontBuyProduct();
 }
}

This brings up the other if-else construct, the if, else if, else. The preceding
code could (and should) be rewritten like this:

if (price < 300) {
 buyProduct();
} else if (price < 400) {
 getApproval();
} else {
 dontBuyProduct();
}

There are a couple of rules for using else and else if:

■ You can have zero or one else for a given if, and it must come after any
else ifs.

■ You can have zero to many else ifs for a given if and they must come
before the (optional) else.

■ Once an else if succeeds, none of the remaining else ifs nor the else
will be tested.

The following example shows code that is horribly formatted for the real world.
As you've probably guessed, it's fairly likely that you'll encounter formatting like this
on the exam. In any case, the code demonstrates the use of multiple else ifs:

int x = 1;
if (x == 3) { }
else if (x < 4) {System.out.println("<4"); }
else if (x < 2) {System.out.println("<2"); }
else { System.out.println("else"); }

It produces this output:

<4

(Notice that even though the second else if is true, it is never reached.)

06-ch06.indd 310 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 311

Sometimes you can have a problem figuring out which if your else should pair
with, as follows:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
// Which if does this belong to?
else System.out.println("Java master!");

We intentionally left out the indenting in this piece of code so it doesn't give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might
possibly belong (in other words, the closest preceding if that doesn't have an else).
In the case of the preceding example, the else belongs to the second if statement
in the listing. With proper indenting, it would look like this:

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
 // Which if does this belong to?
 else
 System.out.println("Java master!");

Following our coding conventions by using curly braces, it would be even easier
to read:

if (exam.done()) {
 if (exam.getScore() < 0.61) {
 System.out.println("Try again.");
 // Which if does this belong to?
 } else {
 System.out.println("Java master!");
 }
}

Don't get your hopes up about the exam questions being all nice and indented
properly. Some exam takers even have a slogan for the way questions are presented
on the exam: Anything that can be made more confusing, will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way. Pay close attention for misdirection like the following:

if (exam.done())
 if (exam.getScore() < 0.61)
 System.out.println("Try again.");
else
 System.out.println("Java master!"); // Hmmmmm… now where does
 // it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

06-ch06.indd 311 8/28/2014 4:10:55 PM

312 Chapter 6: Flow Control and Exceptions

Legal Expressions for if Statements

The expression in an if statement must be a boolean expression. Any expression
that resolves to a boolean is fine, and some of the expressions can be complex.
Assume doStuff() returns true,

int y = 5;
int x = 2;
if (((x > 3) && (y < 2)) | doStuff()) {
 System.out.println("true");
}

which prints

true

You can read the preceding code as, "If both (x > 3) and (y < 2) are true, or if the
result of doStuff() is true, then print true." So, basically, if just doStuff() alone
is true, we'll still get true. If doStuff() is false, though, then both (x > 3) and
(y < 2) will have to be true in order to print true. The preceding code is even
more complex if you leave off one set of parentheses as follows:

int y = 5;
int x = 2;
if ((x > 3) && (y < 2) | doStuff()) {
 System.out.println("true");
}

This now prints…nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, "If (x > 3) is true, and either (y
< 2) or the result of doStuff() is true, then print true. So if (x > 3) is not true,
no point in looking at the rest of the expression." Because of the short-circuit &&,
the expression is evaluated as though there were parentheses around (y < 2) |
doStuff(). In other words, it is evaluated as a single expression before the && and a
single expression after the &&.

Remember that the only legal expression in an if test is a boolean. In some
languages, 0 == false, and 1 == true. Not so in Java! The following code shows if
statements that might look tempting but are illegal, followed by legal substitutions:

int trueInt = 1;
int falseInt = 0;
if (trueInt) // illegal
if (trueInt == true) // illegal
if (1) // illegal
if (falseInt == false) // illegal
if (trueInt == 1) // legal
if (falseInt == 0) // legal

06-ch06.indd 312 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 313

switch Statements (OCA, OCP, and Upgrade Topic)

You've seen how if and else-if statements can be used to support both simple and
complex decision logic. In many cases, the switch statement provides a cleaner way
to handle complex decision logic. Let's compare the following if-else if statement
to the equivalently performing switch statement:

int x = 3;
if(x == 1) {
 System.out.println("x equals 1");
}
else if(x == 2) {
 System.out.println("x equals 2");
}
else {
 System.out.println("No idea what x is");
}

One common mistake programmers make (and that can be diffi cult to

spot), is assigning a boolean variable when you meant to test a boolean variable. Look

out for code like the following:

boolean boo = false;
if (boo = true) { }

You might think one of three things:

 The code compiles and runs fi ne, and the 1. if test fails because boo is false.

 The code won't compile because you're using an assignment (2. =) rather than an

equality test (==).

 The code compiles and runs fi ne, and the 3. if test succeeds because boo is SET to

true (rather than TESTED for true) in the if argument!

Well, number 3 is correct—pointless, but correct. Given that the result of any assignment

is the value of the variable after the assignment, the expression (boo = true) has a

result of true. Hence, the if test succeeds. But the only variables that can be assigned

(rather than tested against something else) are a boolean or a Boolean; all other

assignments will result in something non-boolean, so they're not legal, as in the following:

int x = 3;
if (x = 5) { } // Won't compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid on both logical

operators and if test syntax and semantics.

06-ch06.indd 313 8/28/2014 4:10:55 PM

314 Chapter 6: Flow Control and Exceptions

Now let's see the same functionality represented in a switch construct:

int x = 3;
switch (x) {
 case 1:
 System.out.println("x equals 1");
 break;
 case 2:
 System.out.println("x equals 2");
 break;
 default:
 System.out.println("No idea what x is");
}

Note: The reason this switch statement emulates the if is because of the break
statements that were placed inside of the switch. In general, break statements are
optional, and as you will see in a few pages, their inclusion or exclusion causes huge
changes in how a switch statement will execute.

Legal Expressions for switch and case

The general form of the switch statement is

switch (expression) {
 case constant1: code block
 case constant2: code block
 default: code block
}

A switch's expression must evaluate to a char, byte, short, int, an enum (as of
Java 5), and a String (as of Java 7). That means if you're not using an enum or a
String, only variables and values that can be automatically promoted (in other
words, implicitly cast) to an int are acceptable. You won't be able to compile if you
use anything else, including the remaining numeric types of long, float, and
double.

Note: For OCA candidates, enums are not covered on your exam, and you won't
encounter any questions related to switch statements that use enums.

A case constant must evaluate to the same type that the switch expression can
use, with one additional—and big—constraint: the case constant must be a
compile-time constant! Since the case argument has to be resolved at compile time,
you can use only a constant or final variable that is immediately initialized with a
literal value. It is not enough to be final; it must be a compile time constant. Here's
an example:

06-ch06.indd 314 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 315

final int a = 1;
final int b;
b = 2;
int x = 0;
switch (x) {
 case a: // ok
 case b: // compiler error

Also, the switch can only check for equality. This means that the other relational
operators such as greater than are rendered unusable in a case. The following is an
example of a valid expression using a method invocation in a switch statement.
Note that for this code to be legal, the method being invoked on the object
reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {
 case 1:
 System.out.println("length is one");
 break;
 case 2:
 System.out.println("length is two");
 break;
 case 3:
 System.out.println("length is three");
 break;
 default:
 System.out.println("no match");
}

One other rule you might not expect involves the question, "What happens if I
switch on a variable smaller than an int?" Look at the following switch:

byte g = 2;
switch(g) {
 case 23:
 case 128:
}

This code won't compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives you
an error something like this:

Test.java:6: possible loss of precision
found : int
required: byte
 case 128:
 ^

06-ch06.indd 315 8/28/2014 4:10:55 PM

316 Chapter 6: Flow Control and Exceptions

It's also illegal to have more than one case label using the same value. For
example, the following block of code won't compile because it uses two cases with
the same value of 80:

int temp = 90;
switch(temp) {
 case 80 : System.out.println("80");
 case 80 : System.out.println("80"); // won't compile!
 case 90 : System.out.println("90");
 default : System.out.println("default");
}

It is legal to leverage the power of boxing in a switch expression. For instance,
the following is legal:

switch(new Integer(4)) {
 case 4: System.out.println("boxing is OK");
}

Look for any violation of the rules for switch and case arguments. For

example, you might fi nd illegal examples like the following snippets:

switch(x) {
 case 0 {
 y = 7;
 }
}

switch(x) {
 0: { }
 1: { }
}

In the fi rst example, the case uses a curly brace and omits the colon. The second example

omits the keyword case.

An Intro to String "equality"

As we've been discussing, the operation of switch statements depends on the
expression "matching" or being "equal" to one of the cases. We've talked about how
we know when primitives are equal, but what does it mean for objects to be equal?
This is another one of those surprisingly tricky topics, and for those of you who

06-ch06.indd 316 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 317

intend to take the OCP exam, we'll spend a lot of time discussing "object equality"
in Part II. For you OCA candidates, all you have to know is that for a switch
statement, two Strings will be considered "equal" if they have the same case-
sensitive sequence of characters. For example, in the following partial switch
statement, the expression would match the case:

String s = "Monday";
switch(s) {
 case "Monday": // matches!

But the following would NOT match:

String s = "MONDAY";
switch(s) {
 case "Monday": // Strings are case-sensitive, DOES NOT match

Break and Fall-Through in switch Blocks

We're finally ready to discuss the break statement and offer more details about flow
control within a switch statement. The most important thing to remember about
the flow of execution through a switch statement is this:

case constants are evaluated from the top down, and the first case constant that
matches the switch's expression is the execution entry point.

In other words, once a case constant is matched, the Java Virtual Machine (JVM)
will execute the associated code block and ALL subsequent code blocks (barring a
break statement) too! The following example uses a String in a case statement:

class SwitchString {
 public static void main(String [] args) {
 String s = "green";
 switch(s) {
 case "red": System.out.print("red ");
 case "green": System.out.print("green ");
 case "blue": System.out.print("blue ");
 default: System.out.println("done");
 }
 }
}

In this example case "green": matched, so the JVM executed that code block and
all subsequent code blocks to produce the output:

green blue done

Again, when the program encounters the keyword break during the execution of
a switch statement, execution will immediately move out of the switch block to

06-ch06.indd 317 8/28/2014 4:10:55 PM

318 Chapter 6: Flow Control and Exceptions

the next statement after the switch. If break is omitted, the program just keeps
executing the remaining case blocks until either a break is found or the switch
statement ends. Examine the following code:

int x = 1;
switch(x) {
 case 1: System.out.println("x is one");
 case 2: System.out.println("x is two");
 case 3: System.out.println("x is three");
}
System.out.println("out of the switch");

The code will print the following:

x is one
x is two
x is three
out of the switch

This combination occurs because the code didn't hit a break statement;
execution just kept dropping down through each case until the end. This dropping
down is actually called "fall-through," because of the way execution falls from one
case to the next. Remember, the matching case is simply your entry point into the
switch block! In other words, you must not think of it as, "Find the matching case,
execute just that code, and get out." That's not how it works. If you do want that
"just the matching code" behavior, you'll insert a break into each case as follows:

int x = 1;
switch(x) {
 case 1: {
 System.out.println("x is one"); break;
 }
 case 2: {
 System.out.println("x is two"); break;
 }
 case 3: {
 System.out.println("x is two"); break;
 }
}
System.out.println("out of the switch");

Running the preceding code, now that we've added the break statements, will print this:

x is one
out of the switch

And that's it. We entered into the switch block at case 1. Because it matched the
switch() argument, we got the println statement and then hit the break and
jumped to the end of the switch.

06-ch06.indd 318 8/28/2014 4:10:55 PM

 Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1) 319

An interesting example of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number"); break;
 }
}

This switch statement will print x is an even number or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is
4, execution will begin at case 4, but then fall down through 6, 8, and 10, where it
prints and then breaks. The break at case 10, by the way, is not needed; we're
already at the end of the switch anyway.

Note: Because fall-through is less than intuitive, Oracle recommends that you add
a comment such as // fall through when you use fall-through logic.

The Default Case

What if, using the preceding code, you wanted to print x is an odd number if
none of the cases (the even numbers) matched? You couldn't put it after the
switch statement, or even as the last case in the switch, because in both of those
situations it would always print x is an odd number. To get this behavior, you'd
use the default keyword. (By the way, if you've wondered why there is a default
keyword even though we don't use a modifier for default access control, now you'll
see that the default keyword is used for a completely different purpose.) The only
change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 case 10: {
 System.out.println("x is an even number");
 break;
 }
 default: System.out.println("x is an odd number");
}

06-ch06.indd 319 8/28/2014 4:10:55 PM

320 Chapter 6: Flow Control and Exceptions

EXERCISE 6-1

Creating a switch-case Statement

Try creating a switch statement using a char value as the case. Include a default
behavior if none of the char values match.

The default case doesn't have to come at the end of the switch. Look

for it in strange places such as the following:

int x = 2;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

Running the preceding code prints this:

2
default
3
4

And if we modify it so that the only match is the default case, like this,

int x = 7;
switch (x) {
 case 2: System.out.println("2");
 default: System.out.println("default");
 case 3: System.out.println("3");
 case 4: System.out.println("4");
}

then running the preceding code prints this:

default
3
4

The rule to remember is that default works just like any other case for fall-through!

06-ch06.indd 320 8/28/2014 4:10:55 PM

Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 321

■ Make sure a char variable is declared before the switch statement.

■ Each case statement should be followed by a break.

■ The default case can be located at the end, middle, or top.

CERTIFICATION OBJECTIVE

Creating Loops Constructs
(OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5)

5.1 Create and use while loops.

5.2 Create and use for loops including the enhanced for loop.

5.3 Create and use do/while loops.

5.4 Compare loop constructs.

5.5 Use break and continue.

Java loops come in three flavors: while, do, and for (and as of Java 5, the for
loop has two variations). All three let you repeat a block of code as long as some
condition is true, or for a specific number of iterations. You're probably familiar with
loops from other languages, so even if you're somewhat new to Java, these won't be a
problem to learn.

Using while Loops

The while loop is good when you don't know how many times a block or statement
should repeat, but you want to continue looping as long as some condition is true. A
while statement looks like this:

while (expression) {
 // do stuff
}

06-ch06.indd 321 8/28/2014 4:10:55 PM

322 Chapter 6: Flow Control and Exceptions

Or this:

int x = 2;
while(x == 2) {
 System.out.println(x);
 ++x;
}

In this case, as in all loops, the expression (test) must evaluate to a boolean
result. The body of the while loop will execute only if the expression (sometimes
called the "condition") results in a value of true. Once inside the loop, the loop
body will repeat until the condition is no longer met because it evaluates to false.
In the previous example, program control will enter the loop body because x is equal
to 2. However, x is incremented in the loop, so when the condition is checked again
it will evaluate to false and exit the loop.

Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can't say this:

while (int x = 2) { } // not legal

Then again, why would you? Instead of testing the variable, you'd be declaring and
initializing it, so it would always have the exact same value. Not much of a test
condition!

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement after
the while loop. Look at the following example:

int x = 8;
while (x > 8) {
 System.out.println("in the loop");
 x = 10;
}
System.out.println("past the loop");

Running this code produces

past the loop

Because the expression (x > 8) evaluates to false, none of the code within the
while loop ever executes.

06-ch06.indd 322 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 323

Using do Loops

The do loop is similar to the while loop, except that the expression is not evaluated
until after the do loop's code is executed. Therefore, the code in a do loop is
guaranteed to execute at least once. The following shows a do loop in action:

do {
 System.out.println("Inside loop");
} while(false);

The System.out.println() statement will print once, even though the expression
evaluates to false. Remember, the do loop will always run the code in the loop
body at least once. Be sure to note the use of the semicolon at the end of the while
expression.

As with if tests, look for while loops (and the while test in a do loop)

with an expression that does not resolve to a boolean. Take a look at the following

examples of legal and illegal while expressions:

int x = 1;
while (x) { } // Won't compile; x is not a boolean
while (x = 5) { } // Won't compile; resolves to 5
 // (as the result of assignment)
while (x == 5) { } // Legal, equality test
while (true) { } // Legal

Using for Loops

As of Java 5, the for loop took on a second structure. We'll call the old style of for
loop the "basic for loop," and we'll call the new style of for loop the "enhanced
for loop" (it's also sometimes called the for-each). Depending on what documentation
you use, you'll see both terms, along with for-in. The terms for-in, for-each,
and "enhanced for" all refer to the same Java construct.

The basic for loop is more flexible than the enhanced for loop, but the enhanced
for loop was designed to make iterating through arrays and collections easier to code.

06-ch06.indd 323 8/28/2014 4:10:55 PM

324 Chapter 6: Flow Control and Exceptions

The Basic for Loop

The for loop is especially useful for flow control when you already know how many
times you need to execute the statements in the loop's block. The for loop
declaration has three main parts, besides the body of the loop:

■ Declaration and initialization of variables

■ The boolean expression (conditional test)

■ The iteration expression

The three for declaration parts are separated by semicolons. The following two
examples demonstrate the for loop. The first example shows the parts of a for loop
in a pseudocode form, and the second shows a typical example of a for loop:

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
 /* loop body */
}

for (int i = 0; i<10; i++) {
 System.out.println("i is " + i);
}

The Basic for Loop: Declaration and Initialization

The first part of the for statement lets you declare and initialize zero, one, or
multiple variables of the same type inside the parentheses after the for keyword. If
you declare more than one variable of the same type, you'll need to separate them
with commas as follows:

for (int x = 10, y = 3; y > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And
whereas the other two parts—the boolean test and the iteration expression—will
run with each iteration of the loop, the declaration and initialization happens just
once, at the very beginning. You also must know that the scope of variables declared
in the for loop ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
 System.out.println(x); // Legal
}
System.out.println(x); // Not Legal! x is now out of scope
 // and can't be accessed.

06-ch06.indd 324 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 325

If you try to compile this, you'll get something like this:

Test.java:19: cannot resolve symbol
symbol : variable x
location: class Test
 System.out.println(x);
 ^

Basic for Loop: Conditional (boolean) Expression

The next section that executes is the conditional expression, which (like all other
conditional tests) must evaluate to a boolean value. You can have only one logical
expression, but it can be very complex. Look out for code that uses logical
expressions like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }

The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (y < 2); x++) { } // too many
 // expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (y < 2); x++) { }
 ^

The rule to remember is this: You can have only one test expression.
In other words, you can't use multiple tests separated by commas, even though

the other two parts of a for statement can have multiple parts.

Basic for Loop: Iteration Expression

After each execution of the body of the for loop, the iteration expression is
executed. This is where you get to say what you want to happen with each iteration
of the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
 // body code that doesn't change the value of x
}

This loop executes just once. The first time into the loop, x is set to 0, then x is
tested to see if it's less than 1 (which it is), and then the body of the loop executes.
After the body of the loop runs, the iteration expression runs, incrementing x by 1.

06-ch06.indd 325 8/28/2014 4:10:55 PM

326 Chapter 6: Flow Control and Exceptions

Next, the conditional test is checked, and since the result is now false, execution
jumps to below the for loop and continues on.

Keep in mind that barring a forced exit, evaluating the iteration expression and
then evaluating the conditional expression are always the last two things that
happen in a for loop!

Examples of forced exits include a break, a return, a System.exit(), and an
exception, which will all cause a loop to terminate abruptly, without running the
iteration expression. Look at the following code:

static boolean doStuff() {
 for (int x = 0; x < 3; x++) {
 System.out.println("in for loop");
 return true;
 }
 return true;
}

Running this code produces

in for loop

The statement prints only once, because a return causes execution to leave not
just the current iteration of a loop, but the entire method. So the iteration expression
never runs in that case. Table 6-1 lists the causes and results of abrupt loop termination.

 TABLE 6-1

Causes of Early
Loop Termination

Code in Loop What Happens

break Execution jumps immediately to the first statement after the
for loop.

return Execution jumps immediately back to the calling method.
System.exit() All program execution stops; the VM shuts down.

Basic for Loop: for Loop Issues

None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
 System.out.println("Inside an endless loop");
}

In this example, all the declaration parts are left out, so the for loop will act like an
endless loop.

06-ch06.indd 326 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 327

For the exam, it's important to know that with the absence of the initialization
and increment sections, the loop will act like a while loop. The following example
demonstrates how this is accomplished:

int i = 0;

for (;i<10;) {
 i++;
 // do some other work
}

The next example demonstrates a for loop with multiple variables in play. A
comma separates the variables, and they must be of the same type. Remember that
the variables declared in the for statement are all local to the for loop and can't be
used outside the scope of the loop.

for (int i = 0,j = 0; (i<10) && (j<10); i++, j++) {
 System.out.println("i is " + i + " j is " +j);
}

Variable scope plays a large role in the exam. You need to know that a

variable declared in the for loop can't be used beyond the for loop. But a variable only

initialized in the for statement (but declared earlier) can be used beyond the loop. For

example, the following is legal:

int x = 3;
for (x = 12; x < 20; x++) { }
System.out.println(x);

But this is not:

for (int x = 3; x < 20; x++) { } System.out.println(x);

The last thing to note is that all three sections of the for loop are independent of
each other. The three expressions in the for statement don't need to operate on the
same variables, although they typically do. But even the iterator expression, which
many mistakenly call the "increment expression," doesn't need to increment or set

06-ch06.indd 327 8/28/2014 4:10:55 PM

328 Chapter 6: Flow Control and Exceptions

anything; you can put in virtually any arbitrary code statements that you want to
happen with each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) {
 b = b - a;
}

The preceding code prints

iterate
iterate

Many questions in the Java 7 exams list "Compilation fails" and "An

exception occurs at runtime" as possible answers. This makes them more diffi cult,

because you can't simply work through the behavior of the code. You must fi rst make sure

the code isn't violating any fundamental rules that will lead to a compiler error, and then

look for possible exceptions. Only after you've satisfi ed those two should you dig into the

logic and fl ow of the code in the question.

The Enhanced for Loop (for Arrays)

The enhanced for loop, new as of Java 5, is a specialized for loop that simplifies
looping through an array or a collection. In this chapter we're going to focus on
using the enhanced for to loop through arrays. In Chapter 11 we'll revisit the
enhanced for as we discuss collections—where the enhanced for really comes into
its own.

Instead of having three components, the enhanced for has two. Let's loop
through an array the basic (old) way, and then using the enhanced for:

int [] a = {1,2,3,4};
for(int x = 0; x < a.length; x++) // basic for loop
 System.out.print(a[x]);
for(int n : a) // enhanced for loop
 System.out.print(n);

This produces the following output:

12341234

06-ch06.indd 328 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 329

More formally, let's describe the enhanced for as follows:

for(declaration : expression)

The two pieces of the for statement are

■ declaration The newly declared block variable, of a type compatible with
the elements of the array you are accessing. This variable will be available
within the for block, and its value will be the same as the current array
element.

■ expression This must evaluate to the array you want to loop through.
This could be an array variable or a method call that returns an array. The
array can be any type: primitives, objects, or even arrays of arrays.

Using the preceding definitions, let's look at some legal and illegal enhanced for
declarations:

int x;
long x2;
long [] la = {7L, 8L, 9L};
int [][] twoDee = {{1,2,3}, {4,5,6}, {7,8,9}};
String [] sNums = {"one", "two", "three"};
Animal [] animals = {new Dog(), new Cat()};

// legal 'for' declarations
for(long y : la) ; // loop thru an array of longs
for(int[] n : twoDee) ; // loop thru the array of arrays
for(int n2 : twoDee[2]) ; // loop thru the 3rd sub-array
for(String s : sNums) ; // loop thru the array of Strings
for(Object o : sNums) ; // set an Object reference to
 // each String
for(Animal a : animals) ; // set an Animal reference to each
 // element

// ILLEGAL 'for' declarations
for(x2 : la) ; // x2 is already declared
for(int x2 : twoDee) ; // can't stuff an array into an int
for(int x3 : la) ; // can't stuff a long into an int
for(Dog d : animals) ; // you might get a Cat!

The enhanced for loop assumes that, barring an early exit from the loop, you'll
always loop through every element of the array. The following discussions of break
and continue apply to both the basic and enhanced for loops.

06-ch06.indd 329 8/28/2014 4:10:55 PM

330 Chapter 6: Flow Control and Exceptions

Using break and continue

The break and continue keywords are used to stop either the entire loop (break)
or just the current iteration (continue). Typically, if you're using break or
continue, you'll do an if test within the loop, and if some condition becomes true
(or false depending on the program), you want to get out immediately. The
difference between them is whether or not you continue with a new iteration or
jump to the first statement below the loop and continue from there.

Remember, continue statements must be inside a loop; otherwise, you'll

get a compiler error. break statements must be used inside either a loop or a switch

statement.

The break statement causes the program to stop execution of the innermost loop
and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop
is met. When using a continue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 continue;
}

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current
iteration ended "in the natural way." So in the preceding example, i will still
increment before the condition (i < 10) is checked again.

Most of the time, a continue is used within an if test as follows:

for (int i = 0; i < 10; i++) {
 System.out.println("Inside loop");
 if (foo.doStuff() == 5) {
 continue;
 }
 // more loop code, that won't be reached when the above if
 // test is true
}

06-ch06.indd 330 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 331

Unlabeled Statements

Both the break statement and the continue statement can be unlabeled or labeled.
Although it's far more common to use break and continue unlabeled, the exam
expects you to know how labeled break and continue statements work. As stated
before, a break statement (unlabeled) will exit out of the innermost looping
construct and proceed with the next line of code beyond the loop block. The
following example demonstrates a break statement:

boolean problem = true;
while (true) {
 if (problem) {
 System.out.println("There was a problem");
 break;
 }
}
// next line of code

In the previous example, the break statement is unlabeled. The following is an
example of an unlabeled continue statement:

while (!EOF) {
 // read a field from a file
 if (wrongField) {
 continue; // move to the next field in the file
 }
 // otherwise do other stuff with the field
}

In this example, a file is being read one field at a time. When an error is
encountered, the program moves to the next field in the file and uses the continue
statement to go back into the loop (if it is not at the end of the file) and keeps
reading the various fields. If the break command were used instead, the code would
stop reading the file once the error occurred and move on to the next line of code
after the loop. The continue statement gives you a way to say, "This particular
iteration of the loop needs to stop, but not the whole loop itself. I just don't want
the rest of the code in this iteration to finish, so do the iteration expression and then
start over with the test, and don't worry about what was below the continue
statement."

Labeled Statements

Although many statements in a Java program can be labeled, it's most common to
use labels with loop statements like for or while, in conjunction with break and

06-ch06.indd 331 8/28/2014 4:10:55 PM

332 Chapter 6: Flow Control and Exceptions

continue statements. A label statement must be placed just before the statement
being labeled, and it consists of a valid identifier that ends with a colon (:).

You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and they need to indicate which of the nested loops you want to break
from, or from which of the nested loops you want to continue with the next
iteration. A break statement will exit out of the labeled loop, as opposed to the
innermost loop, if the break keyword is combined with a label.

Here's an example of what a label looks like:

foo:
 for (int x = 3; x < 20; x++) {
 while(y > 7) {
 y--;
 }
 }

The label must adhere to the rules for a valid variable name and should adhere to
the Java naming convention. The syntax for the use of a label name in conjunction
with a break statement is the break keyword, then the label name, followed by a
semicolon. A more complete example of the use of a labeled break statement is as
follows:

boolean isTrue = true;
outer:
 for(int i=0; i<5; i++) {
 while (isTrue) {
 System.out.println("Hello");
 break outer;
 } // end of inner while loop
 System.out.println("Outer loop."); // Won't print
 } // end of outer for loop
System.out.println("Good-Bye");

Running this code produces

Hello
Good-Bye

In this example, the word Hello will be printed one time. Then, the labeled break
statement will be executed, and the flow will exit out of the loop labeled outer. The
next line of code will then print out Good-Bye.

Let's see what will happen if the continue statement is used instead of the break
statement. The following code example is similar to the preceding one, with the
exception of substituting continue for break:

06-ch06.indd 332 8/28/2014 4:10:55 PM

 Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5) 333

outer:
 for (int i=0; i<5; i++) {
 for (int j=0; j<5; j++) {
 System.out.println("Hello");
 continue outer;
 } // end of inner loop
 System.out.println("outer"); // Never prints
 }
System.out.println("Good-Bye");

Running this code produces

Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed five times. After the continue statement is
executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, this loop
will finish and Good-Bye will be printed.

EXERCISE 6-2

Creating a Labeled while Loop

Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, increment
age by 1. Every time the program goes through the loop, check whether age is 16. If
it is, print the message "get your driver's license" and continue to the outer loop. If
not, print "Another year."

■ The outer label should appear just before the while loop begins.

■ Make sure age is declared outside of the while loop.

Labeled continue and break statements must be inside the loop that has

the same label name; otherwise, the code will not compile.

06-ch06.indd 333 8/28/2014 4:10:55 PM

334 Chapter 6: Flow Control and Exceptions

CERTIFICATION OBJECTIVE

Handling Exceptions
(OCA Objectives 8.1, 8.2, 8.3, and 8.4)

8.1 Differentiate among checked exceptions, RuntimeExceptions, and errors.

8.2 Create a try-catch block and determine how exceptions alter normal program flow.

8.3 Describe what exceptions are used for in Java.

8.4 Invoke a method that throws an exception.

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.
Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

Java 7 added several new exception-handling capabilities to the language. For our
purposes, Oracle split the various exception-handling topics into two main parts:

 1. The OCA exam covers the Java 6 version of exception handling.

 2. The OCP exam adds the new exception features added in Java 7.

In order to mirror Oracle's objectives, we split exception handling into two
chapters. This chapter will give you the basics—plenty to handle the OCA exam.
Chapter 7 (which also marks the beginning of the OCP part of the book) will pick
up where we left off by discussing the new Java 7 exception handling features.

06-ch06.indd 334 8/28/2014 4:10:55 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 335

Catching an Exception Using try and catch

Before we begin, let's introduce some terminology. The term "exception" means
"exceptional condition" and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be "thrown." The code that's responsible for doing something
about the exception is called an "exception handler," and it "catches" the thrown
exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call a
method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception
happens. To do this, we use the try and catch keywords. The try is used to define
a block of code in which exceptions may occur. This block of code is called a
"guarded region" (which really means "risky code goes here"). One or more catch
clauses match a specific exception (or group of exceptions—more on that later) to a
block of code that handles it. Here's how it looks in pseudocode:

 1. try {
 2. // This is the first line of the "guarded region"
 3. // that is governed by the try keyword.
 4. // Put code here that might cause some kind of exception.
 5. // We may have many code lines here or just one.
 6. }
 7. catch(MyFirstException) {
 8. // Put code here that handles this exception.
 9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }
12. catch(MySecondException) {
13. // Put code here that handles this exception
14. }
15.
16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that is
governed by the try clause. Line 7 is an exception handler for an exception of type
MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow

06-ch06.indd 335 8/28/2014 4:10:55 PM

336 Chapter 6: Flow Control and Exceptions

each other, without any other statements or blocks in between. Also, the order in
which the catch blocks appear matters, as we'll see a little later.

Execution of the guarded region starts at line 2. If the program executes all the
way past line 5 with no exceptions being thrown, execution will transfer to line 15
and continue downward. However, if at any time in lines 2 through 5 (the try
block) an exception of type MyFirstException is thrown, execution will
immediately transfer to line 7. Lines 8 through 10 will then be executed so that the
entire catch block runs, and then execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of the
lines in the try block (4 and 5) would never be executed. Once control jumps to
the catch block, it never returns to complete the balance of the try block. This is
exactly what you want, though. Imagine that your code looks something like this
pseudocode:

try {
 getTheFileFromOverNetwork
 readFromTheFileAndPopulateTable
}
catch(CantGetFileFromNetwork) {
 displayNetworkErrorMessage
}

This pseudocode demonstrates how you typically work with exceptions. Code that's
dependent on a risky operation (as populating a table with file data is dependent on
getting the file from the network) is grouped into a try block in such a way that if,
say, the first operation fails, you won't continue trying to run other code that's also
guaranteed to fail. In the pseudocode example, you won't be able to read from the
file if you can't get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only
once. Returning to our earlier code example, there may be three different places in
our try block that can generate a MyFirstException, but wherever it occurs it will
be handled by the same catch block (on line 7). We'll discuss more benefits of
exception handling near the end of this chapter.

Using fi nally

Although try and catch provide a terrific mechanism for trapping and handling
exceptions, we are left with the problem of how to clean up after ourselves if
an exception occurs. Because execution transfers out of the try block as soon as an
exception is thrown, we can't put our cleanup code at the bottom of the try block

06-ch06.indd 336 8/28/2014 4:10:55 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 337

and expect it to be executed if an exception occurs. Almost as bad an idea would be
placing our cleanup code in each of the catch blocks—let's see why.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That
would make it too easy to forget to do cleanup and also lead to a lot of redundant
code. To address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return
statement in the try block, the finally block executes right after the return
statement is encountered and before the return executes!

This is the right place to close your files, release your network sockets, and
perform any other cleanup your code requires. If the try block executes with no
exceptions, the finally block is executed immediately after the try block completes.
If there was an exception thrown, the finally block executes immediately after the
proper catch block completes. Let's look at another pseudocode example:

 1: try {
 2: // This is the first line of the "guarded region".
 3: }
 4: catch(MyFirstException) {
 5: // Put code here that handles this exception
 6: }
 7: catch(MySecondException) {
 8: // Put code here that handles this exception
 9: }
10: finally {
11: // Put code here to release any resource we
12: // allocated in the try clause
13: }
14:
15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the finally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch clause
is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs! Okay, we'll have to refine that a little, but for
now, start burning in the idea that finally always runs. If an exception is thrown,
finally runs. If an exception is not thrown, finally runs. If the exception is

06-ch06.indd 337 8/28/2014 4:10:56 PM

338 Chapter 6: Flow Control and Exceptions

caught, finally runs. If the exception is not caught, finally runs. Later we'll look
at the few scenarios in which finally might not run or complete.

Remember, finally clauses are not required. If you don't write one, your code
will compile and run just fine. In fact, if you have no resources to clean up after your
try block completes, you probably don't need a finally clause. Also, because the
compiler doesn't even require catch clauses, sometimes you'll run across code that
has a try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn't a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
 // do stuff
} finally {
 // clean up
}

The following legal code demonstrates a try, catch, and finally:

try {
 // do stuff
} catch (SomeException ex) {
 // do exception handling
} finally {
 // clean up
}

The following ILLEGAL code demonstrates a try without a catch or finally:

try {
 // do stuff
}
 // need a catch or finally here
System.out.println("out of try block");

The following ILLEGAL code demonstrates a misplaced catch block:

try {
 // do stuff
}
 // can't have code between try/catch
System.out.println("out of try block");
catch(Exception ex) { }

06-ch06.indd 338 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 339

Propagating Uncaught Exceptions

Why aren't catch clauses required? What happens to an exception that's thrown in
a try block when there is no catch clause waiting for it? Actually, there's no
requirement that you code a catch clause for every possible exception that could be
thrown from the corresponding try block. In fact, it's doubtful that you could
accomplish such a feat! If a method doesn't provide a catch clause for a particular
exception, that method is said to be "ducking" the exception (or "passing the buck").

So what happens to a ducked exception? Before we discuss that, we need to
briefly review the concept of the call stack. Most languages have the concept of a
method stack or a call stack. Simply put, the call stack is the chain of methods that
your program executes to get to the current method. If your program starts in
method main() and main() calls method a(), which calls method b(), which in
turn calls method c(), the call stack consists of the following:

c
b
a
main

We will represent the stack as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. The method at the very top of
the stack trace would be the method you were currently executing. If we move back
down the call stack, we're moving from the current method to the previously called
method. Figure 6-1 illustrates a way to think about how the call stack in Java works.

Now let's examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown

It is illegal to use a try clause without either a catch clause or a finally

clause. A try clause by itself will result in a compiler error. Any catch clauses must

immediately follow the try block. Any finally clause must immediately follow the last

catch clause (or it must immediately follow the try block if there is no catch). It is legal

to omit either the catch clause or the finally clause, but not both.

06-ch06.indd 339 8/28/2014 4:10:56 PM

340 Chapter 6: Flow Control and Exceptions

from the top of the stack (in other words, the person on the roof), and if it isn't
caught by the same person who threw it (the person on the roof), it drops down the
call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and so
on until it is caught or until it reaches the very bottom of the call stack. This is
called "exception propagation."

If an exception reaches the bottom of the call stack, it's like reaching the bottom
of a very long drop; the ball explodes, and so does your program. An exception that's
never caught will cause your application to stop running. A description (if one is
available) of the exception will be displayed, and the call stack will be "dumped."
This helps you debug your application by telling you what exception was thrown,
from what method it was thrown, and what the stack looked like at the time.

 FIGURE 6-1

The Java method
call stack

1) The call stack while method3() is running.

2) The call stack after method3() completes
Execution returns to method2()

The order in which methods are put on the call stack

The order in which methods complete

4
3
2
1

1
2
3

method3()
method2()
method1()
main()

method2()
method1()
main()

method2 invokes method3
method1 invokes method2
main invokes method1
main begins

method2() will complete
method1() will complete
main() will complete and the JVM will exit

You can keep throwing an exception down through the methods on the

stack. But what happens when you get to the main() method at the bottom? You can

throw the exception out of main() as well. This results in the JVM halting, and the stack

trace will be printed to the output. The following code throws an exception:

06-ch06.indd 340 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 341

EXERCISE 6-3

Propagating and Catching an Exception

In this exercise you're going to create two methods that deal with exceptions. One
of the methods is the main() method, which will call another method. If an
exception is thrown in the other method, main() must deal with it. A finally
statement will be included to indicate that the program has completed. The method
that main() will call will be named reverse, and it will reverse the order of the
characters in a String. If the String contains no characters, reverse will
propagate an exception up to the main() method.

 1. Create a class called Propagate and a main() method, which will remain
empty for now.

 2. Create a method called reverse. It takes an argument of a String and
returns a String.

 3. In reverse, check whether the String has a length of 0 by using the
String.length() method. If the length is 0, the reverse method will
throw an exception.

class TestEx {
 public static void main (String [] args) {
 doStuff();
 }
 static void doStuff() {
 doMoreStuff();
 }
 static void doMoreStuff() {
 int x = 5/0; // Can't divide by zero!
 // ArithmeticException is thrown here
 }
}

It prints out a stack trace something like this:

 %java TestEx
Exception in thread "main" java.lang.ArithmeticException: / by zero
at TestEx.doMoreStuff(TestEx.java:10)
at TestEx.doStuff(TestEx.java:7)
at TestEx.main(TestEx.java:3)

06-ch06.indd 341 8/28/2014 4:10:56 PM

342 Chapter 6: Flow Control and Exceptions

 4. Now include the code to reverse the order of the String. Because this isn't
the main topic of this chapter, the reversal code has been provided, but feel
free to try it on your own.
String reverseStr = "";
for(int i=s.length()-1;i>=0;--i) {
 reverseStr += s.charAt(i);
}
return reverseStr;

 5. Now in the main() method you will attempt to call this method and deal
with any potential exceptions. Additionally, you will include a finally
statement that displays when main() has finished.

Defi ning Exceptions

We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on the
flow of our program. In this section we will develop the concepts further and use
exceptions in functional Java code.

Earlier we said that an exception is an occurrence that alters the normal program
flow. But because this is Java, anything that's not a primitive must be…an object.
Exceptions are no exception to this rule. Every exception is an instance of a class
that has class Exception in its inheritance hierarchy. In other words, exceptions are
always some subclass of java.lang.Exception.

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch
clause. An actual catch clause looks like this:

try {
 // some code here
}
catch (ArrayIndexOutOfBoundsException e) {
 e.printStackTrace();
}

In this example, e is an instance of the ArrayIndexOutOfBoundsException class.
As with any other object, you can call its methods.

06-ch06.indd 342 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 343

Exception Hierarchy

All exception classes are subtypes of class Exception. This class derives from the
class Throwable (which derives from the class Object). Figure 6-2 shows the
hierarchy for the exception classes.

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are not
caused by program errors and indicate things that would not normally happen during
program execution, such as the JVM running out of memory. Generally, your
application won't be able to recover from an Error, so you're not required to handle
them. If your code does not handle them (and it usually won't), it will still compile
with no trouble. Although often thought of as exceptional conditions, Errors are
technically not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of a
programming error, but rather because some resource is not available or some other
condition required for correct execution is not present. For example, if your
application is supposed to communicate with another application or computer that
is not answering, this is an exception that is not caused by a bug. Figure 6-2 also
shows a subtype of Exception called RuntimeException. These exceptions are a
special case because they sometimes do indicate program errors. They can also
represent rare, difficult-to-handle exceptional conditions. Runtime exceptions are
discussed in greater detail later in this chapter.

 FIGURE 6-2

Exception class
hierarchy

Object

Throwable

Error Exception

RuntimeException

06-ch06.indd 343 8/28/2014 4:10:56 PM

344 Chapter 6: Flow Control and Exceptions

Java provides many exception classes, most of which have quite descriptive
names. There are two ways to get information about an exception. The first is from
the type of the exception itself. The next is from information that you can get from
the exception object. Class Throwable (at the top of the inheritance tree for
exceptions) provides its descendants with some methods that are useful in exception
handlers. One of these is printStackTrace(). As you would expect, if you call an
exception object's printStackTrace() method, as in the earlier example, a stack
trace from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace() method prints the most
recently entered method first and continues down, printing the name of each
method as it works its way down the call stack (this is called "unwinding the stack")
from the top.

For the exam, you don't need to know any of the methods contained in

the Throwable classes, including Exception and Error. You are expected to know that

Exception, Error, RuntimeException, and Throwable types can all be thrown using the

throw keyword and can all be caught (although you rarely will catch anything other than

Exception subtypes).

Handling an Entire Class Hierarchy of Exceptions

We've discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a
single catch clause. If the exception class that you specify in the catch clause has
no subclasses, then only the specified class of exception will be caught. However, if
the class specified in the catch clause does have subclasses, any exception object
that subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like the
following:

06-ch06.indd 344 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 345

try {
 // Some code here that can throw a boundary exception
}
catch (IndexOutOfBoundsException e) {
 e.printStackTrace();
}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled.
This can be convenient, but it should be used sparingly. By specifying an exception
class's superclass in your catch clause, you're discarding valuable information about
the exception. You can, of course, find out exactly what exception class you have,
but if you're going to do that, you're better off writing a separate catch clause for
each exception type of interest.

Resist the temptation to write a single catchall exception handler such as the

following:

try {
 // some code
}
catch (Exception e) {
 e.printStackTrace();
}

This code will catch every exception generated. Of course, no single exception

handler can properly handle every exception, and programming in this way

defeats the design objective. Exception handlers that trap many errors at once

will probably reduce the reliability of your program, because it's likely that an

exception will be caught that the handler does not know how to handle.

Exception Matching

If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you're interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find (by looking at the available
catch clauses from the top down) a catch clause for the exception type. If it doesn't
find one, it will search for a handler for a supertype of the exception. If it does not
find a catch clause that matches a supertype for the exception, then the exception
is propagated down the call stack. This process is called "exception matching." Let's
look at an example.

06-ch06.indd 345 8/28/2014 4:10:56 PM

346 Chapter 6: Flow Control and Exceptions

 1: import java.io.*;
 2: public class ReadData {
 3: public static void main(String args[]) {
 4: try {
 5: RandomAccessFile raf =
 6: new RandomAccessFile("myfile.txt", "r");
 7: byte b[] = new byte[1000];
 8: raf.readFully(b, 0, 1000);
 9: }
10: catch(FileNotFoundException e) {
11: System.err.println("File not found");
12: System.err.println(e.getMessage());
13: e.printStackTrace();
14: }
15: catch(IOException e) {
16: System.err.println("IO Error");
17: System.err.println(e.toString());
18: e.printStackTrace();
19: }
20: }
21: }

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we're interested in knowing only
whether the exact exception is a FileNotFoundException. Otherwise, we don't
care exactly what the problem is.

FileNotFoundException is a subclass of IOException. Therefore, we could handle
it in the catch clause that catches all subtypes of IOException, but then we would
have to test the exception to determine whether it was a FileNotFoundException.
Instead, we coded a special exception handler for the FileNotFoundException and a
separate exception handler for all other IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another IOException—perhaps
EOFException, which is a subclass of IOException—it will be handled by the
catch clause that begins at line 15. If some other exception is generated, such as a
runtime exception of some type, neither catch clause will be executed and the
exception will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the IOException. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions
must always be placed above those for more general exceptions. The following will
not compile:

06-ch06.indd 346 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 347

try {
 // do risky IO things
} catch (IOException e) {
 // handle general IOExceptions
} catch (FileNotFoundException ex) {
 // handle just FileNotFoundException
}

You'll get a compiler error something like this:

TestEx.java:15: exception java.io.FileNotFoundException has
 already been caught
} catch (FileNotFoundException ex) {
 ^

If you think back to the people with baseball mitts (in the section "Propagating
Uncaught Exceptions"), imagine that the most general mitts are the largest and
can thus catch many different kinds of balls. An IOException mitt is large enough
and flexible enough to catch any type of IOException. So if the person on the
fifth floor (say, Fred) has a big ol' IOException mitt, he can't help but catch a
FileNotFoundException ball with it. And if the guy (say, Jimmy) on the second
floor is holding a FileNotFoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-IOException mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn't matter.

Exception Declaration and the Public Interface

So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless
the exceptions are subclasses of RuntimeException). The list of thrown exceptions
is part of a method's public interface. The throws keyword is used as follows to list
the exceptions that a method can throw:

void myFunction() throws MyException1, MyException2 {
 // code for the method here
}

This method has a void return type, accepts no arguments, and declares that it can
throw one of two types of exceptions: either type MyException1 or type MyException2.

06-ch06.indd 347 8/28/2014 4:10:56 PM

348 Chapter 6: Flow Control and Exceptions

(Just because the method declares that it throws an exception doesn't mean it always
will. It just tells the world that it might.)

Suppose your method doesn't directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare
it, as though it were your method that actually throws the exception. If you do
declare the exception that your method might get from another method, and you
don't provide a try/catch for it, then the method will propagate back to the
method that called your method and will either be caught there or continue on to
be handled by a method further down the stack.

Any method that might throw an exception (unless it's a subclass of
RuntimeException) must declare the exception. That includes methods that
aren't actually throwing it directly, but are "ducking" and letting the exception
pass down to the next method in the stack. If you "duck" an exception, it is just
as if you were the one actually throwing the exception. RuntimeException
subclasses are exempt, so the compiler won't check to see if you've declared them.
But all non-RuntimeExceptions are considered "checked" exceptions, because
the compiler checks to be certain you've acknowledged that "bad things could
happen here."

Remember this:

Each method must either handle all checked exceptions by supplying a catch
clause or list each unhandled checked exception as a thrown exception.

This rule is referred to as Java's "handle or declare" requirement (sometimes called
"catch or declare").

Look for code that invokes a method declaring an exception, where the

calling method doesn't handle or declare the checked exception. The following code

(which uses the throw keyword to throw an exception manually—more on this next) has

two big problems that the compiler will prevent:

void doStuff() {
 doMore();
}
void doMore() {
 throw new IOException();
}

06-ch06.indd 348 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 349

Again, some exceptions are exempt from this rule. An object of type
RuntimeException may be thrown from any method without being specified as part
of the method's public interface (and a handler need not be present). And even if a
method does declare a RuntimeException, the calling method is under no
obligation to handle or declare it. RuntimeException, Error, and all of their
subtypes are unchecked exceptions, and unchecked exceptions do not have to be
specified or handled. Here is an example:

import java.io.*;
class Test {
 public int myMethod1() throws EOFException {
 return myMethod2();
 }
 public int myMethod2() throws EOFException {
 // code that actually could throw the exception goes here
 return 1;
 }
}

Let's look at myMethod1(). Because EOFException subclasses IOException, and
IOException subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2() called here
declares that an exception of this type can be thrown. Whether that method
actually throws the exception itself or calls another method that throws it is
unimportant to us; we simply know that we either have to catch the exception or
declare that we threw it. The method myMethod1() does not catch the exception,
so it declares that it throws it. Now let's look at another legal example,
myMethod3():

public void myMethod3() {
 // code that could throw a NullPointerException goes here
}

First, the doMore() method throws a checked exception but does not declare it! But

suppose we fi x the doMore() method as follows:

void doMore() throws IOException { … }

The doStuff() method is still in trouble because it, too, must declare the IOException,

unless it handles it by providing a try/catch, with a catch clause that can take an

IOException.

06-ch06.indd 349 8/28/2014 4:10:56 PM

350 Chapter 6: Flow Control and Exceptions

According to the comment, this method can throw a NullPointerException.
Because RuntimeException is the superclass of NullPointerException, it is an
unchecked exception and need not be declared. We can see that myMethod3() does
not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception
somewhere, your code will not compile. That's why they're called checked
exceptions: the compiler checks to make sure that they're handled or declared. A
number of the methods in the Java API throw checked exceptions, so you will often
write exception handlers to cope with exceptions generated by methods you didn't
write.

You can also throw an exception yourself, and that exception can be either an
existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

And if you throw the exception, the compiler will guarantee that you declare it as
follows:

class TestEx {
 void doStuff() {
 throw new MyException(); // Throw a checked exception
 }
}

The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught or
declared to be thrown
 throw new MyException();
 ^

You need to know how an Error compares with checked and unchecked
exceptions. Objects of type Error are not Exception objects, although they do
represent exceptional conditions. Both Exception and Error share a common
superclass, Throwable; thus both can be thrown using the throw keyword. When an
Error or a subclass of Error (like RuntimeException) is thrown, it's unchecked.
You are not required to catch Error objects or Error subtypes. You can also throw

06-ch06.indd 350 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 351

an Error yourself (although, other than AssertionError, you probably won't ever
want to), and you can catch one, but again, you probably won't. What, for example,
would you actually do if you got an OutOfMemoryError? It's not like you can tell
the garbage collector to run; you can bet the JVM fought desperately to save itself
(and reclaimed all the memory it could) by the time you got the error. In other
words, don't expect the JVM at that point to say, "Run the garbage collector? Oh,
thanks so much for telling me. That just never occurred to me. Sure, I'll get right on
it." Even better, what would you do if a VirtualMachineError arose? Your program
is toast by the time you'd catch the error, so there's really no point in trying to catch

When an object of a subtype of Exception is thrown, it must be handled

or declared. These objects are called checked exceptions and include all exceptions

except those that are subtypes of RuntimeException, which are unchecked exceptions.

Be ready to spot methods that don't follow the "handle or declare" rule, such as this:

class MyException extends Exception {
 void someMethod () {
 doStuff();
 }
 void doStuff() throws MyException {
 try {
 throw new MyException();
 }
 catch(MyException me) {
 throw me;
 }
 }
}

You need to recognize that this code won't compile. If you try, you'll get this:

MyException.java:3: unreported exception MyException;
must be caught or declared to be thrown
doStuff();
 ^

Notice that someMethod() fails either to handle or declare the exception that can be

thrown by doStuff().

06-ch06.indd 351 8/28/2014 4:10:56 PM

352 Chapter 6: Flow Control and Exceptions

one of these babies. Just remember, though, that you can! The following compiles
just fine:

class TestEx {
 public static void main (String [] args) {
 badMethod();
 }
 static void badMethod() { // No need to declare an Error
 doStuff();
 }
 static void doStuff() { // No need to declare an Error
 try {
 throw new Error();
 }
 catch(Error me) {
 throw me; // We catch it, but then rethrow it
 }
 }
}

If we were throwing a checked exception rather than Error, then the doStuff()
method would need to declare the exception. But remember, since Error is not a
subtype of Exception, it doesn't need to be declared. You're free to declare it if you
like, but the compiler just doesn't care one way or another when or how the Error
is thrown, or by whom.

Because Java has checked exceptions, it's commonly said that Java forces

developers to handle exceptions. Yes, Java forces us to write exception

handlers for each exception that can occur during normal operation, but it's

up to us to make the exception handlers actually do something useful. We

know software managers who melt down when they see a programmer write

something like this:

try {
 callBadMethod();
} catch (Exception ex) { }

Notice anything missing? Don't "eat" the exception by catching it without

actually handling it. You won't even be able to tell that the exception

occurred, because you'll never see the stack trace.

06-ch06.indd 352 8/28/2014 4:10:56 PM

 Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4) 353

Rethrowing the Same Exception

Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here's a catch clause that does this:

catch(IOException e) {
 // Do things, then if you decide you can't handle it…
 throw e;
}

All other catch clauses associated with the same try are ignored; if a finally
block exists, it runs, and the exception is thrown back to the calling method (the
next method down the call stack). If you throw a checked exception from a catch
clause, you must also declare that exception! In other words, you must handle and
declare, as opposed to handle or declare. The following example is illegal:

public void doStuff() {
 try {
 // risky IO things
 } catch(IOException ex) {
 // can't handle it
 throw ex; // Can't throw it unless you declare it
 }
}

In the preceding code, the doStuff() method is clearly able to throw a checked
exception—in this case an IOException—so the compiler says, "Well, that's just
peachy that you have a try/catch in there, but it's not good enough. If you might
rethrow the IOException you catch, then you must declare it (in the method
signature)!"

EXERCISE 6-4

Creating an Exception

In this exercise we attempt to create a custom exception. We won't put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to determine whether a command-line argument representing a particular food (as
a string) is considered bad or okay.

 1. Let's first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

06-ch06.indd 353 8/28/2014 4:10:56 PM

354 Chapter 6: Flow Control and Exceptions

 2. Create an enclosing class called MyException and a main() method, which
will remain empty for now.

 3. Create a method called checkFood(). It takes a String argument and
throws our exception if it doesn't like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren't particularly fond of
to the list.

 4. Now in the main() method, you'll get the command-line argument out of
the String array and then pass that String on to the checkFood() method.
Because it's a checked exception, the checkFood() method must declare it,
and the main() method must handle it (using a try/catch). Do not have
main() declare the exception, because if main() ducks the exception, who
else is back there to catch it? (Actually, main() can legally declare excep-
tions, but don't do that in this exercise.)

As nifty as exception handling is, it's still up to the developer to make proper use
of it. Exception handling makes organizing our code and signaling problems easy, but
the exception handlers still have to be written. You'll find that even the most
complex situations can be handled, and your code will be reusable, readable, and
maintainable.

CERTIFICATION OBJECTIVE

Common Exceptions and Errors
(OCA Objective 8.5)

8.5 Recognize common exception classes and categories.

Exception handling is another area that the exam creation team decided to
expand for the OCJP 5, OCJP 6, and both Java 7 exams. The intention of this
objective is to make sure that you are familiar with some of the most common
exceptions and errors you'll encounter as a Java programmer.

06-ch06.indd 354 8/28/2014 4:10:56 PM

Common Exceptions and Errors (OCA Objective 8.5) 355

This is another one of those objectives that will turn up all through the real exam
(does "An exception is thrown at runtime" ring a bell?), so make sure this section
gets a lot of your attention.

Where Exceptions Come From

Jump back a page and take a look at the last sentence. It's important that you
understand what causes exceptions and errors, and where they come from. For the
purposes of exam preparation, let's define two broad categories of exceptions and
errors:

■ JVM exceptions Those exceptions or errors that are either exclusively or
most logically thrown by the JVM

■ Programmatic exceptions Those exceptions that are thrown explicitly by
application and/or API programmers

JVM Thrown Exceptions

Let's start with a very common exception, the NullPointerException. As we saw
in earlier chapters, this exception occurs when you attempt to access an object using
a reference variable with a current value of null. There's no way that the compiler
can hope to find these problems before runtime. Take a look at the following:

class NPE {
 static String s;
 public static void main(String [] args) {
 System.out.println(s.length());
 }
}

The questions from this section are likely to be along the lines of, "Here's

some code that just did something bad, which exception will be thrown?" Throughout

the exam, questions will present some code and ask you to determine whether the code

will run, or whether an exception will be thrown. Since these questions are so common,

understanding the causes for these exceptions is critical to your success.

06-ch06.indd 355 8/28/2014 4:10:56 PM

356 Chapter 6: Flow Control and Exceptions

Surely, the compiler can find the problem with that tiny little program! Nope,
you're on your own. The code will compile just fine, and the JVM will throw a
NullPointerException when it tries to invoke the length() method.

Earlier in this chapter we discussed the call stack. As you recall, we used the
convention that main() would be at the bottom of the call stack, and that as
main() invokes another method, and that method invokes another, and so on, the
stack grows upward. Of course the stack resides in memory, and even if your OS
gives you a gigabyte of RAM for your program, it's still a finite amount. It's possible
to grow the stack so large that the OS runs out of space to store the call stack. When
this happens, you get (wait for it...) a StackOverflowError. The most common
way for this to occur is to create a recursive method. A recursive method invokes
itself in the method body. Although that may sound weird, it's a very common and
useful technique for such things as searching and sorting algorithms. Take a look at
this code:

void go() { // recursion gone bad
 go();
}

As you can see, if you ever make the mistake of invoking the go() method, your
program will fall into a black hole—go() invoking go() invoking go(), until, no
matter how much memory you have, you'll get a StackOverflowError. Again, only
the JVM knows when this moment occurs, and the JVM will be the source of this
error.

Programmatically Thrown Exceptions

Now let's look at programmatically thrown exceptions. Remember we defined
"programmatically" as meaning something like this:

Created by an application and/or API developer.

For instance, many classes in the Java API have methods that take String
arguments and convert these Strings into numeric primitives. A good example of
these classes are the so-called "wrapper classes" that OCP candidates will study in
Chapter 8. Even though we haven't talked about wrapper classes yet, the following
example should make sense.

At some point long ago, some programmer wrote the java.lang.Integer class
and created methods like parseInt() and valueOf(). That programmer wisely
decided that if one of these methods was passed a String that could not be

06-ch06.indd 356 8/28/2014 4:10:56 PM

 Common Exceptions and Errors (OCA Objective 8.5) 357

converted into a number, the method should throw a NumberFormatException.
The partially implemented code might look something like this:

int parseInt(String s) throws NumberFormatException {
 boolean parseSuccess = false;
 int result = 0;
 // do complicated parsing
 if (!parseSuccess) // if the parsing failed
 throw new NumberFormatException();
 return result;
}

Other examples of programmatic exceptions include an AssertionError (okay,
it's not an exception, but it IS thrown programmatically), and throwing an
IllegalArgumentException. In fact, our mythical API developer could have used
IllegalArgumentException for her parseInt() method. But it turns out that
NumberFormatException extends IllegalArgumentException and is a little
more precise, so in this case, using NumberFormatException supports the notion
we discussed earlier: that when you have an exception hierarchy, you should use the
most precise exception that you can.

Of course, as we discussed earlier, you can also make up your very own special
custom exceptions and throw them whenever you want to. These homemade
exceptions also fall into the category of "programmatically thrown exceptions."

A Summary of the Exam's Exceptions and Errors

OCA Objective 8.5 does not list specific exceptions and errors; it says "recognize
common exceptions…." Table 6-2 summarizes the ten exceptions and errors that are
a part of the SCJP 6 exam; it will cover OCA Objective 8.5, too.

End of Part I—OCA

Barring our standard end-of-chapter stuff, such as mock exam questions, you've
reached the end of the OCA part of the book. If you've studied these six chapters
carefully, and then taken and reviewed the end-of-chapter mock exams and the
OCA master exams and done well on them, we're confident that you're a little bit
over-prepared for the official Oracle OCA exam. (Not "way" over-prepared—just a
little.) Good luck, and we hope to see you back here for Part II, Chapter 7, in which
we'll explore the exception handling features added in Java 7.

06-ch06.indd 357 8/28/2014 4:10:56 PM

358 Chapter 6: Flow Control and Exceptions

Exception Description Typically Thrown

ArrayIndexOutOfBoundsException
(Chapter 5)

Thrown when attempting to access an
array with an invalid index value (either
negative or beyond the length of the
array).

By the JVM

ClassCastException
(Chapter 2)

Thrown when attempting to cast a
reference variable to a type that fails the
IS-A test.

By the JVM

IllegalArgumentException Thrown when a method receives an
argument formatted differently than the
method expects.

Programmatically

IllegalStateException Thrown when the state of the
environment doesn't match the
operation being attempted—for
example, using a scanner that's been
closed.

Programmatically

NullPointerException
(Chapter 3)

Thrown when attempting to invoke a
method on, or access a property from, a
reference variable whose current value
is null.

By the JVM

NumberFormatException
(this chapter)

Thrown when a method that converts a
String to a number receives a String
that it cannot convert.

Programmatically

AssertionError Thrown when an assert statement's
boolean test returns false.

Programmatically

ExceptionInInitializerError
(Chapter 2)

Thrown when attempting to initialize a
static variable or an initialization block.

By the JVM

StackOverflowError
(this chapter)

Typically thrown when a method
recurses too deeply. (Each invocation is
added to the stack.)

By the JVM

NoClassDefFoundError Thrown when the JVM can't find a
class it needs, because of a command-
line error, a classpath issue, or a missing
.class file.

By the JVM

 TABLE 6-2 Descriptions and Sources of Common Exceptions

06-ch06.indd 358 8/28/2014 4:10:57 PM

 Certifi cation Summary 359

CERTIFICATION SUMMARY

This chapter covered a lot of ground, all of which involved ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean result.
If the result is true, the program will execute the code in the block that is
encompassed by the if. If an else statement is used and the if expression evaluates
to false, then the code following the else will be performed. If no else block is
defined, then none of the code associated with the if statement will execute.

You also learned that the switch statement can be used to replace multiple
if-else statements. The switch statement can evaluate integer primitive types that
can be implicitly cast to an int (those types are byte, short, int, and char), or it
can evaluate enums, and as of Java 7, it can evaluate Strings. At runtime, the JVM
will try to find a match between the expression in the switch statement and a
constant in a corresponding case statement. If a match is found, execution will begin
at the matching case and continue on from there, executing code in all the remaining
case statements until a break statement is found or the end of the switch statement
occurs. If there is no match, then the default case will execute, if there is one.

You've learned about the three looping constructs available in the Java language.
These constructs are the for loop (including the basic for and the enhanced for,
which was new to Java 5), the while loop, and the do loop. In general, the for loop
is used when you know how many times you need to go through the loop. The
while loop is used when you do not know how many times you want to go through,
whereas the do loop is used when you need to go through at least once. In the for
loop and the while loop, the expression will have to evaluate to true to get inside
the block and will check after every iteration of the loop. The do loop does not
check the condition until after it has gone through the loop once. The major benefit
of the for loop is the ability to initialize one or more variables and increment or
decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or unlabeled
fashion. When unlabeled, the break statement will force the program to stop
processing the innermost looping construct and start with the line of code following
the loop. Using an unlabeled continue command will cause the program to stop
execution of the current iteration of the innermost loop and proceed with the next
iteration. When a break or a continue statement is used in a labeled manner, it will
perform in the same way, with one exception: the statement will not apply to the
innermost loop; instead, it will apply to the loop with the label. The break statement
is used most often in conjunction with the switch statement. When there is a match
between the switch expression and the case constant, the code following the case
constant will be performed. To stop execution, a break is needed.

06-ch06.indd 359 8/28/2014 4:10:57 PM

360 Chapter 6: Flow Control and Exceptions

You've seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate
blocks so that the main code doesn't become cluttered by error-checking code.
Another elegant feature allows you to handle similar errors with a single error-
handling block, without code duplication. Also, the error handling can be deferred
to methods further back on the call stack.

You learned that Java's try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java's catch
keyword. All catch clauses must immediately follow the related try block.

Java also provides the finally keyword. This is used to define a block of code that
is always executed, either immediately after a catch clause completes or immediately
after the associated try block in the case that no exception was thrown (or there was
a try but no catch). Use finally blocks to release system resources and to perform
any cleanup required by the code in the try block. A finally block is not required,
but if there is one, it must immediately follow the last catch. (If there is no catch
block, the finally block must immediately follow the try block.) It's guaranteed to
be called except when the try or catch issues a System.exit().

An exception object is an instance of class Exception or one of its subclasses.
The catch clause takes, as a parameter, an instance of an object of a type derived
from the Exception class. Java requires that each method either catches any
checked exception it can throw or else declares that it throws the exception. The
exception declaration is part of the method's signature. To declare that an exception
may be thrown, the throws keyword is used in a method definition, along with a list
of all checked exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses).
These exceptions are a special case because they do not need to be handled or
declared, and thus are known as "unchecked" exceptions. Errors are of type java
.lang.Error or its subclasses, and like runtime exceptions, they do not need to be
handled or declared. Checked exceptions include any exception types that are not of
type RuntimeException or Error. If your code fails either to handle a checked
exception or declare that it is thrown, your code won't compile. But with unchecked
exceptions or objects of type Error, it doesn't matter to the compiler whether you
declare them or handle them, do nothing about them, or do some combination of
declaring and handling. In other words, you're free to declare them and handle
them, but the compiler won't care one way or the other. It's not good practice to
handle an Error, though, because you can rarely recover from one.

Finally, remember that exceptions can be generated by the JVM, or by a programmer.

06-ch06.indd 360 8/28/2014 4:10:57 PM

Two-Minute Drill 361

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
You might want to loop through them several times.

Writing Code Using if and switch Statements
(OCA Objectives 3.4 and 3.5)

❑ The only legal expression in an if statement is a boolean expression—in
other words, an expression that resolves to a boolean or a Boolean reference.

❑ Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:
boolean x = false;
if (x = true) { } // an assignment, so x will always be true!

❑ Curly braces are optional for if blocks that have only one conditional
statement. But watch out for misleading indentations.

❑ switch statements can evaluate only to enums or the byte, short, int,
char, and, as of Java 7, String data types. You can't say this:
long s = 30;
switch(s) { }

❑ The case constant must be a literal or final variable, or a constant
expression, including an enum or a String. You cannot have a case that
includes a non-final variable or a range of values.

❑ If the condition in a switch statement matches a case constant, execution
will run through all code in the switch following the matching case
statement until a break statement or the end of the switch statement is
encountered. In other words, the matching case is just the entry point into
the case block, but unless there's a break statement, the matching case is
not the only case code that runs.

❑ The default keyword should be used in a switch statement if you want to
run some code when none of the case values match the conditional value.

❑ The default block can be located anywhere in the switch block, so if
no preceding case matches, the default block will be entered, and if the
default does not contain a break, then code will continue to execute
(fall-through) to the end of the switch or until the break statement is
encountered.

✓

06-ch06.indd 361 8/28/2014 4:10:57 PM

362 Chapter 6: Flow Control and Exceptions

Writing Code Using Loops (OCA Objectives 5.1, 5.2, 5.3, and 5.4)

❑ A basic for statement has three parts: declaration and/or initialization,
boolean evaluation, and the iteration expression.

❑ If a variable is incremented or evaluated within a basic for loop, it must be
declared before the loop or within the for loop declaration.

❑ A variable declared (not just initialized) within the basic for loop
declaration cannot be accessed outside the for loop—in other words, code
below the for loop won't be able to use the variable.

❑ You can initialize more than one variable of the same type in the first part
of the basic for loop declaration; each initialization must be separated by a
comma.

❑ An enhanced for statement (new as of Java 5) has two parts: the declaration
and the expression. It is used only to loop through arrays or collections.

❑ With an enhanced for, the expression is the array or collection through
which you want to loop.

❑ With an enhanced for, the declaration is the block variable, whose type is
compatible with the elements of the array or collection, and that variable
contains the value of the element for the given iteration.

❑ You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can't, for example, say if(x), unless x is a boolean
variable.

❑ The do loop will enter the body of the loop at least once, even if the test
condition is not met.

Using break and continue (OCA Objective 5.5)

❑ An unlabeled break statement will cause the current iteration of the
innermost looping construct to stop and the line of code following the loop
to run.

❑ An unlabeled continue statement will cause the current iteration of the
innermost loop to stop, the condition of that loop to be checked, and if the
condition is met, the loop to run again.

❑ If the break statement or the continue statement is labeled, it will cause
similar action to occur on the labeled loop, not the innermost loop.

06-ch06.indd 362 8/28/2014 4:10:57 PM

Two-Minute Drill 363

Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4)

❑ Exceptions come in two flavors: checked and unchecked.

❑ Checked exceptions include all subtypes of Exception, excluding classes
that extend RuntimeException.

❑ Checked exceptions are subject to the handle or declare rule; any method that
might throw a checked exception (including methods that invoke methods
that can throw a checked exception) must either declare the exception using
throws, or handle the exception with an appropriate try/catch.

❑ Subtypes of Error or RuntimeException are unchecked, so the compiler
doesn't enforce the handle or declare rule. You're free to handle them or to
declare them, but the compiler doesn't care one way or the other.

❑ If you use an optional finally block, it will always be invoked, regardless
of whether an exception in the corresponding try is thrown or not, and
regardless of whether a thrown exception is caught or not.

❑ The only exception to the finally-will-always-be-called rule is that a
finally will not be invoked if the JVM shuts down. That could happen if
code from the try or catch blocks calls System.exit().

❑ Just because finally is invoked does not mean it will complete. Code in the
finally block could itself raise an exception or issue a System.exit().

❑ Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main(), and main() is
"ducking" the exception by declaring it).

❑ You can create your own exceptions, normally by extending Exception
or one of its subtypes. Your exception will then be considered a checked
exception (unless you are extending from RuntimeException), and the
compiler will enforce the handle or declare rule for that exception.

❑ All catch blocks must be ordered from most specific to most general. If you
have a catch clause for both IOException and Exception, you must put
the catch for IOException first in your code. Otherwise, the IOException
would be caught by catch(Exception e), because a catch argument can
catch the specified exception or any of its subtypes! The compiler will stop
you from defining catch clauses that can never be reached.

❑ Some exceptions are created by programmers, and some by the JVM.

06-ch06.indd 363 8/28/2014 4:10:58 PM

364 Chapter 6: Flow Control and Exceptions

SELF TEST

 1. (Also an Upgrade topic) Given:

public class Flipper {
 public static void main(String[] args) {
 String o = "-";
 switch("FRED".toLowerCase().substring(1,3)) {
 case "yellow":
 o += "y";
 case "red":
 o += "r";
 case "green":
 o += "g";
 }
 System.out.println(o);
 }
}

 What is the result?
 A. -

 B. -r

 C. -rg

 D. Compilation fails
 E. An exception is thrown at runtime

 2. Given:

class Plane {
 static String s = "-";
 public static void main(String[] args) {
 new Plane().s1();
 System.out.println(s);
 }
 void s1() {
 try { s2(); }
 catch (Exception e) { s += "c"; }
 }
 void s2() throws Exception {
 s3(); s += "2";
 s3(); s += "2b";
 }
 void s3() throws Exception {
 throw new Exception();
 }
}

06-ch06.indd 364 8/28/2014 4:10:58 PM

Self Test 365

 What is the result?
 A. -

 B. -c

 C. -c2

 D. -2c

 E. -c22b

 F. -2c2b

 G. -2c2bc

 H. Compilation fails

 3. Given:

try { int x = Integer.parseInt("two"); }

 Which could be used to create an appropriate catch block? (Choose all that apply.)
 A. ClassCastException

 B. IllegalStateException

 C. NumberFormatException

 D. IllegalArgumentException

 E. ExceptionInInitializerError

 F. ArrayIndexOutOfBoundsException

 4. Given:

public class Flip2 {
 public static void main(String[] args) {
 String o = "-";
 String[] sa = new String[4];
 for(int i = 0; i < args.length; i++)
 sa[i] = args[i];
 for(String n: sa) {
 switch(n.toLowerCase()) {
 case "yellow": o += "y";
 case "red": o += "r";
 case "green": o += "g";
 }
 }
 System.out.print(o);
 }
}

 And given the command-line invocation:

Java Flip2 RED Green YeLLow

06-ch06.indd 365 8/28/2014 4:10:58 PM

366 Chapter 6: Flow Control and Exceptions

 Which are true? (Choose all that apply.)
 A. The string rgy will appear somewhere in the output
 B. The string rgg will appear somewhere in the output
 C. The string gyr will appear somewhere in the output
 D. Compilation fails
 E. An exception is thrown at runtime

 5. Given:

1. class Loopy {
2. public static void main(String[] args) {
3. int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5. System.out.print(y + " ");
6. }
7. }
8. }

 Which, inserted independently at line 4, compiles? (Choose all that apply.)
 A. for(int y : x) {

 B. for(x : int y) {

 C. int y = 0; for(y : x) {

 D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

 E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

 F. int y = 0; for(int z=0; z<x.length; z++) { y = x[z];

 6. Given:

class Emu {
 static String s = "-";
 public static void main(String[] args) {
 try {
 throw new Exception();
 } catch (Exception e) {
 try {
 try { throw new Exception();
 } catch (Exception ex) { s += "ic "; }
 throw new Exception(); }
 catch (Exception x) { s += "mc "; }
 finally { s += "mf "; }
 } finally { s += "of "; }
 System.out.println(s);
} }

 What is the result?

06-ch06.indd 366 8/28/2014 4:10:58 PM

Self Test 367

 A. -ic of

 B. -mf of

 C. -mc mf

 D. -ic mf of

 E. -ic mc mf of

 F. -ic mc of mf

 G. Compilation fails

 7. Given:

 3. class SubException extends Exception { }
 4. class SubSubException extends SubException { }
 5.
 6. public class CC { void doStuff() throws SubException { } }
 7.
 8. class CC2 extends CC { void doStuff() throws SubSubException { } }
 9.
10. class CC3 extends CC { void doStuff() throws Exception { } }
11.
12. class CC4 extends CC { void doStuff(int x) throws Exception { } }
13.
14. class CC5 extends CC { void doStuff() { } }

 What is the result? (Choose all that apply.)
 A. Compilation succeeds
 B. Compilation fails due to an error on line 8
 C. Compilation fails due to an error on line 10
 D. Compilation fails due to an error on line 12
 E. Compilation fails due to an error on line 14

 8. (OCP only) Given:

 3. public class Ebb {
 4. static int x = 7;
 5. public static void main(String[] args) {
 6. String s = "";
 7. for(int y = 0; y < 3; y++) {
 8. x++;
 9. switch(x) {
10. case 8: s += "8 ";
11. case 9: s += "9 ";
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";
14. case 13: s+= "13 ";
15. }

06-ch06.indd 367 8/28/2014 4:10:58 PM

368 Chapter 6: Flow Control and Exceptions

16. }
17. System.out.println(s);
18. }
19. static { x++; }
20. }

 What is the result?
 A. 9 10 d

 B. 8 9 10 d

 C. 9 10 10 d

 D. 9 10 10 d 13

 E. 8 9 10 10 d 13

 F. 8 9 10 9 10 10 d 13

 G. Compilation fails

 9. Given:

 3. class Infinity { }
 4. public class Beyond extends Infinity {
 5. static Integer i;
 6. public static void main(String[] args) {
 7. int sw = (int)(Math.random() * 3);
 8. switch(sw) {
 9. case 0: { for(int x = 10; x > 5; x++)
10. if(x > 10000000) x = 10;
11. break; }
12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond();
14. Beyond b = (Beyond)inf; }
15. }
16. }
17. }

 And given that line 7 will assign the value 0, 1, or 2 to sw, which are true?
(Choose all that apply.)

 A. Compilation fails
 B. A ClassCastException might be thrown
 C. A StackOverflowError might be thrown
 D. A NullPointerException might be thrown
 E. An IllegalStateException might be thrown
 F. The program might hang without ever completing
 G. The program will always complete without exception

06-ch06.indd 368 8/28/2014 4:10:58 PM

Self Test 369

 10. Given:

 3. public class Circles {
 4. public static void main(String[] args) {
 5. int[] ia = {1,3,5,7,9};
 6. for(int x : ia) {
 7. for(int j = 0; j < 3; j++) {
 8. if(x > 4 && x < 8) continue;
 9. System.out.print(" " + x);
10. if(j == 1) break;
11. continue;
12. }
13. continue;
14. }
15. }
16. }

 What is the result?
 A. 1 3 9

 B. 5 5 7 7

 C. 1 3 3 9 9

 D. 1 1 3 3 9 9

 E. 1 1 1 3 3 3 9 9 9

 F. Compilation fails

 11. Given:

 3. public class OverAndOver {
 4. static String s = "";
 5. public static void main(String[] args) {
 6. try {
 7. s += "1";
 8. throw new Exception();
 9. } catch (Exception e) { s += "2";
10. } finally { s += "3"; doStuff(); s += "4";
11. }
12. System.out.println(s);
13. }
14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

 What is the result?
 A. 12

 B. 13

 C. 123

 D. 1234

06-ch06.indd 369 8/28/2014 4:10:58 PM

370 Chapter 6: Flow Control and Exceptions

 E. Compilation fails
 F. 123 followed by an exception
 G. 1234 followed by an exception
 H. An exception is thrown with no other output

 12. Given:
 3. public class Wind {
 4. public static void main(String[] args) {
 5. foreach:
 6. for(int j=0; j<5; j++) {
 7. for(int k=0; k< 3; k++) {
 8. System.out.print(" " + j);
 9. if(j==3 && k==1) break foreach;
10. if(j==0 || j==2) break;
11. }
12. }
13. }
14. }

 What is the result?
 A. 0 1 2 3

 B.1 1 1 3 3

 C. 0 1 1 1 2 3 3

 D. 1 1 1 3 3 4 4 4

 E. 0 1 1 1 2 3 3 4 4 4

 F. Compilation fails

 13. Given:
 3. public class Gotcha {
 4. public static void main(String[] args) {
 5. // insert code here
 6.
 7. }
 8. void go() {
 9. go();
10. }
11. }

 And given the following three code fragments:
I. new Gotcha().go();

II. try { new Gotcha().go(); }
 catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
 catch (Exception e) { System.out.println("ouch"); }

06-ch06.indd 370 8/28/2014 4:10:58 PM

Self Test 371

 When fragments I–III are added, independently, at line 5, which are true?
(Choose all that apply.)

 A. Some will not compile
 B. They will all compile
 C. All will complete normally
 D. None will complete normally
 E. Only one will complete normally
 F. Two of them will complete normally

 14. Given the code snippet:

String s = "bob";
String[] sa = {"a", "bob"};
final String s2 = "bob";
StringBuilder sb = new StringBuilder("bob");

// switch(sa[1]) { // line 1
// switch("b" + "ob") { // line 2
// switch(sb.toString()) { // line 3

// case "ann": ; // line 4
// case s: ; // line 5
// case s2: ; // line 6
}

 And given that the numbered lines will all be tested by un-commenting one switch statement
and one case statement together, which line(s) will FAIL to compile? (Choose all that apply.)

 A. line 1
 B. line 2
 C. line 3
 D. line 4
 E. line 5
 F. line 6
 G. All six lines of code will compile

 15. Given:

 1. public class Frisbee {
 2. // insert code here
 3. int x = 0;
 4. System.out.println(7/x);
 5. }
 6. }

06-ch06.indd 371 8/28/2014 4:10:58 PM

372 Chapter 6: Flow Control and Exceptions

 And given the following four code fragments:

I. public static void main(String[] args) {
II. public static void main(String[] args) throws Exception {
III. public static void main(String[] args) throws IOException {
IV. public static void main(String[] args) throws RuntimeException {

 If the four fragments are inserted independently at line 2, which are true? (Choose all that apply.)
 A. All four will compile and execute without exception
 B. All four will compile and execute and throw an exception
 C. Some, but not all, will compile and execute without exception
 D. Some, but not all, will compile and execute and throw an exception
 E. When considering fragments II, III, and IV, of those that will compile, adding a try/catch

 block around line 4 will cause compilation to fail

 16. Given:

 2. class MyException extends Exception { }
 3. class Tire {
 4. void doStuff() { }
 5. }
 6. public class Retread extends Tire {
 7. public static void main(String[] args) {
 8. new Retread().doStuff();
 9. }
10. // insert code here
11. System.out.println(7/0);
12. }
13. }

 And given the following four code fragments:

I. void doStuff() {
II. void doStuff() throws MyException {
III. void doStuff() throws RuntimeException {
IV. void doStuff() throws ArithmeticException {

 When fragments I–IV are added, independently, at line 10, which are true? (Choose all that apply.)
 A. None will compile
 B. They will all compile
 C. Some, but not all, will compile
 D. All of those that compile will throw an exception at runtime
 E. None of those that compile will throw an exception at runtime
 F. Only some of those that compile will throw an exception at runtime

06-ch06.indd 372 8/28/2014 4:10:58 PM

Self Test Answers 373

SELF TEST ANSWERS

 1. ☑ A is correct. As of Java 7 the code is legal, but the substring() method's second
argument is exclusive. If the invocation had been substring(1,4), the output would have
been –rg. Note: We hope you won't have too many exam questions that focus on API trivia
like this one. If you knew the switch was legal, give yourself "almost full credit."
☐✗ B, C, D, and E are incorrect based on the above. (OCA Objectives 2.7 and 3.5, and
Upgrade Objective 1.1)

 2. ☑ B is correct. Once s3() throws the exception to s2(), s2() throws it to s1(), and no
more of s2()'s code will be executed.
☐✗ A, C, D, E, F, G, and H are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 3. ☑ C and D are correct. Integer.parseInt can throw a NumberFormatException, and
IllegalArgumentException is its superclass (that is, a broader exception).
☐✗ A, B, E, and F are not in NumberFormatException's class hierarchy. (OCA Objective 8.5)

 4. ☑ E is correct. As of Java 7 the syntax is legal. The sa[] array receives only three arguments
from the command line, so on the last iteration through sa[], a NullPointerException is
thrown.
☐✗ A, B, C, and D are incorrect based on the above. (OCA Objectives 3.5, 5.2, and 8.5, and
Upgrade Objective 1.1)

 5. ☑ A, D, and F are correct. A is an example of the enhanced for loop. D and F are examples
of the basic for loop.
☐✗ B, C, and E are incorrect. B is incorrect because its operands are swapped. C is incorrect
because the enhanced for must declare its first operand. E is incorrect syntax to declare two
variables in a for statement. (OCA Objective 5.2)

 6. ☑ E is correct. There is no problem nesting try/catch blocks. As is normal, when an
exception is thrown, the code in the catch block runs, and then the code in the finally
block runs.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 7. ☑ C is correct. An overriding method cannot throw a broader exception than the method
it's overriding. Class CC4's method is an overload, not an override.
☐✗ A, B, D, and E are incorrect based on the above. (OCA Objectives 8.2 and 8.4)

 8. ☑ D is correct. Did you catch the static initializer block? Remember that switches work on
"fall-through" logic, and that fall-through logic also applies to the default case, which is used
when no other case matches.
☐✗ A, B, C, E, F, and G are incorrect based on the above. (OCA Objective 3.5)

06-ch06.indd 373 8/28/2014 4:10:58 PM

374 Chapter 6: Flow Control and Exceptions

 9. ☑ D and F are correct. Because i was not initialized, case 1 will throw a NullPointerException.
Case 0 will initiate an endless loop, not a stack overflow. Case 2's downcast will not cause an
exception.
☐✗ A, B, C, E, and G are incorrect based on the above. (OCA Objectives 3.5 and 8.4)

 10. ☑ D is correct. The basic rule for unlabeled continue statements is that the current iteration
stops early and execution jumps to the next iteration. The last two continue statements are
redundant!
☐✗ A, B, C, E, and F are incorrect based on the above. (OCA Objectives 5.2 and 5.5)

 11. ☑ H is correct. It's true that the value of String s is 123 at the time that the divide-by-zero
exception is thrown, but finally() is not guaranteed to complete, and in this case finally()
never completes, so the System.out.println (S.O.P) never executes.
☐✗ A, B, C, D, E, F, and G are incorrect based on the above. (OCA Objective 8.2)

 12. ☑ C is correct. A break breaks out of the current innermost loop and carries on. A labeled
break breaks out of and terminates the labeled loops.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCA Objectives 5.2 and 5.5)

 13. ☑ B and E are correct. First off, go() is a badly designed recursive method, guaranteed to
cause a StackOverflowError. Since Exception is not a superclass of Error, catching an
Exception will not help handle an Error, so fragment III will not complete normally. Only
fragment II will catch the Error.
☐✗ A, C, D, and F are incorrect based on the above. (OCA Objectives 8.1, 8.2, and 8.4)

 14. ☑ E is correct. A switch's cases must be compile-time constants or enum values.
☐✗ A, B, C, D, F, and G are incorrect based on the above. (OCA Objective 3.5 and Upgrade
Objective 1.1)

 15. ☑ D is correct. This is kind of sneaky, but remember that we're trying to toughen you up for
the real exam. If you're going to throw an IOException, you have to import the java.io package
or declare the exception with a fully qualified name.
☐✗ A, B, C, and E are incorrect. A, B, and C are incorrect based on the above. E is incorrect
because it's okay both to handle and declare an exception. (OCA Objectives 8.2 and 8.5)

 16. ☑ C and D are correct. An overriding method cannot throw checked exceptions that are
broader than those thrown by the overridden method. However, an overriding method can
throw RuntimeExceptions not thrown by the overridden method.
☐✗ A, B, E, and F are incorrect based on the above. (OCA Objective 8.1)

06-ch06.indd 374 8/28/2014 4:10:58 PM

Part IIPart II
OCPOCP

CHAPTERS

 7 Assertions and Java 7 Exceptions

 8 String Processing, Data Formatting,
Resource Bundles

 9 I/O and NIO

10 Advanced OO and Design Patterns

11 Generics and Collections

12 Inner Classes

13 Threads

14 Concurrency

15 JDBC

07-ch07.indd 375 9/3/2014 5:24:51 PM

This page intentionally left blank

77
Assertions and Assertions and
Java 7 ExceptionsJava 7 Exceptions

CERTIFICATION OBJECTIVES

Test Invariants by Using Assertions •
Develop Code That Handles Multiple •
Exception Types in a Single catch Block

Develop Code That Uses try-with- •
resources Statements (Including
Using Classes That Implement the
AutoCloseable Interface)

Two-Minute Drill ✓
Q&A Self Test

07-ch07.indd 377 9/3/2014 5:24:55 PM

378 Chapter 7: Assertions and Java 7 Exceptions

If you are coming back after having sat the OCA, congratulations! You are now ready to
progress to the OCP. The assertion mechanism, added to the language with version 1.4,
gives you a way to do testing and debugging checks on conditions you expect to smoke out

while developing, when you don't necessarily need or want the runtime overhead associated with
exception handling.

If you do need or want exception handling, you'll be learning about two new
features added to exception handling in Java 7. Multi-catch gives you a way of
dealing with two or more exception types at once. try-with-resources lets you close
your resources very easily.

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(OCP Objective 6.5)

6.5 Test invariants by using assertions.

You know you're not supposed to make assumptions, but you can't help it when
you're writing code. You put them in comments:

if (x > 2) {
 // do something
} else if (x < 2) {
 // do something
} else {
 // x must be 2
 // do something else
}

You write print statements with them:

while (true) {
 if (x > 2) {
 break;
 }
 System.out.print("If we got here " +
 "something went horribly wrong");
}

07-ch07.indd 378 9/3/2014 5:24:55 PM

 Working with the Assertion Mechanism (OCP Objective 6.5) 379

Added to the Java language beginning with version 1.4, assertions let you test
your assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume will
never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam) and continuing through to the current exam 1Z0-804 (OCPJP 7), you're
expected to know the basics of how assertions work, including how to enable them,
how to use them, and how not to use them.

Assertions Overview

Suppose you assume that a number passed into a method (say, methodA()) will
never be negative. While testing and debugging, you want to validate your
assumption, but you don't want to have to strip out print statements, runtime
exception handlers, or if/else tests when you're done with development. But leaving
any of those in is, at the least, a performance hit. Assertions to the rescue! Check
out the following code:

private void methodA(int num) {
 if (num >= 0) {
 useNum(num + x);
 } else { // num < 0 (this should never happen!)
 System.out.println("Yikes! num is a negative number! "
 + num);
 }
}

Because you're so certain of your assumption, you don't want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don't want the if/else either because if you do reach the else condition, it means
your earlier logic (whatever was running prior to this method being called) is flawed.

Assertions let you test your assumptions during development, but the assertion
code basically evaporates when the program is deployed, leaving behind no overhead
or debugging code to track down and remove. Let's rewrite methodA() to validate
that the argument was not negative:

private void methodA(int num) {
 assert (num>=0); // throws an AssertionError
 // if this test isn't true
 useNum(num + x);
}

07-ch07.indd 379 9/3/2014 5:24:55 PM

380 Chapter 7: Assertions and Java 7 Exceptions

Not only do assertions let your code stay cleaner and tighter, but because
assertions are inactive unless specifically "turned on" (enabled), the code will run as
though it were written like this:

private void methodA(int num) {
 useNum(num + x); // we've tested this;
 // we now know we're good here
}

Assertions work quite simply. You always assert that something is true. If it is, no
problem. Code keeps running. But if your assertion turns out to be wrong (false),
then a stop-the-world AssertionError is thrown (which you should never, ever
handle!) right then and there, so you can fix whatever logic flaw led to the problem.

Assertions come in two flavors: really simple and simple, as follows:
Really simple:

private void doStuff() {
 assert (y > x);
 // more code assuming y is greater than x
}

Simple:

private void doStuff() {
 assert (y > x): "y is " + y + " x is " + x;
 // more code assuming y is greater than x
}

The difference between the two is that the simple version adds a second
expression separated from the first (boolean expression) by a colon—this
expression's string value is added to the stack trace. Both versions throw an
immediate AssertionError, but the simple version gives you a little more
debugging help, while the really simple version tells you only that your assumption
was false.

Assertions are typically enabled when an application is being tested and

debugged, but disabled when the application is deployed. The assertions are

still in the code, although ignored by the JVM, so if you do have a deployed

application that starts misbehaving, you can always choose to enable

assertions in the field for additional testing.

07-ch07.indd 380 9/3/2014 5:24:55 PM

 Working with the Assertion Mechanism (OCP Objective 6.5) 381

Assertion Expression Rules

Assertions can have either one or two expressions, depending on whether you're
using the "simple" or the "really simple." The first expression must always result in a
boolean value! Follow the same rules you use for if and while tests. The whole
point is to assert aTest, which means you're asserting that aTest is true. If it is
true, no problem. If it's not true, however, then your assumption was wrong and
you get an AssertionError.

The second expression, used only with the simple version of an assert
statement, can be anything that results in a value. Remember, the second expression
is used to generate a String message that displays in the stack trace to give you a
little more debugging information. It works much like System.out.println() in
that you can pass it a primitive or an object, and it will convert it into a String
representation. It must resolve to a value!

The following code lists legal and illegal expressions for both parts of an assert
statement. Remember, expression2 is used only with the simple assert statement,
whereas the second expression exists solely to give you a little more debugging
detail:

void noReturn() { }
int aReturn() { return 1; }
void go() {
 int x = 1;
 boolean b = true;

 // the following six are legal assert statements
 assert(x == 1);
 assert(b);
 assert true;
 assert(x == 1) : x;
 assert(x == 1) : aReturn();
 assert(x == 1) : new ValidAssert();

 // the following six are ILLEGAL assert statements
 assert(x = 1); // none of these are booleans
 assert(x);
 assert 0;
 assert(x == 1) : ; // none of these return a value
 assert(x == 1) : noReturn();
 assert(x == 1) : ValidAssert va;
}

07-ch07.indd 381 9/3/2014 5:24:57 PM

382 Chapter 7: Assertions and Java 7 Exceptions

Enabling Assertions

If you want to use assertions, you have to think first about how to compile with
assertions in your code and then about how to run with assertions enabled. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

Identifier vs. Keyword

Prior to version 1.4, you might very well have written code like this:
int assert = getInitialValue();
if (assert == getActualResult()) {
 // do something
}

Notice that in the preceding code, assert is used as an identifier. That's not a
problem prior to 1.4. But you cannot use a keyword/reserved word as an identifier,
and beginning with version 1.4, assert is a keyword. The bottom line is this:

You can use assert as a keyword or as an identifier, but not both.

If, for some reason, you're using a Java 1.4 compiler and you're using assert

as a keyword (in other words, you're actually trying to assert something in

your code), then you must explicitly enable assertion-awareness at compile

time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass.java

You can read that as "compile the class TestClass, in the directory com/

geeksanonymous, and do it in the 1.4 way, where assert is a keyword."

If you see the word "expression" in a question about assertions and the

question doesn't specify whether it means expression1 (the boolean test) or expression2

(the value to print in the stack trace), always assume the word "expression" refers to

expression1, the boolean test. For example, consider the following question:

Exam Question: An assert expression must result in a boolean value, true or false?

Assume that the word "expression" refers to expression1 of an assert, so the question

statement is correct. If the statement were referring to expression2, however, the

statement would not be correct since expression2 can have a result of any value, not just

a boolean.

07-ch07.indd 382 9/3/2014 5:24:57 PM

 Working with the Assertion Mechanism (OCP Objective 6.5) 383

Use Version 7 of java and javac

As far as the exam is concerned, you'll ALWAYS be using version 7 of the Java
compiler (javac) and version 7 of the Java application launcher (java). You might
see questions about older versions of source code, but those questions will always be
in the context of compiling and launching old code with the current versions of
javac and java.

Compiling Assertion-Aware Code

The Java 7 compiler will use the assert keyword by default. Unless you tell it
otherwise, the compiler will generate an error message if it finds the word assert
used as an identifier. However, you can tell the compiler that you're giving it an old
piece of code to compile and that it should pretend to be an old compiler! Let's say
you've got to make a quick fix to an old piece of 1.3 code that uses assert as an
identifier. At the command line, you can type

javac -source 1.3 OldCode.java

The compiler will issue warnings when it discovers the word assert used as an
identifier, but the code will compile and execute. Suppose you tell the compiler that
your code is version 1.4 or later; for instance:

javac -source 1.4 NotQuiteSoOldCode.java

In this case, the compiler will issue errors when it discovers the word assert used as
an identifier.

If you want to tell the compiler to use Java 7 rules, you can do one of three things:
omit the -source option, which is the default, or add one of two source options:

-source 1.7 or -source 7

If you want to use assert as an identifier in your code, you MUST compile using
the -source 1.3 option. Table 7-1 summarizes how the Java 7 compiler will react
to assert as either an identifier or a keyword.

07-ch07.indd 383 9/3/2014 5:24:57 PM

384 Chapter 7: Assertions and Java 7 Exceptions

Command Line If assert Is

an Identifier

If assert Is

a Keyword

javac -source 1.3 TestAsserts.java Code compiles
with warnings

Compilation fails

javac -source 1.4 TestAsserts.java Compilation fails Code compiles
javac -source 1.5 TestAsserts.java
javac -source 5 TestAsserts.java

Compilation fails Code compiles

javac -source 1.6 TestAsserts.java
javac -source 6 TestAsserts.java

Compilation fails Code compiles

javac -source 1.7 TestAsserts.java
javac -source 7 TestAsserts.java

Compilation fails Code compiles

javac TestAsserts.java Compilation fails Code compiles

Running with Assertions

Here's where it gets cool. Once you've written your assertion-aware code (in other
words, code that uses assert as a keyword, to actually perform assertions at runtime),
you can choose to enable or disable your assertions at runtime! Remember, assertions
are disabled by default.

Enabling Assertions at Runtime

You enable assertions at runtime with

java -ea com.geeksanonymous.TestClass

or

java -enableassertions com.geeksanonymous.TestClass

The preceding command-line switches tell the JVM to run with assertions enabled.

Disabling Assertions at Runtime

You must also know the command-line switches for disabling assertions:

java -da com.geeksanonymous.TestClass

or

java -disableassertions com.geeksanonymous.TestClass

 TABLE 7-1

Using Various
Java Versions
to Compile
Code That Uses
assert as an
Identifier or a
Keyword

07-ch07.indd 384 9/3/2014 5:24:57 PM

 Working with the Assertion Mechanism (OCP Objective 6.5) 385

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result, regardless of
whether you use the disabling switches). But… you can also selectively enable and
disable assertions in such a way that they're enabled for some classes and/or packages
and disabled for others while a particular program is running.

Selective Enabling and Disabling

The command-line switches for assertions can be used in various ways:

■ With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

■ With a package name Enables or disables assertions in the package
specified and in any packages below this package in the same directory
hierarchy (more on that in a moment).

■ With a class name Enables or disables assertions in the class specified.

You can combine switches to, say, disable assertions in a single class but keep
them enabled for all others as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general, but
disable them in the class com.geeksanonymous.Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous...

The preceding command line tells the JVM to enable assertions in general, but
disable them in the package com.geeksanonymous and all of its subpackages! You
may not be familiar with the term subpackages, since there wasn't much use of that
term prior to assertions. A subpackage is any package in a subdirectory of the named
package. For example, look at the following directory tree:

com
 |_geeksanonymous
 |_Foo.class
 |_twelvesteps
 |_StepOne.class
 |_StepTwo.class

07-ch07.indd 385 9/3/2014 5:24:57 PM

386 Chapter 7: Assertions and Java 7 Exceptions

This tree lists three directories:

com
geeksanonymous
twelvesteps
and three classes:
com.geeksanonymous.Foo
com.geeksanonymous.twelvesteps.StepOne
com.geeksanonymous.twelvesteps.StepTwo

The subpackage of com.geeksanonymous is the twelvesteps package.
Remember that in Java, the com.geeksanonymous.twelvesteps package is treated
as a completely distinct package that has no relationship with the packages above it
(in this example, the com.geeksanonymous package), except they just happen to
share a couple of directories. Table 7-2 lists examples of command-line switches for
enabling and disabling assertions.

Using Assertions Appropriately

Not all legal uses of assertions are considered appropriate. As with so much of Java,
you can abuse the intended use of assertions, despite the best efforts of Oracle’s Java
engineers to discourage you from doing so. For example, you’re never supposed to
handle an assertion failure. That means you shouldn’t catch it with a catch clause
and attempt to recover. Legally, however, AssertionError is a subclass of
Throwable, so it can be caught. But just don’t do it! If you’re going to try to recover
from something, it should be an exception. To discourage you from trying to
substitute an assertion for an exception, the AssertionError doesn’t provide access
to the object that generated it. All you get is the String message.

So who gets to decide what’s appropriate? Oracle. The exam uses Oracle’s
“official” assertion documentation to define appropriate and inappropriate uses.

Don’t Use Assertions to Validate Arguments to a public Method

The following is an inappropriate use of assertions:

public void doStuff(int x) {
 assert (x > 0); // inappropriate !
 // do things with x
}

07-ch07.indd 386 9/3/2014 5:24:57 PM

 Working with the Assertion Mechanism (OCP Objective 6.5) 387

Command-Line Example What It Means

java -ea
java -enableassertions

Enable assertions.

java -da
java -disableassertions

Disable assertions (the default behavior).

java -ea:com.foo.Bar Enable assertions in class com.foo.Bar.
java -ea:com.foo... Enable assertions in package com.foo and any of its

subpackages.
java -ea -dsa Enable assertions in general, but disable assertions in

system classes.
java -ea -da:com.foo... Enable assertions in general, but disable assertions in

package com.foo and any of its subpackages.

 TABLE 7-2

Assertion
Command-Line
Switches

If you see the word "appropriate" on the exam, do not mistake that for

"legal." "Appropriate" always refers to the way in which something is supposed to be

used, according to either the developers of the mechanism or best practices offi cially

embraced by Oracle. If you see the word "correct" in the context of assertions, as in,

"Line 3 is a correct use of assertions," you should also assume that correct is referring to

how assertions SHOULD be used rather than how they legally COULD be used.

A public method might be called from code that you don't control (or from
code you have never seen). Because public methods are part of your interface to
the outside world, you're supposed to guarantee that any constraints on the
arguments will be enforced by the method itself. But since assertions aren't
guaranteed to actually run (they're typically disabled in a deployed application), the
enforcement won't happen if assertions aren't enabled. You don't want publicly
accessible code that works only conditionally, depending on whether assertions are
enabled.

If you need to validate public method arguments, you'll probably use exceptions
to throw, say, an IllegalArgumentException if the values passed to the public
method are invalid.

07-ch07.indd 387 9/3/2014 5:24:57 PM

388 Chapter 7: Assertions and Java 7 Exceptions

Do Use Assertions to Validate Arguments to a private Method

If you write a private method, you almost certainly wrote (or control) any code
that calls it. When you assume that the logic in code calling your private method
is correct, you can test that assumption with an assertion as follows:

private void doMore(int x) {
 assert (x > 0);
 // do things with x
}

The only difference that matters between the preceding example and the one
before it is the access modifier. So, do enforce constraints on private methods'
arguments, but do not enforce constraints on public methods. You're certainly free
to compile assertion code with an inappropriate validation of public arguments, but
for the exam (and real life), you need to know that you shouldn't do it.

Don't Use Assertions to Validate Command-Line Arguments

This is really just a special case of the "Do not use assertions to validate arguments to
a public method" rule. If your program requires command-line arguments, you'll
probably use the exception mechanism to enforce them.

Do Use Assertions, Even in public Methods, to Check for Cases
That You Know Are Never, Ever Supposed to Happen

This can include code blocks that should never be reached, including the default of
a switch statement as follows:

switch(x) {
 case 1: y = 3; break;
 case 2: y = 9; break;
 case 3: y = 27; break;
 default: assert false; // we're never supposed to get here!
}

If you assume that a particular code block won't be reached, as in the preceding
example where you assert that x must be 1, 2, or 3, then you can use assert false
to cause an AssertionError to be thrown immediately if you ever do reach that
code. So in the switch example, we're not performing a boolean test—we've already
asserted that we should never be there, so just getting to that point is an automatic
failure of our assertion/assumption.

07-ch07.indd 388 9/3/2014 5:24:57 PM

Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 389

Don't Use assert Expressions That Can Cause Side Effects!

The following would be a very bad idea:

public void doStuff() {
 assert (modifyThings());
 // continues on
}
public boolean modifyThings() {
 y = x++;
 return true;
}

The rule is that an assert expression should leave the program in the same state
it was in before the expression! Think about it. assert expressions aren't
guaranteed to always run, so you don't want your code to behave differently
depending on whether assertions are enabled. Assertions must not cause any side
effects. If assertions are enabled, the only change to the way your program runs is
that an AssertionError can be thrown if one of your assertions (think assumptions)
turns out to be false.

Using assertions that cause side effects can cause some of the most

maddening and hard-to-find bugs known to man! When a hot-tempered QA

analyst is screaming at you that your code doesn't work, trotting out the old

"well, it works on MY machine" excuse won't get you very far.

CERTIFICATION OBJECTIVE

Working with Java 7 Exception Handling
(OCP Objectives 6.2 and 6.3)

6.2 Develop code that handles multiple exception types in a single catch block.

6.3 Develop code that uses try-with-resources statements (including using classes that
implement the AutoCloseable interface).

Use the try Statement with multi-catch and fi nally Clauses

Sometimes we want to handle different types of exceptions the same way. Especially
when all we can do is log the exception and declare defeat. But we don't want to

07-ch07.indd 389 9/3/2014 5:24:57 PM

390 Chapter 7: Assertions and Java 7 Exceptions

repeat code. So what to do? In the previous chapter's section "Handling an Entire
Class Hierarchy of Exceptions," we've already seen that having a single catch-all
exception handler is a bad idea. Prior to Java 7, the best we could do was:

try {
 // access the database and write to a file
} catch (SQLException e) {
 handleErrorCase(e);
} catch (IOException e) {
 handleErrorCase(e);
}

You may be thinking that it is only one line of duplicate code. But what happens
when you are catching six different exception types? That's a lot of duplication.
Luckily, Java 7 made this nice and easy with a feature called multi-catch:

try {
 // access the database and write to a file
} catch (SQLException | IOException e) {
 handleErrorCase(e);
}

No more duplication. This is great. As you might imagine, multi-catch is short for
"multiple catch." You just list out the types you want the multi-catch to handle
separated by pipe (|) characters. This is easy to remember because | is the "or"
operator in Java. Which means the catch can be read as "SQLException or
IOException e."

You can't use the variable name multiple times in a multi-catch. The

following won't compile:

catch(Exception1 e1 | Exception2 e2)

It makes sense that this example doesn't compile. After all, the code in the exception

handler needs to know which variable name to refer to.

catch(Exception1 e | Exception2 e)

This one is tempting. When we declare variables, we normally put the variable name right

after the type. Try to think of it as a list of types. We are declaring variable e to be caught

and it must be one of Exception1 or Exception2 types.

07-ch07.indd 390 9/3/2014 5:24:57 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 391

With multi-catch, order doesn't matter. The following two snippets are
equivalent to each other:

catch(SQLException | IOException e) // these two statements are equivalent
catch(IOException | SQLException e)

Just like with exception matching in a regular catch block, you can't just throw
any two exceptions together. With multi-catch, you have to make sure a given
exception can only match one type. The following will not compile:

catch(FileNotFoundException | IOException e)
catch(IOException | FileNotFoundException e)

You'll get a compiler error that looks something like:

The exception FileNotFoundException is already caught by the
alternative IOException

Since FileNotFoundException is a subclass of IOException, we could have just
written that in the first place! There was no need to use multi-catch. The simplified
and working version simply says:

catch(IOException e)

Remember, multi-catch is only for exceptions in different inheritance hierarchies.
To make sure this is clear, what do you think happens with the following code:

catch(IOException | Exception e)

That's right. It won't compile because IOException is a subclass of Exception.
Which means it is redundant and the compiler won't accept it.

To summarize, we use multi-catch when we want to reuse an exception handler.
We can list as many types as we want so long as none of them have a superclass/
subclass relationship with each other.

Multi-catch and catch Parameter Assignment

There is one tricky thing with multi-catch. And we know the exam creators like
tricky things!

The following LEGAL code demonstrates assigning a new value to the single
catch parameter:

try {
 // access the database and write to a file
} catch (IOException e) {
 e = new IOException();
}

07-ch07.indd 391 9/3/2014 5:24:57 PM

392 Chapter 7: Assertions and Java 7 Exceptions

Don't assign a new value to the catch parameter. It isn't good practice and

creates confusing, hard-to-maintain code. But it is legal Java code to assign a

new value to the catch block's parameter when there is only one type listed,

and it will compile.

The following ILLEGAL code demonstrates trying to assign a value to the final
multi-catch parameter:

try {
 // access the database and write to a file
} catch (SQLException | IOException e) {
 e = new IOException();
}

At least you get a clear compiler error if you try to do this. The compiler tells you:

The parameter e of a multi-catch block cannot be assigned

Since multi-catch uses multiple types, there isn't a clearly defined type for the
variable that you can set. Java solves this by making the catch parameter final
when that happens. And then the code doesn't compile because you can't assign to
a final variable.

Rethrowing Exceptions

Sometimes, we want to do something with the thrown exceptions before we rethrow
them:

public void couldThrowAnException() throws IOException, SQLException {}

public void rethrow() throws SQLException, IOException {
 try {
 couldThrowAnException();
 } catch (SQLException | IOException e) {
 log(e);
 throw e;
 }
}

This is a common pattern called "handle and declare." We want to do something
with the exception—log it. We also want to acknowledge we couldn't completely
handle it, so we declare it and let the caller deal with it. (As an aside, many
programmers believe that logging an exception and rethrowing it is a bad practice,
but you never know—you might see this kind of code on the exam.)

07-ch07.indd 392 9/3/2014 5:24:57 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 393

You may have noticed that couldThrowAnException() doesn't actually throw
an exception. The compiler doesn't know this. The method signature is key to the
compiler. It can't assume that no exception gets thrown, as a subclass could override
the method and throw an exception.

There is a bit of duplicate code here. We have the list of exception types thrown
by the methods we call typed twice. Multi-catch was introduced to avoid having
duplicate code, yet here we are with duplicate code.

Lucky for us, Java 7 helps us out here as well with a new feature. This example is
a nicer way of writing the previous code:

1. public void rethrow() throws SQLException, IOException {
2. try {
3. couldThrowAnException();
4. } catch (Exception e) { // watch out: this isn't really
5. // catching all exception subclasses
6. log(e);
7. throw e; // note: won't compile in Java 6
8. }
9. }

Notice the multi-catch is gone and replaced with catch(Exception e). It's not
bad practice here, though, because we aren't really catching all exceptions. The
compiler is treating Exception as "any exceptions that the called methods happen
to throw." (You'll see this idea of code shorthand again with the diamond operator
when you get to generics.)

This is very different from Java 6 code that catches Exception. In Java 6, we'd
need the rethrow() method signature to be throws Exception in order to make
this code compile.

In Java 7, } catch (Exception e) { doesn't really catch ANY Exception
subclass. The code may say that, but the compiler is translating for you. The
compiler says, "Well, I know it can't be just any exception because the throws clause
won't let me. I'll pretend the developer meant to only catch SQLException and
IOException. After all, if any others show up, I'll just fail compilation on throw e;
—just like I used to in Java 6." Tricky, isn't it?

At the risk of being too repetitive, remember that catch (Exception e)
doesn't necessarily catch all Exception subclasses. In Java 7, it means catch all
Exception subclasses that would allow the method to compile.

Got that? Now why on earth would Oracle do this to us? It sounds more
complicated than it used to be! Turns out they were trying to solve another problem
at the same time they were changing this stuff. Suppose the API developer of

07-ch07.indd 393 9/3/2014 5:24:58 PM

394 Chapter 7: Assertions and Java 7 Exceptions

couldThrowAnException() decided the method will never throw a SQLException
and removes SQLException from the signature to reflect that.

Imagine we were using the Java 6 style of having one catch block per exception
or even the multi-catch style of:

 } catch (SQLException | IOException e) {

Our code would stop compiling with an error like:

Unreachable catch block for SQLException

It is reasonable for code to stop compiling if we add exceptions to a method. But
we don't want our code to break if a method's implementation gets LESS brittle.
And that's the advantage of using:

 } catch (Exception e) {

Java infers what we mean here and doesn't say a peep when the API we are calling
removes an exception.

Don't go changing your API signatures on a whim. Most code was written

before Java 7 and will break if you change signatures. Your callers won't thank you when their

code suddenly fails compilation because they tried to use your new, shiny, "cleaner" API.

You've probably noticed by now that Oracle values backward compatibility and
doesn't change the behavior or "compiler worthiness" of code from older versions of
Java. That still stands. In Java 6, we can't write catch (Exception e) and merely
throw specific exceptions. If we tried, it would still complain about:

Unhandled exception type Exception.

Backward compatibility only needs to work for code that compiles! It's OK for the
compiler to get less strict over time.

To make sure you understand what is going on here, think about what happens in
this example:

public class A extends Exception{}
public class B extends Exception{}
public void rain() throws A, B {}

Table 7.3 summarizes handling changes to the exception-related parts of method
signatures in Java 6 and Java 7.

07-ch07.indd 394 9/3/2014 5:24:58 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 395

What happens if rain()

adds a new checked

exception?

What happens if rain()

removes a checked

exception from the

signature?

Java 6 style:

public void ahhh() throws A, B {
 try {
 rain();
 } catch (A e) {
 throw e;
 } catch (B e) {
 throw e;
 }
 }

Add another catch block to
handle the new exception.

Remove a catch block to
avoid compiler error about
unreachable code.

Java 7 with duplication:

public void ahhh() throws A, B {
 try {
 rain();
 } catch (A | B e) {
 throw e;
 }
 }

Add another exception to the
multi-catch block to handle
the new exception.

Remove an expression from
the multi-catch block to
avoid compiler error about
unreachable code.

Java 7 without duplication:

public void ahhh() throws A, B {
 try {
 rain();
 } catch (Exception e) {
 throw e;
 }
 }

Add another exception to the
method signature to handle
the new exception that can
be thrown.

No code changes needed.

There is one more trick. If you assign a value to the catch parameter, the code no
longer compiles:

public void rethrow() throws SQLException, IOException {
 try {
 couldThrowAnException();
 } catch (Exception e) {
 e = new IOException();
 throw e;
 }
}

 TABLE 7-3 Exceptions and Signatures

07-ch07.indd 395 9/3/2014 5:24:58 PM

396 Chapter 7: Assertions and Java 7 Exceptions

As with multi-catch, you shouldn't be assigning a new value to the catch parameter
in real life anyway. The difference between this and multi-catch is where the
compiler error occurs. For multi-catch, the compiler error occurs on the line where
we attempt to assign a new value to the parameter, whereas here, the compiler error
occurs on the line where we throw e. It is different because code written prior to
Java 7 still needs to compile. Since the multi-catch syntax is brand new, there is no
legacy code to worry about.

Autocloseable Resources with a try-with-resources Statement

When we learned about using finally in Chapter 6, we saw that the finally
block is a good place for closing files and assorted other resources. The examples
made this clean-up code in the finally block look nice and short by writing
// clean up. Unfortunately, real-world clean-up code is easy to get wrong. And
when correct, it is verbose. Let's look at the code to close our one resource when
closing a file:

 1: Reader reader = null;
 2: try {
 3: // read from file
 4: } catch(IOException e) {
 5: log(); throw e;
 6: } finally {
 7: if (reader != null) {
 8: try {
 9: reader.close();
10: } catch (IOException e) {
11: // ignore exceptions on closing file
12: }
13: }
14: }

That's a lot of code just to close a single file! But it's all necessary. First, we need
to check if the reader is null on line 7. It is possible the try block threw an
exception before creating the reader, or while trying to create the reader if the file
we are trying to read doesn't exist. It isn't until line 9 that we get to the one line in
the whole finally block that does what we care about—closing the file. Lines 8
and 10 show a bit more housekeeping. We can get an IOException on attempting
to close the file. While we could try to handle that exception, there isn't much we
can do, thus making it common to just ignore the exception. This gives us nine lines
of code (lines 6–14) just to close a file.

07-ch07.indd 396 9/3/2014 5:24:58 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 397

Developers typically write a helper class to close resources or they use the open-
source, Apache Commons helper to get this mess down to three lines:

6: } finally {
7: HelperClass.close(reader);
8: }

Which is still three lines too many.
Lucky for us, Java 7 introduced a new feature called Automatic Resource

Management using "try-with-resources" to get rid of even these three lines. The
following code is equivalent to the previous example:

1: try (Reader reader =
2: new BufferedReader(new FileReader(file))) { // note the new syntax
3: // read from file
4: } catch (IOException e) { log(); throw e;}

No finally left at all! We don't even mention closing the reader. Automatic
Resource Management takes care of it for us. Let's take a look at what happens here.
We start out by declaring the reader inside the try declaration. The parentheses
are new. Think of them as a for loop in which we declare a loop index variable
that is scoped to just the loop. Here, the reader is scoped to just the try block.
Not the catch block; just the try block.

The actual try block does the same thing as before. It reads from the file. Or, at
least, it comments that it would read from the file. The catch block also does the
same thing as before. And just like in our traditional try statement, catch is
optional.

Remembering back to the section "Using finally" in Chapter 6, we learned that
a try must have catch or finally. Time to learn something new about that rule.

We remember this is ILLEGAL code because it demonstrates a try without a
catch or finally:

1: try {
2: // do stuff
3: } // need a catch or finally here

The following LEGAL code demonstrates a try-with-resources with no catch or
finally:

1: try (Reader reader =
2: new BufferedReader(new FileReader(file))) {
3: // do stuff
4: }

07-ch07.indd 397 9/3/2014 5:24:58 PM

398 Chapter 7: Assertions and Java 7 Exceptions

What's the difference? The legal example does have a finally block; you just
don't see it. The try-with-resources statement is logically calling a finally block
to close the reader. And just to make this even trickier, you can add your own
finally block to try-with-resources as well. Both will get called. We'll take a look
at how this works shortly.

Since the syntax is inspired from the for loop, we get to use a semicolon when
declaring multiple resources in the try. For example:

try (MyResource mr = MyResource.createResource(); // first resource
 MyThingy mt = mr.createThingy()) { // second resource
 // do stuff
}

There is something new here. Our declaration calls methods. Remember that the
try-with-resources is just Java code. It is just restricted to only be declarations. This
means if you want to do anything more than one statement long, you'll need to put
it into a method.

To review, Table 7-4 lists the big differences that are new for try-with-resources.

AutoCloseable and Closeable

Because Java is a statically typed language, it doesn't let you declare just any type in
a try-with-resources statement. The following code will not compile:

try (String s = "hi") {}

You'll get a compiler error that looks something like:

The resource type String does not implement java.lang.AutoCloseable

AutoCloseable only has one method to implement. Let's take a look at the
simplest code we can write using this interface:

public class MyResource implements AutoCloseable {
 public void close() {
 // take care of closing the resource
 }
}

There's also an interface called Closeable, which is similar to AutoCloseable
but with some key differences. Why are there two similar interfaces, you may
wonder? The Closeable interface was introduced in Java 5. When try-with-
resources was invented in Java 7, the language designers wanted to change some

07-ch07.indd 398 9/3/2014 5:24:58 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 399

things but needed backward compatibility with all existing code. So they created a
superinterface with the rules they wanted.

One thing the language designers wanted to do was make the signature more
generic. Closeable allows implementors to throw only an IOException or a
RuntimeException. AutoCloseable allows any Exception at all to be thrown.
Look at some examples:
// ok because AutoCloseable allows throwing any Exception
class A implements AutoCloseable { public void close() throws Exception{}}

// ok because subclasses or implementing methods can throw
// a subclass of Exception or none at all
class B implements AutoCloseable { public void close() {}}
class C implements AutoCloseable { public void close() throws IOException {}}

// ILLEGAL – Closeable only allows IOExceptions or subclasses
class D implements Closeable { public void close() throws Exception{}}

// ok because Closeable allows throwing IOException
class E implements Closeable { public void close() throws IOException{}}

In your code, Oracle recommends throwing the narrowest Exception subclass that
will compile. However, they do limit Closeable to IOException, and you must use
AutoCloseable for anything more.

The next difference is even trickier. What happens if we call the close()
multiple times? It depends. For classes that implement AutoCloseable, the
implementation is required to be idempotent. Which means you can call close()
all day and nothing will happen the second time and beyond. It will not attempt to
close the resource again and it will not blow up. For classes that implement
Closeable, there is no such guarantee.

try-catch-finally try-with-resources

Resource declared Before try keyword In parentheses within try declaration

Resource initialized In try block In parentheses within try declaration

Resource closed In finally block Nowhere—happens automatically

Required keywords try
One of catch or finally

try

 TABLE 7-4

Comparing
Traditional
try Statement
to try-with-
resources

07-ch07.indd 399 9/3/2014 5:24:58 PM

400 Chapter 7: Assertions and Java 7 Exceptions

If you look at the JavaDoc, you'll notice many classes implement both
AutoCloseable and Closeable. These classes use the stricter signature rules and
are idempotent. They still need to implement Closeable for backward compatibility,
but added AutoCloseable for the new contract.

To review, Table 7-5 shows the differences between AutoCloseable and
Closeable. Remember the exam creators like to ask about "similar but not quite
the same" things!

A Complex try-with-resources Example The following example is as
complicated as try-with-resources gets:

 1: class One implements AutoCloseable {
 2: public void close() {
 3: System.out.println("Close - One");
 4: } }
 5: class Two implements AutoCloseable {
 6: public void close() {
 7: System.out.println("Close - Two");
 8: } }
 9: class TryWithResources {
10: public static void main(String[] args) {
11: try (One one = new One(); Two two = new Two()) {
12: System.out.println("Try");
13: throw new RuntimeException();
14: } catch (Exception e) {
15: System.out.println("Catch");
16: } finally {
17: System.out.println("Finally");
18: } } }

Running the preceding code will print:

Try
Close – Two
Close – One
Catch
Finally

AutoCloseable Closeable

Extends None AutoCloseable

close method throws Exception IOException

Must be idempotent (can call more than once
without side effects)

Yes No, but encouraged

 TABLE 7-5

Comparing
AutoCloseable
and Closeable

07-ch07.indd 400 9/3/2014 5:24:58 PM

 Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3) 401

It's actually more logical than it looks at first glance. We first enter the try block
on line 11, and Java creates our two resources. Line 12 prints Try. When we throw
an exception on line 13, the first interesting thing happens. The try block "ends"
and Automatic Resource Management automatically cleans up the resources before
moving on to the catch or finally. The resources get cleaned up, "backwards"
printing Close – Two and then Close – One. The close() method gets called in
the reverse order in which resources are declared to allow for the fact that resources
might depend on each other. Then we are back to the regular try block order,
printing Catch and Finally on lines 15 and 17.

If you only remember two things from this example, remember that try-with-
resources is part of the try block, and resources are cleaned up in the reverse order
they were created.

Suppressed Exceptions

We're almost done with exceptions. There's only one more wrinkle to cover in Java 7
exception handling. Now that we have an extra step of closing resources in the try,
it is possible for multiple exceptions to get thrown. Each close() method can throw
an exception in addition to the try block itself.

1: public class Suppressed {
2: public static void main(String[] args) {
3: try (One one = new One()) {
4: throw new Exception("Try");
5: } catch (Exception e) {
6: System.err.println(e.getMessage());
7: for (Throwable t : e.getSuppressed()) {
8. System.err.println("suppressed:" + t);
9. } } } }

class One implements AutoCloseable {
 public void close() throws IOException {
 throw new IOException("Closing");
} }

We know that after the exception in the try block gets thrown on line 4, the
try-with-resources still calls close() on line 3 and the catch block on line 5
catches one of the exceptions. Running the code prints:

Try
suppressed:java.io.IOException: Closing

07-ch07.indd 401 9/3/2014 5:24:58 PM

402 Chapter 7: Assertions and Java 7 Exceptions

This tells us the exception we thought we were throwing still gets treated as most
important. Java also adds any exceptions thrown by the close() methods to a
suppressed array in that main exception. The catch block or caller can deal with
any or all of these. If we remove line 4, the code just prints Closing.

In other words, the exception thrown in close() doesn't always get suppressed.
It becomes the main exception if there isn't already one existing. As one more
example, think about what the following prints:

class Bad implements AutoCloseable {
 String name;
 Bad(String n) { name = n; }
 public void close() throws IOException {
 throw new IOException("Closing - " + name);
 } }

public class Suppressed {
 public static void main(String[] args) {
 try (Bad b1 = new Bad("1"); Bad b2 = new Bad("2")) {
 // do stuff
 } catch (Exception e) {
 System.err.println(e.getMessage());
 for (Throwable t : e.getSuppressed()) {
 System.err.println("suppressed:" + t);
 } } } }

The answer is:

Closing - 2
suppressed:java.io.IOException: Closing – 1

Up until try-with-resources calls close(), everything is going just dandy. When
Automatic Resource Management calls b2.close(), we get our first exception.
This becomes the main exception. Then, Automatic Resource Management calls
b1.close() and throws another exception. Since there was already an exception
thrown, this second exception gets added as a second exception.

If the catch or finally block throws an exception, no suppressions happen. The
last exception thrown gets sent to the caller rather than the one from the try—just
like before try-with-resources was created.

07-ch07.indd 402 9/3/2014 5:24:58 PM

Certifi cation Summary 403

CERTIFICATION SUMMARY

Assertions, added to the language in version 1.4, are a useful debugging tool. You
learned how you can use them for testing by enabling them, but keep them disabled
when the application is deployed. If you have older Java code that uses the word
assert as an identifier, then you won't be able to use assertions, and you must
recompile your older code using the -source 1.3 flag. Remember that for Java 7,
assertions are compiled as a keyword by default, but must be enabled explicitly at
runtime.

You learned how assert statements always include a boolean expression, and if
the expression is true, the code continues on, but if the expression is false, an
AssertionError is thrown. If you use the two-expression assert statement, then the
second expression is evaluated, converted to a String representation, and inserted
into the stack trace to give you a little more debugging info. Finally, you saw why
assertions should not be used to enforce arguments to public methods, and why
assert expressions must not contain side effects!

Exception handling was enhanced in version 7, making exceptions easier to use.
First you learned that you can specify multiple exception types to share a catch
block using the new multi-catch syntax. The major benefit is in reducing code
duplication by having multiple exception types share the same exception handler.
The variable name is listed only once, even though multiple types are listed. You
can't assign a new exception to that variable in the catch block. Then you saw
the "handle and declare" pattern where the exception types in the multi-catch are
listed in the method signature and Java translates "catch Exception e" into that
exception type list.

Next, you learned about the try-with-resources syntax where Java will take care
of calling close() for you. The objects are scoped to the try block. Java treats
them as a finally block and closes these resources for you in the opposite order to
which they were opened. If you have your own finally block, it is executed after
try-with-resources closes the objects. You also learned the difference between
AutoCloseable and Closeable. Closable was introduced in Java 5, allowing only
IOException (and RuntimeException) to be thrown. AutoCloseable was added
in Java 7, allowing any type of Exception.

07-ch07.indd 403 9/3/2014 5:24:58 PM

404 Chapter 7: Assertions and Java 7 Exceptions

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Test Invariants Using Assertions (OCP Objective 6.5)

❑ Assertions give you a way to test your assumptions during development and
debugging.

❑ Assertions are typically enabled during testing but disabled during
deployment.

❑ You can use assert as a keyword (as of version 1.4) or an identifier, but
not both together. To compile older code that uses assert as an identifier
(for example, a method name), use the -source 1.3 command-line flag to
javac.

❑ Assertions are disabled at runtime by default. To enable them, use a
command-line flag: -ea or -enableassertions.

❑ Selectively disable assertions by using the -da or -disableassertions flag.

❑ If you enable or disable assertions using the flag without any arguments,
you're enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

❑ You can enable and disable assertions on a class-by-class basis, using the
following syntax:
java -ea -da:MyClass TestClass

❑ You can enable and disable assertions on a package-by-package basis, and any
package you specify also includes any subpackages (packages further down the
directory hierarchy).

❑ Do not use assertions to validate arguments to public methods.

❑ Do not use assert expressions that cause side effects. Assertions aren't
guaranteed to always run, and you don't want behavior that changes
depending on whether assertions are enabled.

❑ Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use assert false; for code that
should never be reached so that an assertion error is thrown immediately if
the assert statement is executed.

✓

07-ch07.indd 404 9/3/2014 5:24:58 PM

Two-Minute Drill 405

Use the try Statement with Multi-catch and finally Clauses
(OCP Objective 6.2)

❑ If two catch blocks have the same exception handler code, you can merge
them with multi-catch using catch (Exception1 | Exception2 e).

❑ The types in a multi-catch list must not extend one another.

❑ When using multi-catch, the catch block parameter is final and cannot
have a new value assigned in the catch block.

❑ If you catch a general exception as shorthand for specific subclass exceptions
and rethrow the caught exception, you can still list the specific subclasses in
the method signature. The compiler will treat it as if you had listed them out
in the catch.

Autocloseable Resources with a try-with-resources Statement
(OCP Objective 6.3)

❑ try-with-resources automatically calls close() on any resources declared in
the try as try(Resource r = new Foo()).

❑ A try must have at least a catch or finally unless it is a try-with-resources.
For try-with-resources, it can have neither, one, or both of the keywords.

❑ AutoCloseable's close() method throws Exception and must be
idempotent. Closeable's close() throws IOException and is not required
to be idempotent.

❑ try-with-resources are closed in reverse order of creation and before going on
to catch or finally.

❑ If more than one exception is thrown in a try-with-resources block, it gets
added as a suppressed exception.

❑ The type used in a try-with-resources statement must implement
AutoCloseable.

07-ch07.indd 405 9/3/2014 5:24:59 PM

406 Chapter 7: Assertions and Java 7 Exceptions

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

 1. Given two files:

1. class One {
2. public static void main(String[] args) {
3. int assert = 0;
4. }
5. }

1. class Two {
2. public static void main(String[] args) {
3. assert(false);
4. }
5. }

 And the four command-line invocations:

javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java

 What is the result? (Choose all that apply.)
 A. Only one compilation will succeed
 B. Exactly two compilations will succeed
 C. Exactly three compilations will succeed
 D. All four compilations will succeed
 E. No compiler warnings will be produced
 F. At least one compiler warning will be produced

 2. Which are true? (Choose all that apply.)
 A. It is appropriate to use assertions to validate arguments to methods marked public
 B. It is appropriate to catch and handle assertion errors
 C. It is NOT appropriate to use assertions to validate command-line arguments
 D. It is appropriate to use assertions to generate alerts when you reach code that should not

 be reachable
 E. It is NOT appropriate for assertions to change a program's state

07-ch07.indd 406 9/3/2014 5:25:00 PM

Self Test 407

 3. Given:

 3. public class Clumsy {
 4. public static void main(String[] args) {
 5. int j = 7;
 6. assert(++j > 7);
 7. assert(++j > 8): "hi";
 8. assert(j > 10): j=12;
 9. assert(j==12): doStuff();
10. assert(j==12): new Clumsy();
11. }
12. static void doStuff() { }
13. }

 Which are true? (Choose all that apply.)
 A. Compilation succeeds
 B. Compilation fails due to an error on line 6
 C. Compilation fails due to an error on line 7
 D. Compilation fails due to an error on line 8
 E. Compilation fails due to an error on line 9
 F. Compilation fails due to an error on line 10

 4. Given:

class AllGoesWrong {
 public static void main(String[] args) {
 AllGoesWrong a = new AllGoesWrong();
 try {
 a.blowUp();
 System.out.println("a");
 } catch (IOException e | SQLException e) {
 System.out.println("c");
 } finally {
 System.out.println("d");
 }
 }
 void blowUp() throws IOException, SQLException {
 throw new SQLException();
 }
}

07-ch07.indd 407 9/3/2014 5:25:00 PM

408 Chapter 7: Assertions and Java 7 Exceptions

 What is the result?
 A. ad

 B. acd

 C. cd

 D. d

 E. Compilation fails
 F. An exception is thrown at runtime

 5. Given:

class BadIO {
 public static void main(String[] args) {
 BadIO a = new BadIO();
 try {
 a.fileBlowUp();
 a.databaseBlowUp();
 System.out.println("a");
 } // insert code here
 System.out.println("b");
 } catch (Exception e) {
 System.out.println("c");
 } }
 void databaseBlowUp() throws SQLException {
 throw new SQLException();
 }
 void fileBlowUp() throws IOException {
 throw new IOException();
 }}

 Which inserted independently at // insert code here will compile and produce the output: b?
(Choose all that apply.)

 A. catch(Exception e) {

 B. catch(FileNotFoundException e) {

 C. catch(IOException e) {

 D. catch(IOException | SQLException e) {

 E. catch(IOException e | SQLException e) {

 F. catch(SQLException e) {

 G. catch(SQLException | IOException e) {

 H. catch(SQLException e | IOException e) {

07-ch07.indd 408 9/3/2014 5:25:00 PM

Self Test 409

 6. Given:

class Train {
 class RanOutOfTrack extends Exception { }
 class AnotherTrainComing extends Exception { }

 public static void main(String[] args) throws RanOutOfTrack,
 AnotherTrainComing {
 Train a = new Train();
 try {
 a.drive();
 System.out.println("honk! honk!");
 } // insert code here
 System.out.println("error driving");
 throw e;
 }
 }
 void drive() throws RanOutOfTrack, AnotherTrainComing {
 throw new RanOutOfTrack();
 } }

 Which inserted independently at // insert code here will compile and produce the output
error driving before throwing an exception? (Choose all that apply.)

 A. catch(AnotherTrainComing e) {

 B. catch(AnotherTrainComing | RanOutOfTrack e) {

 C. catch(AnotherTrainComing e | RanOutOfTrack e) {

 D. catch(Exception e) {

 E. catch(IllegalArgumentException e) {

 F. catch(RanOutOfTrack e) {

 G. None of the above—code fails to compile for another reason

 7. Given:

class Conductor {
 static String s = "-";
 class Whistle implements AutoCloseable {
 public void toot() { s += "t"; }
 public void close() { s += "c"; }
 }
 public static void main(String[] args) {
 new Conductor().run();
 System.out.println(s);
 }

07-ch07.indd 409 9/3/2014 5:25:00 PM

410 Chapter 7: Assertions and Java 7 Exceptions

 public void run() {
 try (Whistle w = new Whistle()) {
 w.toot();
 s += "1";
 throw new Exception();
 } catch (Exception e) { s += "2";
 } finally { s += "3"; } } }

 What is the result?
 A. -t123t

 B. -t12c3

 C. -t123

 D. -t1c3

 E. -t1c23

 F. None of the above; main() throws an exception
 G. Compilation fails

 8. Given:

public class MultipleResources {
 class Lamb implements AutoCloseable {
 public void close() throws Exception {
 System.out.print("l");
 } }
 class Goat implements AutoCloseable {
 public void close() throws Exception {
 System.out.print("g");
 } }
 public static void main(String[] args) throws Exception {
 new MultipleResources().run();
 }
 public void run() throws Exception {
 try (Lamb l = new Lamb();
 System.out.print("t");
 Goat g = new Goat();) {
 System.out.print("2");
 } finally {
 System.out.print("f");
 } } }

07-ch07.indd 410 9/3/2014 5:25:00 PM

Self Test 411

 What is the result?
 A. 2glf

 B. 2lgf

 C. tglf

 D. t2lgf

 E. t2lgf

 F. None of the above; main() throws an exception
 G. Compilation fails

 9. Given:

 1: public class Animals {
 2: class Lamb {
 3: public void close() throws Exception { }
 4: }
 5: public static void main(String[] args) throws Exception {
 6: new Animals().run();
 7: }
 8:
 9: public void run() throws Exception {
10: try (Lamb l = new Lamb();) {
11: }
12: }
13: }

 And the following possible changes:

 C1. Replace line 2 with class Lamb implements AutoCloseable {

 C2. Replace line 2 with class Lamb implements Closeable {

 C3. Replace line 11 with } finally {}

 What change(s) allow the code to compile? (Choose all that apply.)
 A. Just C1 is sufficient
 B. Just C2 is sufficient
 C. Just C3 is sufficient
 D. Both C1 and C3
 E. Both C2 and C3
 F. The code compiles without any changes

07-ch07.indd 411 9/3/2014 5:25:00 PM

412 Chapter 7: Assertions and Java 7 Exceptions

 10. Given:

public class Animals {
 class Lamb implements Closeable {
 public void close() {
 throw new RuntimeException("a");
 } }
 public static void main(String[] args) {
 new Animals().run();
 }
 public void run() {
 try (Lamb l = new Lamb();) {
 throw new IOException();
 } catch(Exception e) {
 throw new RuntimeException("c");
 } } }

 Which exceptions will the code throw?
 A. IOException with suppressed RuntimeException a
 B. IOException with suppressed RuntimeException c
 C. RuntimeException a with no suppressed exception
 D. RuntimeException c with no suppressed exception
 E. RuntimeException a with suppressed RuntimeException c
 F. RuntimeException c with suppressed RuntimeException a
 G. Compilation fails

 11. Given:

public class Animals {
 class Lamb implements AutoCloseable {
 public void close() {
 throw new RuntimeException("a");
 } }
 public static void main(String[] args) throws IOException {
 new Animals().run();
 }
 public void run() throws IOException {
 try (Lamb l = new Lamb();) {
 throw new IOException();
 } catch(Exception e) {
 throw e;

 } } }

07-ch07.indd 412 9/3/2014 5:25:00 PM

Self Test 413

 Which exceptions will the code throw?
 A. IOException with suppressed RuntimeException a
 B. IOException with suppressed RuntimeException c
 C. RuntimeException a with no suppressed exception
 D. RuntimeException c with no suppressed exception
 E. RuntimeException a with suppressed RuntimeException c
 F. RuntimeException c with suppressed RuntimeException a
 G. Compilation fails

 12. Given:

public class Concert {
 static class PowerOutage extends Exception {}
 static class Thunderstorm extends Exception {}
 public static void main(String[] args) {
 try {
 new Concert().listen();
 System.out.println("a");
 } catch(PowerOutage | Thunderstorm e) {
 e = new PowerOutage();
 System.out.println("b");
 } finally { System.out.println("c"); }
 }
 public void listen() throws PowerOutage, Thunderstorm{ }
}

 What will this code print?
 A. a

 B. ab

 C. ac

 D. abc

 E. bc

 F. Compilation fails

07-ch07.indd 413 9/3/2014 5:25:00 PM

414 Chapter 7: Assertions and Java 7 Exceptions

SELF TEST ANSWERS

 1. ☑ B and F are correct. class One will compile (and issue a warning) using the 1.3 flag, and
class Two will compile using the 1.4 flag.
☐✗ A, C, D, and E are incorrect based on the above. (OCP Objective 6.5)

 2. ☑ C, D, and E are correct statements.
☐✗ A is incorrect. It is acceptable to use assertions to test the arguments of private methods.
B is incorrect. While assertion errors can be caught, Oracle discourages you from doing so.
(OCP Objective 6.5)

 3. ☑ E is correct. When an assert statement has two expressions, the second expression must
return a value. The only two-expression assert statement that doesn't return a value is on line 9.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCP Objective 6.5)

 4. ☑ E is correct. catch (IOException e | SQLException e) doesn't compile. While
multiple exception types can be specified in the multi-catch, only one variable name is
allowed. The correct syntax is catch (IOException | SQLException e). Other than this,
the code is valid. Note that it is legal for blowUp() to have IOException in its signature even
though that Exception can't be thrown.
☐✗ A, B, C, D, and F are incorrect based on the above. If the catch block's syntax error were
corrected, the code would output cd. The multi-catch would catch the SQLException from
blowUp() since it is one of the exception types listed. And, of course, the finally block runs
at the end of the try/catch. (OCP Objective 6.2)

 5. ☑ C, D, and G are correct. Since order doesn't matter, both D and G show correct use of the
multi-catch block. And C catches the IOException from fileBlowUp() directly. Note that
databaseBlowUp() is never called at runtime. However, if you remove the call, the compiler
won't let you catch the SQLException since it would be impossible to be thrown.
☐✗ A is incorrect because it will not compile. Since there is already a catch block for
Exception, adding another will make the compiler think there is unreachable code.
B is incorrect because it will print c rather than b. Since FileNotFoundException is a
subclass of IOException, the thrown IOException will not match the catch block for
FileNotFoundException. E and H are incorrect because they are invalid syntax for multi-
catch. The catch parameter e can only appear once. F is incorrect because it will print c
rather than b. Since the IOException thrown by fileBlowUp() is never caught, the thrown
exception will match the catch block for Exception. (OCP Objective 6.2)

 6. ☑ B, D, and F are correct. B uses multi-catch to identify both exceptions drive() may
throw. D still compiles since it uses the new enhanced exception typing to recognize that
Exception may only refer to AnotherTrainComing and RanOutOfTrack. F is the simple case
that catches a single exception. Since main throws AnotherTrainComing, the catch block
doesn't need to handle it.

07-ch07.indd 414 9/3/2014 5:25:00 PM

Self Test Answers 415

☐✗ A and E are incorrect because the catch block will not handle RanOutOfTrack when
drive() throws it. The main method will still throw the exception, but the println() will
not run. C is incorrect because it is invalid syntax for multi-catch. The catch parameter e can
only appear once. G is incorrect because of the above. (OCP Objective 6.2)

 7. ☑ E is correct. After the exception is thrown, Automatic Resource Management calls
close() before completing the try block. From that point, catch and finally execute in the
normal order.
☐✗ F is incorrect because the catch block catches the exception and does not rethrow it.
A, B, C, D, and G are incorrect because of the above. (OCP Objective 6.3)

 8. ☑ G is correct. System.out.println cannot be in the declaration clause of a try-with-
resources block because it does not declare a variable. If the println was removed, the answer
would be A because resources are closed in the opposite order they are created.
☐✗ A, B, C, D, E, and F are incorrect because of the above. (OCP Objective 6.3)

 9. ☑ A and D are correct. If the code is left with no changes, it will not compile because
try-with-resources requires Lamb to implement AutoCloseable or a subinterface. If C2
is implemented, the code will not compile because close() throws Exception instead of
IOException. Unlike the traditional try, try-with-resources does not require catch or
finally to present. So the code works equally well with or without C3.
☐✗ B, C, E, and F are incorrect because of the above. (OCP Objective 6.3)

 10. ☑ D is correct. While the exception caught by the catch block matches choice A, it is
ignored by the catch block. The catch block just throws RuntimeException c without any
suppressed exceptions.
☐✗ A, B, C, E, F, and G are incorrect because of the above. (OCP Objective 6.3)

 11. ☑ A is correct. After the try block throws an IOException, Automatic Resource Management
calls close() to clean up the resources. Since an exception was already thrown in the try
block, RuntimeException a gets added to it as a suppressed exception. The catch block
merely rethrows the caught exception. The code does compile even though the catch block
catches an Exception and the method merely throws an IOException. In Java 7, the compiler
is able to pick up on this.
☐✗ B, C, D, E, F, and G are incorrect because of the above. (OCP Objective 6.3)

 12. ☑ F is correct. The exception variable in a catch block may not be reassigned when using
multi-catch. It CAN be reassigned if we are only catching one exception.
☐✗ C would have been correct if e = new PowerOutage(); were removed. A, B, D, and E
are incorrect because of the above. (OCP Objectives 6.2 and 6.4)

07-ch07.indd 415 9/3/2014 5:25:00 PM

This page intentionally left blank

88
String Processing, String Processing,
Data Formatting, Data Formatting,
Resource BundlesResource Bundles

CERTIFICATION OBJECTIVES

Search, Parse, and Build Strings (Including •
Scanner, StringTokenizer, StringBuilder,
String, and Formatter)

Search, Parse, and Replace Strings by Using •
Regular Expressions, Using Expression
Patterns for Matching Limited to . (dot),
* (star), + (plus), ?, \d, \D, \s, \S, \w, \W, \b, \B,
[], and ()

Format Strings Using the Formatting •
Parameters %b, %c, %d, %f, and %s in
Format Strings

Read and Set the Locale Using the Locale •
Object

Build a Resource Bundle for Each Locale •
Call a Resource Bundle from an Application •
Format Dates, Numbers, and Currency •
Values for Localization with the
NumberFormat and DateFormat Classes
(Including Number Format Patterns)

Describe the Advantages of Localizing an •
Application

Define a Locale Using Language and •
Country Codes

Two-Minute Drill ✓
Q&A Self Test

08-ch08.indd 417 8/29/2014 1:22:09 PM

418 Chapter 8: String Processing, Data Formatting, Resource Bundles

This chapter focuses on the exam objectives related to searching, formatting, and parsing
strings; formatting dates, numbers, and currency values; and using resource bundles for
localization and internationalization tasks. Many of these topics could fill an entire book.

Fortunately, you won't have to become a total regex guru to do well on the exam. The intention of
the exam team was to include just the basic aspects of these technologies, and in this chapter, we
cover more than you'll need to get through the related objectives on the exam.

CERTIFICATION OBJECTIVE

String, StringBuilder, and StringBuffer
(OCP Objective 5.1)

5.1 Search, parse, and build strings (including Scanner, StringTokenizer, StringBuilder,
String, and Formatter).

The OCA 7 exam covers the basics of building and using Strings and
StringBuilders. While most of the OCP 7 String and StringBuilder questions
will focus on searching and parsing, you might also get more basic questions, similar
to those found on the OCA 7 exam. We recommend that you refresh your String
and StringBuilder knowledge (the stuff we covered in Chapter 5), before taking
the OCP 7 exam.

We're going to start this chapter with date and number formatting and such, and
we'll return to parsing and tokenizing later in the chapter.

CERTIFICATION OBJECTIVE

Dates, Numbers, Currencies, and Locales
(OCP Objectives 12.1, 12.4, 12.5, and 12.6)

12.1 Read and set the locale using the Locale object.

08-ch08.indd 418 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 419

12.4 Format dates, numbers, and currency values for localization with the
NumberFormat and DateFormat classes (including number format patterns).

12.5 Describe the advantages of localizing an application.

12.6 Define a locale using language and country codes.

The Java API provides an extensive (perhaps a little too extensive) set of classes
to help you work with dates, numbers, and currency. The exam will test your
knowledge of the basic classes and methods you'll use to work with dates and such.
When you've finished this section, you should have a solid foundation in tasks such
as creating new Date and DateFormat objects, converting Strings to Dates and
back again, performing Calendaring functions, printing properly formatted currency
values, and doing all of this for locations around the globe. In fact, a large part of
why this section was added to the exam was to test whether you can do some basic
internationalization (often shortened to "i18n").

Note: In this section, we'll introduce the Locale class. Later in the chapter, we'll
be discussing resource bundles, and you'll learn more about Locale then.

Working with Dates, Numbers, and Currencies

If you want to work with dates from around the world (and who doesn't?), you'll
need to be familiar with at least four classes from the java.text and java.util
packages. In fact, we'll admit it right up front: You might encounter questions on the
exam that use classes that aren't specifically mentioned in the Oracle objective.
Here are the five date-related classes you'll need to understand:

■ java.util.Date Most of this class's methods have been deprecated, but
you can use this class to bridge between the Calendar and DateFormat class.
An instance of Date represents a mutable date and time, to a millisecond.

■ java.util.Calendar This class provides a huge variety of methods that
help you convert and manipulate dates and times. For instance, if you want
to add a month to a given date or find out what day of the week January 1,
3000, falls on, the methods in the Calendar class will save your bacon.

■ java.text.DateFormat This class is used to format dates, not only
providing various styles such as "01/01/70" or "January 1, 1970," but also dates
for numerous locales around the world.

08-ch08.indd 419 8/29/2014 1:22:12 PM

420 Chapter 8: String Processing, Data Formatting, Resource Bundles

■ java.text.NumberFormat This class is used to format numbers and
currencies for locales around the world.

■ java.util.Locale This class is used in conjunction with DateFormat
and NumberFormat to format dates, numbers, and currency for specific
locales. With the help of the Locale class, you'll be able to convert a date
like "10/10/2005" to "Segunda-feira, 10 de Outubro de 2005" in no time. If
you want to manipulate dates without producing formatted output, you can
use the Locale class directly with the Calendar class.

Orchestrating Date- and Number-Related Classes

When you work with dates and numbers, you'll often use several classes together. It's
important to understand how the classes we described earlier relate to each other
and when to use which classes in combination. For instance, you'll need to know
that if you want to do date formatting for a specific locale, you need to create your
Locale object before your DateFormat object, because you'll need your Locale
object as an argument to your DateFormat factory method. Table 8-1 provides a
quick overview of common date- and number-related use cases and solutions using
these classes. Table 8-1 will undoubtedly bring up specific questions about individual
classes, and we will dive into specifics for each class next. Once you've gone through
the class-level discussions, you should find that Table 8-1 provides a good summary.

The Date Class

The Date class has a checkered past. Its API design didn’t do a good job of handling
internationalization and localization situations. In its current state, most of its
methods have been deprecated, and for most purposes, you’ll want to use the
Calendar class instead of the Date class. The Date class is on the exam for several
reasons: You might find it used in legacy code; it’s really easy if all you want is a
quick and dirty way to get the current date and time; it’s good when you want a
universal time that is not affected by time zones; and finally, you’ll use it as a
temporary bridge to format a Calendar object using the DateFormat class.

As we mentioned briefly earlier, an instance of the Date class represents a single
date and time. Internally, the date and time are stored as a primitive long. Specifically,
the long holds the number of milliseconds (you know, 1000 of these per second)
between the date being represented and January 1, 1970.

08-ch08.indd 420 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 421

Use Case Steps

Get the current date
and time.

1. Create a Date: Date d = new Date();
2. Get its value: String s = d.toString();

Get an object that
lets you perform date
and time calculations
in your locale.

1. Create a Calendar:
Calendar c = Calendar.getInstance();
2. Use c.add(...) and c.roll(...) to perform date and time
manipulations.

Get an object that
lets you perform date
and time calculations
in a different locale.

1. Create a Locale:
Locale loc = new Locale(language); or
Locale loc = Locale(language, country);new
2. Create a Calendar for that locale:
Calendar c = Calendar.getInstance(loc);
3. Use c.add(...) and c.roll(...) to perform date and time
manipulations.

Get an object that
lets you perform
date and time
calculations, and
then format it for
output in different
locales with different
date styles.

1. Create a Calendar:
Calendar c = Calendar.getInstance();
2. Create a Locale for each location:
Locale loc = new Locale(...);
3. Convert your Calendar to a Date:
Date d = c.getTime();
4. Create a DateFormat for each Locale:
DateFormat df = DateFormat.getDateInstance
 (style, loc);
5. Use the format() method to create formatted dates:
String s = df.format(d);

Get an object
that lets you
format numbers or
currencies across
many different
locales.

1. Create a Locale for each location:
Locale loc = new Locale(...);
2. Create a NumberFormat:
NumberFormat nf = NumberFormat.getInstance(loc);
 -or- NumberFormat nf = NumberFormat.
 getCurrencyInstance(loc);
3. Use the format() method to create formatted output:
 String s = nf.format(someNumber);

Have you ever tried to grasp how big really big numbers are? Let's use the Date class
to find out how long it took for a trillion milliseconds to pass, starting at January 1, 1970:
import java.util.*;
class TestDates {
 public static void main(String[] args) {
 Date d1 = new Date(1_000_000_000_000L); // a trillion, Java 7 style
 System.out.println("1st date " + d1.toString());
 }
}

 TABLE 8-1

Common Use
Cases When
Working with
Dates and
Numbers

08-ch08.indd 421 8/29/2014 1:22:12 PM

422 Chapter 8: String Processing, Data Formatting, Resource Bundles

On our JVM, which has a U.S. locale, the output is

1st date Sat Sep 08 19:46:40 MDT 2001

Okay, for future reference, remember that there are a trillion milliseconds for every
31 and 2/3 years.

Although most of Date's methods have been deprecated, it's still acceptable to
use the getTime and setTime methods, although, as we'll soon see, it's a bit painful.
Let's add an hour to our Date instance, d1, from the previous example:
import java.util.*;
class TestDates {
 public static void main(String[] args) {
 Date d1 = new Date(1_000_000_000_000L); // a trillion!
 System.out.println("1st date " + d1.toString());
 d1.setTime(d1.getTime() + 3_600_000); // 3_600_000 millis / hour
 System.out.println("new time " + d1.toString());
 }
}

which produces (again, on our JVM):

1st date Sat Sep 08 19:46:40 MDT 2001
new time Sat Sep 08 20:46:40 MDT 2001

Notice that both setTime() and getTime() used the handy millisecond scale…
if you want to manipulate dates using the Date class, that's your only choice. While
that wasn't too painful, imagine how much fun it would be to add, say, a year to a
given date.

We'll revisit the Date class later on, but for now, the only other thing you need to
know is that if you want to create an instance of Date to represent "now," you use
Date's no-argument constructor:

Date now = new Date();

(We're guessing that if you call now.getTime(), you'll get a number somewhere
between one trillion and two trillion.)

The Calendar Class

We've just seen that manipulating dates using the Date class is tricky. The Calendar
class is designed to make date manipulation easy! (Well, easier.) While the Calendar
class has about a million fields and methods, once you get the hang of a few of them,
the rest tend to work in a similar fashion.

When you first try to use the Calendar class, you might notice that it's an
abstract class. You can't say

08-ch08.indd 422 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 423

Calendar c = new Calendar(); // illegal, Calendar is abstract

In order to create a Calendar instance, you have to use one of the overloaded
getInstance() static factory methods:

Calendar cal = Calendar.getInstance();

When you get a Calendar reference like cal, from earlier, your Calendar reference
variable is actually referring to an instance of a concrete subclass of Calendar.
You can't know for sure what subclass you'll get (java.util.GregorianCalendar
is what you'll almost certainly get), but it won't matter to you. You'll be using
Calendar's API. (As Java continues to spread around the world, in order to maintain
cohesion, you might find additional, locale-specific subclasses of Calendar.)

Okay, so now we've got an instance of Calendar, let's go back to our earlier
example and find out what day of the week our trillionth millisecond falls on, and
then let's add a month to that date:

import java.util.*;
class Dates2 {
 public static void main(String[] args) {
 Date d1 = new Date(1_000_000_000_000L);
 System.out.println("1st date " + d1.toString());

 Calendar c = Calendar.getInstance();
 c.setTime(d1); // #1

 if(Calendar.SUNDAY == c.getFirstDayOfWeek()) // #2
 System.out.println("Sunday is the first day of the week");
 System.out.println("trillionth milli day of week is "
 + c.get(Calendar.DAY_OF_WEEK)); // #3

 c.add(Calendar.MONTH, 1); // #4
 Date d2 = c.getTime(); // #5
 System.out.println("new date " + d2.toString());
 }
}

This produces something like

1st date Sat Sep 08 19:46:40 MDT 2001
Sunday is the first day of the week
trillionth milli day of week is 7
new date Mon Oct 08 19:46:40 MDT 2001

Let's take a look at this program, focusing on the five highlighted lines:

 1. We assign the Date d1 to the Calendar instance c.

08-ch08.indd 423 8/29/2014 1:22:12 PM

424 Chapter 8: String Processing, Data Formatting, Resource Bundles

 2. We use Calendar's SUNDAY field to determine whether, for our JVM, SUNDAY
is considered to be the first day of the week. (In some locales, MONDAY is the
first day of the week.) The Calendar class provides similar fields for days of
the week, months, the day of the month, the day of the year, and so on.

 3. We use the DAY_OF_WEEK field to find out the day of the week that the tril-
lionth millisecond falls on.

 4. So far, we've used "setter" and "getter" methods that should be intuitive to
figure out. Now we're going to use Calendar's add() method. This very pow-
erful method lets you add or subtract units of time appropriate for whichever
Calendar field you specify. For instance:
c.add(Calendar.HOUR, -4); // subtract 4 hours from c's
 // value
c.add(Calendar.YEAR, 2); // add 2 years to c's value
c.add(Calendar.DAY_OF_WEEK, -2); // subtract two days from
 // c's value

 5. Convert c's value back to an instance of Date.

The other Calendar method you should know for the exam is the roll() method.
The roll() method acts like the add() method, except that when a part of a Date
gets incremented or decremented, larger parts of the Date will not get incremented
or decremented. Hmmm… for instance:

// assume c is October 8, 2001
c.roll(Calendar.MONTH, 9); // notice the year in the output
Date d4 = c.getTime();
System.out.println("new date " + d4.toString());

The output would be something like this:

new date Fri Jul 08 19:46:40 MDT 2001

Notice that the year did not change, even though we added nine months to an
October date. In a similar fashion, invoking roll() with HOUR won't change the
date, the month, or the year.

For the exam, you won't have to memorize the Calendar class's fields. If you need
them to help answer a question, they will be provided as part of the question.

08-ch08.indd 424 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 425

The DateFormat Class

Having learned how to create dates and manipulate them, let's find out how to
format them. So that we're all on the same page, here's an example of how a date
can be formatted in different ways:

import java.text.*;
import java.util.*;
class Dates3 {
 public static void main(String[] args) {
 Date d1 = new Date(1_000_000_000_000L); // project Coin at work!
 DateFormat[] dfa = new DateFormat[6];
 dfa[0] = DateFormat.getInstance();
 dfa[1] = DateFormat.getDateInstance();
 dfa[2] = DateFormat.getDateInstance(DateFormat.SHORT);
 dfa[3] = DateFormat.getDateInstance(DateFormat.MEDIUM);
 dfa[4] = DateFormat.getDateInstance(DateFormat.LONG);
 dfa[5] = DateFormat.getDateInstance(DateFormat.FULL);

 for(DateFormat df : dfa)
 System.out.println(df.format(d1));
 }
}

which on our JVM produces

9/8/01 7:46 PM
Sep 8, 2001
9/8/01
Sep 8, 2001
September 8, 2001
Saturday, September 8, 2001

Examining this code, we see a couple of things right away. First off, it looks like
DateFormat is another abstract class, so we can't use new to create instances of
DateFormat. In this case, we used two factory methods: getInstance() and
getDateInstance(). Notice that getDateInstance() is overloaded; when we
discuss locales, we'll look at the other version of getDateInstance() that you'll
need to understand for the exam.

Next, we used static fields from the DateFormat class to customize our various
instances of DateFormat. Each of these static fields represents a formatting style. In
this case, it looks like the no-arg version of getDateInstance() gives us the same
style as the MEDIUM version of the method, but that's not a hard-and-fast rule. (More
on this when we discuss locales.) Finally, we used the format() method to create
strings representing the properly formatted versions of the Date we're working with.

The last method you should be familiar with is the parse() method. The
parse() method takes a string formatted in the style of the DateFormat instance

08-ch08.indd 425 8/29/2014 1:22:12 PM

426 Chapter 8: String Processing, Data Formatting, Resource Bundles

being used and converts the string into a Date object. As you might imagine, this is
a risky operation because the parse() method could easily receive a badly formatted
string. Because of this, parse() can throw a ParseException. The following code
creates a Date instance, uses DateFormat.format() to convert it into a string, and
then uses DateFormat.parse() to change it back into a Date:

 Date d1 = new Date(1000000000000L);
 System.out.println("d1 = " + d1.toString());

 DateFormat df = DateFormat.getDateInstance(
 DateFormat.SHORT);
 String s = df.format(d1);
 System.out.println(s);

 try {
 Date d2 = df.parse(s);
 System.out.println("parsed = " + d2.toString());
 } catch (ParseException pe) {
 System.out.println("parse exc"); }

which on our JVM produces

d1 = Sat Sep 08 19:46:40 MDT 2001
9/8/01
parsed = Sat Sep 08 00:00:00 MDT 2001

Note: If we'd wanted to retain the time along with the date, we could have used
the getDateTimeInstance()method, but it's not on the exam.

The API for DateFormat.parse() explains that, by default, the parse()

method is lenient when parsing dates. Our experience is that parse() isn't

very lenient about the formatting of strings it will successfully parse into

dates; take care when you use this method!

The Locale Class

Earlier, we said that a big part of why this objective exists is to test your ability to do
some basic internationalization tasks. Your wait is over; the Locale class is your
ticket to worldwide domination. Both the DateFormat class and the NumberFormat
class (which we'll cover next) can use an instance of Locale to customize formatted
output to be specific to a locale. You might ask how Java defines a locale. The API
says a locale is "a specific geographical, political, or cultural region." The two
Locale constructors you'll need to understand for the exam are

Locale(String language)
Locale(String language, String country)

08-ch08.indd 426 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 427

The language argument represents an ISO 639 Language code, so, for instance, if
you want to format your dates or numbers in Walloon (the language sometimes used
in southern Belgium), you'd use "wa" as your language string. There are over 500
ISO Language codes, including one for Klingon ("tlh"), although, unfortunately,
Java doesn't yet support the Klingon locale. We thought about telling you that you'd
have to memorize all these codes for the exam… but we didn't want to cause any
heart attacks. So rest assured, you won't have to memorize any ISO Language codes
or ISO Country codes (of which there are about 240) for the exam.

Let's get back to how you might use these codes. If you want to represent basic
Italian in your application, all you need is the language code. If, on the other hand,
you want to represent the Italian used in Switzerland, you'd want to indicate that
the country is Switzerland (yes, the country code for Switzerland is "CH"), but that
the language is Italian:

Locale locIT = new Locale("it"); // Italian
Locale locCH = new Locale("it", "CH"); // Switzerland

Using these two locales on a date could give us output like this:

sabato 1 ottobre 2005
sabato, 1. ottobre 2005

Now let's put this all together in some code that creates a Calendar object, sets
its date, and then converts it to a Date. After that, we'll take that Date object and
print it out using locales from around the world:

Calendar c = Calendar.getInstance();
c.set(2010, 11, 14); // December 14, 2010
 // (month is 0-based)
Date d2 = c.getTime();

Locale locIT = new Locale("it", "IT"); // Italy
Locale locPT = new Locale("pt"); // Portugal
Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locIN = new Locale("hi", "IN"); // India
Locale locJA = new Locale("ja"); // Japan

DateFormat dfUS = DateFormat.getInstance();
System.out.println("US " + dfUS.format(d2));

DateFormat dfUSfull = DateFormat.getDateInstance(
 DateFormat.FULL);
System.out.println("US full " + dfUSfull.format(d2));

DateFormat dfIT = DateFormat.getDateInstance(
 DateFormat.FULL, locIT);
System.out.println("Italy " + dfIT.format(d2));

08-ch08.indd 427 8/29/2014 1:22:12 PM

428 Chapter 8: String Processing, Data Formatting, Resource Bundles

DateFormat dfPT = DateFormat.getDateInstance(
 DateFormat.FULL, locPT);
System.out.println("Portugal " + dfPT.format(d2));

DateFormat dfBR = DateFormat.getDateInstance(
 DateFormat.FULL, locBR);
System.out.println("Brazil " + dfBR.format(d2));

DateFormat dfIN = DateFormat.getDateInstance(
 DateFormat.FULL, locIN);
System.out.println("India " + dfIN.format(d2));

DateFormat dfJA = DateFormat.getDateInstance(
 DateFormat.FULL, locJA);
System.out.println("Japan " + dfJA.format(d2));

This, on our JVM, produces

US 12/14/10 3:32 PM
US full Sunday, December 14, 2010
Italy domenica 14 dicembre 2010
Portugal Domingo, 14 de Dezembro de 2010
Brazil Domingo, 14 de Dezembro de 2010
India ??????, ?? ??????, ????
Japan 2010?12?14?

Oops! Our machine isn't configured to support locales for India or Japan, but you
can see how a single Date object can be formatted to work for many locales.

Remember that both DateFormat and NumberFormat objects can have

their locales set only at the time of instantiation. Watch for code that attempts to change

the locale of an existing instance—no such methods exist!

There are a couple more methods in Locale (getDisplayCountry() and
getDisplayLanguage()) that you'll have to know for the exam. These methods let
you create strings that represent a given locale's country and language in terms of
both the default locale and any other locale:

Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locDK = new Locale("da", "DK"); // Denmark
Locale locIT = new Locale("it", "IT"); // Italy

System.out.println("def " + locBR.getDisplayCountry());

08-ch08.indd 428 8/29/2014 1:22:12 PM

 Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6) 429

System.out.println("loc " + locBR.getDisplayCountry(locBR));

System.out.println("def " + locDK.getDisplayLanguage());
System.out.println("loc " + locDK.getDisplayLanguage(locDK));
System.out.println("D>I " + locDK.getDisplayLanguage(locIT));

This, on our JVM, produces

def Brazil
loc Brasil
def Danish
loc dansk
D>I danese

Given that our JVM's locale (the default for us) is US, the default for the country
Brazil is Brazil, and the default for the Danish language is Danish. In Brazil, the
country is called Brasil, and in Denmark, the language is called dansk. Finally, just
for fun, we discovered that in Italy, the Danish language is called danese.

The NumberFormat Class

We'll wrap up this objective by discussing the NumberFormat class. Like the
DateFormat class, NumberFormat is abstract, so you'll typically use some version of
either getInstance() or getCurrencyInstance() to create a NumberFormat
object. Not surprisingly, you use this class to format numbers or currency values:

float f1 = 123.4567f;
Locale locFR = new Locale("fr"); // France
NumberFormat[] nfa = new NumberFormat[4];

nfa[0] = NumberFormat.getInstance();
nfa[1] = NumberFormat.getInstance(locFR);
nfa[2] = NumberFormat.getCurrencyInstance();
nfa[3] = NumberFormat.getCurrencyInstance(locFR);

for(NumberFormat nf : nfa)
 System.out.println(nf.format(f1));

This, on our JVM, produces

123.457
123,457
$123.46
123,46 ?

Don't be worried if, like us, you're not set up to display the symbols for francs,
pounds, rupees, yen, baht, or drachmas. You won't be expected to know the symbols
used for currency: If you need one, it will be specified in the question. You might

08-ch08.indd 429 8/29/2014 1:22:12 PM

430 Chapter 8: String Processing, Data Formatting, Resource Bundles

encounter methods other than the format() method on the exam. Here's a little
code that uses getMaximumFractionDigits(), setMaximumFractionDigits(),
parse(), and setParseIntegerOnly():

float f1 = 123.45678f;
NumberFormat nf = NumberFormat.getInstance();
System.out.print(nf.getMaximumFractionDigits() + " ");
System.out.print(nf.format(f1) + " ");

nf.setMaximumFractionDigits(5);
System.out.println(nf.format(f1) + " ");

try {
 System.out.println(nf.parse("1234.567"));
 nf.setParseIntegerOnly(true);
 System.out.println(nf.parse("1234.567"));
} catch (ParseException pe) {
 System.out.println("parse exc");
}

This, on our JVM, produces

3 123.457 123.45678
1234.567
1234

Notice that in this case, the initial number of fractional digits for the default
NumberFormat is three, and that the format() method rounds f1's value—it
doesn't truncate it. After changing nf's fractional digits, the entire value of f1 is
displayed. Next, notice that the parse() method must run in a try/catch block and
that the setParseIntegerOnly() method takes a boolean and, in this case, causes
subsequent calls to parse() to return only the integer part of strings formatted as
floating-point numbers.

As we've seen, several of the classes covered in this objective are abstract. In
addition, for all of these classes, key functionality for every instance is established at
the time of creation. Table 8-2 summarizes the constructors or methods used to
create instances of all the classes we've discussed in this section.

08-ch08.indd 430 8/29/2014 1:22:12 PM

Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 431

Class Key Instance Creation Options

util.Date new Date();
new Date(long millisecondsSince010170);

util.Calendar Calendar.getInstance();
Calendar.getInstance(Locale);

util.Locale Locale.getDefault();
new Locale(String language);
new Locale(String language, String country);

text.DateFormat DateFormat.getInstance();
DateFormat.getDateInstance();
DateFormat.getDateInstance(style);
DateFormat.getDateInstance(style, Locale);

text.NumberFormat NumberFormat.getInstance()
NumberFormat.getInstance(Locale)
NumberFormat.getNumberInstance()
NumberFormat.getNumberInstance(Locale)
NumberFormat.getCurrencyInstance()
NumberFormat.getCurrencyInstance(Locale)

CERTIFICATION OBJECTIVE

Parsing, Tokenizing, and Formatting
(OCP Objectives 5.1, 5.2, and 5.3)

5.1 Search, parse, and build strings (including Scanner, StringTokenizer, StringBuilder,
String, and Formatter).

5.2 Search, parse, and replace strings by using regular expressions, using expression
patterns for matching limited to . (dot), * (star), + (plus), ?, \d, \D, \s, \S, \w, \W,
\b, \B, [], and ().

5.3 Format strings using the formatting parameters %b, %c, %d, %f, and %s in
format strings.

We're going to start with yet another disclaimer: This small section isn't going to
morph you from regex newbie to regex guru. In this section, we'll cover three basic ideas:

■ Finding stuff You've got big heaps of text to look through. Maybe you're
doing some screen scraping; maybe you're reading from a file. In any case,

 TABLE 8-2

Instance Creation
for Key java
.text and
java.util
Classes

08-ch08.indd 431 8/29/2014 1:22:12 PM

432 Chapter 8: String Processing, Data Formatting, Resource Bundles

you need easy ways to find textual needles in textual haystacks. We'll use
the java.util.regex.Pattern, java.util.regex.Matcher, and java
.util.Scanner classes to help us find stuff.

■ Tokenizing stuff You've got a delimited file that you want to get useful
data out of. You want to transform a piece of a text file that looks like
"1500.00,343.77,123.4" into some individual float variables. We'll show you the
basics of using the String.split() method and the java.util.Scanner
class to tokenize your data.

■ Formatting stuff You've got a report to create and you need to take a float
variable with a value of 32500.000f and transform it into a string with a value
of "$32,500.00". We'll introduce you to the java.util.Formatter class and
to the printf() and format() methods.

A Search Tutorial

Whether you're looking for stuff or tokenizing stuff, a lot of the concepts are the
same, so let's start with some basics. No matter what language you're using, sooner or
later you'll probably be faced with the need to search through large amounts of
textual data, looking for some specific stuff.

Regular expressions (regex for short) are a kind of language within a language,
designed to help programmers with these searching tasks. Every language that provides
regex capabilities uses one or more regex engines. Regex engines search through textual
data using instructions that are coded into expressions. A regex expression is like a very
short program or script. When you invoke a regex engine, you'll pass it the chunk of
textual data you want it to process (in Java, this is usually a string or a stream), and you
pass it the expression you want it to use to search through the data.

It's fair to think of regex as a language, and we will refer to it that way throughout
this section. The regex language is used to create expressions, and as we work
through this section, whenever we talk about expressions or expression syntax, we're
talking about syntax for the regex "language." Oh, one more disclaimer… we know
that you regex mavens out there can come up with better expressions than what
we're about to present. Keep in mind that for the most part, we're creating these
expressions using only a portion of the total regex instruction set, thanks.

Simple Searches

For our first example, we'd like to search through the following source String

abaaaba

08-ch08.indd 432 8/29/2014 1:22:12 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 433

for all occurrences (or matches) of the expression

ab

In all of these discussions, we'll assume that our data sources use zero-based
indexes, so if we display an index under our source String, we get

source: abaaaba
index: 0123456

We can see that we have two occurrences of the expression ab: one starting at
position 0 and the second starting at position 4. If we sent the previous source data
and expression to a regex engine, it would reply by telling us that it found matches
at positions 0 and 4. Below is a program (which we'll explain in a few pages) that
you can use to perform as many regex experiments as you want to get the feel for
how regex works. We'll use this program to show you some of the basics that are
covered in the exam:
import java.util.regex.*;
class RegTest {
 public static void main(String [] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]); // string to search
 System.out.println("\nsource: " + args[1]);
 System.out.println(" index: 01234567890123456\n"); // the index
 System.out.println("expression: " + m.pattern()); // the search expression
 System.out.print("match positions: "); // matches positions
 while(m.find()) {
 System.out.print(m.start() + " ");
 }
 System.out.println("");
 }
}

So this invocation:

java RegTest "ab" "abaaaba"

produces

source: abaaaba
 index: 01234567890123456

expression: ab
match positions: 0 4

In a few pages, we're going to show you a lot more regex code, but first we want to
go over some more regex syntax. Once you understand a little more regex, the code

08-ch08.indd 433 8/29/2014 1:22:12 PM

434 Chapter 8: String Processing, Data Formatting, Resource Bundles

samples will make a lot more sense. Here's a more complicated example of a source
and an expression:

source: abababa
index: 0123456
expression: aba

How many occurrences do we get in this case? Well, there is clearly an occurrence
starting at position 0 and another starting at position 4. But how about starting at
position 2? In general in the world of regex, the aba string that starts at position 2
will not be considered a valid occurrence. The first general regex search rule is

In general, a regex search runs from left to right, and once a source's character
has been used in a match, it cannot be reused.

So in our previous example, the first match used positions 0, 1, and 2 to match
the expression. (Another common term for this is that the first three characters of
the source were consumed.) Because the character in position 2 was consumed in the
first match, it couldn't be used again. So the engine moved on and didn't find
another occurrence of aba until it reached position 4. This is the typical way that a
regex matching engine works. However, in a few pages, we'll look at an exception to
the first rule we stated earlier.

So we've matched a couple of exact strings, but what would we do if we wanted to
find something a little more dynamic? For instance, what if we wanted to find all of
the occurrences of hex numbers or phone numbers or ZIP codes?

Searches Using Metacharacters

As luck would have it, regex has a powerful mechanism for dealing with the cases we
described earlier. At the heart of this mechanism is the idea of a metacharacter. As an
easy example, let's say that we want to search through some source data looking for
all occurrences of numeric digits. In regex, the following expression is used to look
for numeric digits:

\d

If we change the previous program to apply the expression \d to the following
source string, we'd see:

java RegTest "\\d" "a12c3e456f"

source: a12c3e456f
index: 01234567890123456

expression: \d
match positions: 1 2 4 6 7 8

08-ch08.indd 434 8/29/2014 1:22:12 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 435

regex will tell us that it found digits at positions 1, 2, 4, 6, 7, and 8. (If you want to
try this at home, you'll need to "escape" the compile method's \d argument by
making it "\\d"; more on this a little later.)

Regex provides a rich set of metacharacters that you can find described in the
API documentation for java.util.regex.Pattern. We won't discuss them all
here, but we will describe the ones you'll need for the exam:

■ \d A digit (0–9)
\D A non-digit (anything BUT 0–9)

■ \s A whitespace character (e.g. space, \t, \n, \f, \r)
\S A non-whitespace character

■ \w A word character (letters (a–z and A–Z), digits, or the "_" [underscore])
\W A non-word character (everything else)

■ \b A word "boundary" (ends of the string and between \w and not
 \w—more soon)
\B A non-word "boundary" (between two \w's or two not \w's)

So, for example, given

source: "a 1 56 _Z"
index: 012345678
pattern: \w

regex will return positions 0, 2, 4, 5, 7, and 8. The only characters in this source that
don't match the definition of a word character are the whitespaces. (Note: In this
example, we enclosed the source data in quotes to clearly indicate that there was no
whitespace at either end.)

Character Matching The first six (\d, \D, \s, \S, \w, \W), are fairly
straightforward. Regex returns the positions where occurrences of those types of
characters (or their opposites occur). Here's an example of an "opposites" match:

java RegTest "\\S" "w1w w$ &#w1"

source: w1w w$ &#w1
 index: 01234567890123456

expression: \S
match positions: 0 1 2 4 5 7 8 9 10

Here you can see that regex matched on everything BUT whitespace.

08-ch08.indd 435 8/29/2014 1:22:12 PM

436 Chapter 8: String Processing, Data Formatting, Resource Bundles

Boundary Matching The last two (\b and \B) are a bit different. In these
cases, regex is looking for a specific relationship between two adjacent characters.
When it finds a match, it returns the position of the second character. Also note
that the ends of the strings are considered to be "non-word" characters. Let's look at
a few examples:

java RegTest "\\b" "w2w w$ &#w2"

source: w2w w$ &#w2
 index: 01234567890123456

expression: \b
match positions: 0 3 4 5 9 11

First, let's recall that "word characters" are A–Z, a–z, and 0–9. It's not too tricky
to understand the matches at positions 3, 4, 5, and 9. Regex is telling us that
characters 2 and 3 are a boundary between a word character and a non-word
character. Remembering that order doesn't matter, it's easy to see that positions 4, 5,
and 9 are similar "boundaries" between the two classes of characters—the character
specified and the one preceding it.

But the matches on positions 0 and 11 are a bit confusing. For the sake of the
exam, just imagine that for \b and \B, there is a hidden, non-word character at each
end of the string that you can see. Let's look at an example of using \b and then \B
against the same string:

source: #ab de#
 index: 01234567890123456

expression: \b
match positions: 1 3 4 6

In this case, the matches should be intuitive; they mark the second character in a
pair of characters that represent a boundary (word versus non-word). But here:

source: #ab de#
 index: 01234567890123456

expression: \B
match positions: 0 2 5 7

in this case, assuming invisible, non-word characters at each end of the string, we see
places where there are NOT word boundaries (i.e., where two-word characters abut
or where two non-word characters abut).

08-ch08.indd 436 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 437

Searches Using Ranges

You can also specify sets of characters to search for using square brackets and ranges
of characters to search for using square brackets and a dash:

■ [abc] Searches only for a's, b's, or c's

■ [a-f] Searches only for a, b, c, d, e, or f characters

In addition, you can search across several ranges at once. The following
expression is looking for occurrences of the letters a-f or A-F; it's NOT looking for
an fA combination:

■ [a-fA-F] Searches for the first six letters of the alphabet, both cases.
So, for instance,

source: "cafeBABE"
index: 01234567
pattern: [a-cA-C]

returns positions 0, 1, 4, 5, 6.

In addition to the capabilities described for the exam, you can apply the

following attributes to sets and ranges within square brackets: "^" to negate

the characters specified, nested brackets to create a union of sets, and "&&"

to specify the intersection of sets. While these constructs are not on the exam,

they are quite useful, and good examples can be found in the API for the

java.util.regex.Pattern class.

Searches Using Quantifiers

Let's say that we want to create a regex pattern to search for hexadecimal literals. As
a first step, let's solve the problem for one-digit hexadecimal numbers:

0[xX][0-9a-fA-F]

The preceding expression could be stated:

Find a set of characters in which the first character is a "0", the second character
is either an "x" or an "X", and the third character is a digit from "0" to "9", a letter
from "a" to "f", or an uppercase letter from "A" to "F".

Using the preceding expression and the following data:

source: 12 0x 0x12 0Xf 0xg
 index: 012345678901234567

regex would return 6 and 11. (Note: 0x and 0xg are not valid hex numbers.)

08-ch08.indd 437 8/29/2014 1:22:13 PM

438 Chapter 8: String Processing, Data Formatting, Resource Bundles

As a second step, let's think about an easier problem. What if we just wanted
regex to find occurrences of integers? Integers can be one or more digits long, so it
would be great if we could say "one or more" in an expression. There is a set of regex
constructs called quantifiers that let us specify concepts such as "one or more." In
fact, the quantifier that represents "one or more" is the "+" character. We'll see the
others shortly.

The other issue this raises is that when we're searching for something whose
length is variable, getting only a starting position as a return value is of limited use.
So, in addition to returning starting positions, another bit of information that a
regex engine can return is the entire match, or group, that it finds. We're going to
change the way we talk about what regex returns by specifying each return on its
own line, remembering that now for each return we're going to get back the starting
position AND then the group. Here's the revised code:

import java.util.regex.*;
class GroupTest {
 public static void main(String [] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 System.out.println("\nsource: " + args[1]);
 System.out.println(" index: 01234567890123456\n");
 System.out.println("pattern: " + m.pattern());
 while(m.find()) {
 System.out.println(m.start() + " " + m.group());
 }
 System.out.println("");
 }
}

So, if we invoke GroupTest like this:

java GroupTest "\d+" "1 a12 234b"

you can read this expression as saying: "Find one or more digits in a row." This
expression produces this regex output:

source: 1 a12 234b
 index: 01234567890123456

pattern: \d+
0 1
3 12
6 234

08-ch08.indd 438 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 439

You can read this as "At position 0, there's an integer with a value of 1; then at
position 3, there's an integer with a value of 12; then at position 6, there's an integer
with a value of 234." Returning now to our hexadecimal problem, the last thing we
need to know is how to specify the use of a quantifier for only part of an expression.
In this case, we must have exactly one occurrence of 0x or 0X, but we can have from
one to many occurrences of the hex "digits" that follow. The following expression
adds parentheses to limit the "+" quantifier to only the hex digits:

0[xX]([0-9a-fA-F])+

The parentheses and "+" augment the previous find-the-hex expression by saying
in effect: "Once we've found our 0x or 0X, you can find from one to many
occurrences of hex digits." Notice that we put the "+" quantifier at the end of the
expression. It's useful to think of quantifiers as always quantifying the part of the
expression that precedes them.

The other two quantifiers we're going to look at are

■ * Zero or more occurrences

■ ? Zero or one occurrence

Let's say you have a text file containing a comma-delimited list of all the
filenames in a directory that contains several very important projects. (BTW, this
isn't how we'd arrange our directories. :)) You want to create a list of all the files
whose names start with proj1. You might discover .txt files, .java files, .pdf files—
who knows? What kind of regex expression could we create to find these various
proj1 files? First, let's take a look at what a part of this text might look like:

..."proj3.txt,proj1sched.pdf,proj1,proj2,proj1.java"...

To solve this problem, we're going to use the regex ^ (carat) operator, which we
mentioned earlier. The regex ^ operator isn't on the exam, but it will help us create
a fairly clean solution to our problem. The ^ is the negation symbol in regex. For
instance, if you want to find anything but a's, b's, or c's in a file, you could say

[^abc]

So, armed with the ^ operator and the * (zero or more) quantifier, we can create the
following:

proj1([^,])*

08-ch08.indd 439 8/29/2014 1:22:13 PM

440 Chapter 8: String Processing, Data Formatting, Resource Bundles

If we apply this expression to just the portion of the text file we listed earlier,
regex returns

10 proj1sched.pdf
25 proj1
37 proj1.java

The key part of this expression is the "give me zero or more characters that aren't a
comma."

The last quantifier example we'll look at is the ? (zero or one) quantifier. Let's say
that our job this time is to search a text file and find anything that might be a local
seven-digit phone number. We're going to say, arbitrarily, that if we find seven digits
in a row, or three digits followed by a dash, or a space followed by four digits, that we
have a candidate. Here are examples of "valid" phone numbers:

1234567
123 4567
123-4567

The key to creating this expression is to see that we need "zero or one instance of
either a space or a dash" in the middle of our digits:

\d\d\d([-\s])?\d\d\d\d

The Predefined Dot

In addition to the \s, \d, and \w metacharacters that we discussed, you have to
understand the "." (dot) metacharacter. When you see this character in a regex
expression, it means "any character can serve here." For instance, the following
source and pattern:

source: "ac abc a c"
pattern: a.c

will produce the output

3 abc
7 a c

The "." was able to match both the "b" and the " " in the source data.

Greedy Quantifiers

When you use the *, +, and ? quantifiers, you can fine-tune them a bit to produce
behavior that's known as "greedy," "reluctant," or "possessive." Although you need to

08-ch08.indd 440 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 441

understand only the greedy quantifier for the exam, we're also going to discuss the
reluctant quantifier to serve as a basis for comparison. First, the syntax:

■ ? is greedy, ?? is reluctant, for zero or once

■ *is greedy, *? is reluctant, for zero or more

■ + is greedy, +? is reluctant, for one or more

What happens when we have the following source and pattern:

source: yyxxxyxx
pattern: .*xx

First off, we're doing something a bit different here by looking for characters that
prefix the static (xx) portion of the expression. We think we're saying something
like: "Find sets of characters that end with xx". Before we tell what happens, we at
least want you to consider that there are two plausible results… can you find them?
Remember we said earlier that in general, regex engines worked from left to right
and consumed characters as they went. So, working from left to right, we might
predict that the engine would search the first four characters (0–3), find xx starting
in position 2, and have its first match. Then it would proceed and find the second
xx starting in position 6. This would lead us to a result like this:

0 yyxx
4 xyxx

A plausible second argument is that since we asked for a set of characters that
ends with xx, we might get a result like this:

0 yyxxxyxx

The way to think about this is to consider the name greedy. In order for the
second answer to be correct, the regex engine would have to look (greedily) at the
entire source data before it could determine that there was an xx at the end. So, in
fact, the second result is the correct result because in the original example we used
the greedy quantifier *. The result that finds two different sets can be generated by
using the reluctant quantifier *?. Let's review:

source: yyxxxyxx
pattern: .*xx

is using the greedy quantifier * and produces

0 yyxxxyxx

08-ch08.indd 441 8/29/2014 1:22:13 PM

442 Chapter 8: String Processing, Data Formatting, Resource Bundles

If we change the pattern to

source: yyxxxyxx
pattern: .*?xx

we're now using the reluctant qualifier *?, and we get the following:

0 yyxx
4 xyxx

The greedy quantifier does, in fact, read the entire source data and then it works
backward (from the right) until it finds the rightmost match. At that point, it
includes everything from earlier in the source data, up to and including the data that
is part of the rightmost match.

There are a lot more aspects to regex quantifiers than we've discussed here,

but we've covered more than enough for the exam. Oracle has several tutorials

that will help you learn more about quantifiers and turn you into the go-to

person at your job.

When Metacharacters and Strings Collide

So far, we've been talking about regex from a theoretical perspective. Before we can
put regex to work, we have to discuss one more gotcha. When it's time to implement
regex in our code, it will be quite common that our source data and/or our
expressions will be stored in strings. The problem is that metacharacters and strings
don't mix too well. For instance, let's say we just want to do a simple regex pattern
that looks for digits. We might try something like

String pattern = "\d"; // compiler error!

This line of code won't compile! The compiler sees the \ and thinks, "Okay, here
comes an escape sequence; maybe it'll be a new line!" But no, next comes the d and
the compiler says, "I've never heard of the \d escape sequence." The way to satisfy
the compiler is to add another backslash in front of the \d:

String pattern = "\\d"; // a compilable metacharacter

The first backslash tells the compiler that whatever comes next should be taken
literally, not as an escape sequence. How about the dot (.) metacharacter? If we
want a dot in our expression to be used as a metacharacter, no problem, but what if
we're reading some source data that happens to use dots as delimiters? Here's another
way to look at our options:

08-ch08.indd 442 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 443

String p = "."; // regex sees this as the "." metacharacter
String p = "\."; // the compiler sees this as an illegal
 // Java escape sequence
String p = "\\."; // the compiler is happy, and regex sees a
 // dot, not a metacharacter

A similar problem can occur when you hand metacharacters to a Java program via
command-line arguments. If we want to pass the \d metacharacter into our Java
program, our JVM does the right thing if we say

% java DoRegex "\d"

But your JVM might not. If you have problems running the following examples,
you might try adding a backslash (i.e., \\d) to your command-line metacharacters.
Don't worry—you won't see any command-line metacharacters on the exam!

The Java language defines several escape sequences, including

\n = linefeed (which you might see on the exam)

\b = backspace

\t = tab

And others, which you can find in the Java Language Specification. Other

than perhaps seeing a \n inside a string, you won't have to worry about Java's

escape sequences on the exam.

At this point, we've learned enough of the regex language to start using it in our
Java programs. We'll start by looking at using regex expressions to find stuff, and
then we'll move to the closely related topic of tokenizing stuff.

Locating Data via Pattern Matching

Over the last few pages, we've used a few small Java programs to explore some regex
basics. Now we're going to take a more detailed look at the two classes we've been
using: java.util.regex.Pattarn and java.util.regex.Matcher. Once you
know a little regex, using the java.util.regex.Pattern (Pattern) and java.
util.regex.Matcher (Matcher) classes is pretty straightforward. The Pattern
class is used to hold a representation of a regex expression so that it can be used and
reused by instances of the Matcher class. The Matcher class is used to invoke the
regex engine, with the intention of performing match operations. The following
program shows Pattern and Matcher in action, and, as we've seen, it's not a bad

08-ch08.indd 443 8/29/2014 1:22:13 PM

444 Chapter 8: String Processing, Data Formatting, Resource Bundles

way for you to do your own regex experiments. Note, once you've read about the
Console class in Chapter 9, you might want to modify the following class by adding
some functionality from the Console class. That way, you'll get some practice with
the Console class, and it'll be easier to run multiple regex experiments.

import java.util.regex.*;
class Regex {
 public static void main(String [] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 System.out.println("Pattern is " + m.pattern());
 while(m.find()) {
 System.out.println(m.start() + " " + m.group());
 }
 }
}

As with our earlier programs, this program uses the first command-line argument
(args[0]) to represent the regex expression you want to use, and it uses the second
argument (args[1]) to represent the source data you want to search. Here's a test run:

% java Regex "\d\w" "ab4 56_7ab"

produces the output

Pattern is \d\w
4 56
7 7a

(Remember, if you want this expression to be represented in a string, you'd use
\\d\\w.) Because you'll often have special characters or whitespace as part of your
arguments, you'll probably want to get in the habit of always enclosing your
argument in quotes. Let's take a look at this code in more detail. First off, notice that
we aren't using new to create a Pattern; if you check the API, you'll find no
constructors are listed. You'll use the overloaded, static compile() method (which
takes String expression) to create an instance of Pattern. For the exam, all
you'll need to know to create a Matcher is to use the Pattern.matcher() method
(which takes String sourceData).

The important method in this program is the find() method. This is the method
that actually cranks up the regex engine and does some searching. The find()
method returns true if it gets a match and remembers the start position of the
match. If find() returns true, you can call the start() method to get the starting
position of the match, and you can call the group() method to get the string that
represents the actual bit of source data that was matched.

08-ch08.indd 444 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 445

A common reason to use regex is to perform search-and-replace operations.

Although replace operations are not on the exam, you should know that the

Matcher class provides several methods that perform search-and-replace

operations. See the appendReplacement(), appendTail(), and replaceAll()

methods in the Matcher API for more details.

The Matcher class allows you to look at subsets of your source data by using a
concept called regions. In real life, regions can greatly improve performance, but you
won't need to know anything about them for the exam.

Searching Using the Scanner Class Although the java.util.Scanner
class is primarily intended for tokenizing data (which we'll cover next), it can also
be used to find stuff, just like the Pattern and Matcher classes. While Scanner

To provide the most fl exibility, Matcher.find(), when coupled with the

greedy quantifi ers ? or *, allows for (somewhat unintuitively) the idea of a zero-length

match. As an experiment, modify the previous Regex class and add an invocation of

m.end() to the System.out.print (S.O.P.) in the while loop. With that modifi cation in

place, the invocation

java Regex "a?" "aba"

should produce something very similar to this:

Pattern is a?
0 1 a
1 1
2 3 a
3 3

The lines of output 1 1 and 3 3 are examples of zero-length matches. Zero-length

matches can occur in several places:

■ After the last character of source data (the 3 3 example)

■ In between characters after a match has been found (the 1 1 example)

■ At the beginning of source data (try java Regex "a?" "baba")

■ At the beginning of zero-length source data

08-ch08.indd 445 8/29/2014 1:22:13 PM

446 Chapter 8: String Processing, Data Formatting, Resource Bundles

doesn't provide location information or search-and-replace functionality, you can
use it to apply regex expressions to source data to tell you how many instances of an
expression exist in a given piece of source data. The following program uses the first
command-line argument as a regex expression and then asks for input using System
.in. It outputs a message every time a match is found:

import java.util.*;
class ScanIn {
 public static void main(String[] args) {
 System.out.print("input: ");
 System.out.flush();
 try {
 Scanner s = new Scanner(System.in);
 String token;
 do {
 token = s.findInLine(args[0]);
 System.out.println("found " + token);
 } while (token != null);
 } catch (Exception e) { System.out.println("scan exc"); }
 }
}

The invocation and input

java ScanIn "\d\d"
input: 1b2c335f456

produce the following:

found 33
found 45
found null

Tokenizing

Tokenizing is the process of taking big pieces of source data, breaking them into little
pieces, and storing the little pieces in variables. Probably the most common
tokenizing situation is reading a delimited file in order to get the contents of the file
moved into useful places, like objects, arrays, or collections. We'll look at two classes
in the API that provide tokenizing capabilities: String (using the split()
method) and Scanner, which has many methods that are useful for tokenizing.

Tokens and Delimiters

When we talk about tokenizing, we're talking about data that starts out composed
of two things: tokens and delimiters. Tokens are the actual pieces of data, and

08-ch08.indd 446 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 447

delimiters are the expressions that separate the tokens from each other. When most
people think of delimiters, they think of single characters, like commas or backslashes
or maybe a single whitespace. These are indeed very common delimiters, but strictly
speaking, delimiters can be much more dynamic. In fact, as we hinted at a few
sentences ago, delimiters can be anything that qualifies as a regex expression. Let's
take a single piece of source data and tokenize it using a couple of different delimiters:

source: "ab,cd5b,6x,z4"

If we say that our delimiter is a comma, then our four tokens would be

ab
cd5b
6x
z4

If we use the same source but declare our delimiter to be \d, we get three tokens:

ab,cd
b,
x,z

In general, when we tokenize source data, the delimiters themselves are discarded
and all that we are left with are the tokens. So in the second example, we defined
digits to be delimiters, so the 5, 6, and 4 do not appear in the final tokens.

Tokenizing with String.split()

The String class's split() method takes a regex expression as its argument and
returns a String array populated with the tokens produced by the split (or
tokenizing) process. This is a handy way to tokenize relatively small pieces of data.
The following program uses args[0] to hold a source string, and args[1] to hold
the regex pattern to use as a delimiter:

import java.util.*;
class SplitTest {
 public static void main(String[] args) {
 String[] tokens = args[0].split(args[1]);
 System.out.println("count " + tokens.length);
 for(String s : tokens)
 System.out.println(">" + s + "<");
 }
}

Everything happens all at once when the split() method is invoked. The source
string is split into pieces, and the pieces are all loaded into the tokens String

08-ch08.indd 447 8/29/2014 1:22:13 PM

448 Chapter 8: String Processing, Data Formatting, Resource Bundles

array. All the code after that is just there to verify what the split operation generated.
The following invocation

% java SplitTest "ab5 ccc 45 @" "\d"

produces

count 4
>ab<
> ccc <
><
> @<

(Note: Remember that to represent "\" in a string, you may need to use the
escape sequence "\\". Because of this, and depending on your OS, your second
argument might have to be "\\d" or even "\\\\d".)

We put the tokens inside > < characters to show whitespace. Notice that every
digit was used as a delimiter and that contiguous digits created an empty token.

One drawback to using the String.split() method is that often you'll want to
look at tokens as they are produced, and possibly quit a tokenization operation early
when you've created the tokens you need. For instance, you might be searching a
large file for a phone number. If the phone number occurs early in the file, you'd like
to quit the tokenization process as soon as you've got your number. The Scanner
class provides a rich API for doing just such on-the-fly tokenization operations.

Because System.out.println() is so heavily used on the exam, you

might see examples of escape sequences tucked in with questions on most any topic,

including regex. Remember that if you need to create a string that contains a double

quote (") or a backslash (\), you need to add an escape character fi rst:

System.out.println("\" \\");

This prints

" \

But what if you need to search for periods (.) in your source data? If you just put a period

in the regex expression, you get the "any character" behavior. But what if you try "\."?

Now the Java compiler thinks you're trying to create an escape sequence that doesn't

exist. The correct syntax is

String s = "ab.cde.fg";
String[] tokens = s.split("\\.");

08-ch08.indd 448 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 449

Tokenizing with Scanner

The java.util.Scanner class is the Cadillac of tokenizing. When you need to do
some serious tokenizing, look no further than Scanner—this beauty has it all. In
addition to the basic tokenizing capabilities provided by String.split(), the
Scanner class offers the following features:

■ Scanners can be constructed using files, streams, or strings as a source.

■ Tokenizing is performed within a loop so that you can exit the process at
any point.

■ Tokens can be converted to their appropriate primitive types automatically.

Let's look at a program that demonstrates several of Scanner's methods and
capabilities. Scanner's default delimiter is whitespace, which this program uses.
The program makes two Scanner objects: s1 is iterated over with the more generic
next() method, which returns every token as a String, while s2 is analyzed with
several of the specialized nextXxx() methods (where Xxx is a primitive type):

import java.util.Scanner;
class ScanNext {
 public static void main(String [] args) {
 boolean b2, b;
 int i;
 String s, hits = " ";
 Scanner s1 = new Scanner(args[0]);
 Scanner s2 = new Scanner(args[0]);
 while(b = s1.hasNext()) {
 s = s1.next(); hits += "s";
 }
 while(b = s2.hasNext()) {
 if (s2.hasNextInt()) {
 i = s2.nextInt(); hits += "i";
 } else if (s2.hasNextBoolean()) {
 b2 = s2.nextBoolean(); hits += "b";
 } else {
 s2.next(); hits += "s2";
 }
 }
 System.out.println("hits " + hits);
 }
}

If this program is invoked with

% java ScanNext "1 true 34 hi"

it produces

hits ssssibis2

08-ch08.indd 449 8/29/2014 1:22:13 PM

450 Chapter 8: String Processing, Data Formatting, Resource Bundles

Of course, we're not doing anything with the tokens once we've got them, but
you can see that s2's tokens are converted to their respective primitives. A key point
here is that the methods named hasNextXxx() test the value of the next token but
do not actually get the token, nor do they move to the next token in the source
data. The nextXxx() methods all perform two functions: They get the next token,
and then they move to the next token.

The Scanner class has nextXxx() (for instance, nextLong()) and hasNextXxx()
(for instance, hasNextDouble()) methods for every primitive type except char. In
addition, the Scanner class has a useDelimiter() method that allows you to set
the delimiter to be any valid regex expression.

Tokenizing with java.util.StringTokenizer

The java.util.StringTokenizer class is the rusty old Buick of tokenizing. These
days, when you want to do tokenizing, the Scanner class and String.split()are
the preferred approaches. In fact, in the API docs, the StringTokenizer class is
not recommended. The reason it's on the exam is because you'll often find it in older
code, and when you do, you'll want to understand how it works. The following list of
features summarizes the capabilities of StringTokenizer and relates them to the
Scanner class:

■ StringTokenizer objects are constructed using strings as a source.

■ StringTokenizer objects use whitespace characters by default as delimiters,
but they can be constructed with a custom set of delimiters (which are listed
as a string).

■ Tokenizing is performed within a loop so that you can exit the process at any
point.

■ The loop used for tokenizing uses the Enumerator interface, and typically
uses the hasMoreTokens() and nextToken() methods, which are very
similar to Scanner's next() and hasNext() methods. (Note: These days,
the Iterator interface is recommended instead of Enumerator.)

Let's look at a program that demonstrates several of StringTokenizer's methods
and capabilities:

import java.util.*;

public class STtest {
 public static void main(String[] args) {
 StringTokenizer st = new StringTokenizer("a bc d e");

08-ch08.indd 450 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 451

 System.out.println("\n " + st.countTokens());
 while(st.hasMoreTokens()) {
 System.out.print(">" + st.nextToken() + "< ");
 }
 System.out.println("\n " + st.countTokens());

 // Second argument "a" is this StringTokenizer's delimiter

 StringTokenizer st2 = new StringTokenizer("a b cab a ba d", "a");
 System.out.println("\n " + st2.countTokens());
 while(st2.hasMoreTokens()) {
 System.out.print(">" + st2.nextToken() + "< ");
 }
 System.out.println("\n " + st2.countTokens());
 }
}

which produces the output:

 4
>a< >bc< >d< >e<
 0

 4
> b c< >b < > b< > d<
 0

To recap, the first StringTokenizer, st, uses whitespace as its delimiter, and the
second StringTokenizer, st2, uses "a" as its delimiter. In both cases, we
surrounded the tokens with "> <" characters to show any whitespace included in
tokens. We also used the countTokens() method to display how many tokens were
Enumerator-able before and after each enumeration loop.

There are a few more details in the StringTokenizer class, but this is all you'll
need for the exam.

Formatting with printf() and format()

What fun would accounts receivable reports be if the decimal points didn't line up?
Where would you be if you couldn't put negative numbers inside of parentheses?
Burning questions like these caused the exam creation team to include formatting as
a part of the exam. The format() and printf() methods were added to java.io
.PrintStream in Java 5. These two methods behave exactly the same way, so
anything we say about one of these methods applies to both of them. (The rumor is
that printf() was added just to make old C programmers happy.)

08-ch08.indd 451 8/29/2014 1:22:13 PM

452 Chapter 8: String Processing, Data Formatting, Resource Bundles

Behind the scenes, the format() method uses the java.util.Formatter class
to do the heavy formatting work. You can use the Formatter class directly if you
choose, but for the exam, all you have to know is the basic syntax of the arguments
you pass to the format() method. The documentation for these formatting
arguments can be found in the Formatter API. We're going to take the "nickel
tour" of the formatting String syntax, which will be more than enough to allow you
to do a lot of basic formatting work AND ace all the formatting questions on the
exam.

Let's start by paraphrasing the API documentation for format strings (for more
complete, way-past-what-you-need-for-the-exam coverage, check out the java.
util.Formatter API):

printf("format string", argument(s));<F255D>

The format string can contain both normal string-literal information that isn't
associated with any arguments and argument-specific formatting data. The clue to
determining whether you're looking at formatting data is that formatting data will
always start with a percent sign (%). Let's look at an example, and don't panic, we'll
cover everything that comes after the % next:

System.out.printf("%2$d + %1$d", 123, 456);

This produces

456 + 123

Let's look at what just happened. Inside the double quotes there is a format string,
then a +, and then a second format string. Notice that we mixed literals in with the
format strings. Now let's dive in a little deeper and look at the construction of
format strings:

%[arg_index$][flags][width][.precision]conversion char

The values within [] are optional. In other words, the only required elements of
a format string are the % and a conversion character. In the previous example, the
only optional values we used were for argument indexing. The 2$ represents the
second argument, and the 1$ represents the first argument. (Notice that there's
no problem switching the order of arguments.) The d after the arguments is a
conversion character (more or less the type of the argument). Here's a rundown
of the format string elements you'll need to know for the exam:

■ arg_index An integer followed directly by a $, this indicates which
argument should be printed in this position.

08-ch08.indd 452 8/29/2014 1:22:13 PM

 Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3) 453

■ flags While many flags are available, for the exam, you'll need to know:

■ - Left-justify this argument

■ + Include a sign (+ or -) with this argument

■ 0 Pad this argument with zeroes

■ , Use locale-specific grouping separators (i.e., the comma in 123,456)

■ (Enclose negative numbers in parentheses

■ width This value indicates the minimum number of characters to print.
(If you want nice, even columns, you'll use this value extensively.)

■ precision For the exam, you'll only need this when formatting a floating-
point number, and in the case of floating-point numbers, precision indicates
the number of digits to print after the decimal point.

■ conversion The type of argument you'll be formatting. You'll need to know:

■ b boolean

■ c char

■ d integer

■ f floating point

■ s string

Let's see some of these formatting strings in action:

int i1 = -123;
int i2 = 12345;
System.out.printf(">%1$(7d< \n", i1);
System.out.printf(">%0,7d< \n", i2);
System.out.format(">%+-7d< \n", i2);
System.out.printf(">%2$b + %1$5d< \n", i1, false);

This produces:

> (123)<
>012,345<
>+12345 <
>false + -123<

(We added the > and < literals to help show how minimum widths, zero padding,
and alignments work.) Finally, it's important to remember that—barring the use of
booleans—if you have a mismatch between the type specified in your conversion
character and your argument, you'll get a runtime exception:

System.out.format("%d", 12.3);

08-ch08.indd 453 8/29/2014 1:22:13 PM

454 Chapter 8: String Processing, Data Formatting, Resource Bundles

This produces something like
Exception in thread "main" java.util.IllegalFormatConversionException: d !=
java.lang.Double

CERTIFICATION OBJECTIVE

Resource Bundles
(OCP Objectives 12.2, 12.3, and 12.5)

12.2 Build a resource bundle for each object.

12.3 Call a resource bundle from an application.

12.5 Describe the advantages of localizing an application.

Resource Bundles

Earlier, we used the Locale class to display numbers and dates for basic localization.
For full-fledged localization, we also need to provide language and country-specific
strings for display. There are only two parts to building an application with resource
bundles:

■ Locale You can use the same Locale we used for DateFormat and
NumberFormat to identify which resource bundle to choose.

■ ResourceBundle Think of a ResourceBundle as a map. You can use
property files or Java classes to specify the mappings.

Let's build up a simple application to be used in Canada. Since Canada has two
official languages, we want to let the user choose her favorite language. Designing
our application, we decided to have it just output "Hello Java" to show off how cool
it is. We can always add more text later.

We are going to externalize everything language specific to special files called
resource bundles. They're just property files that contain keys and string values to
display. Here are two simple resource bundle files:

08-ch08.indd 454 8/29/2014 1:22:13 PM

 Resource Bundles (OCP Objectives 12.2, 12.3, and 12.5) 455

A file named Labels_en.properties that contains a single line of data:

 hello=Hello Java!

A second file named Labels_fr.properties that contains a single line of data:

hello=Bonjour Java!

Using a resource bundle has three steps: obtaining the Locale, getting the
ResourceBundle, and looking up a value from the resource bundle. First, we create
a Locale object. To review, this means one of the following:

new Locale("en") // language – English
new Locale("en", "CA") // language and country – Canadian English
Locale.CANADA // constant for common locales – Canadian
English

Next, we need to create the resource bundle. We need to know the "title" of the
resource bundle and the locale. Then we pass those values to a factory, which creates
the resource bundle. The getBundle() method looks in the classpath for bundles
that match the bundle name ("Labels") and the provided locale.

ResourceBundle rb = ResourceBundle.getBundle("Labels", locale);

Finally, we use the resource bundle like a map and get a value based on the key:

rb.getString("hello");

Putting this together and adding java.util imports, we have everything we need
in order to read from a resource bundle:

import java.util.Locale;
import java.util.ResourceBundle;

public class WhichLanguage {
 public static void main(String[] args) {
 Locale locale = new Locale(args[0]);
 ResourceBundle rb = ResourceBundle.getBundle("Labels", locale);
 System.out.println(rb.getString("hello"));
 }
}

Running the code twice, we get:

> java WhichLanguage en
Hello Java!
> java WhichLanguage fr
Bonjour Java!

08-ch08.indd 455 8/29/2014 1:22:13 PM

456 Chapter 8: String Processing, Data Formatting, Resource Bundles

The most common use of localization in Java is web applications. You can

get the user's locale from information passed in the request rather than

hard-coding it.

Property Resource Bundles

Let's take a closer look at the property file. Aside from comments, a property file
contains key/value pairs:

this file contains a single key/value
hello=Hello Java

As you can see, comments are lines beginning with #. A key is the first string on a
line. Keys and values are separated by an equal sign. If you want to break up a single
line into multiple lines, you use a backslash:

hello1 = Hello \
 World!
System.out.println(rb.getString("hello1"));
Hello World!

If you actually want a line break, you use the standard Java \n escape sequence:

hello2 = Hello \nWorld !
System.out.println(rb.getString("hello2"));
Hello
World !

The Java API for java.util.ResourceBundle lists three good reasons to

use resource bundles. Using resource bundles "allows you to write programs than can

■ Be easily localized, or translated, into different languages

■ Handle multiple locales at once

■ Be easily modifi ed later to support even more locales"

If you encounter any questions on the exam that ask about the advantages of using

resource bundles, this quote from the API will serve you well.

08-ch08.indd 456 8/29/2014 1:22:13 PM

 Resource Bundles (OCP Objectives 12.2, 12.3, and 12.5) 457

You can mix and match these to your heart's content. Java helpfully ignores any
whitespace before subsequent lines of a multiline property. This is so you can use
indentation for clarity:

hello3 = 123\
 45
System.out.println(rb.getString("hello3"));
12345

Almost everyone uses # for comments and = to separate key/value pairs. There

are alternative syntax choices, though, which you should understand if you

come across them.

Property files can use two styles of commenting:

! comment

or

comment

Property files can define key/value pairs in any of the following formats:

key=value
key:value
key value

These few rules are all you need to know about the PropertyResourceBundle.
While property files are the most common format for resource bundles, what
happens if we want to represent types of values other than String? Or if we want to
load the resource bundles from a database?

Java Resource Bundles

When we need to move beyond simple property file key to string value mappings, we
can use resource bundles that are Java classes. We write Java classes that extend
ListResourceBundle. The class name is similar to the one for property files. Only
the extension is different.

import java.util.ListResourceBundle;
public class Labels_en_CA extends ListResourceBundle {
 protected Object[][] getContents() {
 return new Object[][] {
 { "hello", new StringBuilder("from Java") }
 };
 }
}

08-ch08.indd 457 8/29/2014 1:22:13 PM

458 Chapter 8: String Processing, Data Formatting, Resource Bundles

We implement ListResourceBundle's one required method that returns an array
of arrays. The inner array is key/value pairs. The outer array accumulates such pairs.
Notice that now we aren't limited to String values. We can call getObject() to
get a non-String value:

Locale locale = new Locale(args[0], "CA");
ResourceBundle rb = ResourceBundle.getBundle("Labels", locale);
System. out.println(rb.getObject("hello"));

Which prints "from Java".

Default Locale

What do you think happens if we call ResourceBundle.getBundle("Labels")
without any locale? It depends. Java will pick the resource bundle that matches the
locale the JVM is using. Typically, this matches the locale of the machine running
the program, but it doesn't have to. You can even change the default locale at
runtime. Which might be useful if you are working with people in different locales
so you can get the same behavior on all machines.

Exploring the API to get and set the default locale:

// store locale so can put it back at end
Locale initial = Locale.getDefault();
System.out.println(initial);

// set locale to Germany
Locale.setDefault(Locale.GERMANY);
System.out.println(Locale.getDefault());

// put original locale back
Locale.setDefault(initial);
System.out.println(Locale.getDefault());

which on our computer prints:

en_US
de_DE
en_US

For the first and last line, you may get different output depending on where you live.
The key is that the middle of the program executes as if it were in Germany,
regardless of where it is actually being run. It is good practice to restore the default
unless your program is ending right away. That way, the rest of your code works
normally—it probably doesn't expect to be in Germany.

08-ch08.indd 458 8/29/2014 1:22:13 PM

 Resource Bundles (OCP Objectives 12.2, 12.3, and 12.5) 459

Choosing the Right Resource Bundle

There are two main ways to get a resource bundle:

ResourceBundle.getBundle(baseName)
ResourceBundle.getBundle(baseName, locale)

Luckily, ResourceBundle.getBundle(baseName)is just shorthand for
ResourceBundle.getBundle(baseName, Locale.getDefault())and you only
have to remember one set of rules. There are a few other overloaded signatures for
getBundle(), such as taking a ClassLoader. But don't worry—these aren't on
the exam.

Now on to the rules. How does Java choose the right resource bundle to use? In a
nutshell, Java chooses the most specific resource bundle it can while giving
preference to Java ListResourceBundle.

Going back to our Canadian application, we decide to request the Canadian
French resource bundle:

Locale locale = new Locale("fr", "CA");
ResourceBundle rb = ResourceBundle.getBundle("RB", locale);

Java will look for the following files in the classpath in this order:

RB_fr_CA.java // exactly what we asked for
RB_fr_CA.properties

RB_fr.java // couldn't find exactly what we asked for
RB_fr.properties // now trying just requested language
RB_en_US.java // couldn't find French
RB_en_US.properties // now trying default Locale
RB_en.java // couldn't find full default Locale country
RB_en.properties // now trying default Locale language
RB.java // couldn't find anything any matching Locale,
RB.properties // now trying default bundle

If none of these files exist, Java gives up and throws a MissingResourceException.
While this is a lot of things for Java to try, it is pretty easy to remember. Start with
the full Locale requested. Then fall back to just language. Then fall back to the
default Locale. Then fall back to the default bundle. Then cry.

Make sure you understand this because it is about to get more complicated.

08-ch08.indd 459 8/29/2014 1:22:13 PM

460 Chapter 8: String Processing, Data Formatting, Resource Bundles

You don't have to specify all the keys in all the property files. They can inherit
from each other. This is a good thing, as it reduces duplication.

RB_en.properties
 ride.in=Take a ride in the

RB_en_US.properties
 elevator=elevator

RB_en_UK.properties
 elevator=lift

Locale locale = new Locale("en", "UK");
ResourceBundle rb = ResourceBundle.getBundle("RB", locale);
System.out.println(rb.getString("ride.in") +
 rb.getString("elevator"));

Outputs:

Take a ride in the lift

The common "ride.in" property comes from the parent noncountry-specific
bundle "RB_en.properties." The "elevator" property is different by country and
comes from the UK version that we specifically requested.

The parent hierarchy is more specific than the search order. A bundle's parent
always has a shorter name than the child bundle. If a parent is missing, Java just
skips along that hierarchy. ListResourceBundles and
PropertyResourcesBundles do not share a hierarchy. Similarly, the default locale's
resource bundles do not share a hierarchy with the requested locale's resource
bundles. Table 8-3 shows examples of bundles that do share a hierarchy.

Name of Resource Bundle Hierarchy

RB_fr_CA.java RB.java
RB_fr.java
RB_fr_CA.java

RB_fr_CA.properties RB.properties
RB_fr.properties
RB_fr_CA.properties

RB_en_US.java RB.java
RB_en.java
RB_en_US.java

RB_en_US.properties RB.properties
RB_en.properties
RB_en_US.properties

 TABLE 8-3

Resource Bundle
Lookups

08-ch08.indd 460 8/29/2014 1:22:13 PM

 Certifi cation Summary 461

Remember that searching for a property file uses a linear list. However, once a
matching resource bundle is found, keys can only come from that resource bundle's
hierarchy.

One more example to make this clear. Think about which resource bundles will
be used from the previous code if I use the following code to request a resource
bundle:

Locale locale = new Locale("fr", "FR");
ResourceBundle rb = ResourceBundle.getBundle("RB", locale);

First, Java looks for RB_fr_FR.java and RB_fr_FR.properties. Since neither is
found, Java falls back to using RB_fr.java. Then as we request keys from rb, Java
starts looking in RB_fr.java and additionally looks in RB.java. Java started out
looking for a matching file and then switched to searching the hierarchy of that file.

CERTIFICATION SUMMARY

Dates, Numbers, and Currency Remember that the objective is a bit
misleading and that you'll have to understand the basics of five related classes:
java.util.Date, java.util.Calendar, java.util.Locale, java.text
.DateFormat, and java.text.NumberFormat. A Date is the number of
milliseconds since January 1, 1970, stored in a long. Most of Date's methods have
been deprecated, so use the Calendar class for your date-manipulation tasks.
Remember that in order to create instances of Calendar, DateFormat, and
NumberFormat, you have to use static factory methods like getInstance(). The
Locale class is used with DateFormat and NumberFormat to generate a variety of
output styles that are language and/or country specific.

Parsing, Tokenizing, and Formatting To find specific pieces of data in large
data sources, Java provides several mechanisms that use the concepts of regular
expressions (regex). Regex expressions can be used with the java.util.regex
package's Pattern and Matcher classes, as well as with java.util.Scanner and
with the String.split() method. When creating regex patterns, you can use
literal characters for matching or you can use metacharacters that allow you to
match on concepts like "find digits" or "find whitespace." Regex provides quantifiers
that allow you to say things like "find one or more of these things in a row." You won't
have to understand the Matcher methods that facilitate replacing strings in data.

08-ch08.indd 461 8/29/2014 1:22:13 PM

462 Chapter 8: String Processing, Data Formatting, Resource Bundles

Tokenizing is splitting delimited data into pieces. Delimiters are usually as simple
as a comma, but they can be as complex as any other regex pattern. The java
.util.Scanner class provides full tokenizing capabilities using regex and allows you
to tokenize in a loop so that you can stop the tokenizing process at any point.
String.split() allows full regex patterns for tokenizing, but tokenizing is done in
one step; hence, large data sources can take a long time to process. The java.util
.StringTokenizer class is almost deprecated, but you might find it in old code. It's
similar to Scanner.

Formatting data for output can be handled by using the Formatter class, or more
commonly, by using the new PrintStream methods format() and printf().
Remember format() and printf() behave identically. To use these methods, you
create a format string that is associated with every piece of data you want to format.

Resource Bundles Finally, resource bundles allow you to move locale-specific
information (usually strings) out of your code and into external files where they can
easily be amended. This provides an easy way for you to localize your applications
across many locales.

08-ch08.indd 462 8/29/2014 1:22:13 PM

Two-Minute Drill 463

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Dates, Numbers, and Currency
(OCP Objectives 12.1, 12.4, and 12.5)

❑ The classes you need to understand are java.util.Date, java.util.
Calendar, java.text.DateFormat, java.text.NumberFormat, and
java.util.Locale.

❑ Most of the Date class's methods have been deprecated.

❑ A Date is stored as a long, the number of milliseconds since January 1, 1970.

❑ Date objects are go-betweens for the Calendar and DateFormat classes.

❑ The Calendar provides a powerful set of methods to manipulate dates,
performing tasks such as getting days of the week or adding some number of
months or years (or other increments) to a date.

❑ Create Calendar instances using static factory methods (getInstance()).

❑ The Calendar methods you should understand are add(), which allows you
to add or subtract various pieces (minutes, days, years, and so on) of dates,
and roll(), which works like add() but doesn't increment a date's bigger
pieces. (For example, adding ten months to an October date changes the
month to August, but doesn't increment the Calendar's year value.)

❑ DateFormat instances are created using static factory methods
(getInstance() and getDateInstance()).

❑ There are several format "styles" available in the DateFormat class.

❑ DateFormat styles can be applied against various Locales to create a wide
array of outputs for any given date.

❑ The DateFormat.format() method is used to create strings containing
properly formatted dates.

❑ The Locale class is used in conjunction with DateFormat and
NumberFormat.

❑ Both DateFormat and NumberFormat objects can be constructed with a
specific, immutable Locale.

❑ For the exam, you should understand creating Locales using either language
or a combination of language and country.

✓

08-ch08.indd 463 8/29/2014 1:22:13 PM

464 Chapter 8: String Processing, Data Formatting, Resource Bundles

Parsing, Tokenizing, and Formatting
(OCP Objectives 5.1, 5.2, 5.3, 12.4)

❑ Regex is short for regular expressions, which are the patterns used to search
for data within large data sources.

❑ Regex is a sublanguage that exists in Java and other languages (such as Perl).

❑ Regex lets you create search patterns using literal characters or
metacharacters. Metacharacters allow you to search for slightly more abstract
data like "digits" or "whitespace."

❑ Study the \d, \s, \w, and . metacharacters.

❑ Regex provides for quantifiers, which allow you to specify concepts like "look
for one or more digits in a row."

❑ Study the ?, *, and + greedy quantifiers.

❑ Remember that metacharacters and strings don't mix well unless you
remember to "escape" them properly. For instance, String s = "\\d";.

❑ The Pattern and Matcher classes have Java's most powerful regex
capabilities.

❑ You should understand the Pattern compile() method and the Matcher
matches(), pattern(), find(), start(), and group() methods.

❑ You WON'T need to understand Matcher's replacement-oriented methods.

❑ You can use java.util.Scanner to do simple regex searches, but it is
primarily intended for tokenizing.

❑ Tokenizing is the process of splitting delimited data into small pieces.

❑ In tokenizing, the data you want is called tokens, and the strings that separate
the tokens are called delimiters.

❑ Tokenizing should be done with the Scanner class or with String.split().

❑ Delimiters are either single characters like commas or complex regex
expressions.

❑ The Scanner class allows you to tokenize data from within a loop, which
allows you to stop whenever you want to.

08-ch08.indd 464 8/29/2014 1:22:14 PM

Two-Minute Drill 465

❑ The Scanner class allows you to tokenize strings or streams or files.

❑ The old StringTokenizer class allows you to tokenize strings.

❑ The String.split() method tokenizes the entire source data all at once, so
large amounts of data can be quite slow to process.

❑ As of Java 5 there are two methods used to format data for output. These
methods are format() and printf(). These methods are found in the
PrintStream class, an instance of which is the out in System.out.

❑ The format() and printf() methods have identical functionality.

❑ Formatting data with printf() (or format()) is accomplished using
formatting strings that are associated with primitive or string arguments.

❑ The format() method allows you to mix literals in with your format strings.

❑ The format string values you should know are

❑ Flags: -, +, 0, "," , and (

❑ Conversions: b, c, d, f, and s

❑ Barring booleans, if your conversion character doesn't match your argument
type, an exception will be thrown.

Resource Bundles

❑ A ListResourceBundle comes from Java classes, and a
PropertyResourceBundle comes from .property files.

❑ ResourceBundle.getBundle(name)uses the default Locale.

❑ Locale.getDefault()returns the JVM's default Locale
. Locale.setDefault(locale)can change the JVM's locale.

❑ Java searches for resource bundles in this order: requested language/country,
requested language, default locale language/country, default locale language,
default bundle. Within each item, Java ListResourceBundle is favored over
PropertyResourceBundle.

❑ Once a ResourceBundle is found, only parents of that bundle can be used to
look up keys.

08-ch08.indd 465 8/29/2014 1:22:14 PM

466 Chapter 8: String Processing, Data Formatting, Resource Bundles

SELF TEST

Note: Both the OCA 7 and OCP 7 exams have objectives concerning Strings and StringBuilders.
In Chapter 5, we discussed these two classes. This chapter's self test includes questions about Strings
and StringBuilders for the sake of preparing you for the OCP exam. If you need a refresher on
Strings and Stringbuilders, head back to Chapter 5.

 1. Given:

import java.util.regex.*;
class Regex2 {
 public static void main(String[] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 boolean b = false;
 while(b = m.find()) {
 System.out.print(m.start() + m.group());
 }
 }
}

 And the command line:

java Regex2 "\d*" ab34ef

 What is the result?
 A. 234

 B. 334

 C. 2334

 D. 0123456

 E. 01234456

 F. 12334567

 G. Compilation fails

 2. Given:

public class Canada {
 public static void main(String[] args) {
 ResourceBundle rb = ResourceBundle.getBundle("Flag",
 new Locale("en_CA"));
 System.out.println(rb.getString("key"));
 }
}

08-ch08.indd 466 8/29/2014 1:22:15 PM

Self Test 467

 Assume the default Locale is Italian. If each of the following is the only resource bundle on the
classpath and contains key=value, which will be used? (Choose all that apply.)

 A. Flag.java

 B. Flag_CA.properties

 C. Flag_en.java

 D. Flag_en.properties

 E. Flag_en_CA.properties

 F. Flag_fr_CA.properties

 3. Given:
import java.util.regex.*;
class Quetico {
 public static void main(String [] args) {
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 System.out.print("match positions: ");
 while(m.find()) {
 System.out.print(m.start() + " ");
 }
 System.out.println("");
 }
}

 Which invocation(s) will produce the output: 0 2 4 8 ? (Choose all that apply.)
 A. java Quetico "\b" "^23 *$76 bc"

 B. java Quetico "\B" "^23 *$76 bc"

 C. java Quetico "\S" "^23 *$76 bc"

 D. java Quetico "\W" "^23 *$76 bc"

 E. None of the above
 F. Compilation fails
 G. An exception is thrown at runtime

08-ch08.indd 467 8/29/2014 1:22:15 PM

468 Chapter 8: String Processing, Data Formatting, Resource Bundles

 4. Given:
public class Banana {
 public static void main(String[] args) {
 String in = "1 a2 b 3 c4d 5e";
 String[] chunks = in.split(args[0]);

 System.out.println("count " + chunks.length);
 for(String s : chunks)
 System.out.print(">" + s + "< ");
 }
}

 And two invocations:

java Banana " "
java Banana "\d"

 What is the result? (Choose all that apply.)
 A. In both cases, the count will be 5
 B. In both cases, the count will be 6
 C. In one case, the count will be 5, and in the other case, 6
 D. Banana cannot be invoked because it will not compile
 E. At least one of the invocations will throw an exception

 5. Given three resource bundles and a Java class:

Train_en_US.properties: train=subway
Train_en_UK.properties: train=underground
Train_en.properties: ride = ride

1: public class ChooChoo {
2: public static void main(String[] args) {
3: Locale.setDefault(new Locale("en", "US"));
4: ResourceBundle rb = ResourceBundle.getBundle("Train",
5: new Locale("en", "US"));
6: System.out.print(rb.getString("ride")
 + " " + rb.getString("train"));
7: }
8: }

 Which of the following, when made independently, will change the output to "ride
underground"? (Choose all that apply.)

08-ch08.indd 468 8/29/2014 1:22:15 PM

Self Test 469

 A. Add train=underground to Train_en.properties
 B. Change line 1 to Locale.setDefault(new Locale("en", "UK"));
 C. Change line 5 to Locale.ENGLISH);
 D. Change line 5 to new Locale("en", "UK"));
 E. Delete file Train_en_US.properties

 6. Given that 1119280000000L is roughly the number of milliseconds from January 1, 1970, to
June 20, 2005, and that you want to print that date in German, using the LONG style such that
"June" will be displayed as "Juni," complete the code using the following fragments. Note: You
can use each fragment either zero or one times, and you might not need to fill all of the slots.

 Code:

import java.___________

import java.___________

class DateTwo {
 public static void main(String[] args) {
 Date d = new Date(1119280000000L);

 DateFormat df = ___________________________

 ________________ , _________________);

 System.out.println(________________
 }
}

 Fragments:

io.*; new DateFormat(Locale.LONG
nio.*; DateFormat.getInstance(Locale.GERMANY
util.*; DateFormat.getDateInstance(DateFormat.LONG
text.*; util.regex; DateFormat.GERMANY
date.*; df.format(d)); d.format(df));

08-ch08.indd 469 8/29/2014 1:22:15 PM

470 Chapter 8: String Processing, Data Formatting, Resource Bundles

 7. Given:

public class Legos {
 public static void main(String[] args) {
 StringBuilder sb = new StringBuilder(8);
 System.out.print(sb.length() + " " + sb + " ");
 sb.insert(0, "abcdef");
 sb.append("789");
 System.out.println(sb.length() + " " + sb);
 }
}

 What is the result?
 A. 0 8 abcdef78

 B. 0 8 789abcde

 C. 0 9 abcdef789

 D. 0 9 789abcdef

 E. Compilations fails
 F. 0, followed by an exception

 8. Given two files:

package rb;
public class Bundle extends java.util.ListResourceBundle {
 protected Object[][] getContents() {
 return new Object[][] { { "123", 456 } };
 }
}

package rb;
import java.util.*;
public class KeyValue {
 public static void main(String[] args) {
 ResourceBundle rb = ResourceBundle.getBundle("rb.Bundle",
 Locale.getDefault());
 // insert code here
 }
}

08-ch08.indd 470 8/29/2014 1:22:15 PM

Self Test 471

 Which, inserted independently, will compile? (Choose all that apply.)
 A. Object obj = rb.getInteger("123");

 B. Object obj = rb.getInteger(123);

 C. Object obj = rb.getObject("123");

 D. Object obj = rb.getObject(123);

 E. Object obj = rb.getString("123");

 F. Object obj = rb.getString(123);

 9. Given:

 3. public class Theory {
 4. public static void main(String[] args) {
 5. String s1 = "abc";
 6. String s2 = s1;
 7. s1 += "d";
 8. System.out.println(s1 + " " + s2 + " " + (s1==s2));
 9.
10. StringBuffer sb1 = new StringBuffer("abc");
11. StringBuffer sb2 = sb1;
12. sb1.append("d");
13. System.out.println(sb1 + " " + sb2 + " " + (sb1==sb2));
14. }
15. }

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The first line of output is abc abc true
 C. The first line of output is abc abc false
 D. The first line of output is abcd abc false
 E. The second line of output is abcd abc false
 F. The second line of output is abcd abcd true
 G. The second line of output is abcd abcd false

08-ch08.indd 471 8/29/2014 1:22:15 PM

472 Chapter 8: String Processing, Data Formatting, Resource Bundles

 10. Given:

public class Stone {
 public static void main(String[] args) {
 String s = "abc";
 System.out.println(">" + doStuff(s) + "<");
 }
 static String doStuff(String s) {
 s = s.concat(" ef h ");
 return s.trim();
 }
}

 What is the result?
 A. >abcefh<

 B. >efhabc<

 C. >abc ef h<

 D. \>>ef h abc<

 E. >abc ef h <

 11. Given:

 3. import java.text.*;
 4. public class Slice {
 5. public static void main(String[] args) {
 6. String s = "987.123456";
 7. double d = 987.123456d;
 8. NumberFormat nf = NumberFormat.getInstance();
 9. nf.setMaximumFractionDigits(5);
10. System.out.println(nf.format(d) + " ");
11. try {
12. System.out.println(nf.parse(s));
13. } catch (Exception e) { System.out.println("got exc"); }
14. }
15. }

 Which are true? (Choose all that apply.)
 A. The output is 987.12345 987.12345
 B. The output is 987.12346 987.12345
 C. The output is 987.12345 987.123456
 D. The output is 987.12346 987.123456
 E. The try/catch block is unnecessary
 F. The code compiles and runs without exception
 G. The invocation of parse() must be placed within a try/catch block

08-ch08.indd 472 8/29/2014 1:22:15 PM

Self Test 473

 12. Given:

 3. import java.util.regex.*;
 4. public class Archie {
 5. public static void main(String[] args) {
 6. Pattern p = Pattern.compile(args[0]);
 7. Matcher m = p.matcher(args[1]);
 8. int count = 0;
 9. while(m.find())
10. count++;
11. System.out.print(count);
12. }
13. }

 And given the command-line invocation:

java Archie "\d+" ab2c4d67

 What is the result?
 A. 0

 B. 3

 C. 4

 D. 8

 E. 9

 F. Compilation fails

 13. Given:

 3. import java.util.*;
 4. public class Looking {
 5. public static void main(String[] args) {
 6. String input = "1 2 a 3 45 6";
 7. Scanner sc = new Scanner(input);
 8. int x = 0;
 9. do {
10. x = sc.nextInt();
11. System.out.print(x + " ");
12. } while (x!=0);
13. }
14. }

 What is the result?
 A. 1 2

 B. 1 2 3 45 6

 C. 1 2 3 4 5 6

 D. 1 2 a 3 45 6

 E. Compilation fails
 F. 1 2 followed by an exception

08-ch08.indd 473 8/29/2014 1:22:15 PM

474 Chapter 8: String Processing, Data Formatting, Resource Bundles

SELF TEST ANSWERS

 1. ☑ E is correct. The \d is looking for digits. The * is a quantifier that looks for 0 to many
occurrences of the pattern that precedes it. Because we specified *, the group()method returns
empty strings until consecutive digits are found, so the only time group() returns a value is
when it returns 34, when the matcher finds digits starting in position 2. The start() method
returns the starting position of the previous match because, again, we said find 0 to many
occurrences.
☐✗ A, B, C, D, F, and G are incorrect based on the above. (OCP Objective 5.2)

 2. ☑ A, C, D, and E are correct. The default Locale is irrelevant here since none of the choices
use Italian. A is the default resource bundle. C and D use the language but not the country from
the requested locale. E uses the exact match of the requested locale.
☐✗ B is incorrect because the language code of CA does not match en. And CA isn't a valid
language code. F is incorrect because the language code "fr" does not match en. Even though
the country code of CA does match, the language code is more important. (OCP Objectives 12.2
and 12.3)

 3. ☑ B is correct. Remember that the boundary metacharacters (\b and \B), act as though the
string being searched is bounded with invisible, non-word characters. Then remember that \B
reports on boundaries between word to word or non-word to non-word characters.
☐✗ A, C, D, E, F, and G are incorrect based on the above. (OCP Objective 5.2)

 4. ☑ B is correct. In the second case, the first token is empty. Remember that in the first case,
the delimiter is a space, and in the second case, the delimiter is any numeric digit.
☐✗ A, C, D, and E are incorrect based on the above. (OCP Objectives 5.1 and 5.2)

 5. ☑ D is correct. As is, the code finds resource bundle Train_en_US.properties, which uses
Train_en.properties as a parent. Choice D finds resource bundle Train_en_UK.properties,
which uses Train_en.properties as a parent.
☐✗ A is incorrect because both the parent and child have the same property. In this scenario,
the more specific one (child) gets used. B is incorrect because the default locale only gets used if
the requested resource bundle can't be found. C is incorrect because it finds the resource bundle
Train_en.properties, which does not have any "train" key. E is incorrect because there is no
"ride" key once we delete the parent. F is incorrect based on the above. (OCP Objectives 12.2
and 12.3)

 6. ☑ Answer:
import java.util.*;
import java.text.*;
class DateTwo {

08-ch08.indd 474 8/29/2014 1:22:15 PM

Self Test Answers 475

 public static void main(String[] args) {
 Date d = new Date(1119280000000L);
 DateFormat df = DateFormat.getDateInstance(
 DateFormat.LONG, Locale.GERMANY);
 System.out.println(df.format(d));
 }
}

 Notes: Remember that you must build DateFormat objects using static methods. Also,
remember that you must specify a Locale for a DateFormat object at the time of instantiation.
The getInstance() method does not take a Locale. (OCP Objective 12.4)

 7. ☑ C is correct. The append()method appends to the end of the StringBuilder's current
value, and if you append past the current capacity, the capacity is automatically increased. Note:
Invoking insert() past the current capacity will cause an exception to be thrown.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCP Objective 5.1)

 8. ☑ C and E are correct. When getting a key from a resource bundle, the key must be a string.
The returned result must be a string or an object. While that object may happen to be an
integer, the API is still getObject(). E will throw a ClassCastException since 456 is not a
string, but it will compile.
☐✗ A, B, D, and F are incorrect because of the above. (OCP Objectives 12.2 and 12.3)

 9. ☑ D and F are correct. While String objects are immutable, references to Strings
are mutable. The code s1 += "d"; creates a new String object. StringBuffer objects
are mutable, so the append() is changing the single StringBuffer object to which both
StringBuffer references refer.
☐✗ A, B, C, E, and G are incorrect based on the above. (OCP Objective 5.1)

 10. ☑ C is correct. The concat() method adds to the end of the String, not the front. The
trickier part is the return statement. Remember that Strings are immutable. The String
referred to by "s" in doStuff() is not changed by the trim() method. Instead, a new String
object is created via the trim() method, and a reference to that new String is returned to
main().
☐✗ A, B, D, and E are incorrect based on the above. (OCP Objective 5.1)

 11. ☑ D, F, and G are correct. The setMaximumFractionDigits() applies to the formatting,
but not the parsing. The try/catch block is placed appropriately. This one might scare you into
thinking that you'll need to memorize more than you really do. If you can remember that you're
formatting the number and parsing the string, you should be fine for the exam.
☐✗ A, B, C, and E are incorrect based on the above. (OCP Objective 12.4)

08-ch08.indd 475 8/29/2014 1:22:15 PM

476 Chapter 8: String Processing, Data Formatting, Resource Bundles

 12. ☑ B is correct. The "\d" metacharacter looks for digits, and the + quantifier says look for
"one or more" occurrences. The find() method will find three sets of one or more consecutive
digits: 2, 4, and 67.
☐✗ A, C, D, E, and F are incorrect based on the above. (OCP Objective 5.2)

 13. ☑ F is correct. The nextXxx() methods are typically invoked after a call to a hasNextXxx(),
which determines whether the next token is of the correct type.
☐✗ A, B, C, D, and E are incorrect based on the above. (OCP Objective 5.1)

08-ch08.indd 476 8/29/2014 1:22:15 PM

99
I/O and NIOI/O and NIO

CERTIFICATION OBJECTIVES

Read and Write Data from the Console •
Use Streams to Read From and Write To •
Files by Using Classes in the java
.io Package, Including BufferedReader,
BufferedWriter, File, FileReader, FileWriter,
DataInputStream, DataOutputStream,
ObjectOutputStream, ObjectInputStream,
and PrintWriter

Operate on File and Directory Paths with •
the Path Class (sic)

Check, Delete, Copy, or Move a File or •
Directory with the Files Class

Read and Change File and Directory •
Attributes, Focusing on the
BasicFileAttributes, DosFileAttributes,
and PosixFileAttributes Interfaces

Recursively Access a Directory Tree Using •
the DirectoryStream and FileVisitor
Interfaces

Find a File with the PathMatcher Interface •
Watch a Directory for Changes with the •
WatchService Interface

Two-Minute Drill ✓
Q&A Self Test

09-ch09.indd 477 9/2/2014 3:34:00 PM

478 Chapter 9: I/O and NIO

I/O (input/output) has been around since the beginning of Java. You could read and write
files along with some other common operations. Then with Java 1.4, Java added more I/O
functionality and cleverly named it NIO. That stands for "new I/O." Don't worry—you won't

be asked about those Java 1.4 additions on the exam.

The APIs prior to Java 7 still had a few limitations when you had to write
applications that focused heavily on files and file manipulation. Trying to write a
little routine listing all the files created in the past day within a directory tree would
give you some headaches. There was no support for navigating directory trees, and
just reading attributes of a file was also quite hard. In Java 7, this whole routine is
less than 15 lines of code!

Now what to name yet another I/O API? The name "new I/O" was taken, and
"new new I/O" would just sound silly. Since the Java 7 functionality was added to
package names that begin with java.nio, the new name was NIO.2. For the
purposes of this chapter and the exam, NIO is shorthand for NIO.2.

Since NIO (or NIO.2 if you like) builds upon the original I/O, some of those
concepts are still tested on the exam in addition to the new parts. Fortunately, you
won't have to become a total I/O or NIO guru to do well on the exam. The intention
of the exam team was to include just the basic aspects of these technologies, and
in this chapter, we cover more than you'll need to get through these objectives on
the exam.

CERTIFICATION OBJECTIVE

File Navigation and I/O
(OCP Objectives 7.1 and 7.2)

7.1 Read and write data from the console.

7.2 Use streams to read from and write to files by using classes in the java.io package,
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInputStream,
DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter.

09-ch09.indd 478 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 479

I/O has had a strange history with the OCP certification. It was included in all
the versions of the exam, up to and including 1.2, then removed from the 1.4 exam,
reintroduced for Java 5, extended for Java 6, and extended still more for Java 7.

I/O is a huge topic in general, and the Java APIs that deal with I/O in one fashion
or another are correspondingly huge. A general discussion of I/O could include
topics such as file I/O, console I/O, thread I/O, high-performance I/O, byte-oriented
I/O, character-oriented I/O, I/O filtering and wrapping, serialization, and more.
Luckily for us, the I/O topics included in the Java 7 exam are fairly well restricted to
file I/O for characters and Serialization. Due to a late change in the Oracle objectives,
you WILL NOT find Serialization discussed in this chapter. Instead, we created

Here's a summary of the I/O classes you'll need to understand for the exam:

■ File The API says that the File class is "an abstract representation of file
and directory pathnames." The File class isn't used to actually read or write
data; it's used to work at a higher level, making new empty files, searching for
files, deleting files, making directories, and working with paths.

■ FileReader This class is used to read character files. Its read() methods
are fairly low-level, allowing you to read single characters, the whole stream
of characters, or a fixed number of characters. FileReaders are usually
wrapped by higher-level objects such as BufferedReaders, which improve
performance and provide more convenient ways to work with the data.

■ BufferedReader This class is used to make lower-level Reader classes like
FileReader more efficient and easier to use. Compared to FileReaders,
BufferedReaders read relatively large chunks of data from a file at once
and keep this data in a buffer. When you ask for the next character or line
of data, it is retrieved from the buffer, which minimizes the number of
times that time-intensive, file-read operations are performed. In addition,
BufferedReader provides more convenient methods, such as readLine(),
that allow you to get the next line of characters from a file.

■ FileWriter This class is used to write to character files. Its write()
methods allow you to write character(s) or strings to a file. FileWriters are
usually wrapped by higher-level Writer objects, such as BufferedWriters
or PrintWriters, which provide better performance and higher-level, more
flexible methods to write data.

■ BufferedWriter This class is used to make lower-level classes like
FileWriters more efficient and easier to use. Compared to FileWriters,
BufferedWriters write relatively large chunks of data to a file at once,

09-ch09.indd 479 9/2/2014 3:34:04 PM

a complete "Serialization mini-chapter" (along with a Self Test) as Appendix A.

480 Chapter 9: I/O and NIO

minimizing the number of times that slow, file-writing operations are
performed. The BufferedWriter class also provides a newLine() method to
create platform-specific line separators automatically.

■ PrintWriter This class has been enhanced significantly in Java 5. Because
of newly created methods and constructors (like building a PrintWriter
with a File or a String), you might find that you can use PrintWriter
in places where you previously needed a Writer to be wrapped with a
FileWriter and/or a BufferedWriter. New methods like format(),
printf(), and append() make PrintWriters very flexible and powerful.

■ Console This new Java 6 convenience class provides methods to read input
from the console and write formatted output to the console.

Stream classes are used to read and write bytes, and Readers and Writers

are used to read and write characters. Since all of the fi le I/O on the exam is related

to characters, if you see API class names containing the word "Stream"—for instance,

DataOutputStream—then the question is probably about serialization or something

unrelated to the actual I/O objective.

Creating Files Using the File Class

Objects of type File are used to represent the actual files (but not the data in the
files) or directories that exist on a computer's physical disk. Just to make sure we're
clear, when we talk about an object of type File, we'll say File, with a capital F.
When we're talking about what exists on a hard drive, we'll call it a file with a
lowercase f (unless it's a variable name in some code). Let's start with a few basic
examples of creating files, writing to them, and reading from them. First, let's create
a new file and write a few lines of data to it:
import java.io.*; // The section 7 objectives
 // focus on classes from
 // java.io
class Writer1 {
 public static void main(String [] args) {
 File file = new File("fileWrite1.txt"); // There's no
 // file yet!
 }
}

09-ch09.indd 480 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 481

If you compile and run this program, when you look at the contents of your current
directory, you'll discover absolutely no indication of a file called fileWrite1.txt.
When you make a new instance of the class File, you're not yet making an actual file;
you're just creating a filename. Once you have a File object, there are several ways to
make an actual file. Let's see what we can do with the File object we just made:

import java.io.*;

class Writer1 {
 public static void main(String [] args) {
 try { // warning: exceptions possible
 boolean newFile = false;
 File file = new File // it's only an object
 ("fileWrite1.txt");
 System.out.println(file.exists()); // look for a real file
 newFile = file.createNewFile(); // maybe create a file!
 System.out.println(newFile); // already there?
 System.out.println(file.exists()); // look again
 } catch(IOException e) { }
 }
}

This produces the output

false
true
true

And also produces an empty file in your current directory. If you run the code a
second time, you get the output

true
false
true

Let's examine these sets of output:

■ First execution The first call to exists() returned false, which we
expected… remember, new File() doesn't create a file on the disk! The
createNewFile() method created an actual file and returned true,
indicating that a new file was created and that one didn't already exist.
Finally, we called exists() again, and this time it returned true, indicating
that the file existed on the disk.

■ Second execution The first call to exists() returns true because we
built the file during the first run. Then the call to createNewFile() returns

09-ch09.indd 481 9/2/2014 3:34:04 PM

482 Chapter 9: I/O and NIO

false since the method didn't create a file this time through. Of course, the
last call to exists() returns true.

A couple of other new things happened in this code. First, notice that we had to
put our file creation code in a try/catch. This is true for almost all of the file I/O
code you'll ever write. I/O is one of those inherently risky things. We're keeping it
simple for now and ignoring the exceptions, but we still need to follow the handle-
or-declare rule, since most I/O methods declare checked exceptions. We'll talk more
about I/O exceptions later. We used a couple of File's methods in this code:

■ boolean exists() This method returns true if it can find the actual file.

■ boolean createNewFile() This method creates a new file if it doesn't
already exist.

Remember, the exam creators are trying to jam as much code as they can

into a small space, so in the previous example, instead of these three lines of code:

boolean newFile = false;
...
newFile = file.createNewFile();
System.out.println(newFile);

you might see something like the following single line of code, which is a bit harder to

read, but accomplishes the same thing:

System.out.println(file.createNewFile());

Using FileWriter and FileReader

In practice, you probably won't use the FileWriter and FileReader classes without
wrapping them (more about "wrapping" very soon). That said, let's go ahead and do
a little "naked" file I/O:

import java.io.*;

class Writer2 {
 public static void main(String [] args) {
 char[] in = new char[50]; // to store input
 int size = 0;

09-ch09.indd 482 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 483

 try {
 File file = new File(// just an object
 "fileWrite2.txt");
 FileWriter fw =
 new FileWriter(file); // create an actual file
 // & a FileWriter obj
 fw.write("howdy\nfolks\n"); // write characters to
 // the file
 fw.flush(); // flush before closing
 fw.close(); // close file when done

 FileReader fr =
 new FileReader(file); // create a FileReader
 // object
 size = fr.read(in); // read the whole file!
 System.out.print(size + " "); // how many bytes read
 for(char c : in) // print the array
 System.out.print(c);
 fr.close(); // again, always close
 } catch(IOException e) { }
 }
}

which produces the output:

12 howdy
folks

Here's what just happened:

 1. FileWriter fw = new FileWriter(file) did three things:

a. It created a FileWriter reference variable, fw.

b. It created a FileWriter object and assigned it to fw.

c. It created an actual empty file out on the disk (and you can prove it).

 2. We wrote 12 characters to the file with the write() method, and we did a
flush() and a close().

 3. We made a new FileReader object, which also opened the file on disk for
reading.

 4. The read() method read the whole file, a character at a time, and put it into
the char[] in.

 5. We printed out the number of characters we read in size, and we looped
through the in array, printing out each character we read, and then we closed
the file.

09-ch09.indd 483 9/2/2014 3:34:04 PM

484 Chapter 9: I/O and NIO

Before we go any further, let's talk about flush() and close(). When you write
data out to a stream, some amount of buffering will occur, and you never know for
sure exactly when the last of the data will actually be sent. You might perform many
write operations on a stream before closing it, and invoking the flush() method
guarantees that the last of the data you thought you had already written actually gets
out to the file. Whenever you're done using a file, either reading it or writing to it,
you should invoke the close() method. When you are doing file I/O, you're using
expensive and limited operating system resources, and so when you're done,
invoking close() will free up those resources.

Now, back to our last example. This program certainly works, but it's painful in a
couple of different ways:

 1. When we were writing data to the file, we manually inserted line separators
(in this case \n) into our data.

 2. When we were reading data back in, we put it into a character array. It being
an array and all, we had to declare its size beforehand, so we'd have been in
trouble if we hadn't made it big enough! We could have read the data in one
character at a time, looking for the end of the file after each read(), but
that's pretty painful too.

Because of these limitations, we'll typically want to use higher-level I/O classes
like BufferedWriter or BufferedReader in combination with FileWriter or
FileReader.

Combining I/O Classes

Java's entire I/O system was designed around the idea of using several classes in
combination. Combining I/O classes is sometimes called wrapping and sometimes
called chaining. The java.io package contains about 50 classes, 10 interfaces, and
15 exceptions. Each class in the package has a specific purpose (creating high
cohesion), and the classes are designed to be combined with each other in countless
ways to handle a wide variety of situations.

When it's time to do some I/O in real life, you'll undoubtedly find yourself poring
over the java.io API, trying to figure out which classes you'll need and how to
hook them together. For the exam, you'll need to do the same thing, but Oracle
artificially reduced the API (phew!). In terms of studying for Exam Objective 7.2,
we can imagine that the entire java.io package—consisting of the classes listed in
Exam Objective 7.2 and summarized in Table 9-1—is our mini I/O API.

09-ch09.indd 484 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 485

java.io Class Extends

From

Key Constructor(s)

Arguments

Key Methods

File Object File, String
String
String, String

createNewFile()
delete()
exists()
isDirectory()
isFile()
list()
mkdir()
renameTo()

FileWriter Writer File
String

close()
flush()
write()

BufferedWriter Writer Writer close()
flush()
newLine()
write()

PrintWriter Writer File (as of Java 5)
String (as of Java 5)
OutputStream
Writer

close()
flush()
format(), printf()
print(), println()
write()

FileReader Reader File
String

read()

BufferedReader Reader Reader read()
readLine()

Now let's say that we want to find a less painful way to write data to a file and
read the file's contents back into memory. Starting with the task of writing data to
a file, here's a process for determining what classes we'll need and how we'll hook
them together:

 1. We know that ultimately we want to hook to a File object. So whatever
other class or classes we use, one of them must have a constructor that takes
an object of type File.

 2. Find a method that sounds like the most powerful, easiest way to accomplish
the task. When we look at Table 9-1 we can see that BufferedWriter has
a newLine() method. That sounds a little better than having to manually
embed a separator after each line, but if we look further, we see that Print-
Writer has a method called println(). That sounds like the easiest ap-
proach of all, so we'll go with it.

 TABLE 9-1

java.io
Mini API

09-ch09.indd 485 9/2/2014 3:34:04 PM

486 Chapter 9: I/O and NIO

 3. When we look at PrintWriter's constructors, we see that we can build a
PrintWriter object if we have an object of type File, so all we need to do
to create a PrintWriter object is the following:
File file = new File("fileWrite2.txt"); // create a File
PrintWriter pw = new PrintWriter(file); // pass file to
 // the PrintWriter
 // constructor

Okay, time for a pop quiz. Prior to Java 5, PrintWriter did not have constructors
that took either a String or a File. If you were writing some I/O code in Java 1.4,
how would you get a PrintWriter to write data to a file? Hint: You can figure this
out by studying the mini I/O API in Table 9-1.

Here's one way to go about solving this puzzle: First, we know that we'll create a
File object on one end of the chain, and that we want a PrintWriter object on
the other end. We can see in Table 9-1 that a PrintWriter can also be built using a
Writer object. Although Writer isn't a class we see in the table, we can see that
several other classes extend Writer, which for our purposes is just as good; any class
that extends Writer is a candidate. Looking further, we can see that FileWriter
has the two attributes we're looking for:

■ It can be constructed using a File.

■ It extends Writer.

Given all of this information, we can put together the following code (remember,
this is a Java 1.4 example):

File file = new File("fileWrite2.txt"); // create a File object
FileWriter fw = new FileWriter(file); // create a FileWriter
 // that will send its
 // output to a File

PrintWriter pw = new PrintWriter(fw); // create a PrintWriter
 // that will send its
 // output to a Writer

pw.println("howdy"); // write the data
pw.println("folks");

At this point, it should be fairly easy to put together the code to more easily read
data from the file back into memory. Again, looking through the table, we see a
method called readLine() that sounds like a much better way to read data. Going
through a similar process, we get the following code:

09-ch09.indd 486 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 487

File file =
 new File("fileWrite2.txt"); // create a File object AND
 // open "fileWrite2.txt"
FileReader fr =
 new FileReader(file); // create a FileReader to get
 // data from 'file'
BufferedReader br =
 new BufferedReader(fr); // create a BufferReader to
 // get its data from a Reader
String data = br.readLine(); // read some data

You're almost certain to encounter exam questions that test your

knowledge of how I/O classes can be chained. If you're not totally clear on this last

section, we recommend that you use Table 9-1 as a reference and write code to

experiment with which chaining combinations are legal and which are illegal.

Working with Files and Directories

Earlier, we touched on the fact that the File class is used to create files and directories.
In addition, File's methods can be used to delete files, rename files, determine whether
files exist, create temporary files, change a file's attributes, and differentiate between
files and directories. A point that is often confusing is that an object of type File is
used to represent either a file or a directory. We'll talk about both cases next.

We saw earlier that the statement

File file = new File("foo");

always creates a File object and then does one of two things:

 1. If "foo" does NOT exist, no actual file is created.

 2. If "foo" does exist, the new File object refers to the existing file.

Notice that File file = new File("foo"); NEVER creates an actual file.
There are two ways to create a file:

 1. Invoke the createNewFile() method on a File object. For example:
File file = new File("foo"); // no file yet
file.createNewFile(); // make a file, "foo" which
 // is assigned to 'file'

09-ch09.indd 487 9/2/2014 3:34:04 PM

488 Chapter 9: I/O and NIO

 2. Create a Writer or a Stream. Specifically, create a FileWriter, a
PrintWriter, or a FileOutputStream. Whenever you create an instance
of one of these classes, you automatically create a file, unless one already
exists; for instance
File file = new File("foo"); // no file yet
PrintWriter pw =
 new PrintWriter(file); // make a PrintWriter object AND
 // make a file, "foo" to which
 // 'file' is assigned, AND assign
 // 'pw' to the PrintWriter

Creating a directory is similar to creating a file. Again, we'll use the convention
of referring to an object of type File that represents an actual directory as a
Directory object, with a capital D (even though it's of type File). We'll call an
actual directory on a computer a directory, with a small d. Phew! As with creating a
file, creating a directory is a two-step process; first we create a Directory (File)
object; then we create an actual directory using the following mkdir() method:

File myDir = new File("mydir"); // create an object
myDir.mkdir(); // create an actual directory

Once you've got a directory, you put files into it and work with those files:

File myFile = new File(myDir, "myFile.txt");
myFile.createNewFile();

This code is making a new file in a subdirectory. Since you provide the
subdirectory to the constructor, from then on, you just refer to the file by its
reference variable. In this case, here's a way that you could write some data to the
file myFile:

PrintWriter pw = new PrintWriter(myFile);
pw.println("new stuff");
pw.flush();
pw.close();

Be careful when you're creating new directories! As we've seen, constructing a
Writer or a Stream will often create a file for you automatically if one doesn't exist,
but that's not true for a directory.

File myDir = new File("mydir");
// myDir.mkdir(); // call to mkdir() omitted!
File myFile = new File(
 myDir, "myFile.txt");
myFile.createNewFile(); // exception if no mkdir!

09-ch09.indd 488 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 489

This will generate an exception that looks something like

java.io.IOException: No such file or directory

You can refer a File object to an existing file or directory. For example, assume
that we already have a subdirectory called existingDir in which resides an existing
file existingDirFile.txt, which contains several lines of text. When you run the
following code:

File existingDir = new File("existingDir"); // assign a dir
System.out.println(existingDir.isDirectory());

File existingDirFile = new File(
 existingDir, "existingDirFile.txt"); // assign a file
System.out.println (existingDirFile.isFile());

FileReader fr = new FileReader(existingDirFile);
BufferedReader br = new BufferedReader(fr); // make a Reader

String s;
while((s = br.readLine()) != null) // read data
 System.out.println(s);

br.close();

the following output will be generated:

true
true
existing sub-dir data
line 2 of text
line 3 of text

Take special note of what the readLine() method returns. When there is no
more data to read, readLine() returns a null—this is our signal to stop reading
the file. Also, notice that we didn't invoke a flush() method. When reading a file,
no flushing is required, so you won't even find a flush() method in a Reader kind
of class.

In addition to creating files, the File class lets you do things like renaming and
deleting files. The following code demonstrates a few of the most common ins and
outs of deleting files and directories (via delete()) and renaming files and
directories (via renameTo()):

File delDir = new File("deldir"); // make a directory
delDir.mkdir();

File delFile1 = new File(
 delDir, "delFile1.txt"); // add file to directory

09-ch09.indd 489 9/2/2014 3:34:04 PM

490 Chapter 9: I/O and NIO

delFile1.createNewFile();

File delFile2 = new File(
 delDir, "delFile2.txt"); // add file to directory
delFile2.createNewFile();
delFile1.delete(); // delete a file
System.out.println("delDir is "
 + delDir.delete()); // attempt to delete
 // the directory
File newName = new File(
 delDir, "newName.txt"); // a new object
delFile2.renameTo(newName); // rename file

File newDir = new File("newDir"); // rename directory
delDir.renameTo(newDir);

This outputs

delDir is false

and leaves us with a directory called newDir that contains a file called newName.txt.
Here are some rules that we can deduce from this result:

■ delete() You can't delete a directory if it's not empty, which is why the
invocation delDir.delete() failed.

■ renameTo() You must give the existing File object a valid new File
object with the new name that you want. (If newName had been null, we
would have gotten a NullPointerException.)

■ renameTo() It's okay to rename a directory, even if it isn't empty.

There's a lot more to learn about using the java.io package, but as far as the
exam goes, we only have one more thing to discuss, and that is how to search for a
file. Assuming that we have a directory named searchThis that we want to search
through, the following code uses the File.list() method to create a String array
of files and directories. We then use the enhanced for loop to iterate through and
print.

String[] files = new String[100];
File search = new File("searchThis");
files = search.list(); // create the list

for(String fn : files) // iterate through it
 System.out.println("found " + fn);

09-ch09.indd 490 9/2/2014 3:34:04 PM

 File Navigation and I/O (OCP Objectives 7.1 and 7.2) 491

On our system, we got the following output:

found dir1
found dir2
found dir3
found file1.txt
found file2.txt

Your results will almost certainly vary :)
In this section, we've scratched the surface of what's available in the java.io

package. Entire books have been written about this package, so we're obviously
covering only a very small (but frequently used) portion of the API. On the other
hand, if you understand everything we've covered in this section, you will be in great
shape to handle any java.io questions you encounter on the exam, except for the
Console

Appendix A.)

The java.io.Console Class

New to Java 6 is the java.io.Console class. In this context, the console is the
physical device with a keyboard and a display (like your Mac or PC). If you're
running Java SE 6 from the command line, you'll typically have access to a console
object, to which you can get a reference by invoking System.console(). Keep in
mind that it's possible for your Java program to be running in an environment that
doesn't have access to a console object, so be sure that your invocation of System
.console() actually returns a valid console reference and not null.

The Console class makes it easy to accept input from the command line, both
echoed and nonechoed (such as a password), and makes it easy to write formatted
output to the command line. It's a handy way to write test engines for unit testing or
if you want to support a simple but secure user interaction and you don't need a GUI.

On the input side, the methods you'll have to understand are readLine and
readPassword. The readLine method returns a string containing whatever the
user keyed in—that's pretty intuitive. However, the readPassword method doesn't
return a string; it returns a character array. Here's the reason for this: Once you've
got the password, you can verify it and then absolutely remove it from memory. If a
string was returned, it could exist in a pool somewhere in memory, and perhaps some
nefarious hacker could find it.

09-ch09.indd 491 9/2/2014 3:34:04 PM

 class, which we'll cover next. (Note: Serialization is covered in

492 Chapter 9: I/O and NIO

Let's take a look at a small program that uses a console to support testing
another class:

import java.io.Console;

public class NewConsole {
 public static void main(String[] args) {
 String name = "";
 Console c = System.console(); // #1: get a Console
 char[] pw;
 pw = c.readPassword("%s", "pw: "); // #2: return a char[]
 for(char ch: pw)
 c.format("%c ", ch); // #3: format output
 c.format("\n");

 MyUtility mu = new MyUtility();
 while(true) {
 name = c.readLine("%s", "input?: "); // #4: return a String

 c.format("output: %s \n", mu.doStuff(name));
 }
 }
}

class MyUtility { // #5: class to test
 String doStuff(String arg1) {
 // stub code
 return "result is " + arg1;
 }
}

Let's review this code:

■ At line 1, we get a new Console object. Remember that we can't say this:

Console c = new Console();

■ At line 2, we invoke readPassword, which returns a char[], not a string.
You'll notice when you test this code that the password you enter isn't echoed
on the screen.

■ At line 3, we're just manually displaying the password you keyed in,
separating each character with a space. Later on in this chapter, you'll read
about the format() method, so stay tuned.

■ At line 4, we invoke readLine, which returns a string.

09-ch09.indd 492 9/2/2014 3:34:04 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 493

■ At line 5 is the class that we want to test. Later in this chapter, when you're
studying regex and formatting, we recommend that you use something like
NewConsole to test the concepts that you're learning.

The Console class has more capabilities than are covered here, but if you
understand everything discussed so far, you'll be in good shape for the exam.

CERTIFICATION OBJECTIVE

Files, Path, and Paths
(OCP Objectives 8.1 and 8.2)

8.1 Operate on file and directory paths with the Path class.

8.2 Check, delete, copy, or move a file or directory with the Files class.

The OCP 7 exam has two sections devoted to I/O. The previous section Oracle

refers to as "Java I/O Fundamentals" (which we've referred to as the 7.x objectives),
and it was focused on the java.io package. Now we're going to look at the set of
objectives Oracle calls "Java File I/O (NIO.2)," whose specific objectives we'll refer
to as 8.x. The term NIO.2 is a bit loosely defined, but most people (and the exam
creators) define NIO.2 as being the key new features introduced in Java 7 that reside
in two packages:

■ java.nio.file

■ java.nio.file.attribute

We'll start by looking at the important classes and interfaces in the java.nio.file
package, and then we'll move to the java.nio.file.attribute package later in
the chapter.

As you read earlier in the chapter, the File class represents a file or directory at a
high level. NIO.2 adds three new central classes that you'll need to understand well
for the exam:

■ Path This interface replaces File as the representation of a file or a directory
when working in NIO.2. It is a lot more powerful than a File though.

09-ch09.indd 493 9/2/2014 3:34:05 PM

Note: For coverage of Serialization, see Appendix A.

494 Chapter 9: I/O and NIO

■ Paths This class contains static methods that create Path objects. (In the
next chapter, you'll learn this is called a factory.)

■ Files This class contains static methods that work with Path objects.
You'll find basic operations in here like copying or deleting files.

The interface java.nio.file.Path is one of the key classes of file-based I/O
under NIO.2. Just like the good old java.io.File, a Path represents only a
location in the file system, like C:\java\workspace\ocpjp7 (a Windows
directory) or /home/nblack/docs (the docs directory of user nblack on UNIX).
When you create a Path to a new file, that file does not exist until you actually
create the file using Files.createFile(Path target). The Files utility class
will be covered in depth in the next section.

Let's take a look at these relationships another way. The Paths class is used to
create a class implementing the Path interface. The Files class uses Path objects as
parameters. All three of these are new to Java 7. Then there is the File class. It's
been around for a long time. File and Path objects know how to convert to the
other. This lets any older code interact with the new APIs in Files. But notice
what is missing. In the figure, there is no line between File and Files. Despite the
similarity in name, these two classes do not know about each other.

Path

Paths

File

Files

creates

converts

uses

The difference between File, Files, Path, and Paths is really important.

Read carefully on the exam. A one-letter difference can mean a big difference in what

the class does.

To make sure you know the difference between these key classes backward and
forward, make sure you can fill in the four rightmost columns in Table 9-2.

09-ch09.indd 494 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 495

File Files Path Paths

Existed in Java 6? Yes No No No

Concrete class or interface? Concrete class Concrete class Interface Concrete class

Create using "new" Yes No No No

Contains only static methods No Yes No Yes

Creating a Path

A Path object can be easily created by using the get methods from the Paths
helper class. Remember you are calling Paths.get() and not Path.get(). If you
don't remember why, study the last section some more. It's important to have this
down cold.

Taking a look at two simple examples, we have:

Path p1 = Paths.get("/tmp/file1.txt"); // on UNIX
Path p2 = Paths.get("c:\\temp\\test"); // On Windows

The actual method we just called is Paths.get(String first, String...
more). This means we can write it out by separating the parts of the path.

Path p3 = Paths.get("/tmp", "file1.txt"); // same as p1
Path p4 = Paths.get("c:", "temp", "test"); // same as p2
Path p5 = Paths.get("c:\\temp", "test") ; // also same as p2

As you can see, you can separate out folder and filenames as much or as little as you
want when calling Paths.get(). For Windows, that is particularly cool because you
can make the code easier to read by getting rid of the backslash and escape
character.

Be careful when creating paths. The previous examples are absolute paths since
they begin with the root (/ on UNIX or c: on Windows). When you don't begin with
the root, the Path is considered a relative path, which means Java looks from the
current directory. Which file1.txt do you think p6 has in mind?
Path p6 = Paths.get("tmp", "file1.txt"); // relative path - NOT same as p1
/ (root)
 |-- tmp
 | – file1.txt
 | – tmp
 | – file1.txt

It depends. If the program is run from the root, it is the one in /tmp/file1.txt. If
the program is run from /tmp, it is the one in /tmp/tmp/file1.txt. If the program
is run from anywhere else, p6 refers to a file that does not exist.

 TABLE 9-2

Comparing the
Core Classes

09-ch09.indd 495 9/2/2014 3:34:05 PM

496 Chapter 9: I/O and NIO

One more thing to watch for. If you are on Windows, you might deal with a URL
that looks like file:///c:/temp. The file:// is a protocol just like http:// is.
This syntax allows you to browse to a folder in Internet Explorer. Your program
might have to deal with such a String that a user copied/pasted from the browser.
No problem, right? We learned to code:

Path p = Paths.get("file:///c:/temp/test");

Unfortunately, this doesn't work and you get an Exception about the colon being
invalid that looks something like this:

Exception in thread "main" java.nio.file.InvalidPathException:
Illegal char <:>
at index 4: file:///c:/temp

Paths provides another method that solves this problem. Paths.get(URI uri)
lets you (indirectly),convert the String to a URI (Uniform Resource Identifier)
before trying to create a Path.

Path p = Paths.get(URI.create("file:///C:/temp"));

The last thing you should know is that the Paths.get() method we've been
discussing is really a shortcut. You won't need to code the longer version, but it is
good to understand what is going on under the hood. First, Java finds out what the
default file system is. For example, it might be WindowsFileSystemProvider.
Then Java gets the path using custom logic for that file system. Luckily, this all goes
on without us having to write any special code or even think about it.

Path short = Paths.get("c:", "temp");
Path longer = FileSystems.getDefault() // get default file system
 .getPath("c:", "temp"); // then get the Path

Now that you know how to create a Path instance, you can manipulate it in various
ways. We'll get back to that in a bit.

As far as the exam is concerned, Paths.get() is how to create a Path initially.

There is another way that is useful when working with code that was written

before Java 7:

Path convertedPath = file.toPath();
File convertedFile = path.toFile();

If you are updating older code that uses File, you can convert it to a Path

and start calling the new classes. And if your newer code needs to call older

code, it can convert back to a File.

09-ch09.indd 496 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 497

Creating Files and Directories

With I/O, we saw that a File doesn't exist just because you have a File object. You
have to call createNewFile()to bring the file into existence and exists()to
check if it exists. Rewriting the example from earlier in the chapter to use NIO.2
methods, we now have:

Path path = Paths.get("fileWrite1.txt"); // it's only an object
System.out.println(Files.exists(path)); // look for a real file
Files.createFile(path); // create a file!
System.out.println(Files.exists(path)); // look again

NIO.2 has equivalent methods with two differences:

■ You call static methods on Files rather than instance methods on File.

■ Method names are slightly different.

See Table 9-3 for the mapping between old class/method names and new ones. You
can still continue to use the older I/O approach if you happen to be dealing with
File objects.

There is a new method Files.notExists() to supplement Files.exists().

In some incredibly rare situations, Java won't have enough permissions to

know whether the file exists. When this happens, both methods return false.

You can also create directories in Java. Suppose we have a directory named /java
and we want to create the file /java/source/directory/Program.java. We
could do this one at a time:

Path path1 = Paths.get("/java/source");
Path path2 = Paths.get("/java/source/directory");
Path file = Paths.get("/java/source/directory/Program.java");
Files.createDirectory(path1); // create first level of directory
Files.createDirectory(path2); // create second level of directory
Files.createFile(file); // create file

Or we could create all the directories in one go:

Files.createDirectories(path2); // create all levels of directories
Files.createFile(file); // create file

While both work, the second is clearly better if you have a lot of directories to
create. And remember that the directory needs to exist by the time the file is created.

09-ch09.indd 497 9/2/2014 3:34:05 PM

498 Chapter 9: I/O and NIO

Description I/O Approach NIO.2 Approach

Create an empty
file

File file = new File("test");
file.createNewFile():

Path path = Paths.get("test");
Files.createFile(path);

Create an empty
directory

File file = new File("dir");

file.mkdir()

Path path = Paths.get("dir");
Files.createDirectory(path);

Create a directory,
including any
missing parent
directories

File file = new File("/a/b/c");
file.mkdirs():

Path path = Paths.get("/a/b/c");
Files.createDirectories(path);

Check if a file or
directory exists

File file = new File("test");
file.exists();

Path path = Paths.get("test");
Files.exists(path);

Copying, Moving, and Deleting Files

We often copy, move, or delete files when working with the file system. Up until
Java 7, this was hard to do. In Java 7, however, each is one line. Let's look at some
examples:
Path source = Paths.get("/temp/test1"); // exists
Path target = Paths.get("/temp/test2.txt"); // doesn't yet exist
Files.copy(source, target); // now two copies of the file
Files.delete(target); // back to one copy
Files.move(source, target); // still one copy

This is all pretty self-explanatory. We copy a file, delete the copy, and then move the
file. Now, let's try another example:
Path one = Paths.get("/temp/test1"); // exists
Path two = Paths.get("/temp/test2.txt"); // exists
Path targ = Paths.get("/temp/test23.txt"); // doesn't yet exist
Files.copy(one, targ); // now two copies of the file
Files.copy(two, targ); // oops,
 // FileAlreadyExistsException

Java sees it is about to overwrite a file that already exists. Java doesn't want us to lose
the file, so it "asks" if we are sure by throwing an Exception. copy()and move()
actually take an optional third parameter—zero or more CopyOptions. The most
useful option you can pass is StandardCopyOption.REPLACE_EXISTING.

Files.copy(two, target, // ok. You know what
 StandardCopyOption.REPLACE_EXISTING); // you are doing

We have to think about whether a file exists when deleting the file too. Let's say
we wrote this test code:

 TABLE 9-3 I/O vs. NIO.2

09-ch09.indd 498 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 499

Path path = Paths.get("/java/out.txt");
try {
 methodUnderTest(); // might throw an exception
 Files.createFile(path); // file only gets created
 // if methodUnderTest() succeeds
} finally {
 Files.delete(path); // NoSuchFileException if no file
}

We don't know whether methodUnderTest works properly yet. If it does, the
code works fine. If it throws an Exception, we never create the file and Files.
delete() throws a NoSuchFileException. This is a problem, as we only want to
delete the file if it was created so we aren't leaving stray files around. There is an
alternative. Files.deleteIfExists(path) returns true and deletes the file only if
it exists. If not, it just quietly returns false. Most of the time, you can ignore this
return value. You just want the file to not be there. If it never existed, mission
accomplished.

If you have to work on pre-Java 7 code, you can use the FileUtils class in

Apache Commons IO (http://commons.apache.org/io.) It has methods similar

to many of the copy, move, and delete methods that are now built into Java 7.

To review, Table 9-4 lists the methods on Files that you are likely to come across
on the exam. Luckily, the exam doesn't expect you to know all 30 methods in the
API. The important thing to remember is to check the Files JavaDoc when you find
yourself dealing with files.

Method Description

Path copy(Path source, Path target,
CopyOption... options)

Copy the file from source to target and
return target

Path move(Path source, Path target,
CopyOption... options)

Move the file from source to target and
return target

void delete(Path path) Delete the file and throw an Exception
if it does not exist

boolean deleteIfExists(Path path) Delete the file if it exists and return
whether file was deleted

boolean exists(Path path,
LinkOption... options)

Return true if file exists

boolean notExists(Path path,
LinkOption... options)

Return true if file does not exist

 TABLE 9-4

Files Methods

09-ch09.indd 499 9/2/2014 3:34:05 PM

http://commons.apache.org/io

500 Chapter 9: I/O and NIO

Retrieving Information about a Path

The Path interface defines a bunch of methods that return useful information about
the path that you're dealing with. In the following code listing, a Path is created
referring to a directory and then we output information about the Path instance:

Path path = Paths.get("C:/home/java/workspace");
System.out.println("getFileName: " + path.getFileName());
System.out.println("getName(1): " + path.getName(1));
System.out.println("getNameCount: " + path.getNameCount());
System.out.println("getParent: " + path.getParent());
System.out.println("getRoot: " + path.getRoot());
System.out.println("subpath(0, 2): " + path.subpath(0, 2));
System.out.println("toString: " + path.toString());

When you execute this code snippet on Windows, the following output is printed:

getFileName: workspace
getName(1): java
getNameCount: 3
getParent: C:\home\java
getRoot: C:\
subpath(0, 2): home\java
toString: C:\home\java\workspace

Based on this output, it is fairly simple to describe what each method does.
Table 9-5 does just that.

Method Description

String getFileName() Returns the filename or the last element of the
sequence of name elements.

Path getName(int index) Returns the path element corresponding to the
specified index. The 0th element is the one closest
to the root. (On Windows, the root is usually C:\
and on UNIX, the root is /.)

int getNameCount() Returns the number of elements in this path,
excluding the root.

Path getParent() Returns the parent path, or null if this path does
not have a parent.

Path getRoot() Returns the root of this path, or null if this path
does not have a root.

Path subpath(int
beginIndex, int endIndex)

Returns a subsequence of this path (not including
a root element) as specified by the beginning
(included) and ending (not included) indexes.

String toString() Returns the string representation of this path.

 TABLE 9-5

Path Methods

09-ch09.indd 500 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 501

Here is yet another interesting fact about the Path interface: It extends from
Iterable<Path>. At first sight, this seems anything but interesting. But every class
that (correctly) implements the Iterable<?> interface can be used as an expression
in the enhanced for loop. So you know you can iterate through an array or a List,
but you can iterate through a Path as well. That's pretty cool!

Using this functionality, it's easy to print the hierarchical tree structure of a file
(or directory), as the following example shows:

int spaces = 1;
Path myPath = Paths.get("tmp", "dir1", "dir2", "dir3", "file.txt");
for (Path subPath : myPath) {
 System.out.format("%" + spaces + "s%s%n", "", subPath);
 spaces += 2; }

When you run this example, a (simplistic) tree is printed. Thanks to the variable
spaces (which is increased with each iteration by 2), the different subpaths are
printed like a directory tree.

 tmp
 dir1
 dir2
 dir3
 file.txt

Normalizing a Path

Normally (no pun intended), when you create a Path, you create it in a direct way.
However, all three of these return the same logical Path:

Path p1 = Paths.get("myDirectory");
Path p2 = Paths.get("./myDirectory"); // one dot means
 // current directory
Path p3 = Paths.get("anotherDirectory", "..", // two dots means go up
 "myDirectory"); // one directory

p1 is probably what you would type if you were coding. p2 is just plain redundant. p3
is more interesting. The two directories—anotherDirectory and myDirectory—
are on the same level, but we have to go up one level to get there:

/ (root)
 |-- anotherDirectory
 |-- myDirectory

You might be wondering why on earth we wouldn't just type myDirectory in the
first place. And you would if you could. Sometimes, that doesn't work out. Let's look
at a real example of why this might be.

09-ch09.indd 501 9/2/2014 3:34:05 PM

502 Chapter 9: I/O and NIO

/ (root)
 |-- Build_Project
 |-- scripts
 |-- buildScript.sh
 |-- My_Project
 |-- source
 |-- MyClass.java

If you wanted to compile MyClass, you would cd to /My_Project/source and
run javac MyClass.java. Once your program gets bigger, it could be thousands of
classes and have hundreds of jar files. You don't want to type in all of those just to
compile, so someone writes a script to build your program. buildScript.sh now
finds everything that is needed to compile and runs the javac command for you.
The problem is that the current directory is now /Build_Project/scripts and
not /My_Project/source. The build script helpfully builds a path for you by doing
something like this:
String buildProject // build scripts like to express
 = "/Build_Project/scripts"; // paths in relation to themselves

String upTwoDirectories = "../.."; // remember what .. means?

String myProject = "/My_Project/source";
Path path = Paths.get(buildProject,
 upTwoDirectories, myProject); // build path from variables
System.out.println("Original: " + path);
System.out.println("Normalized: " + path.normalize());

which outputs:

Original:/Build_Project/scripts/../../My_Project/source
Normalized:/My_Project/source

Whew. The second one is much easier to read. The normalize() method knows
that a single dot can be ignored. It also knows that any directory followed by two
dots can be removed from a path.

Be careful when using this normalize()! It just looks at the String equivalent
of the path and doesn't check the file system to see whether the directories or files
actually exist.

Let's practice and see what normalize returns for these paths. This time, we
aren't providing a directory structure to show that the directories and files don't
need to be present on the computer. What do you think the following prints out?

System.out.println(Paths.get("/a/./b/./c").normalize());
System.out.println(Paths.get(".classpath").normalize());
System.out.println(Paths.get("/a/b/c/..").normalize());
System.out.println(Paths.get("../a/b/c").normalize());

09-ch09.indd 502 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 503

The output is:

/a/b/c
.classpath
/a/b
../a/b/c

The first one removes all the single dots since they just point to the current directory.
The second doesn't change anything since the dot is part of a filename and not a
directory. The third sees one set of double dots, so it only goes up one directory. The
last one is a little tricky. The two dots do say to go up one directory. But since there
isn't a directory before it, Path can't simplify it.

To review, normalize() removes unneeded parts of the Path, making it more
like you'd normally type it. (That's not where the word "normalize" comes from, but
it is a nice way to remember it.)

Resolving a Path

So far, you have an overview of all methods that can be invoked on a single Path
object, but what if you need to combine two paths? You might want to do this if you
have one Path representing your home directory and another containing the Path
within that directory.

Path dir = Paths.get("/home/java");
Path file = Paths.get("models/Model.pdf");
Path result = dir.resolve(file);
System.out.println("result = " + result);

This produces the absolute path by merging the two paths:

result = /home/java/models/Model.pdf

path1.resolve(path2) should be read as "resolve path2 within path1's
directory." In this example, we resolved the path of the file within the directory
provided by dir.

Keeping this definition in mind, let's look at some more complex examples:

Path absolute = Paths.get("/home/java");
Path relative = Paths.get("dir");
Path file = Paths.get("Model.pdf");
System.out.println("1: " + absolute.resolve(relative));
System.out.println("2: " + absolute.resolve(file));
System.out.println("3: " + relative.resolve(file));
System.out.println("4: " + relative.resolve(absolute)); // BAD
System.out.println("5: " + file.resolve(absolute)); // BAD
System.out.println("6: " + file.resolve(relative)); // BAD

09-ch09.indd 503 9/2/2014 3:34:05 PM

504 Chapter 9: I/O and NIO

The output is:

1: /home/java/dir
2: /home/java/Model.pdf
3: dir/Model.pdf
4: /home/java
5: /home/java
6: Model.pdf/dir

The first three do what you'd expect. They add the parameter to resolve to the
provided path object. The fourth and fifth ones try to resolve an absolute path
within the context of something else. The problem is that an absolute path doesn't
depend on other directories. It is absolute. Therefore, resolve just returns that
absolute path. The sixth one tries to resolve a directory within the context of a file.
Since that doesn't make any sense, Java just tries its best and gives you nonsense.

Just like normalize(), keep in mind that resolve() will not check that the
directory or file actually exists. To review, resolve() tells you how to resolve one
path within another.

Be careful with methods that come in two fl avors: one with a Path

parameter and the other with a String parameter such as resolve(). The tricky part

here is that null is a valid value for both a Path and a String. What will happen if you

pass just null as a parameter? Which method will be invoked?

Path path = Paths.get("/usr/bin/zip");
path.resolve(null);

The compiler can't decide which method to invoke: the one with the Path parameter or

the other one with the String parameter. That's why this code won't compile, and if you

see such code in an exam question, you'll know what to do.

The following examples will compile without any problem, because the compiler

knows which method to invoke thanks to the type of the variable other and the explicit

cast to String.

Path path = Paths.get("/usr/bin/zip");
Path other = null;
path.resolve(other);
path.resolve ((String) null);

09-ch09.indd 504 9/2/2014 3:34:05 PM

 Files, Path, and Paths (OCP Objectives 8.1 and 8.2) 505

Relativizing a Path

Now suppose we want to do the opposite of resolve. We have the absolute path of
our home directory and the absolute path of the music file in our home directory.
We want to know just the music file directory and name.

Path dir = Paths.get("/home/java");
Path music = Paths.get("/home/java/country/Swift.mp3");
Path mp3 = dir.relativize(music);
System.out.println(mp3);

The output is: country/Swift.mp3. Java recognized that the /home/java part is
the same and returned a path of just the remainder.

path1.relativize(path2) should be read as "give me a path that shows how to
get from path1 to path2." In this example, we determined that music is a file in a
directory named country within dir.

Keeping this definition in mind, let's look at some more complex examples:

Path absolute1 = Paths.get("/home/java");
Path absolute2 = Paths.get("/usr/local");
Path absolute3 = Paths.get("/home/java/temp/music.mp3");
Path relative1 = Paths.get("temp");
Path relative2 = Paths.get("temp/music.pdf");
System.out.println("1: " + absolute1.relativize(absolute3));
System.out.println("2: " + absolute3.relativize(absolute1));
System.out.println("3: " + absolute1.relativize(absolute2));
System.out.println("4: " + relative1.relativize(relative2));
System.out.println("5: " + absolute1.relativize(relative1));//BAD

The output is

1: temp/music.mp3
2: ../..
3: ../../usr/local
4: music.pdf
Exception in thread "main" java.lang.IllegalArgumentException: 'other'
is different type of Path

Before you scratch your head, let's look at the logical directory structure here.
Keep in mind the directory doesn't actually need to exist; this is just to visualize it.

/root
 | – usr
 | – local
 | – home
 | -- java
 | – temp
 | – music.mp3

09-ch09.indd 505 9/2/2014 3:34:05 PM

506 Chapter 9: I/O and NIO

Now we can trace it through. The first example is straightforward. It tells us how
to get to absolute3 from absolute1 by going down two directories. The second is
similar. We get to absolute1 from absolute3 by doing the opposite—going up two
directories. Remember from normalize() that a double dot means to go up a
directory.

The third output statement says that we have to go up two directories and then
down two directories to get from absolute1 to absolute2. Java knows this since
we provided absolute paths. The worst possible case is to have to go all the way up to
the root like we did here.

The fourth output statement is okay. Even though they are both relative paths,
there is enough in common for Java to tell what the difference in path is.

The fifth example throws an exception. Java can't figure out how to make a
relative path out of one absolute path and one relative path.

Remember, relativize() and resolve() are opposites. And just like
resolve(), relativize() does not check that the path actually exists. To review,
relativize() tells you how to get a relative path between two paths.

CERTIFICATION OBJECTIVE

File and Directory Attributes (OCP Objective 8.3)

8.3 Read and change file and directory attributes, focusing on the BasicFileAttributes,
DosFileAttributes, and PosixFileAttributes interfaces.

Reading and Writing Attributes the Easy Way

In this section, we'll add classes and interfaces from the java.nio.file.attribute
package to the discussion. Prior to NIO.2, you could read and write just a handful of
attributes. Just like we saw when creating files, there is a new way to do this using
Files instead of File. Oracle also took the opportunity to clean up the method
signatures a bit. The following example creates a file, changes the last modified date,
prints it out, and deletes the file using both the old and new method names. We
might do this if we want to make a file look as if it were created in the past. (As you
can see, there is a lesson about not relying on file timestamps here!)

09-ch09.indd 506 9/2/2014 3:34:05 PM

 File and Directory Attributes (OCP Objective 8.3) 507

Date januaryFirst = new GregorianCalendar(// create a date
 2013, Calendar.JANUARY, 1).getTime();
// old way
File file = new File("c:/temp/file");
 file.createNewFile(); // create the file
file.setLastModified(januaryFirst.getTime()); // set time
System.out.println(file.lastModified()); // get time
file.delete(); // delete the file

// new way
Path path = Paths.get("c:/temp/file2");
Files.createFile(path); // create another file
FileTime fileTime = FileTime.fromMillis(// convert to the new
 januaryFirst.getTime()); // FileTime object
Files.setLastModifiedTime(path, fileTime); // set time
System.out.println(Files.getLastModifiedTime(path)); // get time
Files.delete(path); // delete the file

As you can see from the output, the only change in functionality is that the new
Files.getLastModifiedTime() uses a human-friendly date format.

1357016400000
2013-01-01T05:00:00Z

The other common type of attribute you can set are file permissions. Both
Windows and UNIX have the concept of three types of permissions. Here's what
they mean:

■ Read You can open the file or list what is in that directory.

■ Write You can make a change to the file or add a file to that directory.

■ Execute You can run the file if it is a runnable program or go into that
directory.

Printing out the file permissions is easy. Note that these permissions are just for
the user who is running the program—you! There are other types of permissions as
well, but these can't be set in one line.

System.out.println(Files.isExecutable(path));
System.out.println(Files.isReadable(path));
System.out.println(Files.isWritable(path));

Table 9-6 shows how to get and set these attributes that can be set in one line,
both using the older I/O way and the new Files class. You may have noticed that
setting file permissions isn't in the table. That's more code, so we will talk about
it later.

09-ch09.indd 507 9/2/2014 3:34:05 PM

508 Chapter 9: I/O and NIO

Description I/O Approach Approach

Get the last
modified date/
time

File file = new File("test");
file.lastModified();

Path path = Paths.get("test");
Files.getLastModifiedTime(path);

Is read
permission set

File file = new File("test");
file.canRead();

Path path = Paths.get("test");
Files.isReadable(path);

Is write
permission set

File file = new File("test");
file.canWrite();

Path path = Paths.get("test");
Files.isWritable(path);

Is executable
permission set

File file = new File("test");
file.canExecute();

Path path = Paths.get("test");
Files.isExecutable(path);

Set the last
modified
date/time
(Note:
timeInMillis
is an appropriate
long.)

File file = new File("test");
file.setLastModified(timeInMillis);

Path path = Paths.get("test");
FileTime fileTime = FileTime.fromMillis(timeInMillis);
Files.setLastModifiedTime(path, fileTime);

Types of Attribute Interfaces

The attributes you set by calling methods on Files are the most straightforward
ones. Beyond that, Java NIO.2 added attribute interfaces so that you could read
attributes that might not be on every operating system.

■ BasicFileAttributes In the JavaDoc, Oracle says these are "attributes
common to many file systems." What they mean is that you can rely on these
attributes being available to you unless you are writing Java code for some
funky new operating system. Basic attributes include things like creation date.

■ PosixFileAttributes POSIX stands for Portable Operating System
Interface. This interface is implemented by both UNIX- and Linux-based
operating systems. You can remember this because POSIX ends in "x," as do
UNIX and Linux.

■ DosFileAttributes DOS stands for Disk Operating System. It is part of
all Windows operating systems. Even Windows 8 has a DOS prompt available.

There are also separate interfaces for setting or updating attributes. While the details
aren't in scope for the exam, you should be familiar with the purpose of each one.

■ BasicFileAttributeView Used to set the last updated, last accessed, and
creation dates.

 TABLE 9-6 I/O vs. NIO.2 Permissions

09-ch09.indd 508 9/2/2014 3:34:05 PM

 File and Directory Attributes (OCP Objective 8.3) 509

■ PosixFileAttributeView Used to set the groups or permissions on UNIX/
Linux systems. There is an easier way to set these permissions though, so you
won't be using the attribute view.

■ DosFileAttributeView Used to set file permissions on DOS/Windows
systems. Again, there is an easier way to set these, so you won't be using the
attribute view.

■ FileOwnerAttributeView Used to set the primary owner of a file or directory.

■ AclFileAttributeView Sets more advanced permissions on a file or directory.

Working with BasicFileAttributes

The BasicFileAttributes interface provides methods to get information about a
file or directory.
BasicFileAttributes basic = Files.readAttributes(path, // assume a valid path
 BasicFileAttributes.class);
System.out.println("create: " + basic.creationTime());
System.out.println("access: " + basic.lastAccessTime());
System.out.println("modify: " + basic.lastModifiedTime());
System.out.println("directory: " + basic.isDirectory());

The sample output shows that all three date/time values can be different. A file is
created once. It can be modified many times. And it can be last accessed for reading
after that. The isDirectory method is the same as Files.isDirectory(path). It
is just an alternative way of getting the same information.

create: 2013-01-01T18:06:01Z
access: 2013-01-29T14:44:218
modify: 2014-01-13T16:13:21Z
directory: false

There are some more attributes on BasicFileAttributes, but they aren't on
the exam and you aren't likely to need them when coding. Just remember to check
the JavaDoc if you need more information about a file.

So far, you've noticed that all the attributes are read only. That is because Java
provides a different interface for updating attributes. Let's write code to update the
last accessed time:
BasicFileAttributes basic = Files.readAttributes(
 path, BasicFileAttributes.class); // attributes
FileTime lastUpdated = basic.lastModifiedTime(); // get current
FileTime created = basic.creationTime(); // values
FileTime now = FileTime.fromMillis(System.currentTimeMillis());
BasicFileAttributeView basicView = Files.getFileAttributeView(
 path, BasicFileAttributeView.class); // "view" this time
basicView.setTimes(lastUpdated, now, created); // set all three

09-ch09.indd 509 9/2/2014 3:34:05 PM

510 Chapter 9: I/O and NIO

In this example, we demonstrated getting all three times. In practice, when
calling setTimes(), you should pass null values for any of the times you don't want
to change, and only pass Filetimes for the times you want to change.

The key takeaways here are that the "XxxFileAttributes" classes are read only
and the "XxxFileAttributeView" classes allow updates.

The BasicFileAttributes and BasicFileAttributeView interfaces are

a bit confusing. They have similar names but different functionality, and you get them in

different ways. Try to remember these three things:

■ BasicFileAttributeView is singular, but BasicFileAttributes is not.

■ You get BasicFileAttributeView using Files.getFileAttributeView, and you get

BasicFileAttributes using Files.readAttributes.

■ You can ONLY update attributes in BasicFileAttributeView, not in

BasicFileAttributes. Remember that the view is for updating.

PosixFileAttributes and DosFileAttributes inherit from
BasicFileAttributes. This means that you can call Basic methods on a POSIX or
DOS subinterface.

BasicFileAttributes

PosixFileAttributes DosFileAttributes

inherits

09-ch09.indd 510 9/2/2014 3:34:05 PM

 File and Directory Attributes (OCP Objective 8.3) 511

Try to use the more general type if you can. For example, if you are only going to
use basic attributes, just get BasicFileAttributes. This lets your code remain
operating system independent. If you are using a mix of basic and POSIX attributes,
you can use PosixFileAttributes directly rather than calling readAttributes()
twice to get two different ones.

Working with DosFileAttributes

DosFileAttributes adds four more attributes to the basics. We'll look at the most
common ones here—hidden files and read-only files. Hidden files typically begin
with a dot and don't show up when you type dir to list the contents of a directory.
Read-only files are what they sound like—files that can't be updated. (The other
two attributes are "archive" and "system," which you are quite unlikely to ever use.)

Path path= Paths.get("C:/test");
Files.createFile(path); // create file
Files.setAttribute(path, "dos:hidden", true); // set attribute
Files.setAttribute(path, "dos:readonly", true); // another one
DosFileAttributes dos = Files.readAttributes(path,
 DosFileAttributes.class); // dos attributes
System.out.println(dos.isHidden());
System.out.println(dos.isReadOnly());
Files.setAttribute(path, "dos:hidden", false);
Files.setAttribute(path, "dos:readonly", false);
dos = Files.readAttributes(path,
 DosFileAttributes.class); // get attributes again
System.out.println(dos.isHidden());
System.out.println(dos.isReadOnly());
Files.delete(path);

The output is:

true
true
false
false

The first tricky thing in this code is that the String "readonly" is lowercase
even though the method name is mixed case. If you forget and use the String
"readOnly," Java will silently ignore the statement and the file will still allow
anyone to write to it.

09-ch09.indd 511 9/2/2014 3:34:06 PM

512 Chapter 9: I/O and NIO

The other tricky thing is that you cannot delete a read-only file. That's why the
code calls setAttribute a second time with false as a parameter, to make it no
longer "read only" so the code can clean up after itself. And you can see that we had
to call readAttributes again to see those updated values.

There is an alternative way to set these attributes where you don't have to

worry about the String values. However, the exam wants you to know how to

use Files. It is good to know both ways, though.

DosFileAttributeView view = Files.getFileAttributeView(path,
 DosFileAttributeView.class);
view.setHidden(true);
view.setReadOnly(true);

Working with PosixFileAttributes

PosixFileAttributes adds two more attributes to the basics—groups and
permissions. On UNIX, every file or directory has both an owner and group name.

UNIX permissions are also more elaborate than the basic ones. Each file or
directory has nine permissions set in a String. A sample is "rwxrw-r--." Breaking
this into groups of three, we have "rwx", "rw-," and "r--." These sets of permissions
correspond to who gets them. In this example, the "user" (owner) of the file has
read, write, and execute permissions. The "group" only has read and write
permissions. UNIX calls everyone who is not the owner or in the group "other."
"Other" only has read access in this example.

Now let's look at some code to set the permissions and output them in human-
readable form:

Path path = Paths.get("/tmp/file2");
Files.createFile(path);
PosixFileAttributes posix = Files.readAttributes(path,
PosixFileAttributes.class); // get the Posix type
Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-r--r--"); // UNIX style
Files.setPosixFilePermissions(path, perms); // set permissions
System.out.println(posix.permissions()); // get permissions

The output looks like this:

[OWNER_WRITE, GROUP_READ, OTHERS_READ, OWNER_READ]

09-ch09.indd 512 9/2/2014 3:34:06 PM

 File and Directory Attributes (OCP Objective 8.3) 513

It's not symmetric. We gave Java the permissions in cryptic UNIX format and got
them back in plain English. You can also output the group name:

System.out.println(posix.group()); // get group

which outputs something like this:

horse

Reviewing Attributes

Let's review the most common attributes information in Table 9-7.

Type Read and Write an Attribute

Basic // read

BasicFileAttributes basic = Files.readAttributes(path,
 BasicFileAttributes.class);
FileTime lastUpdated = basic.lastModifiedTime();
FileTime created = basic.creationTime();
FileTime now = FileTime.fromMillis(System.currentTimeMillis());

// write
BasicFileAttributeView basicView =
Files.getFileAttributeView(path,
BasicFileAttributeView.class);
basicView.setTimes(lastUpdated, now, created);

Posix
(UNIX/Linux)

PosixFileAttributes posix = Files.readAttributes(path, PosixFileAttributes.class);
Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rw-r--r--");
Files.setPosixFilePermissions(path, perms);
System.out.println(posix.group());
System.out.println(posix.permissions());

Dos
(Windows)

DosFileAttributes dos = Files.readAttributes(path,
 DosFileAttributes.class);
System.out.println(dos.isHidden());
System.out.println(dos.isReadOnly());
Files.setAttribute(path, "dos:hidden", false);
Files.setAttribute(path, "dos:readonly", false);

 TABLE 9-7 Common Attributes

09-ch09.indd 513 9/2/2014 3:34:06 PM

514 Chapter 9: I/O and NIO

CERTIFICATION OBJECTIVE

DirectoryStream (OCP Objective 8.4)

8.4 Recursively access a directory tree using the DirectoryStream and FileVisitor
interfaces.

Now let's return to more NIO.2 capabilities that you'll find in the java.nio.file
package… You might need to loop through a directory. Let's say you were asked to
list out all the users with a home directory on this computer.

/home
 | – users
 | – vafi
 | – eyra

Path dir = Paths.get("/home/users");
try (DirectoryStream<Path> stream = // use try with resources
 Files.newDirectoryStream(dir)) { // so we don't have close()
 for (Path path : stream) // loop through the stream
 System.out.println(path.getFileName());
}

As expected, this outputs

vafi
eyra

The DirectoryStream interface lets you iterate through a directory. But this is
just the tip of the iceberg. Let's say we have hundreds of users and each day we want
to only report on a few of them. The first day, we only want the home directories of
users whose names begin with either the letter v or the letter w.
Path dir = Paths.get("/home/users");
try (DirectoryStream<Path> stream = Files.newDirectoryStream(
 dir, "[vw]*")) { // "v" or "w" followed by anything
for (Path path : stream)
 System.out.println(path.getFileName());
}

This time, the output is

vafi

Let's examine the expression [vw]*. [vw] means either of the characters v or w.
The * is a wildcard that means zero or more of any character. Notice this is not a
regular expression. (If it were, the syntax would be [vw].*—see the dot in there.)

09-ch09.indd 514 9/2/2014 3:34:06 PM

 FileVisitor (OCP Objective 8.4) 515

DirectoryStream uses something new called a glob. We will see more on globs
later in the chapter.

There is one limitation with DirectoryStream. It can only look at one directory.
One way to remember this is that it works like the dir command in DOS or the ls
command in UNIX. Or you can remember that DirectoryStream streams one
directory.

CERTIFICATION OBJECTIVE

FileVisitor (OCP Objective 8.4)

8.4 Recursively access a directory tree using the DirectoryStream and FileVisitor
interfaces.

Luckily, there is another class that does, in fact, look at subdirectories. Let's say
you want to get rid of all the .class files before zipping up and submitting your
assignment. You could go through each directory manually, but that would get
tedious really fast. You could write a complicated command in Windows and another
in UNIX, but then you'd have two programs that do the same thing. Luckily, you
can use Java and only write the code once.

Java provides a SimpleFileVisitor. You extend it and override one or more
methods. Then you can call Files.walkFileTree, which knows how to recursively
look through a directory structure and call methods on a visitor subclass. Let's try
our example:
/home
 | – src
 | – Test.java
 | – Test.class
 | – dir
 | – AnotherTest.java
 | – AnotherTest.class

public class RemoveClassFiles
 extends SimpleFileVisitor<Path> { // need to extend visitor
 public FileVisitResult visitFile(// called "automatically"
 Path file, BasicFileAttributes attrs)
 throws IOException {
 if (file.getFileName().endsWith(".class"))
 Files.delete(file); // delete the file
 return FileVisitResult.CONTINUE; // go on to next file
 }
 public static void main(String[] args) throws Exception {

09-ch09.indd 515 9/2/2014 3:34:06 PM

516 Chapter 9: I/O and NIO

 RemoveClassFiles dirs = new RemoveClassFiles();
 Files.walkFileTree(// kick off recursive check
 Paths.get("/home/src"), // starting point
 dirs); // the visitor
 }
}

This is a simple file visitor. It only implements one method: visitFile. This
method is called for every file in the directory structure. It checks the extension of
the file and deletes it if appropriate. In our case, two .class files are deleted.

There are two parameters to visitFile(). The first one is the Path object
representing the current file. The other is a BasicFileAttributes interface.
Do you remember what this does? That's right—it lets you find out if the current
file is a directory, when it was created, and many other similar pieces of data.

Finally, visitFile()returns FileVisitResult.CONTINUE. This tells
walkFileTree() that it should keep looking through the directory structure for
more files.

Now that we have a feel for the power of this class, let's take a look at all the
methods available to us with another example:
/home
 | – a.txt
 | – emptyChild
 | – child
 | – b.txt
 | – grandchild
 | – c.txt

public class PrintDirs extends SimpleFileVisitor<Path> {
 public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) {
 System.out.println("pre: " + dir);
 return FileVisitResult.CONTINUE; }
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) {
 System.out.println("file: " + file);
 return FileVisitResult.CONTINUE; }
 public FileVisitResult visitFileFailed(Path file, IOException exc) {
 return FileVisitResult.CONTINUE; }
 public FileVisitResult postVisitDirectory(Path dir, IOException exc) {
 System.out.println("post: " + dir);
 return FileVisitResult.CONTINUE; }
 public static void main(String[] args) throws Exception {
 PrintDirs dirs = new PrintDirs();
 Files.walkFileTree(Paths.get("/home"), dirs); } }

You might get the following output:

pre: /home
file: /home/a.txt
pre: /home/child
file: /home/child/b.txt
pre: /home/child/grandchild
file: /home/child/grandchild/c.txt

09-ch09.indd 516 9/2/2014 3:34:06 PM

 FileVisitor (OCP Objective 8.4) 517

post: /home/child/grandchild
post: /home/child
pre: /home/emptyChild
post: /home/emptyChild
post: /home

Note that Java goes down as deep as it can before returning back up the tree. This
is called a depth-first search. We said "might" because files and directories at the same
level can get visited in either order.

You can override as few or many of the four methods as you'd like. Note that the
second half of the methods have IOException as a parameter. This allows those methods
to handle problems that came earlier when walking through the tree. Table 9-8
summarizes the methods.

You actually do have some control, though, through those FileVisitResult
constants. Suppose we changed the preVisitDirectory method to the following:

public FileVisitResult preVisitDirectory(
 Path dir, BasicFileAttributes attrs) {
 System.out.println("pre: " + dir);
 String name = dir.getFileName().toString();
 if (name.equals("child"))
 return FileVisitResult.SKIP_SUBTREE;
 return FileVisitResult.CONTINUE;
}

Now the output is:

pre: /home
file: /home/a.txt
pre: /home/child
pre: /home/emptyChild
post: /home/emptyChild
post: /home

Method Description IOException

Parameter?

preVisitDirectory Called before drilling down into the
directory

No

visitFile Called once for each file (but not for
directories)

No

visitFileFailed Called only if there was an error accessing
a file, usually a permissions issue

Yes

postVisitDirectory Called when finished with the directory
on the way back up

Yes

 TABLE 9-8

FileVisitor
Methods

09-ch09.indd 517 9/2/2014 3:34:06 PM

518 Chapter 9: I/O and NIO

Since we instructed the program to skip the entire child subtree—i.e., we don't see
the file: b.txt or the sub-directory: grandchild—we also don't see the post visit call.

Now what do you think would happen if we changed FileVisitResult.SKIP_
SIBLINGS to FileVisitResult.TERMINATE? The output might be:

pre: /home
file: /home/a.txt
pre: /home/child

We see that as soon as the "child" directory came up, the program stopped walking
the tree. And again, we are using "might" in terms of the output. It's also possible
for emptyChild to come up first, in which case, the last line of the output would be
/home/emptyChild.

There's one more result type. What do you think would happen if we changed
FileVisitResult.TERMINATE to FileVisitResult.SKIP_SIBLINGS? The output
happens to be the same as the previous example:

pre: /home
file: /home/a.txt
pre: /home/child

SKIP_SIBLINGS is a combination of SKIP_SUBTREE and "don't look in any
folders at the same level." This means we skip everything under child and also skip
emptyChild.

One more example to make sure you really understand what is going on. What do
you think gets output if we use this method?

public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) {
 System.out.println("pre: " + dir);
 String name = dir.getFileName().toString();
 if (name.equals("grandchild"))
 return FileVisitResult.SKIP_SUBTREE;
 if (name.equals("emptyChild"))
 return FileVisitResult.SKIP_SIBLINGS;
 return FileVisitResult.CONTINUE;
}

Assuming child is encountered before emptyChild, the output is:

pre: /home
file: /home/a.txt
pre: /home/child
file: /home/child/b.txt
pre: /home/child/grandchild
post: /home/child
pre: /home/emptyChild
post: /home

09-ch09.indd 518 9/2/2014 3:34:06 PM

 PathMatcher (OCP Objective 8.5) 519

We don't see file: c.txt or post: /home/child/grandchild because we skip
grandchild the subtree. We don't see "post: /home/emptyChild" because we
skip siblings of emptyChild. But wait. Isn't /home/child a sibling? It is. But the
visitor goes in order. Since child was seen before emptyChild, it is too late to skip
it. Just like when you print a document, it is too late to prevent pages from printing
that have already printed. File visitor can only skip subtrees that it has not
encountered yet.

CERTIFICATION OBJECTIVE

PathMatcher (OCP Objective 8.5)

8.5 Find a file with PathMatcher interface.

DirectoryStream and FileVisitor allowed us to go through the files that
exist. Things can get complicated fast, though. Imagine you had a requirement to
print out the names of all text files in any subdirectory of "password." You might be
wondering why anyone would want to do this. Maybe a teammate foolishly stored
passwords for everyone to see and you want to make sure nobody else did that. You
could write logic to keep track of the directory structure, but that makes the code
harder to read and understand. By the end of this section, you'll know a better way.

Let's start out with a simpler example to see what a PathMatcher can do:
Path path1 = Paths.get("/home/One.txt");
Path path2 = Paths.get("One.txt");
PathMatcher matcher = FileSystems.getDefault() // get the PathMatcher
 .getPathMatcher(// for the right file system
 "glob:*.txt"); // wait. What's a glob?
System.out.println(matcher.matches(path1));
System.out.println(matcher.matches(path2));

which outputs:

false
true

We can see that the code checks if a Path consists of any characters followed by
".txt." To get a PathMatcher, you have to call FileSystems.getDefault()
.getPathMatcher because matching works differently on different operating
systems. PathMatchers use a new type that you probably haven't seen before called

09-ch09.indd 519 9/2/2014 3:34:06 PM

520 Chapter 9: I/O and NIO

a glob. Globs are not regular expressions, although they might look similar at first.
Let's look at some more examples of globs using a common method so we don't have
to keep reading the same "boilerplate" code. (Boilerplate code is the part of the code
that is always the same.)

public void matches(Path path, String glob) {
 PathMatcher matcher = FileSystems.getDefault().getPathMatcher(glob);
 System.out.println(matcher.matches(path));
}

In the world of globs, one asterisk means "match any character except for a directory
boundary." Two asterisks means "match any character, including a directory boundary."

Path path = Paths.get("/com/java/One.java");
matches(path, "glob:*.java"); // false
matches(path, "glob:**/*.java"); // true
matches(path, "glob:*"); // false
matches(path, "glob:**"); // true

Remember that we are using a file system–specific PathMatcher. This means

slashes and backslashes can be treated differently, depending on what

operating system you happen to be running. The previous example does print

the same output on both Windows and UNIX because it uses forward slashes.

However, if you change just one line of code, the output changes:

Path path = Paths.get("com\\java\\One.java");

Now Windows still prints:

false
true
false
true

However, UNIX prints:

true
false
true
true

Why? Because UNIX doesn't see the backslash as a directory boundary. The

lesson here is to use / instead of \\ so your code behaves more predictably

across operating systems.

Now let's match files with a four-character extension. A question mark matches
any character. A character could be a letter or a number or anything else.

09-ch09.indd 520 9/2/2014 3:34:06 PM

 PathMatcher (OCP Objective 8.5) 521

Path path1 = Paths.get("One.java");
Path path2 = Paths.get("One.ja^a");
matches(path1, "glob:*.????"); // true
matches(path1, "glob:*.???"); // false
matches(path2, "glob:*.????"); // true
matches(path2, "glob:*.???"); // false

Globs also provide a nice way to match multiple patterns. Suppose we want to
match anything that begins with the names Kathy or Bert:

Path path1 = Paths.get("Bert-book");
Path path2 = Paths.get("Kathy-horse");
matches(path1, "glob:{Bert*,Kathy*}"); // true
matches(path2, "glob:{Bert,Kathy}*"); // true
matches(path1, "glob:{Bert,Kathy}"); // false

The first glob shows we can put wildcards inside braces to have multiple glob
expressions. The second glob shows that we can put common wildcards outside the
braces to share them. The third glob shows that without the wildcard, we will only
match the literal strings "Bert" and "Kathy."

You can also use sets of characters like [a-z] or [#$%] in globs just like in regular
expressions. You can also escape special characters with a backslash. Let's put this all
together with a tricky example:

Path path1 = Paths.get("0*b/test/1");
Path path2 = Paths.get("9*b/test/1");
Path path3 = Paths.get("01b/test/1");
Path path4 = Paths.get("0*b/1");
String glob = "glob:[0-9]*{A*,b}/**/1";
matches(path1, glob); // true
matches(path2, glob); // false
matches(path3, glob); // false
matches(path4, glob); // false

Spelling out what the glob does, we have the following:

■ [0-9] One single digit. Can also be read as any one character from 0 to 9.

■ * The literal character asterisk rather than the asterisk that means to
match anything. A single backslash before * escapes it. However, Java won't
let you type a single backslash, so you have to escape the backslash itself with
another backslash.

■ {A*,b} Either a capital A followed by anything or the single character b.

■ /**/ One or more directories with any name.

■ 1 The single character 1.

09-ch09.indd 521 9/2/2014 3:34:06 PM

522 Chapter 9: I/O and NIO

The second path doesn't match because it has the literal backslash followed by the
literal asterisk. The glob was looking for the literal asterisk by itself. The third path
also doesn't match because there is no literal asterisk. The fourth path doesn't match
because there is no directory between "b" and "1" for the ** to match. Luckily, nobody
would write such a crazy, meaningless glob. But if you can understand this one, you are
all set. Globs tend to be simple expressions like {*.txt,*.html} when used for real.

Since globs are just similar enough to regular expressions to be tricky, Table 9-10
reviews the similarities and differences in common expressions. Regular expressions are
more powerful, but globs focus on what you are likely to need when matching filenames.

By now, you've probably noticed that we are dealing with Path objects, which
means they don't actually need to exist on the file system. But we wanted to print
out all the text files that actually exist in a subdirectory of password. Luckily, we can
combine the power of PathMatchers with what we already know about walking the
file tree to accomplish this.
public class MyPathMatcher extends SimpleFileVisitor<Path> {
 private PathMatcher matcher =
 FileSystems.getDefault().getPathMatcher(
 "glob:**/password/**.txt"); // ** means any subdirectory
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException {
 if (matcher.matches(file)) {
 System.out.println(file);

 }
 return FileVisitResult.CONTINUE;
 }
 public static void main(String[] args) throws Exception {
 MyPathMatcher dirs = new MyPathMatcher();
 Files.walkFileTree(Paths.get("/"), dirs); // start with root
 }
}

The code looks similar, regardless of what you want to do. You just change the
glob pattern to what you actually want to match.

What to Match In a Glob In a Regular Expression

Zero or more of any character, including a
directory boundary

** .*

Zero or more of any character, not
including a directory boundary

* N/A – no special syntax

Exactly one character ? .

Any digit [0-9] [0-9]

Begins with cat or dog {cat, dog}* (cat|dog).*

 TABLE 9-10

Glob vs. Regular
Expression

09-ch09.indd 522 9/2/2014 3:34:06 PM

 WatchService (OCP Objective 8.6) 523

CERTIFICATION OBJECTIVE

WatchService (OCP Objective 8.6)

8.6 Watch a directory for changes with the WatchService interface.

The last thing you need to know about in NIO.2 is WatchService. Suppose you
are writing an installer program. You check that the directory you are about to install
into is empty. If not, you want to wait until the user manually deletes that directory
before continuing. Luckily, you won't have to write this code from scratch, but you
should be familiar with the concepts. Here's the directory tree:

/dir
 | – directoryToDelete
 | – other

Here's the code snippet:
Path dir = Paths.get("/dir"); // get directory containing
 // file/directory we care
 // about
WatchService watcher = FileSystems.getDefault() // file system specific code
 .newWatchService(); // create empty watch service
dir.register(watcher, ENTRY_DELETE); // needs a static import!
 // start watching for
 // deletions
while (true) { // loop until say to stop
 WatchKey key;
 try {
 key = watcher.take(); // wait for a deletion
 } catch (InterruptedException x) {
 return; // give up if something goes
 // wrong
 }
 for (WatchEvent<?> event : key.pollEvents()) {
 WatchEvent.Kind<?> kind = event.kind();
 System.out.println(kind.name()); // create/delete/modify
 System.out.println(kind.type()); // always a Path for us
 System.out.println(event.context()); // name of the file
 String name = event.context().toString();
 if (name.equals("directoryToDelete")) { // only delete right directory
 System.out.format("Directory deleted, now we can proceed");
 return; // end program, we found what
 // we were waiting for
 }
 }
 key.reset(); // keep looking for events
}

09-ch09.indd 523 9/2/2014 3:34:06 PM

524 Chapter 9: I/O and NIO

Supposing we delete directory "other" followed by directory directoryToDelete,
this outputs:

ENTRY_DELETE
interface java.nio.file.Path
other
ENTRY_DELETE
interface java.nio.file.Path
directoryToDelete
Directory deleted, now we can proceed

Notice that we had to watch the directory that contains the files or directories we are
interested in. This is why we watched /dir instead of /dir/directoryToDelete.
This is also why we had to check the context to make sure the directory we were
actually interested in is that one that was deleted.

The basic flow of WatchService stays the same, regardless of what you want to do:

 1. Create a new WatchService

 2. Register it on a Path listening to one or more event types

 3. Loop until you are no longer interested in these events

 4. Get a WatchKey from the WatchService

 5. Call key.pollEvents and do something with the events

 6. Call key.reset to look for more events

Let's look at some of these in more detail. You register the WatchService on a
Path using statements like the following:

dir1.register(watcher, ENTRY_DELETE);
dir2.register(watcher, ENTRY_DELETE, ENTRY_CREATE);
dir3.register(watcher, ENTRY_DELETE, ENTRY_CREATE, ENTRY_MODIFY);

(Note: These ENTRY_XXX constants can be found in the StandardWatchEventsKinds
class. Here and in later code, you'll probably want to create static imports for these
constants.) You can register one, two, or three of the event types. ENTRY_DELETE
means you want your program to be informed when a file or directory has been
deleted. Similarly, ENTRY_CREATE means a new file or directory has been created.
ENTRY_MODIFY means a file has been edited in the directory. These changes can be
made manually by a human or by another program on the computer.

09-ch09.indd 524 9/2/2014 3:34:06 PM

 WatchService (OCP Objective 8.6) 525

Renaming a file or directory is interesting, as it does not show up as ENTRY_MODIFY.
From Java's point of view, a rename is equivalent to creating a new file and deleting
the original. This means that two events will trigger for a rename—both ENTRY_
CREATE and ENTRY_DELETE. Actually editing a file will show up as ENTRY_MODIFY.

To loop through the events, we use while(true). It might seem a little odd to
write a loop that never ends. Normally, there is a break or return statement in the
loop so you stop looping once whatever event you were waiting for has occurred. It's
also possible you want the program to run until you kill or terminate it at the
command line.

Within the loop, you need to get a WatchKey. There are two ways to do this. The
most common is to call take(), which waits until an event is available. It throws an
InterruptedException if it gets interrupted without finding a key. This allows you
to end the program. The other way is to call poll(), which returns null if an event
is not available. You can provide optional timeout parameters to wait up to a specific
period of time for an event to show up.
watcher.take(); // wait "forever" for an event
watcher.poll(); // get event if present right NOW
watcher.poll(10, TimeUnit.SECONDS); // wait up to 10 seconds for an event
watcher.poll(1, TimeUnit.MINUTES); // wait up to 1 minute for an event

Next, you loop through any events on that key. In the case of rename, you'll get
one key with two events—the EVENT_CREATE and EVENT_DELETE. Remember that
you get all the events that happened since the last time you called poll()or
take(). This means you can get multiple seemingly unrelated events out of the
same key. They can be from different files but are for the same WatchService.

for (WatchEvent<?> event : key.pollEvents()) {

Finally, you call key.reset(). This is very important. If you forget to call reset,
the program will work for the first event, but then you will not be notified of any
other events.

There are a few limitations you should be aware of with WatchService.

To begin with, it is slow. You could easily wait five seconds for the event to

register. It also isn't 100 percent reliable. You can add code to check if kind ==

OVERFLOW, but that just tells you something went wrong. You don't know what

events you lost. In practice, you are unlikely to use WatchService.

09-ch09.indd 525 9/2/2014 3:34:06 PM

526 Chapter 9: I/O and NIO

WatchService only watches the files and directories immediately beneath it.
What if we want to watch to see if either p.txt or c.txt is modified?

/dir
 | – parent
 | - p.txt
 | - child
 | - c.txt

One way is to register both directories:

WatchService watcher =
 FileSystems.getDefault().newWatchService();
Path dir = Paths.get("/dir/parent");
dir.register(watcher, ENTRY_MODIFY);
Path child = Paths.get("dir/parent/child");
child.register(watcher, ENTRY_MODIFY);

This works. You can type in all the directories you want to watch. If we had a lot
of child directories, this would quickly get to be too much work. Instead, we can
have Java do it for us:
Path myDir = Paths.get("/dir/parent");
final WatchService watcher = // final so visitor can use it
 FileSystems.getDefault().newWatchService();
Files.walkFileTree(myDir, new SimpleFileVisitor<Path>() {
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) throws IOException {
 dir.register(watcher, ENTRY_MODIFY); // watch each directory
 return FileVisitResult.CONTINUE;
 }
});

This code goes through the file tree recursively registering each directory with the
watcher. The NIO.2 classes are designed to work together. For example, we could
add PathMatcher to the previous example to only watch directories that have a
specific pattern in their path.

CERTIFICATION OBJECTIVE

Serialization (Objective 7.2)

7.2 Use streams to read from and write to files by using classes in the java.io package,
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInputStream,
DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter.

09-ch09.indd 526 9/2/2014 3:34:06 PM

 Certifi cation Summary 527

Over time, Oracle has fine-tuned the objectives of the OCP 7 exam. Serialization
was a topic on the old SCJP 5 and SCJP 6 exams, and recently (as of the summer of

CERTIFICATION SUMMARY

File I/O Remember that objects of type File can represent either files or directories
but that until you call createNewFile() or mkdir() you haven't actually created
anything on your hard drive. Classes in the java.io package are designed to be
chained together. It will be rare that you'll use a FileReader or a FileWriter
without "wrapping" them with a BufferedReader or BufferedWriter object,
which gives you access to more powerful, higher-level methods. As of Java 5, the
PrintWriter class has been enhanced with advanced append(), format(), and
printf() methods, and when you couple that with new constructors that allow you
to create PrintWriters directly from a String name or a File object, you may use
BufferedWriters a lot less. The Console class allows you to read nonechoed input
(returned in a char[?]), and is instantiated using System.console().

NIO.2 Objects of type Path can be files or directories and are a replacement
of type File. Paths are created with Paths.get(). Utility methods in Files
allow you to create, delete, move, copy, or check information about a Path.
In addition, BasicFileAttributes, DosFileAttributes (Windows), and
PosixFileAttributes (UNIX/Linux/Mac) allow you to check more advanced
information about a Path. BasicFileAttributeView, DosFileAttributeView,
and PosixFileAttributeView allow you to update advanced Path attributes.

Using a DirectoryStream allows you to iterate through a directory. Extending
SimpleFileVisitor lets you walk a directory tree recursively looking at files and/or
directories. With a PathMatcher, you can search directories for files using regex-
esqu expressions called globs.

Finally, registering a WatchService provides notifications for new/changed/
removed files or directories.

09-ch09.indd 527 9/2/2014 3:34:06 PM

2014), Oracle reintroduced serialization for the OCP 7 exam. Please see Appendix A
 for in-depth, complete chapter coverage of serialization, right down to a self-test.

528 Chapter 9: I/O and NIO

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

File I/O (OCP Objectives 7.1 and 7.2)

❑ The classes you need to understand in java.io are File, FileReader,
BufferedReader, FileWriter, BufferedWriter, PrintWriter, and
Console.

❑ A new File object doesn't mean there's a new file on your hard drive.

❑ File objects can represent either a file or a directory.

❑ The File class lets you manage (add, rename, and delete) files and
directories.

❑ The methods createNewFile() and mkdir() add entries to your file system.

❑ FileWriter and FileReader are low-level I/O classes. You can use them to
write and read files, but they should usually be wrapped.

❑ Classes in java.io are designed to be "chained" or "wrapped." (This is a
common use of the decorator design pattern.)

❑ It's very common to "wrap" a BufferedReader around a FileReader or a
BufferedWriter around a FileWriter to get access to higher-level (more
convenient) methods.

❑ PrintWriters can be used to wrap other Writers, but as of Java 5, they can
be built directly from Files or Strings.

❑ As of Java 5, PrintWriters have new append(), format(), and printf()
methods.

❑ Console objects can read nonechoed input and are instantiated using
System.console().

Path, Paths, and File (OCP Objectives 8.1 and 8.2)

❑ NIO.2 was introduced in Java 7.

❑ Path replaces File for a representation of a file or directory.

❑ Paths.get() lets you create a Path object.

❑ Static methods in Files let you work with Path objects.

❑ A Path object doesn't mean the file or directory exists on your hard drive.

❑ The methods Files.createFile() and Files.createDirectory() add
entries to your file system.

✓

09-ch09.indd 528 9/2/2014 3:34:06 PM

Two-Minute Drill 529

❑ The Files class provides methods to move, copy, and delete Path objects.

❑ Files.delete() throws an Exception if the file does not exist and
Files.deleteIfExists() returns false.

❑ On Path, normalize() simplifies the path representation.

❑ On Path, resolve() and relativize()work with the relationship between
two path objects.

File Attributes (OCP Objective 8.3)

❑ The Files class provides methods for common attributes such as whether the
file is executable and when it was last modified.

❑ For less common attributes the classes: BasicFileAttributes,
DosFileAttributes, and PosixFileAttributes read the attributes.

❑ DosFileAttributes works on Windows operating systems.

❑ PosixFileAttributes works on UNIX, Linux, and Mac operating systems.

❑ Attributes that can't be updated via the Files class are set using
the classes: BasicFileAttributeView, DosFileAttributeView,
PosixFileAttributeView, FileOwnerAttributeView, and
AclFileAttributeView.

Directory Trees, Matching, and Watching for Changes
(OCP Objectives 8.4, 8.5, and 8.6)

❑ DirectoryStream iterates through immediate children of a directory using
glob patterns.

❑ FileVisitor walks recursively through a directory tree.

❑ You can override one or all of the methods of SimpleFileVisitor—
preVisitDirectory, visitFile, visitFileFailed, and
postVisitDirectory.

❑ You can change the flow of a file visitor by returning one of the
FileVisitResult constants: CONTINUE, SKIP_SUBTREE, SKIP_
SIBLINGS, or TERMINATE.

❑ PathMatcher checks if a path matches a glob pattern.

❑ Know what the following expressions mean for globs: *, **, ?, and {a,b}.

❑ Directories register with WatchService to be notified about creation,
deletion, and modification of files or immediate subdirectories.

❑ PathMatcher and WatchService use FileSystem-specific implementations.

09-ch09.indd 529 9/2/2014 3:34:07 PM

530 Chapter 9: I/O and NIO

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

 1. Note: The use of "drag-and-drop" questions has come and gone over the years. In case Oracle
brings them back into fashion, we threw a couple of them in the book.

 Using the fewest fragments possible (and filling the fewest slots possible), complete the
following code so that the class builds a directory named "dir3" and creates a file named
"file3" inside "dir3." Note you can use each fragment either zero or one times.

 Code:

import java.io.______________

class Maker {
 public static void main(String[] args) {

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________

 ___________ ___________ ___________
} }

 Fragments:

 File; FileDescriptor; FileWriter; Directory;
 try { .createNewDir(); File dir File
 { } (Exception x) ("dir3"); file
 file .createNewFile(); = new File = new File
 dir (dir, "file3"); (dir, file); .createFile();
 } catch ("dir3", "file3"); .mkdir(); File file

09-ch09.indd 530 9/2/2014 3:34:07 PM

Self Test 531

 2. Given:

import java.io.*;

class Directories {
 static String [] dirs = {"dir1", "dir2"};
 public static void main(String [] args) {
 for (String d : dirs) {

 // insert code 1 here

 File file = new File(path, args[0]);

 // insert code 2 here
 }
 }
}

 and that the invocation

java Directories file2.txt

 is issued from a directory that has two subdirectories, "dir1" and "dir2," and that "dir1" has
a file "file1.txt" and "dir2" has a file "file2.txt," and the output is "false true," which
set(s) of code fragments must be inserted? (Choose all that apply.)

 A. String path = d;

 System.out.print(file.exists() + " ");

 B. String path = d;

 System.out.print(file.isFile() + " ");

 C. String path = File.separator + d;

 System.out.print(file.exists() + " ");

 D. String path = File.separator + d;

 System.out.print(file.isFile() + " ");

 3. Given:

 3. import java.io.*;
 4. public class ReadingFor {
 5. public static void main(String[] args) {
 6. String s;
 7. try {
 8. FileReader fr = new FileReader("myfile.txt");
 9. BufferedReader br = new BufferedReader(fr);
10. while((s = br.readLine()) != null)

09-ch09.indd 531 9/2/2014 3:34:07 PM

532 Chapter 9: I/O and NIO

11. System.out.println(s);
12. br.flush();
13. } catch (IOException e) { System.out.println("io error"); }
16. }
17. }

 And given that myfile.txt contains the following two lines of data:

ab
cd

 What is the result?
 A. ab

 B. abcd

 C. ab
 cd

 D. a
 b
 c
 d

 E. Compilation fails

 4. Given:

 3. import java.io.*;
 4. public class Talker {
 5. public static void main(String[] args) {
 6. Console c = System.console();
 7. String u = c.readLine("%s", "username: ");
 8. System.out.println("hello " + u);
 9. String pw;
10. if(c != null && (pw = c.readPassword("%s", "password: ")) != null)
11. // check for valid password
12. }
13. }

 If line 6 creates a valid Console object and if the user enters fred as a username and 1234 as a
password, what is the result? (Choose all that apply.)

 A. username:

 password:

 B. username: fred
 password:

 C. username: fred
 password: 1234

 D. Compilation fails
 E. An Exception is thrown at runtime

09-ch09.indd 532 9/2/2014 3:34:07 PM

Self Test 533

 5.

 Given:

 3. import java.io.*;
 4. class Vehicle { }
 5. class Wheels { }
 6. class Car extends Vehicle implements Serializable { }
 7. class Ford extends Car { }
 8. class Dodge extends Car {
 9. Wheels w = new Wheels();
10. }

 Instances of which class(es) can be serialized? (Choose all that apply.)
 A. Car

 B. Ford

 C. Dodge

 D. Wheels

 E. Vehicle

 6. Which of the following creates a Path object pointing to c:/temp/exam?
(Choose all that apply.)

 A. new Path("c:/temp/exam")

 B. new Path("c:/temp", "exam")

 C. Files.get("c:/temp/exam")

 D. Files.get("c:/temp", "exam")

 E. Paths.get("c:/temp/exam")

 F. Paths.get("c:/temp", "exam")

 7. Given a directory tree at the root of the C: drive and the fact that no other files exist:

dir x - |
..........| - dir y
..........| - file a

 and these two paths:

Path one = Paths.get("c:/x");
Path two = Paths.get("c:/x/y/a");

09-ch09.indd 533 9/2/2014 3:34:07 PM

This question is about serialization, which Oracle reintroduced to the OCP 7 exam and
is covered in Appendix A.

534 Chapter 9: I/O and NIO

 Which of the following statements prints out: y/a ?
 A. System.out.println(one.relativize(two));

 B. System.out.println(two.relativize(one));

 C. System.out.println(one.resolve(two));

 D. System.out.println(two.resolve(one));

 E. System.out.println(two.resolve(two));

 F. None of the above

 8. Given the following statements:
 I. A nonempty directory can usually be deleted using Files.delete
 II. A nonempty directory can usually be moved using Files.move
 III. A nonempty directory can usually be copied using Files.copy

 Which of the following is true?
 A. I only
 B. II only
 C. III only
 D. I and II only
 E. II and III only
 F. I and III only
 G. I, II, and III

 9. Given:

new File("c:/temp/test.txt").delete();

 How would you write this line of code using Java 7 APIs?
 A. Files.delete(Paths.get("c:/temp/test.txt"));

 B. Files.deleteIfExists(Paths.get("c:/temp/test.txt"));

 C. Files.deleteOnExit(Paths.get("c:/temp/test.txt"));

 D. Paths.get("c:/temp/test.txt").delete();

 E. Paths.get("c:/temp/test.txt").deleteIfExists();

 F. Paths.get("c:/temp/test.txt").deleteOnExit();

 10. Given:

public void read(Path dir) throws IOException {
 // CODE HERE
 System.out.println(attr.creationTime());
}

09-ch09.indd 534 9/2/2014 3:34:07 PM

Self Test 535

 Which code inserted at // CODE HERE will compile and run without error on Windows?
(Choose all that apply.)

 A. BasicFileAttributes attr = Files.readAttributes(dir, BasicFileAttributes.class);

 B. BasicFileAttributes attr = Files.readAttributes(dir, DosFileAttributes.class);

 C. DosFileAttributes attr = Files.readAttributes(dir, BasicFileAttributes.class);

 D. DosFileAttributes attr = Files.readAttributes(dir, DosFileAttributes.class);

 E. PosixFileAttributes attr = Files.readAttributes(dir, PosixFileAttributes.class);

 F. BasicFileAttributes attr = new BasicFileAttributes(dir);

 G. BasicFileAttributes attr =dir.getBasicFileAttributes();

 11. Which of the following are true? (Choose all that apply.)
 A. The class AbstractFileAttributes applies to all operating systems
 B. The class BasicFileAttributes applies to all operating systems
 C. The class DosFileAttributes applies to Windows-based operating systems
 D. The class WindowsFileAttributes applies to Windows-based operating systems
 E. The class PosixFileAttributes applies to all Linux/UNIX-based operating systems
 F. The class UnixFileAttributes applies to all Linux/UNIX-based operating systems

 12. Given a partial directory tree:

dir x - |
..........| - dir y
..........| - file a

 In what order can the following methods be called if walking the directory tree from x?
(Choose all that apply.)

 I: preVisitDirectory x

 II: preVisitDirectory x/y

 III: postVisitDirectory x/y

 IV: postVisitDirectory x

 V: visitFile x/a
 A. I, II, III, IV, V
 B. I, II, III, V, IV
 C. I, V, II, III, IV
 D. I, V, II, IV, III
 E. V, I, II, III, IV
 F. V, I, II, VI, III

09-ch09.indd 535 9/2/2014 3:34:07 PM

536 Chapter 9: I/O and NIO

 13. Given:

public class MyFileVisitor extends SimpleFileVisitor<Path> {
 // more code here
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("File " + file);
 if (file.getFileName().endsWith("Test.java")) {
 // CODE HERE
 }
 return FileVisitResult.CONTINUE;
 }
 // more code here
}

 Which code inserted at // CODE HERE would cause the FileVisitor to stop visiting files after
it sees the file Test.java?

 A. return FileVisitResult.CONTINUE;

 B. return FileVisitResult.END;

 C. return FileVisitResult.SKIP_SIBLINGS;

 D. return FileVisitResult.SKIP_SUBTREE;

 E. return FileVisitResult.TERMINATE;

 F. return null;

 14. Assume all the files referenced by these paths exist:

Path a = Paths.get("c:/temp/dir/a.txt");
Path b = Paths.get("c:/temp/dir/subdir/b.txt");

 What is the correct string to pass to PathMatcher to match both these files?
 A. "glob:*/*.txt"

 B. "glob:**.txt"

 C. "glob:*.txt"

 D. "glob:/*/*.txt"

 E. "glob:/**.txt"

 F. "glob:/*.txt"

 G. None of the above

09-ch09.indd 536 9/2/2014 3:34:07 PM

Self Test 537

 15. Given a partial directory tree at the root of the drive:

dir x - |
..........| = file a.txt
..........| - dir y
....................| - file b.txt
....................| - dir y
..............................| - file c.txt

 And the following snippet:
Path dir = Paths.get("c:/x");
try (DirectoryStream<Path> stream = Files.newDirectoryStream(dir, "**/*.txt")) {
for (Path path : stream) {
 System.out.println(path);
} }

 What is the result?
 A. c:/x/a.txt

 B. c:/x/a.txt
 c:/x/y/b.txt
 c:/x/y/z/c.txt

 C. Code compiles but does not output anything
 D. Does not compile because DirectoryStream comes from FileSystems, not Files
 E. Does not compile for another reason

 16. Given a partial directory tree:

dir x - |
..........| - dir y
..........| -file a

 and given that a valid Path object, dir, points to x, and given this snippet:

WatchKey key = dir.register(watcher, ENTRY_CREATE);

 If a WatchService is set using the given WatchKey, what would be the result if a file is added
to dir y?

 A. No notice is given
 B. A notice related to dir x is issued
 C. A notice related to dir y is issued
 D. Notices for both dir x and dir y are given
 E. An Exception is thrown
 F. The behavior depends on the underlying operating system

09-ch09.indd 537 9/2/2014 3:34:07 PM

538 Chapter 9: I/O and NIO

SELF TEST ANSWERS

 1. ☑ Answer:

import java.io.File;
class Maker {
 public static void main(String[] args) {
 try {
 File dir = new File("dir3");
 dir.mkdir();
 File file = new File(dir, "file3");
 file.createNewFile();
 } catch (Exception x) { }
} }

 Notes: The new File statements don't make actual files or directories, just objects. You need
the mkdir()and createNewFile()methods to actually create the directory and the file.
While drag-and-drop questions are no longer on the exam, it is still good to be able to complete
them. (OCP Objective 7.2)

 2. ☑ A and B are correct. Because you are invoking the program from the directory whose direct
subdirectories are to be searched, you don't start your path with a File.separator character.
The exists()method tests for either files or directories; the isFile() method tests only for
files. Since we're looking for a file, both methods work.
☐✗ C and D are incorrect based on the above. (OCP Objective 7.2)

 3. ☑ E is correct. You need to call flush()only when you're writing data. Readers don't have
flush() methods. If not for the call to flush(), answer C would be correct.
☐✗ A, B, C, and D are incorrect based on the above. (OCP Objective 7.2)

 4. ☑ D is correct. The readPassword() method returns a char[]. If a char[] were used,
answer B would be correct.
☐✗ A, B, C, and E are incorrect based on the above. (OCP Objective 7.1)

 5. ☑ A and B are correct. Dodge instances cannot be serialized because they "have" an instance
of Wheels, which is not serializable. Vehicle instances cannot be serialized even though the
subclass Car can be.
☐✗ C, D, and E are incorrect based on the above. (Pre-OCPJP 7 only)

 6. ☑ E and F are correct since Paths must be created using the Paths.get() method. This
method takes a varargs String parameter, so you can pass as many path segments to it as you like.
☐✗ A and B are incorrect because you cannot construct a Path directly. C and D are incorrect
because the Files class works with Path objects but does not create them from Strings.
(Objective 8.1)

09-ch09.indd 538 9/2/2014 3:34:07 PM

Self Test Answers 539

 7. ☑ A is correct because it prints the path to get to two from one.
☐✗ B is incorrect because it prints out ../.. which is the path to navigate to one from two.
This is the reverse of what we want. C, D, and E are incorrect because it does not make sense to
call resolve with absolute paths. They might print out c:/x/c:/x/y/a, c:/x/y/a/c:/x, and
c:/x/y/a/c:/x/y/a, respectively. F is incorrect because of the above. Note that the directory
structure provided is redundant. Neither relativize() nor resolve() requires either path to
actually exist. (OCP Objective 8.1)

 8. ☑ E is correct because a directory containing files or subdirectories is copied or moved in
its entirety. Directories can only be deleted if they are empty. Trying to delete a nonempty
directory will throw a DirectoryNotEmptyException. The question says "usually" because
copy and move success depends on file permissions. Think about the most common cases when
encountering words such as "usually" on the exam.
☐✗ A, B, C, D, F, and G are incorrect because of the above. (OCP Objective 8.2)

 9. ☑ B is correct because, like the Java 7 code, it returns false if the file does not exist.
☐✗ A is incorrect because this code throws an Exception if the file does not exist.
C, D, E, and F are incorrect because they do not compile. There is no deleteOnExit()
method, and file operations such as delete occur using the Files class rather than the path
object directly. (OCP Objective 8.2)

 10. ☑ A, B, and D are correct. Creation time is a basic attribute, which means you can read
BasicFileAttributes or any of its subclasses to read it. DosFileAttributes is one such
subclass.
☐✗ C is incorrect because you cannot cast a more general type to a more specific type. E is
incorrect because this example specifies it is being run on Windows. While it would work on
UNIX, it throws an UnsupportedOperationException on Windows due to requesting the
WindowsFileSystemProvider to get a POSIX class. F and G are incorrect because those
methods do not exist. You must use the Files class to get the attributes. (OCP Objective 8.3)

 11. ☑ B, C, and E are correct. BasicFileAttributes is the general superclass.
DosFileAttributes subclasses BasicFileAttributes for Windows operating systems.
PosixFileAttributes subclasses BasicFileAttributes for UNIX/Linux/Mac operating
systems.
☐✗ A, D, and F are incorrect because no such classes exist. (Objective 8.3)

 12. ☑ B and C are correct because file visitor does a depth-first search. When files and directories
are at the same level of the file tree, they can be visited in either order. Therefore, "y" and "a"
could be reversed. All of the subdirectories and files are visited before postVisit is called on
the directory.
☐✗ A, D, and E are incorrect because of the above. (Objective 8.4)

09-ch09.indd 539 9/2/2014 3:34:07 PM

540 Chapter 9: I/O and NIO

 13. ☑ E is correct because it is the correct constant to end the FileVisitor.
☐✗ B is incorrect because END is not defined as a result constant. A, C, and D are incorrect.
While they are valid constants, they do not end file visiting. CONTINUE proceeds as if nothing
special has happened. SKIP_SUBTREE skips the subdirectory, which doesn't even make sense
for a Java file. SKIP_SIBLINGS would skip any files in the same directory. Since we weren't
told what the file structure is, we can't assume there aren't other directories or subdirectories.
Therefore, we have to choose the most general answer of TERMINATE. F is incorrect because file
visitor throws a NullPointerException if null is returned as the result. (OCP Objective 8.4)

 14. ☑ B is correct. ** matches zero or more characters, including multiple directories.
☐✗ A is incorrect because */ only matches one directory. It will match "temp" but not "c:/temp,"
let alone "c:/temp/dir." C is incorrect because *.txt only matches filenames and not
directory paths. D, E, and F are incorrect because the paths we want to match do not begin
with a slash. G is incorrect because of the above. (Objective 8.5)

 15. ☑ C is correct because DirectoryStream only looks at files in the immediate directory.
**/*.txt means zero or more directories followed by a slash, followed by zero or more
characters followed by .txt. Since the slash is in there, it is required to match, which makes
it mean one or more directories. However, this is impossible because DirectoryStream only
looks at one directory. If the expression were simply *.txt, answer A would be correct.
☐✗ A, B, D, and E are incorrect because of the above. (OCP Objective 8.5)

 16. ☑ A is correct because watch service only looks at a single directory. If you want to look at
subdirectories, you need to set recursive watch keys. This is usually done using a FileVisitor.
☐✗ B, C, D, E, and F are incorrect because of the above. (OCP Objective 8.6)

09-ch09.indd 540 9/2/2014 3:34:07 PM

1010
Advanced OO and Advanced OO and
Design PatternsDesign Patterns

CERTIFICATION OBJECTIVES

Write Code that Declares, Implements, •
and/or Extends Interfaces

Choose Between Interface Inheritance and •
Class Inheritance

Apply Cohesion, Low-Coupling, IS-A, and •
HAS-A Principles

Apply Object Composition Principles •
(Including HAS-A Relationships)

Design a Class Using the Singleton Design •
Pattern

Write Code to Implement the DAO •
Pattern

Design and Create Objects Using a •
Factory and Use Factories from the API

Two-Minute Drill ✓
Q&A Self Test

10-ch10.indd 541 8/29/2014 7:53:26 PM

542 Chapter 10: Advanced OO and Design Patterns

You were introduced to object-oriented (OO) principles in Chapter 2. We will be looking
at some more advanced principles here, including coupling and cohesion. You'll also learn
what a design pattern is and dip your toe into the world of patterns by exploring three

of them. As a bit of a teaser, a design pattern is a reusable solution to problems. Which will come
in handy so you aren't reinventing new ways to solve common problems.

CERTIFICATION OBJECTIVE

IS-A and HAS-A (OCP Objectives 3.3 and 3.4)

3.3 Apply cohesion, low-coupling, IS-A, and HAS-A principles.

3.4 Apply object composition principles (including HAS-A relationships).

You learned the difference between IS-A and HAS-A in Chapter 2. As a brief
review, how many IS-A/HAS-A statements can you write about BeachUmbrella?

class BeachUmbrella extends Umbrella implements SunProtector {
 Stand stand;
}
class Umbrella{}
interface SunProtector {};
class Stand{}

We can make four statements about BeachUmbrella:

■ BeachUmbrella IS-A Umbrella

■ BeachUmbrella IS-A SunProtector

■ BeachUmbrella HAS-A Stand

■ And, of course, as always, BeachUmbrella IS-A Object

In a nutshell, IS-A happens when a class uses inheritance—e.g., when a class extends
another class or implements an interface. HAS-A happens when a class has instance
variables of a class.

10-ch10.indd 542 8/29/2014 7:53:29 PM

IS-A and HAS-A (OCP Objectives 3.3 and 3.4) 543

Coupling and Cohesion

We're going to admit it up front: The Oracle exam's definitions for cohesion and
coupling are somewhat subjective, so what we discuss in this chapter is from the
perspective of the exam and is by no means The One True Word on these two OO
design principles. It may not be exactly the way that you've learned it, but it's what
you need to understand to answer the questions. You'll have very few questions
about coupling and cohesion on the real exam.

These two topics, coupling and cohesion, have to do with the quality of an OO
design. In general, good OO design calls for loose coupling and shuns tight coupling,
and good OO design calls for high cohesion and shuns low cohesion. As with most
OO design discussions, the goals for an application are

■ Ease of creation

■ Ease of maintenance

■ Ease of enhancement

Coupling

Let's start by attempting to define coupling. Coupling is the degree to which one
class knows about another class. If the only knowledge that class A has about class B
is what class B has exposed through its interface, then class A and class B are said to
be loosely coupled… that's a good thing. If, on the other hand, class A relies on
parts of class B that are not part of class B's interface, then the coupling between the
classes is tighter… not a good thing. In other words, if A knows more than it should
about the way in which B was implemented, then A and B are tightly coupled.

Using this second scenario, imagine what happens when class B is enhanced. It's
quite possible that the developer enhancing class B has no knowledge of class
A—why would she? Class B's developer ought to feel that any enhancements that
don't break the class's interface should be safe, so she might change some
noninterface part of the class, which then causes class A to break.

At the far end of the coupling spectrum is the horrible situation in which class A
knows non-API stuff about class B, and class B knows non-API stuff about class
A—this is REALLY BAD. If either class is ever changed, there's a chance that the
other class will break. Let's look at an obvious example of tight coupling that has
been enabled by poor encapsulation.

10-ch10.indd 543 8/29/2014 7:53:29 PM

544 Chapter 10: Advanced OO and Design Patterns

class DoTaxes {
 float rate;
 float doColorado() {
 SalesTaxRates str = new SalesTaxRates();
 rate = str.salesRate; // ouch this should be a method call like:
 // rate = str.getSalesRate("CO");
 // do stuff with rate
 }
}

class SalesTaxRates {
 public float salesRate; // should be private
 public float adjustedSalesRate; // should be private

 public float getSalesRate(String region) {
 salesRate = new DoTaxes().doColorado(); // ouch again!
 // do region-based calculations
 return adjustedSalesRate;
 }
}

All nontrivial OO applications are a mix of many classes and interfaces working
together. Ideally, all interactions between objects in an OO system should use the
APIs—in other words, the contracts of the objects' respective classes. Theoretically, if
all of the classes in an application have well-designed APIs, then it should be possible for
all interclass interactions to use those APIs exclusively. As we discussed in Chapter 2,
an aspect of good class and API design is that classes should be well encapsulated.

The bottom line is that coupling is a somewhat subjective concept. Because of
this, the exam will test you on really obvious examples of tight coupling; you won't
be asked to make subtle judgment calls.

Cohesion

While coupling has to do with how classes interact with each other, cohesion is all
about how a single class is designed. The term cohesion is used to indicate the degree
to which a class has a single, well-focused purpose. Keep in mind that cohesion is a
subjective concept. The more focused a class is, the higher its cohesiveness—a good
thing. The key benefit of high cohesion is that such classes are typically much easier
to maintain (and less frequently changed) than classes with low cohesion. Another
benefit of high cohesion is that classes with a well-focused purpose tend to be more
reusable than other classes. Let's look at a pseudo-code example:

class BudgetReport {
 void connectToRDBMS(){ }
 void generateBudgetReport() { }
 void saveToFile() { }
 void print() { }
}

10-ch10.indd 544 8/29/2014 7:53:29 PM

 Object Composition Principles (OCP Objective 3.4) 545

Now imagine your manager comes along and says, "Hey, you know that accounting
application we're working on? The clients just decided that they're also going to want
to generate a revenue projection report, oh and they want to do some inventory
reporting also. They do like our reporting features, however, so make sure that all of
these reports will let them choose a database, choose a printer, and save generated
reports to data files…." Ouch!

Rather than putting all the printing code into one report class, we probably would
have been better off with the following design right from the start:

class BudgetReport {
 Options getReportingOptions() { }
 void generateBudgetReport(Options o) { }
}

class RDBMSmanager {
 DBconnection getRDBMS() { }
}

class PrintStuff {
 PrintOptions getPrintOptions() { }
}

class FileSaver {
 SaveOptions getFileSaveOptions() { }
}

This design is much more cohesive. Instead of one class that does everything,
we've broken the system into four main classes, each with a very specific, or cohesive,
role. Because we've built these specialized, reusable classes, it'll be much easier to
write a new report since we already have the database connection class, the printing
class, and the file saver class, and that means they can be reused by other classes that
might want to print a report.

CERTIFICATION OBJECTIVE

Object Composition Principles
(OCP Objective 3.4)

3.4 Apply object composition principles.

Object composition principles build on IS-A and HAS-A. If you aren't 100 percent
comfortable with the differences between IS-A and HAS-A, go back and reread
Chapter 2 before continuing on.

10-ch10.indd 545 8/29/2014 7:53:29 PM

546 Chapter 10: Advanced OO and Design Patterns

Object composition refers to one object having another as an instance variable
(HAS-A). Sometimes, that instance variable might be the same type as the object
we are writing. Think about when you get that package from Amazon that is a box
containing some bubble wrap, a receipt, and yet another box. That is composition at
work. The outer (containing class) box contains an inner (instance) box.

Let's build out this box example. We want to reuse as much code as possible.
After all, the procedure for sealing a box with some tape doesn't change from box to
box. Let's start with the concept of a Box:

public interface Box {
 void pack();
 void seal();
}

Wait. Boxes are simple. Why do we need an interface? We realize there are many
types of boxes. There are gift boxes, jewelry boxes, small boxes, large boxes, etc.
Now we create a concrete type of Box:

public class GiftBox implements Box {
 public void pack() { // from
 System.out.println("pack box"); // interface
 }
 public void seal() { // from
 System.out.println("seal box"); // interface
 }
}

GiftBox implements Box by implementing the two methods Box requires. Providing
an interface lets us keep the Box logic where it belongs—in the relevant subclasses.
And to review, GiftBox IS-A Box.

Now that we've figured out Box, it's time to build a MailerBox:

public class MailerBox implements Box {
 public void pack() {
 System.out.println("pack box");
 }
 public void seal() {
 System.out.println("seal box");
 }
 public void addPostage() {
 System.out.println("affix stamps");
 }
 public void ship() {
 System.out.println("put in mailbox");
 }
}

10-ch10.indd 546 8/29/2014 7:53:29 PM

 Object Composition Principles (OCP Objective 3.4) 547

See any problems? That's right, we've duplicated the logic to pack and seal the
Box. All two lines of it. Our real Box logic would be a lot longer, though. And when
we start manufacturing different types of boxes, we'd have that Box logic all over the
place.

One thought is to solve this by having MailerBox extend GiftBox. It doesn't
take long to see the problem here. We would need MailerGiftBox, MailerSmallBox,
MailerMediumBox, etc. That's a lot of classes! And this technique would repeat
for other types of functionality we create. Which means we would also need
WrappedGiftBox, MailerWrappedGiftBox. Uh oh. We can only extend one class
in Java. We can't inherit both Mailer and GiftBox functionality. Clearly, IS-A isn't
going to work for us here.

Instead, we can use HAS-A. First, we create the interface for our desired
functionality:

public interface Mailer {
 void addPostage();
 void ship();
}

Then we can create the object that is both a Box and Mailer:

public class MailerBox implements Box, Mailer {
 private Box box;
 public MailerBox(Box box) { // pass in a Box
 this.box = box;
 }
 public void pack() { // from Box
 box.pack(); // delegate to box
 }
 public void seal() { // from Box
 box.seal(); // delegate to box
 }
 public void addPostage() { // from Mailer
 System.out.println("affix stamps");
 }
 public void ship() { // from Mailer
 System.out.println("put in mailbox");
 }
}

The first thing to notice is that the logic to pack and seal a box is only in one
place—in the Box hierarchy where it belongs. In fact, the MailerBox doesn't even
know what kind of Box it has. This allows us to be very flexible.

10-ch10.indd 547 8/29/2014 7:53:29 PM

548 Chapter 10: Advanced OO and Design Patterns

Next, notice the implementation of pack() and seal(). That's right—each is one
line. We delegate to Box to actually do the work. This is called method forwarding
or method delegation. These two terms mean the same thing.

Finally, notice that MailerBox is both a Box and a Mailer. This allows us to pass
it to any method that needs a Box or a Mailer.

Polymorphism

Looking at these classes graphically, we have the following:

Box

pack()
seal()

implements

GiftBox

pack()
seal()

Mailer

addPostage()
ship()

implements
implements

MailerBox

pack()
seal()
addPostage()
ship()

Think about which of the objects can be passed to this method:

public void load(Box b) {
 b.pack();
}

GiftBox can because it implements Box. So can MailerBox for the same reason.
MailerBox knows how to pack—by delegating to the Box instance. This is why it is
important for the composing class to both contain and implement the same
interface. Repeating the relevant parts here, we have:

public class MailerBox implements Box, Mailer {
 private Box box;

You can see the composition part. MailerBox both IS-A Box and HAS-A Box.
MailerBox is composed of a Box and delegates to Box for logic. That's the
terminology for object composition.

10-ch10.indd 548 8/29/2014 7:53:29 PM

 Singleton Design Pattern (OCP Objective 3.5) 549

Benefi ts of Composition

Benefits of composition include

■ Reuse An object can delegate to another object rather than repeating the
same code.

■ Preventing a proliferation of subclasses We can have one class
per functionality rather than needing one for every combination of
functionalities.

CERTIFICATION OBJECTIVE

Singleton Design Pattern (OCP Objective 3.5)

3.5 Design a class using the singleton design pattern.

In a nutshell, the singleton design pattern ensures we only have one instance of a
class of an object within the application. It's called a creational design pattern
because it deals with creating objects. But wait, what's this "design pattern"?

What Is a Design Pattern?

Wikipedia currently defines a design pattern as "a general reusable solution to a
commonly occurring problem within a given context." What does that mean? As
programmers, we frequently need to solve the same problem repeatedly. Such as how
to only have one of a class of an object in the application. Rather than have
everyone come up with their own solution, we use a "best practice" type solution
that has been documented and proven to work. The word "general" is important.
We can't just copy and paste a design pattern into our code. It's just an idea. We can
write an implementation for it and put that in our code.

Using a design pattern has a few advantages. We get to use a solution that is known
to work. The tradeoffs, if any, are well documented so we don't stumble over problems
that have already been solved. Design patterns also serve as a communication aid.
Your boss can say, "We will use a singleton," and that one word is enough to tell you
what is expected.

10-ch10.indd 549 8/29/2014 7:53:29 PM

550 Chapter 10: Advanced OO and Design Patterns

When books or web pages document patterns, they do so using consistent
sections. In this book, we have sections for the "Problem," "Solution," and
"Benefits." The "Problem" section explains why we need the pattern—what problem
we are trying to solve. The "Solution" section explains how to implement the
pattern. The "Benefits" section reviews why we need the pattern and how it has
helped us solve the problem. Some of the benefits are hinted at in the "Problem"
section. Others are additional benefits that come from the pattern.

While the exam only covers three patterns, this is just to get your feet wet.

Whole books are written on the topic of design patterns. Head First Design
Patterns (O'Reilly Media, 2004) covers more patterns. And the most famous

book on patterns, Design Patterns: Elements of Reusable Object-Oriented Software

(Addison-Wesley Professional, 1994)—also known as "Gang of Four"—covers

23 design patterns. You may notice that these books are over 10 years old.

That's because the classic patterns haven't changed.

While each book does use a consistent set of sections, there isn't one

common set of names. You will see synonyms used such as "Problem" versus

"Motivation." You will also see additional sections such as "Consequences."

The exam picks simpler patterns so you can use the simpler sections.

When talking about patterns, they are usually presented in a problem/solution
format. Then, depending on the level of detail, other sections are added. In this
book, each pattern will cover the problem, solution, and benefits.

Problem

Let's suppose we are going to put on a show. We have one performance of this show
and we only have a few seats in the theater.

import java.util.*;

public class Show {

 private Set<String> availableSeats;

 public Show() {
 availableSeats = new HashSet<String>();
 availableSeats.add("1A");
 availableSeats.add("1B");
 }
 public boolean bookSeat(String seat) {
 return availableSeats.remove(seat);
 }

10-ch10.indd 550 8/29/2014 7:53:29 PM

 Singleton Design Pattern (OCP Objective 3.5) 551

 public static void main(String[] args) {
 ticketAgentBooks("1A");
 ticketAgentBooks("1A");
 }
 private static void ticketAgentBooks(String seat) {
 Show show = new Show(); // a new Show gets created
 // each time we call the method
 System.out.println(show.bookSeat(seat));
 }
}

This code prints out true twice. That's a problem. We just put two people in the
same seat. Why? We created a new Show object every time we needed it. Even
though we want to use the same theater and seats, Show deals with a new set of seats
each time. Which causes us to double-book seats.

Solution

There are a few ways to implement the singleton pattern. The simplest is

import java.util.*;

public class Show {
 private static final Show INSTANCE // store one instance
 = new Show(); // (this is the singleton)
 private Set<String> availableSeats;

 public static Show getInstance() { // callers can get to
 return INSTANCE; // the instance
 }
 private Show() { // callers can't create
 // directly anymore.
 // Must use getInstance()
 availableSeats = new HashSet<String>();
 availableSeats.add("1A");
 availableSeats.add("1B");
 }
 public boolean bookSeat(String seat) {
 return availableSeats.remove(seat);
 }
 public static void main(String[] args) {
 ticketAgentBooks("1A");
 ticketAgentBooks("1A");
 }
 private static void ticketAgentBooks(String seat) {
 Show show = Show.getInstance();
 System.out.println(show.bookSeat(seat));
 }
}

10-ch10.indd 551 8/29/2014 7:53:29 PM

552 Chapter 10: Advanced OO and Design Patterns

Now the code prints true and false. Much better! We are no longer going to have
two people in the same seat. The bolded bits in the code call attention to the
implementation of the singleton pattern.

The key parts of the singleton pattern are

■ A private static variable to store the single instance called the singleton. This
variable is usually final to keep developers from accidentally changing it.

■ A public static method for callers to get a reference to the instance.

■ A private constructor so no callers can instantiate the object directly.

Remember, the code doesn't create a new Show each time, but merely returns the
singleton instance of Show each time getInstance() is called.

To understand this a little better, consider what happens if we change parts of the
code.

If the constructor weren't private, we wouldn't have a singleton. Callers would be
free to ignore getInstance() and instantiate their own instances. Which would
leave us with multiple instances in the program and defeat the purpose entirely.

If getInstance() weren't public, we would still have a singleton. However, it
wouldn't be as useful because only static methods of the class Show would be able to
use the singleton.

If getInstance() weren't static, we'd have a bigger problem. Callers couldn't
instantiate the class directly, which means they wouldn't be able to call
getInstance() at all.

If INSTANCE weren't static and final, we could have multiple instances at
different points in time. These keywords signal that we assign the field once and it
stays that way for the life of the program.

When talking about design patterns, it is common to also communicate the
pattern in diagram form. The singleton pattern diagram looks like this:

Show

private static Show INSTANCE

private Show()
public static Show getInstance()

10-ch10.indd 552 8/29/2014 7:53:29 PM

 Singleton Design Pattern (OCP Objective 3.5) 553

A format called UML (Unified Modeling Language) is used. The diagrams

in this book use some aspects of UML, such as a box with three sections

representing each class. Actual UML uses more notation, such as showing

public versus private visibility. You can think of this as faux-UML.

As long as the method in the diagram keeps the same signature, we can change
our logic to other implementations of the singleton pattern. One "feature" of the
above implementation is that it creates the Show object before we need it. This is
called eager initialization, which is good if the object isn't expensive to create or we
know it will be needed for every run of the program. Sometimes, however, we want
to create the object only on the first use. This is called lazy initialization.

 private static Show INSTANCE;
 private Set<String> availableSeats;
 public static Show getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new Show();
 }
 return INSTANCE;
 }

In this case, INSTANCE isn't set to be a Show until the first time getInstance() is
called. Walking through what happens, the first time getInstance() is called, Java
sees INSTANCE is still null and creates the singleton. The second time getInstance()
is called, Java sees INSTANCE has already been set and simply returns it. In this
example, INSTANCE isn't final because that would prevent the code from compiling.

The singleton code here assumes you are only running one thread at a time.

It is NOT thread-safe. Think about if this were a web site and two users

managed to be booking a seat at the exact same time. If getInstance() were

running at the exact same time, it would be possible for both of them to see

that INSTANCE was null and create a new Show at the same time. There are

a few ways to solve this. One is to add synchronized to the getInstance()

method. This works, but comes with a small performance hit. We're getting way

beyond the scope of the exam, but you can Google "double checked locked

pattern" for more information.

10-ch10.indd 553 8/29/2014 7:53:29 PM

554 Chapter 10: Advanced OO and Design Patterns

You might have noticed that the code for getInstance()can get a bit complicated.
In Java 5, there became a much shorter way of creating a singleton:

public enum ShowEnum { // this is an enum
 INSTANCE; // instead of a class

 private Set<String> availableSeats;
 private ShowEnum() {
 availableSeats = new HashSet<String>();
 availableSeats.add("1A");
 availableSeats.add("1B");
 }
 public boolean bookSeat(String seat) {
 return availableSeats.remove(seat);
 }
 public static void main(String[] args) {
 ticketAgentBooks("1A");
 ticketAgentBooks("1A");
 }

 private static void ticketAgentBooks(String seat) {
 ShowEnum show = ShowEnum.INSTANCE; // we don't even
 // need a method to
 // get the instance
 System.out.println(show.bookSeat(seat));
 }

}

Short and sweet. By definition, there is only one instance of an enum constant.
You are probably wondering why we've had this whole discussion of the singleton
pattern when it can be written so easily. The main reason is that enums were
introduced with Java 5 and there is a ton of older code out there that you need to be
able to understand. Another reason is that sometimes the older versions of the
pattern are still needed.

Benefi ts

Benefits of the singleton pattern include the following:

■ The primary benefit is that there is only one instance of the object in
the program. When an object's instance variables are keeping track of
information that is used across the program, this becomes useful. For example,
consider a web site visitor counter. You only want one count that is shared.

■ Another benefit is performance. Some objects are expensive to create. For
example, maybe we need to make a database call to look up the state for the
object.

10-ch10.indd 554 8/29/2014 7:53:30 PM

 DAO Design Pattern (OCP Objective 3.6) 555

CERTIFICATION OBJECTIVE

DAO Design Pattern (OCP Objective 3.6)

3.6 Write code to implement the DAO pattern.

DAO stands for "Data Access Object." A DAO is only responsible for storing
data. Nothing else. Why can't we do this in the object with everything else, you ask?

Suppose we have three objects in our program as shown in Table 10-1.
Already there is a problem. These classes aren't cohesive. Remember cohesion? We

want each class to have a single purpose. Storing and searching objects in the database is
NOT that purpose. Having that database code all over makes it hard to focus on the
classes' core purpose for existing, which is clearly for our entertainment. Since dealing
with a database is very common, separating out that responsibility is a pattern—the DAO.

Problem

Let's drill down into just the Book class. This is the poorly written, noncohesive
version. Pay particular attention to the two responsibilities.

import java.util.*;
public class Book {
 private static Map<String, Book> bookstore // storage: extra
 = new HashMap<String, Book>(); // responsibility

 private String isbn; // core responsibility:
 private String title; // book instance
 private String author; // variables

 public Collection<Book> findAllBooks() { // more storage
 return bookstore.values(); // extra responsibility
 }
 public Book findBookByIsbn(String isbn) { // more storage
 return bookstore.get(isbn);
 }
 public void create() {
 bookstore.put(isbn, this);
 }
 public void delete() { // still more storage
 bookstore.remove(isbn);
 }
 public void update() { // yet still more storage
 // no operation - for an in-memory database,
 // we update automatically in real time
 }
 // omitted getters and setters
}

10-ch10.indd 555 8/29/2014 7:53:30 PM

556 Chapter 10: Advanced OO and Design Patterns

Object Responsibilities Still More Responsibilities

Book Store book information, be read Store and search in database

CD Store CD information, be listened to Store and search in database

DVD Store DVD information, be watched Store and search in database

Counting the getters and setters we didn't want to bore you with, the Book class
is over 50 lines. And it hardly does anything! A real Book class would have a lot
more fields. A bookstore needs to tell you when the book was written, the edition,
the price, and all sorts of other information. A bookstore also needs to be able to
keep track of books somewhere other than a map. After all, we don't want our
bookstore to forget everything when we reboot.

The problem is that our class is responsible for two things. The first is keeping
track of being a book. This seems like a good responsibility for a class to have that is
named Book. The other is keeping track of storage responsibilities.

A datastore is the name of—wait for it—where data is stored. In the real world,
we'd use a database or possibly a file containing the books. For testing, we might use
an in-memory database. The map in Book is actually a bare-bones in-memory
datastore. As you'll see in Chapter 15, using a real database would make the Book
class MUCH longer.

This is a problem. We want our code to be easy to read and focused on one
responsibility.

Solution

The DAO pattern has us split up these two responsibilities. We start by letting our
Book class focus on being a book:

public class Book {
 private String isbn; // core responsibility:
 private String title; // book instance
 private String author; // variables

 // omitted getters and setters
}

There can be other methods in Book such as toString(), hashCode(), and
equals(). These methods have to do with the Book object. Methods that have to
do with a bookstore or database are now gone. Much better. Now we can go on to
the data access code:

 TABLE 10-1

Object
Responsibilities

10-ch10.indd 556 8/29/2014 7:53:30 PM

 DAO Design Pattern (OCP Objective 3.6) 557

import java.util.*;

public class InMemoryBookDao {

 private static Map<String, Book> bookstore // storage:
 = new HashMap<String, Book>(); // core responsibility

 public Collection<Book> findAllBooks() {
 return bookstore.values();
 }
 public Book findBookByIsbn(Book book) {
 return bookstore.get(book.getIsbn());
 }
 public void create(Book book) {
 bookstore.put(book.getIsbn(), book);
 }
 public void delete(Book book) {
 bookstore.remove(book.getIsbn());
 }
 public void update(Book book) {
 // no operation - for an in-memory
 // database,
 // we update automatically in real time
 } }

The new InMemoryBookDao class only knows how to do one thing—deal with
the datastore. This is such a common technique that it has a name: the single
responsibility principle. The method names in the DAO are actually standard. You'll
see them again when you get to Chapter 15.

When everything was in the Book object, we just created a Book and started
calling methods. Now that Book and DAO are separate objects, the caller deals with
two objects:

public class Student {
 public static void main(String[] args) {
 BookDao dao = new BookDao(); // dao
 Book book = new Book();
 // call setters
 dao.create(book); // dao - storage
 book.setTitle("Updated");
 dao.update(book); // dao - storage
 dao.delete(book); // dao - storage
 } }

The new DAO object gets all the calls that have to do with the datastore. Table 10-2
shows why each method call is associated with each class.

10-ch10.indd 557 8/29/2014 7:53:30 PM

558 Chapter 10: Advanced OO and Design Patterns

Book DAO

dao.create(book) Deals with datastore
book.setTitle("updated") Changes a Book instance variable
dao.update(book) Deals with datastore
dao.delete(book) Deals with datastore

Good so far? The DAO pattern only has one more part. Our datastore is pretty
wimpy right now. Every time we restart the program, it forgets what books we have.
At some point, we are going to want to change that. But when we do, we want to
make it easier for callers to change.

It's time to add an interface!

import java.util.*;

public interface BookDao {
 Collection<Book> findAllBooks();
 Book findBookByIsbn(Book book);
 void create(Book book);
 void delete(Book book);
 void update(Book book);
}

Since all the method names in the interface match our existing DAO, all we have to
do is have it implement the new interface:

public class InMemoryBookDao implements BookDao {

And we can use the interface type when declaring the DAO:

BookDao dao = new InMemoryBookDao();

Wait a minute. We still have InMemoryBookDao in the line of code that instantiates
the DAO. It is a bit like writing Collection c = new ArrayList();. It just so
happens to be an ArrayList right now, but we could change it at any time. It is a
bit like signifying that the surrounding code shouldn't get too cozy with any particular
implementation. We can always change the specific DAO implementation later
without changing the interface. And we will learn in the next section how to get rid
of even the one reference to InMemoryBookDao.

To review the classes involved in the DAO pattern, we have the following
illustration:

 TABLE 10-2

DAO Method
Call Associations

10-ch10.indd 558 8/29/2014 7:53:30 PM

 DAO Design Pattern (OCP Objective 3.6) 559

BookDao

findAllBooks()
findByIsbn()
create()
delete()
update()

implements

uses

InMemoryBookDao

findAllBooks()
findByIsbn()
create()
delete()
update()

Book

Assorted getters
and setters

uses

Now we have three objects, each responsible for one thing. We have the public
interface BookDao, which specifies the contract. Next, we have the implementation
of that interface, InMemoryBookDao. Finally, we have the Book class itself, which
focuses on the object state and any methods related to Book.

In addition to making the code easier to read, this pattern makes it easy

for us to organize code. We could put all the JavaBeans in one package,

the interfaces in another package, and the implementations in still another

package. This approach allows us to have one package for in-memory

implementations and another for JDBC implementations.

Benefi ts

To review, the benefits of the DAO pattern are as follows:

■ The main object (Book in this case) is cohesive and doesn't have database
code cluttering it up.

■ All the database code is in one part of the program, making it easy to find.

■ We can change the database implementation without changing the business
object.

■ Reuse is easier. As the database code grows, we can create helper classes and
even helper superclasses.

10-ch10.indd 559 8/29/2014 7:53:30 PM

560 Chapter 10: Advanced OO and Design Patterns

CERTIFICATION OBJECTIVE

Factory Design Pattern (OCP Objective 3.7)

3.7 Design and create objects using a factory and use factories from the API.

Like the singleton design pattern, the factory design pattern is a creational design
pattern. Unlike the singleton, it doesn't limit you to only having one copy of an
object. The factory design pattern creates new objects of whatever implementation
it chooses.

Problem

So far, we only have one implementation of our BookDAO called InMemoryBookDao.
It isn't very robust since it only stores objects in memory. We will need to create a
version of it that uses JDBC or writes to a file or does something else where we can
remember state. We want to be able to change the DAO implementation without
having to change the caller code (Student). Remember coupling? This is loose
coupling. Interfaces are part of loose coupling, but we want to go a step further.

Solution

The simplest factory we can write while still implementing the pattern is an abstract
class and implementation with one method:

public abstract class Factory {
 public abstract BookDao createDao();
}
public class FactoryImpl extends Factory {
 public BookDao createDao() { // right now, we only
 return new InMemoryBookDao(); // have one DAO
 }
}
public class Student {
 public static void main(String[] args) {
 Factory factory = new FactoryImpl();
 BookDao dao = factory.createDao(); // create the DAO
 // work with dao
 }
}

This is very simple. The Factory is an abstract class with one method. Its
implementation simply returns an in-memory DAO. From Student's point of view,
this is all that exists—the Factory class and the BookDao interface. Note that
Student no longer has the code new InMemoryBookDao.

10-ch10.indd 560 8/29/2014 7:53:30 PM

 Factory Design Pattern (OCP Objective 3.7) 561

In diagram form, here is how our classes fit together:

Student

uses

implements

uses

uses

implements

Factory

createDao()

BookDao

FactoryImpl

createDao()

findAllBooks()
findByIsbn()
create()
delete()
update()

findAllBooks()
findByIsbn()
create()
delete()
update()

InMemoryBookDao

uses

To review, Student only interacts with the two abstract classes Factory and
BookDao. All implementation is in the concrete subclasses.

This setup frees us up to change the implementation of FactoryImpl without
affecting the caller.

Let's try an example to show how we can change the factory. Suppose we write a
DAO implementation OracleBookDao that uses a real database. We might change
FactoryImpl to:

public class FactoryImpl extends Factory { // factory subclass
 public BookDao createDao() {
 if (Util.isTestMode()) {
 return new InMemoryBookDao(); // for test
 } else {
 return new OracleBookDao(); // for real
 }
 }
}

Just like that—nothing changes in Student. Yet it starts using the real database
implementation. This is good design. A change only needs to be made in one place.

10-ch10.indd 561 8/29/2014 7:53:30 PM

562 Chapter 10: Advanced OO and Design Patterns

You might be wondering why Factory is an abstract class rather than an
interface. It is common with the factory method pattern to work "around" the
creation logic, or at least recognize that it might happen later.

As an example here, we could decide that we want to include the test logic check
in the superclass so any future subclasses use it:

public abstract class Factory {

 public BookDao createDao() {
 if (Util.isTestMode()) {
 return new InMemoryBookDao();
 } else {
 return createDatabaseBookDao(); // for subclass
 } // to implement
 }
 protected abstract BookDao createDatabaseBookDao();
}
public class FactoryImpl extends Factory {
 protected BookDao createDatabaseBookDao() { // fills in the
 return new OracleBookDao(); // missing part
 }
}

In this case, the superclass Factory has all the common logic, and the subclass
FactoryImpl merely creates the relevant object. Notice how the API createDao()
hasn't changed its signature at all despite our extensive changes to the method
implementation. That is why we are using the factory pattern. So the caller Student
isn't affected by any changes to our factory and DAO.

There are three patterns with factory in their name:

■ Factory method This is the pattern we are talking about in this chapter

and is on the exam.

■ Abstract factory This takes the factory method pattern a bit further and

is used to create families of related classes.

■ Factory It's debatable whether this is even a pattern. It's not in the

"Gang of Four" book. However, on the job, when developers say "factory,"

they are often referring to a method like

public Foo createFoo() {return new Foo(); }

rather than a full-fledged factory method pattern. The method may

return Foo or SubclassOfFoo, but it doesn't have the superclass/subclass

relationship for the creator object that the factory method pattern has.

10-ch10.indd 562 8/29/2014 7:53:30 PM

 Certifi cation Summary 563

You might have noticed we didn't say anything about making the DAO constructors
private. In the singleton pattern, we needed to force callers to use getInstance()to
prevent multiple copies. The factory pattern is merely a convenience. At times, it is
a pretty big convenience. However, callers can still instantiate the DAO directly
without breaking our logic, so we let them.

In fact, Oracle uses the factory pattern in the Java API in many places. When
we learned how to create a DateFormat, we used DateFormat.getInstance(),
DateFormat.getDateInstance(), and other similar factory methods. If you
wanted more control over the format string, you could still write new
SimpleDateFormat("yyyy MM"). Oracle leaves the constructor available for
when you need it.

Similarly, when we learned how to create a Calendar, we wrote Calendar.
getInstance() or Calendar.getInstance(Locale). You will see many more
examples of the factory pattern as you explore the Java API.

Benefi ts

Benefits of the factory design pattern include the following

■ The caller doesn't change when the factory returns different subclasses. This
is useful when the final implementation isn't ready yet. For example, maybe
the database isn't yet available. It's also useful when we want to use different
implementations for unit testing and production code. For example, you want
to write code that behaves the same way, regardless of what happens to be in
the database.

■ Centralizes creation logic outside the calling class. This prevents duplication
and makes the code more cohesive.

■ Allows for extra logic in the object creation process. For example, an object is
time-consuming to create, and you want to reuse the same one each time.

CERTIFICATION SUMMARY
We started the chapter by reviewing the difference between IS-A and HAS-A. To
review the review, IS-A is implemented using inheritance, and HAS-A is implemented
using instance variables that refer to other objects.

We discussed the OO concepts of coupling and cohesion. Loose coupling is the
desirable state of two or more classes that interact with each other only through
their respective APIs. Tight coupling is the undesirable state of two or more classes

10-ch10.indd 563 8/29/2014 7:53:30 PM

564 Chapter 10: Advanced OO and Design Patterns

that know inside details about another class, details not revealed in the class's API.
High cohesion is the desirable state of a single class whose purpose and responsibilities
are limited and well focused.

Then we built on those concepts and learned about object composition principles. In
particular, we learned how to build objects out of other objects. We saw how method
delegation and method forwarding prevent the need to duplicate code. For example:

public class MailerBox implements Box {
 private Box box;
 ...
 public void pack() { box.pack(); }

Next, we moved on to design patterns. We learned that design patterns are
reusable solutions to common problems.

We saw the singleton pattern used to ensure we only have one instance of a given
class within the application. We created a private static variable to store the single
instance, which we called the singleton. We then created a public static method for
callers to get a reference to the instance. Finally, we made the constructor private so
no callers can instantiate the object directly.

We also looked at the DAO design pattern. DAO stands for Data Access Object
and provides a way to separate database functionality from the main business object.
We saw how using an interface allows us to easily change the data access
implementation. A DAO interface typically looks like this:

public interface BookDao {
 void create(Book book);
 void delete(Book book);
 ...
}

Finally, we looked at the factory design pattern as another way of creating objects.
We learned how to create an abstract and concrete factory object. We also saw that
we could have common logic in the abstract class. For example:

public abstract class Factory {
 public BookDao createDao() {
 BookDao dao = createDatabaseBookDao();
 // more setup on DAO
 return dao;
 }
 public abstract BookDao createDatabaseBookDao();
}
public class FactoryImpl extends Factory {
 public BookDao createDatabaseBookDao() {
 return new OracleBookDao();
 }
}

10-ch10.indd 564 8/29/2014 7:53:30 PM

Two-Minute Drill 565

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.

IS-A/HAS-A (OCP Objective 3.3)

❑ IS-A refers to inheritance.

❑ IS-A is expressed with either the keyword extends or implements.

❑ IS-A, "inherits from," and "is a subtype of" are all equivalent expressions.

❑ HAS-A means an instance of one class "has a" reference to an instance of
another class or another instance of the same class.

Coupling and Cohesion (OCP Objective 3.3)

❑ Coupling refers to the degree to which one class knows about or uses
members of another class.

❑ Loose coupling is the desirable state of having classes that are well encapsulated,
minimize references to each other, and limit the breadth of API usage.

❑ Tight coupling is the undesirable state of having classes that break the rules of
loose coupling.

❑ Cohesion refers to the degree to which a class has a single well-defined role or
responsibility.

❑ High cohesion is the desirable state of a class whose members support a single
well-focused role or responsibility.

❑ Low cohesion is the undesirable state of a class whose members support
multiple unfocused roles or responsibilities.

Object Composition Principles (OCP Objective 3.4)

❑ Object composition takes advantage of IS-A, HAS-A, and polymorphism.

❑ Object composition prevents proliferation of subclasses by having each class
responsible for one thing.

✓

10-ch10.indd 565 8/29/2014 7:53:30 PM

566 Chapter 10: Advanced OO and Design Patterns

❑ Object composition delegates to objects to which it "has" to implement
functionality.

❑ The terms method forwarding and method delegation are used interchangeably.

Singleton Design Pattern (OCP Objective 3.5)

❑ Design pattern is "a general reusable solution to a commonly occurring
problem within a given context."

❑ Having only one instance of the object allows a program to share its state.

❑ This pattern might improve performance by not repeating the same work.

❑ This pattern often stores a single instance as a static variable.

❑ We can instantiate right away (eager) or when needed (lazy).

DAO Design Pattern (OCP Objective 3.6)

❑ DAO stands for Data Access Object.

❑ DAO separates datastore responsibilities from the core responsibilities of the
object.

❑ DAO uses an interface so we can change the implementation.

❑ DAO is only responsible for database operations. The main object remains
cohesive.

❑ DAO facilitates reuse.

Factory Design Pattern (OCP Objective 3.7)

❑ Factory is a creational design pattern.

❑ Factory can create any subclass of an interface or abstract class.

❑ Factory is an abstract class.

❑ Factory subclassing allows for multiple factories.

❑ The factory method return type is an interface or abstract class.

❑ Factory method implementation returns subclasses of the target object.

❑ There may be common logic in the abstract class that all factory
subclasses share.

10-ch10.indd 566 8/29/2014 7:53:31 PM

Self Test 567

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

 1. Given:

class A extends B {
 C tail;
}

 Which is true?
 A. A HAS-A B and A HAS-A C
 B. A HAS-A B and A IS-A C
 C. A IS-A B and A HAS-A C
 D. A IS-A B and A IS-A C
 E. B IS-A A and A-HAS-A C
 F. B IS-A A and A IS-A C

 2. Which statements are true? (Choose all that apply.)
 A. Method delegation relies on IS-A relationships
 B. Method forwarding relies on HAS-A relationships
 C. The DAO pattern limits you to one instance of the DAO object
 D. The singleton pattern relies on IS-A relationships
 E. To use object composition, classes must be final

 3. Given:

public class F {
 private static final F f = new F();
 public static F c() {
 return f;
 }
 public void update(F a) { }

 public void delete(F a) { }
}

 Which design pattern or principle is implemented?
 A. Coupling
 B. DAO

10-ch10.indd 567 8/29/2014 7:53:32 PM

568 Chapter 10: Advanced OO and Design Patterns

 C. Factory
 D. IS-A
 E. Object composition
 F. Singleton

 4. Given:

public class E {
 private D d;
 public void m() {
 d.m();
 }
 public static E getInstance() {
 return new E();
 }
}
class D {
 public void m() {}
}

 Which design pattern or principle is implemented?
 A. DAO
 B. Factory
 C. IS-A
 D. Object composition
 E. Singleton

 5. Given:

class A {}

abstract class G {
 A m() { return n(); }
 abstract A n() ;
}

 Which design pattern or principle is implemented?
 A. DAO
 B. Factory
 C. IS-A
 D. Object composition
 E. Singleton

10-ch10.indd 568 8/29/2014 7:53:32 PM

Self Test 569

 6. Which design patterns are classified as creational design patterns? (Choose all that apply.)
 A. Coupling
 B. DAO
 C. Factory
 D. IS-A
 E. Object composition
 F. Singleton

 7. Which statements indicate the need to use the factory pattern? (Choose all that apply.)
 A. You don't want the caller to depend on a specific implementation
 B. You have two classes that do the same thing
 C. You only want one instance of the object to exist
 D. You want one class to be responsible for database operations
 E. You want to build a chain of objects

 8. Given:

public class Dao {
 Collection<String> findAll() { return null;}
 void create(String a) {}
 void delete(String a) {}
 void update(String a){}
}

 And the following statements:
 I – This is a good use of the DAO pattern
 II – The DAO needs an interface
 III – The DAO is missing a method
 IV – The DAO must use a type other than String

 Which of these statements are true?
 A. Statement I only
 B. Statement II only
 C. Statement III only
 D. Statement IV only
 E. Statements II and III
 F. Statements III and IV

10-ch10.indd 569 8/29/2014 7:53:32 PM

570 Chapter 10: Advanced OO and Design Patterns

 9. Which is a benefit of the DAO pattern? (Choose all that apply.)
 A. Reuse is easier
 B. The database code is automatically generated
 C. We can change the database implementation independently
 D. Your business object extends the DAO pattern to reduce coding
 E. You are limited to one DAO object

 10. Which are true of design patterns? (Choose all that apply.)
 A. Design patterns are chunks of code you can copy into your application unchanged
 B. Design patterns are conceptual reusable solutions
 C. Design patterns are shortcuts to talking about code
 D. There are three design patterns defined for Java
 E. You can only use each design pattern once per application
 F. Design patterns are libraries you can call from your code

 11. Which statement is true? (Choose all that apply.)
 A. Cohesion is the OO principle most closely associated with hiding implementation details
 B. Cohesion is the OO principle most closely associated with making sure that classes know

about other classes only through their APIs
 C. Cohesion is the OO principle most closely associated with making sure that a class is

designed with a single well-focused purpose
 D. Cohesion is the OO principle most closely associated with allowing a single object to be

seen as having many types

 12. Given:
 1) ClassA has a ClassD
 2) Methods in ClassA use public methods in ClassB
 3) Methods in ClassC use public methods in ClassA
 4) Methods in ClassA use public variables in ClassB

 Which is most likely true? (Choose only one.)
 A. ClassD has low cohesion.
 B. ClassA has weak encapsulation.
 C. ClassB has weak encapsulation.
 D. ClassB has strong encapsulation.
 E. ClassC is tightly coupled to ClassA.

10-ch10.indd 570 8/29/2014 7:53:32 PM

Self Test Answers 571

SELF TEST ANSWERS

 1. ☑ C is correct. Since A extends B, it IS-A B. Since C is an instance variable in A, A HAS-A C.
☐✗ A, B, D, E, and F are incorrect because of the above. (OCP Objective 3.3)

 2. ☑ B is correct. Method forwarding is an object composition principle and calls methods on an
instance variable of an object.
☐✗ A is incorrect because method delegation and method forwarding are the same thing. C is
incorrect because it is the singleton pattern that limits you to one object. D is incorrect because
singleton classes typically don't have a superclass (other than Object). E is incorrect because
there is no such requirement. (OCP Objective 3.4)

 3. ☑ F is correct. The singleton pattern is identifiable by the static variable for the single
instance and the accessor returning it.
☐✗ B is incorrect because there is no interface. The class just happens to have methods
update() and delete(), which are similar to those found in a DAO. A, C, D, and E are
incorrect because of the above. (OCP Objective 3.5)

 4. ☑ D is correct. The object composition principle of method forwarding is shown.
☐✗ E is tricky, but incorrect. Although getInstance() is a common name for a method in
a singleton, the method doesn't return a static object. While it does create an object, it isn't
a factory either, since there is no superclass. A, B, and C are incorrect because of the above.
(OCP Objective 3.4)

 5. ☑ B is correct. Class A is the object we are creating using the factory method. Class G is
the abstract superclass for the factory. Not shown is a class implementing class G that actually
creates the object.
☐✗ A, C, D, and E are incorrect because of the above. (OCP Objective 3.7)

 6. ☑ C and F are correct. The factory design pattern creates new objects for each call, and the
singleton design pattern creates one object, returning it each time.
☐✗ A, B, D, and E are incorrect because of the above. (OCP Objectives 3.5 and 3.7)

 7. ☑ A is correct. The factory design pattern decouples the caller from the implementation
class name.
☐✗ B is incorrect because that would be poor design. C is incorrect because it describes the
singleton pattern. D is incorrect because it describes the DAO pattern. E is incorrect because of
the above. (OCP Objective 3.7)

 8. ☑ B is correct. The Data Access Object pattern uses an interface so callers aren't dependent
on a specific implementation class.
☐✗ A, C, D, E, and F are incorrect because of the above. (OCP Objective 3.6)

10-ch10.indd 571 8/29/2014 7:53:32 PM

572 Chapter 10: Advanced OO and Design Patterns

 9. ☑ A and C are correct. The DAO pattern centralizes logic for the data access code, making
reuse easier and allowing you to switch out implementations.
☐✗ B is incorrect because you still have to code the DAO. D is incorrect because you call a
DAO from your business object; you do not inherit from it. E is incorrect because you can have
many DAO objects. (OCP Objective 3.6)

 10. ☑ B and C are correct. Design patterns are conceptual and design level. You have to code the
implementation for each use.
☐✗ D is incorrect because there are dozens of patterns defined for Java. Only three of them are
tested on the exam, but you should be aware that more exist. E is incorrect because it makes
sense to reuse the same pattern. For example, you might have multiple DAO objects. A and F
are incorrect because of the above. (OCP Objectives 3.5, 3.6, and 3.7)

 11. ☑ C is correct.
☐✗ A, B, and D are incorrect. A refers to encapsulation, B refers to coupling, and D refers to
polymorphism. (OCP Objective 3.3)

 12. ☑ C is correct. Generally speaking, public variables are a sign of weak encapsulation.
☐✗ A, B, D, and E are incorrect because based on the information given, none of these
statements can be supported. (OCP Objective 3.3)

10-ch10.indd 572 8/29/2014 7:53:32 PM

1111
Generics and Generics and
CollectionsCollections

CERTIFICATION OBJECTIVES

Create a Generic Class •
Use the Diamond Syntax to Create •
a Collection

Analyze the Interoperability of Collections •
that Use Raw and Generic Types

Use Wrapper Classes and Autoboxing •
Create and Use a List, a Set, and a Deque •

Create and Use a Map •
Use java.util.Comparator and •
java.lang.Comparable

Sort and Search Arrays and Lists •
Two-Minute Drill ✓

Q&A Self Test

11-ch11.indd 573 9/2/2014 6:52:20 PM

574 Chapter 11: Generics and Collections

Generics were the most talked about feature of Java 5. Some people love 'em, some
people hate 'em, but they're here to stay. At their simplest, they can help make code
easier to write and more robust. At their most complex, they can be very, very hard

to create and maintain. Luckily, the exam creators stuck to the simple end of generics, covering the
most common and useful features and leaving out most of the especially tricky bits.

CERTIFICATION OBJECTIVE

toString(), hashCode(), and equals()
(OCP Objectives 4.7 and 4.8)

4.X toString() will show up in numerous places throughout the exam.

4.7 Use java.util.Comparator and java.lang.Comparable.

4.8 Sort and search arrays and lists.

It might not be immediately obvious, but understanding hashCode() and equals()
is essential to working with Java collections, especially when using Maps and when
searching and sorting in general.

You're an object. Get used to it. You have state, you have behavior, you have a
job. (Or at least your chances of getting one will go up after passing the exam.) If
you exclude primitives, everything in Java is an object. Not just an object, but an
Object with a capital O. Every exception, every event, every array extends from
java.lang.Object. For the exam, you don't need to know every method in class
Object, but you will need to know about the methods listed in Table 11-1.

Chapter 13 covers wait(), notify(), and notifyAll(). The finalize()
method was covered in Chapter 3. In this section, we'll look at the hashCode() and
equals() methods because they are so often critical when using collections. Oh,
that leaves toString(), doesn't it? Okay, we'll cover that right now because it takes
two seconds.

11-ch11.indd 574 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 575

Method Description

boolean equals (Object obj) Decides whether two objects are meaningfully
equivalent

void finalize() Called by the garbage collector when the garbage
collector sees that the object cannot be referenced

int hashCode() Returns a hashcode int value for an object
so that the object can be used in Collection
classes that use hashing, including Hashtable,
HashMap, and HashSet

final void notify() Wakes up a thread that is waiting for this object's
lock

final void notifyAll() Wakes up all threads that are waiting for this
object's lock

final void wait() Causes the current thread to wait until another
thread calls notify() or notifyAll() on
this object

String toString() Returns a "text representation" of the object

The toString() Method

Override toString() when you want a mere mortal to be able to read something
meaningful about the objects of your class. Code can call toString() on your
object when it wants to read useful details about your object. When you pass an
object reference to the System.out.println() method, for example, the object's
toString() method is called, and the return of toString() is shown in the
following example:

public class HardToRead {
 public static void main (String [] args) {
 HardToRead h = new HardToRead();
 System.out.println(h);
 }
}

Running the HardToRead class gives us the lovely and meaningful

% java HardToRead
HardToRead@a47e0

The preceding output is what you get when you don’t override the toString()
method of class Object. It gives you the class name (at least that’s meaningful)
followed by the @ symbol, followed by the unsigned hexadecimal representation of
the object’s hashcode.

 TABLE 11-1

Methods of Class
Object Covered
on the Exam

11-ch11.indd 575 9/2/2014 6:52:24 PM

576 Chapter 11: Generics and Collections

Trying to read this output might motivate you to override the toString()
method in your classes, for example:

public class BobTest {
 public static void main (String[] args) {
 Bob f = new Bob("GoBobGo", 19);
 System.out.println(f);
 }
}
class Bob {
 int shoeSize;
 String nickName;
 Bob(String nickName, int shoeSize) {
 this.shoeSize = shoeSize;
 this.nickName = nickName;
 }
 public String toString() {
 return ("I am a Bob, but you can call me " + nickName +
 ". My shoe size is " + shoeSize);
 }
}

This ought to be a bit more readable:

% java BobTest
I am a Bob, but you can call me GoBobGo. My shoe size is 19

Some people affectionately refer to toString() as the "spill-your-guts method"
because the most common implementations of toString() simply spit out the
object's state (in other words, the current values of the important instance variables).
That's it for toString(). Now we'll tackle equals() and hashCode().

Overriding equals()

As we mentioned earlier, you might be wondering why we decided to talk about
Object.equals()near the beginning of the chapter on collections. We'll be
spending a lot of time answering that question over the next pages, but for now, it's
enough to know that whenever you need to sort or search through a collection of
objects, the equals() and hashCode() methods are essential. But before we go
there, let's look at the more common uses of the equals() method.

You learned a bit about the equals() method in Chapter 4. We discussed how
comparing two object references using the == operator evaluates to true only when
both references refer to the same object because == simply looks at the bits in the
variable, and they're either identical or they're not. You saw that the String class
has overridden the equals() method (inherited from the class Object), so you

11-ch11.indd 576 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 577

could compare two different String objects to see if their contents are meaningfully
equivalent. Later in this chapter, we'll be discussing the so-called wrapper classes
when it's time to put primitive values into collections. For now, remember that there
is a wrapper class for every kind of primitive. The folks who created the Integer
class (to support int primitives) decided that if two different Integer instances
both hold the int value 5, as far as you're concerned, they are equal. The fact that
the value 5 lives in two separate objects doesn't matter.

When you really need to know if two references are identical, use ==. But when
you need to know if the objects themselves (not the references) are equal, use the
equals() method. For each class you write, you must decide if it makes sense to
consider two different instances equal. For some classes, you might decide that two
objects can never be equal. For example, imagine a class Car that has instance
variables for things like make, model, year, configuration—you certainly don't want
your car suddenly to be treated as the very same car as someone with a car that has
identical attributes. Your car is your car and you don't want your neighbor Billy
driving off in it just because "hey, it's really the same car; the equals() method said
so." So no two cars should ever be considered exactly equal. If two references refer to
one car, then you know that both are talking about one car, not two cars that have
the same attributes. So in the case of class Car you might not ever need, or want,
to override the equals() method. Of course, you know that isn't the end of the story.

What It Means If You Don't Override equals()

There's a potential limitation lurking here: If you don't override a class's equals()
method, you won't be able to use those objects as a key in a hashtable and you
probably won't get accurate Sets such that there are no conceptual duplicates.

The equals() method in class Object uses only the == operator for comparisons,
so unless you override equals(), two objects are considered equal only if the two
references refer to the same object.

Let's look at what it means to not be able to use an object as a hashtable key.
Imagine you have a car, a very specific car (say, John's red Subaru Outback as
opposed to Mary's purple Mini) that you want to put in a HashMap (a type of
hashtable we'll look at later in this chapter) so that you can search on a particular
car and retrieve the corresponding Person object that represents the owner. So you
add the car instance as the key to the HashMap (along with a corresponding Person
object as the value). But now what happens when you want to do a search? You want
to say to the HashMap collection, "Here's the car; now give me the Person object
that goes with this car." But now you're in trouble unless you still have a reference to
the exact object you used as the key when you added it to the Collection. In other
words, you can't make an identical Car object and use it for the search.

11-ch11.indd 577 9/2/2014 6:52:24 PM

578 Chapter 11: Generics and Collections

The bottom line is this: If you want objects of your class to be used as keys for a
hashtable (or as elements in any data structure that uses equivalency for searching
for—and/or retrieving—an object), then you must override equals() so that two
different instances can be considered the same. So how would we fix the car? You
might override the equals() method so that it compares the unique VIN (Vehicle
Identification Number) as the basis of comparison. That way, you can use one
instance when you add it to a Collection and essentially re-create an identical
instance when you want to do a search based on that object as the key. Of course,
overriding the equals() method for Car also allows the potential for more than one
object representing a single unique car to exist, which might not be safe in your
design. Fortunately, the String and wrapper classes work well as keys in hashtables—
they override the equals() method. So rather than using the actual car instance as
the key into the car/owner pair, you could simply use a String that represents the
unique identifier for the car. That way, you'll never have more than one instance
representing a specific car, but you can still use the car—or rather, one of the car's
attributes—as the search key.

Implementing an equals() Method

Let's say you decide to override equals() in your class. It might look like this:

public class EqualsTest {
 public static void main (String [] args) {
 Moof one = new Moof(8);
 Moof two = new Moof(8);
 if (one.equals(two)) {
 System.out.println("one and two are equal");
 }
 }
}
class Moof {
 private int moofValue;
 Moof(int val) {
 moofValue = val;
 }
 public int getMoofValue() {
 return moofValue;
 }
 public boolean equals(Object o) {
 if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
 return true;
 } else {
 return false;
 }
 }
}

11-ch11.indd 578 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 579

Let's look at this code in detail. In the main() method of EqualsTest, we create
two Moof instances, passing the same value 8 to the Moof constructor. Now look at
the Moof class and let's see what it does with that constructor argument—it assigns
the value to the moofValue instance variable. Now imagine that you've decided two
Moof objects are the same if their moofValue is identical. So you override the
equals() method and compare the two moofValues. It is that simple. But let's
break down what's happening in the equals() method:

1. public boolean equals(Object o) {
2. if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
3. return true;
4. } else {
5. return false;
6. }
7. }

First of all, you must observe all the rules of overriding, and in line 1 we are
indeed declaring a valid override of the equals() method we inherited from Object.

Line 2 is where all the action is. Logically, we have to do two things in order to
make a valid equality comparison.

First, be sure that the object being tested is of the correct type! It comes in
polymorphically as type Object, so you need to do an instanceof test on it.
Having two objects of different class types be considered equal is usually not a good
idea, but that's a design issue we won't go into here. Besides, you'd still have to do
the instanceof test just to be sure that you could cast the object argument to the
correct type so that you can access its methods or variables in order to actually do
the comparison. Remember, if the object doesn't pass the instanceof test, then
you'll get a runtime ClassCastException. For example:

public boolean equals(Object o) {
 if (((Moof)o).getMoofValue() == this.moofValue){
 // the preceding line compiles, but it's BAD!
 return true;
 } else {
 return false;
 }
}

The (Moof)o cast will fail if o doesn't refer to something that IS-A Moof.
Second, compare the attributes we care about (in this case, just moofValue).

Only the developer can decide what makes two instances equal. (For best
performance, you're going to want to check the fewest number of attributes.)

In case you were a little surprised by the whole ((Moof)o).getMoofValue()
syntax, we're simply casting the object reference, o, just-in-time as we try to call a

11-ch11.indd 579 9/2/2014 6:52:24 PM

580 Chapter 11: Generics and Collections

method that's in the Moof class but not in Object. Remember, without the cast, you
can't compile because the compiler would see the object referenced by o as simply,
well, an Object. And since the Object class doesn't have a getMoofValue()
method, the compiler would squawk (technical term). But then, as we said earlier,
even with the cast, the code fails at runtime if the object referenced by o isn't
something that's castable to a Moof. So don't ever forget to use the instanceof test
first. Here's another reason to appreciate the short-circuit && operator—if the
instanceof test fails, we'll never get to the code that does the cast, so we're always
safe at runtime with the following:

if ((o instanceof Moof) && (((Moof)o).getMoofValue()
 == this.moofValue)) {
 return true;
} else {
 return false;
}

So that takes care of equals()…
Whoa… not so fast. If you look at the Object class in the Java API spec, you'll

find what we call a contract specified in the equals() method. A Java contract is a
set of rules that should be followed, or rather must be followed, if you want to
provide a "correct" implementation as others will expect it to be. Or to put it
another way: If you don't follow the contract, your code may still compile and run,
but your code (or someone else's) may break at runtime in some unexpected way.

Remember that the equals(), hashCode(), and toString() methods are

all public. The following would not be a valid override of the equals() method, although

it might appear to be if you don't look closely enough during the exam:

class Foo { boolean equals(Object o) { } }

And watch out for the argument types as well. The following method is an overload, but

not an override of the equals() method:

class Boo { public boolean equals(Boo b) { } }

Be sure you're very comfortable with the rules of overriding so that you can identify

whether a method from Object is being overridden, overloaded, or illegally redeclared in

a class. The equals() method in class Boo changes the argument from Object to Boo, so it

becomes an overloaded method and won't be called unless it's from your own code that

knows about this new, different method that happens to also be named equals().

11-ch11.indd 580 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 581

The equals() Contract

Pulled straight from the Java docs, the equals() contract says

■ It is reflexive. For any reference value x, x.equals(x) should return true.

■ It is symmetric. For any reference values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

■ It is transitive. For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) must return true.

■ It is consistent. For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided
no information used in equals() comparisons on the object is modified.

■ For any non-null reference value x, x.equals(null) should return false.

And you're so not off the hook yet. We haven't looked at the hashCode()
method, but equals() and hashCode() are bound together by a joint contract that
specifies if two objects are considered equal using the equals() method, then they
must have identical hashcode values. So to be truly safe, your rule of thumb should
be if you override equals(), override hashCode() as well. So let's switch over to
hashCode() and see how that method ties in to equals().

Overriding hashCode()

Hashcodes are typically used to increase the performance of large collections of data.
The hashcode value of an object is used by some collection classes (we'll look at the
collections later in this chapter). Although you can think of it as kind of an object
ID number, it isn't necessarily unique. Collections such as HashMap and HashSet
use the hashcode value of an object to determine how the object should be stored in
the collection, and the hashcode is used again to help locate the object in the collection.
For the exam, you do not need to understand the deep details of how the collection
classes that use hashing are implemented, but you do need to know which collections
use them (but, um, they all have "hash" in the name, so you should be good there).
You must also be able to recognize an appropriate or correct implementation of
hashCode(). This does not mean legal and does not even mean efficient. It's
perfectly legal to have a terribly inefficient hashcode method in your class, as long as
it doesn't violate the contract specified in the Object class documentation (we'll
look at that contract in a moment). So for the exam, if you're asked to pick out an
appropriate or correct use of hashcode, don't mistake appropriate for legal or efficient.

11-ch11.indd 581 9/2/2014 6:52:24 PM

582 Chapter 11: Generics and Collections

Understanding Hashcodes

In order to understand what's appropriate and correct, we have to look at how some
of the collections use hashcodes.

Imagine a set of buckets lined up on the floor. Someone hands you a piece of
paper with a name on it. You take the name and calculate an integer code from it by
using A is 1, B is 2, and so on, adding the numeric values of all the letters in the
name together. A given name will always result in the same code; see Figure 11-1.

We don't introduce anything random; we simply have an algorithm that will
always run the same way given a specific input, so the output will always be identical
for any two identical inputs. So far, so good? Now the way you use that code (and
we'll call it a hashcode now) is to determine which bucket to place the piece of
paper into (imagine that each bucket represents a different code number you might
get). Now imagine that someone comes up and shows you a name and says, "Please
retrieve the piece of paper that matches this name." So you look at the name they
show you and run the same hashcode-generating algorithm. The hashcode tells you
in which bucket you should look to find the name.

You might have noticed a little flaw in our system, though. Two different names
might result in the same value. For example, the names Amy and May have the same
letters, so the hashcode will be identical for both names. That's acceptable, but it
does mean that when someone asks you (the bucket clerk) for the Amy piece of
paper, you'll still have to search through the target bucket, reading each name until
we find Amy rather than May. The hashcode tells you only which bucket to go into
and not how to locate the name once we're in that bucket.

 FIGURE 11-1

A simplified
hashcode
example

Key Hashcode Algorithm Hashcode

Dirk
Fred

HashMap Collection

Hashcode Buckets 19

“Bob” “Fred” “Alex”
“Dirk”

33 42

Bob
Alex A(1) + L(12) + E(5) + X(24)

B(2) + O(15) + B(2) = 19
D(4) + I(9) + R(18) + K(11) = 42
F(6) + R(18) + E(5) + D(4) = 33

= 42

11-ch11.indd 582 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 583

So, for efficiency, your goal is to have the papers distributed as evenly as possible
across all buckets. Ideally, you might have just one name per bucket so that when
someone asked for a paper, you could simply calculate the hashcode and just grab the
one paper from the correct bucket, without having to flip through different papers in
that bucket until you locate the exact one you're looking for. The least efficient (but
still functional) hashcode generator would return the same hashcode (say, 42),
regardless of the name, so that all the papers landed in the same bucket while the
others stood empty. The bucket clerk would have to keep going to that one bucket
and flipping painfully through each one of the names in the bucket until the right
one was found. And if that's how it works, they might as well not use the hashcodes
at all, but just go to the one big bucket and start from one end and look through
each paper until they find the one they want.

This distributed-across-the-buckets example is similar to the way hashcodes are
used in collections. When you put an object in a collection that uses hashcodes, the
collection uses the hashcode of the object to decide in which bucket/slot the object
should land. Then when you want to fetch that object (or, for a hashtable, retrieve
the associated value for that object), you have to give the collection a reference to
an object, which it then compares to the objects it holds in the collection. As long
as the object stored in the collection, like a paper in the bucket, you're trying to
search for has the same hashcode as the object you're using for the search (the name
you show to the person working the buckets), then the object will be found. But—
and this is a Big One—imagine what would happen if, going back to our name
example, you showed the bucket worker a name and they calculated the code based
on only half the letters in the name instead of all of them. They'd never find the
name in the bucket because they wouldn't be looking in the correct bucket!

Now can you see why if two objects are considered equal, their hashcodes must
also be equal? Otherwise, you'd never be able to find the object, since the default
hashcode method in class Object virtually always comes up with a unique number

In real-life hashing, it's not uncommon to have more than one entry in a

bucket. Hashing retrieval is a two-step process.

1. Find the right bucket (using hashCode()).

2. Search the bucket for the right element (using equals()).

11-ch11.indd 583 9/2/2014 6:52:24 PM

584 Chapter 11: Generics and Collections

for each object, even if the equals() method is overridden in such a way that two
or more objects are considered equal. It doesn't matter how equal the objects are if
their hashcodes don't reflect that. So one more time: If two objects are equal, their
hashcodes must be equal as well.

Implementing hashCode()

What the heck does a real hashcode algorithm look like? People get their PhDs on
hashing algorithms, so from a computer science viewpoint, it's beyond the scope of
the exam. The part we care about here is the issue of whether you follow the
contract. And to follow the contract, think about what you do in the equals()
method. You compare attributes because that comparison almost always involves
instance variable values (remember when we looked at two Moof objects and
considered them equal if their int moofValues were the same?). Your hashCode()
implementation should use the same instance variables. Here's an example:

class HasHash {
 public int x;
 HasHash(int xVal) { x = xVal; }

 public boolean equals(Object o) {
 HasHash h = (HasHash) o; // Don't try at home without
 // instanceof test
 if (h.x == this.x) {
 return true;
 } else {
 return false;
 }
 }
 public int hashCode() { return (x * 17); }
}

This equals() method says two objects are equal if they have the same x value,
so objects with the same x value will have to return identical hashcodes.

A hashCode() that returns the same value for all instances, whether

they're equal or not, is still a legal—even appropriate—hashCode() method! For example:

public int hashCode() { return 1492; }

This does not violate the contract. Two objects with an x value of 8 will have the same

hashcode. But then again, so will two unequal objects, one with an x value of 12 and the

11-ch11.indd 584 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 585

Typically, you'll see hashCode() methods that do some combination of ^-ing
(XOR-ing) a class's instance variables (in other words, twiddling their bits), along
with perhaps multiplying them by a prime number. In any case, while the goal is to
get a wide and random distribution of objects across buckets, the contract (and
whether or not an object can be found) requires only that two equal objects have
equal hashcodes. The exam does not expect you to rate the efficiency of a hashCode()
method, but you must be able to recognize which ones will and will not work
("work" meaning "will cause the object to be found in the collection").

Now that we know that two equal objects must have identical hashcodes, is the
reverse true? Do two objects with identical hashcodes have to be considered equal?
Think about it—you might have lots of objects land in the same bucket because
their hashcodes are identical, but unless they also pass the equals() test, they won't
come up as a match in a search through the collection. This is exactly what you'd
get with our very inefficient, everybody-gets-the-same-hashcode method. It's legal
and correct, just slooooow.

So in order for an object to be located, the search object and the object in the
collection must both have identical hashcode values and return true for the
equals() method. So there's just no way out of overriding both methods to be
absolutely certain that your objects can be used in Collections that use hashing.

The hashCode() Contract

Now coming to you straight from the fabulous Java API documentation for class
Object, may we present (drumroll) the hashCode() contract:

■ Whenever it is invoked on the same object more than once during an
execution of a Java application, the hashCode() method must consistently
return the same integer, provided that no information used in equals()

other with a value of -920. This hashCode() method is horribly ineffi cient, remember,

because it makes all objects land in the same bucket. Even so, the object can still be

found as the collection cranks through the one and only bucket—using equals()—

trying desperately to fi nally, painstakingly, locate the correct object. In other words, the

hashcode was really no help at all in speeding up the search, even though improving

search speed is hashcode's intended purpose! Nonetheless, this one-hash-fi ts-all method

would be considered appropriate and even correct because it doesn't violate the

contract. Once more, correct does not necessarily mean good.

11-ch11.indd 585 9/2/2014 6:52:24 PM

586 Chapter 11: Generics and Collections

comparisons on the object is modified. This integer need not remain consistent
from one execution of an application to another execution of the same
application.

■ If two objects are equal according to the equals(Object) method, then
calling the hashCode() method on each of the two objects must produce the
same integer result.

■ It is NOT required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the hashCode() method
on each of the two objects must produce distinct integer results. However,
the programmer should be aware that producing distinct integer results for
unequal objects may improve the performance of hashtables.

And what this means to you is…

Condition Required Not Required

(But Allowed)

x.equals(y) == true x.hashCode() ==
y.hashCode()

x.hashCode() ==
y.hashCode()

x.equals(y) == true

x.equals(y) == false No hashCode()
requirements

x.hashCode() !=
y.hashCode()

x.equals(y) == false

So let's look at what else might cause a hashCode() method to fail. What happens
if you include a transient variable in your hashCode() method? While that's legal
(the compiler won't complain), under some circumstances, an object you put in a
collection won't be found. As you might know, serialization saves an object so that it
can be reanimated later by deserializing it back to full objectness. But danger, Will
Robinson—transient variables are not saved when an object is serialized. A bad
scenario might look like this:

class SaveMe implements Serializable{
 transient int x;
 int y;
 SaveMe(int xVal, int yVal) {
 x = xVal;
 y = yVal;
 }

11-ch11.indd 586 9/2/2014 6:52:24 PM

 toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8) 587

 public int hashCode() {
 return (x ^ y); // Legal, but not correct to
 // use a transient variable
 }
 public boolean equals(Object o) {
 SaveMe test = (SaveMe)o;
 if (test.y == y && test.x == x) { // Legal, not correct
 return true;
 } else {
 return false;
 }
 }
}

Here's what could happen using code like the preceding example:

 1. Give an object some state (assign values to its instance variables).

 2. Put the object in a HashMap, using the object as a key.

 3. Save the object to a file using serialization without altering any of its state.

 4. Retrieve the object from the file through deserialization.

 5. Use the deserialized (brought back to life on the heap) object to get the
object out of the HashMap.

Oops. The object in the collection and the supposedly same object brought back
to life are no longer identical. The object's transient variable will come back with a
default value rather than the value the variable had at the time it was saved (or put
into the HashMap). So using the preceding SaveMe code, if the value of x is 9 when
the instance is put in the HashMap, then since x is used in the calculation of the
hashcode, when the value of x changes, the hashcode changes too. And when that
same instance of SaveMe is brought back from deserialization, x == 0, regardless of
the value of x at the time the object was serialized. So the new hashcode calculation
will give a different hashcode and the equals() method fails as well since x is used
to determine object equality.

Bottom line: transient variables can really mess with your equals() and
hashCode() implementations. Keep variables non-transient or, if they must be
marked transient, don't use them to determine hashcodes or equality.

11-ch11.indd 587 9/2/2014 6:52:24 PM

588 Chapter 11: Generics and Collections

CERTIFICATION OBJECTIVE

Collections Overview
(OCP Objectives 4.5 and 4.6)

4.5 Create and use a List, a Set, and a Deque.

4.6 Create and use a Map.

In this section, we're going to present a relatively high-level discussion of the
major categories of collections covered on the exam. We'll be looking at their
characteristics and uses from an abstract level. In the section after this one, we'll
dive into each category of collection and show concrete examples of using each.

Can you imagine trying to write object-oriented applications without using data
structures like hashtables or linked lists? What would you do when you needed to
maintain a sorted list of, say, all the members in your Simpsons fan club? Obviously,
you can do it yourself; Amazon.com must have thousands of algorithm books you
can buy. But with the kind of schedules programmers are under today, it's almost too
painful to consider.

The Collections Framework in Java, which took shape with the release of JDK 1.2
and was expanded in 1.4 and again in Java 5, and yet again in Java 6 and Java 7,
gives you lists, sets, maps, and queues to satisfy most of your coding needs. They've
been tried, tested, and tweaked. Pick the best one for your job, and you'll get
reasonable performance. And when you need something a little more custom, the
Collections Framework in the java.util package is loaded with interfaces and
utilities.

So What Do You Do with a Collection?

There are a few basic operations you'll normally use with collections:

■ Add objects to the collection.

■ Remove objects from the collection.

■ Find out if an object (or group of objects) is in the collection.

■ Retrieve an object from the collection without removing it.

■ Iterate through the collection, looking at each element (object) one after
another.

11-ch11.indd 588 9/2/2014 6:52:24 PM

 Collections Overview (OCP Objectives 4.5 and 4.6) 589

Key Interfaces and Classes of the Collections Framework

The Collections API begins with a group of interfaces, but also gives you a truckload
of concrete classes. The core interfaces you need to know for the exam (and life in
general) are the following nine:

Collection Set SortedSet

List Map SortedMap

Queue NavigableSet NavigableMap

In Chapter 14, which deals with concurrency, we will discuss several classes
related to the Deque interface. Other than those, the concrete implementation
classes you need to know for the exam are the following 13 (there are others, but the
exam doesn't specifically cover them).

Maps Sets Lists Queues Utilities

HashMap HashSet ArrayList PriorityQueue Collections

Hashtable LinkedHashSet Vector Arrays

TreeMap TreeSet LinkedList

LinkedHashMap

Not all collections in the Collections Framework actually implement the Collection
interface. In other words, not all collections pass the IS-A test for Collection.
Specifically, none of the Map-related classes and interfaces extend from Collection.
So while SortedMap, Hashtable, HashMap, TreeMap, and LinkedHashMap are all
thought of as collections, none are actually extended from Collection-with-a-
capital-C (see Figure 11-2). To make things a little more confusing, there are really
three overloaded uses of the word "collection":

■ collection (lowercase c), which represents any of the data structures in which
objects are stored and iterated over.

■ Collection (capital C), which is actually the java.util.Collection
interface from which Set, List, and Queue extend. (That's right, extend,
not implement. There are no direct implementations of Collection.)

■ Collections (capital C and ends with s) is the java.util.Collections
class that holds a pile of static utility methods for use with collections.

11-ch11.indd 589 9/2/2014 6:52:24 PM

590 Chapter 11: Generics and Collections

 FIGURE 11-2 The interface and class hierarchy for collections

<<interface>>
Collection

<<interface>>
Set

<<interface>>
List

<<interface>>
Queue

<<interface>>
SortedSet

<<interface>>
NavigableSet

<<interface>>
NavigableMap

LinkedHashSet PriorityQueueLinkedListVectorArrayList

TreeSet

<<interface>>
Map

<<interface>>
SortedMap

LinkedHashMap

Hashtable

TreeMap

HashMapCollectionsArrays

Object

extends

implements

HashSet

You can so easily mistake "Collections" for "Collection"—be careful.

Keep in mind that Collections is a class, with static utility methods, while Collection is an

interface with declarations of the methods common to most collections, including add(),

remove(), contains(), size(), and iterator().

11-ch11.indd 590 9/2/2014 6:52:24 PM

 Collections Overview (OCP Objectives 4.5 and 4.6) 591

Collections come in four basic flavors:

■ Lists Lists of things (classes that implement List)

■ Sets Unique things (classes that implement Set)

■ Maps Things with a unique ID (classes that implement Map)

■ Queues Things arranged by the order in which they are to be processed

Figure 11-3 illustrates the relative structures of a List, a Set, and a Map.
But there are subflavors within those four flavors of collections:

Sorted Unsorted Ordered Unordered

An implementation class can be unsorted and unordered, ordered but unsorted, or
both ordered and sorted. But an implementation can never be sorted but unordered,
because sorting is a specific type of ordering, as you'll see in a moment. For example,
a HashSet is an unordered, unsorted set, while a LinkedHashSet is an ordered (but
not sorted) set that maintains the order in which objects were inserted.

 FIGURE 11-3

Examples of a
List, a Set,
and a Map

Index:

Value:

0 1 2 3 4 5

“Boulder” “Ft. Collins” “Greeley”

List: The salesman’s itinerary (Duplicates allowed)

Set: The salesman’s territory (No duplicates allowed)

Hashcode Buckets:

Values: “Sky Hook” “MonkeyWrench” “Phase Inverter” “Warp Core”
“Flux Capacitor”

HashMap: The salesman’s products (Keys generated from product IDs)

Boulder

Ft. Collins

Dillon
Denver

Idaho Springs

Greeley Vail

“Boulder” “Denver” “Boulder”

11-ch11.indd 591 9/2/2014 6:52:24 PM

592 Chapter 11: Generics and Collections

Maybe we should be explicit about the difference between sorted and ordered, but
first we have to discuss the idea of iteration. When you think of iteration, you may
think of iterating over an array using, say, a for loop to access each element in the
array in order ([0], [1], [2], and so on). Iterating through a collection usually means
walking through the elements one after another, starting from the first element.
Sometimes, though, even the concept of first is a little strange—in a Hashtable,
there really isn't a notion of first, second, third, and so on. In a Hashtable, the
elements are placed in a (seemingly) chaotic order based on the hashcode of the key.
But something has to go first when you iterate; thus, when you iterate over a
Hashtable, there will indeed be an order. But as far as you can tell, it's completely
arbitrary and can change in apparently random ways as the collection changes.

Ordered When a collection is ordered, it means you can iterate through the
collection in a specific (not random) order. A Hashtable collection is not ordered.
Although the Hashtable itself has internal logic to determine the order (based on
hashcodes and the implementation of the collection itself), you won't find any order
when you iterate through the Hashtable. An ArrayList, however, keeps the order
established by the elements' index position (just like an array). LinkedHashSet
keeps the order established by insertion, so the last element inserted is the last
element in the LinkedHashSet (as opposed to an ArrayList, where you can insert
an element at a specific index position). Finally, there are some collections that keep
an order referred to as the natural order of the elements, and those collections are
then not just ordered, but also sorted. Let's look at how natural order works for
sorted collections.

Sorted A sorted collection means that the order in the collection is determined
according to some rule or rules, known as the sort order. A sort order has nothing to
do with when an object was added to the collection or when was the last time it was
accessed, or what "position" it was added at. Sorting is done based on properties of
the objects themselves. You put objects into the collection, and the collection will
figure out what order to put them in, based on the sort order. A collection that keeps
an order (such as any List, which uses insertion order) is not really considered sorted
unless it sorts using some kind of sort order. Most commonly, the sort order used is
something called the natural order. What does that mean?

You know how to sort alphabetically—A comes before B, F comes before G, and
so on. For a collection of String objects, then, the natural order is alphabetical. For
Integer objects, the natural order is by numeric value—1 before 2, and so on. And
for Foo objects, the natural order is… um… we don't know. There is no natural

11-ch11.indd 592 9/2/2014 6:52:24 PM

 Collections Overview (OCP Objectives 4.5 and 4.6) 593

order for Foo unless or until the Foo developer provides one through an interface
(Comparable) that defines how instances of a class can be compared to one another
(does instance a come before b, or does instance b come before a?). If the developer
decides that Foo objects should be compared using the value of some instance
variable (let's say there's one called bar), then a sorted collection will order the Foo
objects according to the rules in the Foo class for how to use the bar instance
variable to determine the order. Of course, the Foo class might also inherit a natural
order from a superclass rather than define its own order in some cases.

Aside from natural order as specified by the Comparable interface, it's also
possible to define other, different sort orders using another interface: Comparator.
We will discuss how to use both Comparable and Comparator to define sort orders
later in this chapter. But for now, just keep in mind that sort order (including natural
order) is not the same as ordering by insertion, access, or index.

Now that we know about ordering and sorting, we'll look at each of the four
interfaces, and we'll dive into the concrete implementations of those interfaces.

List Interface

A List cares about the index. The one thing that List has that non-lists don't is a
set of methods related to the index. Those key methods include things like get(int
index), indexOf(Object o), add(int index, Object obj), and so on. All
three List implementations are ordered by index position—a position that you
determine either by setting an object at a specific index or by adding it without
specifying position, in which case the object is added to the end. The three List
implementations are described in the following sections.

ArrayList Think of this as a growable array. It gives you fast iteration and fast
random access. To state the obvious: It is an ordered collection (by index), but not
sorted. You might want to know that as of version 1.4, ArrayList now implements
the new RandomAccess interface—a marker interface (meaning it has no methods)
that says, "This list supports fast (generally constant time) random access." Choose
this over a LinkedList when you need fast iteration but aren't as likely to be doing
a lot of insertion and deletion.

Vector Vector is a holdover from the earliest days of Java; Vector and Hashtable
were the two original collections—the rest were added with Java 2 versions 1.2 and
1.4. A Vector is basically the same as an ArrayList, but Vector methods are
synchronized for thread safety. You'll normally want to use ArrayList instead of

11-ch11.indd 593 9/2/2014 6:52:24 PM

594 Chapter 11: Generics and Collections

Vector because the synchronized methods add a performance hit you might not need.
And if you do need thread safety, there are utility methods in class Collections
that can help. Vector is the only class other than ArrayList to implement
RandomAccess.

LinkedList A LinkedList is ordered by index position, like ArrayList, except
that the elements are doubly linked to one another. This linkage gives you new
methods (beyond what you get from the List interface) for adding and removing
from the beginning or end, which makes it an easy choice for implementing a stack
or queue. Keep in mind that a LinkedList may iterate more slowly than an
ArrayList, but it's a good choice when you need fast insertion and deletion. As of
Java 5, the LinkedList class has been enhanced to implement the java.util.
Queue interface. As such, it now supports the common queue methods peek(),
poll(), and offer().

Set Interface

A Set cares about uniqueness—it doesn't allow duplicates. Your good friend the
equals() method determines whether two objects are identical (in which case, only
one can be in the set). The three Set implementations are described in the
following sections.

HashSet A HashSet is an unsorted, unordered Set. It uses the hashcode of the
object being inserted, so the more efficient your hashCode() implementation, the
better access performance you'll get. Use this class when you want a collection with
no duplicates and you don't care about order when you iterate through it.

LinkedHashSet A LinkedHashSet is an ordered version of HashSet that
maintains a doubly linked List across all elements. Use this class instead of
HashSet when you care about the iteration order. When you iterate through a
HashSet, the order is unpredictable, while a LinkedHashSet lets you iterate
through the elements in the order in which they were inserted.

When using HashSet or LinkedHashSet, the objects you add to them must

override hashCode(). If they don't override hashCode(), the default Object.hashCode()

method will allow multiple objects that you might consider "meaningfully equal" to be

added to your "no duplicates allowed" set.

11-ch11.indd 594 9/2/2014 6:52:24 PM

 Collections Overview (OCP Objectives 4.5 and 4.6) 595

TreeSet The TreeSet is one of two sorted collections (the other being
TreeMap). It uses a Red-Black tree structure (but you knew that), and guarantees
that the elements will be in ascending order, according to natural order. Optionally,
you can construct a TreeSet with a constructor that lets you give the collection
your own rules for what the order should be (rather than relying on the ordering
defined by the elements' class) by using a Comparator. As of Java 6, TreeSet
implements NavigableSet.

Map Interface

A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are, of course, objects. You're probably quite
familiar with Maps since many languages support data structures that use a key/value
or name/value pair. The Map implementations let you do things like search for a
value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys. Like Sets, Maps rely on the equals() method to determine whether
two keys are the same or different.

HashMap The HashMap gives you an unsorted, unordered Map. When you need a
Map and you don't care about the order when you iterate through it, then HashMap is
the way to go; the other maps add a little more overhead. Where the keys land in
the Map is based on the key's hashcode, so, like HashSet, the more efficient your
hashCode() implementation, the better access performance you'll get. HashMap
allows one null key and multiple null values in a collection.

Hashtable Like Vector, Hashtable has existed from prehistoric Java times. For
fun, don't forget to note the naming inconsistency: HashMap vs. Hashtable. Where's
the capitalization of t? Oh well, you won't be expected to spell it. Anyway, just as
Vector is a synchronized counterpart to the sleeker, more modern ArrayList,
Hashtable is the synchronized counterpart to HashMap. Remember that you don't
synchronize a class, so when we say that Vector and Hashtable are synchronized,
we just mean that the key methods of the class are synchronized. Another difference,
though, is that while HashMap lets you have null values as well as one null key, a
Hashtable doesn't let you have anything that's null.

LinkedHashMap Like its Set counterpart, LinkedHashSet, the LinkedHashMap
collection maintains insertion order (or, optionally, access order). Although it will

11-ch11.indd 595 9/2/2014 6:52:25 PM

596 Chapter 11: Generics and Collections

be somewhat slower than HashMap for adding and removing elements, you can
expect faster iteration with a LinkedHashMap.

TreeMap You can probably guess by now that a TreeMap is a sorted Map. And
you already know that, by default, this means "sorted by the natural order of the
elements." Like TreeSet, TreeMap lets you define a custom sort order (via a
Comparator) when you construct a TreeMap that specifies how the elements should
be compared to one another when they're being ordered. As of Java 6, TreeMap
implements NavigableMap.

Queue Interface

A Queue is designed to hold a list of "to-dos," or things to be processed in some way.
Although other orders are possible, queues are typically thought of as FIFO (first-in,
first-out). Queues support all of the standard Collection methods and they also have
methods to add and subtract elements and review queue elements.

PriorityQueue This class is new as of Java 5. Since the LinkedList class has
been enhanced to implement the Queue interface, basic queues can be handled with
a LinkedList. The purpose of a PriorityQueue is to create a "priority-in, priority
out" queue as opposed to a typical FIFO queue. A PriorityQueue's elements are
ordered either by natural ordering (in which case the elements that are sorted first
will be accessed first) or according to a Comparator. In either case, the elements'
ordering represents their relative priority.

You can easily eliminate some answers right away if you recognize

that, for example, a Map can't be the class to choose when you need a name/value pair

collection, since Map is an interface and not a concrete implementation class. The wording

on the exam is explicit when it matters, so if you're asked to choose an interface, choose

an interface rather than a class that implements that interface. The reverse is also

true—if you're asked to choose a class, don't choose an interface type.

Table 11-2 summarizes 11 of the 13 concrete collection-oriented classes you'll
need to understand for the exam. (Arrays and Collections are coming right up!)

11-ch11.indd 596 9/2/2014 6:52:25 PM

 Collections Overview (OCP Objectives 4.5 and 4.6) 597

Class Map Set List Ordered Sorted

HashMap X No No
Hashtable X No No
TreeMap X Sorted By natural order or

custom comparison rules
LinkedHashMap X By insertion order

or last access order
No

HashSet X No No
TreeSet X Sorted By natural order or

custom comparison rules
LinkedHashSet X By insertion order No
ArrayList X By index No
Vector X By index No
LinkedList X By index No
PriorityQueue Sorted By to-do order

 TABLE 11-2

Collection
Interface
Concrete
Implementation
Classes

Be sure you know how to interpret Table 11-2 in a practical way. For the

exam, you might be expected to choose a collection based on a particular requirement,

where that need is expressed as a scenario. For example, which collection would you

use if you needed to maintain and search on a list of parts identifi ed by their unique

alphanumeric serial number where the part would be of type Part? Would you change

your answer at all if we modifi ed the requirement such that you also need to be able

to print out the parts in order by their serial number? For the fi rst question, you can see

that since you have a Part class but need to search for the objects based on a serial

number, you need a Map. The key will be the serial number as a String, and the value will

be the Part instance. The default choice should be HashMap, the quickest Map for access.

But now when we amend the requirement to include getting the parts in order of their

serial number, then we need a TreeMap—which maintains the natural order of the keys.

Since the key is a String, the natural order for a String will be a standard alphabetical

sort. If the requirement had been to keep track of which part was last accessed, then

we'd probably need a LinkedHashMap. But since a LinkedHashMap loses the natural order

(replacing it with last-accessed order), if we need to list the parts by serial number, we'll

have to explicitly sort the collection using a utility method.

11-ch11.indd 597 9/2/2014 6:52:25 PM

598 Chapter 11: Generics and Collections

CERTIFICATION OBJECTIVE

Using Collections
(OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8)

4.3 Use the diamond syntax to create a collection.

4.4 Use wrapper classes and autoboxing.

4.5 Create and use a List, a Set, and a Deque.

4.6 Create and use a Map.

4.7 Use java.util.Comparator and java.lang.Comparable.

4.8 Sort and search arrays and lists.

We've taken a high-level theoretical look at the key interfaces and classes in the
Collections Framework; now let's see how they work in practice.

ArrayList Basics

Let's start with a quick review of what we learned about ArrayLists from Chapter 5.
The java.util.ArrayList class is one of the most commonly used classes in the
Collections Framework. It's like an array on vitamins. Some of the advantages
ArrayList has over arrays are

■ It can grow dynamically.

■ It provides more powerful insertion and search mechanisms than arrays.

Let's take a look at using an ArrayList that contains strings. A key design goal
of the Collections Framework was to provide rich functionality at the level of the
main interfaces: List, Set, and Map. In practice, you'll typically want to instantiate
an ArrayList polymorphically, like this:

List myList = new ArrayList();

As of Java 5, you'll want to say

List<String> myList = new ArrayList<String>();

11-ch11.indd 598 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 599

This kind of declaration follows the object-oriented programming principle of
"coding to an interface," and it makes use of generics. We'll say lots more about
generics later in this chapter, but for now, just know that, as of Java 5, the <String>
syntax is the way that you declare a collection's type. (Prior to Java 5, there was no
way to specify the type of a collection, and when we cover generics, we'll talk about
the implications of mixing Java 5 [typed] and pre-Java 5 [untyped] collections.)

Why we're still talking about Java 5:

■ Understanding how collections worked before Java 5 makes generics easier to

understand now.

■ On the exam, and in the real world, you'll have to understand how code written

before Java 5 works and how such code interacts with more recent code.

In many ways, ArrayList<String> is similar to a String[] in that it declares a
container that can hold only strings, but it's more powerful than a String[]. Let's
look at some of the capabilities that an ArrayList has:

List<String> test = new ArrayList<String>(); // declare the ArrayList
String s = "hi";
test.add("string"); // add some strings
test.add(s);
test.add(s+s);
System.out.println(test.size()); // use ArrayList methods
System.out.println(test.contains(42));
System.out.println(test.contains("hihi"));
test.remove("hi");
System.out.println(test.size());

which produces

3
false
true
2

There's a lot going on in this small program. Notice that when we declared the
ArrayList we didn't give it a size. Then we were able to ask the ArrayList for its
size, we were able to ask whether it contained specific objects, we removed an object
right out from the middle of it, and then we rechecked its size.

11-ch11.indd 599 9/2/2014 6:52:25 PM

600 Chapter 11: Generics and Collections

Autoboxing with Collections

In general, collections can hold Objects but not primitives. Prior to Java 5, a
common use for the so-called "wrapper classes" (e.g., Integer, Float, Boolean, and
so on) was to provide a way to get primitives into and out of collections. Prior to
Java 5, you had to "wrap" a primitive manually before you could put it into a
collection. With Java 5, primitives still have to be wrapped, but autoboxing takes
care of it for you.

List myInts = new ArrayList(); // pre Java 5 declaration
myInts.add(new Integer(42)); // Use Integer to "wrap" an int

In the previous example, we create an instance of class Integer with a value of 42.
We've created an entire object to "wrap around" a primitive value. As of Java 5, we
can say:

myInts.add(42); // autoboxing handles it!

In this last example, we are still adding an Integer object to myInts (not an int
primitive); it's just that autoboxing handles the wrapping for us. There are some
sneaky implications when we need to use wrapper objects; let's take a closer look…

In the old, pre–Java 5 days, if you wanted to make a wrapper, unwrap it, use it,
and then rewrap it, you might do something like this:

Integer y = new Integer(567); // make it
int x = y.intValue(); // unwrap it
x++; // use it
y = new Integer(x); // rewrap it
System.out.println("y = " + y); // print it

Now, with new and improved Java 5, you can say

Integer y = new Integer(567); // make it
y++; // unwrap it, increment it,
 // rewrap it
System.out.println("y = " + y); // print it

Both examples produce the following output:

y = 568

And yes, you read that correctly. The code appears to be using the postincrement
operator on an object reference variable! But it's simply a convenience. Behind
the scenes, the compiler does the unboxing and reassignment for you. Earlier, we
mentioned that wrapper objects are immutable… this example appears to contradict
that statement. It sure looks like y's value changed from 567 to 568. What actually

11-ch11.indd 600 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 601

happened, however, is that a second wrapper object was created and its value was set
to 568. If only we could access that first wrapper object, we could prove it…

Let's try this:

Integer y = 567; // make a wrapper
Integer x = y; // assign a second ref
 // var to THE wrapper

System.out.println(y==x); // verify that they refer
 // to the same object
y++; // unwrap, use, "rewrap"
System.out.println(x + " " + y); // print values

System.out.println(y==x); // verify that they refer
 // to different objects

Which produces the output:

true
 567 568
 false

So, under the covers, when the compiler got to the line y++; it had to substitute
something like this:

int x2 = y.intValue(); // unwrap it
x2++; // use it
y = new Integer(x2); // rewrap it

Just as we suspected, there's gotta be a call to new in there somewhere.

Boxing, ==, and equals()

We just used == to do a little exploration of wrappers. Let's take a more thorough
look at how wrappers work with ==, !=, and equals().The API developers decided
that for all the wrapper classes, two objects are equal if they are of the same type and
have the same value. It shouldn't be surprising that

Integer i1 = 1000;
Integer i2 = 1000;
if(i1 != i2) System.out.println("different objects");
if(i1.equals(i2)) System.out.println("meaningfully equal");

produces the output

different objects
meaningfully equal

11-ch11.indd 601 9/2/2014 6:52:25 PM

602 Chapter 11: Generics and Collections

It's just two wrapper objects that happen to have the same value. Because they
have the same int value, the equals() method considers them to be "meaningfully
equivalent," and therefore returns true. How about this one:

Integer i3 = 10;
Integer i4 = 10;
if(i3 == i4) System.out.println("same object");
if(i3.equals(i4)) System.out.println("meaningfully equal");

This example produces the output:

same object
meaningfully equal

Yikes! The equals() method seems to be working, but what happened with ==
and !=? Why is != telling us that i1 and i2 are different objects, when == is saying
that i3 and i4 are the same object? In order to save memory, two instances of the
following wrapper objects (created through boxing) will always be == when their
primitive values are the same:

■ Boolean

■ Byte

■ Character from \u0000 to \u007f (7f is 127 in decimal)

■ Short and Integer from –128 to 127

When == is used to compare a primitive to a wrapper, the wrapper will be
unwrapped and the comparison will be primitive to primitive.

Where Boxing Can Be Used

As we discussed earlier, it's common to use wrappers in conjunction with collections.
Any time you want your collection to hold objects and primitives, you'll want to use
wrappers to make those primitives collection-compatible. The general rule is that
boxing and unboxing work wherever you can normally use a primitive or a wrapped
object. The following code demonstrates some legal ways to use boxing:

class UseBoxing {
 public static void main(String [] args) {
 UseBoxing u = new UseBoxing();
 u.go(5);
 }
 boolean go(Integer i) { // boxes the int it was passed
 Boolean ifSo = true; // boxes the literal
 Short s = 300; // boxes the primitive

11-ch11.indd 602 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 603

 if(ifSo) { // unboxing
 System.out.println(++s); // unboxes, increments, reboxes
 }
 return !ifSo; // unboxes, returns the inverse
 }
}

Remember, wrapper reference variables can be null. That means you have

to watch out for code that appears to be doing safe primitive operations but that could

throw a NullPointerException:

class Boxing2 {
 static Integer x;
 public static void main(String [] args) {
 doStuff(x);
 }
 static void doStuff(int z) {
 int z2 = 5;
 System.out.println(z2 + z);
} }

This code compiles fi ne, but the JVM throws a NullPointerException when it attempts

to invoke doStuff(x) because x doesn't refer to an Integer object, so there's no value to

unbox.

The Java 7 "Diamond" Syntax

In the OCA part of the book, we discussed several small additions/improvements to
the language that were added under the name "Project Coin." The last Project Coin
improvement we'll discuss in this book is the "diamond syntax." We've already seen
several examples of declaring type-safe collections, and as we go deeper into
collections, we'll see lots more like this:

ArrayList<String> stuff = new ArrayList<String>();
List<Dog> myDogs = new ArrayList<Dog>();
Map<String, Dog> dogMap = new HashMap<String, Dog>();

Notice that the type parameters are duplicated in these declarations. As of Java 7,
these declarations could be simplified to:

ArrayList<String> stuff = new ArrayList<>();
List<Dog> myDogs = new ArrayList<>();
Map<String, Dog> dogMap = new HashMap<>();

11-ch11.indd 603 9/2/2014 6:52:25 PM

604 Chapter 11: Generics and Collections

Notice that in the simpler Java 7 declarations, the right side of the declaration
included the two characters "<>," which together make a diamond shape—doh!

You cannot swap these; for example, the following declaration is NOT legal:

List<> stuff = new ArrayList<String>(); // NOT a legal diamond syntax

For the purposes of the exam, that's all you'll need to know about the diamond
operator. For the remainder of the book, we'll use the pre-diamond syntax and the
Java 7 diamond syntax somewhat randomly—just like the real world!

Sorting Collections and Arrays

Sorting and searching topics were added to the exam as of Java 5. Both collections
and arrays can be sorted and searched using methods in the API.

Sorting Collections

Let's start with something simple, like sorting an ArrayList of strings
alphabetically. What could be easier? Okay, we'll wait while you go find ArrayList's
sort() method… got it? Of course, ArrayList doesn't give you any way to sort its
contents, but the java.util.Collections class does

import java.util.*;
class TestSort1 {
 public static void main(String[] args) {
 ArrayList<String> stuff = new ArrayList<String>(); // #1
 stuff.add("Denver");
 stuff.add("Boulder");
 stuff.add("Vail");
 stuff.add("Aspen");
 stuff.add("Telluride");
 System.out.println("unsorted " + stuff);
 Collections.sort(stuff); // #2
 System.out.println("sorted " + stuff);
 }
}

This produces something like this:

unsorted [Denver, Boulder, Vail, Aspen, Telluride]
sorted [Aspen, Boulder, Denver, Telluride, Vail]

Line 1 is declaring an ArrayList of Strings, and line 2 is sorting the ArrayList
alphabetically. We'll talk more about the Collections class, along with the Arrays
class, in a later section; for now, let's keep sorting stuff.

11-ch11.indd 604 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 605

Let's imagine we're building the ultimate home-automation application. Today
we're focused on the home entertainment center, and more specifically, the DVD
control center. We've already got the file I/O software in place to read and write data
between the dvdInfo.txt file and instances of class DVDInfo. Here are the key
aspects of the class:

class DVDInfo {
 String title;
 String genre;
 String leadActor;
 DVDInfo(String t, String g, String a) {
 title = t; genre = g; leadActor = a;
 }
 public String toString() {
 return title + " " + genre + " " + leadActor + "\n";
 }
 // getters and setter go here
}

Here's the DVD data that's in the dvdinfo.txt file:

Donnie Darko/sci-fi/Gyllenhall, Jake
Raiders of the Lost Ark/action/Ford, Harrison
2001/sci-fi/??
Caddyshack/comedy/Murray, Bill
Star Wars/sci-fi/Ford, Harrison
Lost in Translation/comedy/Murray, Bill
Patriot Games/action/Ford, Harrison

In our home-automation application, we want to create an instance of DVDInfo
for each line of data we read in from the dvdInfo.txt file. For each instance, we
will parse the line of data (remember String.split()?) and populate DVDInfo's
three instance variables. Finally, we want to put all of the DVDInfo instances into an
ArrayList. Imagine that the populateList() method (shown next) does all of this.
Here is a small piece of code from our application:

ArrayList<DVDInfo> dvdList = new ArrayList<DVDInfo>();
populateList(); // adds the file data to the ArrayList
System.out.println(dvdList);

You might get output like this:

[Donnie Darko sci-fi Gyllenhall, Jake
, Raiders of the Lost Ark action Ford, Harrison
, 2001 sci-fi ??
, Caddyshack comedy Murray, Bill
, Star Wars sci-fi Ford, Harrison
, Lost in Translation comedy Murray, Bill
, Patriot Games action Ford, Harrison
]

11-ch11.indd 605 9/2/2014 6:52:25 PM

606 Chapter 11: Generics and Collections

(Note: We overrode DVDInfo's toString() method, so when we invoked
println() on the ArrayList, it invoked toString() for each instance.)

Now that we've got a populated ArrayList, let's sort it:

Collections.sort(dvdlist);

Oops! You get something like this:

TestDVD.java:13: cannot find symbol
symbol : method sort(java.util.ArrayList<DVDInfo>)
location: class java.util.Collections
 Collections.sort(dvdlist);

What's going on here? We know that the Collections class has a sort() method,
yet this error implies that Collections does NOT have a sort() method that can
take a dvdlist. That means there must be something wrong with the argument we're
passing (dvdlist).

If you've already figured out the problem, our guess is that you did it without the
help of the obscure error message shown earlier… How the heck do you sort
instances of DVDInfo? Why were we able to sort instances of String? When you
look up Collections.sort() in the API, your first reaction might be to panic.
Hang tight—once again, the generics section will help you read that weird-looking
method signature. If you read the description of the one-arg sort() method, you'll
see that the sort() method takes a List argument, and that the objects in the
List must implement an interface called Comparable. It turns out that String
implements Comparable, and that's why we were able to sort a list of Strings using
the Collections.sort() method.

The Comparable Interface

The Comparable interface is used by the Collections.sort() method and the
java.util.Arrays.sort() method to sort Lists and arrays of objects, respectively.
To implement Comparable, a class must implement a single method, compareTo().
Here's an invocation of compareTo():

int x = thisObject.compareTo(anotherObject);

The compareTo() method returns an int with the following characteristics:

■ Negative If thisObject < anotherObject

■ Zero If thisObject == anotherObject

■ Positive If thisObject > anotherObject

11-ch11.indd 606 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 607

The sort() method uses compareTo() to determine how the List or object
array should be sorted. Since you get to implement compareTo() for your own
classes, you can use whatever weird criteria you prefer to sort instances of your
classes. Returning to our earlier example for class DVDInfo, we can take the easy way
out and use the String class's implementation of compareTo():

class DVDInfo implements Comparable<DVDInfo> { // #1
 // existing code
 public int compareTo(DVDInfo d) {
 return title.compareTo(d.getTitle()); // #2
} }

In line 1, we declare that class DVDInfo implements Comparable in such a way
that DVDInfo objects can be compared to other DVDInfo objects. In line 2, we
implement compareTo() by comparing the two DVDInfo object's titles. Since we
know that the titles are strings and that String implements Comparable, this is an
easy way to sort our DVDInfo objects by title. Before generics came along in Java 5,
you would have had to implement Comparable using something like this:

class DVDInfo implements Comparable {
 // existing code
 public int compareTo(Object o) { // takes an Object rather
 // than a specific type
 DVDInfo d = (DVDInfo)o;
 return title.compareTo(d.getTitle());
} }

This is still legal, but you can see that it's both painful and risky because you have
to do a cast, and you need to verify that the cast will not fail before you try it.

It's important to remember that when you override equals(), you MUST

take an argument of type Object, but that when you override compareTo(), you should

take an argument of the type you're sorting.

11-ch11.indd 607 9/2/2014 6:52:25 PM

608 Chapter 11: Generics and Collections

Putting it all together, our DVDInfo class should now look like this:

class DVDInfo implements Comparable<DVDInfo> {
 String title;
 String genre;
 String leadActor;
 DVDInfo(String t, String g, String a) {
 title = t; genre = g; leadActor = a;
 }
 public String toString() {
 return title + " " + genre + " " + leadActor + "\n";
 }
 public int compareTo(DVDInfo d) {
 return title.compareTo(d.getTitle());
 }
 public String getTitle() {
 return title;
 }
 // other getters and setters
}

Now, when we invoke Collections.sort(dvdList), we get

[2001 sci-fi ??
, Caddyshack comedy Murray, Bill
, Donnie Darko sci-fi Gyllenhall, Jake
, Lost in Translation comedy Murray, Bill
, Patriot Games action Ford, Harrison
, Raiders of the Lost Ark action Ford, Harrison
, Star Wars sci-fi Ford, Harrison
]

Hooray! Our ArrayList has been sorted by title. Of course, if we want our
home-automation system to really rock, we'll probably want to sort DVD collections
in lots of different ways. Since we sorted our ArrayList by implementing the
compareTo() method, we seem to be stuck. We can only implement compareTo()
once in a class, so how do we go about sorting our classes in an order different from
what we specify in our compareTo() method? Good question. As luck would have
it, the answer is coming up next.

Sorting with Comparator

While you were looking up the Collections.sort() method, you might have
noticed that there is an overloaded version of sort() that takes both a List AND
something called a Comparator. The Comparator interface gives you the capability
to sort a given collection any number of different ways. The other handy thing about
the Comparator interface is that you can use it to sort instances of any class—even

11-ch11.indd 608 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 609

classes you can't modify—unlike the Comparable interface, which forces you to
change the class whose instances you want to sort. The Comparator interface is also
very easy to implement, having only one method, compare(). Here's a small class
that can be used to sort a List of DVDInfo instances by genre:

import java.util.*;
class GenreSort implements Comparator<DVDInfo> {
 public int compare(DVDInfo one, DVDInfo two) {
 return one.getGenre().compareTo(two.getGenre());
 }
}

The Comparator.compare() method returns an int whose meaning is the same
as the Comparable.compareTo() method's return value. In this case, we're taking
advantage of that by asking compareTo() to do the actual comparison work for us.
Here's a test program that lets us test both our Comparable code and our new
Comparator code:

import java.util.*;
import java.io.*; // populateList() needs this
public class TestDVD {
 ArrayList<DVDInfo> dvdlist = new ArrayList<DVDInfo>();
 public static void main(String[] args) {
 new TestDVD().go();
 }
 public void go() {
 populateList();
 System.out.println(dvdlist); // output as read from file
 Collections.sort(dvdlist);
 System.out.println(dvdlist); // output sorted by title

 GenreSort gs = new GenreSort();
 Collections.sort(dvdlist, gs);
 System.out.println(dvdlist); // output sorted by genre
 }
 public void populateList() {
 // read the file, create DVDInfo instances, and
 // populate the ArrayList dvdlist with these instances
 }
}

You've already seen the first two output lists; here's the third:

[Patriot Games action Ford, Harrison
, Raiders of the Lost Ark action Ford, Harrison
, Caddyshack comedy Murray, Bill
, Lost in Translation comedy Murray, Bill
, 2001 sci-fi ??
, Donnie Darko sci-fi Gyllenhall, Jake
, Star Wars sci-fi Ford, Harrison
]

11-ch11.indd 609 9/2/2014 6:52:25 PM

610 Chapter 11: Generics and Collections

Because the Comparable and Comparator interfaces are so similar, expect the
exam to try to confuse you. For instance, you might be asked to implement the
compareTo() method in the Comparator interface. Study Table 11-3 to burn into
your mind the differences between these two interfaces.

Sorting with the Arrays Class

We've been using the java.util.Collections class to sort collections; now
let's look at using the java.util.Arrays class to sort arrays. The good news
is that sorting arrays of objects is just like sorting collections of objects. The
Arrays.sort() method is overloaded in the same way the Collections.sort()
method is:

■ Arrays.sort(arrayToSort)

■ Arrays.sort(arrayToSort, Comparator)

In addition, the Arrays.sort() method (the one argument version), is
overloaded about a million times to provide a couple of sort methods for every type
of primitive. The Arrays.sort(myArray) methods that sort primitives always sort
based on natural order. Don't be fooled by an exam question that tries to sort a
primitive array using a Comparator.

Finally, remember that the sort() methods for both the Collections class and
the Arrays class are static methods, and that they alter the objects they are
sorting instead of returning a different sorted object.

java.lang.Comparable java.util.Comparator

int objOne.compareTo(objTwo) int compare(objOne, objTwo)

Returns
 negative if objOne < objTwo
 zero if objOne == objTwo
 positive if objOne > objTwo

Same as Comparable

You must modify the class whose instances you
want to sort.

You build a class separate from the class
whose instances you want to sort.

Only one sort sequence can be created. Many sort sequences can be created.

Implemented frequently in the API by:
String, Wrapper classes, Date, Calendar…

Meant to be implemented to sort
instances of third-party classes.

 TABLE 11-3

Comparing
Comparable to
Comparator

11-ch11.indd 610 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 611

Searching Arrays and Collections

The Collections class and the Arrays class both provide methods that allow you
to search for a specific element. When searching through collections or arrays, the
following rules apply:

■ Searches are performed using the binarySearch() method.

■ Successful searches return the int index of the element being searched.

■ Unsuccessful searches return an int index that represents the insertion
point. The insertion point is the place in the collection/array where the
element would be inserted to keep the collection/array properly sorted.
Because positive return values and 0 indicate successful searches, the
binarySearch() method uses negative numbers to indicate insertion
points. Since 0 is a valid result for a successful search, the first available
insertion point is -1. Therefore, the actual insertion point is represented as
(-(insertion point) -1). For instance, if the insertion point of a search is at
element 2, the actual insertion point returned will be -3.

■ The collection/array being searched must be sorted before you can search it.

■ If you attempt to search an array or collection that has not already been
sorted, the results of the search will not be predictable.

■ If the collection/array you want to search was sorted in natural order, it must
be searched in natural order. (Usually, this is accomplished by NOT sending a
Comparator as an argument to the binarySearch() method.)

■ If the collection/array you want to search was sorted using a Comparator, it
must be searched using the same Comparator, which is passed as the second
argument to the binarySearch() method. Remember that Comparators
cannot be used when searching arrays of primitives.

We've talked a lot about sorting by natural order and using Comparators

to sort. The last rule you'll need to burn in your mind is that whenever you want to sort

an array or a collection, the elements inside must all be mutually comparable. In other

words, if you have an Object[] and you put Cat and Dog objects into it, you won't be

able to sort it. In general, objects of different types should be considered NOT mutually

comparable unless specifi cally stated otherwise.

11-ch11.indd 611 9/2/2014 6:52:25 PM

612 Chapter 11: Generics and Collections

Let's take a look at a code sample that exercises the binarySearch() method:

import java.util.*;
class SearchObjArray {
 public static void main(String [] args) {
 String [] sa = {"one", "two", "three", "four"};

 Arrays.sort(sa); // #1
 for(String s : sa)
 System.out.print(s + " ");
 System.out.println("\none = "
 + Arrays.binarySearch(sa,"one")); // #2

 System.out.println("now reverse sort");
 ReSortComparator rs = new ReSortComparator(); // #3
 Arrays.sort(sa,rs);
 for(String s : sa)
 System.out.print(s + " ");
 System.out.println("\none = "
 + Arrays.binarySearch(sa,"one")); // #4
 System.out.println("one = "
 + Arrays.binarySearch(sa,"one",rs)); // #5
 }
 static class ReSortComparator
 implements Comparator<String> { // #6
 public int compare(String a, String b) {
 return b.compareTo(a); // #7
 }
 }
}

which produces something like this:

four one three two
one = 1
now reverse sort
two three one four
one = -1
one = 2

Here's what happened:

■ #1 Sort the sa array, alphabetically (the natural order).

■ #2 Search for the location of element "one", which is 1.

■ #3 Make a Comparator instance. On the next line, we re-sort the array
using the Comparator.

11-ch11.indd 612 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 613

■ #4 Attempt to search the array. We didn't pass the binarySearch()
method the Comparator we used to sort the array, so we got an incorrect
(undefined) answer.

■ #5 Search again, passing the Comparator to binarySearch(). This time,
we get the correct answer, 2.

■ #6 We define the Comparator; it's okay for this to be an inner class. (We'll
be discussing inner classes in Chapter 12.)

■ #7 By switching the use of the arguments in the invocation of compareTo(),
we get an inverted sort.

When solving, searching, and sorting questions, two big gotchas are

1. Searching an array or collection that hasn't been sorted.

2. Using a Comparator in either the sort or the search, but not both.

Converting Arrays to Lists to Arrays

A couple of methods allow you to convert arrays to Lists and Lists to arrays. The
List and Set classes have toArray() methods, and the Arrays class has a method
called asList().

The Arrays.asList() method copies an array into a List. The API says,
"Returns a fixed-size list backed by the specified array. (Changes to the returned list
'write through' to the array.)" When you use the asList() method, the array and
the List become joined at the hip. When you update one of them, the other is
updated automatically. Let's take a look:

String[] sa = {"one", "two", "three", "four"};
List sList = Arrays.asList(sa); // make a List
System.out.println("size " + sList.size());
System.out.println("idx2 " + sList.get(2));

sList.set(3,"six"); // change List
sa[1] = "five"; // change array
for(String s : sa)
 System.out.print(s + " ");
System.out.println("\nsl[1] " + sList.get(1));

11-ch11.indd 613 9/2/2014 6:52:25 PM

614 Chapter 11: Generics and Collections

This produces

size 4
idx2 three
one five three six
sl[1] five

Notice that when we print the final state of the array and the List, they have
both been updated with each other's changes. Wouldn't something like this
behavior make a great exam question?

Now let's take a look at the toArray() method. There's nothing too fancy going
on with the toArray() method; it comes in two flavors: one that returns a new
Object array, and one that uses the array you send it as the destination array:

List<Integer> iL = new ArrayList<Integer>();
for(int x=0; x<3; x++)
 iL.add(x);
Object[] oa = iL.toArray(); // create an Object array
Integer[] ia2 = new Integer[3];
ia2 = iL.toArray(ia2); // create an Integer array

Using Lists

Remember that Lists are usually used to keep things in some kind of order. You can
use a LinkedList to create a first-in, first-out queue. You can use an ArrayList to
keep track of what locations were visited and in what order. Notice that in both of
these examples, it's perfectly reasonable to assume that duplicates might occur. In
addition, Lists allow you to manually override the ordering of elements by adding
or removing elements via the element's index. Before Java 5 and the enhanced for
loop, the most common way to examine a List "element by element" was through
the use of an Iterator. You'll still find Iterators in use in the Java code you
encounter, and you might just find an Iterator or two on the exam. An Iterator is
an object that's associated with a specific collection. It lets you loop through the
collection step by step. The two Iterator methods you need to understand for the
exam are

■ boolean hasNext() Returns true if there is at least one more element in
the collection being traversed. Invoking hasNext() does NOT move you to
the next element of the collection.

■ Object next() This method returns the next object in the collection
AND moves you forward to the element after the element just returned.

11-ch11.indd 614 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 615

Let's look at a little code that uses a List and an Iterator:

import java.util.*;
class Dog {
 public String name;
 Dog(String n) { name = n; }
}
class ItTest {
 public static void main(String[] args) {
 List<Dog> d = new ArrayList<Dog>();
 Dog dog = new Dog("aiko");
 d.add(dog);
 d.add(new Dog("clover"));
 d.add(new Dog("magnolia"));
 Iterator<Dog> i3 = d.iterator(); // make an iterator
 while (i3.hasNext()) {
 Dog d2 = i3.next(); // cast not required
 System.out.println(d2.name);
 }
 System.out.println("size " + d.size());
 System.out.println("get1 " + d.get(1).name);
 System.out.println("aiko " + d.indexOf(dog));
 d.remove(2);
 Object[] oa = d.toArray();
 for(Object o : oa) {
 Dog d2 = (Dog)o;
 System.out.println("oa " + d2.name);
 }
 }
}

This produces

aiko
clover
magnolia
size 3
get1 clover
aiko 0
oa aiko
oa clover

First off, we used generics syntax to create the Iterator (an Iterator of type Dog).
Because of this, when we used the next() method, we didn't have to cast the Object
returned by next() to a Dog. We could have declared the Iterator like this:

Iterator i3 = d.iterator(); // make an iterator

But then we would have had to cast the returned value:

Dog d2 = (Dog)i3.next();

11-ch11.indd 615 9/2/2014 6:52:25 PM

616 Chapter 11: Generics and Collections

The rest of the code demonstrates using the size(), get(), indexOf(), and
toArray() methods. There shouldn't be any surprises with these methods. Later in
the chapter, Table 11-7 will list all of the List, Set, and Map methods you should be
familiar with for the exam. As a last warning, remember that List is an interface!

Using Sets

Remember that Sets are used when you don't want any duplicates in your
collection. If you attempt to add an element to a set that already exists in the set,
the duplicate element will not be added, and the add() method will return false.
Remember, HashSets tend to be very fast because, as we discussed earlier, they use
hashcodes.

You can also create a TreeSet, which is a Set whose elements are sorted. You
must use caution when using a TreeSet (we're about to explain why):

import java.util.*;
class SetTest {
 public static void main(String[] args) {
 boolean[] ba = new boolean[5];
 // insert code here

 ba[0] = s.add("a");
 ba[1] = s.add(new Integer(42));
 ba[2] = s.add("b");
 ba[3] = s.add("a");
 ba[4] = s.add(new Object());
 for(int x=0; x<ba.length; x++)
 System.out.print(ba[x] + " ");
 System.out.println();
 for(Object o : s)
 System.out.print(o + " ");
 }
}

If you insert the following line of code, you'll get output that looks something like
this:

Set s = new HashSet(); // insert this code

true true true false true
a java.lang.Object@e09713 42 b

It's important to know that the order of objects printed in the second for loop is
not predictable: HashSets do not guarantee any ordering. Also, notice that the
fourth invocation of add() failed because it attempted to insert a duplicate entry (a
String with the value a) into the Set.

11-ch11.indd 616 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 617

If you insert this line of code, you'll get something like this:

Set s = new TreeSet(); // insert this code

Exception in thread "main" java.lang.ClassCastException: java.lang.
String
 at java.lang.Integer.compareTo(Integer.java:35)
 at java.util.TreeMap.compare(TreeMap.java:1093)
 at java.util.TreeMap.put(TreeMap.java:465)
 at java.util.TreeSet.add(TreeSet.java:210)

The issue is that whenever you want a collection to be sorted, its elements must
be mutually comparable. Remember that unless otherwise specified, objects of
different types are not mutually comparable.

Using Maps

Remember that when you use a class that implements Map, any classes that you use
as a part of the keys for that map must override the hashCode() and equals()
methods. (Well, you only have to override them if you're interested in retrieving
stuff from your Map. Seriously, it's legal to use a class that doesn't override equals()
and hashCode() as a key in a Map; your code will compile and run, you just won't
find your stuff.) Here's some crude code demonstrating the use of a HashMap:

import java.util.*;
class Dog {
 public Dog(String n) { name = n; }
 public String name;
 public boolean equals(Object o) {
 if((o instanceof Dog) &&
 (((Dog)o).name == name)) {
 return true;
 } else {
 return false;
 }
 }
 public int hashCode() {return name.length(); }
}
class Cat { }

enum Pets {DOG, CAT, HORSE }

class MapTest {
 public static void main(String[] args) {
 Map<Object, Object> m = new HashMap<Object, Object>();

 m.put("k1", new Dog("aiko")); // add some key/value pairs
 m.put("k2", Pets.DOG);

11-ch11.indd 617 9/2/2014 6:52:25 PM

618 Chapter 11: Generics and Collections

 m.put(Pets.CAT, "CAT key");
 Dog d1 = new Dog("clover"); // let's keep this reference
 m.put(d1, "Dog key");
 m.put(new Cat(), "Cat key");

 System.out.println(m.get("k1")); // #1
 String k2 = "k2";
 System.out.println(m.get(k2)); // #2
 Pets p = Pets.CAT;
 System.out.println(m.get(p)); // #3
 System.out.println(m.get(d1)); // #4
 System.out.println(m.get(new Cat())); // #5
 System.out.println(m.size()); // #6
 }
}

which produces something like this:

Dog@1c
DOG
CAT key
Dog key
null
5

Let's review the output. The first value retrieved is a Dog object (your value will
vary). The second value retrieved is an enum value (DOG). The third value retrieved
is a String; note that the key was an enum value. Pop quiz: What's the implication
of the fact that we were able to successfully use an enum as a key?

The implication of this is that enums override equals() and hashCode(). And,
if you look at the java.lang.Enum class in the API, you will see that, in fact, these
methods have been overridden.

The fourth output is a String. The important point about this output is that the
key used to retrieve the String was made of a Dog object. The fifth output is null.
The important point here is that the get() method failed to find the Cat object
that was inserted earlier. (The last line of output confirms that, indeed, 5 key/value
pairs exist in the Map.) Why didn't we find the Cat key String? Why did it work to
use an instance of Dog as a key, when using an instance of Cat as a key failed?

It's easy to see that Dog overrode equals() and hashCode() while Cat didn't.
Let's take a quick look at hashcodes. We used an incredibly simplistic hashcode

formula in the Dog class—the hashcode of a Dog object is the length of the instance's
name. So in this example, the hashcode = 6. Let's compare the following two
hashCode() methods:

public int hashCode() {return name.length(); } // #1
public int hashCode() {return 4; } // #2

11-ch11.indd 618 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 619

Time for another pop quiz: Are the preceding two hashcodes legal? Will they
successfully retrieve objects from a Map? Which will be faster?

The answer to the first two questions is Yes and Yes. Neither of these hashcodes
will be very efficient (in fact, they would both be incredibly inefficient), but they are
both legal, and they will both work. The answer to the last question is that the first
hashcode will be a little bit faster than the second hashcode. In general, the more
unique hashcodes a formula creates, the faster the retrieval will be. The first hashcode
formula will generate a different code for each name length (for instance, the name
Robert will generate one hashcode and the name Benchley will generate a different
hashcode). The second hashcode formula will always produce the same result, 4, so
it will be slower than the first.

Our last Map topic is what happens when an object used as a key has its values
changed? If we add two lines of code to the end of the earlier MapTest.main(),

d1.name = "magnolia";
System.out.println(m.get(d1));

we get something like this:

Dog@4
DOG
CAT key
Dog key
null
5
null

The Dog that was previously found now cannot be found. Because the Dog.name
variable is used to create the hashcode, changing the name changed the value of the
hashcode. As a final quiz for hashcodes, determine the output for the following lines
of code if they're added to the end of MapTest.main():

d1.name = "magnolia";
System.out.println(m.get(d1)); // #1
d1.name = "clover";
System.out.println(m.get(new Dog("clover"))); // #2
d1.name = "arthur";
System.out.println(m.get(new Dog("clover"))); // #3

Remember that the hashcode is equal to the length of the name variable. When
you study a problem like this, it can be useful to think of the two stages of retrieval:

 1. Use the hashCode() method to find the correct bucket.

 2. Use the equals() method to find the object in the bucket.

11-ch11.indd 619 9/2/2014 6:52:25 PM

620 Chapter 11: Generics and Collections

In the first call to get(), the hashcode is 8 (magnolia) and it should be 6
(clover), so the retrieval fails at step 1 and we get null. In the second call to
get(), the hashcodes are both 6, so step 1 succeeds. Once in the correct bucket (the
"length of name = 6" bucket), the equals() method is invoked, and since Dog's
equals() method compares names, equals() succeeds, and the output is Dog key.
In the third invocation of get(), the hashcode test succeeds, but the equals() test
fails because arthur is NOT equal to clover.

Navigating (Searching)
TreeSets and TreeMaps

Note: This section and the next ("Backed Collections") are fairly complex, and there
is a good chance that OCP 7 candidates will NOT get any questions on these topics.
On the other hand, OCPJP 6 candidates are likely to be tested on these topics.

We've talked about searching lists and arrays. Let's turn our attention to
searching TreeSets and TreeMaps. Java 6 introduced (among other things) two new
interfaces: java.util.NavigableSet and java.util.NavigableMap. For the
purposes of the exam, you're interested in how TreeSet and TreeMap implement
these interfaces.

Imagine that the Santa Cruz–Monterey ferry has an irregular schedule. Let's say
that we have the daily Santa Cruz departure times stored in military time in a
TreeSet. Let's look at some code that determines two things:

 1. The last ferry that leaves before 4 pm (1600 hours)

 2. The first ferry that leaves after 8 pm (2000 hours)
import java.util.*;
public class Ferry {
 public static void main(String[] args) {
 TreeSet<Integer> times = new TreeSet<Integer>();
 times.add(1205); // add some departure times
 times.add(1505);
 times.add(1545);
 times.add(1830);
 times.add(2010);
 times.add(2100);

 // Java 5 version

 TreeSet<Integer> subset = new TreeSet<Integer>();
 subset = (TreeSet)times.headSet(1600);
 System.out.println("J5 - last before 4pm is: " + subset.last());

 TreeSet<Integer> sub2 = new TreeSet<Integer>();

11-ch11.indd 620 9/2/2014 6:52:25 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 621

 sub2 = (TreeSet)times.tailSet(2000);
 System.out.println("J5 - first after 8pm is: " + sub2.first());

 // Java 6 version using the new lower() and higher() methods

 System.out.println("J6 - last before 4pm is: " + times.lower(1600));
 System.out.println("J6 - first after 8pm is: " + times.higher(2000));
 }
}

This should produce the following:

J5 - last before 4pm is: 1545
J5 - first after 8pm is: 2010
J6 - last before 4pm is: 1545
J6 - first after 8pm is: 2010

As you can see in the preceding code, before the addition of the NavigableSet
interface, zeroing in on an arbitrary spot in a Set—using the methods available in
Java 5—was a compute-expensive and clunky proposition. On the other hand, using
the new Java 6 methods lower() and higher(), the code becomes a lot cleaner.

For the purpose of the exam, the NavigableSet methods related to this type of
navigation are lower(), floor(), higher(), and ceiling(), and the mostly
parallel NavigableMap methods are lowerKey(), floorKey(), ceilingKey(), and
higherKey(). The difference between lower() and floor() is that lower()
returns the element less than the given element, and floor() returns the element
less than or equal to the given element. Similarly, higher() returns the element
greater than the given element, and ceiling() returns the element greater than or
equal to the given element. Table 11-4 summarizes the methods you should know for
the exam.

Other Navigation Methods

In addition to the methods we just discussed, there are a few more new Java 6
methods that could be considered "navigation" methods. (Okay, it's a little bit of a
stretch to call these "navigation" methods, but just play along.)

Polling

Although the idea of polling isn't new to Java 6 (as you'll see in a minute,
PriorityQueue had a poll() method before Java 6), it is new to TreeSet and
TreeMap. The idea of polling is that we want both to retrieve and remove an element
from either the beginning or the end of a collection. In the case of TreeSet,
pollFirst() returns and removes the first entry in the set, and pollLast()

11-ch11.indd 621 9/2/2014 6:52:26 PM

622 Chapter 11: Generics and Collections

returns and removes the last. Similarly, TreeMap now provides pollFirstEntry()
and pollLastEntry() to retrieve and remove key/value pairs.

Descending Order

Also new to Java 6 for TreeSet and TreeMap are methods that return a
collection in the reverse order of the collection on which the method was
invoked. The important methods for the exam are TreeSet.descendingSet()
and TreeMap.descendingMap().

Table 11-4 summarizes the "navigation" methods you'll need to know for the exam.

Backed Collections

Some of the classes in the java.util package support the concept of "backed
collections." We'll use a little code to help explain the idea:
TreeMap<String, String> map = new TreeMap<String, String>();
map.put("a", "ant"); map.put("d", "dog"); map.put("h", "horse");

SortedMap<String, String> submap;
submap = map.subMap("b", "g"); // #1 create a backed collection

System.out.println(map + " " + submap); // #2 show contents

map.put("b", "bat"); // #3 add to original
submap.put("f", "fish"); // #4 add to copy

map.put("r", "raccoon"); // #5 add to original - out of range
// submap.put("p", "pig"); // #6 add to copy - out of range

System.out.println(map + " " + submap); // #7 show final contents

This should produce something like this:

{a=ant, d=dog, h=horse} {d=dog}
{a=ant, b=bat, d=dog, f=fish, h=horse, r=raccoon} {b=bat, d=dog, f=fish}

The important method in this code is the TreeMap.subMap() method. It's easy
to guess (and it's correct) that the subMap() method is making a copy of a portion
of the TreeMap named map. The first line of output verifies the conclusions we've
just drawn.

What happens next is powerful, and a little bit unexpected (now we're getting to
why they're called backed collections). When we add key/value pairs to either the
original TreeMap or the partial-copy SortedMap, the new entries were automatically
added to the other collection—sometimes. When submap was created, we provided

11-ch11.indd 622 9/2/2014 6:52:26 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 623

a value range for the new collection. This range defines not only what should be
included when the partial copy is created, but also defines the range of values that
can be added to the copy. As we can verify by looking at the second line of output,
we can add new entries to either collection within the range of the copy, and the
new entries will show up in both collections. In addition, we can add a new entry to
the original collection, even if it's outside the range of the copy. In this case, the
new entry will show up only in the original—it won't be added to the copy because
it's outside the copy's range. Notice that we commented out line 6. If you attempt to
add an out-of-range entry to the copied collection, an exception will be thrown.

For the exam, you'll need to understand the basics just explained, plus a few more
details about three methods from TreeSet—headSet(), subSet(), and tailSet()—
and three methods from TreeMap—headMap(), subMap(), and tailMap(). As
with the navigation-oriented methods we just discussed, we can see a lot of parallels
between the TreeSet and the TreeMap methods. The headSet()/headMap()
methods create a subset that starts at the beginning of the original collection and
ends at the point specified by the method's argument. The tailSet()/tailMap()
methods create a subset that starts at the point specified by the method's argument
and goes to the end of the original collection. Finally, the subSet()/subMap()

 TABLE 11-4

Important
“Navigation”-
Related Methods

Method Description

TreeSet.ceiling(e) Returns the lowest element >= e
TreeMap.ceilingKey(key) Returns the lowest key >= key
TreeSet.higher(e) Returns the lowest element > e
TreeMap.higherKey(key) Returns the lowest key > key
TreeSet.floor(e) Returns the highest element <= e
TreeMap.floorKey(key) Returns the highest key <= key
TreeSet.lower(e) Returns the highest element < e
TreeMap.lowerKey(key) Returns the highest key < key
TreeSet.pollFirst() Returns and removes the first entry
TreeMap.pollFirstEntry() Returns and removes the first key/value pair
TreeSet.pollLast() Returns and removes the last entry
TreeMap.pollLastEntry() Returns and removes the last key/value pair
TreeSet.descendingSet() Returns a NavigableSet in reverse order
TreeMap.descendingMap() Returns a NavigableMap in reverse order

11-ch11.indd 623 9/2/2014 6:52:26 PM

624 Chapter 11: Generics and Collections

methods allow you to specify both the start and end points for the subset collection
you're creating.

As you might expect, the question of whether the subsetted collection's end
points are inclusive or exclusive is a little tricky. The good news is that for the exam
you have to remember only that when these methods are invoked with end point
and boolean arguments, the boolean always means "is inclusive". A little more good
news is that all you have to know for the exam is that, unless specifically indicated
by a boolean argument, a subset's starting point will always be inclusive. Finally,
you'll notice when you study the API that all of the methods we've been discussing
here have an overloaded version that's new to Java 6. The older methods return
either a SortedSet or a SortedMap; the new Java 6 methods return either a
NavigableSet or a NavigableMap. Table 11-5 summarizes these methods.

Let’s say that you’ve created a backed collection using either a

tailXxx() or subXxx() method. Typically in these cases, the original and copy collections

have different “fi rst” elements. For the exam, it’s important that you remember that the

pollFirstXxx() methods will always remove the fi rst entry from the collection on which

they’re invoked, but they will remove an element from the other collection only if it has

the same value. So it’s most likely that invoking pollFirstXxx() on the copy will remove

an entry from both collections, but invoking pollFirstXxx() on the original will remove

only the entry from the original.

Method Description

headSet(e, b*) Returns a subset ending at element e and exclusive of e
headMap(k, b*) Returns a submap ending at key k and exclusive of key k
tailSet(e, b*) Returns a subset starting at and inclusive of element e
tailMap(k, b*) Returns a submap starting at and inclusive of key k
subSet(s, b*, e, b*) Returns a subset starting at element s and ending just

before element e
subMap(s, b*, e, b*) Returns a submap starting at key s and ending just

before key e
* Note: These boolean arguments are optional. If they exist, it’s a Java 6 method that lets you specify whether the
start point and/or end point are exclusive, and these methods return a NavigableXxx. If the boolean argument(s)
don’t exist, the method returns either a SortedSet or a SortedMap.

 TABLE 11-5

Important
“Backed
Collection”
Methods for
TreeSet and
TreeMap

11-ch11.indd 624 9/2/2014 6:52:26 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 625

Using the PriorityQueue Class and the Deque Interface

Note: Having completed the Navigable Collections and Backed Collections
discussions, we’re now back to topics that all candidates (OCPJP 5 and 6 and
OCP 7), are likely to be tested on.

For the exam, you'll need to understand several of the classes that implement
the Deque interface. These classes will be discussed in Chapter 14, the
concurrency chapter.

Other than those concurrency-related classes, the last collection class you'll need
to understand for the exam is the PriorityQueue. Unlike basic queue structures
that are first-in, first-out by default, a PriorityQueue orders its elements using a
user-defined priority. The priority can be as simple as natural ordering (in which, for
instance, an entry of 1 would be a higher priority than an entry of 2). In addition, a
PriorityQueue can be ordered using a Comparator, which lets you define any
ordering you want. Queues have a few methods not found in other collection
interfaces: peek(), poll(), and offer().

import java.util.*;
class PQ {
 static class PQsort
 implements Comparator<Integer> { // inverse sort
 public int compare(Integer one, Integer two) {
 return two - one; // unboxing
 }
 }
 public static void main(String[] args) {
 int[] ia = {1,5,3,7,6,9,8 }; // unordered data
 PriorityQueue<Integer> pq1 =
 new PriorityQueue<Integer>(); // use natural order

 for(int x : ia) // load queue
 pq1.offer(x);
 for(int x : ia) // review queue
 System.out.print(pq1.poll() + " ");
 System.out.println("");

 PQsort pqs = new PQsort(); // get a Comparator
 PriorityQueue<Integer> pq2 =
 new PriorityQueue<Integer>(10,pqs); // use Comparator

 for(int x : ia) // load queue
 pq2.offer(x);
 System.out.println("size " + pq2.size());
 System.out.println("peek " + pq2.peek());
 System.out.println("size " + pq2.size());
 System.out.println("poll " + pq2.poll());
 System.out.println("size " + pq2.size());
 for(int x : ia) // review queue
 System.out.print(pq2.poll() + " ");
 }
}

11-ch11.indd 625 9/2/2014 6:52:26 PM

626 Chapter 11: Generics and Collections

This code produces something like this:

1 3 5 6 7 8 9
size 7
peek 9
size 7
poll 9
size 6
8 7 6 5 3 1 null

Let's look at this in detail. The first for loop iterates through the ia array and
uses the offer() method to add elements to the PriorityQueue named pq1. The
second for loop iterates through pq1 using the poll() method, which returns the
highest-priority entry in pq1 AND removes the entry from the queue. Notice that
the elements are returned in priority order (in this case, natural order). Next, we
create a Comparator—in this case, a Comparator that orders elements in the
opposite of natural order. We use this Comparator to build a second PriorityQueue,
pq2, and we load it with the same array we used earlier. Finally, we check the size of
pq2 before and after calls to peek() and poll(). This confirms that peek() returns
the highest-priority element in the queue without removing it, and poll() returns
the highest-priority element AND removes it from the queue. Finally, we review the
remaining elements in the queue.

Method Overview for Arrays and Collections

For these two classes, we've already covered the trickier methods you might encounter
on the exam. Table 11-6 lists a summary of the methods you should be aware of.
(Note: The T[] syntax will be explained later in this chapter; for now, think of it as
meaning "any array that's NOT an array of primitives.")

Method Overview for List, Set, Map, and Queue

For these four interfaces, we’ve already covered the trickier methods you might
encounter on the exam. Table 11-7 lists a summary of the List, Set, and Map
methods you should be aware of, and—if you’re an OCPJP 6 candidate—don’t
forget the new “Navigable” methods floor, lower, ceiling, and higher that we
discussed a few pages back.

11-ch11.indd 626 9/2/2014 6:52:26 PM

 Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8) 627

Key Methods in java.util.Arrays Descriptions

static List asList(T[]) Convert an array to a List
(and bind them).

static int binarySearch(Object[], key)
static int binarySearch(primitive[], key)

Search a sorted array for a given value;
return an index or insertion point.

static int binarySearch(T[], key, Comparator) Search a Comparator-sorted array for
a value.

static boolean equals(Object[], Object[])
static boolean equals(primitive[], primitive[])

Compare two arrays to determine if their
contents are equal.

static void sort(Object[])
static void sort(primitive[])

Sort the elements of an array by natural
order.

static void sort(T[], Comparator) Sort the elements of an array using
a Comparator.

static String toString(Object[])
static String toString(primitive[])

Create a String containing the contents
of an array.

Key Methods in java.util.Collections Descriptions

static int binarySearch(List, key)
static int binarySearch(List, key, Comparator)

Search a "sorted" List for a given value;
return an index or insertion point.

static void reverse(List) Reverse the order of elements in a List.
static Comparator reverseOrder()
static Comparator reverseOrder(Comparator)

Return a Comparator that sorts the reverse
of the collection's current sort sequence.

static void sort(List)
static void sort(List, Comparator)

Sort a List either by natural order or by
a Comparator.

For the exam, the PriorityQueue methods that are important to understand are
offer() (which is similar to add()), peek() (which retrieves the element at the
head of the queue but doesn’t delete it), and poll() (which retrieves the head
element and removes it from the queue).

 TABLE 11-6 Key Methods in Arrays and Collections

11-ch11.indd 627 9/2/2014 6:52:26 PM

628 Chapter 11: Generics and Collections

Key Interface Methods List Set Map Descriptions

boolean add(element)
boolean add(index, element)

X
X

X Add an element. For Lists, optionally
add the element at an index point.

boolean contains(object)
boolean containsKey(object key)
boolean containsValue(object value)

X X
X
X

Search a collection for an object (or,
optionally for Maps, a key); return the
result as a boolean.

object get(index)
object get(key)

X
X

Get an object from a collection via an
index or a key.

int indexOf(object) X Get the location of an object in a List.
Iterator iterator() X X Get an Iterator for a List or a Set.
Set keySet() X Return a Set containing a Map's keys.
put(key, value) X Add a key/value pair to a Map.

element remove(index)
element remove(object)
element remove(key)

X
X X

X

Remove an element via an index, or via
the element's value, or via a key.

int size() X X X Return the number of elements in a
collection.

Object[] toArray()
T[] toArray(T[])

X X Return an array containing the
elements of the collection.

 TABLE 11-7 Key Methods in List, Set, and Map

It's important to know some of the details of natural ordering. The

following code will help you understand the relative positions of uppercase characters,

lowercase characters, and spaces in a natural ordering:

String[] sa = {">ff<", "> f<", ">f <", ">FF<" }; // ordered?
PriorityQueue<String> pq3 = new PriorityQueue<String>();
for(String s : sa)
 pq3.offer(s);
for(String s : sa)
 System.out.print(pq3.poll() + " ");

This produces

> f< >FF< >f < >ff<

If you remember that spaces sort before characters and that uppercase letters sort

before lowercase characters, you should be good to go for the exam.

11-ch11.indd 628 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 629

CERTIFICATION OBJECTIVE

Generic Types (OCP Objectives 4.1 and 4.3)

4.1 Create a generic class.

4.3 Analyze the interoperability of collections that use raw and generic types.

Now would be a great time to take a break. Those two innocent-sounding
objectives unpack into a world of complexity. When you're well rested, come on
back and strap yourself in—the next several pages might get bumpy.

Arrays in Java have always been type-safe—an array declared as type String
(String []) can't accept Integers (or ints), Dogs, or anything other than
Strings. But remember that before Java 5 there was no syntax for declaring a
type-safe collection. To make an ArrayList of Strings, you said,

ArrayList myList = new ArrayList();

or the polymorphic equivalent

List myList = new ArrayList();

There was no syntax that let you specify that myList will take Strings and only
Strings. And with no way to specify a type for the ArrayList, the compiler couldn't
enforce that you put only things of the specified type into the list. As of Java 5, we
can use generics, and while they aren't only for making type-safe collections, that's
just about all most developers use generics for. So, while generics aren't just for
collections, think of collections as the overwhelming reason and motivation for
adding generics to the language.

And it was not an easy decision, nor has it been an entirely welcome addition.
Because along with all the nice, happy type-safety, generics come with a lot of
baggage—most of which you'll never see or care about—but there are some gotchas
that come up surprisingly quickly. We'll cover the ones most likely to show up in
your own code, and those are also the issues that you'll need to know for the exam.

The biggest challenge for the Java engineers in adding generics to the language
(and the main reason it took them so long) was how to deal with legacy code built
without generics. The Java engineers obviously didn't want to break everyone's
existing Java code, so they had to find a way for Java classes with both type-safe
(generic) and nontype-safe (nongeneric/pre–Java 5) collections to still work

11-ch11.indd 629 9/2/2014 6:52:26 PM

630 Chapter 11: Generics and Collections

together. Their solution isn't the friendliest, but it does let you use older nongeneric
code, as well as use generic code that plays with nongeneric code. But notice we said
"plays" and not "plays WELL."

While you can integrate Java 5 and later generic code with legacy, nongeneric
code, the consequences can be disastrous, and unfortunately, most of the disasters
happen at runtime, not compile time. Fortunately, though, most compilers will
generate warnings to tell you when you're using unsafe (meaning nongeneric)
collections.

The Java 7 exam covers both pre–Java 5 (nongeneric) and generic-style collections,
and you'll see questions that expect you to understand the tricky problems that can
come from mixing nongeneric and generic code together. And like some of the other
topics in this book, you could fill an entire book if you really wanted to cover every
detail about generics, but the exam (and this book) covers more than most
developers will ever need to use.

The Legacy Way to Do Collections

Here's a review of a pre–Java 5 ArrayList intended to hold Strings. (We say
"intended" because that's about all you had—good intentions—to make sure that
the ArrayList would hold only Strings.)

List myList = new ArrayList(); // can't declare a type

myList.add("Fred"); // OK, it will hold Strings

myList.add(new Dog()); // and it will hold Dogs too

myList.add(new Integer(42)); // and Integers...

A nongeneric collection can hold any kind of object! A nongeneric collection is
quite happy to hold anything that is NOT a primitive.

This meant it was entirely up to the programmer to be… careful. Having no way
to guarantee collection type wasn't very programmer-friendly for such a strongly
typed language. We're so used to the compiler stopping us from, say, assigning an int
to a boolean or a String to a Dog reference, but with collections, it was, "Come on
in! The door is always open! All objects are welcome here any time!"

And since a collection could hold anything, the methods that get objects out of the
collection could have only one kind of return type—java.lang.Object. That meant
that getting a String back out of our only-Strings-intended list required a cast:

String s = (String) myList.get(0);

11-ch11.indd 630 9/2/2014 6:52:26 PM

Generic Types (OCP Objectives 4.1 and 4.3) 631

And since you couldn't guarantee that what was coming out really was a String
(since you were allowed to put anything in the list), the cast could fail at runtime.

So generics takes care of both ends (the putting in and getting out) by enforcing
the type of your collections. Let's update the String list:

List<String> myList = new ArrayList<String>();
myList.add("Fred"); // OK, it will hold Strings
myList.add(new Dog()); // compiler error!!

Perfect. That's exactly what we want. By using generics syntax—which means
putting the type in angle brackets <String>—we're telling the compiler that this
collection can hold only String objects. The type in angle brackets is referred to as
the "parameterized type," "type parameter," or, of course, just old-fashioned "type." In
this chapter, we'll refer to it both new ways.

So now that what you put IN is guaranteed, you can also guarantee what comes
OUT, and that means you can get rid of the cast when you get something from the
collection. Instead of

String s = (String)myList.get(0); // pre-generics, when a
 // String wasn't guaranteed

we can now just say

String s = myList.get(0);

The compiler already knows that myList contains only things that can be
assigned to a String reference, so now there's no need for a cast. So far, it seems
pretty simple. And with the new for loop, you can, of course, iterate over the
guaranteed-to-be-String list:

for (String s : myList) {
 int x = s.length();
 // no need for a cast before calling a String method! The
 // compiler already knew "s" was a String coming from myList
}

And, of course, you can declare a type parameter for a method argument, which
then makes the argument a type-safe reference:

void takeListOfStrings(List<String> strings) {
 strings.add("foo"); // no problem adding a String
}

The previous method would NOT compile if we changed it to

void takeListOfStrings(List<String> strings) {
 strings.add(new Integer(42)); // NO!! strings is type safe
}

11-ch11.indd 631 9/2/2014 6:52:26 PM

632 Chapter 11: Generics and Collections

Return types can obviously be declared type-safe as well:

public List<Dog> getDogList() {
 List<Dog> dogs = new ArrayList<Dog>();
 // more code to insert dogs
 return dogs;
}

The compiler will stop you from returning anything not compatible with a
List<Dog> (although what is and is not compatible is going to get very interesting
in a minute). And since the compiler guarantees that only a type-safe Dog List is
returned, those calling the method won't need a cast to take Dogs from the List:

Dog d = getDogList().get(0); // we KNOW a Dog is coming out

With pre–Java 5 nongeneric code, the getDogList() method would be

public List getDogList() {
 List dogs = new ArrayList();
 // code to add only Dogs... fingers crossed...
 return dogs; // a List of ANYTHING will work here
}

and the caller would need a cast:

Dog d = (Dog) getDogList().get(0);

(The cast in this example applies to what comes from the List's get() method;
we aren't casting what is returned from the getDogList() method, which is a List.)

But what about the benefit of a completely heterogeneous collection? In other
words, what if you liked the fact that before generics you could make an ArrayList
that could hold any kind of object?

List myList = new ArrayList(); // old-style, non-generic

is almost identical to

List<Object> myList = new
 ArrayList<Object>(); // holds ANY object type

Declaring a List with a type parameter of <Object> makes a collection that
works in almost the same way as the original pre–Java 5 nongeneric collection—you
can put ANY Object type into the collection. You'll see a little later that nongeneric
collections and collections of type <Object> aren't entirely the same, but most of
the time, the differences do not matter.

Oh, if only this were the end of the story… but there are still a few tricky issues
with methods, arguments, polymorphism, and integrating generic and nongeneric
code, so we're just getting warmed up here.

11-ch11.indd 632 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 633

Generics and Legacy Code

The easiest thing about generics you'll need to know for the exam is how to update
nongeneric code to make it generic. You just add a type in angle brackets (<>)
immediately following the collection type in BOTH the variable declaration and the
constructor call (or you use the Java 7 diamond syntax), including any place you
declare a variable (so that means arguments and return types too). A pre–Java 5
List meant to hold only Integers:

List myList = new ArrayList();

becomes

List<Integer> myList = new ArrayList<Integer>(); // (or the J7 diamond!)

and a list meant to hold only Strings goes from

public List changeStrings(ArrayList s) { }

to this:

public List<String> changeStrings(ArrayList<String> s) { }

Easy. And if there's code that used the earlier nongeneric version and performed a
cast to get things out, that won't break anyone's code:

Integer i = (Integer) list.get(0); // cast no longer needed,
 // but it won't hurt

Mixing Generic and Nongeneric Collections

Now here's where it starts to get interesting… imagine we have an ArrayList of
type Integer and we're passing it into a method from a class whose source code we
don't have access to. Will this work?

// a Java 5 or later class using a generic collection
import java.util.*;
public class TestLegacy {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 // type safe collection
 myList.add(4);
 myList.add(6);
 Adder adder = new Adder();
 int total = adder.addAll(myList);
 // pass it to an untyped argument
 System.out.println(total);
 }
}

11-ch11.indd 633 9/2/2014 6:52:26 PM

634 Chapter 11: Generics and Collections

The older nongenerics class we want to use:

import java.util.*;
class Adder {
 int addAll(List list) {
 // method with a non-generic List argument,
 // but assumes (with no guarantee) that it will be Integers
 Iterator it = list.iterator();
 int total = 0;
 while (it.hasNext()) {
 int i = ((Integer)it.next()).intValue();
 total += i;
 }
 return total;
 }
}

Yes, this works just fine. You can mix correct generic code with older nongeneric
code, and everyone is happy.

In the previous example, the addAll() legacy method assumed (trusted? hoped?)
that the list passed in was indeed restricted to Integers, even though when the
code was written, there was no guarantee. It was up to the programmers to be careful.

Since the addAll() method wasn't doing anything except getting the Integer
(using a cast) from the list and accessing its value, there were no problems. In that
example, there was no risk to the caller's code, but the legacy method might have
blown up if the list passed in contained anything but Integers (which would cause
a ClassCastException).

But now imagine that you call a legacy method that doesn't just read a value, but
adds something to the ArrayList. Will this work?

import java.util.*;
public class TestBadLegacy {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 myList.add(4);
 myList.add(6);
 Inserter in = new Inserter();
 in.insert(myList); // pass List<Integer> to legacy code
 }
}
class Inserter {
 // method with a non-generic List argument
 void insert(List list) {
 list.add(new Integer(42)); // adds to the incoming list
 }
}

11-ch11.indd 634 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 635

Sure, this code works. It compiles, and it runs. The insert() method puts an
Integer into the list that was originally typed as <Integer>, so no problem.

But… what if we modify the insert() method like this:

void insert(List list) {
 list.add(new String("42")); // put a String in the list
 // passed in
}

Will that work? Yes, sadly, it does! It both compiles and runs. No runtime exception.
Yet, someone just stuffed a String into a supposedly type-safe ArrayList of type
<Integer>. How can that be?

Remember, the older legacy code was allowed to put anything at all (except
primitives) into a collection. And in order to support legacy code, Java 5 and Java 6
allow your newer type-safe code to make use of older code (the last thing Sun
wanted to do was ask several million Java developers to modify all their existing
code).

So, the Java 5 or later compiler (from now on "the Java 5 compiler") is forced
into letting you compile your new type-safe code even though your code invokes a
method of an older class that takes a nontype-safe argument and does who knows
what with it.

However, just because the Java 5 compiler (remember this means Java 5 and
later), allows this code to compile doesn't mean it has to be HAPPY about it. In
fact, the compiler will warn you that you're taking a big, big risk sending your nice,
protected ArrayList<Integer> into a dangerous method that can have its way
with your list and put in Floats, Strings, or even Dogs.

When you called the addAll() method in the earlier example, it didn't insert
anything to the list (it simply added up the values within the collection), so there
was no risk to the caller that his list would be modified in some horrible way. It
compiled and ran just fine. But in the second version, with the legacy insert()
method that adds a String, the compiler generated a warning:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Remember that compiler warnings are NOT considered a compiler failure. The compiler
generated a perfectly valid class file from the compilation, but it was kind enough to tell
you by saying, in so many words, "I seriously hope you know what you are doing because
this old code has NO respect (or even knowledge) of your <Integer> typing and can
do whatever the heck it wants to your precious ArrayList<Integer>."

11-ch11.indd 635 9/2/2014 6:52:26 PM

636 Chapter 11: Generics and Collections

Back to our example with the legacy code that does an insert. Keep in mind that
for BOTH versions of the insert() method (one that adds an Integer and one
that adds a String), the compiler issues warnings. The compiler does NOT know
whether the insert() method is adding the right thing (Integer) or the wrong
thing (String). The reason the compiler produces a warning is because the method
is ADDING something to the collection! In other words, the compiler knows there's
a chance the method might add the wrong thing to a collection the caller thinks is
type-safe.

Be sure you know the difference between "compilation fails" and

"compiles without error" and "compiles without warnings" and "compiles with

warnings." In most questions on the exam, you care only about compiles versus

compilation fails—compiler warnings don't matter for most of the exam. But when

you are using generics and mixing both typed and untyped code, warnings matter.

For the purposes of the exam, unless the question includes an answer that

mentions warnings, even if you know the compilation will produce warnings, that is still a

successful compile! Compiling with warnings is NEVER considered a compilation failure.

One more time—if you see code that you know will compile with warnings, you must

NOT choose "Compilation fails" as an answer. The bottom line is this: Code that compiles

with warnings is still a successful compile. If the exam question wants to test your

knowledge of whether code will produce a warning (or what you can do to the code to

ELIMINATE warnings), the question (or answer) will explicitly include the word "warnings."

So far, we've looked at how the compiler will generate warnings if it sees that
there's a chance your type-safe collection could be harmed by older, nontype-safe
code. But one of the questions developers often ask is, "Okay, sure, it compiles, but
why does it RUN? Why does the code that inserts the wrong thing into my list work
at runtime?" In other words, why does the JVM let old code stuff a String into your
ArrayList<Integer> without any problems at all? No exceptions, nothing. Just a
quiet, behind-the-scenes, total violation of your type safety that you might not
discover until the worst possible moment.

11-ch11.indd 636 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 637

There's one Big Truth you need to know to understand why it runs without
problems—the JVM has no idea that your ArrayList was supposed to hold only
Integers. The typing information does not exist at runtime! All your generic code
is strictly for the compiler. Through a process called "type erasure," the compiler
does all of its verifications on your generic code and then strips the type information
out of the class bytecode. At runtime, ALL collection code—both legacy and new
Java 5 code you write using generics—looks exactly like the pregeneric version of
collections. None of your typing information exists at runtime. In other words, even
though you WROTE

List<Integer> myList = new ArrayList<Integer>();

by the time the compiler is done with it, the JVM sees what it always saw before
Java 5 and generics:

List myList = new ArrayList();

The compiler even inserts the casts for you—the casts you had to do to get things
out of a pre–Java 5 collection.

Think of generics as strictly a compile-time protection. The compiler uses generic
type information (the <type> in the angle brackets) to make sure that your code
doesn't put the wrong things into a collection and that you do not assign what you
get from a collection to the wrong reference type. But NONE of this protection
exists at runtime.

This is a little different from arrays, which give you BOTH compile-time
protection and runtime protection. Why did they do generics this way? Why is there
no type information at runtime? To support legacy code. At runtime, collections are
collections just like the old days. What you gain from using generics is compile-time
protection that guarantees you won't put the wrong thing into a typed collection,
and it also eliminates the need for a cast when you get something out, since the
compiler already knows that only an Integer is coming out of an Integer list.

The fact is, you don't NEED runtime protection… until you start mixing up
generic and nongeneric code, as we did in the previous example. Then you can have
disasters at runtime. The only advice we have is to pay very close attention to those
compiler warnings:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

11-ch11.indd 637 9/2/2014 6:52:26 PM

638 Chapter 11: Generics and Collections

This compiler warning isn't very descriptive, but the second note suggests that
you recompile with -Xlint:unchecked. If you do, you'll get something like this:

javac -Xlint:unchecked TestBadLegacy.java
TestBadLegacy.java:17: warning: [unchecked] unchecked call to add(E)
as a member of the raw type java.util.List
 list.add(new String("42"));
 ^
1 warning

When you compile with the -Xlint:unchecked flag, the compiler shows you
exactly which method(s) might be doing something dangerous. In this example,
since the list argument was not declared with a type, the compiler treats it as legacy
code and assumes no risk for what the method puts into the "raw" list.

On the exam, you must be able to recognize when you are compiling code that
will produce warnings but still compile. And any code that compiles (even with
warnings) will run! No type violations will be caught at runtime by the JVM, until
those type violations mess with your code in some other way. In other words, the act
of adding a String to an <Integer> list won't fail at runtime until you try to treat
that String-you-think-is-an-Integer as an Integer.

For example, imagine you want your code to pull something out of your supposedly
type-safe ArrayList<Integer> that older code put a String into. It compiles
(with warnings). It runs… or at least the code that actually adds the String to the
list runs. But when you take the String that wasn't supposed to be there out of the
list and try to assign it to an Integer reference or invoke an Integer method,
you're dead.

Keep in mind, then, that the problem of putting the wrong thing into a typed
(generic) collection does not show up at the time you actually do the add() to the
collection. It only shows up later, when you try to use something in the list and it
doesn't match what you were expecting. In the old (pre–Java 5) days, you always
assumed that you might get the wrong thing out of a collection (since they were all
nontype-safe), so you took appropriate defensive steps in your code. The problem
with mixing generic and nongeneric code is that you won't be expecting those
problems if you have been lulled into a false sense of security by having written
type-safe code. Just remember that the moment you turn that type-safe collection
over to older, nontype-safe code, your protection vanishes.

Again, pay very close attention to compiler warnings and be prepared to see issues
like this come up on the exam.

11-ch11.indd 638 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 639

Polymorphism and Generics

Generic collections give you the same benefits of type safety that you've always had
with arrays, but there are some crucial differences that can bite you if you aren't
prepared. Most of these have to do with polymorphism.

You've already seen that polymorphism applies to the "base" type of the
collection:

List<Integer> myList = new ArrayList<Integer>();

In other words, we were able to assign an ArrayList to a List reference because
List is a supertype of ArrayList. Nothing special there—this polymorphic
assignment works the way it always works in Java, regardless of the generic typing.

But what about this?

class Parent { }
class Child extends Parent { }
List<Parent> myList = new ArrayList<Child>();

Think about it for a minute.
Keep thinking…

When using legacy (nontype-safe) collections, watch out for unboxing

problems! If you declare a nongeneric collection, the get() method ALWAYS returns a

reference of type java.lang.Object. Remember that unboxing can't convert a plain old

Object to a primitive, even if that Object reference refers to an Integer (or some other

wrapped primitive) on the heap. Unboxing converts only from a wrapper class reference

(like an Integer or a Long) to a primitive.

Unboxing gotcha, continued:

List test = new ArrayList();
test.add(43);
int x = (Integer)test.get(0); // you must cast !!

List<Integer> test2 = new ArrayList<Integer>();
test2.add(343);
int x2 = test2.get(0); // cast not necessary

Watch out for missing casts associated with pre–Java 5 nongeneric collections.

11-ch11.indd 639 9/2/2014 6:52:26 PM

640 Chapter 11: Generics and Collections

No, it doesn't work. There's a very simple rule here—the type of the variable
declaration must match the type you pass to the actual object type. If you declare
List<Foo> foo, then whatever you assign to the foo reference MUST be of the
generic type <Foo>. Not a subtype of <Foo>. Not a supertype of <Foo>. Just <Foo>.

These are wrong:

List<Object> myList = new ArrayList<JButton>(); // NO!
List<Number> numbers = new ArrayList<Integer>(); // NO!
// remember that Integer is a subtype of Number

But these are fine:

List<JButton> bList = new ArrayList<JButton>(); // yes
List<Object> oList = new ArrayList<Object>(); // yes
List<Integer> iList = new ArrayList<Integer>(); // yes

So far, so good. Just keep the generic type of the reference and the generic type of
the object to which it refers identical. In other words, polymorphism applies here to
only the "base" type. And by "base," we mean the type of the collection class itself—
the class that can be customized with a type. In this code,

List<JButton> myList = new ArrayList<JButton>();

List and ArrayList are the base type and JButton is the generic type. So an
ArrayList can be assigned to a List, but a collection of <JButton> cannot be
assigned to a reference of <Object>, even though JButton is a subtype of Object.

The part that feels wrong for most developers is that this is NOT how it works
with arrays, where you are allowed to do this:

import java.util.*;
class Parent { }
class Child extends Parent { }
public class TestPoly {
 public static void main(String[] args) {
 Parent[] myArray = new Child[3]; // yes
 }
}

which means you're also allowed to do this:

Object[] myArray = new JButton[3]; // yes

but not this:

List<Object> list = new ArrayList<JButton>(); // NO!

Why are the rules for typing of arrays different from the rules for generic typing?
We'll get to that in a minute. For now, just burn it into your brain that
polymorphism does not work the same way for generics as it does with arrays.

11-ch11.indd 640 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 641

Generic Methods

If you weren't already familiar with generics, you might be feeling very uncomfortable
with the implications of the previous no-polymorphic-assignment-for-generic-types
thing. And why shouldn't you be uncomfortable? One of the biggest benefits of
polymorphism is that you can declare, say, a method argument of a particular type
and at runtime be able to have that argument refer to any subtype—including those
you'd never known about at the time you wrote the method with the supertype
argument.

For example, imagine a classic (simplified) polymorphism example of a veterinarian
(AnimalDoctor) class with a method checkup(). And right now, you have three
Animal subtypes—Dog, Cat, and Bird—each implementing the abstract checkup()
method from Animal:

abstract class Animal {
 public abstract void checkup();
}
class Dog extends Animal {
 public void checkup() { // implement Dog-specific code
 System.out.println("Dog checkup");
 }
}
class Cat extends Animal {
 public void checkup() { // implement Cat-specific code
 System.out.println("Cat checkup");
 }
}
class Bird extends Animal {
 public void checkup() { // implement Bird-specific code
 System.out.println("Bird checkup");
} }

Forgetting collections/arrays for a moment, just imagine what the AnimalDoctor
class needs to look like in order to have code that takes any kind of Animal and
invokes the Animal checkup() method. Trying to overload the AnimalDoctor
class with checkup() methods for every possible kind of animal is ridiculous, and
obviously not extensible. You'd have to change the AnimalDoctor class every time
someone added a new subtype of Animal.

So in the AnimalDoctor class, you'd probably have a polymorphic method:

public void checkAnimal(Animal a) {
 a.checkup(); // does not matter which animal subtype each
 // Animal's overridden checkup() method runs
}

11-ch11.indd 641 9/2/2014 6:52:26 PM

642 Chapter 11: Generics and Collections

And, of course, we do want the AnimalDoctor to also have code that can take
arrays of Dogs, Cats, or Birds for when the vet comes to the dog, cat, or bird kennel.
Again, we don't want overloaded methods with arrays for each potential Animal
subtype, so we use polymorphism in the AnimalDoctor class:

public void checkAnimals(Animal[] animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }

Here is the entire example, complete with a test of the array polymorphism that
takes any type of animal array (Dog[], Cat[], Bird[]):

import java.util.*;
abstract class Animal {
 public abstract void checkup();
}
class Dog extends Animal {
 public void checkup() { // implement Dog-specific code
 System.out.println("Dog checkup");
 }
}
class Cat extends Animal {
 public void checkup() { // implement Cat-specific code
 System.out.println("Cat checkup");
 }
}
class Bird extends Animal {
 public void checkup() { // implement Bird-specific code
 System.out.println("Bird checkup");
 }
}
public class AnimalDoctor {
 // method takes an array of any animal subtype
 public void checkAnimals(Animal[] animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }
 public static void main(String[] args) {
 // test it
 Dog[] dogs = {new Dog(), new Dog()};
 Cat[] cats = {new Cat(), new Cat(), new Cat()};
 Bird[] birds = {new Bird()};

 AnimalDoctor doc = new AnimalDoctor();
 doc.checkAnimals(dogs); // pass the Dog[]
 doc.checkAnimals(cats); // pass the Cat[]
 doc.checkAnimals(birds); // pass the Bird[]
 }
}

11-ch11.indd 642 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 643

This works fine, of course (we know, we know, this is old news). But here's why
we brought this up as a refresher—this approach does NOT work the same way with
type-safe collections!

In other words, a method that takes, say, an ArrayList<Animal> will NOT be
able to accept a collection of any Animal subtype! That means ArrayList<Dog>
cannot be passed into a method with an argument of ArrayList<Animal>, even
though we already know that this works just fine with plain old arrays.

Obviously, this difference between arrays and ArrayList is consistent with the
polymorphism assignment rules we already looked at—the fact that you cannot
assign an object of type ArrayList<JButton> to a List<Object>. But this is
where you really start to feel the pain of the distinction between typed arrays and
typed collections.

We know it won't work correctly, but let's try changing the AnimalDoctor code
to use generics instead of arrays:

public class AnimalDoctorGeneric {
 // change the argument from Animal[] to ArrayList<Animal>
 public void checkAnimals(ArrayList<Animal> animals) {
 for(Animal a : animals) {
 a.checkup();
 }
 }
 public static void main(String[] args) {
 // make ArrayLists instead of arrays for Dog, Cat, Bird
 List<Dog> dogs = new ArrayList<Dog>();
 dogs.add(new Dog());
 dogs.add(new Dog());
 List<Cat> cats = new ArrayList<Cat>();
 cats.add(new Cat());
 cats.add(new Cat());
 List<Bird> birds = new ArrayList<Bird>();
 birds.add(new Bird());
 // this code is the same as the Array version
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 // this worked when we used arrays instead of ArrayLists
 doc.checkAnimals(dogs); // send a List<Dog>
 doc.checkAnimals(cats); // send a List<Cat>
 doc.checkAnimals(birds); // send a List<Bird>
 }
}

So what does happen?

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:51: checkAnimals(java.util.ArrayList<Animal>)
in AnimalDoctorGeneric cannot be applied to (java.util.List<Dog>)
 doc.checkAnimals(dogs);
 ^

11-ch11.indd 643 9/2/2014 6:52:26 PM

644 Chapter 11: Generics and Collections

AnimalDoctorGeneric.java:52: checkAnimals(java.util.ArrayList<Animal>)
in AnimalDoctorGeneric cannot be applied to (java.util.List<Cat>)
 doc.checkAnimals(cats);
 ^
AnimalDoctorGeneric.java:53: checkAnimals(java.util.ArrayList<Animal>)
in AnimalDoctorGeneric cannot be applied to (java.util.List<Bird>)
 doc.checkAnimals(birds);
 ^
3 errors

The compiler stops us with errors, not warnings. You simply CANNOT assign
the individual ArrayLists of Animal subtypes (<Dog>, <Cat>, or <Bird>) to an
ArrayList of the supertype <Animal>, which is the declared type of the argument.

This is one of the biggest gotchas for Java programmers who are so familiar with
using polymorphism with arrays, where the same scenario (Animal[] can refer to
Dog[], Cat[], or Bird[]) works as you would expect. So we have two real issues:

 1. Why doesn't this work?

 2. How do you get around it?

You'd hate us and all of the Java engineers if we told you that there wasn't a way
around it—that you had to accept it and write horribly inflexible code that tried to
anticipate and code overloaded methods for each specific <type>. Fortunately, there
is a way around it.

But first, why can't you do it if it works for arrays? Why can't you pass an
ArrayList<Dog> into a method with an argument of ArrayList<Animal>?

We'll get there, but first, let's step way back for a minute and consider this
perfectly legal scenario:

Animal[] animals = new Animal[3];
animals[0] = new Cat();
animals[1] = new Dog();

Part of the benefit of declaring an array using a more abstract supertype is that the
array itself can hold objects of multiple subtypes of the supertype, and then you can
manipulate the array, assuming everything in it can respond to the Animal interface
(in other words, everything in the array can respond to method calls defined in the
Animal class). So here, we're using polymorphism not for the object that the array
reference points to, but rather what the array can actually HOLD—in this case, any
subtype of Animal. You can do the same thing with generics:

List<Animal> animals = new ArrayList<Animal>();
animals.add(new Cat()); // OK
animals.add(new Dog()); // OK

11-ch11.indd 644 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 645

So this part works with both arrays and generic collections—we can add an
instance of a subtype into an array or collection declared with a supertype. You can
add Dogs and Cats to an Animal array (Animal[]) or an Animal collection
(ArrayList<Animal>).

And with arrays, this applies to what happens within a method:

public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // no problem, any Animal works
 // in Animal[]
}

So if this is true and you can put Dogs into an ArrayList<Animal>, then why
can't you use that same kind of method scenario? Why can't you do this?

public void addAnimal(ArrayList<Animal> animals) {
 animals.add(new Dog()); // sometimes allowed...
}

Actually, you CAN do this under certain conditions. The previous code WILL
compile just fine IF what you pass into the method is also an ArrayList<Animal>.
This is the part where it differs from arrays, because in the array version, you
COULD pass a Dog[] into the method that takes an Animal[].

The ONLY thing you can pass to a method argument of ArrayList<Animal>
is an ArrayList<Animal>! (Assuming you aren't trying to pass a subtype of
ArrayList, since, remember, the "base" type can be polymorphic.)

The question is still out there—why is this bad? And why is it bad for ArrayList
but not arrays? Why can't you pass an ArrayList<Dog> to an argument of
ArrayList<Animal>? Actually, the problem IS just as dangerous whether you're
using arrays or a generic collection. It's just that the compiler and JVM behave
differently for arrays versus generic collections.

The reason it is dangerous to pass a collection (array or ArrayList) of a subtype
into a method that takes a collection of a supertype is because you might add
something. And that means you might add the WRONG thing! This is probably
really obvious, but just in case (and to reinforce), let's walk through some scenarios.
The first one is simple:

public void foo() {
 Dog[] dogs = {new Dog(), new Dog()};
 addAnimal(dogs); // no problem, send the Dog[] to the method
}
public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // ok, any Animal subtype works
}

11-ch11.indd 645 9/2/2014 6:52:26 PM

646 Chapter 11: Generics and Collections

This is no problem. We passed a Dog[] into the method and added a Dog to the
array (which was allowed since the method parameter was type Animal[], which
can hold any Animal subtype). But what if we changed the calling code to

public void foo() {
 Cat[] cats = {new Cat(), new Cat()};
 addAnimal(cats); // no problem, send the Cat[] to the method
}

and the original method stays the same:

public void addAnimal(Animal[] animals) {
 animals[0] = new Dog(); // Eeek! We just put a Dog
 // in a Cat array!
}

The compiler thinks it is perfectly fine to add a Dog to an Animal[] array, since a
Dog can be assigned to an Animal reference. The problem is that if you passed in an
array of an Animal subtype (Cat, Dog, or Bird), the compiler does not know. The
compiler does not realize that out on the heap somewhere is an array of type Cat[],
not Animal[], and you're about to try to add a Dog to it. To the compiler, you have
passed in an array of type Animal, so it has no way to recognize the problem.

THIS is the scenario we're trying to prevent, regardless of whether it's an array or
an ArrayList. The difference is that the compiler lets you get away with it for
arrays, but not for generic collections.

The reason the compiler won't let you pass an ArrayList<Dog> into a method that
takes an ArrayList<Animal> is because within the method, that parameter is of type
ArrayList<Animal>, and that means you could put any kind of Animal into it. There
would be no way for the compiler to stop you from putting a Dog into a List that was
originally declared as <Cat> but is now referenced from the <Animal> parameter.

We still have two questions… how do you get around it and why the heck does
the compiler allow you to take that risk for arrays but not for ArrayList (or any
other generic collection)?

The reason you can get away with compiling this for arrays is that there is a
runtime exception (ArrayStoreException) that will prevent you from putting the
wrong type of object into an array. If you send a Dog array into the method that takes
an Animal array and you add only Dogs (including Dog subtypes, of course) into the
array now referenced by Animal, no problem. But if you DO try to add a Cat to the
object that is actually a Dog array, you'll get the exception.

But there IS no equivalent exception for generics because of type erasure! In other
words, at runtime, the JVM KNOWS the type of arrays, but does NOT know the type
of a collection. All the generic type information is removed during compilation, so by

11-ch11.indd 646 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 647

the time it gets to the JVM, there is simply no way to recognize the disaster of putting
a Cat into an ArrayList<Dog> and vice versa (and it becomes exactly like the
problems you have when you use legacy, nontype-safe code).

So this actually IS legal code:

public void addAnimal(List<Animal> animals) {
 animals.add(new Dog()); // this is always legal,
 // since Dog can
 // be assigned to an Animal
 // reference
 }
 public static void main(String[] args) {
 List<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // OK, since animals matches
 // the method arg
 }

As long as the only thing you pass to the addAnimals(List<Animal>) is an
ArrayList<Animal>, the compiler is pleased—knowing that any Animal subtype
you add will be valid (you can always add a Dog to an Animal collection, yada, yada,
yada). But if you try to invoke addAnimal() with an argument of any OTHER
ArrayList type, the compiler will stop you, since at runtime the JVM would have
no way to stop you from adding a Dog to what was created as a Cat collection.

For example, this code that changes the generic type to <Dog> without changing
the addAnimal() method will NOT compile:

public void addAnimal(List<Animal> animals) {
 animals.add(new Dog()); // still OK as always
}
public static void main(String[] args) {
 List<Dog> animals = new ArrayList<Dog>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // THIS is where it breaks!
}

The compiler says something like:

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:49: addAnimal(java.util.List<Animal>) in
AnimalDoctorGeneric cannot be applied to (java.util.List<Dog>)
 doc.addAnimal(animals);
 ^
1 error

11-ch11.indd 647 9/2/2014 6:52:26 PM

648 Chapter 11: Generics and Collections

Notice that this message is virtually the same one you'd get trying to invoke any
method with the wrong argument. It's saying that you simply cannot invoke
addAnimal(List<Animal>) using something whose reference was declared as
List<Dog>. (It's the reference type, not the actual object type, that matters—but
remember: The generic type of an object is ALWAYS the same as the generic type
declared on the reference. List<Dog> can refer ONLY to collections that are
subtypes of List but which were instantiated as generic type <Dog>.)

Once again, remember that once inside the addAnimals() method, all that
matters is the type of the parameter—in this case, List<Animal>. (We changed it
from ArrayList to List to keep our "base" type polymorphism cleaner.)

Back to the key question—how do we get around this? If the problem is related
only to the danger of adding the wrong thing to the collection, what about the
checkup() method that used the collection passed in as read-only? In other words,
what about methods that invoke Animal methods on each thing in the collection,
which will work regardless of which kind of ArrayList subtype is passed in?

And that's a clue! It's the add() method that is the problem, so what we need is
a way to tell the compiler, "Hey, I'm using the collection passed in just to invoke
methods on the elements—and I promise not to ADD anything into the collection."
And there IS a mechanism to tell the compiler that you can take any generic subtype
of the declared argument type because you won't be putting anything in the collection.
And that mechanism is the wildcard <?>.

The method signature would change from

public void addAnimal(List<Animal> animals)

to

public void addAnimal(List<? extends Animal> animals)

By saying <? extends Animal>, we're saying, "I can be assigned a collection
that is a subtype of List and typed for <Animal> or anything that extends Animal.
And, oh yes, I SWEAR that I will not ADD anything into the collection." (There's
a little more to the story, but we'll get there.)

So, of course, the addAnimal() method shown previously won't actually compile,
even with the wildcard notation, because that method DOES add something.

public void addAnimal(List<? extends Animal> animals) {
 animals.add(new Dog()); // NO! Can't add if we
 // use <? extends Animal>
}

11-ch11.indd 648 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 649

You'll get a very strange error that might look something like this:

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:38: cannot find symbol
symbol : method add(Dog)
location: interface java.util.List<capture of ? extends Animal>
 animals.add(new Dog());
 ^
1 error

which basically says, "you can't add a Dog here." If we change the method so that it
doesn't add anything, it works.

But wait—there's more. (And by the way, everything we've covered in this
generics section is likely to be tested for on the exam, with the exception of "type
erasure," which you aren't required to know any details of.)

First, the <? extends Animal> means that you can take any subtype of Animal;
however, that subtype can be EITHER a subclass of a class (abstract or concrete) OR
a type that implements the interface after the word extends. In other words, the
keyword extends in the context of a wildcard represents BOTH subclasses and
interface implementations. There is no <? implements Serializable> syntax. If
you want to declare a method that takes anything that is of a type that implements
Serializable, you'd still use extends like this:

void foo(List<? extends Serializable> list) // odd, but correct
 // to use "extends"

This looks strange since you would never say this in a class declaration because
Serializable is an interface, not a class. But that's the syntax, so burn it in your brain!

One more time—there is only ONE wildcard keyword that represents both
interface implementations and subclasses. And that keyword is extends. But when
you see it, think "IS-A," as in something that passes the instanceof test.

However, there is another scenario where you can use a wildcard AND still add to
the collection, but in a safe way—the keyword super.

Imagine, for example, that you declared the method this way:

public void addAnimal(List<? super Dog> animals) {
 animals.add(new Dog()); // adding is sometimes OK with super
}
public static void main(String[] args) {
 List<Animal> animals = new ArrayList<Animal>();
 animals.add(new Dog());
 animals.add(new Dog());
 AnimalDoctorGeneric doc = new AnimalDoctorGeneric();
 doc.addAnimal(animals); // passing an Animal List
}

11-ch11.indd 649 9/2/2014 6:52:26 PM

650 Chapter 11: Generics and Collections

Now what you've said in this line

public void addAnimal(List<? super Dog> animals)

is essentially, "Hey, compiler, please accept any List with a generic type that is of
type Dog or a supertype of Dog. Nothing lower in the inheritance tree can come in,
but anything higher than Dog is okay."

You probably already recognize why this works. If you pass in a list of type Animal,
then it's perfectly fine to add a Dog to it. If you pass in a list of type Dog, it's perfectly
fine to add a Dog to it. And if you pass in a list of type Object, it's STILL fine to add
a Dog to it. When you use the <? super ...> syntax, you are telling the compiler
that you can accept the type on the right side of super or any of its supertypes,
since—and this is the key part that makes it work—a collection declared as any
supertype of Dog will be able to accept a Dog as an element. List<Object> can take
a Dog. List<Animal> can take a Dog. And List<Dog> can take a Dog. So passing
any of those in will work. So the super keyword in wildcard notation lets you have
a restricted, but still possible, way to add to a collection.

So, the wildcard gives you polymorphic assignments, but with certain restrictions
that you don't have for arrays. Quick question: Are these two identical?

public void foo(List<?> list) { }
public void foo(List<Object> list) { }

If there IS a difference (and we're not yet saying there is), what is it?
There IS a huge difference. List<?>, which is the wildcard <?> without the

keywords extends or super, simply means "any type." So that means any type of
List can be assigned to the argument. That could be a List of <Dog>, <Integer>,
<JButton>, <Socket>, whatever. And using the wildcard alone, without the
keyword super (followed by a type), means that you cannot ADD anything to the
list referred to as List<?>.

List<Object> is completely different from List<?>. List<Object> means that
the method can take ONLY a List<Object>. Not a List<Dog> or a List<Cat>. It
does, however, mean that you can add to the list, since the compiler has already
made certain that you're passing only a valid List<Object> into the method.

Based on the previous explanations, figure out if the following will work:

import java.util.*;
public class TestWildcards {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 Bar bar = new Bar();
 bar.doInsert(myList);
 }

11-ch11.indd 650 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 651

}
class Bar {
 void doInsert(List<?> list) {
 list.add(new Dog());
 }
}

If not, where is the problem?
The problem is in the list.add() method within doInsert(). The <?>

wildcard allows a list of ANY type to be passed to the method, but the add()
method is not valid, for the reasons we explored earlier (that you could put the
wrong kind of thing into the collection). So this time, the TestWildcards class is
fine, but the Bar class won't compile because it does an add() in a method that uses
a wildcard (without super). What if we change the doInsert() method to this:

import java.util.*;
public class TestWildcards {
 public static void main(String[] args) {
 List<Integer> myList = new ArrayList<Integer>();
 Bar bar = new Bar();
 bar.doInsert(myList);
 }
}
class Bar {
 void doInsert(List<Object> list) {
 list.add(new Dog());
 }
}

Now will it work? If not, why not?
This time, class Bar, with the doInsert() method, compiles just fine. The

problem is that the TestWildcards code is trying to pass a List<Integer> into a
method that can take ONLY a List<Object>. And nothing else can be substituted
for <Object>.

By the way, List<? extends Object> and List<?> are absolutely identical!
They both say, "I can refer to any type of object." But as you can see, neither of them
is the same as List<Object>. One way to remember this is that if you see the
wildcard notation (a question mark ?), this means "many possibilities." If you do
NOT see the question mark, then it means the <type> in the brackets and absolutely
NOTHING ELSE. List<Dog> means List<Dog> and not List<Beagle>,
List<Poodle>, or any other subtype of Dog. But List<? extends Dog> could
mean List<Beagle>, List<Poodle>, and so on. Of course List<?> could be…
anything at all.

11-ch11.indd 651 9/2/2014 6:52:26 PM

652 Chapter 11: Generics and Collections

Keep in mind that the wildcards can be used only for reference declarations
(including arguments, variables, return types, and so on). They can't be used as the
type parameter when you create a new typed collection. Think about that—while a
reference can be abstract and polymorphic, the actual object created must be of a
specific type. You have to lock down the type when you make the object using new.

As a little review before we move on with generics, look at the following
statements and figure out which will compile:

1) List<?> list = new ArrayList<Dog>();
2) List<? extends Animal> aList = new ArrayList<Dog>();
3) List<?> foo = new ArrayList<? extends Animal>();
4) List<? extends Dog> cList = new ArrayList<Integer>();
5) List<? super Dog> bList = new ArrayList<Animal>();
6) List<? super Animal> dList = new ArrayList<Dog>();

The correct answers (the statements that compile) are 1, 2, and 5.
The three that won't compile are

■ Statement List<?> foo = new ArrayList<? extends Animal>();

■ Problem You cannot use wildcard notation in the object creation. So the
new ArrayList<? extends Animal>() will not compile.

■ Statement List<? extends Dog> cList =

 new ArrayList<Integer>();

■ Problem You cannot assign an Integer list to a reference that takes only a
Dog (including any subtypes of Dog, of course).

■ Statement List<? super Animal> dList = new ArrayList<Dog>();

■ Problem You cannot assign a Dog to <? super Animal>. The Dog is too
"low" in the class hierarchy. Only <Animal> or <Object> would have been
legal.

Generic Declarations

Until now, we've talked about how to create type-safe collections and how to declare
reference variables, including arguments and return types, using generic syntax. But
here are a few questions: How do we even know that we're allowed/supposed to
specify a type for these collection classes? And does generic typing work with any
other classes in the API? And finally, can we declare our own classes as generic
types? In other words, can we make a class that requires that someone pass a type in
when they declare it and instantiate it?

11-ch11.indd 652 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 653

First, the one you obviously know the answer to—the API tells you when a
parameterized type is expected. For example, this is the API declaration for the
java.util.List interface:

public interface List<E>

The <E> is a placeholder for the type you pass in. The List interface is behaving
as a generic "template" (sort of like C++ templates), and when you write your code,
you change it from a generic List to a List<Dog> or List<Integer>, and so on.

The E, by the way, is only a convention. Any valid Java identifier would work
here, but E stands for "Element," and it's used when the template is a collection. The
other main convention is T (stands for "type"), used for, well, things that are NOT
collections.

Now that you've seen the interface declaration for List, what do you think the
add() method looks like?

boolean add(E o)

In other words, whatever E is when you declare the List, that's what you can add
to it. So imagine this code:

List<Animal> list = new ArrayList<Animal>();

The E in the List API suddenly has its waveform collapsed and goes from the
abstract <your type goes here> to a List of Animals. And if it's a List of
Animals, then the add() method of List must obviously behave like this:

boolean add(Animal a)

When you look at an API for a generics class or interface, pick a type parameter
(Dog, JButton, even Object) and do a mental find and replace on each instance of
E (or whatever identifier is used as the placeholder for the type parameter).

Making Your Own Generic Class

Let's try making our own generic class to get a feel for how it works, and then we'll
look at a few remaining generics syntax details. Imagine someone created a class
Rental that manages a pool of rentable items:

public class Rental {
 private List rentalPool;
 private int maxNum;
 public Rental(int maxNum, List rentalPool) {
 this.maxNum = maxNum;
 this.rentalPool = rentalPool;

11-ch11.indd 653 9/2/2014 6:52:26 PM

654 Chapter 11: Generics and Collections

 }
 public Object getRental() {
 // blocks until there's something available
 return rentalPool.get(0);
 }
 public void returnRental(Object o) {
 rentalPool.add(o);
 }
}

Now imagine you wanted to make a subclass of Rental that was just for renting
cars. You might start with something like this:

import java.util.*;
public class CarRental extends Rental {
 public CarRental(int maxNum, List<Car> rentalPool) {
 super(maxNum, rentalPool);
 }
 public Car getRental() {
 return (Car) super.getRental();
 }
 public void returnRental(Car c) {
 super.returnRental(c);
 }
 public void returnRental(Object o) {
 if (o instanceof Car) {
 super.returnRental(o);
 } else {
 System.out.println("Cannot add a non-Car");
 // probably throw an exception
} } }

But then, the more you look at it, the more you realize

 1. You are doing your own type checking in the returnRental() method. You
can't change the argument type of returnRental() to take a Car, since it's
an override (not an overload) of the method from class Rental. (Overload-
ing would take away your polymorphic flexibility with Rental.)

 2. You really don't want to make separate subclasses for every possible kind of
rentable thing (cars, computers, bowling shoes, children, and so on).

But given your natural brilliance (heightened by this contrived scenario), you
quickly realize that you can make the Rental class a generic type—a template for
any kind of Rentable thing—and you're good to go.

11-ch11.indd 654 9/2/2014 6:52:26 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 655

(We did say contrived… since in reality, you might very well want to have
different behaviors for different kinds of rentable things, but even that could be
solved cleanly through some kind of behavior composition as opposed to inheritance
(using the Strategy design pattern, for example). And no, the Strategy design
pattern isn't on the exam, but we still think you should read our design patterns
book. Think of the kittens.) So here's your new and improved generic Rental class:

import java.util.*;
public class RentalGeneric<T> { // "T" is for the type
 // parameter
 private List<T> rentalPool; // Use the class type for the
 // List type
 private int maxNum;
 public RentalGeneric(
 int maxNum, List<T> rentalPool) { // constructor takes a
 // List of the class type
 this.maxNum = maxNum;
 this.rentalPool = rentalPool;
 }
 public T getRental() { // we rent out a T
 // blocks until there's something available
 return rentalPool.get(0);
 }
 public void returnRental(T returnedThing) { // and the renter
 // returns a T
 rentalPool.add(returnedThing);
 }
}

Let's put it to the test:

class TestRental {
 public static void main (String[] args) {
 //make some Cars for the pool
 Car c1 = new Car();
 Car c2 = new Car();
 List<Car> carList = new ArrayList<Car>();
 carList.add(c1);
 carList.add(c2);
 RentalGeneric<Car> carRental = new
 RentalGeneric<Car>(2, carList);
 // now get a car out, and it won't need a cast
 Car carToRent = carRental.getRental();
 carRental.returnRental(carToRent);
 // can we stick something else in the original carList?
 carList.add(new Cat("Fluffy"));
 }
}

11-ch11.indd 655 9/2/2014 6:52:26 PM

656 Chapter 11: Generics and Collections

We get one error:

kathy% javac1.5 RentalGeneric.java
RentalGeneric.java:38: cannot find symbol
symbol : method add(Cat)
location: interface java.util.List<Car>
 carList.add(new Cat("Fluffy"));
 ^
1 error

Now we have a Rental class that can be typed to whatever the programmer
chooses, and the compiler will enforce it. In other words, it works just as the
Collections classes do. Let's look at more examples of generic syntax you might
find in the API or source code. Here's another simple class that uses the
parameterized type of the class in several ways:

public class TestGenerics<T> { // as the class type
 T anInstance; // as an instance variable type
 T [] anArrayOfTs; // as an array type

 TestGenerics(T anInstance) { // as an argument type
 this.anInstance = anInstance;
 }
 T getT() { // as a return type
 return anInstance;
 }
}

Obviously, this is a ridiculous use of generics, and in fact, you'll see generics only
rarely outside of collections. But you do need to understand the different kinds of
generic syntax you might encounter, so we'll continue with these examples until
we've covered them all.

You can use more than one parameterized type in a single class definition:

public class UseTwo<T, X> {
 T one;
 X two;
 UseTwo(T one, X two) {
 this.one = one;
 this.two = two;
 }
 T getT() { return one; }
 X getX() { return two; }

// test it by creating it with <String, Integer>

 public static void main (String[] args) {
 UseTwo<String, Integer> twos =
 new UseTwo<String, Integer>("foo", 42);

11-ch11.indd 656 9/2/2014 6:52:27 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 657

 String theT = twos.getT(); // returns a String
 int theX = twos.getX(); // returns Integer, unboxes to int
 }
}

And you can use a form of wildcard notation in a class definition to specify a
range (called "bounds") for the type that can be used for the type parameter:
public class AnimalHolder<T extends Animal> { // use "T" instead
 // of "?"
 T animal;
 public static void main(String[] args) {
 AnimalHolder<Dog> dogHolder = new AnimalHolder<Dog>(); // OK
 AnimalHolder<Integer> x = new AnimalHolder<Integer>(); // NO!
 }
}

Creating Generic Methods

Until now, every example we've seen uses the class parameter type—the type
declared with the class name. For example, in the UseTwo<T,X> declaration, we
used the T and X placeholders throughout the code. But it's possible to define a
parameterized type at a more granular level—a method.

Imagine you want to create a method that takes an instance of any type,
instantiates an ArrayList of that type, and adds the instance to the ArrayList.
The class itself doesn't need to be generic; basically, we just want a utility method
that we can pass a type to and that can use that type to construct a type-safe
collection. Using a generic method, we can declare the method without a specific
type and then get the type information based on the type of the object passed to the
method. For example:

import java.util.*;
public class CreateAnArrayList {
 public <T> void makeArrayList(T t) { // take an object of an
 // unknown type and use a
 // "T" to represent the type
 List<T> list = new ArrayList<T>(); // now we can create the
 // list using "T"
 list.add(t);
 }
}

In the preceding code, if you invoke the makeArrayList() method with a Dog
instance, the method will behave as though it looked like this all along:

public void makeArrayList(Dog t) {
 List<Dog> list = new ArrayList<Dog>();
 list.add(t);
}

11-ch11.indd 657 9/2/2014 6:52:27 PM

658 Chapter 11: Generics and Collections

And, of course, if you invoke the method with an Integer, then the T is replaced
by Integer (not in the bytecode, remember—we're describing how it appears to
behave, not how it actually gets it done).

The strangest thing about generic methods is that you must declare the type
variable BEFORE the return type of the method:

public <T> void makeArrayList(T t)

The <T> before void simply defines what T is before you use it as a type in the
argument. You MUST declare the type like that unless the type is specified for the
class. In CreateAnArrayList, the class is not generic, so there's no type parameter
placeholder we can use.

You're also free to put boundaries on the type you declare. For example, if you
want to restrict the makeArrayList() method to only Number or its subtypes
(Integer, Float, and so on), you would say

public <T extends Number> void makeArrayList(T t)

It's tempting to forget that the method argument is NOT where you

declare the type parameter variable T. In order to use a type variable like T, you must

have declared it either as the class parameter type or in the method, before the return

type. The following might look right:

public void makeList(T t) { }

But the only way for this to be legal is if there is actually a class named T, in which

case the argument is like any other type declaration for a variable. And what about

constructor arguments? They, too, can be declared with a generic type, but then it looks

even stranger, since constructors have no return type at all:

public class Radio {
 public <T> Radio(T t) { } // legal constructor
}

11-ch11.indd 658 9/2/2014 6:52:27 PM

 Generic Types (OCP Objectives 4.1 and 4.3) 659

In practice, 98% of what you're likely to do with generics is simply declare and
use type-safe collections, including using (and passing) them as arguments. But now
you know much more (but by no means everything) about the way generics work.

If this was clear and easy for you, that's excellent. If it was… painful… just know
that adding generics to the Java language very nearly caused a revolt among some of
the most experienced Java developers. Most of the outspoken critics are simply
unhappy with the complexity, or aren't convinced that gaining type-safe collections
is worth the ten million little rules you have to learn now. It's true that with Java 5,
learning Java just got harder. But trust us… we've never seen it take more than two
days to "get" generics. That's 48 consecutive hours.

If you REALLY want to get ridiculous (or fi red), you can declare a class

with a name that is the same as the type parameter placeholder:

class X { public <X> X(X x) { } }

Yes, this works. The X that is the constructor name has no relationship to the <X> type

declaration, which has no relationship to the constructor argument identifi er, which is

also, of course, X. The compiler is able to parse this and treat each of the different uses

of X independently. So there is no naming confl ict between class names, type parameter

placeholders, and variable identifi ers.

One of the most common mistakes programmers make when creating

generic classes or methods is to use a <?> in the wildcard syntax rather than a type

variable <T>, <E>, and so on. This code might look right, but isn't:

public class NumberHolder<? extends Number> { }

While the question mark works when declaring a reference for a variable, it does NOT

work for generic class and method declarations. This code is not legal:

public class NumberHolder<?> { ? aNum; } // NO!

But if you replace the <?> with a legal identifi er, you're good:

public class NumberHolder<T> { T aNum; } // Yes

11-ch11.indd 659 9/2/2014 6:52:27 PM

660 Chapter 11: Generics and Collections

CERTIFICATION SUMMARY

We began with a quick review of the toString() method. The toString()
method is automatically called when you ask System.out.println() to print an
object—you override it to return a String of meaningful data about your objects.

Next, we reviewed the purpose of == (to see if two reference variables refer to the
same object) and the equals() method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals()—you may not
be able to find the object in a collection. We discussed a little bit about how to write
a good equals() method—don't forget to use instanceof and refer to the object's
significant attributes. We reviewed the contracts for overriding equals() and
hashCode(). We learned about the theory behind hashcodes, the difference between
legal, appropriate, and efficient hashcoding. We also saw that even though wildly
inefficient, it's legal for a hashCode() method to always return the same value.

Next, we turned to collections, where we learned about Lists, Sets, and Maps
and the difference between ordered and sorted collections. We learned the key
attributes of the common collection classes and when to use which. Along the way,
we introduced the new Java 7 "diamond" syntax, and we talked about autoboxing
primitives into and out of wrapper class objects.

We covered the ins and outs of the Collections and Arrays classes: how to sort
and how to search. We learned about converting arrays to Lists and back again.

Finally, we tackled generics. Generics let you enforce compile-time type-safety on
collections or other classes. Generics help assure you that when you get an item from
a collection, it will be of the type you expect, with no casting required. You can mix
legacy code with generics code, but this can cause exceptions. The rules for
polymorphism change when you use generics, although by using wildcards you can
still create polymorphic collections. Some generics declarations allow reading of a
collection, but allow very limited updating of the collection.

All in all, one fascinating chapter.

11-ch11.indd 660 9/2/2014 6:52:27 PM

Two-Minute Drill 661

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Overriding hashCode() and equals()
(OCP Objectives 4.7 and 4.8)

❑ equals(), hashCode(), and toString() are public.

❑ Override toString() so that System.out.println() or other methods can
see something useful, like your object's state.

❑ Use == to determine if two reference variables refer to the same object.

❑ Use equals() to determine if two objects are meaningfully equivalent.

❑ If you don't override equals(), your objects won't be useful hashing keys.

❑ If you don't override equals(), different objects can't be considered equal.

❑ Strings and wrappers override equals() and make good hashing keys.

❑ When overriding equals(), use the instanceof operator to be sure you're
evaluating an appropriate class.

❑ When overriding equals(), compare the objects' significant attributes.

❑ Highlights of the equals() contract:

❑ Reflexive: x.equals(x) is true.

❑ Symmetric: If x.equals(y) is true, then y.equals(x) must be true.

❑ Transitive: If x.equals(y) is true, and y.equals(z) is true, then
z.equals(x) is true.

❑ Consistent: Multiple calls to x.equals(y) will return the same result.

❑ Null: If x is not null, then x.equals(null) is false.

❑ If x.equals(y) is true, then x.hashCode() == y.hashCode() is true.

❑ If you override equals(), override hashCode().

❑ HashMap, HashSet, Hashtable, LinkedHashMap, and LinkedHashSet use
hashing.

❑ An appropriate hashCode() override sticks to the hashCode() contract.

❑ An efficient hashCode() override distributes keys evenly across its buckets.

✓

11-ch11.indd 661 9/2/2014 6:52:27 PM

662 Chapter 11: Generics and Collections

❑ An overridden equals() must be at least as precise as its hashCode() mate.

❑ To reiterate: If two objects are equal, their hashcodes must be equal.

❑ It's legal for a hashCode() method to return the same value for all instances
(although in practice it's very inefficient).

❑ Highlights of the hashCode() contract:

❑ Consistent: Multiple calls to x.hashCode() return the same integer.

❑ If x.equals(y) is true, x.hashCode() == y.hashCode() is true.

❑ If x.equals(y) is false, then x.hashCode() == y.hashCode() can
be either true or false, but false will tend to create better efficiency.

❑ Transient variables aren't appropriate for equals() and hashCode().

Collections (OCP Objectives 4.5 and 4.6)

❑ Common collection activities include adding objects, removing objects,
verifying object inclusion, retrieving objects, and iterating.

❑ Three meanings for "collection":

❑ collection Represents the data structure in which objects are stored

❑ Collection java.util interface from which Set and List extend

❑ Collections A class that holds static collection utility methods

❑ Four basic flavors of collections include Lists, Sets, Maps, and Queues:

❑ Lists of things Ordered, duplicates allowed, with an index

❑ Sets of things May or may not be ordered and/or sorted; duplicates not
allowed

❑ Maps of things with keys May or may not be ordered and/or sorted;
duplicate keys are not allowed

❑ Queues of things to process Ordered by FIFO or by priority

❑ Four basic subflavors of collections: Sorted, Unsorted, Ordered, and
Unordered:

❑ Ordered Iterating through a collection in a specific, nonrandom order

❑ Sorted Iterating through a collection in a sorted order

❑ Sorting can be alphabetic, numeric, or programmer-defined.

11-ch11.indd 662 9/2/2014 6:52:27 PM

Two-Minute Drill 663

Key Attributes of Common Collection
Classes (OCP Objectives 4.5 and 4.6)

❑ ArrayList Fast iteration and fast random access.

❑ Vector It's like a slower ArrayList, but it has synchronized methods.

❑ LinkedList Good for adding elements to the ends, i.e., stacks and queues.

❑ HashSet Fast access, assures no duplicates, provides no ordering.

❑ LinkedHashSet No duplicates; iterates by insertion order.

❑ TreeSet No duplicates; iterates in sorted order.

❑ HashMap Fastest updates (key/values); allows one null key, many null
values.

❑ Hashtable Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed.

❑ LinkedHashMap Faster iterations; iterates by insertion order or last
accessed; allows one null key, many null values.

❑ TreeMap A sorted map.

❑ PriorityQueue A to-do list ordered by the elements' priority.

Using Collection Classes
(OCP Objectives 4.2, 4.5, and 4.6)

❑ Collections hold only Objects, but primitives can be autoboxed.

❑ Java 7 allows "diamond" syntax: List<Dog> d = new ArrayList<>();.

❑ Iterate with the enhanced for or with an Iterator via hasNext() and
next().

❑ hasNext() determines if more elements exist; the Iterator does NOT move.

❑ next() returns the next element AND moves the Iterator forward.

❑ To work correctly, a Map's keys must override equals() and hashCode().

❑ Queues use offer() to add an element, poll() to remove the head of the
queue, and peek() to look at the head of a queue.

❑ For the OCJPJ 6: TreeSets and TreeMaps have navigation methods like
floor() and higher().

❑ For the OCJPJ 6: You can create/extend "backed" subcopies of TreeSets and
TreeMaps.

11-ch11.indd 663 9/2/2014 6:52:28 PM

664 Chapter 11: Generics and Collections

Sorting and Searching Arrays and Lists
(OCP Objectives 4.7 and 4.8)

❑ Sorting can be in natural order or via a Comparable or many Comparators.

❑ Implement Comparable using compareTo(); provides only one sort order.

❑ Create many Comparators to sort a class many ways; implement compare().

❑ To be sorted and searched, an array's or List's elements must be comparable.

❑ To be searched, an array or List must first be sorted.

Utility Classes: Collections and Arrays
(OCP Objectives 4.7 and 4.8)

❑ These java.util classes provide

❑ A sort() method. Sort using a Comparator or sort using natural order.

❑ A binarySearch() method. Search a presorted array or List.

❑ Arrays.asList() creates a List from an array and links them together.

❑ Collections.reverse() reverses the order of elements in a List.

❑ Collections.reverseOrder() returns a Comparator that sorts in
reverse.

❑ Lists and Sets have a toArray() method to create arrays.

Generics (OCP Objectives 4.1 and 4.3)

❑ Generics let you enforce compile-time type-safety on Collections (or other
classes and methods declared using generic type parameters).

❑ An ArrayList<Animal> can accept references of type Dog, Cat, or any other
subtype of Animal (subclass, or if Animal is an interface, implementation).

❑ When using generic collections, a cast is not needed to get (declared type)
elements out of the collection. With nongeneric collections, a cast is
required:

List<String> gList = new ArrayList<String>();
List list = new ArrayList();
// more code
String s = gList.get(0); // no cast needed
String s = (String)list.get(0); // cast required

11-ch11.indd 664 9/2/2014 6:52:28 PM

Two-Minute Drill 665

❑ You can pass a generic collection into a method that takes a nongeneric
collection, but the results may be disastrous. The compiler can't stop
the method from inserting the wrong type into the previously type-safe
collection.

❑ If the compiler can recognize that nontype-safe code is potentially
endangering something you originally declared as type-safe, you will get a
compiler warning. For instance, if you pass a List<String> into a method
declared as
void foo(List aList) { aList.add(anInteger); }

 you'll get a warning because add() is potentially "unsafe."

❑ "Compiles without error" is not the same as "compiles without warnings." A
compilation warning is not considered a compilation error or failure.

❑ Generic type information does not exist at runtime—it is for compile-time
safety only. Mixing generics with legacy code can create compiled code that
may throw an exception at runtime.

❑ Polymorphic assignments apply only to the base type, not the generic type
parameter. You can say
List<Animal> aList = new ArrayList<Animal>(); // yes

 You can't say
List<Animal> aList = new ArrayList<Dog>(); // no

❑ The polymorphic assignment rule applies everywhere an assignment can be
made. The following are NOT allowed:
void foo(List<Animal> aList) { } // cannot take a List<Dog>
List<Animal> bar() { } // cannot return a List<Dog>

❑ Wildcard syntax allows a generic method to accept subtypes (or supertypes)
of the declared type of the method argument:
void addD(List<Dog> d) {} // can take only <Dog>
void addD(List<? extends Dog>) {} // take a <Dog> or <Beagle>

❑ The wildcard keyword extends is used to mean either "extends" or
"implements." So in <? extends Dog>, Dog can be a class or an interface.

11-ch11.indd 665 9/2/2014 6:52:28 PM

666 Chapter 11: Generics and Collections

❑ When using a wildcard List<? extends Dog>, the collection can be
accessed but not modified.

❑ When using a wildcard List<?>, any generic type can be assigned to the
reference, but for access only—no modifications.

❑ List<Object> refers only to a List<Object>, while List<?> or List<?
extends Object> can hold any type of object, but for access only.

❑ Declaration conventions for generics use T for type and E for element:

public interface List<E> // API declaration for List
boolean add(E o) // List.add() declaration

❑ The generics type identifier can be used in class, method, and variable
declarations:
class Foo<t> { } // a class
T anInstance; // an instance variable
Foo(T aRef) {} // a constructor argument
void bar(T aRef) {} // a method argument
T baz() {} // a return type

The compiler will substitute the actual type.

❑ You can use more than one parameterized type in a declaration:

public class UseTwo<T, X> { }

❑ You can declare a generic method using a type not defined in the class:

public <T> void makeList(T t) { }

This is NOT using T as the return type. This method has a void return type, but
to use T within the argument, you must declare the <T>, which happens before the
return type.

11-ch11.indd 666 9/2/2014 6:52:29 PM

Self Test 667

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

 1. Given:

public static void main(String[] args) {

 // INSERT DECLARATION HERE
 for (int i = 0; i <= 10; i++) {
 List<Integer> row = new ArrayList<Integer>();
 for (int j = 0; j <= 10; j++)
 row.add(i * j);
 table.add(row);
 }
 for (List<Integer> row : table)
 System.out.println(row);
 }

 Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

 A. List<List<Integer>> table = new List<List<Integer>>();

 B. List<List<Integer>> table = new ArrayList<List<Integer>>();

 C. List<List<Integer>> table = new ArrayList<ArrayList<Integer>>();

 D. List<List, Integer> table = new List<List, Integer>();

 E. List<List, Integer> table = new ArrayList<List, Integer>();

 F. List<List, Integer> table = new ArrayList<ArrayList, Integer>();

 G. None of the above

 2. Which statements are true about comparing two instances of the same class, given that the
equals() and hashCode() methods have been properly overridden? (Choose all that apply.)

 A. If the equals() method returns true, the hashCode() comparison == might return false
 B. If the equals() method returns false, the hashCode() comparison == might return true
 C. If the hashCode() comparison == returns true, the equals() method must return true
 D. If the hashCode() comparison == returns true, the equals() method might return true
 E. If the hashCode() comparison != returns true, the equals() method might return true

11-ch11.indd 667 9/2/2014 6:52:29 PM

668 Chapter 11: Generics and Collections

 3. Given:

public static void before() {
 Set set = new TreeSet();
 set.add("2");
 set.add(3);
 set.add("1");
 Iterator it = set.iterator();
 while (it.hasNext())
 System.out.print(it.next() + " ");
}

 Which statements are true?
 A. The before() method will print 1 2
 B. The before() method will print 1 2 3
 C. The before() method will print three numbers, but the order cannot be determined
 D. The before() method will not compile
 E. The before() method will throw an exception at runtime

 4. Given:

import java.util.*;
class MapEQ {
 public static void main(String[] args) {
 Map<ToDos, String> m = new HashMap<ToDos, String>();
 ToDos t1 = new ToDos("Monday");
 ToDos t2 = new ToDos("Monday");
 ToDos t3 = new ToDos("Tuesday");
 m.put(t1, "doLaundry");
 m.put(t2, "payBills");
 m.put(t3, "cleanAttic");
 System.out.println(m.size());
 }
}
class ToDos{
 String day;
 ToDos(String d) { day = d; }
 public boolean equals(Object o) {
 return ((ToDos)o).day.equals(this.day);
 }
 // public int hashCode() { return 9; }
}

 Which is correct? (Choose all that apply.)
 A. As the code stands, it will not compile
 B. As the code stands, the output will be 2

11-ch11.indd 668 9/2/2014 6:52:29 PM

Self Test 669

 C. As the code stands, the output will be 3
 D. If the hashCode() method is uncommented, the output will be 2
 E. If the hashCode() method is uncommented, the output will be 3
 F. If the hashCode() method is uncommented, the code will not compile

 5. Given:

12. public class AccountManager {
13. private Map accountTotals = new HashMap();
14. private int retirementFund;
15.
16. public int getBalance(String accountName) {
17. Integer total = (Integer) accountTotals.get(accountName);
18. if (total == null)
19. total = Integer.valueOf(0);
20. return total.intValue();
21. }
23. public void setBalance(String accountName, int amount) {
24. accountTotals.put(accountName, Integer.valueOf(amount));
25. }
26. }

 This class is to be updated to make use of appropriate generic types, with no changes in
behavior (for better or worse). Which of these steps could be performed? (Choose three.)

 A. Replace line 13 with

private Map<String, int> accountTotals = new HashMap<String, int>();

 B. Replace line 13 with

private Map<String, Integer> accountTotals = new HashMap<String, Integer>();

 C. Replace line 13 with

private Map<String<Integer>\> accountTotals = new HashMap<String<Integer>\>();

 D. Replace lines 17–20 with

int total = accountTotals.get(accountName);
 if (total == null)
 total = 0;
 return total;

 E. Replace lines 17–20 with

Integer total = accountTotals.get(accountName);
 if (total == null)
 total = 0;
 return total;

11-ch11.indd 669 9/2/2014 6:52:29 PM

670 Chapter 11: Generics and Collections

 F. Replace lines 17–20 with

return accountTotals.get(accountName);

 G. Replace line 24 with

accountTotals.put(accountName, amount);

 H. Replace line 24 with

accountTotals.put(accountName, amount.intValue());

 6. Given:

interface Hungry<E> { void munch(E x); }
interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}
abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}
class Sheep extends Animal implements Herbivore<Sheep> {
 public void munch(Sheep x) {}
}
class Wolf extends Animal implements Carnivore<Sheep> {
 public void munch(Sheep x) {}
}

 Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

 A. Change the Carnivore interface to

interface Carnivore<E extends Plant> extends Hungry<E> {}

 B. Change the Herbivore interface to

interface Herbivore<E extends Animal> extends Hungry<E> {}

 C. Change the Sheep class to

class Sheep extends Animal implements Herbivore<Plant> {
 public void munch(Grass x) {}
}

 D. Change the Sheep class to

class Sheep extends Plant implements Carnivore<Wolf> {
 public void munch(Wolf x) {}
}

11-ch11.indd 670 9/2/2014 6:52:29 PM

Self Test 671

 E. Change the Wolf class to

class Wolf extends Animal implements Herbivore<Grass> {
 public void munch(Grass x) {}
}

 F. No changes are necessary

 7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

 A. java.util.HashSet

 B. java.util.LinkedHashSet

 C. java.util.List

 D. java.util.ArrayList

 E. java.util.Vector

 F. java.util.PriorityQueue

 8. Given a method declared as

public static <E extends Number> List<E> process(List<E> nums)

 A programmer wants to use this method like this:

// INSERT DECLARATIONS HERE

output = process(input);

 Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow the
code to compile? (Choose all that apply.)

 A. ArrayList<Integer> input = null;
 ArrayList<Integer> output = null;

 B. ArrayList<Integer> input = null;

 List<Integer> output = null;

 C. ArrayList<Integer> input = null;

 List<Number> output = null;

 D. List<Number> input = null;

 ArrayList<Integer> output = null;

 E. List<Number> input = null;

 List<Number> output = null;

 F. List<Integer> input = null;

 List<Integer> output = null;

 G. None of the above

11-ch11.indd 671 9/2/2014 6:52:29 PM

672 Chapter 11: Generics and Collections

 9. Given the proper import statement(s) and

13. PriorityQueue<String> pq = new PriorityQueue<String>();
14. pq.add("2");
15. pq.add("4");
16. System.out.print(pq.peek() + " ");
17. pq.offer("1");
18. pq.add("3");
19. pq.remove("1");
20. System.out.print(pq.poll() + " ");
21. if(pq.remove("2")) System.out.print(pq.poll() + " ");
22. System.out.println(pq.poll() + " " + pq.peek());

 What is the result?
 A. 2 2 3 3

 B. 2 2 3 4

 C. 4 3 3 4

 D. 2 2 3 3 3

 E. 4 3 3 3 3

 F. 2 2 3 3 4

 G. Compilation fails
 H. An exception is thrown at runtime

 10. Given:

 3. import java.util.*;
 4. public class Mixup {
 5. public static void main(String[] args) {
 6. Object o = new Object();
 7. // insert code here
 8. s.add("o");
 9. s.add(o);
10. }
11. }

 And these three fragments:

I. Set s = new HashSet();
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet();

11-ch11.indd 672 9/2/2014 6:52:29 PM

Self Test 673

 When fragments I, II, or III are inserted independently at line 7, which are true? (Choose all
that apply.)

 A. Fragment I compiles
 B. Fragment II compiles
 C. Fragment III compiles
 D. Fragment I executes without exception
 E. Fragment II executes without exception
 F. Fragment III executes without exception

 11. Given:
 3. import java.util.*;
 4. class Turtle {
 5. int size;
 6. public Turtle(int s) { size = s; }
 7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
 8. // insert code here
 9. }
10. public class TurtleTest {
11. public static void main(String[] args) {
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle>();
13. t.add(new Turtle(1)); t.add(new Turtle(2)); t.add(new Turtle(1));
14. System.out.println(t.size());
15. }
16. }

 And these two fragments:

I. public int hashCode() { return size/5; }
II. // no hashCode method declared

 If fragment I or II is inserted independently at line 8, which are true? (Choose all that apply.)
 A. If fragment I is inserted, the output is 2
 B. If fragment I is inserted, the output is 3
 C. If fragment II is inserted, the output is 2
 D. If fragment II is inserted, the output is 3
 E. If fragment I is inserted, compilation fails
 F. If fragment II is inserted, compilation fails

11-ch11.indd 673 9/2/2014 6:52:29 PM

674 Chapter 11: Generics and Collections

 12. (OCJPJ 6 only) Given the proper import statement(s) and:

13. TreeSet<String> s = new TreeSet<String>();
14. TreeSet<String> subs = new TreeSet<String>();
15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.
17. subs = (TreeSet)s.subSet("b", true, "d", true);
18. s.add("g");
19. s.pollFirst();
20. s.pollFirst();
21. s.add("c2");
22. System.out.println(s.size() +" "+ subs.size());

 Which are true? (Choose all that apply.)
 A. The size of s is 4
 B. The size of s is 5
 C. The size of s is 7
 D. The size of subs is 1
 E. The size of subs is 2
 F. The size of subs is 3
 G. The size of subs is 4
 H. An exception is thrown at runtime

 13. (OCJPJ 6 only) Given:

 3. import java.util.*;
 4. public class Magellan {
 5. public static void main(String[] args) {
 6. TreeMap<String, String> myMap = new TreeMap<String, String>();
 7. myMap.put("a", "apple"); myMap.put("d", "date");
 8. myMap.put("f", "fig"); myMap.put("p", "pear");
 9. System.out.println("1st after mango: " + // sop 1
10. myMap.higherKey("f"));
11. System.out.println("1st after mango: " + // sop 2
12. myMap.ceilingKey("f"));
13. System.out.println("1st after mango: " + // sop 3
14. myMap.floorKey("f"));
15. SortedMap<String, String> sub = new TreeMap<String, String>();
16. sub = myMap.tailMap("f");
17. System.out.println("1st after mango: " + // sop 4
18. sub.firstKey());
19. }
20. }

11-ch11.indd 674 9/2/2014 6:52:29 PM

Self Test 675

 Which of the System.out.println statements will produce the output 1st after mango: p?
(Choose all that apply.)

 A. sop 1

 B. sop 2

 C. sop 3

 D. sop 4

 E. None; compilation fails
 F. None; an exception is thrown at runtime

 14. Given:

 3. import java.util.*;
 4. class Business { }
 5. class Hotel extends Business { }
 6. class Inn extends Hotel { }
 7. public class Travel {
 8. ArrayList<Hotel> go() {
 9. // insert code here
10. }
11. }

 Which statement inserted independently at line 9 will compile? (Choose all that apply.)
 A. return new ArrayList<Inn>();

 B. return new ArrayList<Hotel>();

 C. return new ArrayList<Object>();

 D. return new ArrayList<Business>();

11-ch11.indd 675 9/2/2014 6:52:29 PM

676 Chapter 11: Generics and Collections

 15. Given:

 3. import java.util.*;
 4. class Dog { int size; Dog(int s) { size = s; } }
 5. public class FirstGrade {
 6. public static void main(String[] args) {
 7. TreeSet<Integer> i = new TreeSet<Integer>();
 8. TreeSet<Dog> d = new TreeSet<Dog>();
 9.
10. d.add(new Dog(1)); d.add(new Dog(2)); d.add(new Dog(1));
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

 What is the result?
 A. 1 2

 B. 2 2

 C. 2 3

 D. 3 2

 E. 3 3

 F. Compilation fails
 G. An exception is thrown at runtime

11-ch11.indd 676 9/2/2014 6:52:29 PM

Self Test 677

 16. Given:

 3. import java.util.*;
 4. public class GeoCache {
 5. public static void main(String[] args) {
 6. String[] s = {"map", "pen", "marble", "key"};
 7. Othello o = new Othello();
 8. Arrays.sort(s,o);
 9. for(String s2: s) System.out.print(s2 + " ");
10. System.out.println(Arrays.binarySearch(s, "map"));
11. }
12. static class Othello implements Comparator<String> {
13. public int compare(String a, String b) { return b.compareTo(a); }
14. }
15. }

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The output will contain a 1
 C. The output will contain a 2
 D. The output will contain a –1
 E. An exception is thrown at runtime
 F. The output will contain "key map marble pen"
 G. The output will contain "pen marble map key"

11-ch11.indd 677 9/2/2014 6:52:29 PM

678 Chapter 11: Generics and Collections

SELF TEST ANSWERS

 1. ☑ A is correct.
☐✗ B is incorrect because List is an interface, so you can't say new List(), regardless of
any generic types. D, E, and F are incorrect because List only takes one type parameter
(a Map would take two, not a List). C is tempting, but incorrect. The type argument
<List<Integer>\> must be the same for both sides of the assignment, even though the
constructor new ArrayList() on the right side is a subtype of the declared type List on the
left. (OCP Objective 4.5)

 2. ☑ B and D. B is true because often two dissimilar objects can return the same hashcode
value. D is true because if the hashCode() comparison returns ==, the two objects might or
might not be equal.
☐✗ A, C, and E are incorrect. C is incorrect because the hashCode() method is very flexible
in its return values, and often two dissimilar objects can return the same hashcode value. A and
E are a negation of the hashCode() and equals() contract. (OCP Objectives 4.7 and 4.8)

 3. ☑ E is correct. You can't put both Strings and ints into the same TreeSet. Without
generics, the compiler has no way of knowing what type is appropriate for this TreeSet,
so it allows everything to compile. At runtime, the TreeSet will try to sort the elements
as they're added, and when it tries to compare an Integer with a String, it will throw a
ClassCastException. Note that although the before() method does not use generics, it does
use autoboxing. Watch out for code that uses some new features and some old features mixed
together.
☐✗ A, B, C, and D are incorrect based on the above. (OCP Objectives 4.3 and 4.5)

 4. ☑ C and D are correct. If hashCode() is not overridden, then every entry will go into its own
bucket, and the overridden equals() method will have no effect on determining equivalency.
If hashCode() is overridden, then the overridden equals() method will view t1 and t2 as
duplicates.
☐✗ A, B, E, and F are incorrect based on the above. (OCP Objectives 4.7 and 4.8)

 5. ☑ B, E, and G are correct.
☐✗ A is incorrect because you can't use a primitive type as a type parameter. C is incorrect
because a Map takes two type parameters separated by a comma. D is incorrect because an int
can't autobox to a null, and F is incorrect because a null can't unbox to 0. H is incorrect
because you can't autobox a primitive just by trying to invoke a method with it. (OCP
Objectives 4.4 and 4.6)

11-ch11.indd 678 9/2/2014 6:52:29 PM

Self Test Answers 679

 6. ☑ B is correct. The problem with the original code is that Sheep tries to implement
Herbivore<Sheep> and Herbivore declares that its type parameter E can be any type that
extends Plant.
☐✗ Since a Sheep is not a Plant, Herbivore<Sheep> makes no sense—the type Sheep is
outside the allowed range of Herbivore's parameter E. Only solutions that either alter the
definition of a Sheep or alter the definition of Herbivore will be able to fix this. So A, E, and
F are eliminated. B works—changing the definition of an Herbivore to allow it to eat Sheep
solves the problem. C doesn't work because an Herbivore<Plant> must have a munch(Plant)
method, not munch(Grass). And D doesn't work, because in D we made Sheep extend
Plant—now the Wolf class breaks because its munch(Sheep) method no longer fulfills the
contract of Carnivore. (OCP Objective 4.1)

 7. ☑ D is correct. All of the collection classes allow you to grow or shrink the size of your
collection. ArrayList provides an index to its elements. The newer collection classes tend not
to have synchronized methods. Vector is an older implementation of ArrayList functionality
and has synchronized methods; it is slower than ArrayList.
☐✗ A, B, C, E, and F are incorrect based on the logic described earlier. C, List, is an
interface, and F, PriorityQueue, does not offer access by index. (OCP Objectives 4.5 and 4.6)

 8. ☑ B, E, and F are correct.
☐✗ The return type of process is definitely declared as a List, not an ArrayList, so A and
D are incorrect. C is incorrect because the return type evaluates to List<Integer>, and that
can't be assigned to a variable of type List<Number>. Of course, all these would probably cause
a NullPointerException since the variables are still null—but the question only asked us to get
the code to compile. (OCP Objective 4.1)

 9. ☑ B is correct. For the sake of the exam, add() and offer() both add to (in this case)
naturally sorted queues. The calls to poll() both return and then remove the first item from
the queue, so the test fails.
☐✗ A, C, D, E, F, G, and H are incorrect based on the above. (OCP Objective 4.5)

 10. ☑ A, B, C, D, and F are all correct.
☐✗ Only E is incorrect. Elements of a TreeSet must in some way implement Comparable.
(OCP Objective 4.7)

 11. ☑ A and D are correct. While fragment II wouldn't fulfill the hashCode() contract (as
you can see by the results), it is legal Java. For the purpose of the exam, if you don't override
hashCode(), every object will have a unique hashcode.
☐✗ B, C, E, and F are incorrect based on the above. (OCP Objectives 4.7 and 4.8)

11-ch11.indd 679 9/2/2014 6:52:30 PM

680 Chapter 11: Generics and Collections

 12. ☑ B and F are correct. After "g" is added, TreeSet s contains six elements and TreeSet subs
contains three (b, c, d), because "g" is out of the range of subs. The first pollFirst()
finds and removes only the "a". The second pollFirst() finds and removes the "b" from both
TreeSets (remember they are backed). The final add() is in range of both TreeSets. The final
contents are [c,c2,d,e,g] and [c,c2,d].
☐✗ A, C, D, E, G, and H are incorrect based on the above. (OCP Objective 4.5)

 13. ☑ A is correct. The ceilingKey() method's argument is inclusive. The floorKey() method
would be used to find keys before the specified key. The firstKey() method's argument is also
inclusive.
☐✗ B, C, D, E, and F are incorrect based on the above. (OCP Objective 4.6)

 14. ☑ B is correct.
☐✗ A is incorrect because polymorphic assignments don't apply to generic type parameters.
C and D are incorrect because they don't follow basic polymorphism rules. (OCP Objective 4.1)

 15. ☑ G is correct. Class Dog needs to implement Comparable in order for a TreeSet (which
keeps its elements sorted) to be able to contain Dog objects.
☐✗ A, B, C, D, E, and F are incorrect based on the above. (OCP Objectives 4.5 and 4.7)

 16. ☑ D and G are correct. First, the compareTo() method will reverse the normal sort. Second,
the sort() is valid. Third, the binarySearch() gives –1 because it needs to be invoked using
the same Comparator (o) as was used to sort the array. Note that when the binarySearch()
returns an "undefined result," it doesn't officially have to be a –1, but it usually is, so if you
selected only G, you get full credit!
☐✗ A, B, C, E, and F are incorrect based on the above. (OCP Objectives 4.7 and 4.8)

11-ch11.indd 680 9/2/2014 6:52:30 PM

1212
Inner ClassesInner Classes

CERTIFICATION OBJECTIVES

Create Top-Level and Nested Classes •
Inner Classes •
Method-Local Inner Classes •
Anonymous Inner Classes •

Static Nested Classes •
Two-Minute Drill ✓

Q&A Self Test

12-ch12.indd 681 9/2/2014 3:44:12 PM

682 Chapter 12: Inner Classes

Inner classes (including static nested classes) appear throughout the exam. Although there
are no official exam objectives exclusively about inner classes, OCP Objective 2.4 includes
inner (aka nested) classes. More importantly, the code used to represent questions on

virtually any topic on the exam can involve inner classes. Unless you deeply understand the rules
and syntax for inner classes, you're likely to miss questions you'd otherwise be able to answer. As if
the exam weren't already tough enough.

This chapter looks at the ins and outs (inners and outers?) of inner classes, and
exposes you to the kinds of (often strange-looking) syntax examples you'll see
scattered throughout the entire exam. So you've really got two goals for this
chapter—to learn what you'll need to answer questions testing your inner class
knowledge, and to learn how to read and understand inner class code so that you can
handle questions testing your knowledge of other topics.

So what's all the hoopla about inner classes? Before we get into it, we have to
warn you (if you don't already know) that inner classes have inspired passionate love
'em or hate 'em debates since first introduced in version 1.1 of the language. For
once, we're going to try to keep our opinions to ourselves here and just present the
facts as you'll need to know them for the exam. It's up to you to decide how—and to
what extent—you should use inner classes in your own development. We mean it.
We believe they have some powerful, efficient uses in very specific situations,
including code that's easier to read and maintain, but they can also be abused and
lead to code that's as clear as a cornfield maze and to the syndrome known as
"reuseless": code that's useless over and over again.

Inner classes let you define one class within another. They provide a type of
scoping for your classes, since you can make one class a member of another class. Just
as classes have member variables and methods, a class can also have member classes.
They come in several flavors, depending on how and where you define the inner
class, including a special kind of inner class known as a "top-level nested class" (an
inner class marked static), which technically isn't really an inner class. Because a
static nested class is still a class defined within the scope of another class, we're still
going to cover them in this chapter on inner classes.

Most of the questions on the exam that make use of inner classes are focused on
other certification topics and only use inner classes along the way. So for this
chapter, the Certification Objective headings in the following list represent the four
inner class topics discussed in this chapter, rather than four official exam objectives:

■ Inner classes

■ Method-local inner classes

12-ch12.indd 682 9/2/2014 3:44:16 PM

 Nested Classes (OCP Objective 2.4) 683

■ Anonymous inner classes

■ Static nested classes

CERTIFICATION OBJECTIVE

Nested Classes (OCP Objective 2.4)

2.4 Create top-level and nested classes.

Note: As we've mentioned, mapping Objective 2.4 to this chapter is somewhat
accurate, but it's also a bit misleading. You'll find inner classes used for many
different exam topics. For that reason, we're not going to keep saying that this
chapter is for Objective 2.4.

Inner Classes

You're an OO programmer, so you know that for reuse and flexibility/extensibility,
you need to keep your classes specialized. In other words, a class should have code
only for the things an object of that particular type needs to do; any other behavior
should be part of another class better suited for that job. Sometimes, though, you find
yourself designing a class where you discover you need behavior that belongs in a
separate, specialized class, but also needs to be intimately tied to the class you're
designing.

Event handlers are perhaps the best example of this (and are, in fact, one of the
main reasons inner classes were added to the language in the first place). If you have
a GUI class that performs some job, like, say, a chat client, you might want the
chat-client–specific methods (accept input, read new messages from server, send user
input back to server, and so on) to be in the class. But how do those methods get
invoked in the first place? A user clicks a button. Or types some text in the input
field. Or a separate thread doing the I/O work of getting messages from the server
has messages that need to be displayed in the GUI. So you have chat-client–specific
methods, but you also need methods for handling the "events" (button presses,
keyboard typing, I/O available, and so on) that drive the calls on those chat-client
methods. The ideal scenario—from an OO perspective—is to keep the chat-client–
specific methods in the ChatClient class and put the event-handling code in a
separate event-handling class.

12-ch12.indd 683 9/2/2014 3:44:16 PM

684 Chapter 12: Inner Classes

Nothing unusual about that so far; after all, that's how you're supposed to design OO
classes. As specialists. But here's the problem with the chat-client scenario: The
event-handling code is intimately tied to the chat-client–specific code! Think about
it: When the user clicks a Send button (indicating that they want their typed-in
message to be sent to the chat server), the chat-client code that sends the message
needs to read from a particular text field. In other words, if the user clicks Button A,
the program is supposed to extract the text from the TextField B of a particular
ChatClient instance. Not from some other text field from some other object, but
specifically the text field that a specific instance of the ChatClient class has a
reference to. So the event-handling code needs access to the members of the
ChatClient object to be useful as a "helper" to a particular ChatClient instance.

And what if the ChatClient class needs to inherit from one class, but the
event-handling code is better off inheriting from some other class? You can't make a
class extend more than one class, so putting all the code (the chat-client-specific
code and the event-handling code) in one class won't work in that case. So what
you'd really like to have is the benefit of putting your event code in a separate class
(better OO, encapsulation, and the ability to extend a class other than the class the
ChatClient extends), but still allow the event-handling code to have easy access to
the members of the ChatClient (so the event-handling code can, for example,
update the ChatClient's private instance variables). You could manage it by making
the members of the ChatClient accessible to the event-handling class by, for
example, marking them public. But that's not a good solution either.

You already know where this is going—one of the key benefits of an inner class is
the "special relationship" an inner class instance shares with an instance of the outer
class. That "special relationship" gives code in the inner class access to members of
the enclosing (outer) class, as if the inner class were part of the outer class. In fact,
that's exactly what it means: The inner class is a part of the outer class. Not just a
"part," but a full-fledged, card-carrying member of the outer class. Yes, an inner class
instance has access to all members of the outer class, even those marked private. (Relax,
that's the whole point, remember? We want this separate inner class instance to
have an intimate relationship with the outer class instance, but we still want to keep
everyone else out. And besides, if you wrote the outer class, then you also wrote the
inner class! So you're not violating encapsulation; you designed it this way.)

12-ch12.indd 684 9/2/2014 3:44:16 PM

 Nested Classes (OCP Objective 2.4) 685

Coding a "Regular" Inner Class

We use the term regular here to represent inner classes that are not

■ Static

■ Method-local

■ Anonymous

For the rest of this section, though, we'll just use the term "inner class" and drop the
"regular." (When we switch to one of the other three types in the preceding list,
you'll know it.) You define an inner class within the curly braces of the outer class:

class MyOuter {
 class MyInner { }
}

Piece of cake. And if you compile it:

%javac MyOuter.java

you'll end up with two class files:

MyOuter.class
MyOuter$MyInner.class

The inner class is still, in the end, a separate class, so a separate class file is generated
for it. But the inner class file isn't accessible to you in the usual way. You can't say

%java MyOuter$MyInner

in hopes of running the main() method of the inner class, because a regular inner
class cannot have static declarations of any kind. The only way you can access

the inner class is through a live instance of the outer class! In other words, only at
runtime, when there's already an instance of the outer class to tie the inner class
instance to. You'll see all this in a moment. First, let's beef up the classes a little:

class MyOuter {
 private int x = 7;

 // inner class definition
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 } // close inner class definition

} // close outer class

12-ch12.indd 685 9/2/2014 3:44:16 PM

686 Chapter 12: Inner Classes

The preceding code is perfectly legal. Notice that the inner class is indeed
accessing a private member of the outer class. That's fine, because the inner class is
also a member of the outer class. So just as any member of the outer class (say, an
instance method) can access any other member of the outer class, private or not,
the inner class—also a member—can do the same.

Okay, so now that we know how to write the code giving an inner class access to
members of the outer class, how do you actually use it?

Instantiating an Inner Class

To create an instance of an inner class, you must have an instance of the outer class to
tie to the inner class. There are no exceptions to this rule: An inner class instance
can never stand alone without a direct relationship to an instance of the outer class.

Instantiating an Inner Class from Within the Outer Class
Most often, it is the outer class that creates instances of the inner class, since it is
usually the outer class wanting to use the inner instance as a helper for its own
personal use. We'll modify the MyOuter class to create an instance of MyInner:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner(); // make an inner instance
 in.seeOuter();
 }

 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 }
 }
}

You can see in the preceding code that the MyOuter code treats MyInner just as
though MyInner were any other accessible class—it instantiates it using the class
name (new MyInner()) and then invokes a method on the reference variable
(in.seeOuter()). But the only reason this syntax works is because the outer class
instance method code is doing the instantiating. In other words, there's already an
instance of the outer class—the instance running the makeInner() method. So how do
you instantiate a MyInner object from somewhere outside the MyOuter class? Is it
even possible? (Well, since we're going to all the trouble of making a whole new
subhead for it, as you'll see next, there's no big mystery here.)

12-ch12.indd 686 9/2/2014 3:44:16 PM

 Nested Classes (OCP Objective 2.4) 687

Creating an Inner Class Object from Outside the Outer Class Instance
Code Whew. Long subhead there, but it does explain what we're trying to do. If
we want to create an instance of the inner class, we must have an instance of the
outer class. You already know that, but think about the implications… it means that
without a reference to an instance of the outer class, you can't instantiate the inner
class from a static method of the outer class (because, don't forget, in static code,
there is no this reference), or from any other code in any other class. Inner class
instances are always handed an implicit reference to the outer class. The compiler
takes care of it, so you'll never see anything but the end result—the ability of the
inner class to access members of the outer class. The code to make an instance from
anywhere outside nonstatic code of the outer class is simple, but you must memorize
this for the exam!

public static void main(String[] args) {
 MyOuter mo = new MyOuter(); // gotta get an instance!
 MyOuter.MyInner inner = mo.new MyInner();
 inner.seeOuter();
}

The preceding code is the same, regardless of whether the main() method is within
the MyOuter class or some other class (assuming the other class has access to MyOuter,
and since MyOuter has default access, that means the code must be in a class within
the same package as MyOuter).

If you're into one-liners, you can do it like this:

public static void main(String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
}

You can think of this as though you're invoking a method on the outer instance,
but the method happens to be a special inner class instantiation method, and it's
invoked using the keyword new. Instantiating an inner class is the only scenario in
which you'll invoke new on an instance as opposed to invoking new to construct an
instance.

Here's a quick summary of the differences between inner class instantiation code
that's within the outer class (but not static), and inner class instantiation code
that's outside the outer class:

■ From inside the outer class instance code, use the inner class name in the
normal way:
MyInner mi = new MyInner();

12-ch12.indd 687 9/2/2014 3:44:16 PM

688 Chapter 12: Inner Classes

■ From outside the outer class instance code (including static method code
within the outer class), the inner class name must now include the outer
class's name:
MyOuter.MyInner

 To instantiate it, you must use a reference to the outer class:
new MyOuter().new MyInner(); or outerObjRef.new MyInner();

 if you already have an instance of the outer class.

Referencing the Inner or Outer Instance
from Within the Inner Class

How does an object refer to itself normally? By using the this reference. Here is a
quick review of this:

■ The keyword this can be used only from within instance code. In other
words, not within static code.

■ The this reference is a reference to the currently executing object. In other
words, the object whose reference was used to invoke the currently running
method.

■ The this reference is the way an object can pass a reference to itself to some
other code as a method argument:
public void myMethod() {
 MyClass mc = new MyClass();
 mc.doStuff(this); // pass a ref to object running myMethod
}

Within an inner class code, the this reference refers to the instance of the inner
class, as you'd probably expect, since this always refers to the currently executing
object. But what if the inner class code wants an explicit reference to the outer class
instance that the inner instance is tied to? In other words, how do you reference the
"outer this"? Although normally, the inner class code doesn't need a reference to
the outer class, since it already has an implicit one it's using to access the members
of the outer class, it would need a reference to the outer class if it needed to pass that
reference to some other code, as follows:

class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
}

12-ch12.indd 688 9/2/2014 3:44:16 PM

 Nested Classes (OCP Objective 2.4) 689

If we run the complete code as follows:

class MyOuter {
 private int x = 7;
 public void makeInner() {
 MyInner in = new MyInner();
 in.seeOuter();
 }
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Inner class ref is " + this);
 System.out.println("Outer class ref is " + MyOuter.this);
 }
 }
 public static void main (String[] args) {
 MyOuter.MyInner inner = new MyOuter().new MyInner();
 inner.seeOuter();
 }
}

the output is something like this:

Outer x is 7
Inner class ref is MyOuter$MyInner@113708
Outer class ref is MyOuter@33f1d7

So the rules for an inner class referencing itself or the outer instance are as follows:

■ To reference the inner class instance itself from within the inner class code,
use this.

■ To reference the "outer this" (the outer class instance) from within the inner
class code, use NameOfOuterClass.this (example, MyOuter.this).

Member Modifiers Applied to Inner Classes

A regular inner class is a member of the outer class just as instance variables and
methods are, so the following modifiers can be applied to an inner class:

■ final

■ abstract

■ public

■ private

■ protected

■ static—but static turns it into a static nested class, not an inner class

■ strictfp

12-ch12.indd 689 9/2/2014 3:44:16 PM

690 Chapter 12: Inner Classes

CERTIFICATION OBJECTIVE

Method-Local Inner Classes

A regular inner class is scoped inside another class's curly braces, but outside any
method code (in other words, at the same level that an instance variable is
declared). But you can also define an inner class within a method:

class MyOuter2 {
 private String x = "Outer2";

 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()

} // close outer class

The preceding code declares a class, MyOuter2, with one method, doStuff().
But inside doStuff(), another class, MyInner, is declared, and it has a method of its
own, seeOuter(). The previous code is completely useless, however, because it
never instantiates the inner class! Just because you declared the class doesn't mean you
created an instance of it. So to use the inner class, you must make an instance of it
somewhere within the method but below the inner class definition (or the compiler won't
be able to find the inner class). The following legal code shows how to instantiate
and use a method-local inner class:

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 } // close inner class method
 } // close inner class definition

 MyInner mi = new MyInner(); // This line must come
 // after the class
 mi.seeOuter();
 } // close outer class method doStuff()
} // close outer class

12-ch12.indd 690 9/2/2014 3:44:16 PM

 Method-Local Inner Classes 691

What a Method-Local Inner Object Can and Can't Do

A method-local inner class can be instantiated only within the method where the inner class
is defined. In other words, no other code running in any other method—inside or
outside the outer class—can ever instantiate the method-local inner class. Like
regular inner class objects, the method-local inner class object shares a special
relationship with the enclosing (outer) class object and can access its private (or
any other) members. However, the inner class object cannot use the local variables of the
method the inner class is in. Why not?

Think about it. The local variables of the method live on the stack and exist only
for the lifetime of the method. You already know that the scope of a local variable is
limited to the method the variable is declared in. When the method ends, the stack
frame is blown away and the variable is history. But even after the method
completes, the inner class object created within it might still be alive on the heap if,
for example, a reference to it was passed into some other code and then stored in an
instance variable. Because the local variables aren't guaranteed to be alive as long as
the method-local inner class object is, the inner class object can't use them. Unless
the local variables are marked final! The following code attempts to access a local
variable from within a method-local inner class:

class MyOuter2 {
 private String x = "Outer2";
 void doStuff() {
 String z = "local variable";
 class MyInner {
 public void seeOuter() {
 System.out.println("Outer x is " + x);
 System.out.println("Local var z is " + z); // Won't Compile!
 } // close inner class method
 } // close inner class definition
 } // close outer class method doStuff()
} // close outer class

Compiling the preceding code really upsets the compiler:

MyOuter2.java:8: local variable z is accessed from within inner class;

needs to be declared final
 System.out.println("Local var z is " + z);
 ^

Marking the local variable z as final fixes the problem:

final String z = "local var"; // Now inner object can use it

12-ch12.indd 691 9/2/2014 3:44:16 PM

692 Chapter 12: Inner Classes

And just a reminder about modifiers within a method: The same rules apply to
method-local inner classes as to local variable declarations. You can't, for example,
mark a method-local inner class public, private, protected, static,
transient, and the like. For the purpose of the exam, the only modifiers you can
apply to a method-local inner class are abstract and final, but, as always, never
both at the same time.

Remember that a local class declared in a static method has access

to only static members of the enclosing class, since there is no associated instance of

the enclosing class. If you're in a static method, there is no this, so an inner class in a

static method is subject to the same restrictions as the static method. In other words,

no access to instance variables.

CERTIFICATION OBJECTIVE

Anonymous Inner Classes

So far, we've looked at defining a class within an enclosing class (a regular inner
class) and within a method (a method-local inner class). Finally, we're going to look
at the most unusual syntax you might ever see in Java: inner classes declared without
any class name at all (hence, the word anonymous). And if that's not weird enough,
you can define these classes not just within a method, but even within an argument
to a method. We'll look first at the plain-old (as if there is such a thing as a plain-old
anonymous inner class) version (actually, even the plain-old version comes in two
flavors), and then at the argument-declared anonymous inner class.

Perhaps your most important job here is to learn to not be thrown when you see the
syntax. The exam is littered with anonymous inner class code—you might see it on
questions about threads, wrappers, overriding, garbage collection, and… well, you
get the idea.

12-ch12.indd 692 9/2/2014 3:44:16 PM

 Anonymous Inner Classes 693

Plain-Old Anonymous Inner Classes, Flavor One

Check out the following legal-but-strange-the-first-time-you-see-it code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }
}
class Food {
 Popcorn p = new Popcorn() {
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };
}

Let's look at what's in the preceding code:

■ We define two classes: Popcorn and Food.

■ Popcorn has one method: pop().

■ Food has one instance variable, declared as type Popcorn. That's it for Food.
Food has no methods.

And here's the big thing to get:
The Popcorn reference variable refers not to an instance of Popcorn, but to an

instance of an anonymous (unnamed) subclass of Popcorn.
Let's look at just the anonymous class code:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. };

Line 2 Line 2 starts out as an instance variable declaration of type Popcorn. But
instead of looking like this:

Popcorn p = new Popcorn(); // notice the semicolon at the end

there's a curly brace at the end of line 2, where a semicolon would normally be.

Popcorn p = new Popcorn() { // a curly brace, not a semicolon

12-ch12.indd 693 9/2/2014 3:44:16 PM

694 Chapter 12: Inner Classes

You can read line 2 as saying,

Declare a reference variable, p, of type Popcorn. Then declare a new class that
has no name but that is a subclass of Popcorn. And here's the curly brace that
opens the class definition…

Line 3 Line 3, then, is actually the first statement within the new class definition.
And what is it doing? Overriding the pop() method of the superclass Popcorn. This
is the whole point of making an anonymous inner class—to override one or more
methods of the superclass! (Or to implement methods of an interface, but we'll save
that for a little later.)

Line 4 Line 4 is the first (and in this case only) statement within the overriding
pop() method. Nothing special there.

Line 5 Line 5 is the closing curly brace of the pop() method. Nothing special.

Line 6 Here's where you have to pay attention: Line 6 includes a curly brace closing
off the anonymous class definition (it's the companion brace to the one on line 2),
but there's more! Line 6 also has the semicolon that ends the statement started on line 2—
the statement where it all began—the statement declaring and initializing the
Popcorn reference variable. And what you're left with is a Popcorn reference to a
brand-new instance of a brand-new, just-in-time, anonymous (no name) subclass of
Popcorn.

The closing semicolon is hard to spot. Watch for code like this:

2. Popcorn p = new Popcorn() {
3. public void pop() {
4. System.out.println("anonymous popcorn");
5. }
6. } // Missing the semicolon needed to end
 // the statement started on 2!
7. Foo f = new Foo();

You'll need to be especially careful about the syntax when inner classes are involved,

because the code on line 6 looks perfectly natural. It's rare to see semicolons following

curly braces.

12-ch12.indd 694 9/2/2014 3:44:16 PM

 Anonymous Inner Classes 695

Polymorphism is in play when anonymous inner classes are involved. Remember
that, as in the preceding Popcorn example, we're using a superclass reference variable
type to refer to a subclass object. What are the implications? You can only call methods
on an anonymous inner class reference that are defined in the reference variable type!
This is no different from any other polymorphic references—for example,

class Horse extends Animal{
 void buck() { }
}
class Animal {
 void eat() { }
}
class Test {
 public static void main (String[] args) {
 Animal h = new Horse();
 h.eat(); // Legal, class Animal has an eat() method
 h.buck(); // Not legal! Class Animal doesn't have buck()
 }
}

So on the exam, you must be able to spot an anonymous inner class that—rather
than overriding a method of the superclass—defines its own new method. The method
definition isn't the problem, though; the real issue is, how do you invoke that new
method? The reference variable type (the superclass) won't know anything about
that new method (defined in the anonymous subclass), so the compiler will complain
if you try to invoke any method on an anonymous inner class reference that is not in
the superclass class definition.

Check out the following illegal code:

class Popcorn {
 public void pop() {
 System.out.println("popcorn");
 }
}

class Food {
 Popcorn p = new Popcorn() {
 public void sizzle() {
 System.out.println("anonymous sizzling popcorn");
 }
 public void pop() {
 System.out.println("anonymous popcorn");
 }
 };

 public void popIt() {
 p.pop(); // OK, Popcorn has a pop() method
 p.sizzle(); // Not Legal! Popcorn does not have sizzle()
 }
}

12-ch12.indd 695 9/2/2014 3:44:16 PM

696 Chapter 12: Inner Classes

Compiling the preceding code gives us something like this:

Anon.java:19: cannot resolve symbol
symbol : method sizzle ()
location: class Popcorn
 p.sizzle();
 ^

which is the compiler's way of saying, "I can't find method sizzle() in class
Popcorn," followed by, "Get a clue."

Plain-Old Anonymous Inner Classes, Flavor Two

The only difference between flavor one and flavor two is that flavor one creates an
anonymous subclass of the specified class type, whereas flavor two creates an anonymous
implementer of the specified interface type. In the previous examples, we defined a new
anonymous subclass of type Popcorn as follows:

Popcorn p = new Popcorn() {

But if Popcorn were an interface type instead of a class type, then the new
anonymous class would be an implementer of the interface rather than a subclass of
the class. Look at the following example:

interface Cookable {
 public void cook();
}
class Food {
 Cookable c = new Cookable() {
 public void cook() {
 System.out.println("anonymous cookable implementer");
 }
 };
}

The preceding code, like the Popcorn example, still creates an instance of an
anonymous inner class, but this time, the new just-in-time class is an implementer of
the Cookable interface. And note that this is the only time you will ever see the syntax:

new Cookable()

where Cookable is an interface rather than a nonabstract class type. Think about
it: You can't instantiate an interface, yet that's what the code looks like it's doing. But,
of course, it's not instantiating a Cookable object—it's creating an instance of a
new anonymous implementer of Cookable. You can read this line:

Cookable c = new Cookable() {

12-ch12.indd 696 9/2/2014 3:44:16 PM

 Anonymous Inner Classes 697

as, "Declare a reference variable of type Cookable that, obviously, will refer to an
object from a class that implements the Cookable interface. But, oh yes, we don't
yet have a class that implements Cookable, so we're going to make one right here,
right now. We don't need a name for the class, but it will be a class that implements
Cookable, and this curly brace starts the definition of the new implementing class."
One more thing to keep in mind about anonymous interface implementers—they can
implement only one interface. There simply isn't any mechanism to say that your
anonymous inner class is going to implement multiple interfaces. In fact, an
anonymous inner class can't even extend a class and implement an interface at the
same time. The inner class has to choose either to be a subclass of a named class—
and not directly implement any interfaces at all—or to implement a single interface.
By directly, we mean actually using the keyword implements as part of the class
declaration. If the anonymous inner class is a subclass of a class type, it automatically
becomes an implementer of any interfaces implemented by the superclass.

Don't be fooled by any attempts to instantiate an interface except in the

case of an anonymous inner class. The following is not legal:

Runnable r = new Runnable(); // can't instantiate interface

whereas the following is legal, because it's instantiating an implementer of the Runnable

interface (an anonymous implementation class):

Runnable r = new Runnable() { // curly brace, not semicolon
 public void run() { }
};

Argument-Defi ned Anonymous Inner Classes

If you understood what we've covered so far in this chapter, then this last part will
be simple. If you are still a little fuzzy on anonymous classes, however, then you
should re-read the previous sections. If they're not completely clear, we'd like to take
full responsibility for the confusion. But we'll be happy to share.

Okay, if you've made it to this sentence, then we're all going to assume you
understood the preceding section, and now we're just going to add one new twist.
Imagine the following scenario. You're typing along, creating the Perfect Class, when

12-ch12.indd 697 9/2/2014 3:44:16 PM

698 Chapter 12: Inner Classes

you write code calling a method on a Bar object, and that method takes an object of
type Foo (an interface).

class MyWonderfulClass {
 void go() {
 Bar b = new Bar();
 b.doStuff(ackWeDoNotHaveAFoo!); // Don't try to compile this at home
 }
}
interface Foo {
 void foof();
}
class Bar {
 void doStuff(Foo f) { }
}

No problemo, except that you don't have an object from a class that implements
Foo, and you can't instantiate one, either, because you don't even have a class that
implements Foo, let alone an instance of one. So you first need a class that
implements Foo, and then you need an instance of that class to pass to the Bar
class's doStuff() method. Savvy Java programmer that you are, you simply define
an anonymous inner class, right inside the argument. That's right, just where you least
expect to find a class. And here's what it looks like:

 1. class MyWonderfulClass {
 2. void go() {
 3. Bar b = new Bar();
 4. b.doStuff(new Foo() {
 5. public void foof() {
 6. System.out.println("foofy");
 7. } // end foof method
 8. }); // end inner class def, arg, and b.doStuff stmt.
 9. } // end go()
10. } // end class
11.
12. interface Foo {
13. void foof();
14. }
15. class Bar {
16. void doStuff(Foo f) { }
17. }

All the action starts on line 4. We're calling doStuff() on a Bar object, but the
method takes an instance that IS-A Foo, where Foo is an interface. So we must
make both an implementation class and an instance of that class, all right here in the
argument to doStuff(). So that's what we do. We write

 new Foo() {

12-ch12.indd 698 9/2/2014 3:44:16 PM

 Static Nested Classes 699

to start the new class definition for the anonymous class that implements the Foo
interface. Foo has a single method to implement, foof(), so on lines 5, 6, and 7, we
implement the foof() method. Then on line 8—whoa!—more strange syntax
appears. The first curly brace closes off the new anonymous class definition. But
don't forget that this all happened as part of a method argument, so the closing
parenthesis,), finishes off the method invocation, and then we must still end the
statement that began on line 4, so we end with a semicolon. Study this syntax! You
will see anonymous inner classes on the exam, and you'll have to be very, very picky
about the way they're closed. If they're argument local, they end like this:

});

but if they're just plain-old anonymous classes, then they end like this:

};

Regardless, the syntax is rare, so be careful. Any question from any part of the
exam might involve anonymous inner classes as part of the code.

CERTIFICATION OBJECTIVE

Static Nested Classes

We saved the easiest for last, as a kind of treat. :)
You'll sometimes hear static nested classes referred to as static inner classes, but

they really aren't inner classes at all based on the standard definition of an inner
class. While an inner class (regardless of the flavor) enjoys that special relationship
with the outer class (or rather, the instances of the two classes share a relationship), a
static nested class does not. It is simply a non-inner (also called "top-level") class
scoped within another. So with static classes, it's really more about name-space
resolution than about an implicit relationship between the two classes.

A static nested class is simply a class that's a static member of the enclosing class:

class BigOuter {
 static class Nested { }
}

12-ch12.indd 699 9/2/2014 3:44:16 PM

700 Chapter 12: Inner Classes

The class itself isn't really "static"; there's no such thing as a static class. The
static modifier in this case says that the nested class is a static member of the outer
class. That means it can be accessed, as with other static members, without having an
instance of the outer class.

Instantiating and Using Static Nested Classes

You use standard syntax to access a static nested class from its enclosing class. The
syntax for instantiating a static nested class from a nonenclosing class is a little
different from a normal inner class, and looks like this:

class BigOuter {
 static class Nest {void go() { System.out.println("hi"); } }
}
class Broom {
 static class B2 {void goB2() { System.out.println("hi 2"); } }
 public static void main(String[] args) {
 BigOuter.Nest n = new BigOuter.Nest(); // both class names
 n.go();
 B2 b2 = new B2(); // access the enclosed class
 b2.goB2();
 }
}

which produces

hi
hi 2

Just as a static method does not have access to the instance variables and

nonstatic methods of the class, a static nested class does not have access to the instance

variables and nonstatic methods of the outer class. Look for static nested classes with

code that behaves like a nonstatic (regular inner) class.

12-ch12.indd 700 9/2/2014 3:44:16 PM

 Certifi cation Summary 701

CERTIFICATION SUMMARY

Inner classes will show up throughout the exam, in any topic, and these are some of
the exam's hardest questions. You should be comfortable with the sometimes bizarre
syntax and know how to spot legal and illegal inner class definitions.

We looked first at "regular" inner classes, where one class is a member of another.
You learned that coding an inner class means putting the class definition of the
inner class inside the curly braces of the enclosing (outer) class, but outside of any
method or other code block. You learned that an inner class instance shares a special
relationship with a specific instance of the outer class, and that this special relationship
lets the inner class access all members of the outer class, including those marked
private. You learned that to instantiate an inner class, you must have a reference
to an instance of the outer class.

Next, we looked at method-local inner classes—classes defined inside a method.
The code for a method-local inner class looks virtually the same as the code for any
other class definition, except that you can't apply an access modifier the way you
can with a regular inner class. You learned why method-local inner classes cannot
use non-final local variables declared within the method—the inner class instance
may outlive the stack frame, so the local variable might vanish while the inner class
object is still alive. You saw that to use the inner class you need to instantiate it and
that the instantiation must come after the class declaration in the method.

We also explored the strangest inner class type of all—the anonymous inner class.
You learned that they come in two forms: normal and argument-defined. Normal,
ho-hum, anonymous inner classes are created as part of a variable assignment, while
argument-defined inner classes are actually declared, defined, and automatically
instantiated all within the argument to a method! We covered the way anonymous
inner classes can be either a subclass of the named class type or an implementer of the
named interface. Finally, we looked at how polymorphism applies to anonymous
inner classes: You can invoke on the new instance only those methods defined in the
named class or interface type. In other words, even if the anonymous inner class
defines its own new method, no code from anywhere outside the inner class will be
able to invoke that method.

As if we weren't already having enough fun for one day, we pushed on to static
nested classes, which really aren't inner classes at all. Known as static nested
classes, a nested class marked with the static modifier is quite similar to any other
non-inner class, except that to access it, code must have access to both the nested
and enclosing class. We saw that because the class is static, no instance of the
enclosing class is needed, and thus the static nested class does not share a special
relationship with any instance of the enclosing class. Remember, static inner classes can't
access instance methods or variables.

12-ch12.indd 701 9/2/2014 3:44:17 PM

702 Chapter 12: Inner Classes

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Inner Classes

❑ A "regular" inner class is declared inside the curly braces of another class, but
outside any method or other code block.

❑ An inner class is a full-fledged member of the enclosing (outer) class, so it
can be marked with an access modifier as well as the abstract or final
modifiers. (Never both abstract and final together— remember that
abstract must be subclassed, whereas final cannot be subclassed.)

❑ An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the
outer class's members, including those marked private.

❑ To instantiate an inner class, you must have a reference to an instance of the
outer class.

❑ From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:
MyInner mi = new MyInner();

❑ From code outside the enclosing class's instance methods, you can instantiate
the inner class only by using both the inner and outer class names and a
reference to the outer class, as follows:
MyOuter mo = new MyOuter();
MyOuter.MyInner inner = mo.new MyInner();

❑ From code within the inner class, the keyword this holds a reference to the
inner class instance. To reference the outer this (in other words, the instance
of the outer class that this inner instance is tied to), precede the keyword
this with the outer class name, as follows: MyOuter.this;

Method-Local Inner Classes

❑ A method-local inner class is defined within a method of the enclosing class.

❑ For the inner class to be used, you must instantiate it, and that instantiation
must happen within the same method, but after the class definition code.

❑ A method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked final.

✓

12-ch12.indd 702 9/2/2014 3:44:17 PM

Two-Minute Drill 703

❑ The only modifiers you can apply to a method-local inner class are abstract
and final. (Never both at the same time, though.)

Anonymous Inner Classes

❑ Anonymous inner classes have no name, and their type must be either a
subclass of the named type or an implementer of the named interface.

❑ An anonymous inner class is always created as part of a statement; don't
forget to close the statement after the class definition with a curly brace. This
is a rare case in Java, a curly brace followed by a semicolon.

❑ Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class
(or interface), even though the anonymous class is really a subclass or
implementer of the reference variable type.

❑ An anonymous inner class can extend one subclass or implement one
interface. Unlike nonanonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

❑ An argument-defined inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement: });

Static Nested Classes

❑ Static nested classes are inner classes marked with the static modifier.

❑ A static nested class is not an inner class; it's a top-level nested class.

❑ Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don't need an instance of the
outer class to instantiate a static nested class.

❑ For the purposes of the exam, instantiating a static nested class requires
using both the outer and nested class names as follows:
BigOuter.Nested n = new BigOuter.Nested();

❑ A static nested class cannot access nonstatic members of the outer class,
since it does not have an implicit reference to any outer instance (in other
words, the nested class instance does not get an outer this reference).

12-ch12.indd 703 9/2/2014 3:44:17 PM

704 Chapter 12: Inner Classes

SELF TEST

The following questions will help you measure your understanding of the dynamic and life-altering
material presented in this chapter. Read all of the choices carefully. Take your time. Breathe.

 1. Which are true about a static nested class? (Choose all that apply.)
 A. You must have a reference to an instance of the enclosing class in order to instantiate it
 B. It does not have access to nonstatic members of the enclosing class
 C. Its variables and methods must be static
 D. If the outer class is named MyOuter and the nested class is named MyInner, it can be

 instantiated using new MyOuter.MyInner();
 E. It must extend the enclosing class

 2. Given:

class Boo {
 Boo(String s) { }
 Boo() { }
}
class Bar extends Boo {
 Bar() { }
 Bar(String s) {super(s);}
 void zoo() {
 // insert code here
 }
}

 Which statements create an anonymous inner class from within class Bar?
(Choose all that apply.)

 A. Boo f = new Boo(24) { };

 B. Boo f = new Bar() { };

 C. Boo f = new Boo() {String s; };

 D. Bar f = new Boo(String s) { };

 E. Boo f = new Boo.Bar(String s) { };

 3. Which are true about a method-local inner class? (Choose all that apply.)
 A. It must be marked final
 B. It can be marked abstract
 C. It can be marked public
 D. It can be marked static
 E. It can access private members of the enclosing class

12-ch12.indd 704 9/2/2014 3:44:18 PM

Self Test 705

 4. Given:

 1. public class TestObj {
 2. public static void main(String[] args) {
 3. Object o = new Object() {
 4. public boolean equals(Object obj) {
 5. return true;
 6. }
 7. }
 8. System.out.println(o.equals("Fred"));
 9. }
10. }

 What is the result?
 A. An exception occurs at runtime
 B. true

 C. Fred

 D. Compilation fails because of an error on line 3
 E. Compilation fails because of an error on line 4
 F. Compilation fails because of an error on line 8
 G. Compilation fails because of an error on a line other than 3, 4, or 8

 5. Given:

 1. public class HorseTest {
 2. public static void main(String[] args) {
 3. class Horse {
 4. public String name;
 5. public Horse(String s) {
 6. name = s;
 7. }
 8. }
 9. Object obj = new Horse("Zippo");
10. System.out.println(obj.name);
11. }
12. }

 What is the result?
 A. An exception occurs at runtime at line 10
 B. Zippo

 C. Compilation fails because of an error on line 3
 D. Compilation fails because of an error on line 9
 E. Compilation fails because of an error on line 10

12-ch12.indd 705 9/2/2014 3:44:18 PM

706 Chapter 12: Inner Classes

 6. Given:
public abstract class AbstractTest {
 public int getNum() {
 return 45;
 }
 public abstract class Bar {
 public int getNum() {
 return 38;
 }
 }
 public static void main(String[] args) {
 AbstractTest t = new AbstractTest() {
 public int getNum() {
 return 22;
 }
 };
 AbstractTest.Bar f = t.new Bar() {
 public int getNum() {
 return 57;
 }
 };
 System.out.println(f.getNum() + " " + t.getNum());
 }
}

 What is the result?
 A. 57 22

 B. 45 38

 C. 45 57

 D. An exception occurs at runtime
 E. Compilation fails

 7. Given:
 3. public class Tour {
 4. public static void main(String[] args) {
 5. Cathedral c = new Cathedral();
 6. // insert code here
 7. s.go();
 8. }
 9. }
10. class Cathedral {
11. class Sanctum {
12. void go() { System.out.println("spooky"); }
13. }
14. }

12-ch12.indd 706 9/2/2014 3:44:18 PM

Self Test 707

 Which, inserted independently at line 6, compile and produce the output "spooky"?
(Choose all that apply.)

 A. Sanctum s = c.new Sanctum();

 B. c.Sanctum s = c.new Sanctum();

 C. c.Sanctum s = Cathedral.new Sanctum();

 D. Cathedral.Sanctum s = c.new Sanctum();

 E. Cathedral.Sanctum s = Cathedral.new Sanctum();

 8. Given:

 5. class A { void m() { System.out.println("outer"); } }
 6.
 7. public class TestInners {
 8. public static void main(String[] args) {
 9. new TestInners().go();
10. }
11. void go() {
12. new A().m();
13. class A { void m() { System.out.println("inner"); } }
14. }
15. class A { void m() { System.out.println("middle"); } }
16. }

 What is the result?
 A. inner

 B. outer

 C. middle

 D. Compilation fails
 E. An exception is thrown at runtime

 9. Given:

 3. public class Car {
 4. class Engine {
 5. // insert code here
 6. }
 7. public static void main(String[] args) {
 8. new Car().go();
 9. }
10. void go() {
11. new Engine();
12. }
13. void drive() { System.out.println("hi"); }
14. }

12-ch12.indd 707 9/2/2014 3:44:18 PM

708 Chapter 12: Inner Classes

 Which, inserted independently at line 5, produce the output "hi"? (Choose all that apply.)
 A. { Car.drive(); }

 B. { this.drive(); }

 C. { Car.this.drive(); }

 D. { this.Car.this.drive(); }

 E. Engine() { Car.drive(); }

 F. Engine() { this.drive(); }

 G. Engine() { Car.this.drive(); }

 10. Given:

 3. public class City {
 4. class Manhattan {
 5. void doStuff() throws Exception { System.out.print("x "); }
 6. }
 7. class TimesSquare extends Manhattan {
 8. void doStuff() throws Exception { }
 9. }
10. public static void main(String[] args) throws Exception {
11. new City().go();
12. }
13. void go() throws Exception { new TimesSquare().doStuff(); }
14. }

 What is the result?
 A. x

 B. x x
 C. No output is produced
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 7
 G. Compilation fails due only to an error on line 10
 H. Compilation fails due only to an error on line 13

 11. Given:

 3. public class Navel {
 4. private int size = 7;
 5. private static int length = 3;
 6. public static void main(String[] args) {
 7. new Navel().go();
 8. }
 9. void go() {
10. int size = 5;
11. System.out.println(new Gazer().adder());

12-ch12.indd 708 9/2/2014 3:44:18 PM

Self Test 709

12. }
13. class Gazer {
14. int adder() { return size * length; }
15. }
16. }

 What is the result?
 A. 15

 B. 21

 C. An exception is thrown at runtime
 D. Compilation fails due to multiple errors
 E. Compilation fails due only to an error on line 4
 F. Compilation fails due only to an error on line 5

 12. Given:

 3. import java.util.*;
 4. public class Pockets {
 5. public static void main(String[] args) {
 6. String[] sa = {"nickel", "button", "key", "lint"};
 7. Sorter s = new Sorter();
 8. for(String s2: sa) System.out.print(s2 + " ");
 9. Arrays.sort(sa,s);
10. System.out.println();
11. for(String s2: sa) System.out.print(s2 + " ");
12. }
13. class Sorter implements Comparator<String> {
14. public int compare(String a, String b) {
15. return b.compareTo(a);
16. }
17. }
18. }

 What is the result?
 A. Compilation fails
 B. button key lint nickel

 nickel lint key button

 C. nickel button key lint

 button key lint nickel

 D. nickel button key lint

 nickel button key lint

 E. nickel button key lint

 nickel lint key button

 F. An exception is thrown at runtime

12-ch12.indd 709 9/2/2014 3:44:18 PM

710 Chapter 12: Inner Classes

SELF TEST ANSWERS

Note: You could argue that all of the questions in this chapter relate to OCP Objective 2.4. We've
talked about the actual mapping of inner class ideas to the exam, so we will NOT be citing Objective
numbers in the answers to the questions in this chapter.

 1. ☑ B and D are correct. B is correct because a static nested class is not tied to an instance of
the enclosing class, and thus can't access the nonstatic members of the class (just as a static
method can't access nonstatic members of a class). D uses the correct syntax for instantiating a
static nested class.
☐✗ A is incorrect because static nested classes do not need (and can't use) a reference to an
instance of the enclosing class. C is incorrect because static nested classes can declare and
define nonstatic members. E is wrong because… it just is. There's no rule that says an inner or
nested class has to extend anything.

 2. ☑ B and C are correct. B is correct because anonymous inner classes are no different from
any other class when it comes to polymorphism. That means you are always allowed to declare
a reference variable of the superclass type and have that reference variable refer to an instance
of a subclass type, which in this case is an anonymous subclass of Bar. Since Bar is a subclass of
Boo, it all works. C uses correct syntax for creating an instance of Boo.
☐✗ A is incorrect because it passes an int to the Boo constructor, and there is no matching
constructor in the Boo class. D is incorrect because it violates the rules of polymorphism; you
cannot refer to a superclass type using a reference variable declared as the subclass type. The
superclass doesn't have everything the subclass has. E uses incorrect syntax.

 3. ☑ B and E are correct. B is correct because a method-local inner class can be abstract,
although it means a subclass of the inner class must be created if the abstract class is to be
used (so an abstract method-local inner class is probably not useful). E is correct because a
method-local inner class works like any other inner class—it has a special relationship to an
instance of the enclosing class, thus it can access all members of the enclosing class.
☐✗ A is incorrect because a method-local inner class does not have to be declared final
(although it is legal to do so). C and D are incorrect because a method-local inner class cannot
be made public (remember—local variables can't be public) or static.

 4. ☑ G is correct. This code would be legal if line 7 ended with a semicolon. Remember that
line 3 is a statement that doesn't end until line 7, and a statement needs a closing semicolon!
☐✗ A, B, C, D, E, and F are incorrect based on the program logic just described. If the
semicolon were added at line 7, then answer B would be correct—the program would print
true, the return from the equals() method overridden by the anonymous subclass of Object.

12-ch12.indd 710 9/2/2014 3:44:18 PM

Self Test Answers 711

 5. ☑ E is correct. If you use a reference variable of type Object, you can access only those
members defined in class Object.
☐✗ A, B, C, and D are incorrect based on the program logic just described.

 6. ☑ A is correct. You can define an inner class as abstract, which means you can instantiate
only concrete subclasses of the abstract inner class. The object referenced by the variable t is
an instance of an anonymous subclass of AbstractTest, and the anonymous class overrides the
getNum() method to return 22. The variable referenced by f is an instance of an anonymous
subclass of Bar, and the anonymous Bar subclass also overrides the getNum() method to
return 57. Remember that to create a Bar instance, we need an instance of the enclosing
AbstractTest class to tie to the new Bar inner class instance. AbstractTest can't be
instantiated because it's abstract, so we created an anonymous subclass (non-abstract) and
then used the instance of that anonymous subclass to tie to the new Bar subclass instance.
☐✗ B, C, D, and E are incorrect based on the program logic just described.

 7. ☑ D is correct. It is the only code that uses the correct inner class instantiation syntax.
☐✗ A, B, C, and E are incorrect based on the above text.

 8. ☑ C is correct. The "inner" version of class A isn't used because its declaration comes after
the instance of class A is created in the go() method.
☐✗ A, B, D, and E are incorrect based on the above text.

 9. ☑ C and G are correct. C is the correct syntax to access an inner class's outer instance
method from an initialization block, and G is the correct syntax to access it from a constructor.
☐✗ A, B, D, E, and F are incorrect based on the above text.

 10. ☑ C is correct. The inner classes are valid, and all the methods (including main()), correctly
throw an exception, given that doStuff() throws an exception. The doStuff() in class
TimesSquare overrides class Manhattan's doStuff() and produces no output.
☐✗ A, B, D, E, F, G, and H are incorrect based on the above text.

 11. ☑ B is correct. The inner class Gazer has access to Navel's private static and private
instance variables.
☐✗ A, C, D, E, and F are incorrect based on the above text.

 12. ☑ A is correct. The inner class Sorter must be declared static to be called from the
static method main(). If Sorter had been static, answer E would be correct.
☐✗ B, C, D, E, and F are incorrect based on the above text.

12-ch12.indd 711 9/2/2014 3:44:18 PM

This page intentionally left blank

1313
ThreadsThreads

CERTIFICATION OBJECTIVES

Create and Use the Thread Class and the •
Runnable Interface

Manage and Control the Thread Lifecycle •
Synchronize Thread Access to Shared Data •

Identify Code that May Not Execute •
Correctly in a Multithreaded Environment

Two-Minute Drill ✓
Q&A Self Test

13-ch13.indd 713 9/2/2014 3:46:01 PM

714 Chapter 13: Threads

CERTIFICATION OBJECTIVE

Defining, Instantiating, and Starting
Threads (OCP Objective 10.1)

10.1 Create and use the Thread class and the Runnable interface.

Imagine a stockbroker application with a lot of complex capabilities. One of its
functions is "download last stock option prices," another is "check prices for
warnings," and a third time-consuming operation is "analyze historical data for
company XYZ."

In a single-threaded runtime environment, these actions execute one after
another. The next action can happen only when the previous one is finished. If a
historical analysis takes half an hour, and the user selects to perform a download and
check afterward, the warning may come too late to, say, buy or sell stock as a result.

We just imagined the sort of application that cries out for multithreading. Ideally,
the download should happen in the background (that is, in another thread). That
way, other processes could happen at the same time so that, for example, a warning
could be communicated instantly. All the while, the user is interacting with other
parts of the application. The analysis, too, could happen in a separate thread so the
user can work in the rest of the application while the results are being calculated.

So what exactly is a thread? In Java, "thread" means two different things:

■ An instance of class java.lang.Thread

■ A thread of execution

An instance of Thread is just… an object. Like any other object in Java, it has
variables and methods, and lives and dies on the heap. But a thread of execution is an
individual process (a "lightweight" process) that has its own call stack. In Java, there
is one thread per call stack—or, to think of it in reverse, one call stack per thread. Even
if you don't create any new threads in your program, threads are back there running.

The main() method, which starts the whole ball rolling, runs in one thread,
called (surprisingly) the main thread. If you looked at the main call stack (and you
can, any time you get a stack trace from something that happens after main begins,
but not within another thread), you'd see that main() is the first method on the
stack—the method at the bottom. But as soon as you create a new thread, a new
stack materializes and methods called from that thread run in a call stack that's

13-ch13.indd 714 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 715

separate from the main() call stack. That second new call stack is said to run
concurrently with the main thread, but we'll refine that notion as we go through this
chapter.

You might find it confusing that we're talking about code running concurrently—
what gives? The JVM, which gets its turn at the CPU by whatever scheduling
mechanism the underlying OS uses, operates like a mini-OS and schedules its own
threads, regardless of the underlying operating system. In some JVMs, the Java
threads are actually mapped to native OS threads, but we won't discuss that here;
native threads are not on the exam. Nor is it required to understand how threads
behave in different JVM environments. In fact, the most important concept to
understand from this entire chapter is this:

When it comes to threads, very little is guaranteed.
So be very cautious about interpreting the behavior you see on one machine as

"the way threads work." The exam expects you to know what is and is not
guaranteed behavior so that you can design your program in such a way that it will
work, regardless of the underlying JVM. That's part of the whole point of Java.

Don't make the mistake of designing your program to be dependent on a

particular implementation of the JVM. As you'll learn a little later, different

JVMs can run threads in profoundly different ways. For example, one JVM

might be sure that all threads get their turn, with a fairly even amount of time

allocated for each thread in a nice, happy, round-robin fashion. But in other

JVMs, a thread might start running and then just hog the whole show, never

stepping out so others can have a turn. If you test your application on the

"nice turn-taking" JVM and you don't know what is and is not guaranteed in

Java, then you might be in for a big shock when you run it under a JVM with a

different thread-scheduling mechanism.

The thread questions are among the most difficult questions on the exam. In fact,
for most people, they are the toughest questions on the exam, and with four
objectives for threads, you'll be answering a lot of thread questions. If you're not
already familiar with threads, you'll probably need to spend some time
experimenting. Also, one final disclaimer: This chapter makes almost no attempt to
teach you how to design a good, safe, multithreaded application. We only scratch the
surface of that huge topic in this chapter! You're here to learn the basics of threading
and what you need to get through the thread questions on the exam. Before you can
write decent multithreaded code, however, you really need to do more study of the
complexities and subtleties of multithreaded code.

13-ch13.indd 715 9/2/2014 3:46:05 PM

716 Chapter 13: Threads

(Note: The topic of daemon threads is NOT on the exam. All of the threads
discussed in this chapter are "user" threads. You and the operating system can create
a second kind of thread called a daemon thread. The difference between these two
types of threads [user and daemon] is that the JVM exits an application only when
all user threads are complete—the JVM doesn't care about letting daemon threads
complete, so once all user threads are complete, the JVM will shut down, regardless
of the state of any daemon threads. Once again, this topic is NOT on the exam.)

Making a Thread

A thread in Java begins as an instance of java.lang.Thread. You'll find methods
in the Thread class for managing threads, including creating, starting, and pausing
them. For the exam, you'll need to know, at a minimum, the following methods:

start()
yield()
sleep()
run()

The action happens in the run() method. Think of the code you want to execute
in a separate thread as the job to do. In other words, you have some work that needs
to be done—say, downloading stock prices in the background while other things are
happening in the program—so what you really want is that job to be executed in its
own thread. So if the work you want done is the job, the one doing the work (actually
executing the job code) is the thread. And the job always starts from a run() method,
as follows:

public void run() {
 // your job code goes here
}

You always write the code that needs to be run in a separate thread in a run()
method. The run() method will call other methods, of course, but the thread of
execution—the new call stack—always begins by invoking run(). So where does the
run() method go? In one of the two classes you can use to define your thread job.

You can define and instantiate a thread in one of two ways:

■ Extend the java.lang.Thread class.

■ Implement the Runnable interface.

You need to know about both for the exam, although in the real world, you're
much more likely to implement Runnable than extend Thread. Extending the

13-ch13.indd 716 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 717

Thread class is the easiest, but it's usually not a good OO practice. Why? Because
subclassing should be reserved for specialized versions of more general superclasses.
So the only time it really makes sense (from an OO perspective) to extend Thread is
when you have a more specialized version of a Thread class. In other words, because
you have more specialized thread-specific behavior. Chances are, though, that the thread
work you want is really just a job to be done by a thread. In that case, you should
design a class that implements the Runnable interface, which also leaves your class
free to extend some other class.

Defi ning a Thread

To define a thread, you need a place to put your run() method, and as we just
discussed, you can do that by extending the Thread class or by implementing the
Runnable interface. We'll look at both in this section.

Extending java.lang.Thread

The simplest way to define code to run in a separate thread is to

■ Extend the java.lang.Thread class.

■ Override the run() method.

It looks like this:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
}

The limitation with this approach (besides being a poor design choice in most
cases) is that if you extend Thread, you can't extend anything else. And it's not as if
you really need that inherited Thread class behavior, because in order to use a
thread, you'll need to instantiate one anyway.

Keep in mind that you're free to overload the run() method in your Thread subclass:

class MyThread extends Thread {
 public void run() {
 System.out.println("Important job running in MyThread");
 }
 public void run(String s) {
 System.out.println("String in run is " + s);
 }
}

13-ch13.indd 717 9/2/2014 3:46:05 PM

718 Chapter 13: Threads

But know this: The overloaded run(String s) method will be ignored by the
Thread class unless you call it yourself. The Thread class expects a run() method
with no arguments, and it will execute this method for you in a separate call stack
after the thread has been started. With a run(String s) method, the Thread class
won't call the method for you, and even if you call the method directly yourself,
execution won't happen in a new thread of execution with a separate call stack. It
will just happen in the same call stack as the code that you made the call from, just
like any other normal method call.

Implementing java.lang.Runnable

Implementing the Runnable interface gives you a way to extend any class you like
but still define behavior that will be run by a separate thread. It looks like this:

class MyRunnable implements Runnable {
 public void run() {
 System.out.println("Important job running in MyRunnable");
 }
}

Regardless of which mechanism you choose, you've now got yourself some code
that can be run by a thread of execution. So now let's take a look at instantiating your
thread-capable class, and then we'll figure out how to actually get the thing running.

Instantiating a Thread

Remember, every thread of execution begins as an instance of class Thread.
Regardless of whether your run() method is in a Thread subclass or a Runnable
implementation class, you still need a Thread object to do the work.

If you extended the Thread class, instantiation is dead simple (we'll look at some
additional overloaded constructors in a moment):

MyThread t = new MyThread();

If you implement Runnable, instantiation is only slightly less simple. To have
code run by a separate thread, you still need a Thread instance. But rather than
combining both the thread and the job (the code in the run()method) into one
class, you've split it into two classes—the Thread class for the thread-specific code
and your Runnable implementation class for your job-that-should-be-run-by-a-thread
code. (Another common way to think about this is that the Thread is the "worker,"
and the Runnable is the "job" to be done.)

First, you instantiate your Runnable class:

MyRunnable r = new MyRunnable();

13-ch13.indd 718 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 719

Next, you get yourself an instance of java.lang.Thread (somebody has to run
your job…), and you give it your job!

Thread t = new Thread(r); // Pass your Runnable to the Thread

If you create a thread using the no-arg constructor, the thread will call its own
run() method when it's time to start working. That's exactly what you want when
you extend Thread, but when you use Runnable, you need to tell the new thread to
use your run() method rather than its own. The Runnable you pass to the Thread
constructor is called the target or the target Runnable.

You can pass a single Runnable instance to multiple Thread objects so that the
same Runnable becomes the target of multiple threads, as follows:

public class TestThreads {
 public static void main (String [] args) {
 MyRunnable r = new MyRunnable();
 Thread foo = new Thread(r);
 Thread bar = new Thread(r);
 Thread bat = new Thread(r);
 }
}

Giving the same target to multiple threads means that several threads of execution
will be running the very same job (and that the same job will be done multiple times).

The Thread class itself implements Runnable. (After all, it has a run()

method that we were overriding.) This means that you could pass a Thread to another

Thread's constructor:

Thread t = new Thread(new MyThread());

This is a bit silly, but it's legal. In this case, you really just need a Runnnable, and creating

a whole other Thread is overkill.

Besides the no-arg constructor and the constructor that takes a Runnable (the
target, i.e., the instance with the job to do), there are other overloaded constructors
in class Thread. The constructors we care about are

■ Thread()

■ Thread(Runnable target)

■ Thread(Runnable target, String name)

■ Thread(String name)

13-ch13.indd 719 9/2/2014 3:46:05 PM

720 Chapter 13: Threads

You need to recognize all of them for the exam! A little later, we'll discuss some of
the other constructors in the preceding list.

So now you've made yourself a Thread instance, and it knows which run()
method to call. But nothing is happening yet. At this point, all we've got is a plain old
Java object of type Thread. It is not yet a thread of execution. To get an actual
thread—a new call stack—we still have to start the thread.

When a thread has been instantiated but not started (in other words, the
start() method has not been invoked on the Thread instance), the thread is said
to be in the new state. At this stage, the thread is not yet considered alive. Once the
start() method is called, the thread is considered alive (even though the run()
method may not have actually started executing yet). A thread is considered dead
(no longer alive) after the run() method completes. The isAlive() method is the
best way to determine if a thread has been started but has not yet completed its
run() method. (Note: The getState() method is very useful for debugging, but
you won't have to know it for the exam.)

Starting a Thread

You've created a Thread object and it knows its target (either the passed-in
Runnable or itself if you extended class Thread). Now it's time to get the whole
thread thing happening—to launch a new call stack. It's so simple, it hardly deserves
its own subheading:

t.start();

Prior to calling start() on a Thread instance, the thread (when we use
lowercase t, we're referring to the thread of execution rather than the Thread class) is
said to be in the new state, as we said. The new state means you have a Thread object
but you don't yet have a true thread. So what happens after you call start()? The
good stuff:

■ A new thread of execution starts (with a new call stack).

■ The thread moves from the new state to the runnable state.

■ When the thread gets a chance to execute, its target run() method will run.

Be sure you remember the following: You start a Thread, not a Runnable. You
call start() on a Thread instance, not on a Runnable instance. The following
example demonstrates what we've covered so far—defining, instantiating, and
starting a thread:

13-ch13.indd 720 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 721

class FooRunnable implements Runnable {
 public void run() {
 for(int x = 1; x < 6; x++) {
 System.out.println("Runnable running");
 }
 }
}

public class TestThreads {
 public static void main (String [] args) {
 FooRunnable r = new FooRunnable();
 Thread t = new Thread(r);
 t.start();
 }
}

Running the preceding code prints out exactly what you'd expect:

% java TestThreads
Runnable running
Runnable running
Runnable running
Runnable running
Runnable running

(If this isn't what you expected, go back and reread everything in this objective.)

There's nothing special about the run() method as far as Java is

concerned. Like main(), it just happens to be the name (and signature) of the method

that the new thread knows to invoke. So if you see code that calls the run() method on

a Runnable (or even on a Thread instance), that's perfectly legal. But it doesn't mean the

run() method will run in a separate thread! Calling a run() method directly just means

you're invoking a method from whatever thread is currently executing, and the run()

method goes onto the current call stack rather than at the beginning of a new call stack.

The following code does not start a new thread of execution:

Thread t = new Thread();
t.run(); // Legal, but does not start a new thread

So what happens if we start multiple threads? We'll run a simple example in a
moment, but first we need to know how to print out which thread is executing. We
can use the getName() method of class Thread and have each Runnable print out

13-ch13.indd 721 9/2/2014 3:46:05 PM

722 Chapter 13: Threads

the name of the thread executing that Runnable object's run() method. The
following example instantiates a thread and gives it a name, and then the name is
printed out from the run() method:

class NameRunnable implements Runnable {
 public void run() {
 System.out.println("NameRunnable running");
 System.out.println("Run by "
 + Thread.currentThread().getName());
 }
}
public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 t.setName("Fred");
 t.start();
 }
}

Running this code produces the following extra-special output:

% java NameThread
NameRunnable running
Run by Fred

To get the name of a thread, you call—who would have guessed—getName() on
the Thread instance. But the target Runnable instance doesn't even have a reference
to the Thread instance, so we first invoked the static Thread.currentThread()
method, which returns a reference to the currently executing thread, and then we
invoked getName() on that returned reference.

Even if you don't explicitly name a thread, it still has a name. Let's look at the
previous code, commenting out the statement that sets the thread's name:

public class NameThread {
 public static void main (String [] args) {
 NameRunnable nr = new NameRunnable();
 Thread t = new Thread(nr);
 // t.setName("Fred");
 t.start();
 }
}

Running the preceding code now gives us

% java NameThread
NameRunnable running
Run by Thread-0

13-ch13.indd 722 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 723

And since we're getting the name of the current thread by using the static
Thread.currentThread() method, we can even get the name of the thread
running our main code:

public class NameThreadTwo {
 public static void main (String [] args) {
 System.out.println("thread is "
 + Thread.currentThread().getName());
 }
}

which prints out

% java NameThreadTwo
thread is main

That's right, the main thread already has a name—main. (Once again, what are
the odds?) Figure 13-1 shows the process of starting a thread.

 FIGURE 13-1

Starting a thread
public static void main(String [] args) {

// running

// some code

// in main()

// running

//

//

more code

static void method2() {
Runnable r = new MyRunnable();

Thread t = new Thread(r);

t.start();

do more stuff

}

}

method2();

1) main() begins

main

main

run

method2

stack A

stack A

main

method2

stack Astack B
(thread t) (main thread)

3) method2() starts a new thread

2) main() invokes method2()

13-ch13.indd 723 9/2/2014 3:46:05 PM

724 Chapter 13: Threads

Starting and Running Multiple Threads

Enough playing around here; let's actually get multiple threads going (more than
two, that is). We already had two threads, because the main() method starts in a
thread of its own, and then t.start() started a second thread. Now we'll do more.
The following code creates a single Runnable instance and three Thread instances.
All three Thread instances get the same Runnable instance, and each thread is
given a unique name. Finally, all three threads are started by invoking start() on
the Thread instances.

class NameRunnable implements Runnable {
 public void run() {
 for (int x = 1; x <= 3; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
 }
}
public class ManyNames {
 public static void main(String [] args) {
 // Make one Runnable
 NameRunnable nr = new NameRunnable();
 Thread one = new Thread(nr);
 Thread two = new Thread(nr);
 Thread three = new Thread(nr);

 one.setName("Fred");
 two.setName("Lucy");
 three.setName("Ricky");
 one.start();
 two.start();
 three.start();
 }
}

Running this code might produce the following:

% java ManyNames
Run by Fred, x is 1
Run by Fred, x is 2
Run by Fred, x is 3
Run by Lucy, x is 1
Run by Lucy, x is 2
Run by Lucy, x is 3
Run by Ricky, x is 1
Run by Ricky, x is 2
Run by Ricky, x is 3

13-ch13.indd 724 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 725

Well, at least that's what it printed when we ran it—this time, on our machine.
But the behavior you see here is not guaranteed. This is so crucial that you need
to stop right now, take a deep breath, and repeat after me, "The behavior is not
guaranteed." You need to know, for your future as a Java programmer as well as for
the exam, that there is nothing in the Java specification that says threads will start
running in the order in which they were started (in other words, the order in which
start() was invoked on each thread). And there is no guarantee that once a thread
starts executing, it will keep executing until it's done. Or that a loop will complete
before another thread begins. No siree, Bob.

Nothing is guaranteed in the preceding code except this:

Each thread will start, and each thread will run to completion.

Within each thread, things will happen in a predictable order. But the actions of
different threads can mix in unpredictable ways. If you run the program multiple
times or on multiple machines, you may see different output. Even if you don't see
different output, you need to realize that the behavior you see is not guaranteed.
Sometimes a little change in the way the program is run will cause a difference to
emerge. Just for fun we bumped up the loop code so that each run() method ran the
for loop 400 times rather than 3, and eventually we did start to see some wobbling:

public void run() {
 for (int x = 1; x <= 400; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName()
 + ", x is " + x);
 }
}

Running the preceding code, with each thread executing its run loop 400 times,
started out fine but then became nonlinear. Here's just a snippet from the command-
line output of running that code. To make it easier to distinguish each thread, we
put Fred's output in italics and Lucy's in bold, and left Ricky's alone:

Run by Ricky, x is 313
Run by Lucy, x is 341
Run by Ricky, x is 314
Run by Lucy, x is 342
Run by Ricky, x is 315
Run by Fred, x is 346
Run by Lucy, x is 343
Run by Fred, x is 347
Run by Lucy, x is 344

… it continues on …

13-ch13.indd 725 9/2/2014 3:46:05 PM

726 Chapter 13: Threads

Notice that there's not really any clear pattern here. If we look at only the output
from Fred, we see the numbers increasing one at a time, as expected:

Run by Fred, x is 345
Run by Fred, x is 346
Run by Fred, x is 347

And similarly, if we look only at the output from Lucy or Ricky—each one
individually is behaving in a nice, orderly manner. But together—chaos! In the
previous fragment we see Fred, then Lucy, then Ricky (in the same order we
originally started the threads), but then Lucy butts in when it was Fred's turn. What
nerve! And then Ricky and Lucy trade back and forth for a while until finally Fred
gets another chance. They jump around like this for a while after this. Eventually
(after the part shown earlier), Fred finishes, then Ricky, and finally Lucy finishes
with a long sequence of output. So even though Ricky was started third, he actually
completed second. And if we run it again, we'll get a different result. Why? Because
it's up to the scheduler, and we don't control the scheduler! Which brings up
another key point to remember: Just because a series of threads are started in a
particular order, this doesn't mean they'll run in that order. For any group of started
threads, order is not guaranteed by the scheduler. And duration is not guaranteed.
You don't know, for example, if one thread will run to completion before the others
have a chance to get in, or whether they'll all take turns nicely, or whether they'll do
a combination of both. There is a way, however, to start a thread but tell it not to
run until some other thread has finished. You can do this with the join() method,
which we'll look at a little later.

A thread is done being a thread when its target run() method completes.

When a thread completes its run() method, the thread ceases to be a thread of
execution. The stack for that thread dissolves, and the thread is considered dead.
(Technically, the API calls a dead thread "terminated," but we'll use "dead" in this
chapter.) Not dead and gone, however—just dead. It's still a Thread object, just not
a thread of execution. So if you've got a reference to a Thread instance, then even
when that Thread instance is no longer a thread of execution, you can still call
methods on the Thread instance, just like any other Java object. What you can't do,
though, is call start() again.

Once a thread has been started, it can never be started again.

If you have a reference to a Thread and you call start(), it's started. If you call
start() a second time, it will cause an exception (an IllegalThreadStateException,
which is a kind of RuntimeException, but you don't need to worry about the exact

13-ch13.indd 726 9/2/2014 3:46:05 PM

 Defi ning, Instantiating, and Starting Threads (OCP Objective 10.1) 727

type). This happens whether or not the run() method has completed from the first
start() call. Only a new thread can be started, and then only once. A runnable
thread or a dead thread cannot be restarted.

So far, we've seen three thread states: new, runnable, and dead. We'll look at more
thread states before we're done with this chapter.

In addition to using setName() and getName to identify threads, you

might see getId(). The getId() method returns a positive, unique, long number, and that

number will be that thread's only ID number for the thread's entire life.

The Thread Scheduler

The thread scheduler is the part of the JVM (although most JVMs map Java threads
directly to native threads on the underlying OS) that decides which thread should
run at any given moment, and also takes threads out of the run state. Assuming a
single processor machine, only one thread can actually run at a time. Only one stack
can ever be executing at one time. And it's the thread scheduler that decides which
thread—of all that are eligible—will actually run. When we say eligible, we really
mean in the runnable state.

Any thread in the runnable state can be chosen by the scheduler to be the one
and only running thread. If a thread is not in a runnable state, then it cannot be
chosen to be the currently running thread. And just so we're clear about how little is
guaranteed here:

The order in which runnable threads are chosen to run is not guaranteed.

Although queue behavior is typical, it isn't guaranteed. Queue behavior means
that when a thread has finished with its "turn," it moves to the end of the line of the
runnable pool and waits until it eventually gets to the front of the line, where it can
be chosen again. In fact, we call it a runnable pool, rather than a runnable queue, to
help reinforce the fact that threads aren't all lined up in some guaranteed order.

Although we don't control the thread scheduler (we can't, for example, tell a
specific thread to run), we can sometimes influence it. The following methods give us
some tools for influencing the scheduler. Just don't ever mistake influence for control.

13-ch13.indd 727 9/2/2014 3:46:05 PM

728 Chapter 13: Threads

from the java.lang.Thread Class Some of the methods that can help us
influence thread scheduling are as follows:

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join() throws InterruptedException
public final void setPriority(int newPriority)

Note that both sleep() and join() have overloaded versions not shown here.

Methods from the java.lang.Object Class Every class in Java inherits the
following three thread-related methods:

public final void wait() throws InterruptedException
public final void notify()
public final void notifyAll()

The wait() method has three overloaded versions (including the one listed
here).

We'll look at the behavior of each of these methods in this chapter. First, though,
we're going to look at the different states a thread can be in.

CERTIFICATION OBJECTIVE

Thread States and Transitions
(OCP Objective 10.2)

10.2 Manage and control thread lifecycle.

We've already seen three thread states—new, runnable, and dead—but wait! There's
more! The thread scheduler's job is to move threads in and out of the running state.

Expect to see exam questions that look for your understanding of what

is and is not guaranteed! You must be able to look at thread code and determine whether

the output is guaranteed to run in a particular way or is indeterminate.

13-ch13.indd 728 9/2/2014 3:46:05 PM

 Thread States and Transitions (OCP Objective 10.2) 729

While the thread scheduler can move a thread from the running state back to
runnable, other factors can cause a thread to move out of running, but not back to
runnable. One of these is when the thread's run()method completes, in which case,
the thread moves from the running state directly to the dead state. Next, we'll look
at some of the other ways in which a thread can leave the running state and where
the thread goes.

Thread States

A thread can be only in one of five states (see Figure 13-2):

■ New This is the state the thread is in after the Thread instance has been
created but the start() method has not been invoked on the thread. It is
a live Thread object, but not yet a thread of execution. At this point, the
thread is considered not alive.

■ Runnable This is the state a thread is in when it's eligible to run but the
scheduler has not selected it to be the running thread. A thread first enters
the runnable state when the start() method is invoked, but a thread can
also return to the runnable state after either running or coming back from a
blocked, waiting, or sleeping state. When the thread is in the runnable state,
it is considered alive.

■ Running This is it. The "big time." Where the action is. This is the state
a thread is in when the thread scheduler selects it from the runnable pool to
be the currently executing process. A thread can transition out of a running
state for several reasons, including because "the thread scheduler felt like
it." We'll look at those other reasons shortly. Note that in Figure 13-2, there
are several ways to get to the runnable state, but only one way to get to the
running state: The scheduler chooses a thread from the runnable pool.

■ Waiting/blocked/sleeping This is the state a thread is in when it's not
eligible to run. Okay, so this is really three states combined into one, but
they all have one thing in common: The thread is still alive, but is currently
not eligible to run. In other words, it is not runnable, but it might return to
a runnable state later if a particular event occurs. A thread may be blocked
waiting for a resource (like I/O or an object's lock), in which case the event
that sends it back to runnable is the availability of the resource—for example,
if data comes in through the input stream the thread code is reading from,
or if the object's lock suddenly becomes available. A thread may be sleeping

13-ch13.indd 729 9/2/2014 3:46:05 PM

730 Chapter 13: Threads

because the thread's run code tells it to sleep for some period of time, in
which case, the event that sends it back to runnable causes it to wake up
because its sleep time has expired. Or the thread may be waiting because the
thread's run code causes it to wait, in which case, the event that sends it back
to runnable causes another thread to send a notification that it may no longer
be necessary for the thread to wait. The important point is that one thread
does not tell another thread to block. Some methods may look like they tell
another thread to block, but they don't. If you have a reference t to another
thread, you can write something like this:
t.sleep(); or t.yield();

 But those are actually static methods of the Thread class—they don't affect
the instance t; instead, they are defined to always affect the thread that's
currently executing. (This is a good example of why it's a bad idea to use
an instance variable to access a static method—it's misleading. There is
a method, suspend(), in the Thread class that lets one thread tell another
to suspend, but the suspend() method has been deprecated and won't be
on the exam [nor will its counterpart resume()].) There is also a stop()
method, but it, too, has been deprecated and we won't even go there. Both
suspend() and stop() turned out to be very dangerous, so you shouldn't use
them, and again, because they're deprecated, they won't appear on the exam.
Don't study 'em; don't use 'em. Note also that a thread in a blocked state is
still considered alive.

■ Dead A thread is considered dead when its run() method completes. It
may still be a viable Thread object, but it is no longer a separate thread of
execution. Once a thread is dead, it can never be brought back to life! (The
whole "I see dead threads" thing.) If you invoke start() on a dead Thread
instance, you'll get a runtime (not compiler) exception. And it probably

 FIGURE 13-2

Transitioning
between thread
states

Waiting/
blocking

New Runnable Running Dead

13-ch13.indd 730 9/2/2014 3:46:05 PM

 Thread States and Transitions (OCP Objective 10.2) 731

doesn't take a rocket scientist to tell you that if a thread is dead, it is no
longer considered alive.

Preventing Thread Execution

A thread that's been stopped usually means a thread that's moved to the dead state.
But Objective 4.2 is also looking for your ability to recognize when a thread will get
kicked out of running but not be sent back to either runnable or dead.

For the purpose of the exam, we aren't concerned with a thread blocking on I/O
(say, waiting for something to arrive from an input stream from the server). We are
concerned with the following:

■ Sleeping

■ Waiting

■ Blocked because it needs an object's lock

Sleeping

The sleep() method is a static method of class Thread. You use it in your
code to "slow a thread down" by forcing it to go into a sleep mode before coming
back to runnable (where it still has to beg to be the currently running thread).
When a thread sleeps, it drifts off somewhere and doesn't return to runnable until
it wakes up.

So why would you want a thread to sleep? Well, you might think the thread is
moving too quickly through its code. Or you might need to force your threads to
take turns, since reasonable turn taking isn't guaranteed in the Java specification.
Or imagine a thread that runs in a loop, downloading the latest stock prices and
analyzing them. Downloading prices one after another would be a waste of time, as
most would be quite similar—and even more important, it would be an incredible
waste of precious bandwidth. The simplest way to solve this is to cause a thread to
pause (sleep) for five minutes after each download.

You do this by invoking the static Thread.sleep() method, giving it a time in
milliseconds as follows:

try {
 Thread.sleep(5*60*1000); // Sleep for 5 minutes
} catch (InterruptedException ex) { }

13-ch13.indd 731 9/2/2014 3:46:06 PM

732 Chapter 13: Threads

Notice that the sleep() method can throw a checked InterruptedException
(you'll usually know if that is a possibility, since another thread has to explicitly do
the interrupting), so you must acknowledge the exception with a handle or declare.
Typically, you wrap calls to sleep() in a try/catch, as in the preceding code.

Let's modify our Fred, Lucy, Ricky code by using sleep() to try to force the
threads to alternate rather than letting one thread dominate for any period of time.
Where do you think the sleep() method should go?

class NameRunnable implements Runnable {
 public void run() {
 for (int x = 1; x < 4; x++) {
 System.out.println("Run by "
 + Thread.currentThread().getName());
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ex) { }
 }
 }
}
public class ManyNames {
 public static void main (String [] args) {

 // Make one Runnable
 NameRunnable nr = new NameRunnable();

 Thread one = new Thread(nr);
 one.setName("Fred");
 Thread two = new Thread(nr);
 two.setName("Lucy");
 Thread three = new Thread(nr);
 three.setName("Ricky");

 one.start();
 two.start();
 three.start();
 }
}

Running this code shows Fred, Lucy, and Ricky alternating nicely:

% java ManyNames
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky

13-ch13.indd 732 9/2/2014 3:46:06 PM

 Thread States and Transitions (OCP Objective 10.2) 733

Just keep in mind that the behavior in the preceding output is still not guaranteed.
You can't be certain how long a thread will actually run before it gets put to sleep, so
you can't know with certainty that only one of the three threads will be in the runnable
state when the running thread goes to sleep. In other words, if two threads are awake
and in the runnable pool, you can't know with certainty that the least recently used
thread will be the one selected to run. Still, using sleep() is the best way to help all
threads get a chance to run! Or at least to guarantee that one thread doesn't get in and
stay until it's done. When a thread encounters a sleep call, it must go to sleep for at
least the specified number of milliseconds (unless it is interrupted before its wake-up
time, in which case, it immediately throws the InterruptedException).

Just because a thread's sleep() expires and it wakes up, this does not

mean it will return to running! Remember, when a thread wakes up, it simply goes back

to the runnable state. So the time specifi ed in sleep() is the minimum duration in which

the thread won't run, but it is not the exact duration in which the thread won't run. So

you can't, for example, rely on the sleep() method to give you a perfectly accurate

timer. Although in many applications using sleep() as a timer is certainly good enough,

you must know that a sleep() time is not a guarantee that the thread will start running

again as soon as the time expires and the thread wakes.

Remember that sleep() is a static method, so don't be fooled into thinking that
one thread can put another thread to sleep. You can put sleep() code anywhere,
since all code is being run by some thread. When the executing code (meaning the
currently running thread's code) hits a sleep() call, it puts the currently running
thread to sleep.

EXERCISE 13-1

Creating a Thread and Putting It to Sleep

In this exercise, we will create a simple counting thread. It will count to 100, pausing
one second between each number. Also, in keeping with the counting theme, it will
output a string every ten numbers.

 1. Create a class and extend the Thread class. As an option, you can implement
the Runnable interface.

13-ch13.indd 733 9/2/2014 3:46:06 PM

734 Chapter 13: Threads

 2. Override the run() method of Thread. This is where the code will go that
will output the numbers.

 3. Create a for loop that will loop 100 times. Use the modulus operation to
check whether there are any remainder numbers when divided by 10.

 4. Use the static method Thread.sleep() to pause. (Remember, the one-arg
version of sleep() specifies the amount of time of sleep in milliseconds.)

Thread Priorities and yield()

To understand yield(), you must understand the concept of thread priorities.
Threads always run with some priority, usually represented as a number between 1
and 10 (although in some cases, the range is less than 10). The scheduler in most
JVMs uses preemptive, priority-based scheduling (which implies some sort of time
slicing). This does not mean that all JVMs use time slicing. The JVM specification does
not require a VM to implement a time-slicing scheduler, where each thread is
allocated a fair amount of time and then sent back to runnable to give another
thread a chance. Although many JVMs do use time slicing, some may use a scheduler
that lets one thread stay running until the thread completes its run() method.

In most JVMs, however, the scheduler does use thread priorities in one important
way: If a thread enters the runnable state and it has a higher priority than any of the
threads in the pool and a higher priority than the currently running thread, the
lower-priority running thread usually will be bumped back to runnable and the highest-
priority thread will be chosen to run. In other words, at any given time, the currently
running thread usually will not have a priority that is lower than any of the threads
in the pool. In most cases, the running thread will be of equal or greater priority than the
highest-priority threads in the pool. This is as close to a guarantee about scheduling as
you'll get from the JVM specification, so you must never rely on thread priorities to
guarantee the correct behavior of your program.

Don't rely on thread priorities when designing your multithreaded application.

Because thread-scheduling priority behavior is not guaranteed, use thread

priorities as a way to improve the efficiency of your program, but just be sure

your program doesn't depend on that behavior for correctness.

13-ch13.indd 734 9/2/2014 3:46:06 PM

 Thread States and Transitions (OCP Objective 10.2) 735

What is also not guaranteed is the behavior when threads in the pool are of equal
priority or when the currently running thread has the same priority as threads in the
pool. All priorities being equal, a JVM implementation of the scheduler is free to do
just about anything it likes. That means a scheduler might do one of the following
(among other things):

■ Pick a thread to run, and run it there until it blocks or completes.

■ Time-slice the threads in the pool to give everyone an equal opportunity to run.

Setting a Thread's Priority

A thread gets a default priority that is the priority of the thread of execution that creates
it. For example, in the code

public class TestThreads {
 public static void main (String [] args) {
 MyThread t = new MyThread();
 }
}

the thread referenced by t will have the same priority as the main thread, since the
main thread is executing the code that creates the MyThread instance.

You can also set a thread's priority directly by calling the setPriority() method
on a Thread instance as follows:

FooRunnable r = new FooRunnable();
Thread t = new Thread(r);
t.setPriority(8);
t.start();

Priorities are set using a positive integer, usually between 1 and 10, and the JVM
will never change a thread's priority. However, values 1 through 10 are not guaranteed.
Some JVMs might not recognize ten distinct values. Such a JVM might merge
values from 1 to 10 down to maybe values from 1 to 5, so if you have, say, ten
threads, each with a different priority, and the current application is running in a
JVM that allocates a range of only five priorities, then two or more threads might be
mapped to one priority.

Although the default priority is 5, the Thread class has the three following
constants (static final variables) that define the range of thread priorities:

Thread.MIN_PRIORITY (1)
Thread.NORM_PRIORITY (5)
Thread.MAX_PRIORITY (10)

13-ch13.indd 735 9/2/2014 3:46:06 PM

736 Chapter 13: Threads

The yield() Method

So what does the static Thread.yield() have to do with all this? Not that
much, in practice. What yield() is supposed to do is make the currently running
thread head back to runnable to allow other threads of the same priority to get their
turn. So the intention is to use yield() to promote graceful turn-taking among
equal-priority threads. In reality, though, the yield() method isn't guaranteed to do
what it claims, and even if yield() does cause a thread to step out of running and
back to runnable, there's no guarantee the yielding thread won't just be chosen again over
all the others! So while yield() might—and often does—make a running thread
give up its slot to another runnable thread of the same priority, there's no guarantee.

A yield() won't ever cause a thread to go to the waiting/sleeping/ blocking
state. At most, a yield() will cause a thread to go from running to runnable, but
again, it might have no effect at all.

The join() Method

The non-static join() method of class Thread lets one thread "join onto the
end" of another thread. If you have a thread B that can't do its work until another
thread A has completed its work, then you want thread B to "join" thread A. This
means that thread B will not become runnable until A has finished (and entered the
dead state).

Thread t = new Thread();
t.start();
t.join();

The preceding code takes the currently running thread (if this were in the
main() method, then that would be the main thread) and joins it to the end of the
thread referenced by t. This blocks the current thread from becoming runnable until
after the thread referenced by t is no longer alive. In other words, the code t.
join() means "Join me (the current thread) to the end of t, so that t must finish
before I (the current thread) can run again." You can also call one of the overloaded
versions of join() that takes a timeout duration so that you're saying, "wait until
thread t is done, but if it takes longer than 5,000 milliseconds, then stop waiting and
become runnable anyway." Figure 13-3 shows the effect of the join() method.

So far, we've looked at three ways a running thread could leave the running state:

■ A call to sleep() Guaranteed to cause the current thread to stop
executing for at least the specified sleep duration (although it might be
interrupted before its specified time).

13-ch13.indd 736 9/2/2014 3:46:06 PM

 Thread States and Transitions (OCP Objective 10.2) 737

■ A call to yield() Not guaranteed to do much of anything, although typically,
it will cause the currently running thread to move back to runnable so that a
thread of the same priority can have a chance.

■ A call to join() Guaranteed to cause the current thread to stop executing
until the thread it joins with (in other words, the thread it calls join() on)
completes, or if the thread it's trying to join with is not alive, the current
thread won't need to back out.

Besides those three, we also have the following scenarios in which a thread might
leave the running state:

■ The thread's run() method completes. Duh.

 FIGURE 13-3

The join()
method

Key Events in the Threads’ Code

doStuff()

doStuff() doOther()

Stack A is
running

Stack B is
running

Stack A is
running

Stack B
doOther()

doStuff()

Stack A joined
to Stack B

Stack A

Output

A is running

Thread b = new Thread(aRunnable);
b.start();

b.join(); // A joins to the end
// of B

// Thread B completes !!
// Thread A starts again !

// Threads bounce back and forth

A is running
A is running
A is running
A is running
A is running
A is running

A is running
A is running

A is running

A is running

B is running

B is running

B is running
B is running

B is running

B is running
B is running
B is running
B is running
B is running
B is running
B is running
B is running

A is running

A is running
A is running
A is running
A is running
A is running
A is running

B is running

13-ch13.indd 737 9/2/2014 3:46:06 PM

738 Chapter 13: Threads

■ A call to wait() on an object (we don't call wait() on a thread, as we'll see
in a moment).

■ A thread can't acquire the lock on the object whose method code it's
attempting to run.

■ The thread scheduler can decide to move the current thread from running
to runnable in order to give another thread a chance to run. No reason is
needed—the thread scheduler can trade threads in and out whenever it likes.

CERTIFICATION OBJECTIVE

Synchronizing Code, Thread Problems
(OCP Objectives 10.3 and 10.4)

10.3 Synchronize thread access to shared data.

10.4 Identify potential threading problems.

Can you imagine the havoc that can occur when two different threads have access
to a single instance of a class, and both threads invoke methods on that object… and
those methods modify the state of the object? In other words, what might happen if
two different threads call, say, a setter method on a single object? A scenario like that
might corrupt an object's state by changing its instance variable values in an inconsistent
way, and if that object's state is data shared by other parts of the program, well, it's too
scary to even visualize.

But just because we enjoy horror, let's look at an example of what might happen.
The following code demonstrates what happens when two different threads are
accessing the same account data. Imagine that two people each have a checkbook
for a single checking account (or two people each have ATM cards, but both cards
are linked to only one account).

In this example, we have a class called Account that represents a bank account.
To keep the code short, this account starts with a balance of 50 and can be used only
for withdrawals. The withdrawal will be accepted even if there isn't enough money
in the account to cover it. The account simply reduces the balance by the amount
you want to withdraw:

13-ch13.indd 738 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 739

class Account {
 private int balance = 50;
 public int getBalance() {
 return balance;
 }
 public void withdraw(int amount) {
 balance = balance - amount;
 }
}

Now here's where it starts to get fun. Imagine a couple, Fred and Lucy, who both
have access to the account and want to make withdrawals. But they don't want the
account to ever be overdrawn, so just before one of them makes a withdrawal, he or
she will first check the balance to be certain there's enough to cover the withdrawal.
Also, withdrawals are always limited to an amount of 10, so there must be at least 10
in the account balance in order to make a withdrawal. Sounds reasonable. But that's
a two-step process:

 1. Check the balance.

 2. If there's enough in the account (in this example, at least 10), make the
withdrawal.

What happens if something separates step 1 from step 2? For example, imagine
what would happen if Lucy checks the balance and sees there's just exactly enough
in the account, 10. But before she makes the withdrawal, Fred checks the balance and also
sees that there's enough for his withdrawal. Since Lucy has verified the balance but not
yet made her withdrawal, Fred is seeing "bad data." He is seeing the account balance
before Lucy actually debits the account, but at this point, that debit is certain to
occur. Now both Lucy and Fred believe there's enough to make their withdrawals.
So now imagine that Lucy makes her withdrawal, and now there isn't enough in the
account for Fred's withdrawal, but he thinks there is since when he checked, there
was enough! Yikes. In a minute, we'll see the actual banking code, with Fred and
Lucy, represented by two threads, each acting on the same Runnable, and that
Runnable holds a reference to the one and only account instance—so, two threads,
one account.

The logic in our code example is as follows:

 1. The Runnable object holds a reference to a single account.

 2. Two threads are started, representing Lucy and Fred, and each thread is
given a reference to the same Runnable (which holds a reference to the
actual account).

13-ch13.indd 739 9/2/2014 3:46:06 PM

740 Chapter 13: Threads

 3. The initial balance on the account is 50, and each withdrawal is exactly 10.

 4. In the run() method, we loop five times, and in each loop we

■ Make a withdrawal (if there's enough in the account).

■ Print a statement if the account is overdrawn (which it should never be
since we check the balance before making a withdrawal).

 5. The makeWithdrawal() method in the test class (representing the behavior
of Fred or Lucy) will do the following:

■ Check the balance to see if there's enough for the withdrawal.

■ If there is enough, print out the name of the one making the withdrawal.

■ Go to sleep for 500 milliseconds—just long enough to give the other
partner a chance to get in before you actually make the withdrawal.

■ Upon waking up, complete the withdrawal and print that fact.

■ If there wasn't enough in the first place, print a statement showing who
you are and the fact that there wasn't enough.

So what we're really trying to discover is if the following is possible: for one
partner to check the account and see that there's enough, but before making the
actual withdrawal, the other partner checks the account and also sees that there's
enough. When the account balance gets to 10, if both partners check it before
making the withdrawal, both will think it's okay to withdraw, and the account will
overdraw by 10!

Here's the code:

public class AccountDanger implements Runnable {
 private Account acct = new Account();
 public static void main (String [] args) {
 AccountDanger r = new AccountDanger();
 Thread one = new Thread(r);
 Thread two = new Thread(r);
 one.setName("Fred");
 two.setName("Lucy");
 one.start();
 two.start();
 }
 public void run() {
 for (int x = 0; x < 5; x++) {
 makeWithdrawal(10);
 if (acct.getBalance() < 0) {
 System.out.println("account is overdrawn!");
 }
 }
 }

13-ch13.indd 740 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 741

 private void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName()
 + " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName()
 + " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "
 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());
 }
 }
}

(Note: You might have to tweak this code a bit on your machine to the "account
overdrawn" behavior. You might try much shorter sleep times; you might try adding
a sleep to the run() method... In any case, experimenting will help you lock in the
concepts.) So what happened? Is it possible that, say, Lucy checked the balance, fell
asleep, Fred checked the balance, Lucy woke up and completed her withdrawal, then
Fred completes his withdrawal, and in the end, they overdraw the account? Look at
the (numbered) output:

% java AccountDanger
 1. Fred is going to withdraw
 2. Lucy is going to withdraw
 3. Fred completes the withdrawal
 4. Fred is going to withdraw
 5. Lucy completes the withdrawal
 6. Lucy is going to withdraw
 7. Fred completes the withdrawal
 8. Fred is going to withdraw
 9. Lucy completes the withdrawal
10. Lucy is going to withdraw
11. Fred completes the withdrawal
12. Not enough in account for Fred to withdraw 0
13. Not enough in account for Fred to withdraw 0
14. Lucy completes the withdrawal
15. account is overdrawn!
16. Not enough in account for Lucy to withdraw -10
17. account is overdrawn!
18. Not enough in account for Lucy to withdraw -10
19. account is overdrawn!

Although each time you run this code the output might be a little different, let's
walk through this particular example using the numbered lines of output. For the
first four attempts, everything is fine. Fred checks the balance on line 1 and finds it's

13-ch13.indd 741 9/2/2014 3:46:06 PM

742 Chapter 13: Threads

okay. At line 2, Lucy checks the balance and finds it okay. At line 3, Fred makes his
withdrawal. At this point, the balance Lucy checked for (and believes is still
accurate) has actually changed since she last checked. And now Fred checks the
balance again, before Lucy even completes her first withdrawal. By this point, even
Fred is seeing a potentially inaccurate balance because we know Lucy is going to
complete her withdrawal. It is possible, of course, that Fred will complete his before
Lucy does, but that's not what happens here.

On line 5, Lucy completes her withdrawal and then, before Fred completes his,
Lucy does another check on the account on line 6. And so it continues until we get
to line 8, where Fred checks the balance and sees that it's 20. On line 9, Lucy
completes a withdrawal that she had checked for earlier, and this takes the balance
to 10. On line 10, Lucy checks again, sees that the balance is 10, so she knows she
can do a withdrawal. But she didn't know that Fred, too, has already checked the balance
on line 8 so he thinks it's safe to do the withdrawal! On line 11, Fred completes the
withdrawal he approved on line 8. This takes the balance to zero. But Lucy still has a
pending withdrawal that she got approval for on line 10! You know what's coming.

On lines 12 and 13, Fred checks the balance and finds that there's not enough in
the account. But on line 14, Lucy completes her withdrawal and BOOM! The
account is now overdrawn by 10—something we thought we were preventing by doing a
balance check prior to a withdrawal.

Figure 13-4 shows the timeline of what can happen when two threads
concurrently access the same object.

This problem is known as a "race condition," where multiple threads can access
the same resource (typically an object's instance variables) and can produce
corrupted data if one thread "races in" too quickly before an operation that should be
"atomic" has completed.

Preventing the Account Overdraw So what can be done? The solution is
actually quite simple. We must guarantee that the two steps of the withdrawal—
checking the balance and making the withdrawal—are never split apart. We need
them to always be performed as one operation, even when the thread falls asleep in
between step 1 and step 2! We call this an "atomic operation" (although the physics
is a little outdated—in this case, "atomic" means "indivisible") because the
operation, regardless of the number of actual statements (or underlying bytecode
instructions), is completed before any other thread code that acts on the same data.

You can't guarantee that a single thread will stay running throughout the entire
atomic operation. But you can guarantee that even if the thread running the atomic
operation moves in and out of the running state, no other running thread will be
able to act on the same data. In other words, if Lucy falls asleep after checking the

13-ch13.indd 742 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 743

balance, we can stop Fred from checking the balance until after Lucy wakes up and
completes her withdrawal.

So how do you protect the data? You must do two things:

■ Mark the variables private.

■ Synchronize the code that modifies the variables.

Remember, you protect the variables in the normal way—using an access control
modifier. It's the method code that you must protect so that only one thread at a
time can be executing that code. You do this with the synchronized keyword.

We can solve all of Fred and Lucy's problems by adding one word to the code. We
mark the makeWithdrawal() method synchronized as follows:

private synchronized void makeWithdrawal(int amt) {
 if (acct.getBalance() >= amt) {
 System.out.println(Thread.currentThread().getName() +
 " is going to withdraw");
 try {
 Thread.sleep(500);
 } catch(InterruptedException ex) { }
 acct.withdraw(amt);
 System.out.println(Thread.currentThread().getName() +
 " completes the withdrawal");
 } else {
 System.out.println("Not enough in account for "
 + Thread.currentThread().getName()
 + " to withdraw " + acct.getBalance());
 }
}

Now we've guaranteed that once a thread (Lucy or Fred) starts the withdrawal
process by invoking makeWithdrawal(), the other thread cannot enter that method

 FIGURE 13-4

Problems with
concurrent access

Object 1

Time

Thread A will access Object 2 only

Thread B will access Object 1, and then Object 2

A A AB B B

Object 2

13-ch13.indd 743 9/2/2014 3:46:06 PM

744 Chapter 13: Threads

until the first one completes the process by exiting the method. The new output
shows the benefit of synchronizing the makeWithdrawal() method:

% java AccountDanger
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Lucy is going to withdraw
Lucy completes the withdrawal
Fred is going to withdraw
Fred completes the withdrawal
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0
Not enough in account for Fred to withdraw 0
Not enough in account for Lucy to withdraw 0

Notice that now both threads, Lucy and Fred, always check the account balance
and complete the withdrawal before the other thread can check the balance.

Synchronization and Locks

How does synchronization work? With locks. Every object in Java has a built-in lock
that only comes into play when the object has synchronized method code. When
we enter a synchronized non-static method, we automatically acquire the lock
associated with the current instance of the class whose code we're executing (the
this instance). Acquiring a lock for an object is also known as getting the lock, or
locking the object, locking on the object, or synchronizing on the object. We may
also use the term monitor to refer to the object whose lock we're acquiring. Technically,
the lock and the monitor are two different things, but most people talk about the
two interchangeably, and we will too.

Since there is only one lock per object, if one thread has picked up the lock, no
other thread can pick up the lock until the first thread releases (or returns) the lock.
This means no other thread can enter the synchronized code (which means it can't
enter any synchronized method of that object) until the lock has been released.
Typically, releasing a lock means the thread holding the lock (in other words, the
thread currently in the synchronized method) exits the synchronized method.
At that point, the lock is free until some other thread enters a synchronized
method on that object. Remember the following key points about locking and
synchronization:

13-ch13.indd 744 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 745

■ Only methods (or blocks) can be synchronized, not variables or classes.

■ Each object has just one lock.

■ Not all methods in a class need to be synchronized. A class can have both
synchronized and non-synchronized methods.

■ If two threads are about to execute a synchronized method in a class and
both threads are using the same instance of the class to invoke the method,
only one thread at a time will be able to execute the method. The other
thread will need to wait until the first one finishes its method call. In other
words, once a thread acquires the lock on an object, no other thread can
enter any of the synchronized methods in that class (for that object).

■ If a class has both synchronized and non-synchronized methods, multiple
threads can still access the class's non-synchronized methods! If you have
methods that don't access the data you're trying to protect, then you don't
need to synchronize them. Synchronization can cause a hit in some cases (or
even deadlock if used incorrectly), so you should be careful not to overuse it.

■ If a thread goes to sleep, it holds any locks it has—it doesn't release them.

■ A thread can acquire more than one lock. For example, a thread can enter a
synchronized method, thus acquiring a lock, and then immediately invoke
a synchronized method on a different object, thus acquiring that lock as
well. As the stack unwinds, locks are released again. Also, if a thread acquires
a lock and then attempts to call a synchronized method on that same
object, no problem. The JVM knows that this thread already has the lock for
this object, so the thread is free to call other synchronized methods on the
same object, using the lock the thread already has.

■ You can synchronize a block of code rather than a method.

Because synchronization does hurt concurrency, you don't want to synchronize
any more code than is necessary to protect your data. So if the scope of a method is
more than needed, you can reduce the scope of the synchronized part to something
less than a full method—to just a block. We call this, strangely, a synchronized block,
and it looks like this:

class SyncTest {
 public void doStuff() {
 System.out.println("not synchronized");
 synchronized(this) {
 System.out.println("synchronized");
 }
 }
}

13-ch13.indd 745 9/2/2014 3:46:06 PM

746 Chapter 13: Threads

When a thread is executing code from within a synchronized block, including
any method code invoked from that synchronized block, the code is said to be
executing in a synchronized context. The real question is, synchronized on what? Or,
synchronized on which object's lock?

When you synchronize a method, the object used to invoke the method is the
object whose lock must be acquired. But when you synchronize a block of code, you
specify which object's lock you want to use as the lock, so you could, for example,
use some third-party object as the lock for this piece of code. That gives you the
ability to have more than one lock for code synchronization within a single object.

Or you can synchronize on the current instance (this) as in the previous code.
Since that's the same instance that synchronized methods lock on, it means that
you could always replace a synchronized method with a non-synchronized
method containing a synchronized block. In other words, this:

public synchronized void doStuff() {
 System.out.println("synchronized");
}

is equivalent to this:

public void doStuff() {
 synchronized(this) {
 System.out.println("synchronized");
 }
}

These methods both have the exact same effect, in practical terms. The compiled
bytecodes may not be exactly the same for the two methods, but they could be—and
any differences are not really important. The first form is shorter and more familiar
to most people, but the second can be more flexible.

Can Static Methods Be Synchronized?

static methods can be synchronized. There is only one copy of the static data
you're trying to protect, so you only need one lock per class to synchronize static
methods—a lock for the whole class. There is such a lock; every class loaded in Java
has a corresponding instance of java.lang.Class representing that class. It's that
java.lang.Class instance whose lock is used to protect the static methods of
the class (if they're synchronized). There's nothing special you have to do to
synchronize a static method:

public static synchronized int getCount() {
 return count;
}

13-ch13.indd 746 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 747

Again, this could be replaced with code that uses a synchronized block. If the
method is defined in a class called MyClass, the equivalent code is as follows:

public static int getCount() {
 synchronized(MyClass.class) {
 return count;
 }
}

Wait—what's that MyClass.class thing? That's called a class literal. It's a special
feature in the Java language that tells the compiler (who tells the JVM): Go and find
me the instance of Class that represents the class called MyClass. You can also do
this with the following code:

public static void classMethod() throws ClassNotFoundException {
 Class cl = Class.forName("MyClass");
 synchronized (cl) {
 // do stuff
 }
}

However, that's longer, ickier, and most importantly, not on the OCP exam. But it's
quick and easy to use a class literal—just write the name of the class and add .class
at the end. No quotation marks needed. Now you've got an expression for the Class
object you need to synchronize on.

EXERCISE 13-2

Synchronizing a Block of Code

In this exercise, we will attempt to synchronize a block of code. Within that block of
code, we will get the lock on an object so that other threads cannot modify it while
the block of code is executing. We will be creating three threads that will all attempt
to manipulate the same object. Each thread will output a single letter 100 times and
then increment that letter by one. The object we will be using is StringBuffer.
We could synchronize on a String object, but strings cannot be modified once they
are created, so we would not be able to increment the letter without generating a
new String object. The final output should have 100 A's, 100 B's, and 100 C's, all
in unbroken lines.

 1. Create a class and extend the Thread class.

 2. Override the run() method of Thread. This is where the synchronized
block of code will go.

13-ch13.indd 747 9/2/2014 3:46:06 PM

748 Chapter 13: Threads

 3. For our three thread objects to share the same object, we will need to create a
constructor that accepts a StringBuffer object in the argument.

 4. The synchronized block of code will obtain a lock on the StringBuffer
object from step 3.

 5. Within the block, output the StringBuffer 100 times and then increment
the letter in the StringBuffer. You can check Chapter 5 for StringBuffer
(StringBuilder) methods that will help with this.

 6. Finally, in the main() method, create a single StringBuffer object using
the letter A, then create three instances of our class and start all three
of them.

What Happens If a Thread Can't Get the Lock?

If a thread tries to enter a synchronized method and the lock is already taken, the
thread is said to be blocked on the object's lock. Essentially, the thread goes into a
kind of pool for that particular object and has to sit there until the lock is released
and the thread can again become runnable/running. Just because a lock is released
doesn't mean any particular thread will get it. There might be three threads waiting
for a single lock, for example, and there's no guarantee that the thread that has
waited the longest will get the lock first.

When thinking about blocking, it's important to pay attention to which objects
are being used for locking:

■ Threads calling non-static synchronized methods in the same class will
only block each other if they're invoked using the same instance. That's
because they each lock on this instance, and if they're called using two
different instances, they get two locks, which do not interfere with each
other.

■ Threads calling static synchronized methods in the same class will
always block each other—they all lock on the same Class instance.

■ A static synchronized method and a non-static synchronized
method will not block each other, ever. The static method locks on a
Class instance, while the non-static method locks on the this instance—
these actions do not interfere with each other at all.

■ For synchronized blocks, you have to look at exactly what object has
been used for locking. (What's inside the parentheses after the word

13-ch13.indd 748 9/2/2014 3:46:06 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 749

synchronized?) Threads that synchronize on the same object will block
each other. Threads that synchronize on different objects will not.

Table 13-1 lists the thread-related methods and whether the thread gives up its
lock as a result of the call.

So When Do I Need to Synchronize?

Synchronization can get pretty complicated, and you may be wondering why you
would want to do this at all if you can help it. But remember the earlier "race
conditions" example with Lucy and Fred making withdrawals from their account.
When we use threads, we usually need to use some synchronization somewhere to
make sure our methods don't interrupt each other at the wrong time and mess up our
data. Generally, any time more than one thread is accessing mutable (changeable)
data, you synchronize to protect that data to make sure two threads aren't changing
it at the same time (or that one isn't changing it at the same time the other is
reading it, which is also confusing). You don't need to worry about local variables—
each thread gets its own copy of a local variable. Two threads executing the same
method at the same time will use different copies of the local variables, and they
won't bother each other. However, you do need to worry about static and non-
static fields if they contain data that can be changed.

For changeable data in a non-static field, you usually use a non-static method
to access it. By synchronizing that method, you will ensure that any threads trying to
run that method using the same instance will be prevented from simultaneous access.
But a thread working with a different instance will not be affected because it's
acquiring a lock on the other instance. That's what we want—threads working with
the same data need to go one at a time, but threads working with different data can
just ignore each other and run whenever they want to; it doesn't matter.

Give Up

Locks

Keep Locks Class Defining the Method

wait () notify() (Although the thread will
probably exit the synchronized code shortly
after this call, and thus give up its locks.)

java.lang.Object

 join() java.lang.Thread

 sleep() java.lang.Thread

yield() java.lang.Thread

 TABLE 13-1

Methods and
Lock Status

13-ch13.indd 749 9/2/2014 3:46:06 PM

750 Chapter 13: Threads

For changeable data in a static field, you usually use a static method to access
it. And again, by synchronizing the method, you ensure that any two threads trying
to access the data will be prevented from simultaneous access, because both threads
will have to acquire locks on the Class object for the class the static method's
defined in. Again, that's what we want.

However—what if you have a non-static method that accesses a static field?
Or a static method that accesses a non-static field (using an instance)? In these
cases, things start to get messy quickly, and there's a very good chance that things
will not work the way you want. If you've got a static method accessing a non-
static field and you synchronize the method, you acquire a lock on the Class
object. But what if there's another method that also accesses the non-static field,
this time using a non-static method? It probably synchronizes on the current
instance (this) instead. Remember that a static synchronized method and a
non-static synchronized method will not block each other—they can run at the
same time. Similarly, if you access a static field using a non-static method, two
threads might invoke that method using two different this instances. Which means
they won't block each other because they use different locks. Which means two
threads are simultaneously accessing the same static field—exactly the sort of
thing we're trying to prevent.

It gets very confusing trying to imagine all the weird things that can happen here.
To keep things simple, in order to make a class thread-safe, methods that access
changeable fields need to be synchronized.

Access to static fields should be done using static synchronized methods.
Access to non-static fields should be done using non-static synchronized
methods. For example:

public class Thing {
 private static int staticField;
 private int nonstaticField;
 public static synchronized int getStaticField() {
 return staticField;
 }
 public static synchronized void setStaticField(
 int staticField) {
 Thing.staticField = staticField;
 }
 public synchronized int getNonstaticField() {
 return nonstaticField;
 }
 public synchronized void setNonstaticField(
 int nonstaticField) {
 this.nonstaticField = nonstaticField;
 }
}

13-ch13.indd 750 9/2/2014 3:46:07 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 751

What if you need to access both static and non-static fields in a method?
Well, there are ways to do that, but it's beyond what you need for the exam. You will
live a longer, happier life if you JUST DON'T DO IT. Really. Would we lie?

Thread-Safe Classes

When a class has been carefully synchronized to protect its data (using the rules just
given or using more complicated alternatives), we say the class is "thread-safe."
Many classes in the Java APIs already use synchronization internally in order to
make the class "thread-safe." For example, StringBuffer and StringBuilder are
nearly identical classes, except that all the methods in StringBuffer are
synchronized when necessary, while those in StringBuilder are not. Generally,
this makes StringBuffer safe to use in a multithreaded environment, while
StringBuilder is not. (In return, StringBuilder is a little bit faster because it
doesn't bother synchronizing.) However, even when a class is "thread-safe," it is
often dangerous to rely on these classes to provide the thread protection you need.
(C'mon, the repeated quotes used around "thread-safe" had to be a clue, right?) You
still need to think carefully about how you use these classes. As an example, consider
the following class:

import java.util.*;
public class NameList {
 private List names = Collections.synchronizedList(
 new LinkedList());
 public void add(String name) {
 names.add(name);
 }
 public String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;
 }
}

The method Collections.synchronizedList() returns a List whose
methods are all synchronized and "thread-safe" according to the documentation
(like a Vector—but since this is the 21st century, we're not going to use a Vector
here). The question is, can the NameList class be used safely from multiple threads?
It's tempting to think that yes, since the data in names is in a synchronized
collection, the NameList class is "safe" too. However that's not the case—the
removeFirst() may sometimes throw a IndexOutOfBoundsException. What's
the problem? Doesn't it correctly check the size() of names before removing

13-ch13.indd 751 9/2/2014 3:46:07 PM

752 Chapter 13: Threads

anything to make sure there's something there? How could this code fail? Let's try to
use NameList like this:

public static void main(String[] args) {
 final NameList nl = new NameList();
 nl.add("Ozymandias");
 class NameDropper extends Thread {
 public void run() {
 String name = nl.removeFirst();
 System.out.println(name);
 }
 }
 Thread t1 = new NameDropper();
 Thread t2 = new NameDropper();
 t1.start();
 t2.start();
}

What might happen here is that one of the threads will remove the one name and
print it, and then the other will try to remove a name and get null. If we think just
about the calls to names.size() and names.get(0), they occur in this order:

Thread t1 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.size(), which returns 0.
Thread t2 does not call remove(0).

The output here is

Ozymandias
null

However, if we run the program again, something different might happen:

Thread t1 executes names.size(), which returns 1.
Thread t2 executes names.size(), which returns 1.
Thread t1 executes names.remove(0), which returns Ozymandias.
Thread t2 executes names.remove(0), which throws an exception because the
list is now empty.

The thing to realize here is that in a "thread-safe" class like the one returned by
synchronizedList(), each individual method is synchronized. So names.size() is
synchronized, and names.remove(0) is synchronized. But nothing prevents
another thread from doing something else to the list in between those two calls. And
that's where problems can happen.

13-ch13.indd 752 9/2/2014 3:46:07 PM

 Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4) 753

There's a solution here: Don't rely on Collections.synchronizedList().
Instead, synchronize the code yourself:

import java.util.*;
public class NameList {
 private List names = new LinkedList();
 public synchronized void add(String name) {
 names.add(name);
 }
 public synchronized String removeFirst() {
 if (names.size() > 0)
 return (String) names.remove(0);
 else
 return null;
 }
}

Now the entire removeFirst() method is synchronized, and once one thread
starts it and calls names.size(), there's no way the other thread can cut in and
steal the last name. The other thread will just have to wait until the first thread
completes the removeFirst() method.

The moral here is that just because a class is described as "thread-safe" doesn't
mean it is always thread-safe. If individual methods are synchronized, that may not
be enough—you may be better off putting in synchronization at a higher level (i.e.,
put it in the block or method that calls the other methods). Once you do that, the
original synchronization (in this case, the synchronization inside the object returned
by Collections.synchronizedList()) may well become redundant.

Thread Deadlock

Perhaps the scariest thing that can happen to a Java program is deadlock. Deadlock
occurs when two threads are blocked, with each waiting for the other's lock. Neither
can run until the other gives up its lock, so they'll sit there forever.

This can happen, for example, when thread A hits synchronized code, acquires
a lock B, and then enters another method (still within the synchronized code it
has the lock on) that's also synchronized. But thread A can't get the lock to enter
this synchronized code—block C—because another thread D has the lock already.
So thread A goes off to the waiting-for-the-C-lock pool, hoping that thread D will
hurry up and release the lock (by completing the synchronized method). But
thread A will wait a very long time indeed, because while thread D picked up lock
C, it then entered a method synchronized on lock B. Obviously, thread D can't get
the lock B because thread A has it. And thread A won't release it until thread D

13-ch13.indd 753 9/2/2014 3:46:07 PM

754 Chapter 13: Threads

releases lock C. But thread D won't release lock C until after it can get lock B and
continue. And there they sit. The following example demonstrates deadlock:

 1. public class DeadlockRisk {
 2. private static class Resource {
 3. public int value;
 4. }
 5. private Resource resourceA = new Resource();
 6. private Resource resourceB = new Resource();
 7. public int read() {
 8. synchronized(resourceA) { // May deadlock here
 9. synchronized(resourceB) {
10. return resourceB.value + resourceA.value;
11. }
12. }
13. }
14.
15. public void write(int a, int b) {
16. synchronized(resourceB) { // May deadlock here
17. synchronized(resourceA) {
18. resourceA.value = a;
19. resourceB.value = b;
20. }
21. }
22. }
23. }

Assume that read() is started by one thread and write() is started by another. If
there are two different threads that may read and write independently, there is a risk
of deadlock at line 8 or 16. The reader thread will have resourceA, the writer
thread will have resourceB, and both will get stuck waiting for the other.

Code like this almost never results in deadlock because the CPU has to switch
from the reader thread to the writer thread at a particular point in the code, and the
chances of deadlock occurring are very small. The application may work fine 99.9
percent of the time.

The preceding simple example is easy to fix; just swap the order of locking for
either the reader or the writer at lines 16 and 17 (or lines 8 and 9). More complex
deadlock situations can take a long time to figure out.

Regardless of how little chance there is for your code to deadlock, the bottom line
is that if you deadlock, you're dead. There are design approaches that can help avoid
deadlock, including strategies for always acquiring locks in a predetermined order.

But that's for you to study and is beyond the scope of this book. We're just trying
to get you through the exam. If you learn everything in this chapter, though, you'll
still know more about threads than most experienced Java programmers.

13-ch13.indd 754 9/2/2014 3:46:07 PM

 Thread Interaction (OCP Objectives 10.3 and 10.4) 755

CERTIFICATION OBJECTIVE

Thread Interaction
(OCP Objectives 10.3 and 10.4)

10.3 Synchronize thread access to shared data.

10.4 Identify potential threading problems.

The last thing we need to look at is how threads can interact with one another to
communicate about—among other things—their locking status. The Object class
has three methods, wait(), notify(), and notifyAll(), that help threads
communicate the status of an event that the threads care about. For example, if one
thread is a mail-delivery thread and one thread is a mail-processor thread, the mail-
processor thread has to keep checking to see if there's any mail to process. Using the wait
and notify mechanism, the mail-processor thread could check for mail, and if it doesn't
find any, it can say, "Hey, I'm not going to waste my time checking for mail every two
seconds. I'm going to go hang out, and when the mail deliverer puts something in the
mailbox, have him notify me so I can go back to runnable and do some work." In other
words, using wait() and notify() lets one thread put itself into a "waiting room" until
some other thread notifies it that there's a reason to come back out.

One key point to remember (and keep in mind for the exam) about wait/notify is this:

wait(), notify(), and notifyAll() must be called from within a synchronized
context! A thread can't invoke a wait or notify method on an object unless it owns that
object's lock.

Here we'll present an example of two threads that depend on each other to
proceed with their execution, and we'll show how to use wait() and notify() to
make them interact safely and at the proper moment.

Think of a computer-controlled machine that cuts pieces of fabric into different
shapes and an application that allows users to specify the shape to cut. The current
version of the application has one thread, which loops, first asking the user for
instructions, and then directs the hardware to cut the requested shape:

public void run(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Send steps to hardware
 }
}

13-ch13.indd 755 9/2/2014 3:46:07 PM

756 Chapter 13: Threads

This design is not optimal because the user can't do anything while the machine
is busy and while there are other shapes to define. We need to improve the situation.

A simple solution is to separate the processes into two different threads, one of
them interacting with the user and another managing the hardware. The user thread
sends the instructions to the hardware thread and then goes back to interacting with
the user immediately. The hardware thread receives the instructions from the user
thread and starts directing the machine immediately. Both threads use a common
object to communicate, which holds the current design being processed.

The following pseudocode shows this design:

public void userLoop(){
 while(true){
 // Get shape from user
 // Calculate machine steps from shape
 // Modify common object with new machine steps
 }
}

public void hardwareLoop(){
 while(true){
 // Get steps from common object
 // Send steps to hardware
 }
}

The problem now is to get the hardware thread to process the machine steps as
soon as they are available. Also, the user thread should not modify them until they
have all been sent to the hardware. The solution is to use wait() and notify(),
and also to synchronize some of the code.

The methods wait() and notify(), remember, are instance methods of Object.
In the same way that every object has a lock, every object can have a list of threads
that are waiting for a signal (a notification) from the object. A thread gets on this
waiting list by executing the wait() method of the target object. From that
moment, it doesn't execute any further instructions until the notify() method of
the target object is called. If many threads are waiting on the same object, only one
will be chosen (in no guaranteed order) to proceed with its execution. If there are no
threads waiting, then no particular action is taken. Let's take a look at some real
code that shows one object waiting for another object to notify it (take note, it is
somewhat complex):

 1. class ThreadA {
 2. public static void main(String [] args) {
 3. ThreadB b = new ThreadB();
 4. b.start();
 5.

13-ch13.indd 756 9/2/2014 3:46:07 PM

 Thread Interaction (OCP Objectives 10.3 and 10.4) 757

 6. synchronized(b) {
 7. try {
 8. System.out.println("Waiting for b to complete...");
 9. b.wait();
10. } catch (InterruptedException e) {}
11. System.out.println("Total is: " + b.total);
12. }
13. }
14. }
15.
16. class ThreadB extends Thread {
17. int total;
18.
19. public void run() {
20. synchronized(this) {
21. for(int i=0;i<100;i++) {
22. total += i;
23. }
24. notify();
25. }
26. }
27. }

This program contains two objects with threads: ThreadA contains the main
thread, and ThreadB has a thread that calculates the sum of all numbers from 0
through 99. As soon as line 4 calls the start() method, ThreadA will continue
with the next line of code in its own class, which means it could get to line 11 before
ThreadB has finished the calculation. To prevent this, we use the wait() method in
line 9.

Notice in line 6 the code synchronizes itself with the object b—this is because in
order to call wait() on the object, ThreadA must own a lock on b. For a thread to
call wait() or notify(), the thread has to be the owner of the lock for that object.
When the thread waits, it temporarily releases the lock for other threads to use, but
it will need it again to continue execution. It's common to find code like this:

synchronized(anotherObject) { // this has the lock on anotherObject
 try {
 anotherObject.wait();
 // the thread releases the lock and waits
 // To continue, the thread needs the lock,
 // so it may be blocked until it gets it.
 } catch(InterruptedException e){}
}

The preceding code waits until notify() is called on anotherObject.

synchronized(this) { notify(); }

13-ch13.indd 757 9/2/2014 3:46:07 PM

758 Chapter 13: Threads

This code notifies a single thread currently waiting on the this object. The
lock can be acquired much earlier in the code, such as in the calling method.
Note that if the thread calling wait() does not own the lock, it will throw an
IllegalMonitorStateException. This exception is not a checked exception, so
you don't have to catch it explicitly. You should always be clear whether a thread
has the lock of an object in any given block of code.

Notice in lines 7–10 there is a try/catch block around the wait() method. A
waiting thread can be interrupted in the same way as a sleeping thread, so you have
to take care of the exception:

try {
 wait();
} catch(InterruptedException e) {
 // Do something about it
}

In the fabric example, the way to use these methods is to have the hardware
thread wait on the shape to be available and the user thread to notify after it has
written the steps. The machine steps may comprise global steps, such as moving the
required fabric to the cutting area, and a number of substeps, such as the direction
and length of a cut. As an example, they could be

int fabricRoll;
int cuttingSpeed;
Point startingPoint;
float[] directions;
float[] lengths;
etc..

It is important that the user thread does not modify the machine steps while the
hardware thread is using them, so this reading and writing should be synchronized.

The resulting code would look like this:

class Operator extends Thread {
 public void run(){
 while(true){
 // Get shape from user
 synchronized(this){
 // Calculate new machine steps from shape
 notify();
 }
 }
 }
}
class Machine extends Thread {
 Operator operator; // assume this gets initialized
 public void run(){

13-ch13.indd 758 9/2/2014 3:46:07 PM

 Thread Interaction (OCP Objectives 10.3 and 10.4) 759

 while(true){
 synchronized(operator){
 try {
 operator.wait();
 } catch(InterruptedException ie) {}
 // Send machine steps to hardware
 }
 }
 }
}

The machine thread, once started, will immediately go into the waiting state and
will wait patiently until the operator sends the first notification. At that point, it is
the operator thread that owns the lock for the object, so the hardware thread gets
stuck for a while. It's only after the operator thread abandons the synchronized
block that the hardware thread can really start processing the machine steps.

While one shape is being processed by the hardware, the user may interact with
the system and specify another shape to be cut. When the user is finished with the
shape and it is time to cut it, the operator thread attempts to enter the
synchronized block, maybe blocking until the machine thread has finished with
the previous machine steps. When the machine thread has finished, it repeats the
loop, going again to the waiting state (and therefore releasing the lock). Only then
can the operator thread enter the synchronized block and overwrite the machine
steps with the new ones.

Having two threads is definitely an improvement over having one, although in
this implementation, there is still a possibility of making the user wait. A further
improvement would be to have many shapes in a queue, thereby reducing the
possibility of requiring the user to wait for the hardware.

There is also a second form of wait() that accepts a number of milliseconds as a
maximum time to wait. If the thread is not interrupted, it will continue normally
whenever it is notified or the specified timeout has elapsed. This normal
continuation consists of getting out of the waiting state, but to continue execution,
it will have to get the lock for the object:

synchronized(a){ // The thread gets the lock on 'a'
 a.wait(2000); // Thread releases the lock and waits for notify
 // only for a maximum of two seconds, then goes back
 // to Runnable
 // The thread reacquires the lock
 // More instructions here
}

13-ch13.indd 759 9/2/2014 3:46:07 PM

760 Chapter 13: Threads

Using notifyAll() When Many Threads May Be Waiting

In most scenarios, it's preferable to notify all of the threads that are waiting on a
particular object. If so, you can use notifyAll() on the object to let all the threads
rush out of the waiting area and back to runnable. This is especially important if you
have several threads waiting on one object, but for different reasons, and you want
to be sure that the right thread (along with all of the others) is notified.

notifyAll(); // Will notify all waiting threads

All of the threads will be notified and start competing to get the lock. As the lock
is used and released by each thread, all of them will get into action without a need
for further notification.

As we said earlier, an object can have many threads waiting on it, and using
notify() will affect only one of them. Which one, exactly, is not specified and
depends on the JVM implementation, so you should never rely on a particular
thread being notified in preference to another.

In cases in which there might be a lot more waiting, the best way to do this is by
using notifyAll(). Let's take a look at this in some code. In this example, there is
one class that performs a calculation and many readers that are waiting to receive
the completed calculation. At any given moment, many readers may be waiting.

 1. class Reader extends Thread {
 2. Calculator c;
 3.
 4. public Reader(Calculator calc) {
 5. c = calc;
 6. }
 7.
 8. public void run() {
 9. synchronized(c) {
10. try {
11. System.out.println("Waiting for calculation...");
12. c.wait();

When the wait() method is invoked on an object, the thread executing

that code gives up its lock on the object immediately. However, when notify() is

called, that doesn't mean the thread gives up its lock at that moment. If the thread is

still completing synchronized code, the lock is not released until the thread moves out

of synchronized code. So just because notify() is called, this doesn't mean the lock

becomes available at that moment.

13-ch13.indd 760 9/2/2014 3:46:07 PM

 Thread Interaction (OCP Objectives 10.3 and 10.4) 761

13. } catch (InterruptedException e) {}
14. System.out.println("Total is: " + c.total);
15. }
16. }
17.
18. public static void main(String [] args) {
19. Calculator calculator = new Calculator();
20. new Reader(calculator).start();
21. new Reader(calculator).start();
22. new Reader(calculator).start();
23. new Thread(calculator).start();
24. }
25. }
26.
27. class Calculator implements Runnable {
28. int total;
29.
30. public void run() {
31. synchronized(this) {
32. for(int i = 0; i < 100; i++) {
33. total += i;
34. }
35. notifyAll();
36. }
37. }
38. }

The program starts three threads that are all waiting to receive the finished
calculation (lines 18–24) and then starts the calculator with its calculation. Note
that if the run() method at line 30 used notify() instead of notifyAll(), only
one reader would be notified instead of all the readers.

Using wait() in a Loop

Actually, both of the previous examples (Machine/Operator and Reader/Calculator)
had a common problem. In each one, there was at least one thread calling wait()
and another thread calling notify() or notifyAll(). This works well enough as
long as the waiting threads have actually started waiting before the other thread
executes the notify() or notifyAll(). But what happens if, for example, the
Calculator runs first and calls notify() before the Readers have started waiting?
This could happen, since we can't guarantee the order in which the different parts of
the thread will execute. Unfortunately, when the Readers run, they just start
waiting right away. They don't do anything to see if the event they're waiting for has
already happened. So if the Calculator has already called notifyAll(), it's not
going to call notifyAll() again—and the waiting Readers will keep waiting
forever. This is probably not what the programmer wanted to happen. Almost always,
when you want to wait for something, you also need to be able to check if it has
already happened. Generally, the best way to solve this is to put in some sort of loop

13-ch13.indd 761 9/2/2014 3:46:07 PM

762 Chapter 13: Threads

that checks on some sort of conditional expressions and only waits if the thing
you're waiting for has not yet happened. Here's a modified, safer version of the
earlier fabric-cutting machine example:

class Operator extends Thread {
 Machine machine; // assume this gets initialized
 public void run() {
 while (true) {
 Shape shape = getShapeFromUser();
 MachineInstructions job =
 calculateNewInstructionsFor(shape);
 machine.addJob(job);
 }
 }
}

The operator will still keep on looping forever, getting more shapes from users,
calculating new instructions for those shapes, and sending them to the machine. But
now the logic for notify() has been moved into the addJob() method in the
Machine class:

class Machine extends Thread {
 List<MachineInstructions> jobs =
 new ArrayList<MachineInstructions>();

 public void addJob(MachineInstructions job) {
 synchronized (jobs) {
 jobs.add(job);
 jobs.notify();
 }
 }
 public void run() {
 while (true) {
 synchronized (jobs) {
 // wait until at least one job is available
 while (jobs.isEmpty()) {
 try {
 jobs.wait();
 } catch (InterruptedException ie) { }
 }
 // If we get here, we know that jobs is not empty
 MachineInstructions instructions = jobs.remove(0);
 // Send machine steps to hardware
 }
 }
 }
}

A machine keeps a list of the jobs it's scheduled to do. Whenever an operator adds
a new job to the list, it calls the addJob() method and adds the new job to the list.

13-ch13.indd 762 9/2/2014 3:46:07 PM

 Thread Interaction (OCP Objectives 10.3 and 10.4) 763

Meanwhile, the run() method just keeps looping, looking for any jobs on the list. If
there are no jobs, it will start waiting. If it's notified, it will stop waiting and then
recheck the loop condition: Is the list still empty? In practice, this double-check is
probably not necessary, as the only time a notify() is ever sent is when a new job has
been added to the list. However, it's a good idea to require the thread to recheck the
isEmpty() condition whenever it's been woken up because it's possible that a thread
has accidentally sent an extra notify() that was not intended. There's also a
possible situation called spontaneous wakeup that may exist in some situations—a
thread may wake up even though no code has called notify() or notifyAll(). (At
least, no code you know about has called these methods. Sometimes, the JVM may
call notify() for reasons of its own, or code in some other class calls it for reasons you
just don't know.) What this means is that when your thread wakes up from a wait(),
you don't know for sure why it was awakened. By putting the wait() method in a
while loop and rechecking the condition that represents what we were waiting for, we
ensure that whatever the reason we woke up, we will re-enter the wait() if (and only
if) the thing we were waiting for has not happened yet. In the Machine class, the thing
we were waiting for is for the jobs list to not be empty. If it's empty, we wait, and if it's
not, we don't.

Note also that both the run() method and the addJob() method synchronize on
the same object—the jobs list. This is for two reasons. One is because we're calling
wait() and notify() on this instance, so we need to synchronize in order to avoid an
IllegalMonitorStateException. The other reason is that the data in the jobs list is
changeable data stored in a field that is accessed by two different threads. We need to
synchronize in order to access that changeable data safely. Fortunately, the same
synchronized blocks that allow us to wait() and notify() also provide the required
thread safety for our other access to changeable data. In fact, this is a main reason why
synchronization is required to use wait() and notify() in the first place—you almost
always need to share some mutable data between threads at the same time, and that
means you need synchronization. Notice that the synchronized block in addJob() is
big enough to also include the call to jobs.add(job)—which modifies shared data.
And the synchronized block in run() is large enough to include the whole while
loop—which includes the call to jobs.isEmpty(), which accesses shared data.

The moral here is that when you use wait() and notify() or notifyAll(), you
should almost always also have a while loop around the wait() that checks a
condition and forces continued waiting until the condition is met. And you should
also make use of the required synchronization for the wait() and notify() calls to
also protect whatever other data you're sharing between threads. If you see code that
fails to do this, there's usually something wrong with the code—even if you have a
hard time seeing what exactly the problem is.

13-ch13.indd 763 9/2/2014 3:46:07 PM

764 Chapter 13: Threads

The methods wait(), notify(), and notifyAll() are methods of only

java.lang.Object, not of java.lang.Thread or java.lang.Runnable. Be sure you know

which methods are defi ned in Thread, which in Object, and which in Runnable (just

run(), so that's an easy one). Of the key methods in Thread, be sure you know which are

static—sleep() and yield(), and which are not static—join() and start(). Table 13-2

lists the key methods you'll need to know for the exam, with the static methods shown

in italics.

Class Object Class Thread Interface Runnable

wait () start() run()

notify() yield()

notifyAll() sleep()

join()

CERTIFICATION SUMMARY

This chapter covered the required thread knowledge you'll need to apply on the
certification exam. Threads can be created by either extending the Thread class or
implementing the Runnable interface. The only method that must be overridden in
the Runnable interface is the run() method, but the thread doesn't become a thread
of execution until somebody calls the Thread object's start() method. We also
looked at how the sleep() method can be used to pause a thread, and we saw that
when an object goes to sleep, it holds onto any locks it acquired prior to sleeping.

We looked at five thread states: new, runnable, running, blocked/waiting/sleeping,
and dead. You learned that when a thread is dead, it can never be restarted even if
it's still a valid object on the heap. We saw that there is only one way a thread can
transition to running, and that's from runnable. However, once running, a thread
can become dead, go to sleep, wait for another thread to finish, block on an object's
lock, wait for a notification, or return to runnable.

You saw how two threads acting on the same data can cause serious problems
(remember Lucy and Fred's bank account?). We saw that to let one thread execute a
method but prevent other threads from running the same object's method, we use
the synchronized keyword. To coordinate activity between different threads, use
the wait(), notify(), and notifyAll() methods.

 TABLE 13-2

Key Thread
Methods

13-ch13.indd 764 9/2/2014 3:46:07 PM

Two-Minute Drill 765

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
Photocopy it and sleep with it under your pillow for complete absorption.

Defining, Instantiating, and Starting Threads
(OCP Objective 10.1)

❑ Threads can be created by extending Thread and overriding the public
void run() method.

❑ Thread objects can also be created by calling the Thread constructor that
takes a Runnable argument. The Runnable object is said to be the target of
the thread.

❑ You can call start() on a Thread object only once. If start()
is called more than once on a Thread object, it will throw a
IllegalThreadStateException.

❑ It is legal to create many Thread objects using the same Runnable object as
the target.

❑ When a Thread object is created, it does not become a thread of execution
until its start() method is invoked. When a Thread object exists but hasn't
been started, it is in the new state and is not considered alive.

Transitioning Between Thread States (OCP Objective 10.2)

❑ Once a new thread is started, it will always enter the runnable state.

❑ The thread scheduler can move a thread back and forth between the
runnable state and the running state.

❑ For a typical single-processor machine, only one thread can be running at a
time, although many threads may be in the runnable state.

❑ There is no guarantee that the order in which threads were started
determines the order in which they'll run.

13-ch13.indd 765 9/2/2014 3:46:07 PM

766 Chapter 13: Threads

❑ There's no guarantee that threads will take turns in any fair way. It's up
to the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns,
regardless of the underlying JVM, you can use the sleep() method. This
prevents one thread from hogging the running process while another thread
starves. (In most cases, though, yield() works well enough to encourage
your threads to play together nicely.)

❑ A running thread may enter a blocked/waiting state by a wait(), sleep(),
or join() call.

❑ A running thread may enter a blocked/waiting state because it can't acquire
the lock for a synchronized block of code.

❑ When the sleep or wait is over, or an object's lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting to
running (well, for all practical purposes anyway).

❑ A dead thread cannot be started again.

Sleep, Yield, and Join (OCP Objective 10.2)

❑ Sleeping is used to delay execution for a period of time, and no locks are
released when a thread goes to sleep.

❑ A sleeping thread is guaranteed to sleep for at least the time specified in
the argument to the sleep() method (unless it's interrupted), but there is
no guarantee as to when the newly awakened thread will actually return to
running.

❑ The sleep() method is a static method that sleeps the currently executing
thread's state. One thread cannot tell another thread to sleep.

❑ The setPriority() method is used on Thread objects to give threads
a priority of between 1 (low) and 10 (high), although priorities are not
guaranteed, and not all JVMs recognize 10 distinct priority levels—some
levels may be treated as effectively equal.

❑ If not explicitly set, a thread's priority will have the same priority as the
thread that created it.

13-ch13.indd 766 9/2/2014 3:46:08 PM

Two-Minute Drill 767

❑ The yield() method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out there
will be a different thread selected to run. A thread might yield and then
immediately reenter the running state.

❑ The closest thing to a guarantee is that at any given time, when a thread
is running, it will usually not have a lower priority than any thread in the
runnable state. If a low-priority thread is running when a high-priority thread
enters runnable, the JVM will usually preempt the running low-priority
thread and put the high-priority thread in.

❑ When one thread calls the join() method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, "Hey, thread, I want to join on to the end of
you. Let me know when you're done, so I can enter the runnable state."

Concurrent Access Problems and Synchronized Threads
(OCP Objectives 10.3 and 10.4)

❑ synchronized methods prevent more than one thread from accessing an
object's critical method code simultaneously.

❑ You can use the synchronized keyword as a method modifier or to start a
synchronized block of code.

❑ To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

❑ While only one thread can be accessing synchronized code of a particular
instance, multiple threads can still access the same object's unsynchronized
code.

❑ When a thread goes to sleep, its locks will be unavailable to other threads.

❑ static methods can be synchronized using the lock from the java.lang
.Class instance representing that class.

13-ch13.indd 767 9/2/2014 3:46:08 PM

768 Chapter 13: Threads

Communicating with Objects by Waiting and Notifying
(OCP Objectives 10.3 and 10.4)

❑ The wait() method lets a thread say, "There's nothing for me to do now, so
put me in your waiting pool and notify me when something happens that I
care about." Basically, a wait() call means "let me wait in your pool" or "add
me to your waiting list."

❑ The notify() method is used to send a signal to one and only one of the
threads that are waiting in that same object's waiting pool.

❑ The notify() method CANNOT specify which waiting thread to notify.

❑ The method notifyAll() works in the same way as notify(), only it sends
the signal to all of the threads waiting on the object.

❑ All three methods—wait(), notify(), and notifyAll()—must be
called from within a synchronized context! A thread invokes wait() or
notify() on a particular object, and the thread must currently hold the lock
on that object.

Deadlocked Threads (OCP Objective 10.4)

❑ Deadlocking is when thread execution grinds to a halt because the code is
waiting for locks to be removed from objects.

❑ Deadlocking can occur when a locked object attempts to access another
locked object that is trying to access the first locked object. In other words,
both threads are waiting for each other's locks to be released; therefore, the
locks will never be released!

❑ Deadlocking is bad. Don't do it.

13-ch13.indd 768 9/2/2014 3:46:09 PM

Self Test 769

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. If you have a rough time with some of these at first, don't beat yourself up. Some of these
questions are long and intricate. Expect long and intricate questions on the real exam too!

 1. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable();
Thread myThread = new Thread(target);

 Which of the following classes can be used to create the target so that the preceding code
compiles correctly?

 A. public class MyRunnable extends Runnable{public void run(){}}

 B. public class MyRunnable extends Object{public void run(){}}

 C. public class MyRunnable implements Runnable{public void run(){}}

 D. public class MyRunnable implements Runnable{void run(){}}

 E. public class MyRunnable implements Runnable{public void start(){}}

 2. Given:

 3. class MyThread extends Thread {
 4. public static void main(String [] args) {
 5. MyThread t = new MyThread();
 6. Thread x = new Thread(t);
 7. x.start();
 8. }
 9. public void run() {
10. for(int i=0;i<3;++i) {
11. System.out.print(i + "..");
12. }
13. }
14. }

 What is the result of this code?
 A. Compilation fails
 B. 1..2..3..

 C. 0..1..2..3..

 D. 0..1..2..

 E. An exception occurs at runtime

13-ch13.indd 769 9/2/2014 3:46:09 PM

770 Chapter 13: Threads

 3. Given:

 3. class Test {
 4. public static void main(String [] args) {
 5. printAll(args);
 6. }
 7. public static void printAll(String[] lines) {
 8. for(int i=0;i<lines.length;i++){
 9. System.out.println(lines[i]);
10. Thread.currentThread().sleep(1000);
11. }
12. }
13. }

 The static method Thread.currentThread() returns a reference to the currently executing
Thread object. What is the result of this code?

 A. Each String in the array lines will output, with a one-second pause between lines
 B. Each String in the array lines will output, with no pause in between because this method

is not executed in a Thread
 C. Each String in the array lines will output, and there is no guarantee that there will be a

pause because currentThread() may not retrieve this thread
 D. This code will not compile
 E. Each String in the lines array will print, with at least a one-second pause between lines

 4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

 A. public int read(){return a+b;}
 public void set(int a, int b){this.a=a;this.b=b;}

 B. public synchronized int read(){return a+b;}

 public synchronized void set(int a, int b){this.a=a;this.b=b;}

 C. public int read(){synchronized(a){return a+b;}}

 public void set(int a, int b){synchronized(a){this.a=a;this.b=b;}}

 D. public int read(){synchronized(a){return a+b;}}

 public void set(int a, int b){synchronized(b){this.a=a;this.b=b;}}

 E. public synchronized(this) int read(){return a+b;}

 public synchronized(this) void set(int a, int b){this.a=a;this.b=b;}

 F. public int read(){synchronized(this){return a+b;}}

 public void set(int a, int b){synchronized(this){this.a=a;this.b=b;}}

13-ch13.indd 770 9/2/2014 3:46:09 PM

Self Test 771

 5. Given:

 1. public class WaitTest {
 2. public static void main(String [] args) {
 3. System.out.print("1 ");
 4. synchronized(args){
 5. System.out.print("2 ");
 6. try {
 7. args.wait();
 8. }
 9. catch(InterruptedException e){}
10. }
11. System.out.print("3 ");
12. }
13. }

 What is the result of trying to compile and run this program?
 A. It fails to compile because the IllegalMonitorStateException of wait() is not dealt

with in line 7
 B. 1 2 3

 C. 1 3

 D. 1 2

 E. At runtime, it throws an IllegalMonitorStateException when trying to wait
 F. It will fail to compile because it has to be synchronized on the this object

 6. Assume the following method is properly synchronized and called from a thread A on an object B:

wait(2000);

 After calling this method, when will thread A become a candidate to get another turn at the CPU?
 A. After object B is notified, or after two seconds
 B. After the lock on B is released, or after two seconds
 C. Two seconds after object B is notified
 D. Two seconds after lock B is released

 7. Which are true? (Choose all that apply.)
 A. The notifyAll() method must be called from a synchronized context
 B. To call wait(), an object must own the lock on the thread
 C. The notify() method is defined in class java.lang.Thread
 D. When a thread is waiting as a result of wait(), it releases its lock
 E. The notify() method causes a thread to immediately release its lock
 F. The difference between notify() and notifyAll() is that notifyAll() notifies all

 waiting threads, regardless of the object they're waiting on

13-ch13.indd 771 9/2/2014 3:46:09 PM

772 Chapter 13: Threads

 8. Given this scenario: This class is intended to allow users to write a series of messages so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
 private StringBuilder contents = new StringBuilder();
 public void log(String message) {
 contents.append(System.currentTimeMillis());
 contents.append(": ");
 contents.append(Thread.currentThread().getName());
 contents.append(message);
 contents.append("\n");
 }
 public String getContents() { return contents.toString(); }
}

 How can we ensure that instances of this class can be safely used by multiple threads?
 A. This class is already thread-safe
 B. Replacing StringBuilder with StringBuffer will make this class thread-safe
 C. Synchronize the log() method only
 D. Synchronize the getContents() method only
 E. Synchronize both log() and getContents()
 F. This class cannot be made thread-safe

 9. Given:
public static synchronized void main(String[] args) throws InterruptedException {
 Thread t = new Thread();
 t.start();
 System.out.print("X");
 t.wait(10000);
 System.out.print("Y");
}

 What is the result of this code?
 A. It prints X and exits
 B. It prints X and never exits
 C. It prints XY and exits almost immediately
 D. It prints XY with a 10-second delay between X and Y
 E. It prints XY with a 10,000-second delay between X and Y
 F. The code does not compile
 G. An exception is thrown at runtime

13-ch13.indd 772 9/2/2014 3:46:09 PM

Self Test 773

 10. Given:

class MyThread extends Thread {
 MyThread() {
 System.out.print("MyThread ");
 }
 public void run() {
 System.out.print("bar ");
 }
 public void run(String s) {
 System.out.print("baz ");
 }
}
public class TestThreads {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() {
 System.out.print("foo ");
 }
 };
 t.start();
} }

 What is the result?
 A. foo

 B. MyThread foo

 C. MyThread bar

 D. foo bar

 E. foo bar baz

 F. bar foo

 G. Compilation fails
 H. An exception is thrown at runtime

13-ch13.indd 773 9/2/2014 3:46:09 PM

774 Chapter 13: Threads

 11. Given:

public class ThreadDemo {
 synchronized void a() { actBusy(); }
 static synchronized void b() { actBusy(); }
 static void actBusy() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 final ThreadDemo x = new ThreadDemo();
 final ThreadDemo y = new ThreadDemo();
 Runnable runnable = new Runnable() {
 public void run() {
 int option = (int) (Math.random() * 4);
 switch (option) {
 case 0: x.a(); break;
 case 1: x.b(); break;
 case 2: y.a(); break;
 case 3: y.b(); break;
 }
 }
 };
 Thread thread1 = new Thread(runnable);
 Thread thread2 = new Thread(runnable);
 thread1.start();
 thread2.start();
 }
}

 Which of the following pairs of method invocations could NEVER be executing at the same
time? (Choose all that apply.)

 A. x.a() in thread1, and x.a() in thread2
 B. x.a() in thread1, and x.b() in thread2
 C. x.a() in thread1, and y.a() in thread2
 D. x.a() in thread1, and y.b() in thread2
 E. x.b() in thread1, and x.a() in thread2
 F. x.b() in thread1, and x.b() in thread2
 G. x.b() in thread1, and y.a() in thread2
 H. x.b() in thread1, and y.b() in thread2

13-ch13.indd 774 9/2/2014 3:46:09 PM

Self Test 775

 12. Given:

public class TwoThreads {
 static Thread laurel, hardy;
 public static void main(String[] args) {
 laurel = new Thread() {
 public void run() {
 System.out.println("A");
 try {
 hardy.sleep(1000);
 } catch (Exception e) {
 System.out.println("B");
 }
 System.out.println("C");
 }
 };
 hardy = new Thread() {
 public void run() {
 System.out.println("D");
 try {
 laurel.wait();
 } catch (Exception e) {
 System.out.println("E");
 }
 System.out.println("F");
 }
 };
 laurel.start();
 hardy.start();
 }
}

 Which letters will eventually appear somewhere in the output? (Choose all that apply.)
 A. A

 B. B

 C. C

 D. D

 E. E

 F. F

 G. The answer cannot be reliably determined
 H. The code does not compile

13-ch13.indd 775 9/2/2014 3:46:09 PM

776 Chapter 13: Threads

 13. Given:

 3. public class Starter implements Runnable {
 4. void go(long id) {
 5. System.out.println(id);
 6. }
 7. public static void main(String[] args) {
 8. System.out.print(Thread.currentThread().getId() + " ");
 9. // insert code here
10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

 And given the following five fragments:

I. new Starter().run();
II. new Starter().start();
III. new Thread(new Starter());
IV. new Thread(new Starter()).run();
V. new Thread(new Starter()).start();

 When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that
apply.)

 A. All five will compile
 B. Only one might produce the output 4 4
 C. Only one might produce the output 4 2
 D. Exactly two might produce the output 4 4
 E. Exactly two might produce the output 4 2
 F. Exactly three might produce the output 4 4
 G. Exactly three might produce the output 4 2

13-ch13.indd 776 9/2/2014 3:46:09 PM

Self Test 777

 14. Given:

 3. public class Leader implements Runnable {
 4. public static void main(String[] args) {
 5. Thread t = new Thread(new Leader());
 6. t.start();
 7. System.out.print("m1 ");
 8. t.join();
 9. System.out.print("m2 ");
10. }
11. public void run() {
12. System.out.print("r1 ");
13. System.out.print("r2 ");
14. }
15. }

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The output could be r1 r2 m1 m2
 C. The output could be m1 m2 r1 r2
 D. The output could be m1 r1 r2 m2
 E. The output could be m1 r1 m2 r2
 F. An exception is thrown at runtime

13-ch13.indd 777 9/2/2014 3:46:09 PM

778 Chapter 13: Threads

 15. Given:

 3. class Dudes {
 4. static long flag = 0;
 5. // insert code here
 6. if(flag == 0) flag = id;
 7. for(int x = 1; x < 3; x++) {
 8. if(flag == id) System.out.print("yo ");
 9. else System.out.print("dude ");
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat().go();
17. }
18. void go() {
19. d = new Dudes();
20. new Thread(new DudesChat()).start();
21. new Thread(new DudesChat()).start();
22. }
23. public void run() {
24. d.chat(Thread.currentThread().getId());
25. }
26. }

 And given these two fragments:

I. synchronized void chat(long id) {
II. void chat(long id) {

 When fragment I or fragment II is inserted at line 5, which are true? (Choose all that apply.)
 A. An exception is thrown at runtime
 B. With fragment I, compilation fails
 C. With fragment II, compilation fails
 D. With fragment I, the output could be yo dude dude yo
 E. With fragment I, the output could be dude dude yo yo
 F. With fragment II, the output could be yo dude dude yo

13-ch13.indd 778 9/2/2014 3:46:09 PM

Self Test 779

 16. Given:

 3. class Chicks {
 4. synchronized void yack(long id) {
 5. for(int x = 1; x < 3; x++) {
 6. System.out.print(id + " ");
 7. Thread.yield();
 8. }
 9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack().go();
15. }
16. void go() {
17. c = new Chicks();
18. new Thread(new ChicksYack()).start();
19. new Thread(new ChicksYack()).start();
20. }
21. public void run() {
22. c.yack(Thread.currentThread().getId());
23. }
24. }

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The output could be 4 4 2 3
 C. The output could be 4 4 2 2
 D. The output could be 4 4 4 2
 E. The output could be 2 2 4 4
 F. An exception is thrown at runtime

13-ch13.indd 779 9/2/2014 3:46:09 PM

780 Chapter 13: Threads

 17. Given:

 3. public class Chess implements Runnable {
 4. public void run() {
 5. move(Thread.currentThread().getId());
 6. }
 7. // insert code here
 8. System.out.print(id + " ");
 9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess();
13. new Thread(ch).start();
14. new Thread(new Chess()).start();
15. }
16. }

 And given these two fragments:

I. synchronized void move(long id) {
II. void move(long id) {

 When either fragment I or fragment II is inserted at line 7, which are true?
(Choose all that apply.)

 A. Compilation fails
 B. With fragment I, an exception is thrown
 C. With fragment I, the output could be 4 2 4 2
 D. With fragment I, the output could be 4 4 2 3
 E. With fragment II, the output could be 2 4 2 4

13-ch13.indd 780 9/2/2014 3:46:09 PM

Self Test Answers 781

SELF TEST ANSWERS

 1. ☑ C is correct. The class implements the Runnable interface with a legal run() method.
☐✗ A is incorrect because interfaces are implemented, not extended. B is incorrect because
even though the class has a valid public void run() method, it does not implement the
Runnable interface. D is incorrect because the run() method must be public. E is incorrect
because the method to implement is run(), not start(). (OCP Objective 10.1)

 2. ☑ D is correct. The thread MyThread will start and loop three times (from 0 to 2).
☐✗ A is incorrect because the Thread class implements the Runnable interface; therefore,
in line 6, Thread can take an object of type Thread as an argument in the constructor (this is
NOT recommended). B and C are incorrect because the variable i in the for loop starts with a
value of 0 and ends with a value of 2. E is incorrect based on the above. (OCP Objective 10.1)

 3. ☑ D is correct. The sleep() method must be enclosed in a try/catch block, or the method
printAll() must declare it throws the InterruptedException.
☐✗ E is incorrect, but it would be correct if the InterruptedException was dealt with (A is
too precise). B is incorrect (even if the InterruptedException was dealt with) because all
Java code, including the main() method, runs in threads. C is incorrect. The sleep() method
is static; it always affects the currently executing thread. (OCP Objective 10.2)

 4. ☑ B and F are correct. By marking the methods as synchronized, the threads will get the
lock of the this object before proceeding. Only one thread will be setting or reading at any
given moment, thereby assuring that read() always returns the addition of a valid pair.
☐✗ A is incorrect because it is not synchronized; therefore, there is no guarantee that the
values added by the read() method belong to the same pair. C and D are incorrect; only
objects can be used to synchronize on. E is incorrect because it fails—it is not possible to select
other objects (even this) to synchronize on when declaring a method as synchronized.
(OCP Objectives 10.3 and 10.4)

 5. ☑ D is correct. 1 and 2 will be printed, but there will be no return from the wait call because
no other thread will notify the main thread, so 3 will never be printed. It's frozen at line 7.
☐✗ A is incorrect; IllegalMonitorStateException is an unchecked exception. B and C are
incorrect; 3 will never be printed, since this program will wait forever. E is incorrect because
IllegalMonitorStateException will never be thrown because the wait() is done on args
within a block of code synchronized on args. F is incorrect because any object can be used to
synchronize on, and this and static don't mix. (OCP Objective 10.4)

 6. ☑ A is correct. Either of the two events will make the thread a candidate for running again.
☐✗ B is incorrect because a waiting thread will not return to runnable when the lock is
released unless a notification occurs. C is incorrect because the thread will become a candidate
immediately after notification. D is also incorrect because a thread will not come out of a
waiting pool just because a lock has been released. (OCP Objective 10.4)

13-ch13.indd 781 9/2/2014 3:46:09 PM

782 Chapter 13: Threads

 7. ☑ A is correct because notifyAll() (and wait() and notify()) must be called from
within a synchronized context. D is a correct statement.
☐✗ B is incorrect because to call wait(), the thread must own the lock on the object that
wait() is being invoked on, not the other way around. C is incorrect because notify() is
defined in java.lang.Object. E is incorrect because notify() will not cause a thread to
release its locks. The thread can only release its locks by exiting the synchronized code. F is
incorrect because notifyAll() notifies all the threads waiting on a particular locked object,
not all threads waiting on any object. (OCP Objectives 10.3 and 10.4)

 8. ☑ E is correct. Synchronizing the public methods is sufficient to make this safe, so F is
incorrect. This class is not thread-safe unless some sort of synchronization protects the changing
data.
☐✗ B is incorrect because although a StringBuffer is synchronized internally, we call
append() multiple times, and nothing would prevent two simultaneous log() calls
from mixing up their messages. C and D are incorrect because if one method remains
unsynchronized, it can run while the other is executing, which could result in reading the
contents while one of the messages is incomplete, or worse. (You don't want to call toString()
on the StringBuffer as it's resizing its internal character array.) (OCP Objective 10.3)

 9. ☑ G is correct. The code does not acquire a lock on t before calling t.wait(), so it throws
an IllegalMonitorStateException. The method is synchronized, but it's not synchronized
on t so the exception will be thrown. If the wait were placed inside a synchronized(t) block,
then D would be correct.
☐✗ A, B, C, D, E, and F are incorrect based on the logic described above. (OCP Objective 10.2)

 10. ☑ B is correct. In the first line of main we're constructing an instance of an anonymous inner
class extending from MyThread. So the MyThread constructor runs and prints MyThread. Next,
main() invokes start() on the new thread instance, which causes the overridden run()
method (the run() method in the anonymous inner class) to be invoked.
☐✗ A, C, D, E, F, G, and H are incorrect based on the logic described above.
(OCP Objective 10.1)

 11. ☑ A, F, and H are correct. A is correct because when synchronized instance methods
are called on the same instance, they block each other. F and H can't happen because
synchronized static methods in the same class block each other, regardless of which
instance was used to call the methods. (An instance is not required to call static methods;
only the class.)

13-ch13.indd 782 9/2/2014 3:46:09 PM

Self Test Answers 783

☐✗ C, although incorrect, could happen because synchronized instance methods called on
different instances do not block each other. B, D, E, and G are incorrect but also could all
happen because instance methods and static methods lock on different objects, and do not
block each other. (OCP Objectives 10.3 and 10.4)

 12. ☑ A, C, D, E, and F are correct. This may look like laurel and hardy are battling to cause
the other to sleep() or wait()—but that's not the case. Since sleep() is a static method,
it affects the current thread, which is laurel (even though the method is invoked using a
reference to hardy). That's misleading, but perfectly legal, and the Thread laurel is able
to sleep with no exception, printing A and C (after at least a one-second delay). Meanwhile,
hardy tries to call laurel.wait()—but hardy has not synchronized on laurel, so calling
laurel.wait() immediately causes an IllegalMonitorStateException, and so hardy
prints D, E, and F. Although the order of the output is somewhat indeterminate (we have no
way of knowing whether A is printed before D, for example), it is guaranteed that A, C, D, E,
and F will all be printed in some order, eventually—so G is incorrect.
☐✗ B, G, and H are incorrect based on the above. (OCP Objective 10.4)

 13. ☑ C and D are correct. Fragment I doesn't start a new thread. Fragment II doesn't compile.
Fragment III creates a new thread but doesn't start it. Fragment IV creates a new thread and
invokes run() directly, but it doesn't start the new thread. Fragment V creates and starts a new
thread.
☐✗ A, B, E, F, and G are incorrect based on the above. (OCP Objective 10.1)

 14. ☑ A is correct. The join() must be placed in a try/catch block. If it were, answers B and
D would be correct. The join() causes the main thread to pause and join the end of the other
thread, meaning "m2" must come last.
☐✗ B, C, D, E, and F are incorrect based on the above. (OCP Objective 10.2)

 15. ☑ F is correct. With Fragment I, the chat method is synchronized, so the two threads can't
swap back and forth. With either fragment, the first output must be yo.
☐✗ A, B, C, D, and E are incorrect based on the above. (OCP Objective 10.3)

 16. ☑ F is correct. When run() is invoked, it is with a new instance of ChicksYack and c has
not been assigned to an object. If c were static, then because yack is synchronized, answers C
and E would have been correct.
☐✗ A, B, C, D, and E are incorrect based on the above. (OCP Objectives 10.1 and 10.3)

 17. ☑ C and E are correct. E should be obvious. C is correct because even though move() is
synchronized, it's being invoked on two different objects.
☐✗ A, B, and D are incorrect based on the above. (OCP Objective 10.3)

13-ch13.indd 783 9/2/2014 3:46:10 PM

784 Chapter 13: Threads

EXERCISE ANSWERS

Exercise 13-1: Creating a Thread and Putting It to Sleep

The final code should look something like this:

class TheCount extends Thread {
 public void run() {
 for(int i = 1;i<=100;++i) {
 System.out.print(i + " ");
 if(i % 10 == 0) System.out.println("Hahaha");
 try { Thread.sleep(1000); }
 catch(InterruptedException e) {}
 }
 }
 public static void main(String [] args) {
 new TheCount().start();
 }
}

Exercise 13-2: Synchronizing a Block of Code

Your code might look something like this when completed:

class InSync extends Thread {
 StringBuffer letter;
 public InSync(StringBuffer letter) { this.letter = letter; }
 public void run() {
 synchronized(letter) { // #1
 for(int i = 1;i<=100;++i) System.out.print(letter);
 System.out.println();
 char temp = letter.charAt(0);
 ++temp; // Increment the letter in StringBuffer:
 letter.setCharAt(0, temp);
 } // #2
 }
 public static void main(String [] args) {
 StringBuffer sb = new StringBuffer("A");
 new InSync(sb).start(); new InSync(sb).start();
 new InSync(sb).start();
 }
}

Just for fun, try removing lines 1 and 2 and then run the program again. It will be unsynchronized—
watch what happens.

13-ch13.indd 784 9/2/2014 3:46:10 PM

Use Collections from the java.util •
.concurrent Package with a Focus on the
Advantages over and Differences from the
Traditional java.util Collections

Use Lock, ReadWriteLock, and •
ReentrantLock Classes in the java.util
.cuncurrent.locks Package to Support
Lock-Free Thread-Safe Programming on
Single Variables

Use Executor, ExecutorService, Executors, •
Callable, and Future to Execute Tasks Using
Thread Pools

Use the Parallel Fork/Join Framework •
Two-Minute Drill ✓

Q&A Self Test

1414
ConcurrencyConcurrency

CERTIFICATION OBJECTIVES

14-ch14.indd 785 9/2/2014 3:48:47 PM

786 Chapter 14: Concurrency

Concurrency with the java.util.concurrent Package

As you learned in the previous chapter on threads, the Java platform supports
multithreaded programming. Supporting multithreaded programming is essential for
any modern programming language because servers, desktop computers, laptops, and
most mobile devices contain multiple CPUs. If you want your applications to take
advantage of all of the processing power present in a modern system, you must create
multithreaded applications.

Unfortunately, creating efficient and error-free multithreaded applications can be
a challenge. The low-level threading constructs such as Thread, Runnable, wait(),
notify(), and synchronized blocks are too primitive for many requirements and
force developers to create their own high-level threading libraries. Custom threading
libraries can be both error prone and time consuming to create.

The java.util.concurrent package provides high-level APIs that support
many common concurrent programming use cases. When possible, you should use
these high-level APIs in place of the traditional low-level threading constructs
(synchronized, wait, notify). Some features (such as the new locking API) provide
functionality similar to what existed already, but with more flexibility at the cost of
slightly awkward syntax. Using the java.util.concurrent classes requires a solid
understanding of the traditional Java threading types (Thread and Runnable) and
their use (start, run, synchronized, wait, notify, join, sleep, etc.). If you are not
comfortable with Java threads, you should return to the previous chapter before
continuing with these high-level concurrency APIs.

CERTIFICATION OBJECTIVE

Apply Atomic Variables and Locks
(OCP Objective 11.2)

11.2 Use Lock, ReadWriteLock, and ReentrantLock classes in the java.util.concurrent.
locks package to support lock-free thread-safe programming on single variables.

The java.util.concurrent.atomic and java.util.concurrent.locks
packages solve two different problems. They are grouped into a single exam objective
simply because they are the only two packages below java.util.concurrent
and both have a small number of classes and interfaces to learn. The java.util

14-ch14.indd 786 9/2/2014 3:48:50 PM

 Apply Atomic Variables and Locks (OCP Objective 11.2) 787

.concurrent.atomic package enables multithreaded applications to safely access
individual variables without locking, while the java.util.concurrent.locks
package provides a locking framework that can be used to create locking behaviors
that are the same or superior to those of Java's synchronized keyword.

Atomic Variables

Imagine a multiplayer video game that contains monsters that must be destroyed.
The players of the game (threads) are vanquishing monsters, while at the same time
a monster-spawning thread is repopulating the world to ensure players always have a
new challenge to face. To keep the level of difficulty consistent, you would need to
keep track of the monster count and ensure that the monster population stays the
same (a hero's work is never done). Both the player threads and the monster-
spawning thread must access and modify the shared monster count variable. If the
monster count somehow became incorrect, your players may find themselves with
more adversaries than they could handle.

The following example shows how even the seemingly simplest of code can lead
to undefined results. Here you have a class that increments and reports the current
value of an integer variable:

public class Counter {
 private int count;
 public void increment() {
 count++; // it's a trap!
 // a single "line" is not atomic
 }
 public int getValue() {
 return count;
 }
}

A Thread that will increment the counter 10,000 times:

public class IncrementerThread extends Thread {
 private Counter counter;
 // all instances are passed the same counter
 public IncrementerThread(Counter counter) {
 this.counter = counter;
 }
 public void run() {
 // "i" is local and thread-safe
 for(int i = 0; i < 10000; i++) {
 counter.increment();
 }
 }
}

14-ch14.indd 787 9/2/2014 3:48:50 PM

788 Chapter 14: Concurrency

The code from within this application's main method:

Counter counter = new Counter(); // the shared object
IncrementerThread it1 = new IncrementerThread(counter);
IncrementerThread it2 = new IncrementerThread(counter);
it1.start(); // thread 1 increments the count by 10000
it2.start(); // thread 2 increments the count by 10000
it1.join(); // wait for thread 1 to finish
it2.join(); // wait for thread 2 to finish
System.out.println(counter.getValue()); // rarely 20000
 // lowest 11972

The trap in this example is that count++ looks like a single action when, in fact,
it is not. When incrementing a field like this, what probably happens is the following
sequence:

 1. The value stored in count is copied to a temporary variable.

 2. The temporary variable is incremented.

 3. The value of the temporary variable is copied back to the count field.

We say "probably" in this example because while the Java compiler will translate the
count++ statement into multiple Java bytecode instructions, you really have no
control over what native instructions are executed. The JIT (Just In Time compiler)–
based nature of most Java runtime environments means you don't know when or if
the count++ statement will be translated to native CPU instructions and whether it
ends up as a single instruction or several. You should always act as if a single line of
Java code takes multiple steps to complete. Getting an incorrect result also depends
on many other factors, such as the type of CPU you have. Do both threads in the
example run concurrently or in sequence? A large loop count was used in order to
make the threads run longer and be more likely to execute concurrently.

While you could make this code thread-safe with synchronized blocks, the act of
obtaining and releasing a lock flag would probably be more time consuming than the
work being performed. This is where the java.util.concurrent.atomic package
classes can benefit you. They provide variables whose values can be modified atomically.
An atomic operation is one that, for all intents and purposes, appears to happen all
at once. The java.util.concurrent.atomic package provides several classes for
different data types, such as AtomicInteger, AtomicLong, AtomicBoolean, and
AtomicReference, to name a few.

Here is a thread-safe replacement for the Counter class from the previous example:

public class Counter {
 private AtomicInteger count = new AtomicInteger();
 public void increment() {
 count.getAndIncrement(); // atomic operation

14-ch14.indd 788 9/2/2014 3:48:50 PM

 Apply Atomic Variables and Locks (OCP Objective 11.2) 789

 }
 public int getValue() {
 return count.intValue();
 }
}

In reality, even a method such as getAndIncrement() still takes several steps to
execute. The reason this implementation is now thread-safe is something called
CAS. CAS stands for Compare And Swap. Most modern CPUs have a set of CAS
instructions. A basic outline of what is happening now is as follows:

 1. The value stored in count is copied to a temporary variable.

 2. The temporary variable is incremented.

 3. Compare the value currently in count with the original value. If it is
unchanged, then swap the old value for the new value.

Step 3 happens atomically. If step 3 finds that some other thread has already
modified the value of count, then repeat steps 1–3 until we increment the field
without interference.

The central method in a class like AtomicInteger is the boolean
compareAndSet(int expect, int update) method, which provides the CAS
behavior. Other atomic methods delegate to the compareAndSet method. The
getAndIncrement method implementation is simply:

public final int getAndIncrement() {
 for (;;) {
 int current = get();
 int next = current + 1;
 if (compareAndSet(current, next))
 return current;
 }
}

Locks

The java.util.concurrent.locks package is about creating (not surprisingly)
locks. Why would you want to use locks when so much of java.util.concurrent
seems geared toward avoiding overt locking? You use java.util.concurrent.locks
classes and traditional monitor locking (the synchronized keyword) for roughly the
same purpose: creating segments of code that require exclusive execution (one thread
at a time).

Why would you create code that limited the number of threads that can execute
it? While atomic variables work well for making single variables thread-safe, imagine
if you have two or more variables that are related. A video game character might

14-ch14.indd 789 9/2/2014 3:48:50 PM

790 Chapter 14: Concurrency

have a number of gold pieces that can be carried in his backpack and a number of
gold pieces he keeps in an in-game bank vault. Transferring gold into the bank is as
simple as subtracting gold from the backpack and adding it to the vault. If we have
10 gold pieces in our backpack and 90 in the vault, we have a total of 100 pieces
that belong to our character. If we want to transfer all 10 pieces to the vault, we can
first add 10 to the vault count and then subtract 10 from the backpack, or first
subtract 10 from the backpack and then add 10 to the vault. If another thread were
to try to assess our character's wealth during the middle of our transfer, it might see
90 pieces or 110 pieces depending on the order of our operations, neither being the
correct count of 100 pieces.

This other thread that is attempting to read the character's total wealth might do
all sorts of things, such as increase the likelihood of your character being robbed, or
a variety of other actions to control the in-game economics. It becomes important
for all game threads to be able to correctly gauge a character's wealth even if there is
a transfer in progress.

The solution to our balance inquiry transfer problem is to use locking. Create a
single method to get a character's wealth and another to perform gold transfers. You
should never be able to check a character's total wealth while a gold transfer is in
progress. Having a single method to get a character's total wealth is also important
because you don't want a thread to read the backpack's gold count before a transfer
and then the vault's gold count after a transfer. That would lead to the same
incorrect total as trying to calculate the total during a transfer.

Much of the functionality provided by the classes and interfaces of the java
.util.concurrent.locks package duplicates that of traditional synchronized
locking. In fact, the hypothetical gold transfer outlined earlier could be solved with
either the synchronized keyword or classes in the java.util.concurrent.locks
package. In Java 5, when java.util.concurrent was first introduced, the new
locking classes performed better than the synchronized keyword, but there is no
longer a vast difference in performance. So why would you use these newer locking
classes? The java.util.concurrent.locks package provides

■ The ability to duplicate traditional synchronized blocks.

■ Nonblock scoped locking—obtain a lock in one method and release it in
another (this can be dangerous, though).

■ Multiple wait/notify/notifyAll pools per lock—threads can select which
pool (Condition) they wait on.

■ The ability to attempt to acquire a lock and take an alternative action if
locking fails.

■ An implementation of a multiple-reader, single-writer lock.

14-ch14.indd 790 9/2/2014 3:48:50 PM

 Apply Atomic Variables and Locks (OCP Objective 11.2) 791

ReentrantLock

The java.util.concurrent.locks.Lock interface provides the outline of the
new form of locking provided by the java.util.concurrent.locks package. Like
any interface, the Lock interface requires an implementation to be of any real use.
The java.util.concurrent.locks.ReentrantLock class provides that
implementation. To demonstrate the use of Lock, we will first duplicate the
functionality of a basic traditional synchronized block.

Object obj = new Object();
synchronized(obj) { // traditional locking, blocks until acquired
 // work
} // releases lock automatically

Here is an equivalent piece of code using the java.util.concurrent.locks
package. Notice how ReentrantLock can be stored in a Lock reference because it
implements the Lock interface. This example blocks on attempting to acquire a
lock, just like traditional synchronization.

Lock lock = new ReentrantLock();
lock.lock(); // blocks until acquired
try {
 // do work here
} finally { // to ensure we unlock
 lock.unlock(); // must manually release
}

It is recommended that you always follow the lock() method with a try-finally
block, which releases the lock. The previous example doesn't really provide a
compelling reason for you to choose to use a Lock instance instead of traditional
synchronization. One of the very powerful features is the ability to attempt (and fail)
to acquire a lock. With traditional synchronization, once you hit a synchronized
block, your thread either immediately acquires the lock or blocks until it can.

Lock lock = new ReentrantLock();
boolean locked = lock.tryLock(); // try without waiting
if (locked) {
 try {
 // work
 } finally { // to ensure we unlock
 lock.unlock();
 }
}

The ability to quickly fail to acquire the lock turns out to be powerful. You can
process a different resource (lock) and come back to the failed lock later instead of
just waiting for a lock to be released and thereby making more efficient use of system

14-ch14.indd 791 9/2/2014 3:48:50 PM

792 Chapter 14: Concurrency

resources. There is also a variation of the tryLock method that allows you to specify
an amount of time you are willing to wait to acquire the lock:

Lock lock = new ReentrantLock();
try {
 boolean locked = lock.tryLock(3, TimeUnit.SECONDS);
 if (locked) {
 try {
 // work
 } finally { // to ensure we unlock
 lock.unlock();
 }
 }
} catch (InterruptedException ex) {
 // handle
}

Another benefit of the tryLock method is deadlock avoidance. With traditional
synchronization, you must acquire locks in the same order across all threads. For
example, if you have two objects to lock against:

Object o1 = new Object();
Object o2 = new Object();

And you synchronize using the internal lock flags of both objects:

synchronized(o1) {
 // thread A could pause here
 synchronized(o2) {
 // work
 }
}

You should never acquire the locks in the opposite order because it could lead to
deadlock. While thread A has only the o1 lock, thread B acquires the o2 lock. You
are now at an impasse because neither thread can obtain the second lock it needs to
continue.

synchronized(o2) {
 // thread B gets stuck here
 synchronized(o1) {
 // work
 }
}

Looking at a similar example using a ReentrantLock, start by creating two locks:

Lock l1 = new ReentrantLock();
Lock l2 = new ReentrantLock();

14-ch14.indd 792 9/2/2014 3:48:50 PM

Apply Atomic Variables and Locks (OCP Objective 11.2) 793

Next, you acquire both locks in thread A:

boolean aq1 = l1.tryLock();
boolean aq2 = l2.tryLock();
try{
 if (aq1 && aq2) {
 // work
 }
} finally {
 if (aq2) l2.unlock(); // don't unlock if not locked
 if (aq1) l1.unlock();
}

Notice the example is careful to always unlock any acquired lock, but ONLY the
lock(s) that were acquired. A ReentrantLock has an internal counter that keeps
track of the number of times it has been locked/unlocked, and it is an error to unlock
without a corresponding successful lock operation. If a thread attempts to release a
lock that it does not own, an IllegalMonitorStateException will be thrown.

Now in thread B, the locks are obtained in the reverse order in which thread A
obtained them. With traditional locking, using synchronized code blocks and
attempting to obtain locks in the reverse order could lead to deadlock.

boolean aq2 = l2.tryLock();
boolean aq1 = l1.tryLock();
try{
 if (aq1 && aq2) {
 // work
 }
} finally {
 if (aq1) l1.unlock();
 if (aq2) l2.unlock();
}

Now, even if thread A was only in possession of the l1 lock, there is no possibility
that thread B could block because we use the nonblocking tryLock method. Using
this technique, you can avoid deadlocking scenarios, but you must deal with the
possibility that both locks could not be acquired. Using a simple loop, you can
repeatedly attempt to obtain both locks until successful (Note: This approach is
CPU intensive; we'll look at a better solution next):

loop2:
while (true) {
 boolean aq2 = l2.tryLock();
 boolean aq1 = l1.tryLock();
 try {
 if (aq1 && aq2) {
 // work

14-ch14.indd 793 9/2/2014 3:48:50 PM

794 Chapter 14: Concurrency

 break loop2;
 }
 } finally {
 if (aq2) l2.unlock();
 if (aq1) l1.unlock();
 }
}

It is remotely possible that this example could lead to livelock. Imagine if

thread A always acquires lock1 at the same time that thread B acquires

lock2. Each thread's attempt to acquire the second lock would always fail,

and you'd end up repeating forever, or at least until you were lucky enough to

have one thread fall behind the other. You can avoid livelock in this scenario

by introducing a short random delay with Thread.sleep(int) any time you

fail to acquire both locks.

Condition

A Condition provides the equivalent of the traditional wait, notify, and
notifyAll methods. The traditional wait and notify methods allow developers to
implement an await/signal pattern. You use an await/signal pattern when you would
use locking, but with the added stipulation of trying to avoid spinning (endless
checking if it is okay to do something). Imagine a video game character that wants
to buy something from a store, but the store is out of stock at the moment. The
character's thread could repeatedly lock the store object and check for the desired
item, but that would lead to unneeded system utilization. Instead, the character's
thread can say, "I'm taking a nap, wake me up when new stock arrives."

The java.util.concurrent.locks.Condition interface is the modern
replacement for the wait and notify methods. A three-part code example shows
you how to use a condition. Part one shows that a Condition is created from a Lock
object:

Lock lock = new ReentrantLock();
Condition blockingPoolA = lock.newCondition();

When your thread reaches a point where it must delay until another thread
performs an activity, you "await" the completion of that other activity. Before calling
await, you must have locked the Lock used to produce the Condition. It is possible
that the awaiting thread may be interrupted and you must handle the possible
InterruptedException. When you call the await method, the Lock associated
with the Condition is released. Before the await method returns, the lock will be
reacquired. In order to use a Condition, a thread must first acquire a Lock. Part two

14-ch14.indd 794 9/2/2014 3:48:50 PM

Apply Atomic Variables and Locks (OCP Objective 11.2) 795

of the three-part Condition example shows how a Condition is used to pause or
wait for some event:

lock.lock();
try {
 blockingPoolA.await(); // "wait" here
 // lock will be reacquired
 // work
} catch (InterruptedException ex) {
 // interrupted during await()
} finally { // to ensure we unlock
 lock.unlock(); // must manually release
}

In another thread, you perform the activity that the first thread was waiting on
and then signal that first thread to resume (return from the await method). Part
three of the Condition example is run in a different thread than part two. This part
causes the thread waiting in the second piece to wake up:

lock.lock();
try {
 // work
 blockingPoolA.signalAll(); // wake all awaiting
 // threads
} finally {
 lock.unlock(); // now an awoken thread can run
}

The signalAll() method causes all threads awaiting on the same Condition to
wake up. You can also use the signal() method to wake up a single awaiting
thread. Remember that "waking up" is not the same thing as proceeding. Each
awoken thread will have to reacquire the Lock before continuing.

One advantage of a Condition over the traditional wait/notify operations is that
multiple Conditions can exist for each Lock. A Condition is effectively a waiting/
blocking pool for threads.

Lock lock = new ReentrantLock();
Condition blockingPoolA = lock.newCondition();
Condition blockingPoolB = lock.newCondition();

By having multiple conditions, you are effectively categorizing the threads
waiting on a lock and can, therefore, wake up a subset of the waiting threads.

Conditions can also be used when you can't use a BlockingQueue to coordinate
the activities of two or more threads.

14-ch14.indd 795 9/2/2014 3:48:50 PM

796 Chapter 14: Concurrency

ReentrantReadWriteLock

Imagine a video game that was storing a collection of high scores using a non-
thread-safe collection. With a non-thread-safe collection, it is important that if a
thread is attempting to modify the collection, it must have exclusive access to the
collection. To allow multiple threads to concurrently read the high score list or allow
a single thread to add a new score, you could use a ReadWriteLock.

A ReentrantReadWriteLock is not actually a Lock; it implements the
ReadWriteLock interface. What a ReentrantReadWriteLock does is produce two
specialized Lock instances, one to a read lock and the other to a write lock.

ReentrantReadWriteLock rwl =
 new ReentrantReadWriteLock();
Lock readLock = rwl.readLock();
Lock writeLock = rwl.writeLock();

These two locks are a matched set—one cannot be held at the same time as the
other (by different threads). What makes these locks unique is that multiple threads
can hold the read lock at the same time, but only one thread can hold the write lock
at a time.

This example shows how a non-thread-safe collection (an ArrayList) can be
made thread-safe, allowing concurrent reads but exclusive access by a writing thread:

public class MaxValueCollection {
 private List<Integer> integers = new ArrayList<>();
 private ReentrantReadWriteLock rwl =
 new ReentrantReadWriteLock();

 public void add(Integer i) {
 rwl.writeLock().lock(); // one at a time
 try {
 integers.add(i);
 } finally {
 rwl.writeLock().unlock();
 }
 }

 public int findMax() {
 rwl.readLock().lock(); // many at once
 try {
 return Collections.max(integers);
 } finally {
 rwl.readLock().unlock();
 }
 }
}

Instead of wrapping a collection with Lock objects to ensure thread safety, you
can use one of the thread-safe collections you'll learn about in the next section.

14-ch14.indd 796 9/2/2014 3:48:50 PM

Use java.util.concurrent Collections (OCP Objective 11.1) and Use a Deque (OCP Objective 4.5) 797

CERTIFICATION OBJECTIVE

Use java.util.concurrent Collections
(OCP Objective 11.1) and Use a Deque
(OCP Objective 4.5)

11.1 Use collections from the java.util.concurrent package with a focus on the
advantages over and differences from the traditional java.util collections.

4.5 Create and use List, Set, and Deque implementations.

Imagine an online video game with a list of the top 20 scores in the last 30 days.
You could model the high score list using a java.util.ArrayList. As scores
expire, they are removed from the list, and as new scores displace existing scores,
remove and insert operations are performed. At the end of every game, the list of
high scores is displayed. If the game is popular, then a lot of people (threads) will be
reading the list at the same time. Occasionally, the list will be modified—sometimes
by multiple threads—probably at the same time that it is being read by a large
number of threads.

A traditional java.util.List implementation such as java.util.ArrayList
is not thread-safe. Concurrent threads can safely read from an ArrayList and
possibly even modify the elements stored in the list, but if any thread modifies the
structure of the list (add or remove operation), then unpredictable behavior can
occur.

Look at the ArrayListRunnable class in the following example. What would
happen if there were a single instance of this class being executed by several threads? You
might encounter several problems, including ArrayIndexOutOfBoundsException,
duplicate values, skipped values, and null values. Not all threading problems manifest
immediately. To observe the bad behavior, you might have to execute the faulty code
multiple times or under different system loads. It is important that you are able to
recognize the difference between thread-safe and non-thread-safe code yourself, because
the compiler will not detect thread-unsafe code.

public class ArrayListRunnable implements Runnable {
 // shared by all threads
 private List<Integer> list = new ArrayList<>();

14-ch14.indd 797 9/2/2014 3:48:50 PM

798 Chapter 14: Concurrency

 public ArrayListRunnable() {
 // add some elements
 for (int i = 0; i < 100000; i++) {
 list.add(i);
 }
 }

 // might run concurrently, you cannot be sure
 // to be safe you must assume it does
 public void run() {
 String tName = Thread.currentThread().getName();
 while (!list.isEmpty()) {
 System.out.println(tName + " removed " + list.remove(0));
 }
 }

 public static void main(String[] args) {
 ArrayListRunnable alr = new ArrayListRunnable();
 Thread t1 = new Thread(alr);
 Thread t2 = new Thread(alr); // shared Runnable
 t1.start();
 t2.start();
 }
}

To make a collection thread-safe, you could surround all the code that accessed
the collection in synchronized blocks or use a method such as Collections.
synchronizedList(new ArrayList()). Using synchronization to safeguard a
collection creates a performance bottleneck and reduces the liveness of your
application. The java.util.concurrent package provides several types of
collections that are thread-safe but do not use coarse-grained synchronization. When
a collection will be concurrently accessed in an application you are developing, you
should always consider using the collections outlined in the following sections.

Problems in multithreaded applications may not always manifest—a

lot depends on the underlying operating system and how other applications affect

the thread scheduling of a problematic application. On the exam, you might be asked

about the "probable" or "most likely" outcome. Unless you are asked to identify every

possible outcome of a code sample, don't get hung up on unlikely results. For example,

if a code sample uses Thread.sleep(1000) and nothing indicates that the thread would

be interrupted while it was sleeping, it would be safe to assume that the thread would

resume execution around one second after the call to sleep.

14-ch14.indd 798 9/2/2014 3:48:50 PM

Use java.util.concurrent Collections (OCP Objective 11.1) and Use a Deque (OCP Objective 4.5) 799

Copy-on-Write Collections

The copy-on-write collections from the java.util.concurrent package
implement one of several mechanisms to make a collection thread-safe. By using the
copy-on-write collections, you eliminate the need to implement synchronization or
locking when manipulating a collection using multiple threads.

The CopyOnWriteArrayList is a List implementation that can be used
concurrently without using traditional synchronization semantics. As its name
implies, a CopyOnWriteArrayList will never modify its internal array of data. Any
mutating operations on the List (add, set, remove, etc.) will cause a new modified
copy of the array to be created, which will replace the original read-only array. The
read-only nature of the underlying array in a CopyOnWriteArrayList allows it to
be safely shared with multiple threads. Remember that read-only (immutable)
objects are always thread-safe.

The essential thing to remember with a copy-on-write collection is that a thread
that is looping through the elements in a collection must keep a reference to the
same unchanging elements throughout the duration of the loop; this is achieved
with the use of an Iterator. Basically, you want to keep using the old, unchanging
collection that you began a loop with. When you use list.iterator(), the
returned Iterator will always reference the collection of elements as it was when
list.iterator() was called, even if another thread modifies the collection. Any
mutating methods called on a copy-on-write–based Iterator or ListIterator
(such as add, set, or remove) will throw an UnsupportedOperationException.

A for-each loop uses an Iterator when executing, so it is safe to use with a

copy-on-write collection, unlike a traditional for loop.

for(Object o : collection) {} // use this
for(int i = 0; i < collection.size(); i++) {} // not this

The java.util.concurrent package provides two copy-on-write–based
collections: CopyOnWriteArrayList and CopyOnWriteArraySet. Use the copy-
on-write collections when your data sets remain relatively small and the number of
read operations and traversals greatly outnumber modifications to the collections.
Modifications to the collections (not the elements within) are expensive because
the entire internal array must be duplicated for each modification.

14-ch14.indd 799 9/2/2014 3:48:50 PM

800 Chapter 14: Concurrency

Concurrent Collections

The java.util.concurrent package also contains several concurrent collections
that can be concurrently read and modified by multiple threads, but without the
copy-on-write behavior seen in the copy-on-write collections. The concurrent
collections include

■ ConcurrentHashMap

■ ConcurrentLinkedDeque

■ ConcurrentLinkedQueue

■ ConcurrentSkipListMap

■ ConcurrentSkipListSet

Be aware that an Iterator for a concurrent collection is weakly consistent; it
can return elements from the point in time the Iterator was created or later. This
means that while you are looping through a concurrent collection, you might
observe elements that are being inserted by other threads. In addition, you may
observe only some of the elements that another thread is inserting with methods
such as addAll when concurrently reading from the collection. Similarly, the size
method may produce inaccurate results. Imagine attempting to count the number of
people in a checkout line at a grocery store. While you are counting the people in
line, some people may join the line and others may leave. Your count might end up
close but not exact by the time you reach the end. This is the type of behavior you
might see with a weakly consistent collection. The benefit to this type of behavior is
that it is permissible for multiple threads to concurrently read and write a collection
without having to create multiple internal copies of the collection, as is the case in a
copy-on-write collection. If your application cannot deal with these inconsistencies,
you might have to use a copy-on-write collection.

A thread-safe collection does not make the elements stored within the

collection thread-safe. Just because a collection that contains elements is thread-safe

does not mean the elements themselves can be safely modifi ed by multiple threads. You

might have to use atomic variables, locks, synchronized code blocks, or immutable (read-

only) objects to make the objects referenced by a collection thread-safe.

14-ch14.indd 800 9/2/2014 3:48:50 PM

Use java.util.concurrent Collections (OCP Objective 11.1) and Use a Deque (OCP Objective 4.5) 801

The ConcurrentHashMap and ConcurrentSkipListMap classes implement the
ConcurrentMap interface. A ConcurrentMap enhances a Map by adding the atomic
putIfAbsent, remove, and replace methods. For example, the putIfAbsent
method is equivalent to performing the following code as an atomic operation:

if (!map.containsKey(key))
 return map.put(key, value);
 else
 return map.get(key);

ConcurrentSkipListMap and ConcurrentSkipListSet are sorted.
ConcurrentSkipListMap keys and ConcurrentSkipListSet elements require the
use of the Comparable or Comparator interfaces to enable ordering.

Blocking Queues

The copy-on-write and the concurrent collections are centered on the idea of
multiple threads sharing data. Sometimes, instead of shared data (objects), you need
to transfer data between two threads. A BlockingQueue is a type of shared
collection that is used to exchange data between two or more threads while causing
one or more of the threads to wait until the point in time when the data can be
exchanged. One use case of a BlockingQueue is called the producer-consumer
problem. In a producer-consumer scenario, one thread produces data, then adds it to
a queue, and another thread must consume the data from the queue. A queue
provides the means for the producer and the consumer to exchange objects. The
java.util.concurrent package provides several BlockingQueue
implementations. They include

■ ArrayBlockingQueue

■ LinkedBlockingDeque

■ LinkedBlockingQueue

■ PriorityBlockingQueue

■ DelayQueue

■ LinkedTransferQueue

■ SynchronousQueue

14-ch14.indd 801 9/2/2014 3:48:51 PM

802 Chapter 14: Concurrency

General Behavior

A blocking collection, depending on the method being called, may cause a thread to
block until another thread calls a corresponding method on the collection. For example,
if you attempt to remove an element by calling take() on any BlockingQueue that is
empty, the operation will block until another thread inserts an element. Don't call a
blocking operation in a thread unless it is safe for that thread to block. The commonly
used methods in a BlockingQueue are described in the following table.

Method General Purpose Unique Behavior

add(E e) Insert an object. Returns true if object added, false if
duplicate objects are not allowed. Throws
an IllegalStateException if the
queue is bounded and full.

offer(E e) Insert an object. Returns true if object added, false if the
queue is bounded and full.

put(E e) Insert an object. Returns void. If needed, will block until
space in the queue becomes available.

offer(E e, long
timeout, TimeUnit
unit)

Insert an object. Returns false if the object was not able
to be inserted before the time indicated
by the second and third parameters.

remove(Object o) Remove an object. Returns true if an equal object was
found in the queue and removed;
otherwise, returns false.

poll(long timeout,
TimeUnit unit)

Remove an object. Removes the first object in the queue
(the head) and returns it. If the timeout
expires before an object can be removed
because the queue is empty, a null will be
returned.

take() Remove an object. Removes the first object in the queue (the
head) and returns it, blocking if needed
until an object becomes available.

poll() Remove an object. Removes the first object in the queue (the
head) and returns it or returns null if the
queue is empty.

element() Retrieves an object. Gets the head of the queue
without removing it. Throws a
NoSuchElementException if the
queue is empty.

peek() Retrieves an object. Gets the head of the queue without
removing it. Returns a null if the queue is
empty.

14-ch14.indd 802 9/2/2014 3:48:51 PM

Use java.util.concurrent Collections (OCP Objective 11.1) and Use a Deque (OCP Objective 4.5) 803

Bounded Queues

ArrayBlockingQueue, LinkedBlockingDeque, and LinkedBlockingQueue
support a bounded capacity and will block on put(e) and similar operations if the
collection is full. LinkedBlockingQueue is optionally bounded, depending on the
constructor you use.

BlockingQueue<Integer> bq = new ArrayBlockingQueue<>(1);
try {
 bq.put(42);
 bq.put(43); // blocks until previous value is removed
} catch (InterruptedException ex) {
 // log and handle
}

Special-Purpose Queues

A SynchronousQueue is a special type of bounded blocking queue; it has a capacity
of zero. Having a zero capacity, the first thread to attempt either an insert or remove
operation on a SynchronousQueue will block until another thread performs the
opposite operation. You use a SynchronousQueue when you need threads to meet
up and exchange an object.

A DelayQueue is useful when you have objects that should not be consumed
until a specific time. The elements added to a DelayQueue will implement the
java.util.concurrent.Delayed interface which defines a single method: public
long getDelay(TimeUnit unit). The elements of a DelayQueue can only be
taken once their delay has expired.

The LinkedTransferQueue

A LinkedTransferQueue (new to Java 7) is a superset of ConcurrentLinkedQueue,
SynchronousQueue, and LinkedBlockingQueue. It can function as a concurrent
Queue implementation similar to ConcurrentLinkedQueue. It also supports unbounded
blocking (consumption blocking) similar to LinkedBlockingQueue via the take()
method. Like a SynchronousQueue, a LinkedTransferQueue can be used to
make two threads rendezvous to exchange an object. Unlike a SynchronousQueue,
a LinkedTransferQueue has internal capacity, so the transfer(E) method is used
to block until the inserted object (and any previously inserted objects) is consumed by
another thread.

In other words, a LinkedTransferQueue might do almost everything you need
from a Queue.

14-ch14.indd 803 9/2/2014 3:48:51 PM

804 Chapter 14: Concurrency

Because a LinkedTransferQueue implements the BlockingQueue,
TransferQueue, and Queue interfaces, it can be used to showcase all the different
methods that can be used to add and remove elements using the various types of
queues. Creating a LinkedTransferQueue is easy. Because LinkedTransferQueue
is not bound by size, a limit to the number of elements CANNOT be supplied to its
constructor.

TransferQueue<Integer> tq =
 new LinkedTransferQueue<>(); // not bounded

There are many methods to add a single element to a LinkedTransferQueue.
Note that any method that blocks or waits for any period may throw an
InterruptedException.

boolean b1 = tq.add(1); // returns true if added or throws
 // IllegalStateException if full
tq.put(2); // blocks if bounded and full
boolean b3 = tq.offer(3); // returns true if added or false
 // if bounded and full
 // recommended over add
boolean b4 =
 tq.offer(4, 10, MILLISECONDS); // returns true if added
 // within the given time
 // false if bound and full
tq.transfer(5); // blocks until this element is consumed
boolean b6 = tq.tryTransfer(6); // returns true if consumed
 // by an awaiting thread or
 // returns false without
 // adding if there was no
 // awaiting consumer
boolean b7 =
 tq.tryTransfer(7, 10, MILLISECONDS); // will wait the
 // given time for
 // a consumer

Shown next are the various methods to access a single value in a
LinkedTransferQueue. Again, any method that blocks or waits for any period may
throw an InterruptedException.

Integer i1 = tq.element(); // gets without removing
 // throws NoSuchElementException
 // if empty
Integer i2 = tq.peek(); // gets without removing
 // returns null if empty
Integer i3 = tq.poll(); // removes the head of the queue
 // returns null if empty
Integer i4 =
 tq.poll(10, MILLISECONDS); // removes the head of the

14-ch14.indd 804 9/2/2014 3:48:51 PM

Use Executors and ThreadPools (OCP Objective 11.3) 805

 // queue, waits up to the time
 // specified before returning
 // null if empty
Integer i5 = tq.remove(); // removes the head of the queue
 // throws NoSuchElementException
 // if empty
Integer i6 = tq.take(); // removes the head of the queue
 // blocks until an element is ready

Use a LinkedTransferQueue (new to Java 7) instead of another comparable

queue type. The other java.util.concurrent queues (introduced in Java 5)

are less efficient than LinkedTransferQueue.

CERTIFICATION OBJECTIVE

Use Executors and ThreadPools
(OCP Objective 11.3)

11.3 Use Executor, ExecutorService, Executors, Callable, and Future to execute tasks
using thread pools.

Executors (and the ThreadPools used by them) help meet two of the same
needs that Threads do:

 1. Creating and scheduling some Java code for execution and

 2. Optimizing the execution of that code for the hardware resources you have
available (using all CPUs, for example)

With traditional threading, you handle needs 1 and 2 yourself. With Executors,
you handle need 1, but you get to use an off-the-shelf solution for need 2. The java.
util.concurrent package provides several different off-the-shelf solutions
(Executors and ThreadPools), which you'll read about in this chapter.

When you have multiple needs or concerns, it is common to separate the

code for each need into different classes. This makes your application more

modular and flexible. This is a fundamental programming principle called

"separation of concerns."

14-ch14.indd 805 9/2/2014 3:48:51 PM

806 Chapter 14: Concurrency

In a way, an Executor is an alternative to starting new threads. Using Threads
directly can be considered low-level multithreading, while using Executors can be
considered high-level multithreading. To understand how an Executor can replace
manual thread creation, let us first analyze what happens when starting a new thread.

 1. First, you must identify a task of some sort that forms a self-contained unit
of work. You will typically code this task as a class that implements the
Runnable interface.

 2. After creating a Runnable, the next step is to execute it. You have two
options for executing a Runnable:

■ Option one Call the run method synchronously (i.e., without starting
a thread). This is probably not what you would normally do.

Runnable r = new MyRunnableTask();
r.run(); // executed by calling thread

■ Option two Call the method indirectly, most likely with a new thread.
Runnable r = new MyRunnableTask();
Thread t1 = new Thread(r);
t1.start();

The second approach has the benefit of executing your task asynchronously,
meaning the primary flow of execution in your program can continue executing,
without waiting for the task to complete. On a multiprocessor system, you must
divide a program into a collection of asynchronous tasks that can execute
concurrently in order to take advantage of all of the computing power a system
possesses.

Identifying Parallel Tasks

Some applications are easier to divide into separate tasks than others. A single-user
desktop application may only have a handful of tasks that are suitable for concurrent
execution. Networked, multiuser servers, on the other hand, have a natural division
of work. Each user's actions can be a task. Continuing our computer game scenario,
imagine a computer program that can play chess against thousands of people
simultaneously. Each player submits their move, the computer calculates its move,
and finally it informs the player of that move.

Why do we need an alternative to new Thread(r).start()? What are the
drawbacks? If we use our online chess game scenario, then having 10,000 concurrent
players might mean 10,001 concurrent threads. (One thread awaits network

14-ch14.indd 806 9/2/2014 3:48:51 PM

 Use Executors and ThreadPools (OCP Objective 11.3) 807

connections from clients and performs a Thread(r).start() for each player.) The
player thread would be responsible for reading the player's move, computing the
computer's move, and making the response.

How Many Threads Can You Run?

Do you own a computer that can concurrently run 10,000 threads or 1,000 or even
100? Probably not—this is a trick question. A quad-core CPU (with four processors
per unit) might be able to execute two threads per core for a total of eight concurrently
executing threads. You can start 10,000 threads, but not all of them will be running
at the same time. The underlying operating system's task scheduler rotates the
threads so that they each get a slice of time on a processor. Ten thousand threads all
competing for a turn on a processor wouldn't make for a very responsive system.
Threads would either have to wait so long for a turn or get such small turns (or both)
that performance would suffer.

In addition, each thread consumes system resources. It takes processor cycles to
perform a context switch (saving the state of a thread and resuming another thread),
and each thread consumes system memory for its stack space. Stack space is used for
temporary storage and to keep track of where a thread returns to after completing a
method call. Depending on a thread's behavior, it might be possible to lower the cost
(in RAM) of creating a thread by reducing a thread's stack size.

To reduce a thread's stack size, the Oracle JVM supports using the

nonstandard-Xss1024k option to the java command. Note that decreasing the

value too far can result in some threads throwing exceptions when performing

certain tasks, such as making a large number of recursive method calls.

Another limiting factor in being able to run 10,000 threads in an application has
to do with the underlying limits of the OS. Operating systems typically have limits
on the number of threads an application can create. These limits can prevent a
buggy application from spawning countless threads and making your system
unresponsive. If you have a legitimate need to run 10,000 threads, you will probably
have to consult your operating system's documentation to discover possible limits
and configuration options.

CPU-Intensive vs. I/O-Intensive Tasks

If you correctly configure your OS and you have enough memory for each thread's
stack space plus your application's primary memory (heap), will you be able to run

14-ch14.indd 807 9/2/2014 3:48:51 PM

808 Chapter 14: Concurrency

an application with 10,000 threads? It depends…. Remember that your processor
can only run a small number of concurrent threads (in the neighborhood of 8 to 16
threads). Yet, many network server applications, such as our online chess game,
would have traditionally started a new thread for each connected client. A system
might be able to run an application with such a high number of threads because
most of the threads are not doing anything. More precisely, in an application like
our online chess server, most threads would be blocked waiting on I/O operations
such as InputStream.read or OutputStream.write method calls.

When a thread makes an I/O request using InputStream.read and the data to
be read isn't already in memory, the calling thread will be put to sleep ("blocked") by
the system until the requested data can be loaded. This is much more efficient than
keeping the thread on the processor while it has nothing to do. I/O operations are
extremely slow when compared to compute operations—reading a sector from a hard
drive takes much longer than adding hundreds of numbers. A processor might
execute hundreds of thousands, or even millions, of instructions while awaiting the
completion of an I/O request. The type of work (either CPU intensive or I/O
intensive) a thread will be performing is important when considering how many
threads an application can safely run. Imagine your world-class computer chess
playing program takes one minute of processor time (no I/O at all) to calculate each
move. In this scenario, it would only take about 16 concurrent players to cause your
system to have periods of maximum CPU utilization.

If your tasks will be performing I/O operations, you should be concerned

about how increased load (users) might affect scalability. If your tasks perform

blocking I/O, then you might need to utilize a thread-per-task model. If you

don't, then all your threads may be tied up in I/O operations with no threads

remaining to support additional users. Another option would be to investigate

whether you can use nonblocking I/O instead of blocking I/O.

Fighting for a Turn

If it takes the computer player one minute to calculate a turn and it takes a human
player about the same time, then each player only uses one minute of CPU time out
of every two minutes of real time. With a system capable of executing 16 concurrent
game threads, that means we could handle 32 connected players. But if all 32 players
make their turn at once, the computer will be stuck trying to calculate 32 moves at
once. If the system uses preemptive multitasking (the most common type), then
each thread will get preempted while it is running (paused and kicked off the CPU)

14-ch14.indd 808 9/2/2014 3:48:51 PM

 Use Executors and ThreadPools (OCP Objective 11.3) 809

so a different thread can take a turn (time slice). In most JVM implementations, this
is handled by the underlying operating system's task scheduler. The task scheduler is
itself a software program. The more CPU cycles spent scheduling and preempting
threads, the less processor time you have to execute your application threads. Note
that it would appear to the untrained observer that all 32 threads were running
concurrently because a preemptive multitasking system will switch out the running
threads frequently (millisecond time slices).

Decoupling Tasks from Threads

The best design would be one that utilized as many system resources as possible
without attempting to over-utilize the system. If 16 threads are all you need to fully
utilize your CPU, why would you start more than that? In a traditional system, you
start more threads than your system can concurrently run and hope that only a small
number are in a running state. If we want to adjust the number of threads that are
started, we need to decouple the tasks that are to be performed (our Runnable
instances) from our thread creation and starting. This is where a java.util.
concurrent.Executor can help. The basic usage looks something like this:

Runnable r = new MyRunnableTask();
Executor ex = // details to follow
ex.execute(r);

A java.util.concurrent.Executor is used to execute the run method in a
Runnable instance much like a thread. Unlike a more traditional new Thread(r)
.start(), an Executor can be designed to use any number of threading
approaches, including

■ Not starting any threads at all (task is run in the calling thread)

■ Starting a new thread for each task

■ Queuing tasks and processing them with only enough threads to keep the
CPU utilized

You can easily create your own implementations of an Executor with custom
behaviors. As you'll see soon, several implementations are provided in the standard
Java SE libraries. Looking at sample Executor implementations can help you to
understand their behavior. This next example doesn't start any new threads; instead,
it executes the Runnable using the thread that invoked the Executor.

14-ch14.indd 809 9/2/2014 3:48:51 PM

810 Chapter 14: Concurrency

import java.util.concurrent.Executor;
public class SameThreadExecutor implements Executor {
 @Override
 public void execute(Runnable command) {
 command.run(); // caller waits
 }
}

The following Executor implementation would use a new thread for each task:

import java.util.concurrent.Executor;
public class NewThreadExecutor implements Executor {
 @Override
 public void execute(Runnable command) {
 Thread t = new Thread(command);
 t.start();
 }
}

This example shows how an Executor implementation can be put to use:

Runnable r = new MyRunnableTask();
Executor ex = new NewThreadExecutor(); // choose Executor
ex.executor(r);

By coding to the Executor interface, the submission of tasks is decoupled from
the execution of tasks. The result is that you can easily modify how threads are used
to execute tasks in your applications.

There is no "right number" of threads for task execution. The type of task

(CPU intensive versus I/O intensive), number of tasks, I/O latency, and system

resources all factor into determining the ideal number of threads to use. You

should perform testing of your applications to determine the ideal threading

model. This is one reason why the ability to separate task submission from task

execution is important.

Several Executor implementations are supplied as part of the standard Java
libraries. The Executors class (notice the "s" at the end) is a factory for Executor
implementations.

Runnable r = new MyRunnableTask();
Executor ex = Executors.newCachedThreadPool(); // choose Executor
ex.execute(r);

The Executor instances returned by Executors are actually of type
ExecutorService (which extends Executor). An ExecutorService provides
management capability and can return Future references that are used to obtain the

14-ch14.indd 810 9/2/2014 3:48:51 PM

 Use Executors and ThreadPools (OCP Objective 11.3) 811

result of executing a task asynchronously. We'll talk more about Future in a few
pages!
Runnable r = new MyRunnableTask();
ExecutorService ex = Executors.newCachedThreadPool(); // subtype of Executor
ex.execute(r);

Three types of ExecutorService instances can be created by the factory
methods in the Executors class: cached thread pool executors, fixed thread pool
executors, and single thread pool executors.

Cached Thread Pools

ExecutorService ex = Executors.newCachedThreadPool();

A cached thread pool will create new threads as they are needed and reuse
threads that have become free. Threads that have been idle for 60 seconds are
removed from the pool.

Watch out! Without some type of external limitation, a cached thread pool may
be used to create more threads than your system can handle.

Fixed Thread Pools—Most Common

ExecutorService ex = Executors.newFixedThreadPool(4);

A fixed thread pool is constructed using a numeric argument (4 in the preceding
example) that specifies the number of threads used to execute tasks. This type of
pool will probably be the one you use the most because it prevents an application
from overloading a system with too many threads. Tasks that cannot be executed
immediately are placed on an unbounded queue for later execution.

You might base the number of threads in a fixed thread pool on some

attribute of the system your application is executing on. By tying the number

of threads to system resources, you can create an application that scales with

changes in system hardware. To query the number of available processors, you

can use the java.lang.Runtime class.

Runtime rt = Runtime.getRuntime();
int cpus = rt.availableProcessors();

14-ch14.indd 811 9/2/2014 3:48:51 PM

812 Chapter 14: Concurrency

ThreadPoolExecutor

Both Executors.newCachedThreadPool() and Executors
.newFixedThreadPool(4) return objects of type java.util.concurrent
.ThreadPoolExecutor (which implements ExecutorService and Executor).
You will typically use the Executors factory methods instead of creating
ThreadPoolExecutor instances directly, but you can cast the fixed or cached
thread pool ExecutorService references if you need access to the additional
methods. The following example shows how you could dynamically adjust the thread
count of a pool at runtime:
ThreadPoolExecutor tpe = (ThreadPoolExecutor)Executors.newFixedThreadPool(4);
tpe.setCorePoolSize(8);
tpe.setMaximumPoolSize(8);

Single Thread Pools

ExecutorService ex = Executors.newSingleThreadExecutor();

A single thread pool uses a single thread to execute tasks. Tasks that cannot be
executed immediately are placed on an unbounded queue for later execution. Unlike
a fixed thread pool executor with a size of 1, a single thread executor prevents any
adjustments to the number of threads in the pool.

Scheduled Thread Pool

In addition to the three basic ExecutorService behaviors outlined already, the
Executors class has factory methods to produce a ScheduledThreadPoolExecutor.
A ScheduledThreadPoolExecutor enables tasks to be executed after a delay or at
repeating intervals. Here, we see some thread scheduling code in action:
ScheduledExecutorService ftses =
 Executors.newScheduledThreadPool(4); // multi-threaded
 // version
ftses.schedule(r, 5, TimeUnit.SECONDS); // run once after
 // a delay
ftses.scheduleAtFixedRate(r, 2, 5, TimeUnit.SECONDS); // begin after a
 // 2sec delay
 // and begin again every 5 seconds
ftses.scheduleWithFixedDelay(r, 2, 5, TimeUnit.SECONDS); // begin after
 // 2sec delay
 // and begin again 5 seconds *after* completing the last execution

14-ch14.indd 812 9/2/2014 3:48:51 PM

 Use Executors and ThreadPools (OCP Objective 11.3) 813

The Callable Interface

So far, the Executors examples have used a Runnable instance to represent the
task to be executed. The java.util.concurrent.Callable interface serves the
same purpose as the Runnable interface, but provides more flexibility. Unlike the
Runnable interface, a Callable may return a result upon completing execution and
may throw a checked exception. An ExecutorService can be passed a Callable
instead of a Runnable.

Avoid using methods such as Object.wait, Object.notify, and Object

.notifyAll in tasks (Runnable and Callable instances) that are submitted

to an Executor or ExecutorService. Because you might not know what the

threading behavior of an Executor is, it is a good idea to avoid operations

that may interfere with thread execution. Avoiding these types of methods is

advisable anyway since they are easy to misuse.

The primary benefit of using a Callable is the ability to return a result.
Because an ExecutorService may execute the Callable asynchronously (just like
a Runnable), you need a way to check the completion status of a Callable and
obtain the result later. A java.util.concurrent.Future is used to obtain the
status and result of a Callable. Without a Future, you'd have no way to obtain the
result of a completed Callable and you might as well use a Runnable (which
returns void) instead of a Callable. Here's a simple Callable example that loops a
random number of times and returns the random loop count:

import java.util.concurrent.Callable;
import java.util.concurrent.ThreadLocalRandom;
public class MyCallable implements Callable<Integer> {

 @Override
 public Integer call() {
 // Obtain a random number from 1 to 10
 int count = ThreadLocalRandom.current().nextInt(1, 11);
 for(int i = 1; i <= count; i++) {
 System.out.println("Running..." + i);
 }
 return count;
 }
}

Submitting a Callable to an ExecutorService returns a Future reference.
When you use the Future to obtain the Callable's result, you will have to handle
two possible exceptions:

■ InterruptedException Raised when the thread calling the Future's
get() method is interrupted before a result can be returned

14-ch14.indd 813 9/2/2014 3:48:51 PM

814 Chapter 14: Concurrency

■ ExecutionException Raised when an exception was thrown during the
execution of the Callable's call() method

Callable<Integer> c = new MyCallable();
ExecutorService ex =
 Executors.newCachedThreadPool();
Future<Integer> f = ex.submit(c); // finishes in the future
try {
 Integer v = f.get(); // blocks until done
 System.out.println("Ran:" + v);
} catch (InterruptedException | ExecutionException iex) {
 System.out.println("Failed");
}

I/O activities in your Runnable and Callable instances can be a serious

bottleneck. In preceding examples, the use of System.out.println() will

cause I/O activity. If this wasn't a trivial example being used to demonstrate

Callable and ExecutorService, you would probably want to avoid

repeated calls to println() in the Callable. One possibility would be to use

StringBuilder to concatenate all output strings and have a single println()

call before the call() method returns. Another possibility would be to use a

logging framework (see java.util.logging) in place of any println() calls.

ThreadLocalRandom

The first Callable example used a java.util.concurrent.ThreadLocalRandom.
ThreadLocalRandom is a new way in Java 7 to create random numbers. Math.
random() and shared Random instances are thread-safe, but suffer from contention
when used by multiple threads. A ThreadLocalRandom is unique to a thread and
will perform better because it avoids any contention. ThreadLocalRandom also
provides several convenient methods such as nextInt(int,int) that allow you to
specify the range of possible values returned.

ExecutorService Shutdown

You've seen how to create Executors and how to submit Runnable and Callable
tasks to those Executors. The final component to using an Executor is shutting it
done once it is done processing tasks. An ExecutorService should be shut down
once it is no longer needed to free up system resources and to allow graceful
application shutdown. Because the threads in an ExecutorService may be
nondaemon threads, they may prevent normal application termination. In other
words, your application stays running after completing its main method. You could

14-ch14.indd 814 9/2/2014 3:48:51 PM

 Use the Parallel Fork/Join Framework (OCP Objective 11.4) 815

perform a System.exit(0) call, but it would preferable to allow your threads to
complete their current activities (especially if they are writing data).

ExecutorService ex =
// …
ex.shutdown(); // no more new tasks
 // but finish existing tasks
try {
 boolean term = ex.awaitTermination(2, TimeUnit.SECONDS);
 // wait 2 seconds for running tasks to finish
} catch (InterruptedException ex1) {
 // did not wait the full 2 seconds
} finally {
 if(!ex.isTerminated()) // are all tasks done?
 {
 List<Runnable> unfinished = ex.shutdownNow();
 // a collection of the unfinished tasks
 }
}

For long-running tasks (especially those with looping constructs), consider
using Thread.currentThread().isInterrupted() to determine if a Runnable
or Callable should return early. The ExecutorService.shutdownNow()
method will typically call Thread.interrupt() in an attempt to terminate any
unfinished tasks.

CERTIFICATION OBJECTIVE

Use the Parallel Fork/Join Framework
(OCP Objective 11.4)

11.4 Use the parallel Fork/Join Framework.

The Fork-Join Framework provides a highly specialized ExecutorService. The
other ExecutorService instances you've seen so far are centered on the concept of
submitting multiple tasks to an ExecutorService. By doing this, you provide an
easy avenue for an ExecutorService to take advantage of all the CPUs in a system
by using a threads to complete tasks. Sometimes, you don't have multiple tasks;
instead, you have one really big task.

14-ch14.indd 815 9/2/2014 3:48:51 PM

816 Chapter 14: Concurrency

There are many large tasks or problems you might need to solve in your application.
For example, you might need to initialize the elements of a large array with values.
You might think that initializing an array doesn't sound like a large complex task in
need of a framework. The key is that it needs to be a large task. What if you need to
fill up a 100,000,000-element array with randomly generated values? The Fork-Join
Framework makes it easier to tackle big tasks like this, while leveraging all of the
CPUs in a system.

Divide and Conquer

Certain types of large tasks can be split up into smaller subtasks; those subtasks
might, in turn, be split up into even smaller tasks. There is no limit to how many
times you might subdivide a task. For example, imagine the task of having to repaint
a single long fence that borders several houses. The "paint the fence" task could be
subdivided so that each household would be responsible for painting a section of the
fence. Each household could then subdivide their section into subsections to be
painted by individual family members. In this example, there are three levels of
recursive calls. The calls are considered recursive because at each step we are trying
to accomplish the same thing: paint the fence. In other words, Joe, one of the home
owners, was told by his wife, "paint that (huge) fence, it looks old." Joe decides that
painting the whole fence is too much work and talks all the households along the
fence into taking a subsection. Now Joe is telling himself "paint that (subsection of)
fence, it looks old." Again, Joe decides that it is still too much work and subdivides
his section into smaller sections for each member of his household. Again, Joe tells
himself "paint that (subsection of) fence, it looks old," but this time, he decides that
the amount of work is manageable and proceeds to paint his section of fence.
Assuming everyone else paints their subsections (hopefully in a timely fashion), the
result is the entire fence being painted.

When using the Fork-Join Framework, your tasks will be coded to decide how

many levels of recursion (how many times to subdivide) are appropriate. You'll

want to split things up into enough subtasks that you have enough tasks to

keep all of your CPUs utilized. Sometimes, the best number of tasks can be

a little hard to determine because of factors we will discuss later. You might

have to benchmark different numbers of task divisions to find the optimal

number of subtasks that should be created.

14-ch14.indd 816 9/2/2014 3:48:51 PM

 Use the Parallel Fork/Join Framework (OCP Objective 11.4) 817

Just because you can use Fork-Join to solve a problem doesn't always mean you
should. If our initial task is to paint eight fence planks, then Joe might just decide to
paint them himself. The effort involved in subdividing the problem and assigning
those tasks to workers (threads) can sometimes be more than the actual work you
want to perform. The number of elements (or fence planks) is not the only thing to
consider—the amount of work performed on each element is also important.
Imagine if Joe was asked to paint a mural on each fence plank. Because processing
each element (fence plank) is so time consuming, in this case, it might be beneficial
to adopt a divide-and-conquer solution even though there is a small number of
elements.

ForkJoinPool

The Fork-Join ExecutorService implementation is java.util.concurrent
.ForkJoinPool. You will typically submit a single task to a ForkJoinPool and
await its completion. The ForkJoinPool and the task itself work together to divide
and conquer the problem. Any problem that can be recursively divided can be
solved using Fork-Join. Anytime you want to perform the same operation on a
collection of elements (painting thousands of fence planks or initializing
100,000,000 array elements), consider using Fork-Join.

To create a ForkJoinPool, simply call its no-arg constructor:

ForkJoinPool fjPool = new ForkJoinPool();

The no-arg ForkJoinPool constructor creates an instance that will use the
Runtime.availableProcessors() method to determine the level of parallelism.
The level of parallelism determines the number of threads that will be used by the
ForkJoinPool.

There is also a ForkJoinPool(int parallelism) constructor that allows you
to override the number of threads that will be used.

ForkJoinTask

Just as with Executors, you must capture the task to be performed as Java code.
With the Fork-Join Framework, a java.util.concurrent.ForkJoinTask
instance (actually a subclass—more on that later) is created to represent the task
that should be accomplished. This is different from other executor services that
primarily used either Runnable or Callable. A ForkJoinTask has many methods

14-ch14.indd 817 9/2/2014 3:48:51 PM

818 Chapter 14: Concurrency

(most of which you will never use), but the following methods are important:
compute(), fork(), and join().

A ForkJoinTask subclass is where you will perform most of the work involved in
completing a Fork-Join task. ForkJoinTask is an abstract base class; we will discuss
the two subclasses, RecursiveTask and RecursiveAction, later. The basic
structure of any ForkJoinTask is shown in this pseudocode example:

class ForkJoinPaintTask {
 compute() {
 if(isFenceSectionSmall()) { // is it a manageable amount of work?
 paintFenceSection(); // do the task
 } else { // task too big, split it
 ForkJoinPaintTask leftHalf = getLeftHalfOfFence();
 leftHalf.fork(); // queue left half of task
 ForkJoinPaintTask rightHalf = getRightHalfOfFence();
 rightHalf.compute(); // work on right half of task
 leftHalf.join(); // wait for queued task to be complete
 }
 }
}

Fork

With the Fork-Join Framework, each thread in the ForkJoinPool has a queue of
the tasks it is working on; this is unlike most ExecutorService implementations
that have a single shared task queue. The fork() method places a ForkJoinTask
in the current thread's task queue. A normal thread does not have a queue of
tasks—only the specialized threads in a ForkJoinPool do. This means that you
can't call fork() unless you are within a ForkJoinTask that is being executed by a
ForkJoinPool.

Initially, only a single thread in a ForkJoinPool will be busy when you submit a
task. That thread will begin to subdivide the tasks into smaller tasks. Each time a
task is subdivided into two subtasks, you fork (or queue) the first task and compute
the second task. In the event you need to subdivide a task into more than two
subtasks, each time you split a task, you would fork every new subtask except one
(which would be computed).

Initial Task 1 «fork»
Task 1.A

«compute»
Task 1.B

«fork»
Task
1.B.1

«compute»
Task
1.B.2

«fork»
Task

1.B.2.A

«compute»
Task

1.B.2.B

Worker Thread 1

Queued by call to fork ()
Stolen by another thread

Queued by call to fork ()
Executed when task 1.B.2 calls join ()

14-ch14.indd 818 9/2/2014 3:48:51 PM

Use the Parallel Fork/Join Framework (OCP Objective 11.4) 819

Work Stealing

Notice how the call to fork() is placed before the call to compute() or join().
A key feature of the Fork-Join Framework is work stealing. Work stealing is how the
other threads in a ForkJoinPool will obtain tasks. When initially submitting a
Fork-Join task for execution, a single thread from a ForkJoinPool begins executing
(and subdividing) that task. Each call to fork() placed a new task in the calling
thread's task queue. The order in which the tasks are queued is important. The tasks
that have been queued the longest represent larger amounts of work. In the
ForkJoinPaintTask example, the task that represents 100 percent of the work would
begin executing, and its first queued (forked) task would represent 50 percent of the
fence, the next 25 percent, then 12.5 percent, and so on. Of course, this can vary,
depending on how many times the task will be subdivided and whether we are splitting
the task into halves or quarters or some other division, but in this example, we are
splitting each task into two parts: queuing one part and executing the second part.

The nonbusy threads in a ForkJoinPool will attempt to steal the oldest (and
therefore largest) task from any Fork-Join thread with queued tasks. Given a
ForkJoinPool with four threads, one possible sequence of events could be that the
initial thread queues tasks that represent 50 percent and 25 percent of the work,
which are then stolen by two different threads. The thread that stole the 50 percent
task then subdivides that task and places a 25 percent task on its queue, which is
then stolen by a fourth thread, resulting in four threads that each process 25 percent
of the work.

Initial Task 1 Task 1.A Task 1.B Task
1.B.1

Task
1.B.2

Task
1.B.2.A

Task
1.B.2.B

Worker Thread 1

Worker Thread 2

Task
1.A.1

Task
1.A.2

Task
1.A.2.A

Task
1.A.2.B

«stolen»
Task 1.A

Worker Thread 3

Worker Thread 4

«stolen»
Task
1.B.1

Task
1.B.1.A

Task
1.B.1.B

«stolen»
Task
1.A.1

Task
1.A.1.A

Task
1.A.1

14-ch14.indd 819 9/2/2014 3:48:51 PM

820 Chapter 14: Concurrency

Of course, if everything was always this evenly distributed, you might not have as
much of a need for Fork-Join. You could just presplit the work into a number of tasks
equal to the number of threads in your system and use a regular ExecutorService.
In practice, each of the four threads will not finish their 25 percent of the work at
the same time—one thread will be the slow thread that doesn't get as much work
done. There are many reasons for this: The data being processed may affect the
amount of computation (25 percent of an array might not mean 25 percent of the
workload), or a thread might not get as much time to execute as the other threads.
Operating systems and other running applications are also going to consume CPU
time. In order to finish executing the Fork-Join task as soon as possible, the threads
that finish their portions of the work first will start to steal work from the slower
threads—this way, you will be able to keep all of the CPU involved. If you only split
the tasks into 25 percent of the data (with four threads), then there would be nothing
for the faster threads to steal from when they finish early. In the beginning, if the
slower thread stole 25 percent of the work and started processing it without further
subdividing and queuing, then there would be no work on the slow thread's queue to
steal. You should subdivide the tasks into a few more sections than are needed to
evenly distribute the work among the number of threads in your ForkJoinPools
because threads will most likely not perform exactly the same. Subdividing the tasks
is extra work—if you do it too much, you might hurt performance. Subdivide your
tasks enough to keep all CPUs busy, but not more than is needed. Unfortunately,
there is no magic number to split your tasks into—it varies based on the complexity
of the task, the size of the data, and even the performance characteristics of your CPUs.

Back to fence painting, make the isFenceSectionSmall() logic as simple as
possible (low overhead) and easy to change. You should benchmark your Fork-Join
code (using the hardware that you expect the code to typically run on) and find an
amount of task subdivision that works well. It doesn't have to be perfect; once you
are close to the ideal range, you probably won't see much variation in performance
unless other factors come into play (different CPUs, etc.).

Join

When you call join() on the (left) task, it should be one of the last steps in the
compute method, after calling fork() and compute(). Calling join() says "I can't
proceed unless this (left) task is done." Several possible things can happen when you
call join():

■ The task you call join() on might already be done. Remember you are
calling join() on a task that already had fork() called. The task might

14-ch14.indd 820 9/2/2014 3:48:52 PM

 Use the Parallel Fork/Join Framework (OCP Objective 11.4) 821

have been stolen and completed by another thread. In this case, calling
join() just verifies the task is complete and you can continue on.

■ The task you call join() on might be in the middle of being processed.
Another thread could have stolen the task, and you'll have to wait until the
joined task is done before continuing.

■ The task you call join() on might still be in the queue (not stolen). In this
case, the thread calling join() will execute the joined task.

RecursiveAction

ForkJoinTask is an abstract base class that outlines most of the methods, such as fork()
and join(), in a Fork-Join task. If you need to create a ForkJoinTask that does
not return a result, then you should subclass RecursiveAction. RecursiveAction
extends ForkJoinTask and has a single abstract compute method that you must
implement:

protected abstract void compute();

An example of a task that does not need to return a result would be any task that
initializes an existing data structure. The following example will initialize an array to
contain random values. Notice that there is only a single array throughout the entire
process. When subdividing an array, you should avoid creating new objects when
possible.

public class RandomInitRecursiveAction extends RecursiveAction {
 private static final int THRESHOLD = 10000;
 private int[] data;
 private int start;
 private int end;

 public RandomInitRecursiveAction(int[] data, int start, int end) {
 this.data = data;
 this.start = start; // where does our section begin at?
 this.end = end; // how large is this section?
 }
 @Override
 protected void compute() {
 if (end - start <= THRESHOLD) { // is it a manageable amount of work?
 // do the task
 for (int i = start; i < end; i++) {
 data[i] = ThreadLocalRandom.current().nextInt();
 }
 } else { // task too big, split it
 int halfWay = ((end - start) / 2) + start;
 RandomInitRecursiveAction a1 =

14-ch14.indd 821 9/2/2014 3:48:52 PM

822 Chapter 14: Concurrency

 new RandomInitRecursiveAction(data, start, halfWay);
 a1.fork(); // queue left half of task
 RandomInitRecursiveAction a2 =
 new RandomInitRecursiveAction(data, halfWay, end);
 a2.compute(); // work on right half of task
 a1.join(); // wait for queued task to be complete
 }
 }
}

Sometimes, you will see one of the invokeAll methods from the ForkJoinTask
class used in place of the fork/compute/join method combination. The invokeAll
methods are convenience methods that can save some typing. Using them will also
help you avoid bugs! The first task passed to invokeAll will be executed (compute
is called), and all additional tasks will be forked and joined. In the preceding
example, you could eliminate the three fork/compute/join lines and replace them
with a single line:

invokeAll(a2, a1);

To begin the application, we create a large array and initialize it using Fork-Join:

public static void main(String[] args) {
 int[] data = new int[10_000_000];
 ForkJoinPool fjPool = new ForkJoinPool();
 RandomInitRecursiveAction action =
 new RandomInitRecursiveAction(data, 0, data.length);
 fjPool.invoke(action);
}

Notice that we do not expect any return values when calling invoke. A
RecursiveAction returns nothing.

RecursiveTask

If you need to create a ForkJoinTask that does return a result, then you should
subclass RecursiveTask. RecursiveTask extends ForkJoinTask and has a single
abstract compute method that you must implement:

protected abstract V compute(); // V is a generic type

The following example will find the position in an array with the greatest value; if
duplicate values are found, the first occurrence is returned. Notice that there is only
a single array throughout the entire process. (Just like before, when subdividing an
array, you should avoid creating new objects when possible.)

14-ch14.indd 822 9/2/2014 3:48:52 PM

 Use the Parallel Fork/Join Framework (OCP Objective 11.4) 823

public class FindMaxPositionRecursiveTask extends RecursiveTask<Integer> {
 private static final int THRESHOLD = 10000;
 private int[] data;
 private int start;
 private int end;

 public FindMaxPositionRecursiveTask(int[] data, int start, int end) {
 this.data = data;
 this.start = start;
 this.end = end;
 }

 @Override
 protected Integer compute() { // return type matches the <generic> type
 if (end - start <= THRESHOLD) { // is it a manageable amount of work?
 int position = 0; // if all values are equal, return position 0
 for (int i = start; i < end; i++) {
 if (data[i] > data[position]) {
 position = i;
 }
 }
 return position;
 } else { // task too big, split it
 int halfWay = ((end - start) / 2) + start;
 FindMaxPositionRecursiveTask t1 =
 new FindMaxPositionRecursiveTask(data, start, halfWay);
 t1.fork(); // queue left half of task
 FindMaxPositionRecursiveTask t2 =
 new FindMaxPositionRecursiveTask(data, halfWay, end);
 int position2 = t2.compute(); // work on right half of task
 int position1 = t1.join(); // wait for queued task to be complete
 // out of the position in two subsection which is greater?
 if (data[position1] > data[position2]) {
 return position1;
 } else if (data[position1] < data[position2]) {
 return position2;
 } else {
 return position1 < position2 ? position1 : position2;
 }
 }
 }
}

To begin the application, we reuse the RecursiveAction example to create a
large array and initialize it using Fork-Join. After initializing the array with random
values, we reuse the ForkJoinPool with our RecursiveTask to find the position
with the greatest value:

public static void main(String[] args) {
 int[] data = new int[10_000_000];
 ForkJoinPool fjPool = new ForkJoinPool();
 RandomInitRecursiveAction action =
 new RandomInitRecursiveAction(data, 0, data.length);
 fjPool.invoke(action);

14-ch14.indd 823 9/2/2014 3:48:52 PM

824 Chapter 14: Concurrency

 // new code begins here
 FindMaxPositionRecursiveTask task =
 new FindMaxPositionRecursiveTask(data, 0, data.length);
 Integer position = fjPool.invoke(task);
 System.out.println("Position: " + position + ", value: " +
data[position]);
}

Notice that a value is returned by the call to invoke when using a RecursiveTask.

If your application will repeatedly submit tasks to a ForkJoinPool, then you

should reuse a single ForkJoinPool instance and avoid the overhead involved

in creating a new instance.

Embarrassingly Parallel

A problem or task is said to be embarrassingly parallel if little or no additional work
is required to solve the problem in a parallel fashion. Sometimes, solving a problem
in parallel adds so much more overhead that the problem can be solved faster serially.
The RandomInitRecursiveAction example, which initializes an array to random
values, has no additional overhead because what happens when processing one
subsection of an array has no bearing on the processing of another subsection. Technically,
there is a small amount of overhead even in the RandomInitRecursiveAction;
the Fork-Join Framework and the if statement that determines whether or not the
problem should be subdivided both introduce some overhead. Be aware that it can
be difficult to get performance gains that scale with the number of CPUs you have.
Typically, four CPUs will result in less than a 4× speedup when moving from a serial
to a parallel solution.

The FindMaxPositionRecursiveTask example, which finds the largest value
in an array, does introduce a small additional amount of work because you must
compare the result from each subsection and determine which is greater. This is only
a small amount, however, and adds little overhead. Some tasks may introduce so
much additional work that any advantage of using parallel processing is eliminated
(the task runs slower than serial execution). If you find yourself performing a lot of
processing after calling join(), then you should benchmark your application to
determine if there is a performance benefit to using parallel processing. Be aware
that performance benefits might only be seen with a certain number of CPUs. A task
might run on one CPU in 5 seconds, on two CPUs in 6 seconds, and on four CPUs
in 3.5 seconds.

The Fork-Join Framework is designed to have minimal overhead as long as you
don't over-subdivide your tasks and the amount of work required to join results can
be kept small. A good example of a task that incurs additional overhead but still

14-ch14.indd 824 9/2/2014 3:48:52 PM

 Use the Parallel Fork/Join Framework (OCP Objective 11.4) 825

benefits from Fork-Join is array sorting. When you split an array into two halves and
sort each half separately, you then have to combine the two sorted arrays, as shown
in the following example:

public class SortRecursiveAction extends RecursiveAction {
 private static final int THRESHOLD = 1000;
 private int[] data;
 private int start;
 private int end;

 public SortRecursiveAction(int[] data, int start, int end) {
 this.data = data;
 this.start = start;
 this.end = end;
 }

 @Override
 protected void compute() {
 if (end - start <= THRESHOLD) {
 Arrays.sort(data, start, end);
 } else {
 int halfWay = ((end - start) / 2) + start;
 SortRecursiveAction a1 =
 new SortRecursiveAction(data, start, halfWay);
 SortRecursiveAction a2 =
 new SortRecursiveAction(data, halfWay, end);
 invokeAll(a1, a2); // shortcut for fork() & join()
 if(data[halfWay-1] <= data[halfWay]) {
 return; // already sorted
 }
 // merging of sorted subsections begins here
 int[] temp = new int[end - start];
 int s1 = start, s2 = halfWay, d = 0;
 while(s1 < halfWay && s2 < end) {
 if(data[s1] < data[s2]) {
 temp[d++] = data[s1++];
 } else if(data[s1] > data[s2]) {
 temp[d++] = data[s2++];
 } else {
 temp[d++] = data[s1++];
 temp[d++] = data[s2++];
 }
 }
 if(s1 != halfWay) {
 System.arraycopy(data, s1, temp, d, temp.length - d);
 } else if(s2 != end) {
 System.arraycopy(data, s2, temp, d, temp.length - d);
 }
 System.arraycopy(temp, 0, data, start, temp.length);
 }
 }
}

14-ch14.indd 825 9/2/2014 3:48:52 PM

826 Chapter 14: Concurrency

In the previous example, everything after the call to invokeAll is related to
merging two sorted subsections of an array into a single larger sorted subsection.

Because Java applications are portable, the system running your application

may not have the hardware resources required to see a performance

benefit. Always perform testing to determine which problem and hardware

combinations see performance increases when using Fork-Join.

CERTIFICATION SUMMARY

This chapter covered the required concurrency knowledge you'll need to apply on
the certification exam. The java.util.concurrent package and its subpackages
form a high-level, multithreading framework in Java. You should become familiar
with threading basics before attempting to apply the Java concurrency libraries, but
once you learn java.util.concurrent, you may never extend Thread again.

Callables and Executors (and their underlying thread pools) form the basis of
a high-level alternative to creating new Threads directly. As the trend of adding
more CPU cores continues, knowing how to get Java to make use of them all
concurrently could put you on easy street. The high-level APIs provided by java
.util.concurrent help you create efficient multithreaded applications while
eliminating the need to use low-level threading APIs such as wait(), notify(),
and synchronized, which can be a source of hard-to-detect bugs.

When using an Executor, you will commonly create a Callable
implementation to represent the work that needs to be executed concurrently. A
Runnable can be used for the same purpose, but a Callable leverages generics to
allow a generic return type from its call method. Executor or ExecutorService
instances with predefined behavior can be obtained by calling one of the factory
methods in the Executors class like so: ExecutorService es = Executors
.newFixedThreadPool(100);.

Once you obtain an ExecutorService, you submit a task in the form of a Runnable
or Callable or a collection of Callable instances to the ExecutorService using one
of the execute, submit, invokeAny, or invokeAll methods. An ExecutorService
can be held onto during the entire life of your application if needed, but once it is no
longer needed, it should be terminated using the shutdown and shutdownNow methods.

14-ch14.indd 826 9/2/2014 3:48:52 PM

Certifi cation Summary 827

We looked at the Fork-Join Framework, which supplies a highly specialized type
of Executor. Use the Fork-Join Framework when the work you would typically put
in a Callable can be split into multiple units of work. The purpose of the Fork-Join
Framework is to decrease the amount of time it takes to solve a problem by leveraging
the additional CPUs in a system. You should only run a single Fork-Join task at a
time in an application, because the goal of the framework is to allow a single task to
consume all available CPU resources in order to be solved as quickly as possible. In
most cases, the effort of splitting a single task into multiple tasks that can be
operated on by the underlying Fork-Join threads will introduce additional overhead.
Don't assume that applying Fork-Join will grant you a performance benefit for all
problems. The overhead involved may be large enough that any benefit of applying
the framework is offset.

When applying the Fork-Join Framework, first subclass either RecursiveTask (if
a return result is desired) or RecursiveAction. Within one of these ForkJoinTask
subclasses, you must implement the compute method. The compute() method is
where you divide the work of a task into parts and then call the fork and join
methods or the invokeAll method. To execute the task, create a ForkJoinPool
instance with ForkJoinPool pool = new ForkJoinPool(); and submit the
RecursiveTask or RecursiveAction to the pool with the pool.invoke(task)
method. While the Fork-Join API itself is not that large, creating a correct and
efficient implementation of a ForkJoinTask can be challenging.

We learned about the java.util.concurrent collections. There are three
categories of collections: copy-on-write collections, concurrent collections, and
blocking queues. The copy-on-write and concurrent collections are similar in use to
the traditional java.util collections, but are designed to be used efficiently in a
thread-safe fashion. The copy-on-write collections (CopyOnWriteArrayList and
CopyOnWriteArraySet) should be used for read-heavy scenarios. When attempting
to loop through all the elements in one of the copy-on-write collections, always use
an Iterator. The concurrent collections included

■ ConcurrentHashMap

■ ConcurrentLinkedDeque

■ ConcurrentLinkedQueue

■ ConcurrentSkipListMap

■ ConcurrentSkipListSet

14-ch14.indd 827 9/2/2014 3:48:52 PM

828 Chapter 14: Concurrency

These collections are meant to be used concurrently without requiring locking.
Remember that iterators of these five concurrent collections are weakly consistent.
ConcurrentHashMap and ConcurrentSkipListMap are ConcurrentMap
implementations that add atomic putIfAbsent, remove, and replace methods
to the Map interface. Seven blocking queue implementations are provided by the
java.util.concurrent package:

■ ArrayBlockingQueue

■ LinkedBlockingDeque

■ LinkedBlockingQueue

■ PriorityBlockingQueue

■ DelayQueue

■ LinkedTransferQueue

■ SynchronousQueue

These blocking queues are used to exchange objects between threads—one thread
will deposit an object and another thread will retrieve that object. Depending on
which queue type is used, the parameters used to create the queue, and the method
being called, an insert or a removal operation may block until it can be completed
successfully. In Java 7, the LinkedTransferQueue class was added that acts as a
superset of several blocking queue types; you should prefer it when possible.

The java.util.concurrent.atomic and java.util.concurrent.locks
packages contain additional utility classes you might consider using in concurrent
applications. The java.util.concurrent.atomic package supplies thread-safe
classes that are similar to the traditional wrapper classes (such as java.lang
.Integer) but with methods that support atomic modifications. The java.util
.concurrent.locks.Lock interface and supporting classes enable you to create
highly customized locking behaviors that are more flexible than traditional object
monitor locking (the synchronized keyword).

14-ch14.indd 828 9/2/2014 3:48:52 PM

Two-Minute Drill 829

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Apply Atomic Variables and Locks (OCP Objective 11.2)

❑ The java.util.concurrent.atomic package provides classes that are similar
to volatile fields (changes to an atomic object's value will be correctly read by
other threads without the need for synchronized code blocks in your code).

❑ The atomic classes provide a compareAndSet method that is used to validate
that an atomic variable's value will only be changed if it matches an expected
value.

❑ The atomic classes provide several convenience methods such as addAndGet
that will loop repeatedly until a compareAndSet succeeds.

❑ The java.util.concurrent.locks package contains a locking mechanism
that is an alternative to synchronized methods and blocks. You get greater
flexibility at the cost of a more verbose syntax (such as having to manually
call lock.unlock() and having an automatic release of a synchronization
monitor at the end of a synchronized code block).

❑ The ReentrantLock class provides the basic Lock implementation.
Commonly used methods are lock(), unlock(), isLocked(), and
tryLock(). Calling lock() increments a counter and unlock() decrements
the counter. A thread can only obtain the lock when the counter is zero.

❑ The ReentrantReadWriteLock class provides a ReadWriteLock
implementation that supports a read lock (obtained by calling) and a write
lock (obtained by calling).

Use java.util.concurrent Collections (OCP Objective 11.1)

❑ Copy-on-write collections work well when there are more reads than writes
because they make a new copy of the collection for each write. When looping
through a copy-on-write collection, use an iterator (remember, for-each
loops use an iterator).

❑ None of the concurrent collections make the elements stored in the
collection thread-safe—just the collection itself.

❑ ConcurrentHashMap, ConcurrentSkipListMap, and
ConcurrentSkipListSet should be preferred over synchronizing
with the more traditional collections.

✓

14-ch14.indd 829 9/2/2014 3:48:52 PM

830 Chapter 14: Concurrency

❑ ConcurrentHashMap and ConcurrentSkipListMap are ConcurrentMap
implementations that enhance a standard Map by adding atomic operations
that validate the presence and value of an element before performing an
operation: putIfAbsent(K key, V value), remove(Object key,
Object value), replace(K key, V value), and replace(K key,
V oldValue, V newValue).

❑ Blocking queues are used to exchange objects between threads. Blocking
queues will block (hence the name) when you call certain operations, such as
calling take() when there are no elements to take. There are seven different
blocking queues that have slightly different behaviors; you should be able to
identify the behavior of each type.

Blocking Queue Description

ArrayBlockingQueue A FIFO (first-in-first-out) queue in which the head of the
queue is the oldest element and the tail is the newest. An int
parameter to the constructor limits the size of the queue (it is a
bounded queue).

LinkedBlockingDeque Similar to LinkedBlockingQueue, except it is a double-ended
queue (deque). Instead of only supporting FIFO operations,
you can remove from the head or tail of the queue.

LinkedBlockingQueue A FIFO queue in which the head of the queue is the oldest
element and the tail is the newest. An optional int parameter
to the constructor limits the size of the queue (it can be
bounded or unbounded).

PriorityBlockingQueue An unbounded queue that orders elements using Comparable
or Comparator. The head of the queue is the lowest value.

DelayQueue An unbounded queue of java.util.concurrent.Delayed
instances. Objects can only be taken once their delay has
expired. The head of the queue is the object that expired first.

LinkedTransferQueue New to Java 7. An unbounded FIFO queue that supports the
features of a ConcurrentLinkedQueue, SynchronousQueue,
and LinkedBlockingQueue.

SynchronousQueue A blocking queue with no capacity. An insert operation
blocks until another thread executes a remove operation. A
remove operation blocks until another thread executes an
insert operation.

❑ Some blocking queues are bounded, meaning they have an upper bound on
the number of elements that can be added, and a thread calling put(e) may
block until space becomes available.

14-ch14.indd 830 9/2/2014 3:48:53 PM

Two-Minute Drill 831

Use Executors and ThreadPools (OCP Objective 11.3)

❑ An Executor is used to submit a task for execution without being coupled to
how or when the task is executed. Basically, it creates an abstraction that can
be used in place of explicit thread creation and execution.

❑ An ExecutorService is an enhanced Executor that provides additional
functionality, such as the ability to execute a Callable instance and to shut
down (nondaemon threads in an Executor may keep the JVM running after
your main method returns).

❑ The Callable interface is similar to the Runnable interface, but adds the
ability to return a result from its call method and can optionally throw an
exception.

❑ The Executors (plural) call provides factory methods that can be
used to construct ExecutorService instances, for example:
ExecutorService ex = Executors.newFixedThreadPool(4);.

Use the Parallel Fork/Join Framework (OCP Objective 11.4)

❑ Fork-Join enables work stealing among worker threads in order to keep all
CPUs utilized and to increase the performance of highly parallelizable tasks.

❑ A pool of worker threads of type ForkJoinWorkerThread are created when
you create a new ForkJoinPool(). By default, one thread per CPU is created.

❑ To minimize the overhead of creating new threads, you should create a single
Fork-Join pool in an application and reuse it for all recursive tasks.

❑ A Fork-Join task represents a large problem to solve (often involving a
collection or array).

❑ When executed by a ForkJoinPool, the Fork-Join task will subdivide itself into
Fork-Join tasks that represent smaller segments of the problem to be solved.

❑ A Fork-Join task is a subclass of the ForkJoinTask class, either
RecursiveAction or RecursiveTask.

❑ Extend RecursiveTask when the compute() method must return a value,
and extend RecursiveAction when the return type is void.

❑ When writing a ForkJoinTask implementation's compute() method,
always call fork() before join() or use one of the invokeAll() methods
instead of calling fork() and join().

❑ You do not need to shut down a Fork-Join pool before exiting your application
because the threads in a Fork-Join pool typically operate in daemon mode.

14-ch14.indd 831 9/2/2014 3:48:54 PM

832 Chapter 14: Concurrency

SELF TEST

The following questions might be some of the hardest in the book. It's just a hard topic, so don't
panic. (We know some Java book authors who didn't do well with these topics and still managed to
pass the exam.)

 1. The following block of code creates a CopyOnWriteArrayList, adds elements to it, and prints
the contents:

CopyOnWriteArrayList<Integer> cowList = new CopyOnWriteArrayList<>();
cowList.add(4);
cowList.add(2);
Iterator<Integer> it = cowList.iterator();
cowList.add(6);
while(it.hasNext()) {
 System.out.print(it.next() + " ");
}

 What is the result?
 A. 6

 B. 12

 C. 4 2

 D. 4 2 6

 E. Compilation fails
 F. An exception is thrown at runtime

 2. Given:

CopyOnWriteArrayList<Integer> cowList = new CopyOnWriteArrayList<>();
cowList.add(4);
cowList.add(2);
cowList.add(6);
Iterator<Integer> it = cowList.iterator();
cowList.remove(2);
while(it.hasNext()) {
 System.out.print(it.next() + " ");
}

 Which shows the output that will be produced?
 A. 12

 B. 10

 C. 4 2 6

 D. 4 6

 E. Compilation fails
 F. An exception is thrown at runtime

14-ch14.indd 832 9/2/2014 3:48:54 PM

Self Test 833

 3. Which methods from a CopyOnWriteArrayList will cause a new copy of the internal array to
be created? (Choose all that apply.)

 A. add

 B. get

 C. iterator

 D. remove

 4. Given:

ArrayBlockingQueue<Integer> abq = new ArrayBlockingQueue<>(10);

 Which operation(s) can block indefinitely? (Choose all that apply.)
 A. abq.add(1);

 B. abq.offer(1);
 C. abq.put(1);

 D. abq.offer(1, 5, TimeUnit.SECONDS);

 5. Given:

ConcurrentMap<String,Integer> ages = new ConcurrentHashMap<>();
ages.put("John", 23);

 Which method(s) would delete John from the map only if his value was still equal to 23?
 A. ages.delete("John", 23);

 B. ages.deleteIfEquals("John", 23);

 C. ages.remove("John", 23);

 D. ages.removeIfEquals("John", 23);

 6. Which method represents the best approach to generating a random number between one and
ten if the method will be called concurrently and repeatedly by multiple threads?

 A. public static int randomA() {
 Random r = new Random();
 return r.nextInt(10) + 1;
 }

 B. private static Random sr = new Random();
 public static int randomB() {
 return sr.nextInt(10) + 1;
 }

 C. public static int randomC() {
 int i = (int)(Math.random() * 10 + 1);
 return i;
 }

 D. public static int randomD() {
 ThreadLocalRandom lr = ThreadLocalRandom.current();
 return lr.nextInt(1, 11);
 }

14-ch14.indd 833 9/2/2014 3:48:54 PM

834 Chapter 14: Concurrency

 7. Given:

AtomicInteger i = new AtomicInteger();

 Which atomically increment i by 9? (Choose all that apply.)
 A. i.addAndGet(9);

 B. i.getAndAdd(9);

 C. i.set(i.get() + 9);

 D. i.atomicIncrement(9);

 E. i = i + 9;

 8. Given:

public class LeaderBoard {
 private ReadWriteLock rwl = new ReentrantReadWriteLock();
 private List<Integer> highScores = new ArrayList<>();
 public void addScore(Integer score) {
 // position A
 lock.lock();
 try {
 if (highScores.size() < 10) {
 highScores.add(score);
 } else if (highScores.get(highScores.size() - 1) < score) {
 highScores.set(highScores.size() - 1, score);
 } else {
 return;
 }
 Collections.sort(highScores, Collections.reverseOrder());
 } finally {
 lock.unlock();
 }
 }
 public List<Integer> getHighScores() {
 // position B
 lock.lock();
 try {
 return Collections.unmodifiableList(highScores);
 } finally {
 lock.unlock();
 }
 }
}

14-ch14.indd 834 9/2/2014 3:48:54 PM

Self Test 835

 Which block(s) of code best match the behavior of the methods in the LeaderBoard class?
(Choose all that apply.)

 A. Lock lock = rwl.reentrantLock(); // should be inserted at position A

 B. Lock lock = rwl.reentrantLcock(); // should be inserted at position B

 C. Lock lock = rwl.readLock(); // should be inserted at position A

 D. Lock lock = rwl.readLock(); // should be inserted at position B

 E. Lock lock = rwl.writeLock(); // should be inserted at position A

 F. Lock lock = rwl.writeLock(); // should be inserted at position B

 9. Given:

ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
rwl.readLock().unlock();
System.out.println("READ-UNLOCK-1");
rwl.readLock().lock();
System.out.println("READ-LOCK-1");
rwl.readLock().lock();
System.out.println("READ-LOCK-2");
rwl.readLock().unlock();
System.out.println("READ-UNLOCK-2");
rwl.writeLock().lock();
System.out.println("WRITE-LOCK-1");
rwl.writeLock().unlock();
System.out.println("WRITE-UNLOCK-1");

 What is the result?
 A. The code will not compile
 B. The code will compile and output:

READ-UNLOCK-1
READ-LOCK-1
READ-LOCK-2
READ-UNLOCK-2

 C. The code will compile and output:

READ-UNLOCK-1
READ-LOCK-1
READ-LOCK-2
READ-UNLOCK-2
WRITE-LOCK-1
WRITE-UNLOCK-1

 D. A java.lang.IllegalMonitorStateException will be thrown

14-ch14.indd 835 9/2/2014 3:48:54 PM

836 Chapter 14: Concurrency

 10. Which class contains factory methods to produce preconfigured ExecutorService instances?
 A. Executor

 B. Executors

 C. ExecutorService

 D. ExecutorServiceFactory

 11. Given:

private Integer executeTask(ExecutorService service,
 Callable<Integer> task) {
// insert here
}

 Which set(s) of lines, when inserted, would correctly use the ExecutorService argument to
execute the Callable and return the Callable's result? (Choose all that apply.)

 A. try {
 return service.submit(task);
 } catch (Exception e) {
 return null;
 }

 B. try {
 return service.execute(task);
 } catch (Exception e) {
 return null;
 }

 C. try {
 Future<Integer> future = service.submit(task);
 return future.get();
 } catch (Exception e) {
 return null;
 }

 D. try {
 Result<Integer> result = service.submit(task);
 return result.get();
 } catch (Exception e) {
 return null;
 }

 12. Which are true? (Choose all that apply.)
 A. A Runnable may return a result, but must not throw an Exception
 B. A Runnable must not return a result nor throw an Exception
 C. A Runnable must not return a result, but may throw an Exception
 D. A Runnable may return a result and throw an Exception
 E. A Callable may return a result, but must not throw an Exception
 F. A Callable must not return a result nor throw an Exception

14-ch14.indd 836 9/2/2014 3:48:54 PM

Self Test 837

 G. A Callable must not return a result, but may throw an Exception
 H. A Callable may return a result and throw an Exception

 13. Given:

public class IncrementAction extends RecursiveAction {
 private final int threshold;
 private final int[] myArray;
 private int start;
 private int end;
 public IncrementAction(int[] myArray, int start, int end, int threshold) {
 this.threshold = threshold;
 this.myArray = myArray;
 this.start = start;
 this.end = end;
 }
 @Override
 protected void compute() {
 if (end - start < threshold) {
 for (int i = start; i <= end; i++) {
 myArray[i]++;
 }
 } else {
 int midway = (end - start) / 2 + start;
 IncrementAction a1 = new IncrementAction(myArray, start,
 midway, threshold);
 IncrementAction a2 = new IncrementAction(myArray, midway + 1,
 end, threshold);
 // insert answer here
 }
 }
}

 Which line(s), when inserted at the end of the compute method, would correctly take the place
of separate calls to fork() and join()? (Choose all that apply.)

 A. compute();

 B. forkAndJoin(a1, a2);

 C. computeAll(a1, a2);

 D. invokeAll(a1, a2);

 14. When writing a RecursiveTask subclass, which are true? (Choose all that apply.)
 A. fork() and join() should be called on the same task
 B. fork() and compute() should be called on the same task
 C. compute() and join() should be called on the same task
 D. compute() should be called before fork()
 E. fork() should be called before compute()
 F. join() should be called after fork() but before compute()

14-ch14.indd 837 9/2/2014 3:48:54 PM

838 Chapter 14: Concurrency

SELF TEST ANSWERS

 1. ☑ C is correct. The Iterator is obtained before 6 is added. As long as the reference to the
Iterator is maintained, it will only provide access to the values 4 and 2.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCP Objective 11.1)

 2. ☑ C is correct. Because the Iterator is obtained before the number 2 is removed, it will
reflect all the elements that have been added to the collection.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCP Objective 11.1)

 3. ☑ A and D are correct. Of the methods listed, only add and remove will modify the list and
cause a new internal array to be created.
☐✗ B and C are incorrect based on the above. (OCP Objective 11.1)

 4. ☑ C is correct. The add method will throw an IllegalStateException if the queue is full.
The two offer methods will return false if the queue is full. Only the put method will block
until space becomes available.
☐✗ A, B, and D are incorrect based on the above. (OCP Objective 11.1)

 5. ☑ C is correct; it uses the correct syntax.
☐✗ The methods for answers A, B, and D do not exist in a ConcurrentHashMap. A traditional
Map contains a single-argument remove method that removes an element based on its key. The
ConcurrentMap interface (which ConcurrentHashMap implements) added the two-argument
remove method, which takes a key and a value. An element will only be removed from the Map
if its value matches the second argument. A boolean is returned to indicate if the element was
removed. (OCP Objective 11.1)

 6. ☑ D is correct. The ThreadLocalRandom creates and retrieves Random instances that are
specific to a thread. You could achieve the same effect prior to Java 7 by using the java.lang
.ThreadLocal and java.util.Random classes, but it would require several lines of code. Math
.random is thread-safe, but uses a shared java.util.Random instance and can suffer from
contention problems.
☐✗ A, B, and C are incorrect based on the above. (OCP Objective 11.3)

 7. ☑ A and B are correct. The addAndGet and getAndAdd both increment the value stored in
an AtomicInteger.
☐✗ Answer C is not atomic because in between the call to get and set, the value stored by i
may have changed. Answer D is invalid because the atomicIncrement method is fictional, and
answer E is invalid because auto-boxing is not supported for the atomic classes. The difference
between the addAndGet and getAndAdd methods is that the first is a prefix method (++x) and
the second is a postfix method (x++). (Objective 11.2)

14-ch14.indd 838 9/2/2014 3:48:54 PM

Self Test Answers 839

 8. ☑ D and E are correct. The addScore method modifies the collection and, therefore, should
use a write lock, while the getHighScores method only reads the collection and should use a
read lock.
☐✗ A, B, C, and F are incorrect, they will not behave correctly. (Objective 11.2)

 9. ☑ D is correct. A lock counts the number of times it has been locked. Calling lock
increments the count, and calling unlock decrements the count. If a call to unlock decreases
the count below zero, an exception is thrown.
☐✗ A, B, and C are incorrect based on the above. (OCP Objective 11.2)

 10. ☑ B is correct. Executor is the super-interface for ExecutorService. You use Executors to
easily obtain ExecutorService instances with predefined threading behavior. If the Executor
interface does not produce ExecutorService instances with the behaviors that you desire,
you can always look into using java.util.concurrent.AbstractExecutorService or
java.util.concurrent.ThreadPoolExecutor directly.
☐✗ A, C, and D are incorrect based on the above. (OCP Objective 11.3)

 11. ☑ C is correct. When you submit a Callable to an ExecutorService for execution, you
will receive a Future as the result. You can use the Future to check on the status of the
Callable's execution, or just use the get method to block until the result is available.
☐✗ A, B, and D are incorrect based on the above. (OCP Objective 11.3)

 12. ☑ B and H are correct. Runnable and Callable serve similar purposes. Runnable has been
available in Java since version 1. Callable was introduced in Java 5 and serves as a more
flexible alternative to Runnable. A Callable allows a generic return type and permits thrown
exceptions, while a Runnable does not.
☐✗ A, C, D, E, F, and G are incorrect statements. (Objective 11.3)

 13. ☑ D is correct. The invokeAll method is a var args method that will fork all Fork-Join tasks,
except one that will be invoked directly.
☐✗ A, B, and C are incorrect; they would not correctly complete the Fork-Join process.
(OCP Objective 11.4)

 14. ☑ A and E are correct. When creating multiple ForkJoinTask instances, all tasks except one
should be forked first so that they can be picked up by other Fork-Join worker threads. The final
task should then be executed within the same thread (typically by calling compute()) before
calling join on all the forked tasks to await their results. In many cases, calling the methods in
the wrong order will not result in any compiler errors, so care must be taken to call the methods
in the correct order.
☐✗ B, C, D, and F are incorrect based on the above. (OCP Objective 11.4)

14-ch14.indd 839 9/2/2014 3:48:54 PM

This page intentionally left blank

1515
JDBCJDBC

CERTIFICATION OBJECTIVES

Describe the Interfaces that Make Up the •
Core of the JDBC API (Including the
Driver, Connection, Statement, and
ResultSet Interfaces and Their Relationship
to Provider Implementations)

Identify the Components Required to •
Connect to a Database Using the
DriverManager Class (Including the
JDBC URL)

Submit Queries and Read Results from the •
Database (Including Creating Statements;
Returning Result Sets; Iterating Through
the Results; and Properly Closing Result
Sets, Statements, and Connections)

Use JDBC Transactions (Including Disabling •
Auto-commit Mode, Committing and
Rolling Back Transactions, and Setting and
Rolling Back to Savepoints)

Construct and Use RowSet Objects Using •
the RowSetProvider Class and the
RowSetFactory Interface

Create and Use PreparedStatement and •
CallableStatement Objects

Two-Minute Drill ✓
Q&A Self Test

15-ch15.indd 841 9/3/2014 6:04:00 PM

842 Chapter 15: JDBC

This chapter covers the JDBC API that was added for the Java SE 7 exam. The exam
developers have long felt that this API is truly a core feature of the language, and being
able to demonstrate proficiency with JDBC goes a long way toward demonstrating your

skills as a Java programmer.

Interestingly, JDBC has been a part of the language since JDK version 1.1 (1997)
when JDBC 1.0 was introduced. Since then, there has been a steady progression of
updates to the API, roughly one major release for each even-numbered JDK release,
with the last major update being JDBC 4.0, released in 2006 with Java SE 6. In Java
SE 7, JDBC got some minor updates, and is now at version 4.1, which we'll discuss a
little later in the chapter. While the focus of the exam is on JDBC 4.x, there are
some questions about the differences between loading a driver with a JDBC 3.0 and
JDBC 4.x implementation, so we'll talk about that as well.

The good news is that the exam is not going to test your ability to write SQL
statements. That would be an exam all by itself (maybe even more than one—SQL
is a BIG topic!). But you will need to recognize some basic SQL syntax and commands,
so we'll start by spending some time covering the basics of relational database systems
and enough SQL to make you popular at database parties. If you feel you have
experience with SQL and understand database concepts, you might just skim the
first section or skip right to the first exam objective and dive right in.

Starting Out: Introduction to Databases and JDBC

When you think of organizing information and storing it in some easily understood
way, a spreadsheet or a table is often the first approach you might take. A spreadsheet
or a table is a natural way of categorizing information: The first row of a table defines
the sort of information that the table will hold, and each subsequent row contains a
set of data that is related to the key we create on the left. For example, suppose you
wanted to chart your monthly spending for several types of expenses (Table 15-1).

Month Gas EatingOut Utilities Phone

January $200.25 $109.87 $97.00 $45.08

February $225.34 $121.08 $97.00 $23.36

March $254.78 $130.45 $97.00 $56.09

 TABLE 15-1

Chart of
Expenses

15-ch15.indd 842 9/3/2014 6:04:04 PM

 Starting Out: Introduction to Databases and JDBC 843

From the data in the chart, we can determine that your overall expenses are
increasing month to month in the first three months of this year. But notice that
without the table, without a relationship between the month and the data in the
columns, you would just have a pile of receipts with no way to draw out important
conclusions, such as

■ Assuming you drove the same number of miles per month, gas is getting
pricey—maybe it is time to get a Prius.

■ You are eating out more month to month (or the price of eating out is going
up)—maybe it's time to start doing some meal planning.

■ And maybe you need to be a little less social—that phone bill is high.

The point is that this small sample of data is the key to understanding a relational
database system. A relational database is really just a software application designed
to store and manipulate data in tables. The software itself is actually called a
Relational Database Management System (RDBMS), but many people shorten that
to just "database"—so know that going forward, when we refer to a database, we are
actually talking about an RDBMS (the whole system). What the relational management
system adds to a database is the ability to define relationships between tables. It also
provides a language to get data in and out in a meaningful way.

Looking at the simple table in Table 15-1, we know that the data in the columns,
Gas, EatingOut, Utilities, and Phone, are grouped by the months January, February,
and so on. The month is unique to each row and identifies this row of data. In
database parlance, the month is a "primary key." A primary key is generally required
for a database table to identify which row of the table you want, and to make sure
that there are no duplicate rows.

Extending this a little further, if the data in Table 15-1 were stored in a database,
I could ask the database (write a query) to give me all of the data for the month of
January (again, my primary key is "month" for this table). I might write something
like:

"Give me all of my expenses for January."

The result would be something like:

January: Gas: $200.25, EatingOut: $109.87, Utilities: $97.00, Phone: $45.08

This kind of query is what makes a database so powerful. With a relatively simple
language, you can construct some really powerful queries in order to manipulate your
data to tell a story. In most RDBMSs, this language is called the Structured Query

15-ch15.indd 843 9/3/2014 6:04:04 PM

844 Chapter 15: JDBC

Language (SQL). The same query we wrote out in a sentence earlier, would be
expressed like this in SQL:

SELECT * FROM Expenses WHERE Month = 'January'

which can be translated to "select all of the columns (*) from my table named
'Expenses' where the month column is equal to the string 'January'." Let's look a
bit more at how we "talk" to a database and what other sorts of queries we can make
with tables in a relational database.

Talking to a Database

There are three important concepts when working with a database:

■ Creating a connection to the database

■ Creating a statement to execute in the database

■ Getting back a set of data that represents the results

Let's look at these concepts in more detail.
Before we can communicate with the software that manages the database, before

we can send it a query, we need to make a connection with the RDBMS itself. There
are many different types of connections, and a lot of underlying technology to
describe the connection itself, but in general, to communicate with an RDBMS, we
need to open a connection using an IP address and port number to the database.
Once we have established the connection, we need to send it some parameters (such
as a username and password) to authenticate ourselves as a valid user of the RDBMS.
Finally, assuming all went well, we can send queries through the connection. This is
like logging into your online account at a bank. You provide some credentials, a
username and password, and a connection is established and opened between you
and the bank. Later in the chapter, when we start writing code, we'll open a
connection using a Java class called the DriverManager, and in one request, pass in
the database name, our username, and password.

Once we have established a connection, we can use some type of application
(usually provided by the database vendor) to send query statements to the database,
have them executed in the database, and get a set of results returned. A set of results
can be one row, as we saw before when we asked for the data from the month of
January, or several rows. For example, suppose we wanted to see all of the Gas
expenses from our Expenses table. We might query the database like this:

"Show me all of my Gas Expenses"

15-ch15.indd 844 9/3/2014 6:04:04 PM

 Starting Out: Introduction to Databases and JDBC 845

Or as a SQL query:

SELECT Gas FROM Expenses

The set of results that would "return" from my query would be three rows, and each
row would contain one column.

$200.25

$225.34

$254.78

An important aspect of a database is that the data is presented back to you exactly
the same way that it is stored. Since Gas expense is a column, the query will return
three rows (one for January, one for February, and one for March). Note that because
we did not ask the database to include the Month column in the results, all we got
was the Gas column. The results do preserve the fact that Gas is a column and not a
row, and in general, presents the data in the same row-and-column order that it is
stored in the database.

SQL Queries

Let's look a bit more at the syntax of SQL, the language used to write queries in a
database. There are really four basic SQL queries that we are going to use in this
chapter, and that are common to manipulating data in a database. In summary, the
SQL commands we are interested in are used to perform CRUD operations.

Like most terms presented in all caps, CRUD is an acronym, and means Create,
Read, Update, and Delete. These are the four basic operations for data in a database.
They are represented by four distinct SQL commands, detailed in Table 15-2.

Here is a quick explanation for the examples in Table 15-2:

■ INSERT Add a row to the table Expenses, and set each of the columns in
the table to the values expressed in the parentheses.

■ SELECT with WHERE You have already seen the SELECT clause with
a WHERE clause, so you know that this SQL statement returns a single row
identified by the primary key—the Month column. Think of this statement
as a refinement to Read—more like a Find or Find by primary key.

■ SELECT When the SELECT clause does not have a WHERE clause, we
are asking the database to return every row. Further, because we are using an
asterisk (*) following the SELECT, we are asking for every column. Basically,
it is a dump of the data shown in Table 15-1. Think of this statement as a
Read All.

15-ch15.indd 845 9/3/2014 6:04:04 PM

846 Chapter 15: JDBC

"CRUD" SQL Command Example SQL Query Expressed in English

Create INSERT INSERT INTO Expenses
VALUES ('April', 231.21,
29.87, 97.00, 45.08)

Add a new row (April) to expenses
with the following values….

Read (or Find) SELECT SELECT * FROM Expenses
WHERE Month="February"

Get me all of the columns in the
Expenses table for February.

Read All SELECT SELECT * FROM Expenses Get me all of the columns in the
Expenses table.

Update UPDATE UPDATE Expenses
SET Phone=32.36,
EatingOut=111.08
WHERE Month='February'

Change my phone expense and
EatingOut expense for February to….

Delete DELETE DELETE FROM Expenses
WHERE Month='April'

Remove the row of expenses for April.

■ UPDATE Change the data in the Phone and EatingOut cells to the new
data provided for February.

■ DELETE Remove a row altogether from the database where the Month is
April.

Really, this is all the SQL you need to know for this chapter. There are many
other SQL commands, but this is really the core set. If we need to go beyond this set
of four commands in the chapter, we will cover them as they come up. Now, let's
look at a more detailed database example that we will use as the example set of tables
for this chapter, using the data requirements of a small bookseller, Bob's Books.

SQL commands, like SELECT, INSERT, UPDATE, and so on, are case insensitive.

So it is largely by convention (and one we will use in this chapter) to use all

capital letters for SQL commands and key words, such as WHERE, FROM,

LIKE, INTO, SET, and VALUES. SQL table names and column names, also

called identifiers, can be case sensitive or case insensitive, depending upon

the database. The example code shown in this chapter uses a case-insensitive

database, so again, just for convention, we will use upper camel case, that is,

the first letter of each noun capitalized and the rest in lowercase.

 TABLE 15-2 Example SQL CRUD Commands

15-ch15.indd 846 9/3/2014 6:04:04 PM

 Starting Out: Introduction to Databases and JDBC 847

One final note about case—all databases preserve case when a string is

delimited—that is, when they are enclosed in quotes. So a SQL clause that

uses single or double quotation marks to delimit an identifier will preserve the

case of the identifier.

Bob's Books, Our Test Database

In this section, we'll describe a small database with a few tables and a few rows of
data. As we work through the various JDBC topics in this chapter, we'll work with
this database.

Bob is a small bookseller who specializes in children's books. Bob has designed his
data around the need to sell his books online using a database (which one doesn't
really matter) and a Java application. Bob has decided to use the JDBC API to allow
him to connect to a database and perform queries through a Java application.

To start, let's look at the organization of Bob's data. In a database, the organization
and specification of the tables is called the database schema (Figure 15-1). Bob's is a
relatively simple schema, and again, for the purposes of this chapter, we are going to
concentrate on just four tables from Bob's schema.

 FIGURE 15-1 Bob's BookSeller database schema

Customer

Author Book
Books_by_Author

int : CustomerID [PK]
String : FirstName
String : LastName
String : EMail
String : Phone

String : ISBN [PK]
String : Title
String : PubDate
String : Format
float : UnitPrice

int : AuthorID [fK]
String : ISBN [FK]

int : AuthorID [PK]
String : FirstName
String : LastName

15-ch15.indd 847 9/3/2014 6:04:04 PM

848 Chapter 15: JDBC

CustomerID FirstName LastName Email Phone

5000 John Smith john.smith@verizon.net 555-340-1230

5001 Mary Johnson mary.johnson@comcast.net 555-123-4567

5002 Bob Collins bob.collins@yahoo.com 555-012-3456

5003 Rebecca Mayer rebecca.mayer@gmail.com 555-205-8212

5006 Anthony Clark anthony.clark@gmail.com 555-256-1901

5007 Judy Sousa judy.sousa@verizon.net 555-751-1207

5008 Christopher Patriquin patriquinc@yahoo.com 555-316-1803

5009 Deborah Smith debsmith@comcast.net 555-256-3421

5010 Jennifer McGinn jmcginn@comcast.net 555-250-0918

This is a relatively simple schema that represents a part of the database for a small
bookstore. In the schema shown, there is a table for Customer (Table 15-3). This
table stores data about Bob's customers—a customer ID, first name and last name, an
e-mail address, and phone number. Address and other information could be stored in
another table.

The next three tables we will look at represent the data required to store information
about books that Bob sells. Because a book is a more complex set of data than a
customer, we need to use one table for information about books, one for information
about authors, and a third to create a relationship between books and authors.

Suppose that you tried to store a book in a single table with a column for the
ISBN (International Standard Book Number), title, and author name. For many
books, this would be fine. But what happens if a book has two authors? Or three
authors? Remember that one requirement for a database table is a unique primary
key, so you can't simply repeat the ISBN in the table. In fact, having two rows with
the same primary key will violate a key constraint in relational database design: The
primary key of every row must be unique.

ISBN Title Author

ABCD The Wonderful Life Fred Smith

ABCD The Wonderful Life Tom Jones

1234 Some Enchanted Night Paula Fredrick

 TABLE 15-3

Bob's Books
Customer Table
Sample Data

15-ch15.indd 848 9/3/2014 6:04:04 PM

 Starting Out: Introduction to Databases and JDBC 849

ISBN Title PubDate Format Price

142311339X The Lost Hero
(Heroes of Olympus, Book 1)

2010-10-12 Hardcover 10.95

0689852223 The House of the Scorpion 2002-01-01 Hardcover 16.95

0525423656 Crossed (Matched Trilogy, Book 2) 2011-11-01 Hardcover 12.95

1423153627 The Kane Chronicles Survival Guide 2012-03-01 Hardcover 13.95

0439371112 Howliday Inn 2001-11-01 Paperback 14.95

0439861306 The Lightning Thief 2006-03-12 Paperback 11.95

031673737X How to Train Your Dragon 2010-02-01 Hardcover 10.95

0545078059 The White Giraffe 2008-05-01 Paperback 6.95

0803733428 The Last Leopard 2009-03-05 Hardcover 13.95

9780545236 Freaky Monday 2010-01-15 Paperback 12.95

Instead, there needs to be a way to have a separate table of books and authors and
some way to link them together. Bob addressed this issue by placing Books in one
table (Table 15-4) and Authors (Table 15-5) in another. The primary key for Books
is the ISBN number, and therefore, each Book entry will be unique. For the Author
table, Bob is creating a unique AuthorID for each author in the table.

AuthorID FirstName LastName

1000 Rick Riordan

1001 Nancy Farmer

1002 Ally Condie

1003 Cressida Cowell

1004 Lauren St. John

1005 Eoin Colfer

1006 Esther Freisner

1007 Chris D'lacey

1008 Mary Rodgers

1009 Heather Hatch

 TABLE 15-4

Bob's Books
Sample Data for
the "Books" Table

 TABLE 15-5

Bob's Books
Author Table
Sample Data for
the "Authors"
Table

15-ch15.indd 849 9/3/2014 6:04:04 PM

850 Chapter 15: JDBC

To tie Authors to Books and Books to Authors, Bob has created a third table
called Books_by_Author. This is a unique table type in a relational database. This
table is called a join table. In a join table, there are no primary keys—instead, all the
columns represent data that can be used by other tables to create a relationship. These
columns are referred to as foreign keys—they represent a primary key in another
table. Looking at the last two rows of this table, you can see that the Book with the
ISBN 9780545236 has two authors: author id 1008 (Mary Rodgers) and 1009
(Heather Hatch). Using this join table, we can combine the two sets of data without
needing duplicate entries in either table. We'll return to the concept of a join table
later in the chapter.

Path

Paths

File

Files

creates

converts

uses

A complete Bob's Books database schema would include tables for publishers,
addresses, stock, purchase orders, and other data that the store needs to run its
business. But for our purposes, this part of the schema is sufficient. Using this
schema, we can write SQL queries using the SQL CRUD commands you learned
earlier.

To summarize, before looking at JDBC, you should now know about connections,
statements, and result sets:

■ A connection is how an application communicates with a database.

■ A statement is a SQL query that is executed on the database.

■ A result set is the data that is returned from a SELECT statement.

Having these concepts down, we can use Bob's Books simple schema to frame
some common uses of the JDBC API to submit SQL queries and get results in a Java
application.

15-ch15.indd 850 9/3/2014 6:04:04 PM

Core Interfaces of the JDBC API (OCP Objective 9.1) 851

CERTIFICATION OBJECTIVE

Core Interfaces of the JDBC API
(OCP Objective 9.1)

9.1 Describe the interfaces that make up the core of the JDBC API (including the Driver,
Connection, Statement, and ResultSet interfaces and their relationship to provider
implementations).

As we mentioned in the previous section, the purpose of a relational database is
really threefold:

■ To provide storage for data in tables

■ To provide a way to create relationships between the data—just as Bob did
with the Authors, Books, and Books_by_Author tables

■ To provide a language that can be used to get the data out, update the data,
remove the data, and create new data

The purpose of JDBC is to provide an application programming interface (API)
for Java developers to write Java applications that can access and manipulate
relational databases and use SQL to perform CRUD operations.

Once you understand the basics of the JDBC API, you will be able to access
a huge list of databases. One of the driving forces behind JDBC was to provide a
standard way to access relational databases, but JDBC can also be used to access file
systems and object-oriented data sources. The key is that the API provides an
abstract view of a database connection, statements, and result sets. These concepts
are represented in the API as interfaces in the java.sql package: Connection,
Statement, and ResultSet, respectively. What these interfaces define are the
contracts between you and the implementing class. In truth, you may not know (nor
should you care) how the implementation class works. As long as the implementation
class implements the interface you need, you are assured that the methods defined by
the interface exist and you can invoke them.

The java.sql.Connection interface defines the contract for an object that
represents the connection with a relational database system. Later, we will look at
the methods of this contract, but for now, an instance of a Connection is what we

15-ch15.indd 851 9/3/2014 6:04:04 PM

852 Chapter 15: JDBC

need to communicate with the database. How the Connection interface is implemented
is vendor dependent, and again, we don't need to worry so much about the how—as
long as the vendor follows the contract, we are assured that the object that represents
a Connection will allow us to work with a database connection.

The Statement interface provides an abstraction of the functionality needed to
get a SQL statement to execute on a database, and a ResultSet interface is an
abstraction functionality needed to process a result set (the table of data) that is
returned from the SQL query when the query involves a SQL SELECT statement.

The implementation classes of Connection, Statement, ResultSet, and a
number of other interfaces we will look at shortly are created by the vendor of the
database we are using. The vendor understands their database product better than
anyone else, so it makes sense that they create these classes. And, it allows the vendor
to optimize or hide any special characteristics of their product. The collection of the
implementation classes is called the JDBC driver. A JDBC driver (lowercase "d") is
the collection of classes required to support the API, whereas Driver (uppercase "D")
is one of the implementations required in a driver.

A JDBC driver is typically provided by the vendor in a JAR or ZIP file. The
implementation classes of the driver must meet a minimum set of requirements in
order to be JDBC compliant. The JDBC specification provides a list of the
functionality that a vendor must support and what functionality a vendor may
optionally support.

Here is a partial list of the requirements for a JDBC driver. For more details,
please read the specification (JSR-221). Note that the details of implementing a
JDBC driver are NOT on the exam.

■ Fully implement the interfaces: java.sql.Driver, java.sql
.DatabaseMetaData, java.sql.ResultSetMetaData.

■ Implement the java.sql.Connection interface. (Note that some methods
are optional depending upon the SQL version the database supports—more
on SQL versions later in the chapter.)

■ Implement the java.sql.Statement, java.sql.PreparedStatement.

■ Implement the java.sql.CallableStatement interfaces if the database
supports stored procedures. Again, more on this interface later in the chapter.

■ Implement the java.sql.ResultSet interface.

15-ch15.indd 852 9/3/2014 6:04:04 PM

Connect to a Database Using DriverManager (OCP Objective 9.2) 853

CERTIFICATION OBJECTIVE

Connect to a Database Using
DriverManager (OCP Objective 9.2)

9.2 Identify the components required to connect to a database using the DriverManager
class (including the JDBC URL)

Not all of the types defined in the JDBC API are interfaces. One important class
for JDBC is the java.sql.DriverManager class. This concrete class is used to
interact with a JDBC driver and return instances of Connection objects to you.
Conceptually, the way this works is by using a design pattern called Factory. Next,
we'll look at DriverManager in more detail.

Let's take this opportunity to see the Factory design pattern we discussed

in Chapter 10 in use.

As you recall, in a factory pattern, a concrete class with static methods is used to create

instances of objects that implement an interface. For example, suppose we wanted to

create an instance of a Vehicle object:

public interface Vehicle {
 public void start(); // Methods we think all vehicles should
 public void stop(); // support.
}

We need an implementation of Vehicle in order to use this contract. So we design a Car:

package com.us.automobile;
public class Car implements Vehicle {
 public void start() { } // ... do start things
 public void stop() { } // ... do stop things
}

15-ch15.indd 853 9/3/2014 6:04:04 PM

854 Chapter 15: JDBC

The DriverManager Class

The DriverManager class is a concrete class in the JDBC API with static methods.
You will recall that static or class methods can be invoked by other classes using the
class name. One of those methods is getConnection(), which we look at next.

In order to use the Car, we could create one:

public class MyClass {
 public static void main(String args[]) {
 Vehicle ferrari =
 new com.us.automobile.Car(); // Create a Ferrari
 ferrari.start(); // Start the Ferrari
 }
}

However, here it would be better to use a factory—that way, we need not know anything

about the actual implementation, and, as we will see later with DriverManager, we can

use methods of the factory to dynamically determine which implementation to use at

runtime.

public class MyClass {
 public static void main(String args[]) {
 Vehicle ferrari =
 CarFactory.getVehicle("Ferrari"); // Use a factory to
 // create a Ferrari
 ferrari.start();
 }
}

The factory in this case could create a different car based on the string passed to the

static getVehicle() method; something like this:

public class CarFactory {
 public static Vehicle getVehicle(String type) {
 // ... create an instance of an object that represents the
 // type of car passed as the argument
 }
}

DriverManager uses this factory pattern to "construct" an instance of a Connection

object by passing a string to its getConnection() method.

15-ch15.indd 854 9/3/2014 6:04:04 PM

Connect to a Database Using DriverManager (OCP Objective 9.2) 855

The DriverManager class is so named because it manages which JDBC driver
implementation you get when you request an instance of a Connection through the
getConnection() method.

There are several overloaded getConnection methods, but they all share one
common parameter: a String URL. One pattern for getConnection is

DriverManager.getConnection(String url, String username, String password);

For example:

String url
 = "jdbc:derby://localhost:1521/BookSellerDB"; // JDBC URL
String user = "bookguy"; // BookSellerDB user name
String pwd = "$3lleR"; // BookSellerDB password
try {
 Connection conn
 = DriverManager.getConnection(url, user, pwd); // Get an
 // instance of a
 // Connection
 // object
} catch (SQLException se) { }

In this example, we are creating a connection to a Derby database, on a network,
at a localhost address (on the local machine), at port number 1521, to a database
called "BookSellerDB", and we are using the credentials, "bookguy" as the user id,
and "$3lleR" as the password. Don't worry too much about the syntax of the URL
right now—we'll cover that soon.

It's a horrible idea to hard-code a username and password in the

getConnection() method. Obviously, anyone reading the code would then

know the username and password to the database. A more secure way to

handle database credentials would be to separate the code that produces

the credentials from the code that makes the connection. So in some other

class, you would use some type of authentication and authorization code to

produce a set of credentials to allow access to the database.

For simplicity in the examples in the chapter, we'll hard-code the username

and password, but just keep in mind that on the job, this is not a best practice.

When you invoke the DriverManager's getConnection() method, you are
asking the DriverManager to try passing the first string in the statement, the driver
URL, along with the username and password to each of the driver classes registered
with the DriverManager in turn. If one of the driver classes recognizes the URL
string, and the username and password are accepted, the driver returns an instance of

15-ch15.indd 855 9/3/2014 6:04:04 PM

856 Chapter 15: JDBC

a Connection object. If, however, the URL is incorrect, or the username and/or
password are not correct, then the method will throw a SQLException. We'll spend
some time looking at SQLException later in this chapter.

How JDBC Drivers Register with the DriverManager

Because this part of the JDBC process is important to understand, and it involves a
little Java magic, let's spend some time diagramming how driver classes become
"registered" with the DriverManager, as shown in Figure 15-2.

First, one or more JDBC drivers, in a JAR or ZIP file, are included in the
classpath of your application. The DriverManager class uses a service provider
mechanism to search the classpath for any JAR or ZIP files that contain a file named
java.sql.Driver in the META-INF/services folder of the driver jar or zip. This is
simply a text file that contains the full name of the class that the vendor used to
implement the jdbc.sql.Driver interface. For example, for a Derby driver, the full
name is org.apache.derby.jdbc.ClientDriver.

The DriverManager will then attempt to load the class it found in the java.
sql.Driver file using the class loader:

Class.forName("org.apache.derby.jdbc.ClientDriver");

When the driver class is loaded, its static initialization block is executed. Per the
JDBC specification, one of the first activities of a driver instance is to "self-register"
with the DriverManager class by invoking a static method on DriverManager.
The code (minus error handling) looks something like this:

public class ClientDriver implements java.sql.Driver{
 static {
 ClientDriver driver = new ClientDriver();
 DriverManager.registerDriver(driver);
 }
 //...
}

This registers (stores) an instance of the Driver class into the DriverManager.
Now, when your application invokes the DriverManager.getConnection()

method and passes a JDBC URL, username, and password to the method, the
DriverManager simply invokes the connect() method on the registered Driver.
If the connection was successful, the method returns a Connection object instance
to DriverManager, which, in turn, passes that back to you.

15-ch15.indd 856 9/3/2014 6:04:04 PM

Connect to a Database Using DriverManager (OCP Objective 9.2) 857

If there is more than one registered driver, the DriverManager calls each of the
drivers in turn and attempts to get a Connection object from them, as shown in
Figure 15-3.

The first driver that recognizes the JDBC URL and successfully creates a connection
using the username and password will return an instance of a Connection object. If

 FIGURE 15-3

How the
DriverManager
gets a
Connection

DriverManager.getConnection ("jdbc:derby:...");

DriverManager
(factory)

Driver A
Driver B

Driver C

I know this url!

Connection instance

MyDBApp

Pass the url, name, and password to each
of the registered drivers in turn until one

returns a non-null Connection.

 FIGURE 15-2

How JDBC drivers
self-register with
DriverManager Classload the class defined in the

META-INF/services/java.sql.Driver file.

Start your application:
java—classpath ... MyDBApp

DriverManager.registerDriver(this);

DriverManager
(factory)

A JDBC driver
(jar file)

Repeat this process for every
jar file in the classpath that has
a java.sql.Driver file.

15-ch15.indd 857 9/3/2014 6:04:04 PM

858 Chapter 15: JDBC

no drivers recognize the URL, username, and password combination, or if there are
no registered drivers, then a SQLException is thrown instead.

To summarize:

■ The JVM loads the DriverManager class, a concrete class in the JDBC API.

■ The DriverManager class loads any instances of classes it finds in the
META-INF/services/java.sql.Driver file of JAR/ZIP files on the classpath.

■ Driver classes call DriverManager.register(this) to self-register with the
DriverManager.

■ When the DriverManager.getConnection(String url) method is
invoked, DriverManager invokes the connect() method of each of these
registered Driver instances with the URL string.

■ The first Driver that successfully creates a connection with the URL returns
an instance of a Connection object to the DriverManager.getConnection
method invocation.

Let's look at the JDBC URL syntax next.

The JDBC URL

The JDBC URL is what is used to determine which driver implementation to use for
a given Connection. Think of the JDBC URL (uniform resource locator) as a way
to narrow down the universe of possible drivers to one specific connection. For
example, suppose you need to send a package to someone. In order to narrow the
universe of possible addresses down to a single unique location, you would have to
identify the country, the state, the city, the street, and perhaps a house or address
number on your package:

USA:California://SanJose:FirstStreet/15

This string indicates that the address you want is in the United States, California
State, San Jose city, First Street, number 15.

JDBC URLs follow this same idea. To access Bob's Books, we might write the
URL like this:

jdbc:derby://localhost:1521/BookSellerDB

The first part, jdbc, simply identifies that this is a JDBC URL (versus HTTP or
something else). The second part indicates that driver vendor is derby driver. The
third part indicates that the database is on the localhost of this machine (IP address

15-ch15.indd 858 9/3/2014 6:04:04 PM

Connect to a Database Using DriverManager (OCP Objective 9.2) 859

127.0.0.1), at port 1521, and the final part indicates that we are interested in the
BookSellerDB database.

Just like street addresses, the reason we need this string is because JDBC was
designed to work with multiple databases at once. Each of the JDBC database drivers
will have a different URL, so we need to be able to pass the JDBC URL string to the
DriverManager and ensure that the Connection returned was for the intended
database instance.

Unfortunately, other than a requirement that the JDBC URL begin with "jdbc,"
there is very little standard about a JDBC URL. Vendors may modify the URL to
define characteristics for a particular driver implementation. The format of the
JDBC URL is

jdbc:<subprotocol>:<subname>

In general, subprotocol is the vendor name; for example:

jdbc:derby
jdbc:mysql
jdbc:oracle

The subname field is where things get a bit more vendor specific. Some vendors use
the subname to identify the hostname and port, followed by a database name. For
example:

jdbc:derby://localhost:1521/MyDB
jdbc:mysql://localhost:3306/MyDB

Other vendors may use the subname to identify additional context information
about the driver. For example:

jdbc:oracle:thin:@//localhost:1527/MyDB

In any case, it is best to consult the documentation for your specific database
vendor's JDBC driver to determine the syntax of the URL.

There are two ways to establish a connection in JDBC. The fi rst way

is using one of the few concrete classes in the java.sql package, DriverManager. The

java.sql.DriverManager class has been a part of the JDBC implementation since the

beginning, and is the easiest way to obtain a connection from a Java SE application. The

alternative way is with an instance of a class that implements javax.sql.DataSource,

introduced in JDBC 2.0.

15-ch15.indd 859 9/3/2014 6:04:04 PM

860 Chapter 15: JDBC

JDBC Driver Implementation Versions

We talked about how the DriverManager will scan the classpath for JAR files that
contain the META-INF/services/java.sql.Driver file and use a classloader to
load those drivers. This feature was introduced in the JDBC 4.0 specification. Prior
to that, JDBC drivers were loaded manually by the application.

If you are using a JDBC driver that is an earlier version, say, a JDBC 3.0 driver,
then you must explicitly load the class provided by the database vendor that
implements the java.sql.Driver interface. Typically, the database vendor's
documentation would tell you what the driver class is. For example, if our Apache
Derby JDBC driver were a 3.0 driver, you would manually load the Driver
implementation class before calling the getConnection() method:

Class.forName("org.apache.derby.jdbc.ClientDriver"); // Class loads
 // ClientDriver
try {
 Connection conn
 = DriverManager.getConnection(url, user, pwd);

Note that using the Class.forName() method is compatible with both JDBC 3.0
and JDBC 4.0 drivers. It is simply not needed when the driver supports 4.0.

Here is a quick summary of what we have discussed so far:

■ Before you can start working with JDBC, creating queries and getting results,
you must first establish a connection.

■ In order to establish a connection, you must have a JDBC driver.

■ If your JDBC driver is a JDBC 3.0 driver, then you are required to explicitly
load the driver in your code using Class.forName() and the fully qualified
path of the Driver implementation class.

■ If your JDBC driver is a JDBC 4.0 driver, then simply include the driver (jar
or zip) in the classpath.

Since a DataSource instance is typically obtained through a Java Naming and

Directory Interface (JNDI) lookup, it is more often used in Java applications where there

is a container that supports JNDI—for example, a Java EE application server. For the

purposes of this chapter (and because DataSource is not on the exam), we'll focus on

using DriverManager to obtain a connection, but in the end, both ways serve to give you

an instance of a Connection object.

To summarize, DriverManager is on the exam and DataSource is not.

15-ch15.indd 860 9/3/2014 6:04:04 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 861

CERTIFICATION OBJECTIVE

Submit Queries and Read Results from the
Database (OCP Objective 9.3)

9.3 Submit queries and read results from the database (including creating statements;
returning result sets; iterating through the results; and properly closing result sets,
statements, and connections).

In this section, we'll explore the JDBC API in much greater detail. We will start
by looking at a simple example using the Connection, Statement, and ResultSet
interfaces to pull together what we've learned so far in this chapter. Then we'll do a
deep dive into Statements and ResultSets.

All of Bob's Customers

Probably one of the most used SQL queries is SELECT * FROM <Table name>,
which is used to print out or see all of the records in a table. Assume that we have a
Java DB (Derby) database populated with data from Bob's Books. To query the
database and return all of the Customers in the database, we would write something
like the example shown next.

Note that to make the code listing a little shorter, going forward, we will use
out.println instead of System.out.println. Just assume that means that we
have included a static import statement, like the one at the top of this example:

Although the certifi cation exam covers up through Java SE 7, the exam

developers felt that since this was the fi rst time that JDBC was being covered by the

Programmer exam, they ought to include some questions about obtaining a connection

using both JDBC 3.0 and JDBC 4.0 drivers. So keep in mind that for JDBC 3.0 drivers (and

earlier), you are responsible for loading the class using the static forName() method from

java.lang.Class.

15-ch15.indd 861 9/3/2014 6:04:04 PM

862 Chapter 15: JDBC

import static java.lang.System.*; // Static import of the
 // System class methods.
 // Now we can use just 'out'
 // instead of System.out.
String url = "jdbc:derby://localhost:1521/BookSellerDB";
String user = "bookguy";
String pwd = "$3lleR";
try {
 Connection conn =
 DriverManager.getConnection(url, user, pwd); // Get Connection
 Statement stmt = conn.createStatement(); // Create Statement
 String query = "SELECT * FROM Customer";
 ResultSet rs = stmt.executeQuery(query); // Execute Query
 while (rs.next()) { // Process Results
 out.print(rs.getInt("CustomerID") + " "); // Print Columns
 out.print(rs.getString("FirstName") + " ");
 out.print(rs.getString("LastName") + " ");
 out.print(rs.getString("EMail") + " ");
 out.println(rs.getString("Phone"));
 }
} catch (SQLException se) { } // Catch SQLException

Again, we'll dive into all of the parts of this example in greater detail, but here is
what is happening:

■ Get connection We are creating a Connection object instance using
the information we need to access Bob's Books Database (stored on a Java
DB Relational database, BookSellerDB, and accessed via the credentials
"bookguy" with a password of "$3lleR").

■ Create statement We are using the Connection to create a Statement
object. The Statement object handles passing Strings to the database as
queries for the database to execute.

■ Execute query We are executing the query string on the database and
returning a ResultSet object.

■ Process results We are iterating through the result set rows—each call to
next() moves us to the next row of results.

■ Print columns We are getting the values of the columns in the current
result set row and printing them to standard out.

■ Catch SQLException All of the JDBC API method invocations throw
SQLException. A SQLException can be thrown when a method is used
improperly, or if the database is no longer responding. For example, a
SQLException is thrown if the JDBC URL, username, or password is invalid.

15-ch15.indd 862 9/3/2014 6:04:04 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 863

Or we attempted to query a table that does not exist. Or the database is
no longer reachable because the network went down or the database went
offline. We will look at SQLException in greater detail later in the chapter.

The output of the previous code will look something like this:

5000 John Smith John.Smith@comcast.net 555-340-1230
5001 Mary Johnson mary.johnson@comcast.net 555-123-4567
5002 Bob Collins bob.collins@yahoo.com 555-012-3456
5003 Rebecca Mayer rebecca.mayer@gmail.com 555-205-8212
5006 Anthony Clark anthony.clark@gmail.com 555-256-1901
5007 Judy Sousa judy.sousa@verizon.net 555-751-1207
5008 Christopher Patriquin patriquinc@yahoo.com 555-316-1803
5009 Deborah Smith debsmith@comcast.net 555-256-3421
5010 Jennifer McGinn jmcginn@comcast.net 555-250-0918

We'll take a detailed look at the Statement and ResultSet interfaces and
methods in the next two sections.

Statements

Once we have successfully connected to a database, the fun can really start. From
a Connection object, we can create an instance of a Statement object (or, to be
precise, using the Connection instance we received from the DriverManager, we
can get an instance of an object that implements the Statement interface). For
example:

String url = "jdbc:derby://localhost:1521/BookSellerDB";
String user = "bookguy";
String pwd = "$3lleR";
try {
 Connection conn = DriverManager.getConnection(url, user, pwd);
 Statement stmt = conn.createStatement();
 // do stuff with SQL statements
} catch (SQLException se) { }

The primary purpose of a Statement is to execute a SQL statement using a
method and return some type of result. There are several forms of Statement
methods: those that return a result set, and those that return an integer status. The
most commonly used Statement method performs a SQL query that returns some
data, like the SELECT call we used earlier to fetch all the Customer table rows.

15-ch15.indd 863 9/3/2014 6:04:04 PM

864 Chapter 15: JDBC

Constructing and Using Statements

To start, let's look at the base Statement, which is used to execute a static SQL
query and return a result. You'll recall that we get a Statement from a Connection
and then use the Statement object to execute a SQL statement, like a query on the
database. For example:

Connection conn = DriverManager.getConnection(url, user, pwd);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM Customer");

Because not all SQL statements return results, the Statement object provides several
different methods to execute SQL commands. Some SQL commands do not return a
result set, but instead return an integer status. For example, SQL INSERT, UPDATE,
and DELETE commands, or any of the SQL Data Definition Language (DDL)
statements, like CREATE TABLE, return either the number of rows affected by the
query or 0.

Let's look at each of the execute methods in detail.

public ResultSet executeQuery(String sql) throws SQLException This
is the most commonly executed Statement method. This method is used when we
know that we want to return results—we are querying the database for one or more
rows of data. For example:

ResultSet rs = stmt.executeQuery("SELECT * from Customer");

Assuming there is data in the Customer table, this statement should return all
of the rows from the Customer table into a ResultSet object—we'll look at
ResultSet in the next section. Notice that the method declaration includes
"throws SQLException." This means that this method must be called in a try-catch
block, or must be called in a method that also throws SQLException. Again, one
reason that these methods all throw SQLException is that a connection to the
database is likely to a database on a network. As with all things on the network,
availability is not guaranteed, so one possible reason for SQLException is the lack
of availability of the database itself.

public int executeUpdate(String sql) throws SQLException This
method is used for a SQL operation that affects one or more rows and does not
return results—for example, SQL INSERT, UPDATE, DELETE, and DDL queries.
These statements do not return results, but do return a count of the number of rows
affected by the SQL query. For example, here is an example method invocation

15-ch15.indd 864 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 865

where we want to update the Book table, increasing the price of every book that is
currently priced less than 8.95 and is a hardcover book:

String q = "UPDATE Book SET UnitPrice=8.95
 WHERE UnitPrice < 8.95 AND Format='Hardcover'";
int numRows = stmt.executeUpdate(q);

When this query executes, we are expecting some number of rows will be affected.
The integer that returns is the number of rows that were updated.

Note that this Statement method can also be used to execute SQL queries that
do not return a row count, such as CREATE TABLE or DROP TABLE and other
DDL queries. For DDL queries, the return value is 0.

public boolean execute(String sql) throws SQLException This method
is used when you are not sure what the result will be—perhaps the query will return
a result set, and perhaps not. This method can be used to execute a query whose type
may not be known until runtime—for example, one constructed in code. The return
value is true if the query resulted in a result set and false if the query resulted in an
update count or no results.

However, more often, this method is used when invoking a stored procedure
(using the CallableStatement, which we'll talk about later in the chapter). A
stored procedure can return a single result set or row count, or multiple result sets
and row counts, so this method was designed to handle what happens when a single
database invocation produces more than one result set or row count.

You might also use this method if you wrote an application to test queries—
something that reads a String from the command line and then runs that String
against the database as a query. For example:

ResultSet rs;
int numRows;
boolean status = stmt.execute(""); // True if there is a ResultSet
if (status) { // True
 rs = stmt.getResultSet(); // Get the ResultSet
 // Process the result set...
} else { // False
 numRows = stmt.getUpdateCount(); // Get the update count
 if (numRows == -1) { // If -1, there are no results
 out.println("No results");
 } else { // else, print the number of
 // rows affected
 out.println(numRows + " rows affected.");
 }
}

15-ch15.indd 865 9/3/2014 6:04:05 PM

866 Chapter 15: JDBC

Because this statement may return a result set or may simply return an integer row
count, there are two additional statement commands you can use to get the results or
the count based on whether the execute method returned true (there is a result set)
or false (there is an update count or there was no result). The getResultSet() is used
to retrieve results when the execute method returns true, and the getUpdateCount()
is used to retrieve the count when the execute method returns false. Let's look at
these methods next.

It is generally a very bad idea to allow a user to enter a query string directly in

an input field, or allow a user to pass a string to construct a query directly. The

reason is that if a user can construct a query or even include a freeform string

into a query, they can use the query to return more data than you intended or

to alter the database table permissions.

For example, assume that we have a query where the user enters their

e-mail address and the string the user enters is inserted directly to the query:

String s = System.console().readLine("Enter your e-mail address: ");
ResultSet rs = stmt.executeQuery("SELECT * FROM Customer
 WHERE EMail='" + s + "'");

The user of this code could enter a string like this:

tom@trouble.com' OR 'x'='x

The resulting query executed by the database becomes:

SELECT * FROM Customer WHERE Email='tom@trouble.com' OR 'x'='x'

Because the OR statement will always return true, the result is that the query

will return ALL of the customer rows, effectively the same as the query:

SELECT * FROM Customer

And now this user of your code has a list of the e-mail addresses of every

customer in the database.

This type of attack is called a SQL injection attack. It is easy to prevent

by carefully sanitizing any string input used in a query to the database

and/or by using one of the other Statement types, PreparedStatement and

CallableStatement. Despite how easy it is to prevent, it happens frequently,

even to large, experienced companies like Yahoo!.

15-ch15.indd 866 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 867

public ResultSet getResultSet() throws SQLException If the boolean
value from the execute() method returns true, then there is a result set. To get the
result set, as shown earlier, call the getResultSet() method on the Statement
object. Then you can process the ResultSet object (which we will cover in the
next section). This method is basically foolproof—if, in fact, there are no results, the
method will return a null.

ResultSet rs = stmt.getResultSet();

public int getUpdateCount() throws SQLException If the boolean value
from the execute() method returns false, then there is a row count, and this method
will return the number of rows affected. A return value of –1 indicates that there are
no results.

int numRows = stmt.getUpdateCount();
if (numRows == -1) {
 out.println("No results");
} else {
 out.println(numRows + " rows affected.");
}

Table 15-6 summarizes the Statement methods we just covered.

Method (Each Throws SQLException) Description

ResultSet executeQuery(String sql) Execute a SQL query and return a ResultSet object, i.e.,
SELECT commands.

int executeUpdate(String sql) Execute a SQL query that will only modify a number of rows,
i.e., INSERT, DELETE, or UPDATE commands.

boolean execute(String sql) Execute a SQL query that may return a result set OR modify
a number of rows (or do neither). The method will return
true if there is a result set, or false if there may be a row
count of affected rows.

ResultSet getResultSet() If the return value from the execute() method was true, you
can use this method to retrieve the result set from the query.

int getUpdateCount() If the return value from the execute() method was false,
you can use this method to get the number of rows affected
by the SQL command.

 TABLE 15-6 Important Statement Methods

15-ch15.indd 867 9/3/2014 6:04:05 PM

868 Chapter 15: JDBC

ResultSets

When a query returns a result set, an instance of a class that implements the ResultSet
interface is returned. The ResultSet object represents the results of the query—all of
the data in each row on a per-column basis. Again, as a reminder, how data in a
ResultSet are stored is entirely up to the JDBC driver vendor. It is possible that the
JDBC driver caches the entire set of results in memory all at once, or that it uses internal
buffers and gets only a few rows at a time. From your point of view as the user of the data,
it really doesn't matter much. Using the methods defined in the ResultSet interface,
you can read and manipulate the data, and that's all that matters.

One important thing to keep in mind is that a ResultSet is a copy of the data
from the database from the instance in time when the query was executed. Unless
you are the only person using the database, you need to always assume that the
underlying database table or tables that the ResultSet came from could be changed
by some other user or application.

Because ResultSet is such a comprehensive part of the JDBC API, we are going
to tackle it in sections. Table 15-7 summarizes each section so you can reference
these later.

Section Title Description

"Moving Forward in a ResultSet" How to access each "row" of the result of a query.

"Reading Data from a ResultSet" How to use ResultSet methods to access the individual columns
of each "row" in the result set.

"Getting Information about a ResultSet" How to use a ResultSetMetaData object to retrieve information
about the result set: the number of columns returned in the results,
the names of each column, and the Java type of each column.

"Printing a Report" How to use the ResultSetMetaData methods to print a nicely
formatted set of results to the console.

"Moving Around in ResultSets" How to change the cursor type and concurrency settings on a
Statement object to create a ResultSet that allows the row
cursor to be positioned and allows the data to be modified.

"Updating ResultSets" How to use the concurrency settings on a Statement object to
create a ResultSet that allows you to update the results returned
and later synchronize those results with the database.

"Inserting New Rows into a ResultSet" How to manipulate a ResultSet further by deleting and
inserting rows.

"Getting Information about a Database
Using DatabaseMetaData"

How to use the DatabaseMetaData object to retrieve
information about a database.

 TABLE 15-7 ResultSet Sections

15-ch15.indd 868 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 869

Moving Forward in a ResultSet

The best way to think of a ResultSet object is visually. Assume that in our
BookSellerDB database we have several customers whose last name begins with
the letter "C." We could create a query to return those rows "like" this:

String query = "SELECT FirstName, LastName, EMail from Customer
 WHERE LastName LIKE 'C%'";

The SQL operator LIKE treats the string that follows as a pattern to match, where
the % indicates a wildcard. So, LastName LIKE 'C%' means "any LastName with a
C, followed by any other character(s)."

When we execute this query using the executeQuery() method, the ResultSet
returned will contain the FirstName, LastName, and EMail columns where the
customer's LastName starts with the capital letter "C":

ResultSet rs = stmt.executeQuery (query);

The ResultSet object returned contains the data from the query as shown in
Figure 15-4.

Note in Figure 15-4 that the ResultSet object maintains a cursor, or a pointer,
to the current row of the results. When the ResultSet object is first returned from
the query, the cursor is not yet pointing to a row of results—the cursor is pointing
above the first row. In order to get the results of the table, you must always call the
next() method on the ResultSet object to move the cursor forward to the first
row of data. By default, a ResultSet object is read-only (the data in the rows cannot

ResultSet rs=
stmt.executeQuery(query);

String query = "SELECT First_Name, Last_Name,
EMail FROM Customer WHERE Last_Name LIKE 'C%'";

rs.next()=true;

rs.next()=true;

rs.next()=true;

rs.next()=false;

cursor

ResultSet

Bob

Rebecca

Anthony

Collins

Cabeca

Clark

bob.collins@yahoo.com

rebecca.cabeca@gmail.com

anthony.clark@gmail.com

 FIGURE 15-4 A ResultSet after the executeQuery

15-ch15.indd 869 9/3/2014 6:04:05 PM

870 Chapter 15: JDBC

Reading Data from a ResultSet

Moving the cursor forward through the ResultSet is just the start of reading data
from the results of the query. Let's look at the two ways to get the data from each
row in a result set.

When a ResultSet is returned, and you have dutifully called next() to move
the cursor to the first actual row of data, you can now read the data in each column
of the current row. As illustrated in Figure 15-4, a result set from a database query is
like a table or a spreadsheet. Each row contains (typically) one or more columns,

Because the cursor is such a fundamental concept in JDBC, the exam

will test you on the status of the cursor in a ResultSet. As long as you keep in mind that

you must call the next() method before processing even one row of data in a ResultSet,

then you'll be fi ne. Maybe you could use a memory device, like this one: "When getting

results, don't vex, always call next!" Okay, maybe not.

be updated), and you can only move the cursor forward. We'll look at how to change
this behavior a little later on.

So the first method you will need to know for ResultSet is the next() method.

public boolean next() The next() method moves the cursor forward one row
and returns true if the cursor now points to a row of data in the ResultSet. If the
cursor points beyond the last row of data as a result of the next()method (or if the
ResultSet contains no rows), the return value is false.

So in order to read the three rows of data in the table shown in Figure 15-4, we
need to call the next() method, read the row of data, and then call next()again
twice more. When the next()method is invoked the fourth time, the method will
return false. The easiest way to read all of the rows from first to last is in a while loop:

String query = "SELECT FirstName, LastName, EMail FROM Customer
 WHERE LastName LIKE 'C%'";
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) { // Move the cursor from the current position
 // to the next row of data - return true if the
 // next row is valid data and false if the
 // cursor has moved past the last row
 // ...
}

15-ch15.indd 870 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 871

and the data in each column is one of the SQL data types. In order to bring the data
from each column into your Java application, you must use a ResultSet method to
retrieve each of the SQL column values into an appropriate Java type. So SQL
INTEGER, for example, can be read as a Java int primitive, SQL VARCHAR can
be read as a Java String, SQL DATE can be read as a java.sql.Date object, and so
on. ResultSet defines several other types as well, but whether or not the database
or the driver supports all of the types defined by the specification depends on the
database vendor. For the exam, we recommend you focus on the most common SQL
data types and the ResultSet methods shown in Table 15-7.

SQL has been around for a long time. The first formalized, American National

Standards Institute (ANSI)–approved version was adopted in 1986 (SQL-86).

The next major revision was in 1992, SQL-92, which is widely considered the

"base" release for every database. SQL-92 defined a number of new data

types, including DATE, TIME, TIMESTAMP, BIT, and VARCHAR strings. SQL-92

has multiple levels; each level adds a bit more functionality to the previous

level. JDBC drivers recognize three ANSI SQL-92 levels: Entry, Intermediate,

and Full.

SQL-1999, also known as SQL-3, added LARGE OBJECT types, including

BINARY LARGE OBJECT (BLOB) and CHARACTER LARGE OBJECT (CLOB).

SQL-1999 also introduced the BOOLEAN type and a composite type,

ARRAY and ROW, to store collections directly into the database. In addition,

SQL-1999 added a number of features to SQL, including triggers, regular

expressions, and procedural and flow control.

SQL-2003 introduced XML to the database, and importantly, added

columns with auto-generated values, including columns that support identity,

like the primary key and foreign key columns. Believe or not, other standards

have been proposed, including SQL-2006, SQL-2008, and SQL-2011.

The reason this matters is because the JDBC specification has attempted

to be consistent with features from the most widely adopted specification

at the time. Thus, JDBC 3.0 supports SQL-92 and a part of the SQL-1999

specification, and JDBC 4.0 supports parts of the SQL-2003 specification. In

this chapter, we'll try to stick to the most widely used SQL-92 features and the

most commonly supported SQL-1999 features that JDBC also supports.

One way to read the column data is by using the names of the columns themselves
as string values. For example, using the column names from Bob's Book table

15-ch15.indd 871 9/3/2014 6:04:05 PM

872 Chapter 15: JDBC

(Table 15-4), in these ResultSet methods, the String name of the column from
the Book table is passed to the method to read the column data type:

String query = "SELECT Title, PubDate, UnitPrice from Book";
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {
 String title = rs.getString("Title"); // Read the data in the
 // column named "Title"
 // into a String
 Date PubDate = rs.getDate("PubDate"); // Read the data in the
 // "PubDate" column into
 // a Date object
 float price = rs.getFloat("Price"); // Read the data in the
 // column "Price"
 // into a float
 //
}

Note that although here the column names were retrieved from the ResultSet
row in the order they were requested in the SQL query, they could have been
processed in any order.

ResultSet also provides an overloaded method that takes an integer index value
for each of the SQL types. This value is the integer position of the column in the
result set, numbered from 1 to the number of columns returned. So we could write
the same statements earlier like this:

String title = rs.getString(1); // Title is first column
Date PubDate = rs.getDate(2); // PubDate is second column
float price = rs.getFloat(3); // Price is third column

Using the positional methods shown earlier, the order of the column in the
ResultSet does matter. In our query, Title is in position 1, PubDate is in position 2,
and Price is in position 3.

Remember: Column indexes start with 1.

It is important to keep in mind that when you are accessing columns

using integer index values, the column indexes always start with 1, not 0 as in traditional

arrays. If you attempt to access a column with an index of less than 1 or greater than

the number of columns returned, a SQLException will be thrown. You can get the number

of columns returned in a ResultSet through the result set's metadata object. See the

section on ResultSetMetaData to learn more.

15-ch15.indd 872 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 873

What the database stores as a type, the SQL type, and what JDBC returns as a

type are often two different things. It is important to understand that the JDBC

specification provides a set of standard mappings—the best match between

what the database provides as a type and the Java type a programmer should

use with that type. Rather than repeating what is in the specification, we

encourage you to look at Appendix B of the JDBC (JSR-221) specification.

The most commonly used ResultSet get methods are listed next. Let's look at
these methods in detail.

public boolean getBoolean(String columnLabel) This method retrieves
the value of the named column in the ResultSet as a Java boolean. Boolean values
are rarely returned in SQL queries, and some databases may not support a SQL
BOOLEAN type, so check with your database vendor. In this contrived example
here, we are returning employment status:

if (rs.getBoolean("CURR_EMPLOYEE")) {
 // Now process the remaining columns
}

public double getDouble(String columnLabel) This method retrieves the
value of the column as a Java double. This method is recommended for returning the
value stored in the database as SQL DOUBLE and SQL FLOAT types.

double cartTotal = rs.getDouble("CartTotal");

public int getInt(String columnLabel) This method retrieves the value of
the column as a Java int. Integers are often a good choice for primary keys. This
method is recommended for returning values stored in the database as SQL INTEGER
types.

int authorID = rs.getInt("AuthorID");

public float getFloat(String columnLabel) This method retrieves the value
of the column as a Java float. It is recommended for SQL REAL types.

float price = rs.getFloat("UnitPrice");

public long getLong(String columnLabel) This method retrieves the value
of the column as a Java long. It is recommended for SQL BIGINT types.

long socialSecurityNumber = rs.get("SocSecNum");

15-ch15.indd 873 9/3/2014 6:04:05 PM

874 Chapter 15: JDBC

public java.sql.Date getDate(String columnLabel) This method retrieves
the value of the column as a Java Date object. Note that java.sql.Date extends
java.util.Date. The most interesting difference between the two is that the
toString() method of java.sql.Date returns a date string in the form: "yyyy mm dd."
This method is recommended for SQL DATE types.

java.sql.Date pubDate = rs.getDate("PubDate");

public java.lang.String getString(String columnLabel) This method
retrieves the value of the column as a Java String object. It is good for reading SQL
columns with CHAR, VARCHAR, and LONGVARCHAR types.

String lastName = rs.getString("LastName");

public java.sql.Time getTime(String columnLabel) This method
retrieves the value of the column as a Java Time object. Like java.sql.Date, this
class extends java.util.Date, and its toString() method returns a time string in
the form: "hh:mm:ss." TIME is the SQL type that this method is designed to read.

java.sql.Time time = rs.getString("FinishTime");

public java.sql.Timestamp getTimestamp(String columnLabel) This
method retrieves the value of the column as a Timestamp object. Its toString()
method formats the result in the form: yyyy-mm-dd hh:mm:ss.fffffffff, where ffffffffff
is nanoseconds. This method is recommended for reading SQL TIMESTAMP types.

java.sql.Timestamp timestamp = rs.getTimestamp("ClockInTime");

public java.lang.Object getObject(String columnLabel) This method
retrieves the value of the column as a Java Object. It can be used as a general-
purpose method for reading data in a column. This method works by reading the
value returned as the appropriate Java wrapper class for the type and returning that
as a Java Object object. So, for example, reading an integer (SQL INTEGER type)
using this method returns an object that is a java.lang.Integer type. We can use
instanceof to check for an Integer and get the int value:

Object o = rs.getObject("AuthorID");
if (o instanceof java.lang.Integer) {
 int id = ((Integer)o).intValue();
}

15-ch15.indd 874 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 875

Table 15-8 lists the most commonly used methods to retrieve specific data from a
ResultSet. For the complete and exhaustive set of ResultSet get methods, see the
Java documentation for java.sql.ResultSet.

The exam is not going to test your knowledge of all of the ResultSet

get and set methods for SQL types. For the exam, just remember the basic Java types,

String, and int. Each ResultSet getter method is named by its closest Java type, so,

for example, to read a database column that holds an integer into a Java int type, you

invoke the getInt() method with either the String column or the column index of the

column you wish to read.

SQL Type Java Type ResultSet get methods

BOOLEAN boolean getBoolean(String columnName)
getBoolean(int columnIndex)

INTEGER int getInt(String columnName)
getInt(int columnIndex)

DOUBLE, FLOAT double getDouble(String columnName)
getDouble(int columnIndex)

REAL float getFloat(String columnName)
getFloat(int columnIndex)

BIGINT long getLong(String columnName)
getLong(int columnIndex)

CHAR, VARCHAR,
LONGVARCHAR

String getString(String columnName)
getString(int columnIndex)

DATE java.sql.Date getDate(String columnName)
getDate(int columnIndex)

TIME java.sql.Time getTime(String columnName)
getTime(int columnIndex)

TIMESTAMP java.sql.Timestamp getTimestamp(String columnName)
getTimestamp(int columnIndex)

Any of the above java.lang.Object getObject(String columnName)
getObject(int columnIndex)

 TABLE 15-8

SQL Types and
JDBC Types

15-ch15.indd 875 9/3/2014 6:04:05 PM

876 Chapter 15: JDBC

Getting Information about a ResultSet

When you write a query using a string, as we have in the examples so far, you know
the name and type of the columns returned. However, what happens when you want
to allow your users to dynamically construct the query? You may not always know in
advance how many columns are returned and the type and name of the columns
returned.

Fortunately, the ResultSetMetaData class was designed to provide just that
information. Using ResultSetMetaData, you can get important information about
the results returned from the query, including the number of columns, the table
name, the column name, and the column class name—the Java class that is used to
represent this column when the column is returned as an Object. Here is a simple
example, and then we'll look at these methods in more detail:

String query = "SELECT AuthorID FROM Author";
ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
rs.next();
int colCount = rsmd.getColumnCount(); // How many columns in this
 // ResultSet?
out.println("Column Count: " + colCount);
for (int i = 1; i <= colCount; i++) {
 out.println("Table Name: " + rsmd.getTableName(i));
 out.println("Column Name: " + rsmd.getColumnName(i));
 out.println("Column Size: " + rsmd.getColumnDisplaySize(i));
}

Running this code using the BookSeller database (Bob's Books) produces the
following output:

Column Count: 1
Table Name: AUTHOR
Column Name: AUTHORID
Column Size: 11

ResultSetMetaData is often used to generate reports, so here are the most
commonly used methods. For more information and more methods, check out the
JavaDocs.

public int getColumnCount() throws SQLException This method is
probably the most used ResultSetMetaData method. It returns the integer count of
the number of columns returned by the query. With this method, you can iterate
through the columns to get information about each column.

15-ch15.indd 876 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 877

try {
 conn = DriverManager.getConnection(...);
 stmt = conn.createStatement();
 String query = "SELECT * FROM Author";
 ResultSet rs = stmt.executeQuery(query);
 ResultSetMetaData rsmd = rs.getMetaData(); // Get the meta data
 // for this ResultSet
 int columnCount = rsmd.getColumnCount(); // Get the number
 // of columns in this
 ... // ResultSet
} catch (SQLException se) { }

The value of columnCount for the Author table is 3. We can use this value to
iterate through the columns using the methods illustrated next.

public String getColumnName(int column) throws SQLException This
method returns the String name of this column. Using the columnCount, we can
create an output of the data from the database in a report-like format. For example:

String colData;
ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
int cols = rsmd.getColumnCount();
for (int i = 1; i <= cols; i++) {
 out.print(rsmd.getColumnName(i)+ " "); // Print each column name
}
out.println();
while (rs.next()) {
 for (int i = 1; i <= cols; i++) {
 if (rs.getObject(i) != null) {
 colData = rs.getObject(i).toString(); // Get the String value
 // of the column object
 } else {
 colData = "NULL"; // or NULL for a null
 }
 out.print(colData); // Print the column data
 }
 out.println();
}

This example is somewhat rudimentary, as we probably need to do some better
formatting on the data, but it will produce a table of output:

AUTHORID FIRSTNAME LASTNAME
1000 Rick Riordan
1001 Nancy Farmer
1002 Ally Condie
1003 Cressida Cowell
1004 Lauren St. John
1005 Eoin Colfer
...

15-ch15.indd 877 9/3/2014 6:04:05 PM

878 Chapter 15: JDBC

public String getTableName(int column) throws SQLException The
method returns the String name of the table that this column belongs to. This
method is useful when the query is a join of two or more tables and we need to know
which table a column came from. For example, suppose that we want to get a list of
books by author's last name:

String query = "SELECT Author.LastName, Book.Title
 FROM Author, Book, Books_By_Author
 WHERE Author.AuthorID = Books_By_Author.AuthorID
 AND Book.isbn = Books_By_Author.isbn"

With a query like this, we might want to know which table the column data came
from:

ResultSetMetaData rsmd = rs.getMetaData();
int cols = rsmd.getColumnCount();
for (int i = 1; i <= cols; i++) {
 out.print(rsmd.getTableName(i) + ":" +
 rsmd.getColumnName(i) + " ");
}

This code will print the name of the table, a colon, and the column name. The output
might look something like this:

AUTHOR:LASTNAME BOOK:TITLE

public int getColumnDisplaySize(int column) throws SQLException This
method returns an integer of the size of the column. This information is useful for
determining the maximum number of characters a column can hold (if it is a
VARCHAR type) and the spacing that is required between columns for a report.

Printing a Report

To make a prettier report than the one in the getColumnName method earlier, for
example, we could use the display size to pad the column name and data with spaces.
What we want is a table with spaces between the columns and headings that looks
something like this when we query the Author table:

AUTHORID FIRSTNAME LASTNAME
1000 Rick Riordan
1001 Nancy Farmer
1002 Ally Condie
1003 Cressida Cowell
1004 Lauren St. John
1005 Eoin Colfer
...

15-ch15.indd 878 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 879

Using the methods we have discussed so far, here is code that produces a pretty
report from a query:

ResultSet rs = stmt.executeQuery(query);
ResultSetMetaData rsmd = rs.getMetaData();
int cols = rsmd.getColumnCount();
String col, colData;
for (int i = 1; i <= cols; i++) {
 col = leftJustify(rsmd.getColumnName(i), // Left justify
 rsmd.getColumnDisplaySize(i)); // column name
 out.print(col); // padded with
} // size spaces
out.println(); // Print a linefeed
while (rs.next()) {
 for (int i = 1; i <= cols; i++) {
 if (rs.getObject(i) != null) {
 colData = rs.getObject(i).toString(); // Get the data in the
 // column as a String
 } else {
 colData = "NULL"; // If the column is null
 // use "NULL"
 }
 col = leftJustify(colData,
 rsmd.getColumnDisplaySize(i)));
 out.print(col);
 }
 out.println();
}

A couple of things to note about the example code: first, the leftJustify
method, which takes a string to print left-justified and an integer for the total
number of characters in the string. The difference between the actual string length
and the integer value will be filled with spaces. This method uses the String
format() method and the "-" (dash) flag to return a String that is left-justified
with spaces. The %1$ part indicates the flag should be applied to the first argument.
What we are building is a format string dynamically. If the column display size is 20,
the format string will be %1$-20s, which says "print the argument passed (the first
argument) on the left with a width of 20 and use a string conversion."

Note that if the length of the string passed in and the integer field length (n) are
the same, we add one space to the length to make it look pretty:

public static String leftJustify(String s, int n) {
 if (s.length() <= n) n++; // Add an extra space if the length of
 // the String s is less than or equal to
 // the length of the column n
 return String.format("%1$-" + n + "s", s); // Pad to the right of
 // the String by n
 // spaces
}

15-ch15.indd 879 9/3/2014 6:04:05 PM

880 Chapter 15: JDBC

Second, databases can store NULL values. If the value of a column is NULL, the
object returned in the rs.getObject() method is a Java null. So we have to test
for null to avoid getting a null pointer exception when we execute the toString()
method.

Notice that we don't have to use the next() method before reading the
ResultSetMetaData—we can do that at any time after obtaining a valid result set.
Running this code and passing it a query like "SELECT * FROM Author" returns a
neatly printed set of authors:

AUTHORID FIRSTNAME LASTNAME
1000 Rick Riordan
1001 Nancy Farmer
1002 Ally Condie
1003 Cressida Cowell
1004 Lauren St. John
1005 Eoin Colfer
...

Moving Around in ResultSets

So far, for all the result sets we looked at, we simply moved the cursor forward by
calling next(). The default characteristics of a Statement are cursors that only
move forward and result sets that do not support changes. The ResultSet interface
actually defines these characteristics as static int variables: TYPE_FORWARD_
ONLY and CONCUR_READ_ONLY. However, the JDBC specification defines
additional static int types (shown next) that allow a developer to move the cursor
forward, backward, and to a specific position in the result set. In addition, the result
set can be modified while open and the changes written to the database. Note that
support for cursor movement and updatable result sets is not a requirement on a
driver, but most drivers provide this capability. In order to create a result set that
uses positionable cursors and/or supports updates, you must create a Statement with
the appropriate scroll type and concurrency setting, and then use that Statement to
create the ResultSet object.

The ability to move the cursor to a particular position is the key to being able to
determine how many rows are returned from a result set—something we will look at
shortly. The ability to modify an open result set may seem odd, particularly if you are a
seasoned database developer. After all, isn't that what a SQL UPDATE command is for?

Consider a situation where you want to perform a series of calculations using the
data from the result set rows, then write a change to each row based on some
criteria, and finally write the data back to the database. For example, imagine a
database table that contains customer data, including the date they joined as a

15-ch15.indd 880 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 881

customer, their purchase history, and the total number of orders in the last two
months. After reading this data into a result set, you could iterate over each
customer record and modify it based on business rules: set their minimum discount
higher if they have been a customer for more than a year with at least one purchase
per year, or set their preferred credit status if they have been purchasing more than
$100 per month. With an updatable result set, you can modify several customer
rows, each in a different way, and commit the rows to the database without having
to write a complex SQL query or a set of SQL queries—you simply commit the
updates on the open result set.

Let's look at how to modify a result set in more detail. There are three ResultSet
cursor types:

■ TYPE_FORWARD_ONLY The default value for a ResultSet—the
cursor moves forward only through a set of results.

■ TYPE_SCROLL_INSENSITIVE A cursor position can be moved in the
result forward or backward, or positioned to a particular cursor location. Any
changes made to the underlying data—the database itself—are not reflected
in the result set. In other words, the result set does not have to "keep state"
with the database. This type is generally supported by databases.

■ TYPE_SCROLL_SENSITIVE A cursor can be changed in the results
forward or backward, or positioned to a particular cursor location. Any
changes made to the underlying data are reflected in the open result set.
As you can imagine, this is difficult to implement, and is therefore not
implemented in a database or JDBC driver very often.

JDBC provides two options for data concurrency with a result set:

■ CONCUR_READ_ONLY This is the default value for result set
concurrency. Any open result set is read-only and cannot be modified or
changed.

■ CONCUR_UPDATABLE A result set can be modified through the
ResultSet methods while the result set is open.

Because a database and JDBC driver are not required to support cursor movement
and concurrent updates, the JDBC provides methods to query the database and
driver using the DatabaseMetaData object to determine if your driver supports
these capabilities. For example:

15-ch15.indd 881 9/3/2014 6:04:05 PM

882 Chapter 15: JDBC

Connection conn = DriverManager.getConnection(...);
DatabaseMetaData dbmd = conn.getMetaData();
if (dbmd.supportsResultSetType(ResultSet.TYPE_FORWARD_ONLY)) {
 out.print("Supports TYPE_FORWARD_ONLY");
 if (dbmd.supportsResultSetConcurrency(
 ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE)) {
 out.println(" and supports CONCUR_UPDATABLE");
 }
}

if (dbmd.supportsResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE)) {
 out.print("Supports TYPE_SCROLL_INSENSITIVE");
 if (dbmd.supportsResultSetConcurrency(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE)) {
 out.println(" and supports CONCUR_UPDATABLE");
 }
}
if (dbmd.supportsResultSetType(ResultSet.TYPE_SCROLL_SENSITIVE)) {
 out.print("Supports TYPE_SCROLL_SENSITIVE");
 if (dbmd.supportsResultSetConcurrency(
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE)) {
 out.println("Supports CONCUR_UPDATABLE");
 }
}

Running this code on the Java DB (Derby) database, these are the results:

Supports TYPE_FORWARD_ONLY and supports CONCUR_UPDATABLE
Supports TYPE_SCROLL_INSENSITIVE and supports CONCUR_UPDATABLE

In order to create a ResultSet with TYPE_SCROLL_INSENSITIVE and
CONCUR_UPDATABLE, the Statement used to create the ResultSet must be
created (from the Connection) with the cursor type and concurrency you want. You
can determine what cursor type and concurrency the Statement was created with,
but once created, you can't change the cursor type or concurrency of an existing
Statement object. Also, note that just because you set a cursor type or concurrency
setting, that doesn't mean you will get those settings. As you will see in the section
on exceptions, the driver can determine that the database doesn't support one or
both of the settings you chose and it will throw a warning and (silently) revert to its
default settings if they are not supported. You will see how to detect these JDBC
warnings in the section on exceptions and warnings.

Connection conn = DriverManager.getConnection(...);
Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

15-ch15.indd 882 9/3/2014 6:04:05 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 883

Besides being able to use a ResultSet object to update results, which we'll look
at next, being able to manipulate the cursor provides a side benefit—we can use the
cursor to determine the number of rows returned in a query. Although it would seem
like there ought to be a method in ResultSet or ResultSetMetaData to do this,
this method does not exist.

In general, you should not need to know how many rows are returned, but during
debugging, you may want to diagnose your queries with a stand-alone database and
use cursor movement to read the number of rows returned.

Something like this would work:

ResultSet rs = stmt.executeQuery(query); // Get a ResultSet
if (rs.last()) { // Move the very last row
 int rowCount = rs.getRow(); // Get row number (the count)
 rs.beforeFirst(); // Move to before the 1st row
}

Of course, you may also want to have a more sophisticated method that preserves
the current cursor position and returns the cursor to that position, regardless of when
the method was called. Before we look at that code, let's look at the other cursor
movement methods and test methods (besides next) in ResultSet. As a quick
summary, Table 15-9 lists the methods you use to change the cursor position in a
ResultSet.

Method Effect on the Cursor and Return Value

boolean next() Moves the cursor to the next row in the ResultSet. Returns false if the
cursor is positioned beyond the last row.

boolean previous() Moves the cursor backward one row. Returns false if the cursor is
positioned before the first row.

boolean absolute(int row) Moves the cursor to an absolute position in the ResultSet. Rows are
numbered from 1. Moving to row 0 moves the cursor to before the first
row. Moving to negative row numbers starts from the last row and works
backward. Returns false if the cursor is positioned beyond the last row or
before the first row.

boolean relative(int row) Moves the cursor to a position relative to the current position. Invoking
relative(1) moves forward one row; invoking relative(-1) moves
backward one row. Returns false if the cursor is positioned beyond the last
row or before the first row.

boolean first() Moves the cursor to the first row in the ResultSet. Returns false if there
are no rows in the ResultSet (empty result set).

 TABLE 15-9 ResultSet Cursor Positioning Methods

15-ch15.indd 883 9/3/2014 6:04:05 PM

884 Chapter 15: JDBC

Method Effect on the Cursor and Return Value

boolean last() Moves the cursor to the last row in the ResultSet. Returns false if there
are no rows in the ResultSet (empty result set).

void beforeFirst() Moves the cursor to before the first row in the ResultSet.
void afterLast() Moves the cursor to after the last row in the ResultSet.

Let's look at each of these methods in more detail.

public boolean absolute(int row) throws SQLException This method
positions the cursor to an absolute row number. The contrasting method is relative.
Passing 0 as the row argument positions the cursor to before the first row. Passing a
negative value, like -1, positions the cursor to the position after the last row minus
one—in other words, the last row. If you attempt to position the cursor beyond the
last row, say at position 22 in a 19-row result set, the cursor will be positioned
beyond the last row, the implications of which we'll discuss next. Figure 15-5
illustrates how invocations of absolute() position the cursor.

The absolute() method returns true if the cursor was successfully positioned
within the ResultSet and false if the cursor ended up before the first or after the
last row. For example, suppose that you wanted to process only every other row:

ResultSet rs = stmt.executeQuery(query);
for (int i = 1; ; i += 2) {
 if (rs.absolute(i)) { // The absolute method moves to the row
 // passed as the integer value and returns
 // true if the move was successful
 // ... process the odd row
 } else {
 break;
 }
}

public int getRow() throws SQLException This method returns the
current row position as a positive integer (1 for the first row, 2 for the second, and so
on) or 0 if there is no current row—the cursor is either before the first row or after
the last row. This is the only method of this set of cursor methods that is optionally
supported for TYPE_FORWARD_ONLY ResultSets.

public boolean relative(int rows) throws SQLException The relative()
method is the cousin to absolute. Get it, cousin? Okay, anyway, relative() will
position the cursor either before or after the current position of the number of rows

 TABLE 15-9 ResultSet Cursor Positioning Methods (continued)

15-ch15.indd 884 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 885

passed in to the method. So if the cursor is on row 15 of a 30-row ResultSet,
calling relative(2) will position the cursor to row 17, and then calling relative(-5)
positions the cursor to row 12. Figure 15-6 shows how the cursor is moved based on
calls to absolute() and relative().

Like absolute positioning, attempting to position the cursor beyond the last row
or before the first row simply results in the cursor being after the last row or before
the first row, respectively, and the method returns false. Also, calling relative with
an argument of 0 does exactly what you might expect—the cursor remains where it
is. Why would you use relative? Let's assume that you are displaying a fairly long
database table on a web page using an HTML table. You might want to allow your
user to be able to page forward or backward relative to the currently selected row;
maybe something like this:

public boolean getNextPageOfData (ResultSet rs, int pageSize) throws
SQLException{
 return rs.relative(pageSize);
}

public boolean previous() throws SQLException The previous()
method works exactly the same as the next() method, only it backs up through the

 FIGURE 15-5

Absolute cursor
positioning

String query = "SELECT * FROM Author";

rs.absolute(2);

cursor ResultSet

rs.absolute(9);

rs.absolute(-1);

1

2

3

4

5

6

7

8

9

10

11

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

Rick Riordan

Nancy Farmer

Ally Condie

Cressida Cowell

Lauren St. John

Eoin Colfer

Esther Freisner

Chris D’lacey

Christopher Paolini

Kathryn Lasky

Nancy Star

15-ch15.indd 885 9/3/2014 6:04:06 PM

886 Chapter 15: JDBC

ResultSet. Using this method with the afterLast() method described next, you
can move through a ResultSet in reverse order (from last row to first).

public void afterLast() throws SQLException This method positions the
cursor after the last row. Using this method and then the previous() method, you
can iterate through a ResultSet in reverse. For example:

public void showFlippedResultSet(ResultSet rs) throws SQLException {
 rs.afterLast(); // Position the cursor after the last row
 while (rs.previous()) { // Back up through the ResultSet
 // process the result set
 }
}

Just like next(), when previous() backs up all the way to before the first row,
the method returns false.

public void beforeFirst() throws SQLException This method will return
the cursor to the position it held when the ResultSet was first created and returned
by a Statement object.

rs.beforeFirst(); // Position the cursor before the first row

 FIGURE 15-6

Relative cursor
positioning
(Circled numbers
indicate order of
invocation.)

String query = "SELECT * FROM Author";

rs.absolute(2);

cursor ResultSet

1

2

3

4

5

6

7

8

9

10

11

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

Rick Riordan

Nancy Farmer

Ally Condie

Cressida Cowell

Lauren St. John

Eoin Colfer

Esther Freisner

Chris D’lacey

Christopher Paolini

Kathryn Lasky

Nancy Star

rs.relative(-3);

rs.relative(5);

1

2

3

15-ch15.indd 886 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 887

public boolean first() throws SQLException The first() method
positions the cursor on the first row. It is the equivalent of calling absolute(1).
This method returns true if the cursor was moved to a valid row, and false if the
ResultSet has no rows.

if (!rs.first()) {
 out.println("No rows in this result set");
}

public boolean last() throws SQLException The last() method positions
the cursor on the last row. This method is the equivalent of calling absolute(-1).
This method returns true if the cursor was moved to a valid row, and false if the
ResultSet has no rows.

if (!rs.last()) {
 out.println("No rows in this result set");
}

A couple of notes on the exceptions thrown by all of these methods:

■ A SQLException will be thrown by these methods if the type of the ResultSet
is TYPE_FORWARD_ONLY, if the ResultSet is closed (we will look at how a
result set is closed in an upcoming section), or if a database error occurs.

■ A SQLFeatureNotSupportedException will be thrown by these methods if
the JDBC driver does not support the method. This exception is a subclass of
SQLException.

■ Most of these methods have no effect if the ResultSet has no rows—for
example, a ResultSet returned by a query that returned no rows.

The following methods return a boolean to allow you to "test" the current cursor
position without moving the cursor. Note that these are not on the exam, but are
provided to you for completeness:

■ isBeforeFirst() True if the cursor is positioned before the first row

■ isAfterLast() True if the cursor is positioned after the last row

■ isFirst() True if the cursor is on the first row

■ isLast() True if the cursor is on the last row

So now that we have looked at the cursor positioning methods, let's revisit the
code to calculate the row count. We will create a general-purpose method to allow

15-ch15.indd 887 9/3/2014 6:04:06 PM

888 Chapter 15: JDBC

the row count to be calculated at any time and at any current cursor position. Here
is the code:
public static int getRowCount(ResultSet rs) throws SQLException {
 int rowCount = -1;
 int currRow = 0;

 if (rs != null) { // make sure the ResultSet is not null
 currRow = rs.getRow(); // Save the current row position:
 // zero indicates that there is no
 // current row position - could be
 // beforeFirst or afterLast
 if (rs.isAfterLast()) { // afterLast, so set the currRow negative
 currRow = -1;
 }
 if (rs.last()) { // move to the last row and get the position
 // if this method returns false, there are no
 // results
 rowCount = rs.getRow(); // Get the row count
 // Return the cursor to the position it
 // was in before the method was called.
 if (currRow == -1) { // if the currRow is negative, the cursor
 // position was after the last row, so
 // return the cursor to the last row
 rs.afterLast();
 } else if (currRow == 0) { // else if the cursor is zero, move
 // the cursor to before the first row
 rs.beforeFirst();
 } else { // else return the cursor to its last position
 rs.absolute(currRow);
 }
 }
 }
 return rowCount;
}

Looking through the code, you notice that we took special care to preserve the
current position of the cursor in the ResultSet. We called getRow() to get the
current position, and if the value returned was 0, the current position of the ResultSet
could be either before the first row or after the last row, so we used the isAfterLast()
method to determine where the cursor was. If the cursor was after the last row, then
we stored a -1 in the currRow integer.

We then moved the cursor to the last position in the ResultSet, and if that
move was successful, we get the current position and save it as the rowCount (the
last row and, therefore, the count of rows in the ResultSet). Finally, we use the
value of currRow to determine where to return the cursor. If the value of the cursor
is -1, we need to position the cursor after the last row. Otherwise, we simply use
absolute() to return the cursor to the appropriate position in the ResultSet.

15-ch15.indd 888 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 889

While this may seem like several extra steps, we will look at why preserving the
cursor can be important when we look at updating ResultSets next.

Updating ResultSets (Not on the Exam!)

If you have casually used JDBC, or are new to JDBC, you may be surprised to know
that a ResultSet object can do more than just provide the results of a query to your
application. Besides just returning the results of a query, a ResultSet object may be
used to modify the contents of a database table, including update existing rows, delete
existing rows, and add new rows. Please note that this section and the subsections
that follow are not on the exam, and are provided to give you some insight into the
power of using an object to represent relational data.

In a traditional SQL application, you might perform the following SQL queries to
raise the price of all of the hardcover books in inventory that are currently 10.95 to
11.95 in price:

UPDATE Book SET UnitPrice = 11.95 WHERE UnitPrice = 10.95
 AND Format = 'Hardcover'

Hopefully by now you feel comfortable that you could create a Statement to
perform this query using a SQL UPDATE:

// We have a connection and we are in a try-catch block...
Statement stmt = conn.createStatement();
String query = "UPDATE Book SET UnitPrice = 11.95 " +
 "WHERE UnitPrice = 10.95 AND Format = 'Hardcover'";
int rowsUpdated = stmt.executeUpdate(query);

But what if you wanted to do the updates on a book-by-book basis? You only want
to increase the price of your best sellers, rather than every single book.

You would then have to get the values from the database using a SELECT, then
store the values in an array indexed somehow—perhaps with the primary key—then
construct the appropriate UPDATE command strings, and call executeUpdate()
one row at a time. Another option is to update the ResultSet directly.

When you create a Statement with concurrency set to CONCUR_UPDATABLE,
you can modify the data in a result set and then apply your changes back to the
database without having to issue another query.

In addition to the getXXXX methods we looked at for ResultSet, methods that
get column values as integers, Date objects, Strings, etc., there is an equivalent
updateXXXX method for each type. And, just like the getXXXX methods, the
updateXXXX methods can take either a String column name or an integer
column index.

15-ch15.indd 889 9/3/2014 6:04:06 PM

890 Chapter 15: JDBC

Let's rewrite the previous update example using an updatable ResultSet:

// We have a connection and we are in a try-catch block...
Statement stmt = // Scrollable
 conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, // and
 ResultSet.CONCUR_UPDATABLE); // updatable
String query = "SELECT UnitPrice from Book " +
 "WHERE Format = 'Hardcover'";
ResultSet rs = stmt.executeQuery(query); // Populate the ResultSet
while (rs.next()) {
 if (rs.getFloat("UnitPrice") == 10.95f) { // Check each row: if
 // unitPrice = 10.95
 rs.updateFloat("UnitPrice", 11.95f); // set it to 11.95
 rs.updateRow(); // and update the row
 // in the database
 }
}

Notice that after modifying the value of UnitPrice using the updateFloat()
method, we called the method updateRow(). This method writes the current row to
the database. This two-step approach ensures that all of the changes are made to the
row before the row is written to the database. And, you can change your mind with a
cancelRowUpdates() method call.

Table 15-10 summarizes methods that are commonly used with updatable
ResultSets (whose concurrency type is set to CONCUR_UPDATABLE).

Method Purpose

void updateRow() Updates the database with the contents of the current row of this ResultSet.
void deleteRow() Deletes the current row from the ResultSet and the underlying database.
void cancelRowUpdates() Cancels any updates made to the current row of this ResultSet object. This

method will effectively undo any changes made to the ResultSet row. If the
updateRow() method was called before cancelRowUpdates, this method will
have no effect.

void moveToInsertRow() Moves the cursor to a special row in the ResultSet set aside for performing
an insert. You need to move to the insert row before updating the columns of
the row with update methods and calling insertRow().

void insertRow() Inserts the contents of the insert row into the database. Note that this
method does not change the current ResultSet, so the ResultSet should be
read again if you want the ResultSet to be consistent with the contents of
the database.

void moveToCurrentRow() Moves the cursor back to the current row from the insert row. If the cursor
was not on the insert row, this method has no effect.

 TABLE 15-10 Methods Used with Updatable ResultSets

15-ch15.indd 890 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 891

Let's look at the common methods used for altering database contents through
the ResultSet in detail.

public void updateRow() throws SQLException This method updates the
database with the contents of the current row of the ResultSet. There are a couple
of caveats for this method. First, the ResultSet must be from a SQL SELECT
statement on a single table—a SQL statement that includes a JOIN or a SQL
statement with two tables cannot be updated. Second, the updateRow() method
should be called before moving to the next row. Otherwise, the updates to the
current row may be lost.

So the typical use for this method is to update the contents of a row using the
appropriate updateXXXX() methods and then update the database with the contents
of the row using the updateRow() method. For example, in this fragment, we are
updating the UnitPrice of a row to $11.95:

rs.updateFloat("UnitPrice", 11.95f); // Set the price to 11.95
rs.updateRow(); // Update the row in the DB

public boolean rowUpdated() throws SQLException This method
returns true if the current row was updated. Note that not all databases can detect
updates. However, JDBC provides a method in DatabaseMetaData to determine if
updates are detectable, DatabaseMetaData.updatesAreDetected(int type),
where the type is one of the ResultSet types—TYPE_SCROLL_INSENSITIVE,
for example. We will cover the DatabaseMetaData interface and its methods a little
later in this section.

if (rs.rowUpdated()) { // Has this row been modified?
 out.println("Row: " + rs.getRow() + " updated.");
}

public void cancelRowUpdates() throws SQLException This method
allows you to "back out" changes made to the row. This method is important,
because the updateXXXX methods should not be called twice on the same column.
In other words, if you set the value of UnitPrice to 11.95 in the previous example
and then decided to switch the price back to 10.95, calling the updateFloat()
method again can lead to unpredictable results. So the better approach is to call
cancelRowUpdates() before changing the value of a column a second time.

boolean priceRollback = ...; // Price rollback set somewhere else
while (rs.next()) {
 if (rs.getFloat("UnitPrice") == 10.95f) {
 rs.updateFloat("UnitPrice", 11.95f);

15-ch15.indd 891 9/3/2014 6:04:06 PM

892 Chapter 15: JDBC

 }
 if (priceRollback) { // If priceRollback is true
 rs.cancelRowUpdates(); // Rollback changes to this row
 } else {
 rs.updateRow(); // else, commit this row to the DB
 }
}

public void deleteRow() throws SQLException This method will remove
the current row from the ResultSet and from the underlying database. The row in
the database is removed (similar to the result of a DELETE statement).

rs.last();
rs.deleteRow(); // Delete the last row.

What happens to the ResultSet after a deleteRow() method depends upon
whether or not the ResultSet can detect deletions. This ability is dependent upon
the JDBC driver. When a ResultSet can detect deletions, the deleted row is
removed from the ResultSet. When the ResultSet cannot detect deletions, the
columns of the ResultSet row that was deleted are made invalid by setting each
column to null.

The DatabaseMetaData interface can be used to determine if the ResultSet
can detect deletions:
int type = ResultSet.TYPE_SCROLL_INSENSITIVE; // Scrollable ResultSet
DatabaseMetaData dbmd = conn.getMetaData(); // Get meta data about
 // the driver and DB
if (dbmd.deletesAreDetected(type)) { // Returns false if deleted rows
 // are removed from the ResultSet
 while (rs.next()) { // Iterate through the ResultSet
 if (rs.rowDeleted()) { // Deleted rows are flagged, but
 continue; // not removed, so skip them
 } else {
 // process the row
 }
} else {
 // Close the ResultSet and re-run the query
}

In general, to maintain an up-to-date ResultSet after a deletion, the ResultSet
should be re-created with a query.

Deleting the current row does not move the cursor—it remains on the current
row—so if you deleted row 1, the cursor is still positioned at row 1. However, if the
deleted row was the last row, then the cursor is positioned after the last row. Note
that there is no undo for deleteRow(), at least, not by default. As you will see a
little later, we can "undo" a delete if we are using transactions.

15-ch15.indd 892 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 893

public boolean rowDeleted() throws SQLException As described earlier,
when a ResultSet can detect deletes, the rowDeleted() method is used to
indicate a row has been deleted, but remains as a part of the ResultSet object. For
example, suppose that we deleted the second row of the Customer table. Printing the
results (after the delete) to the console would look like Figure 15-7.

So if you are working with a ResultSet that is being passed around between
methods and shared across classes, you might use rowDeleted() to detect if the
current row contains valid data.

Updating Columns Using Objects An interesting aspect of the getObject()
and updateObject() methods is that they retrieve a column as a Java object. And,
since every Java object can be turned into a String using the object's toString()
method, you can retrieve the value of any column in the database and print the
value to the console as a String, as we saw in the section "Printing a Report."

Going the other way, toward the database, you can also use Strings to update
almost every column in a ResultSet. All of the most common SQL types—integer,
float, double, long, and date—are wrapped by their representative Java object:
Integer, Float, Double, Long, and java.sql.Date. Each of these objects has a
method valueOf() that takes a String.

 FIGURE 15-7

A ResultSet
after delete()
is called on the
second row

String query = "SELECT * FROM Customer";
ResultSet rs = stmt.executeQuery(query);
rs.next();
rs.next();
rs.delete(); ResultSet

5000 John Smith john.smith@verizon.net

rebecca.mayer@gmail.com

bob.collins@yahoo.com

judy.sousa@verizon.net

anthony.clark@gmail.com

patriquinc@yahoo.com

deb.smith@comcast.net

jmcginn@comcast.net

null null null null null

5002

5003

5006

5007

5008

5009

5010

Bob

Rebecca

Anthony

Judy

Christopher

Deborah

Jennifer

Collins

Mayer

Clark

Sousa

Patriquin

Smith

McGinn

555-340-1230

555-012-3456

555-205-8212

555-256-1901

555-751-1207

555-316-1803

555-256-3421

555-250-0918

15-ch15.indd 893 9/3/2014 6:04:06 PM

894 Chapter 15: JDBC

The updateObject() method takes two arguments: the first, a column name
(String) or column index, and the second, an Object. We can pass a String as
the Object type, and as long as the String meets the requirements of the valueOf()
method for the column type, the String will be properly converted and stored in
the database as the desired SQL type.

For example, suppose that we are going to update the publish date (PubDate) of
one of our books:

// We have a connection and we are in a try-catch block...
Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
String query = "SELECT * FROM Book WHERE ISBN='142311339X'";
ResultSet rs = stmt.executeQuery(query);
rs.next();
rs.updateObject("PubDate", "2005-04-23"); // Update PubDate using
 // a String date
rs.updateRow(); // Update this row

The String we passed meets the requirements for java.sql.Date, "yyyy-[m]m-[d]d,"
so the String is properly converted and stored in the database as the SQL Date
value: 2005-04-23. Note this technique is limited to those SQL types that can be
converted to and from a String, and if the String passed to the valueOf() method
for the SQL type of the column is not properly formatted for the Java object, an
IllegalArgumentException is thrown.

Inserting New Rows Using a ResultSet

In the last section, we looked at modifying the existing column data in a ResultSet
and removing existing rows. In our final section on ResultSets, we'll look at how to
create and insert a new row. First, you must have a valid ResultSet open, so
typically, you have performed some query. ResultSet provides a special row, called
the insert row, that you are actually modifying (updating) before performing the
insert. Think of the insert row as a buffer where you can modify an empty row of
your ResultSet with values.

Inserting a row is a three-step process, as shown in Figure 15-8: First (1) move to
the special insert row, then (2) update the values of the columns for the new row,
and finally (3) perform the actual insert (write to the underlying database). The
existing ResultSet is not changed—you must rerun your query to see the underlying
changes in the database. However, you can insert as many rows as you like. Note
that each of these methods throws a SQLException if the concurrency type of the
result set is set to CONCUR_READ_ONLY. Let's look at the methods before we
look at example code.

15-ch15.indd 894 9/3/2014 6:04:06 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 895

public void moveToInsertRow() throws SQLException This method
moves the cursor to insert a row buffer. Wherever the cursor was when this method
was called is remembered. After calling this method, the appropriate updater
methods are called to update the values of the columns.

rs.moveToInsertRow();

public void insertRow() throws SQLException This method writes the
insert row buffer to the database. Note that the cursor must be on the insert row
when this method is called. Also, note that each column must be set to a value
before the row is inserted in the database or a SQLException will be thrown. The
insertRow() method can be called more than once—however, the insertRow
follows the same rules as a SQL INSERT command—unless the primary key is
auto-generated, two inserts of the same data will result in a SQLException
(duplicate primary key).

rs.insertRow();

 FIGURE 15-8

The ResultSet
insert row

String query = "SELECT AuthorID, FirstName, LastName FROM Author";
ResultSet rs = stmt.executeQuery(query);
rs.next();
rs.moveToInsertRow();
rs.updateInt("AuthorID", 1055);
rs.updateString("FirstName", "Tom");
rs.updateString("LastName", "McGinn");
rsinsertRow();
rs.moveToCurrentRow();

ResultSet

1000

1001

1002

1003

1004

1005

McGinn

Rick

Nancy

Ally

Cressida

Lauren

Erin

Riordan

Farmer

Condie

Cowell

St. John

Colfer

Tom1055

insert row

1

2

3

.

.

.

.

.

.

.

.

.

15-ch15.indd 895 9/3/2014 6:04:06 PM

896 Chapter 15: JDBC

public void moveToCurrentRow() throws SQLException This method
returns the result set cursor to the row the cursor was on before the moveToInsertRow()
method was called.

Let's look at a simple example, where we will add a new row in the Author table:
// We have a connection and we are in a try-catch block...
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
ResultSet rs = stmt.executeQuery("SELECT AuthorID, FirstName, LastName
 FROM Author");
rs.next();
rs.moveToInsertRow(); // Move the special insert row
rs.updateInt("AuthorID", 1055); // Create an author ID
rs.updateString("FirstName", "Tom"); // Set the first name
rs.updateString("LastName", "McGinn"); // Set the last name
rs.insertRow(); // Insert the row into the database
rs.moveToCurrentRow(); // Move back to the current row in
 // ResultSet

Getting Information about a Database Using
DatabaseMetaData (Not on the Exam!)

In the example we are using in this chapter, Bob's Books, we know quite a lot
about the tables, columns, and relationships between the tables because we had
that nifty data model earlier. But what if that were not the case? This section covers
DatabaseMetaData, an interface that provides a significant amount of information
about the database itself. This topic is fairly advanced stuff and is not on the exam,
but it is provided here to give you an idea about how you can use metadata to build a
model of a database without having to know anything about the database in
advance.

Recall that the Connection object we obtained from DriverManager is an
object that represents an actual connection with the database. And while the
Connection object is primarily used to create Statement objects, there are a couple
of important methods to study in the Connection interface. A Connection can be
used to obtain information about the database as well. This data is called "metadata,"
or "data about data."

One of Connection's methods returns a DatabaseMetaData object instance,
through which we can get information about the database, about the driver, and
about transaction semantics that the database and JDBC driver support. We will
spend more time looking at transactions in another section.

To obtain an instance of a DatabaseMetaData object, we use Connection's
getMetaData() method:

15-ch15.indd 896 9/3/2014 6:04:09 PM

 Submit Queries and Read Results from the Database (OCP Objective 9.3) 897

String url = "jdbc:derby://localhost:1521/BookSellerDB";
String user = "bookguy";
String pwd = "$3lleR";
try {
 Connection conn = DriverManager.getConnection(url, user, pwd);
 DatabaseMetaData dbmd = conn.getMetaData(); // Get the database
 // meta data
} catch (SQLException se) { }

DatabaseMetaData is a comprehensive interface, and through an object instance,
we can determine a great deal about the database and the supporting driver. Most of
the time, as a developer, you aren't coding against a database blindly and know the
capabilities of the database and the driver before you write any code. Still, it is
helpful to know that you can use getObject to return the value of the column,
regardless of its type—very useful when all you want to do is create a report, and
we'll look at an example.

Here are a few methods we will highlight:

■ getColumns() Returns a description of columns in a specified catalog and
schema

■ getProcedures() Returns a description of the stored procedures in a
given catalog and schema

■ getDriverName() Returns the name of the JDBC driver

■ getDriverVersion() Returns the version number of the JDBC driver as a
string

■ supportsANSI92EntryLevelSQL() Returns a boolean true if this database
supports ANSI92 entry-level grammar

It is interesting to note that DatabaseMetaData methods also use ResultSet
objects to return data about the database. Let's look at these methods in more detail.

public ResultSet getColumns(String catalog, String schemaPattern,
String tableNamePattern, String columnNamePattern) throws
SQLException This method is one of the best all-purpose data retrieval
methods for details about the tables and columns in your database. Before we look at
a code sample, it might be helpful to define catalogs and schemas. In a database, a
schema is an object that enforces the integrity of the tables in the database. The
schema name is generally the name of the person who created the database. In our
examples, the BookGuy database holds the collection of tables and is the name of
the schema. Databases may have multiple schemas stored in a catalog.

15-ch15.indd 897 9/3/2014 6:04:09 PM

898 Chapter 15: JDBC

In this example, using the Java DB database as our sample database, the catalog is
null and our schema is "BOOKGUY", and we are using a SQL catch-all pattern "%"
for the table and column name patterns, like the "*" character you are probably used
to with file systems like Windows. Thus, we are going to retrieve all of the tables and
columns in the schema. Specifically, we are going to print out the table name,
column name, the SQL data type for the column, and the size of the column. Note
that here we used uppercase column identifiers. These are the column names
verbatim from the JavaDoc, but in truth, they are not case sensitive either, so
"Table_Name" would have worked just as well. Also, the JavaDoc specifies the
column index for these column headings, so we could have also used
rs.getString(3) to get the table name.
String url = "jdbc:derby://localhost:1521/BookSellerDB";
String user = "bookguy";
String pwd = "$3lleR";
try {
 Connection conn = DriverManager.getConnection(url, user, pwd);
 DatabaseMetaData dbmd = conn.getMetaData();
 ResultSet rs
 = dbmd.getColumns(null, "BOOKGUY", "%", "%"); // Get a ResultSet
 // for any catalog (null)
 // in the BOOKGUY schema
 // for all tables (%)
 // for all columns (%)
 while (rs.next()) {
 out.print("Table Name: " + rs.getString("TABLE_NAME") + " ");
 out.print("Column_Name: " + rs.getString("COLUMN_NAME") + " ");
 out.print("Type_Name: " + rs.getString("TYPE_NAME") + " ");
 out.println("Column Size " + rs.getString("COLUMN_SIZE"));
 }
} catch (SQLException se) {
 out.println("SQLException: " + se);
}

Running this code produces output something like this:
Table Name: AUTHOR Column_Name: AUTHORID Type_Name: INTEGER Column Size 10
Primary Key
Table Name: AUTHOR Column_Name: FIRSTNAME Type_Name: VARCHAR Column Size 20
Table Name: AUTHOR Column_Name: LASTNAME Type_Name: VARCHAR Column Size 20
Table Name: BOOK Column_Name: ISBN Type_Name: VARCHAR Column Size 10 Primary
Key
Table Name: BOOK Column_Name: TITLE Type_Name: VARCHAR Column Size 100
Table Name: BOOK Column_Name: PUBDATE Type_Name: DATE Column Size 10
Table Name: BOOK Column_Name: FORMAT Type_Name: VARCHAR Column Size 30
Table Name: BOOK Column_Name: UNITPRICE Type_Name: DOUBLE Column Size 52
Table Name: BOOKS_BY_AUTHOR Column_Name: AUTHORID Type_Name: INTEGER Column
Size 10

15-ch15.indd 898 9/3/2014 6:04:09 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 899

Table Name: BOOKS_BY_AUTHOR Column_Name: ISBN Type_Name: VARCHAR Column Size
10
Table Name: CUSTOMER Column_Name: CUSTOMERID Type_Name: INTEGER Column Size
10 Primary Key
Table Name: CUSTOMER Column_Name: FIRSTNAME Type_Name: VARCHAR Column Size 30
Table Name: CUSTOMER Column_Name: LASTNAME Type_Name: VARCHAR Column Size 30
Table Name: CUSTOMER Column_Name: EMAIL Type_Name: VARCHAR Column Size 40
Table Name: CUSTOMER Column_Name: PHONE Type_Name: VARCHAR Column Size 15

public ResultSet getProcedures(String catalog, String schemaPattern,
String procedureNamePattern) throws SQLException Stored
procedures are functions that are sometimes built into a database and often defined
by a database developer or database admin. These functions can range from data
cleanup to complex queries. This method returns a result set that contains descriptive
information about the stored procedures for a catalog and schema. In the example
code, we will use null for the catalog name and schema pattern. The null indicates
that we do not wish to narrow the search (effectively, the same as using a catch-all
"%" search). Note that this example is returning the name of every stored procedure
in the database. A little later, we'll look at how to actually call a stored procedure.
try {
 Connection conn = ...
 DatabaseMetaData dbmd = conn.getMetaData();
 ResultSet rs =
 dbmd.getProcedures(null, null, "%"); // Get a ResultSet of all
 // the stored procedures
 // in any catalog (null)
 // in any schema (null)
 // with wildcard name (%)
 while(rs.next()) {
 out.println("Procedure Name: " + rs.getString("PROCEDURE_NAME"));
 }
} catch (SQLException se) { }

Note that the output from this code fragment is highly database dependent. Here
is sample output from the Derby (JavaDB) database that ships with the JDK:

Procedure Name: INSTALL_JAR
Procedure Name: REMOVE_JAR
Procedure Name: REPLACE_JAR
Procedure Name: SYSCS_BACKUP_DATABASE
Procedure Name: SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
Procedure Name: SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
Procedure Name: SYSCS_BACKUP_DATABASE_NOWAIT
Procedure Name: SYSCS_BULK_INSERT

15-ch15.indd 899 9/3/2014 6:04:09 PM

900 Chapter 15: JDBC

public String getDriverName() throws SQLException This method
simply returns the name of the JDBC driver as a string. This method would be useful
to log in the start of the application, as you'll see in the next section.

System.out.println("getDriverName: " + dbmd.getDriverName());

Obviously, the name of the driver depends on the JDBC driver you are using. Again,
with the Derby database and JDBC driver, the output from this method looks
something like this:

getDriverName: Apache Derby Network Client JDBC Driver

public String getDriverVersion() throws SQLException This method
returns the JDBC driver version number as a string. This information and the driver
name would be good to log in the start-up of an application.

Logger logger = Logger.getLogger("com.cert.DatabaseMetaDataTest");
Connection conn = ...
DatabaseMetaData dbmd = conn.getMetaData();
logger.log(Level.INFO, "Driver Version: {0}", dbmd.getDriverVersion());
logger.log(Level.INFO, "Driver Name: {0}", dbmd.getDriverName());

Statements written to the log are generally recorded in a log file, but depending
upon the IDE, they can also be written to the console. In NetBeans, for example, the
log statements look something like this in the console:

Sep 23, 2012 3:55:39 PM com.cert.DatabaseMetaDataTest main
INFO: Driver Version: 10.8.2.2 - (1181258)
Sep 23, 2012 3:55:39 PM com.cert.DatabaseMetaDataTest main
INFO: Driver Name: Apache Derby Network Client JDBC Driver

public boolean supportsANSI92EntryLevelSQL() throws
SQLException This method returns true if the database and JDBC driver
support ANSI SQL-92 entry-level grammar. Support for this level (at a minimum) is
a requirement for JDBC drivers (and therefore the database.)

Connection conn = ...
DatabaseMetaData dbmd = conn.getMetaData();
if (!dbmd.supportsANSI92EntryLevelSQL()) {
 logger.log(Level.WARNING, "JDBC Driver does not meet minimum
 requirements for SQL-92 support");
}

15-ch15.indd 900 9/3/2014 6:04:09 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 901

When Things Go Wrong—Exceptions and Warnings

Whenever you are working with a database using JDBC, there is a possibility that
something can go wrong. A JDBC connection is typically through a socket to a
database resource on the network. So already we have at least two possible points of
failure—the network can be down and/or the database can be down. And that
assumes that everything else you are doing with your database is correct, that all your
queries are perfect! Like other Java exceptions, SQLException is a way for your
application to determine what the problem is and take action if necessary.

Let's look at the type of data you get from a SQLException through its methods.

public String getMessage() This method is actually inherited from java.
lang.Exception, which SQLException extends from. But this method returns the
detailed reason why the exception was thrown. Note that this is not the same
message that is returned from the toString() method, i.e., the method called when
you put the exception object instance into a System.out.println method. Often,
the message content SQLState and error code provide specific information about
what went wrong.

public String getSQLState() The String returned by getSQLState provides
a specific code and related message. SQLState messages are defined by the X/Open
and SQL:2003 standards; however, it is up to the implementation to use these values.
You can determine which standard your JDBC driver uses (or if it does not) through
the DatabaseMetaData.getSQLStateType() method. Your implementation may
also define additional codes specific to the implementation, so in either case, it is a
good idea to consult your JDBC driver and database documentation. Because the
SQLState messages and codes tend to be specific to the driver and database, the
typical use of these in an application is limited to either logging messages or
debugging information.

public int getErrorCode() Error codes are not defined by a standard and are
thus implementation specific. They can be used to pass an actual error code or
severity level, depending upon the implementation.

public SQLException getNextException() One of the interesting aspects
of SQLException is that the exception thrown could be the result of more than one
issue. Fortunately, JDBC simply tacks each exception onto the next in a process
called chaining. Typically, the most severe exception is thrown last, so it is the first
exception in the chain.

15-ch15.indd 901 9/3/2014 6:04:09 PM

902 Chapter 15: JDBC

You can get a list of all of the exceptions in the chain using the
getNextException() method to iterate through the list. When the end of the
list is reached, getNextException() returns a null. In this example, the
SQLExceptions, SQLState, and vendor error codes are logged:

Logger logger = Logger.getLogger("com.example.MyClass");
try {
 // some JDBC code in a try block
 // ...
} catch (SQLException se) {
 while (se != null) {
 logger.log(Level.SEVERE, "------ SQLException ------");
 logger.log(Level.SEVERE, "SQLState: " + se.getSQLState());
 logger.log(Level.SEVERE, "Vendor Error code: " +
 se.getErrorCode());
 logger.log(Level.SEVERE,"Message: " + se.getMessage());
 se = se.getNextException();
 }
}

Warnings

Although SQLWarning is a subclass of SQLException, warnings are silently chained
to the JDBC object that reported them. This is probably one of the few times in Java
where an object that is part of an exception hierarchy is not thrown as an exception.
The reason is that a warning is not an exception per se. Warnings can be reported on
Connection, Statement, and ResultSet objects.

For example, suppose that we mistakenly set the result set type to TYPE_SCROLL_
SENSITIVE when creating a Statement object. This does not create an exception;
instead, the database will handle the situation by chaining a SQLWarning to the
Connection object and resetting the type to TYPE_FORWARD_ONLY (the default)
and continue on. Everything would be fine, of course, until we tried to position the
cursor, at which point a SQLException would be thrown. And, like SQLException,
you can retrieve warnings from the SQLWarning object using the getNextWarning()
method.
Connection conn =
 DriverManager.getConnection("jdbc:derby://localhost:1527/BookSellerDB",
 "bookguy", "$3lleR");
Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
String query = "SELECT * from Book WHERE Book.Format = 'Hardcover'";
ResultSet rs = stmt.executeQuery(query);
SQLWarning warn = conn.getWarnings(); // Get any SQLWarnings

15-ch15.indd 902 9/3/2014 6:04:09 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 903

while (warn != null) { // If there is a SQLWarning, print it
 out.println("SQLState: " + warn.getSQLState());
 out.println("Message: " + warn.getMessage());
 warn = warn.getNextWarning(); // Get the next warning
}

Connection objects will add warnings (if necessary) until the Connection is
closed, or until the clearWarnings() method is called on the Connection
instance. The clearWarnings() method sets the list of warnings to null until
another warning is reported for this Connection object.

Statements and ResultSets also generate SQLWarnings, and these objects have
their own clearWarnings() methods. Statement warnings are cleared
automatically when a statement is reexecuted, and ResultSet warnings are cleared
each time a new row is read from the result set.

The following sections summarize the methods associated with SQLWarnings.

SQLWarning getWarnings() throws SQLException This method gets
the first SQLWarning object or returns null if there are no warnings for this
Connection, Statement, or ResultSet object. A SQLException is thrown if the
method is called on a closed object.

void clearWarnings() throws SQLException This method clears and resets
the current set of warnings for this Connection, Statement, or ResultSet object.
A SQLException is thrown if the method is called on a closed object.

Properly Closing SQL Resources

In this chapter, we have looked at some very simple examples where we create a
Connection and Statement and a ResultSet all within a single try block, and
catch any SQLExceptions thrown. What we have not done so far is properly close
these resources. The reality is that it is probably less important for such small
examples, but for any code that uses a resource, like a socket, or a file, or a JDBC
database connection, closing the open resources is a good practice.

It is also important to know when a resource is closed automatically. Each of the
three major JDBC objects, Connection, Statement, and ResultSet, has a
close() method to explicitly close the resource associated with the object and
explicitly release the resource. We hope by now you also realize that the objects have
a relationship with each other, so if one object executes close(), it will have an
impact on the other objects. The following table should help explain this.

15-ch15.indd 903 9/3/2014 6:04:09 PM

904 Chapter 15: JDBC

Method Call Has the Following Action(s)

Connection.close() Releases the connection to the database.
Closes any Statement created from this Connection.

Statement.close() Releases this Statement resource.
Closes any open ResultSet associated with this
Statement.

ResultSet.close() Releases this ResultSet resource. Note that any
ResultSetMetaData objects created from the ResultSet
are still accessible.

Statement.executeXXXX() Any ResultSet associated with a previous Statement
execution is automatically closed.

It is also a good practice to minimize the number of times you close and re-create
Connection objects. As a rule, creating the connection to the database and passing
the username and password credentials for authentication is a relatively expensive
process, so performing the activity once for every SQL query would not result in
highly performing code. In fact, typically, database connections are created in a pool,
and connection instances are handed out to applications as needed, rather than
allowing or requiring individual applications to create them.

Statement objects are less expensive to create, and as we'll see in the next
section, there are ways to precompile SQL statements using a PreparedStatement,
which reduces the overhead associated with creating SQL query strings and sending
those strings to the database for execution.

ResultSets are the least expensive of the objects to create, and as we looked at
in the section on ResultSets, for results from a single table, you can use the
ResultSet to update, insert, and delete rows, so it can be very efficient to use a
ResultSet.

Let's look at one of our previous examples, where we used a Connection, a
Statement, and a ResultSet, and rewrite this code to close the resources properly.

Connection conn = null;
String url, user, pwd; // These are populated somewhere else
try {
 conn = DriverManager.getConnection(url, user, pwd);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM Customer");
 // ... process the results
 // ...
 if (rs != null && stmt != null) {
 rs.close(); // Attempt to close the ResultSet
 stmt.close(); // Attempt to close the Statement
 }
} catch (SQLException se) {

15-ch15.indd 904 9/3/2014 6:04:09 PM

Submit Queries and Read Results from the Database (OCP Objective 9.3) 905

 out.println("SQLException: " + se);
} finally {
 try {
 if (conn != null) {
 conn.close(); // Close the Connection
 }
 } catch (SQLException sec) {
 out.println("Exception closing connection!");
 }
}

Notice all the work we have to go through to close the Connection—we first
need to make sure we actually got an object and not a null, and then we need to try
the close() method inside of another try inside of the finally block!
Fortunately, there is an easier way….

Using try-with-resources to Close Connections,
Statements, and ResultSets

As you'll recall from Chapter 7, one of the most useful changes in Java SE 7 (JDK 7)
was a number of small modifications to the language, including a new try statement
to support the automatic resource management. This language change is called
try-with-resources, and its longer name belies how much simpler it makes writing
code with resources that should be closed. The try-with-resources statement will
automatically call the close() method on any resource declared in the parentheses
at the end of the try block.

There is a caveat: A resource declared in the try-with-resource statement must
implement the AutoCloseable interface. One of the changes for JDBC in Java SE 7
(JDBC 4.1) was the modification of the API so that Connection, Statement, and
ResultSet all implement the AutoCloseable interface and support automatic
resource management. So we can rewrite our previous code example using try-with-
resources:

String url, user, pwd; // These are populated somewhere else
try (Connection conn = DriverManager.getConnection(url, user, pwd)){
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM Customer");
 // ... process the results
 // ...
 if (rs != null && stmt != null) {
 rs.close(); // Attempt to close the ResultSet
 stmt.close(); // Attempt to close the Statement
 }
} catch (SQLException se) {
 out.println("SQLException: " + se);
}

15-ch15.indd 905 9/3/2014 6:04:09 PM

906 Chapter 15: JDBC

Notice that we must include the object type in the declaration inside of the
parentheses. The following will throw a compilation error:

try (conn = DriverManager.getConnection(url, user, pwd);) {

The try-with-resources can also be used with multiple resources, so you could
include the Statement declaration in the try as well:

try (Connection conn = DriverManager.getConnection(url, user, pwd);
 Statement stmt = conn.createStatement()) {

Note that when more than one resource is declared in the try-with-resources
statement, the resources are closed in the reverse order of their declaration—so
stmt.close() will be called first, followed by conn.close().

It probably makes sense that if there is an exception thrown from the try block,
the exception will be caught by the catch statement, but what happens to
exceptions thrown as a result of closing the resources in the try-with-resources
statement? Any exceptions thrown as a result of closing resources at the end of the
try block are suppressed if there was also an exception thrown in the try block.
These exceptions can be retrieved from the exception thrown by calling the
getSuppressed() method on the exception thrown.

For example:

} catch (SQLException se) {
 out.println("SQLException: " + se);
 Throwable[] suppressed = se.getSuppressed(); // Get an array of
 // suppressed
 // exceptions
 for (Throwable t: suppressed) { // Iterate through the array
 out.println("Suppressed exception: " + t);
 }
}

CERTIFICATION OBJECTIVE

Use PreparedStatement and
CallableStatement Objects (OCP Objective 9.6)

9.5 Create and use PreparedStatement and CallableStatement objects.

So far, we used Statement object instances to pass queries as strings directly to
the JDBC driver and then to the database. But as we mentioned earlier, the JDBC

15-ch15.indd 906 9/3/2014 6:04:10 PM

Use PreparedStatement and CallableStatement Objects (OCP Objective 9.6) 907

API provides two additional interfaces that JDBC driver vendors implement. These
are PreparedStatement and CallableStatement. These interfaces extend the
Statement interface and add functionality.

A PreparedStatement can improve the performance of a frequently executed
query because the SQL part of the statement is precompiled in the database. In order
to understand what precompiled means, we need to explain SQL execution at a high
level. When a SQL string is sent to a database, the string goes through a number of
processing steps. First, the string is parsed and all of the SQL keywords are checked
for proper syntax. Next, the table and column names are checked against the schema
to make sure they all exist (and are properly spelled). Next, the database creates an
execution plan for the query, choosing between several options for the best overall
performance. Finally, the chosen execution plan is run.

The steps leading up to the execution of a query plan can be done in advance using
a PreparedStatement object. Parameters can be passed to a PreparedStatement,
and these are inserted into the query just before execution. This is why
PreparedStatement is a good choice for a frequently executed SQL statement.

Databases also provide the capability for developers to write small programs
directly to the database. Each program is named, compiled, and stored in the
database itself. These named programs are generally developed and added to the
database when the tables are created. There are three types of these small programs:
procedures, functions, and triggers. Because triggers are only invoked by the database
itself and are not accessible by SQL queries or directly from an external application,
we will not cover triggers. We will focus on stored procedures and functions.

The advantage of stored procedures and functions is that they are completely
self-contained. You can think of a stored procedure as a method for a database. You
call the stored procedure using its name and pass it arguments. The stored procedure
may or may not return results, as you will see in the section on
CallableStatements.

The CallableStatement is used to execute a named stored procedure or function.
Unlike prepared statements, stored procedures and functions must exist before a
CallableStatement can be executed on them. Like PreparedStatements,
parameters can be passed to stored procedures and functions.

15-ch15.indd 907 9/3/2014 6:04:10 PM

908 Chapter 15: JDBC

PreparedStatement

Because PreparedStatements are precompiled, they excel at reducing overall
execution time for frequently executed SQL queries. For example, an online retailer
like Bob's Books may make frequent changes to price and quantity of the inventory
based on seasonal demand and stock on hand. When the number of update
operations with the database is in the thousands per day, the savings that a
precompiled SQL statement affords is significant.

PreparedStatement objects are obtained from a Connection object in the same
way that Statement objects are obtained, but through the prepareStatement()
method instead of a createStatement() method. There are several forms of the
prepareStatement method, including those that take the result set type and result
set concurrency, just like Statement, so a ResultSet returned from a
PreparedStatement can be scrollable and updatable as well.

One difference between the Statement and PreparedStatement is the
execution sequence. Recall that for a Statement object, we created a Statement
and then passed a String query to it to obtain a result, perform and update, or
perform a general-purpose query. In order to construct a dynamic query using
Statement, we had to carefully concatenate Strings to create the SQL query. Any
parameters were added to the query before the String was passed as an argument to
Statement's execute method.

To create a PreparedStatement object instance, you pass a String query to the
prepareStatement() method. The string passed as an argument is a parameterized
query. A parameterized query looks like a standard SQL query, except the query takes
an argument—for example, in the WHERE clause, we simply add a placeholder
character, a question mark (?), as a parameter that will be filled in before we execute
the query. Thus, the PreparedStatement object instance is constructed before the
final query is executed, allowing you to modify the parameters of the query without
having to construct a new Statement object every time.

Parameters passed into the query are referred to as IN parameters. In this example,
we create a parameterized query to return the price of all books that have a title,
such as the string we will pass into the query as a parameter:

try (Connection conn = DriverManager.getConnection(url, user, pwd)){
 String pQuery = "SELECT UnitPrice from Book WHERE Title LIKE ?";
 PreparedStatement pstmt = conn.prepareStatement(pQuery);
 pstmt.setString(1, "%Heroes%"); // Substitute this String for the
 // first parameter (?)
 ResultSet rs = pstmt.executeQuery();
 // ... process rows
} catch (SQLException se) {}

15-ch15.indd 908 9/3/2014 6:04:10 PM

Create and Use PreparedStatement and CallableStatement Objects (OCP Objective 9.6) 909

Let's take this apart. First, we created the PreparedStatement with a string that
contained a parameter, indicated by the question mark in the string. The question
mark represents a parameter that this query is expecting. Attempting to execute a
query without setting a parameter will result in a SQLException.

The Java type of the parameter, String, int, float, etc., is entirely up to you.
For this query, the type of the parameter expected is a String, so the
PreparedStatement method used to insert a string value into the query is the
setString() method. Note that we did not have to construct the String with
single quotes, as you would typically have to do for a String query passed to a
Statement:

SELECT UnitPrice FROM Book WHERE Title LIKE '%Heroes%'

This is an additional benefit of a PreparedStatement. Since the type expected
by the setString() method is a String, the method replaces non-string characters
by "escaping" them. Characters like ' (single quote) are converted to \' (slash-
single quote) in the string. Strings that could be executed as commands in SQL are
converted to a single SQL string.

The setString() method takes two parameters: the index of the placeholder
and the type expected by the set method. Just like the updateXXXX methods we
looked at in ResultSet earlier, PreparedStatement has a setXXXX method for
each of the Java types JDBC supports.

Again, as we mentioned earlier, the power of a PreparedStatement is that once
the object is created with the parameterized query, the query is precompiled. When
bind parameters are passed in the query, the query is stored in its post-plan state in
the database. When parameters are received, the database simply has to substitute
them into the plan and execute the query.

Where this makes the most sense is with a set of queries that is likely to be
executed many times over the life of an application. For example, here is a
PreparedStatement query used to add a record to the Purchase_Item table by
adding another book to an existing customer's order:

INSERT INTO Purchase_Item (CustomerID, ISBN, Quantity) VALUES (?, ?, ?)

Queries like this one would be created by the application developer and used to
create PreparedStatements available for execution at any point in the application
lifecycle.

15-ch15.indd 909 9/3/2014 6:04:10 PM

910 Chapter 15: JDBC

CallableStatement

The CallableStatement extends the PreparedStatement interface to support
calling a stored procedure or function using JDBC. By the way, the only difference
between a stored procedure and a function is that a function is designed to return an
argument. So for the rest of this chapter, we will refer to stored procedures and
functions collectively as stored procedures.

Stored procedures offer a number of advantages over straight SQL queries. Most
stored procedure languages are fairly sophisticated and support variables, branching,
looping, and if-then-else constructs. A stored procedure can execute any SQL
statement, so a single stored procedure can perform a number of operations in a
single execution.

One use case for a stored procedure is to encapsulate specific tables in the
database. Just like a Java class can encapsulate data by making a field private and
then only providing access to the field through a method, a stored procedure can be
used to prevent a user from having access to the data in a table directly. For example,
imagine that an employee database contains very sensitive information, such as
salary, Social Security numbers, and birth dates. To protect this information, a stored
procedure can perform several checks on the user executing the stored procedure
before making any changes or allowing access to the data.

There are two drawbacks to stored procedures. First, stored procedures are
typically developed in a proprietary, database-specific language, requiring a
developer to learn yet another set of commands and syntax. Second, once in the
database, how they were written and what they actually do can be difficult to figure
out since they are "compiled" into the database. And we all know how much
developers like to create detailed documentation for their code!

Recently, more and more database vendors have moved to allowing Java to run in
the database, making it easier to write stored procedures, although this doesn't
address the documentation issue. The bottom line from a performance standpoint
is that stored procedures rule (just not so much from a maintainability
standpoint). Regardless, how to write a stored procedure is really beyond the scope
of this chapter, but some resources are available on the Internet—just do a search for
"java stored procedures."

Because stored procedures can be a proprietary language with a unique syntax, the
JDBC API provides JDBC-specific escape syntax for executing stored procedures and
functions. The JDBC driver takes care of converting the JDBC syntax to the
database format. This syntax has two forms: one form for functions that return a
result, and another form for stored procedures that do not return a result.

15-ch15.indd 910 9/3/2014 6:04:10 PM

Create and Use PreparedStatement and CallableStatement Objects (OCP Objective 9.6) 911

{? = call <procedure-name>[(<arg1>,<arg2>, ...)]} // Return a result
{call <procedure-name>[(<arg1>,<arg2>, ...)]} // No result

Like PreparedStatements, CallableStatements can pass arguments in to the
stored procedure using an IN parameter. However, as shown in the first form earlier,
functions return a value, as shown by the question mark to the left of the equals sign.
The result of a function is returned to the caller as a parameter registered as an OUT
parameter. Finally, stored procedures also support a third type of parameter that can
be used to pass values into a stored procedure and return a result. These are called
INOUT parameters. We will look at examples using these three types of parameters
next.

CallableStatement objects are created using a Connection object instance
and the prepareCall() method. Like PreparedStatement, the prepareCall()
method takes a String as the first argument that describes the stored procedure call
and uses one of the two forms shown earlier. Let's look at an example. A stored
procedure named "getBooksInRange" takes three arguments: a customer ID and two
dates that represent the range to search between. The stored procedure returns all of
the books purchased by a customer (the customer ID is used to identify the
customer) between the two dates as a ResultSet.

Each of the parameters is an IN parameter and is inserted into the
CallableStatement cstmt object using the appropriate setXXXX method before
executing the stored procedure and returning the ResultSet:

// We have a Connection object and are in a try block
int customerID = 5001;
java.sql.Date fromDate = ...; // The start date for the search
java.sql.Date toDate = ...; // The end date for the search
String getBooksInDateRange = "{call getBooksDateRange(?, ?, ?)}";
CallableStatement cstmt =
 conn.prepareCall(getBooksInDateRange,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
cstmt.setInt(1, customerID); // IN parameter 1 for customerID
cstmt.setDate(2, fromDate); // IN parameter 2 for fromDate
cstmt.setDate(3, toDate); // IN parameter 3 for toDate
ResultSet rs = cstmt.executeQuery();

Note that the executeQuery() command does not take a string (just like the
PreparedStatement executeQuery() method). If you attempt to call
executeQuery() on a CallableStatement with a String argument, a
SQLException is thrown at runtime.

When a callable statement takes an OUT parameter, the parameter must also be
registered as such before the call. For example, suppose we had a simple stored

15-ch15.indd 911 9/3/2014 6:04:10 PM

912 Chapter 15: JDBC

procedure that calculates the total of all orders placed by a customer. In this
example, the stored procedure will return the result of the calculation as a SQL
DOUBLE:

// We have a Connection object and are in a try block
int customerID = 5001;
double customerTotal;
CallableStatement cstmt =
 conn.prepareCall("{? = call customerTotal (?)}");
cstmt.registerOutParameter(1, java.sql.Types.DOUBLE); // register
 // the OUT
 // parameter
cstmt.setInt(2, customerID);
cstmt.execute(); // Note we are not returning a ResultSet,
 // so execute is the appropriate method
customerTotal = cstmt.getDouble(1);

A stored procedure that takes a parameter that doubles as an INOUT parameter
is passed the IN parameter first and then registered as an OUT parameter—for
example, an imaginary stored procedure that takes the customer ID and simply
counts the orders and returns them in the same parameter.

// We have a Connection object and are in a try block
int customerID = 5001;
int numberOfOrders;
CallableStatement cstmt =
 conn.prepareCall("{call customerOrderCount (?)}"); // INOUT
cstmt.setInt(1, customerID); // set the IN part of the parameter
cstmt.registerOutParameter(1, java.sql.Types.INTEGER); // the OUT
 // part
cstmt.execute();
numberOfOrders = cstmt.getInt(1);

Because stored procedures are code that you, as a JDBC developer, may not have
insight or control over, you may or may not know if a stored procedure returns a
ResultSet. In fact, invoking executeQuery() on a stored procedure that does not
return a ResultSet object will throw a SQLException. So if you are not sure, a
good practice is to use the execute() method instead and test for a ResultSet
after executing a stored procedure by using the method getMoreResults(); for
example:

cstmt.execute(); // we executed some stored procedure
if (cstmt.getMoreResults()) { // returns true if the next result is
 // a ResultSet
 // ... process the ResultSet
}

15-ch15.indd 912 9/3/2014 6:04:10 PM

Construct and Use RowSet Objects (OCP Objective 9.5) 913

CERTIFICATION OBJECTIVE

Construct and Use RowSet Objects
(OCP Objective 9.5)

9.5 Construct and use RowSet objects using the RowSetProvider class and the
RowSetFactory interface.

One of the changes for Java SE 7 was a minor update to JDBC. The version
number of the API went from 4.0 to 4.1, and there were changes to the javax.sql
.rowset package, including the addition of an interface, RowSetFactory, and a
class, RowSetProvider. This interface and this class provide a convenient way for a
developer to either use the default reference implementation of RowSet objects, or
use a custom implementation using a factory pattern. These changes are referred to
as RowSet 1.1.

What this means to you is two things: First, RowSetFactory and RowSetProvider
are on the exam, and second, as a consequence, there is some coverage of RowSet
interfaces on the exam as well. So this section will look at how to use RowSet interfaces.

First, know that a RowSet is a ResultSet. The RowSet interface extends the
ResultSet interface. RowSet objects fall into two categories: those that are connected
to the database and therefore stay in sync with the data in the database, and those
that can be disconnected from a database and synchronized with the database later.

A connected RowSet provides you with the opportunity to keep state synchronized
with data in a database table—so you might use a connected RowSet object to keep
a shopping cart or other type of cache without needing to translate changes in your
cart object into SQL update or insert queries. A disconnected RowSet is created
with some initial state read from the database and can then be disconnected and
passed to other objects and later synchronized with the database with changes.

Note there is no magic associated with data synchronization—a RowSet is a
ResultSet, and therefore has the ability to update, remove, and insert new rows in
the database. The difference between a ResultSet and RowSet is that a RowSet can
maintain state so that when the underlying ResultSet object is changed, the data
changes are reflected in the database—either synchronously, in the case of a
connected RowSet, or asynchronously, in the case of a disconnected RowSet.

You might use a disconnected RowSet to pass an object containing a result set to
a completely different application. For example, imagine that you have an application
that builds a customer profile for an insurance policy using a workflow application.

15-ch15.indd 913 9/3/2014 6:04:10 PM

914 Chapter 15: JDBC

The initial data read may contain information about the customer: name, address,
phone, and e-mail. This record is then passed as an object to another part of an
application that fills in medical information: blood pressure, cholesterol, and blood
sugar. When the disconnected RowSet object finally returns, it is synchronized with
the database and any new and changed data is automatically written to the database
without having to construct another SQL query.

Prior to RowSet 1.1, to create an instance of a RowSet object, you needed to
know the full path name to the reference implementation class. So, to create an
instance of a JdbcRowSet with the Sun reference implementation, you would need
to include the full name of the implementation class (or make sure you imported the
class) and include the implementation API in your classpath. For example:

JdbcRowSet jrs = new com.sun.rowset.JdbcRowSetImpl();

Now, in Java SE 7, the RowSetProvider class, which is part of the core API,
manages access to the reference implementation and returns a factory object
(RowSetFactory) that can be used to generate instances of RowSet objects.
Hopefully, this sounds very familiar to you—this factory pattern is similar to the one
used to create Connection objects. The RowSetProvider class will return a
reference to a RowSetFactory, which in turn can be used to create instances of
RowSet objects. For example:

RowSetFactory rsf = RowSetProvider.newFactory(); // The no-arg
 // newFactory() method returns an instance of a factory that
 // will create RowSet objects from the reference implementation
JdbcRowSet jrs = rsf.createJdbcRowSet();

While this additional code may seem unnecessary, it allows you, the developer, to
work with a well-defined factory interface in the API rather than a specialized
implementation object. As a result, the implementation could be swapped out, and
you would need only change one line of code:

RowSetFactory rsf =
 RowSetProvider.newFactory("com.example.MyRowSetProvider", null);
JdbcRowSet jrs = rsf.createJdbcRowSet();

Working with RowSets

The javax.sql package (and several subpackages) were introduced in Java SE 1.4
as an important part of supporting J2EE (Java EE 1.4). Although the bulk of the
work for 1.4 was the introduction of DataSource as an alternative to

15-ch15.indd 914 9/3/2014 6:04:10 PM

Construct and Use RowSet Objects (OCP Objective 9.5) 915

DriverManager, Connection and Statement pooling in a J2EE container, and
distributed transactions, what we are interested in in this section is RowSet.

The RowSet interface was developed to wrap a ResultSet as a JavaBeans
component; in fact, the RowSet interface extends java.sql.ResultSet. So you
may think of RowSet as a JavaBeans version of ResultSet. JavaBeans components
have two important characteristics. One, they have a well-defined pattern for
accessing fields in a class through getters and setters (properties), and two, they
support and can participate in the JavaBeans event notification system.

Properties in a JavaBeans component are represented by a pair of methods, one to
get the value of the property and one to set the value of the property. We often think
of a property as a getter/setter pair for a class instance field, but the value of the
property can also be computed. What is important about the getter/setter methods is
consistency, because a requirement for a JavaBeans component is support for
introspection. So, given these methods from the RowSet interface, we can infer that
there is a String URL property associated with this component:

■ public String getUrl() throws SQLException

■ public void setUrl(String url) throws SQLException

The JavaBeans notification system allows RowSets to register themselves as
listeners for events. A RowSet registers for an event by adding an instance of a class
that implements the RowSetListener interface, which has three event methods
that are invoked when one of the following events occurs on an instance of a
RowSet object:

■ A change in the cursor location

■ A change to a row in this RowSet (inserted, updated, or deleted)

■ A change to the RowSet contents (a new RowSet)

As we mentioned earlier, RowSet objects come in two flavors: connected and
disconnected. A connected RowSet maintains its connection to the underlying
database. A disconnected RowSet can be connected to a database to get its initial
information and then disconnected. While disconnected, changes can be made to
the RowSet: Rows can be added, updated, or deleted and when reconnected to the
database, the changes will be synchronized. Let's look at each of these RowSet types.

15-ch15.indd 915 9/3/2014 6:04:10 PM

916 Chapter 15: JDBC

Connected RowSets: JdbcRowSet

The JdbcRowSet interface extends RowSet and provides a connected JavaBeans-styled
ResultSet object. A JdbcRowSet instance is created from the RowSetFactory and
then populated with a ResultSet returned from executing a SQL query. JdbcRowSet
is a fairly thin wrapper around RowSet, so many of the methods shown in the examples
are actually RowSet methods. Let's start by creating a JdbdRowSet object:

String url = "jdbc:derby://localhost:1527/BookSellerDB";
String user = "bookguy";
String pwd = "$3lleR";
 // Construct a JdbcRowSet object in a try-with-resources statement
try (JdbcRowSet jrs = RowSetProvider.newFactory().createJdbcRowSet()) {
 String query = "SELECT * FROM Author";
 jrs.setCommand(query); // Set the query to build the RowSet
 jrs.setUrl(url); // JDBC URL
 jrs.setUsername(user); // JDBC username
 jrs.setPassword(pwd); // JDBC password
 jrs.execute(); // Execute the query stored in setCommand
 while (jrs.next()) { // Get the next row
 // ... process the rows ...
 }
} catch (SQLException) {
}

Notice that we used the JdbcRowSet object to perform all of the tasks we did
previously with a Connection, Statement, and ResultSet. Once we obtained the
object from the factory, we simply set the values of the connection (URL, username,
and password) and then execute the query statement. The JdbcRowSet object takes
care of creating the connection, creating a statement, and executing the query. One
of the nice features of a JdbcRowSet is that a number of characteristics are set by
default. The default values and the setter methods are listed in the following table:

Property Method Default Value

setType(int type) ResultSet.TYPE_SCROLL_INSENSITIVE

setConcurrency(int concurrency) ResultSet.CONCUR_UPDATABLE

setEscapeProcessing(boolean enable) true (escape processing is performed by the driver)
setMaxRows(int max) 0 (no limit on the number of rows in this RowSet)
setMaxFieldSize(int max) 0 (no limit on the number of bytes for a column value of

BINARY, VARBINARY, LONGVARBINARY, CHAR,
VARCHAR, LONGVARCHAR, NCHAR, and NVARCHAR
columns

setQueryTimeout(int seconds) 0 (no time limit)
setTransactionIsolation(int level) Connection.TRANSACTION_READ_COMMITTED (this is in the

section on transactions)

15-ch15.indd 916 9/3/2014 6:04:10 PM

 Construct and Use RowSet Objects (OCP Objective 9.5) 917

Once the execute statement completes, we have a connected JdbcRowSet. From
there, the rest of the code should look familiar. We used next() to get to the next
row in the result set and then printed the results to the console.

An important difference between how RowSet objects work and ResultSet
objects work is evident in the execute() method. The execute() method is really
the equivalent of executeQuery() and is intended to populate the JdbcRowSet
object with data. There are no executeQuery() or executeUpdate() methods,
and attempting to use the execute() method to perform an UPDATE, INSERT, or
DELETE query will result in a SQLException. Instead, to perform an update, you
simply need to update the data in your JdbcRowSet object. For example, assuming
that we have populated the JdbcRowSet object jrs with all of the Author data,
here we will change the first name of the last author in the set:
jrs.last(); // Position to the last row of Authors
jrs.updateString("FirstName", "Raquel"); // Update the first name
jrs.updateRow(); // Apply the change (write to the
 // database)

To delete a row, we move the cursor to the desired row and delete it. Here, for
example, we will delete the fifth row of the current RowSet:

jrs.absolute(5);
jrs.deleteRow();

To insert a new row into the JdbcRowSet, the methods are similar to those in
ResultSet. In this example, we will add a new author to the JdbcRowSet:

jrs.moveToInsertRow();
jrs.updateInt("AuthorID", 1032);
jrs.updateString("FirstName", "Michael");
jrs.updateString("LastName", "Crichton");
jrs.insertRow();
jrs.moveToCurrentRow();

Note that like ResultSet, updating, deleting, and inserting affect the underlying
database, but have varying effects on the current RowSet. Deleting a row from a
RowSet leaves a gap in the current RowSet data, and inserting a row has no effect on
the current RowSet data. The way to keep the data in the JdbcRowSet current is to

Note that the property setter methods and their default values are

provided here for completeness. This level of detail is not on the exam.

15-ch15.indd 917 9/3/2014 6:04:10 PM

918 Chapter 15: JDBC

re-execute the original query that populated the RowSet. You could simply add the
execute command after every update, delete, or insert, like this:

jrs.execute();

But a more elegant way is to use the event model that JdbcRowSet implements.
RowSet has a method to register a RowSetListener object:

public void addRowSetListener(RowSetListener listener)

The RowSetListener interface has three methods that are invoked by the
implementation, depending upon the event:

■ public void cursorMoved(RowSetEvent event) Receives an event for
every movement of the cursor. This method is called a lot, for example, once
for every invocation of next(), so be judicious of its use.

■ public void rowChanged(RowSetEvent event) Receives an event
when a row is updated, inserted, or deleted. This is a good method to use to
refresh the RowSet.

■ public void rowSetChanged(RowSetEvent event) Receives an event
when the entire RowSet is changed, so for every invocation of execute().

Each of the methods listed here is passed a RowSetEvent object, which is simply a
wrapper around the RowSet object that created the event. To create a listener that
will automatically update our JdbcRowSet each time we delete, update, or insert a
row, we need to create a class that implements RowSetListener and implement a
rowChanged() method to refresh our RowSet:

public class MyRowSetListener implements RowSetListener {
 @Override
 public void rowChanged(RowSetEvent event) { // A row changed:
 // updated, inserted
 // or deleted.
 if (event.getSource() instanceof RowSet) {
 try {
 ((RowSet) event.getSource()).execute(); // Re-execute the
 // query, refreshing
 // the results
 } catch (SQLException se) {
 out.println("SQLException during execute");
 }
 }
 }

 @Override
 public void cursorMoved(RowSetEvent event) { // Cursor moved
 }

15-ch15.indd 918 9/3/2014 6:04:10 PM

Construct and Use RowSet Objects (OCP Objective 9.5) 919

 @Override
 public void rowSetChanged(RowSetEvent event) { // Entire RowSet
 // changed
 }
}

Now we simply need to register this listener with our JdbcRowSet:

jrs.addRowSetListener(new MyRowSetListener());

Now, whenever a row is updated, deleted, or inserted, the rowChanged() method in
MyRowSetListener will be invoked and execute the current query set in the
RowSet object to refresh the data in the RowSet.

Disconnected RowSets: CachedRowSet

There are several disconnected RowSets: WebRowSet, FilteredRowSet, and
JoinRowSet. These RowSets are descendants of CachedRowSet, with some
additional specialization in each. So once you understand CachedRowSet, we can
describe the other interfaces in a few sentences. Working through each of the
RowSets is really beyond the scope of this chapter, and is not covered on the exam.

A disconnected RowSet operates without requiring a connection to a database.
Of course, in order to start with data, a disconnected RowSet typically does make a
connection and gets a ResultSet, but immediately after, it is disconnected and can
operate even if the database is offline. This is really the definition of a cache, after
all—it is data held in memory and only synchronized with its data source when
required.

To create a CachedRowSet, you create one from the RowSetFactory:

CachedRowSet crs = RowSetProvider.newFactory().createCachedRowSet();

To initially load a CachedResultSet, you follow the same sequence as a
JdbcRowSet: by setting the JDBC URL, username, password, and an execute query
to populate the initial results:

String query = "SELECT * FROM Author";
crs.setCommand(query); // Set the query to build the RowSet
crs.setUrl(url); // JDBC URL
crs.setUsername(user); // JDBC username
crs.setPassword(pwd); // JDBC password
crs.execute(); // Populate the CachedRowSet with data

Once you have made some changes (updated, inserted, or deleted) and are ready to
push those changes to the database, you need to call the acceptChanges() method:

crs.acceptChanges();

15-ch15.indd 919 9/3/2014 6:04:10 PM

920 Chapter 15: JDBC

The difference between a connected RowSet, JdbcRowSet, and a disconnected
RowSet is what happens behind the scenes for the execute() and acceptChanges()
methods. CachedRowSet relies on another class, SyncProvider, to perform the
synchronization with the underlying database. SyncProvider is implemented for you
in the reference implementation. SyncProvider has two additional interfaces to
perform reading (RowSetReader) and to perform writing (RowSetWriter). The
implementation of these classes performs the following functions:

■ RowSetReader Makes a connection to the database, executes the query set
in the RowSet, populates the CachedRowSet object with the data, and closes
the connection.

■ RowSetWriter Makes a connection, updates the database with the changes
made to the CachedRowSet object, and closes the connection.

If there are conflicts between the changes made to the disconnected RowSet object
and the database (i.e., someone else altered the database while the CachedRowSet was
disconnected), then SyncProvider will throw a SyncProviderException. You can
use the exception thrown to get an instance of a class called SyncResolver to manage
the conflicts. As your head is surely spinning by now, don't worry—this is not on the
exam and really beyond the scope of what this chapter is meant to cover.

Just to wrap up our discussion on the remaining RowSet objects, here is a summary
of the RowSet objects in RowSet 1.1 and some benefits and features of each.

RowSet Object Description

JbdcRowSet A connected RowSet; acts as JavaBeans component by providing a thin wrapper around
a ResultSet; useful for applications that benefit from the event model supported by
JdbcRowSet.

CachedRowSet A disconnected RowSet; provides an offline representation of a RowSet; useful for
applications where the data needs to be available when the database is not (for example,
in a portable device).

WebRowSet A CachedRowSet that can write itself as an XML file and read an XML file to re-create a
WebRowSet. Useful in applications where XML data is a requirement.

FilteredRowSet A WebRowSet that provides the additional capability of filtering its contents.
FilteredRowSets can use a Predicate object to control what data is returned.

JoinRowSet A WebRowSet that can combine related data from multiple RowSets into a single
JoinRowSet. A useful alternative to the use of a SQL JOIN statement.

15-ch15.indd 920 9/3/2014 6:04:10 PM

JDBC Transactions (OCP Objective 9.4) 921

CERTIFICATION OBJECTIVE

JDBC Transactions (OCP Objective 9.4)

9.4 Use JDBC transactions (including disabling auto-commit mode, committing and
rolling back transactions, and setting and rolling back to savepoints).

Transactions are a part of our everyday life. The classic transaction example
involves two parties attempting to alter the same piece of data at the same time. For
example, using the Figure 15-9, imagine we have two hopeful concert-goers, both
interested in seats at the nearly sold-out Coldplay concert. Person A, on the top
computer, wants five seats, all together, as close to center stage as possible. So in step
1 in the figure, the system returns information that it read from the concert-seating
database, that yes, there are five seats together in row 12!

Person B on another computer (which looks suspiciously like Person A's computer)
is interested in three seats together, close to center stage. Again, in step 2, the
database returns information that indicates that yes, there are three seats in row 12.
So we arrive at the critical point—who will get the tickets?

Person B enters her credit card information and presses the buy button to purchase
three tickets. The system begins a transaction to purchase the three seats. The system
checks the credit card, gets a preliminary okay for the charge, updates the records
of three seats to mark them unavailable, and charges the credit card. Finally, the
transaction is committed and the system returns a confirmation message to Person B.

1

2

4

3

 FIGURE 15-9

A transaction
problem

15-ch15.indd 921 9/3/2014 6:04:10 PM

922 Chapter 15: JDBC

Meanwhile, Person A has finished entering his credit card information and
started a transaction for the five seats. The system begins a transaction to purchase
five seats. The system checks the credit card, gets a preliminary okay for the charge,
and attempts to update the records of the five seats, but now three of the five seats
are already marked taken. (By the way, as you will see a little later, this is called a
dirty read.) At this point, the system must roll back the entire transaction, issue a
credit request to the credit card, and return an error message to Person A.

This is the way transactions are supposed to work. What we would not want (or
expect) to happen is that the system goes ahead and charges Person A for the five
seats anyway, or conversely, for Person B to get the three seats even if her card was
rejected. A transaction for the tickets is all or nothing—the desired seats have to be
available, and the credit card must be valid and capable of being charged the amount
of the tickets. This is the criteria for a successful transaction: all of them have to
happen together, or none of them happens. And if any part of the transaction should
fail—a bad credit card number or not enough seats—then everything must go back
to the way it was before the transaction began. As it is, Person A may not be going
to see Coldplay, but he is also not being charged for the tickets.

Fundamentally, in the world of transactions, it comes down to making sure that
everything we wanted to happen in a transaction does, and that if there is a problem,
everything goes back to the way it was before the transaction started.

JDBC Transaction Concepts

JDBC support for transactions is a requirement for compliance with the
specification. JDBC support for transactions includes three concepts:

■ All transactions are in auto-commit mode unless explicitly disabled.

■ Transactions have varying levels of isolation—that is, what data is visible to
the code executing in a transaction.

■ JDBC supports the idea of a savepoint. A savepoint is a point within a
transaction where the work that occurred up until that point is valid. A
savepoint is useful when there are conditions in a transaction that you wish
to preserve even if other parts of the transaction fail.

Let's look at these three concepts in more detail in the next few sections.

Starting a Transaction Context in JDBC

Transactions are typically started with some type of begin statement. However, the
JDBC API does not provide a begin() method for transactions, and by default, the

15-ch15.indd 922 9/3/2014 6:04:10 PM

JDBC Transactions (OCP Objective 9.4) 923

JDBC driver or the database determines when to start a transaction and when to
commit an existing transaction. When a SQL statement requires a transaction, the
JDBC driver or database creates a transaction and commits the transaction when the
statement ends. In order for you to control transactions with JDBC, you must first
turn off this auto-commit mode:

Connection conn = DriverManager.getConnection(url, username, password);
conn.setAutoCommit(false); // The JDBC equivalent of
 // begin transaction

Note the comment in the code—when you turn off auto-commit mode, you also
explicitly begin a transaction.

A transaction includes all of the SQL queries you execute until either

■ You explicitly commit the current transaction.

■ You explicitly roll back the current transaction.

■ There is a failure that forces an automatic rollback.

As an example, we are going to add a book to Bob's Bookstore. A book has a
three-part relationship in our schema: There is an entry in the Authors table for the
author's name (first and last), and an entry in the Books table for the book, and a
relationship between the two in the Books_by_Author table. If one of these three
tables is not updated, we would end up with a phantom author or book. So when we
add a book to Bob's Bookstore, we need all three tables to be populated in a single
transaction (all of the insert statements happen as a unit):

Connection conn = DriverManager.getConnection(url, username,
 password);
conn.setAutoCommit(false); // Start a transaction
Statement stmt = conn.createStatement();
stmt.execute("INSERT INTO Author VALUES(1031, 'Rachel', 'McGinn')");
stmt.execute("INSERT INTO Book VALUES('0554466789',
 'My American Dolls', '2012-08-31','Paperback', 7.95)");
stmt.execute(("INSERT INTO Books_by_Author
 VALUES(1031,'0554466789')");
conn.commit(); // Commit the current transaction and
 // start another

This is a perfect opportunity to use a set of prepared statements or, better

yet, a stored procedure, since this is likely something that would happen a

lot in a bookstore! As an application developer, if you find yourself cutting

and pasting code, even if you are modifying it, think about being a DRY

programmer. Andy Hunt and Dave Thomas formulated this principle in

15-ch15.indd 923 9/3/2014 6:04:10 PM

924 Chapter 15: JDBC

their book The Pragmatic Programmer (Addison-Wesley Professional, 1999).

DRY stands for Don't Repeat Yourself. What? I said, don't… ah, you got

me—very funny. Fundamentally, the DRY principle is about looking for

every opportunity to apply code reuse by creating other methods or classes

instead of copying and pasting. (As a counterpoint, programmers who cut and

paste are sometimes called WET programmers: "Write Everything Twice," or

perhaps "We Enjoy Typing"?)

This example illustrates the concept of a transaction demarcation—where and
when a transaction is started, and where and when a transaction is committed.
Notice that we start a transaction on a Connection object by turning auto-commit
off (false). This means that Connection can only have one transaction active at any
one time. And without going into a lot of details about the different transaction
models, this means that transactions in JDBC are flat. A flat transaction can include
a number of different SQL statements, but there is only one transaction, and it only
has one beginning and one end (at commit).

The other point is that as soon as the commit() method returns, we have started
another transaction. Now what happens to our database if we don't invoke the
commit() method? If for, example, in the code fragment earlier, we left off the
conn.commit() and just closed the Connection? Well, because invoking commit()
changes the database, and JDBC is required to make sure that any statements are
completely executed, the driver will not perform a commit implicitly, and the driver
and database simply roll back the transaction as if nothing happened.

Rolling Back a Transaction

In the example we used to open this section on transactions, we mentioned that
when Person A's attempt to get five seats for Coldplay fails, the credit card
transaction that was started is rolled back—in fact, short of remembering that he
attempted to buy the tickets, there is no record of the credit transaction at all; it is
as if it never happened.

A transaction rollback is simply a way to indicate, "These operations aren't
working out, I want everything back the way it was." Transactions can be rolled back
explicitly in code by invoking the rollback() method on the Connection object,
or implicitly if a SQLException is thrown during any point of the transaction. As an
example of an explicit rollback, in the code example where we added a new book to
the database, we might want to check to make sure that each SQL INSERT was
successful and, if there was a problem, roll back the entire transaction. The modified
code looks like this:

15-ch15.indd 924 9/3/2014 6:04:10 PM

JDBC Transactions (OCP Objective 9.4) 925

Connection conn = DriverManager.getConnection(url, username, password);
conn.setAutoCommit(false); // Start a transaction
Statement stmt = conn.createStatement();
int result1, result2, result3;
try {
 result1 = stmt.executeUpdate("INSERT INTO Author
 VALUES(1031, 'Rachel', 'McGinn')");
 result2 = stmt.executeUpdate("INSERT INTO Book
 VALUES('0554466789', 'My American Dolls',
 '2012-08-31','Paperback', 7.95)");
 result3 = stmt.executeUpdate("INSERT INTO Books_by_Author
 VALUES(1031,'0554466789')");
 conn.commit(); // No exception: commit the entire transaction
} catch (SQLException ex) {

 conn.rollback(); // Rollback the entire transaction
 // if an exception thrown

}

Note that both commit() and rollback() are transaction methods, and if
either of these methods is invoked when a Connection is not in a transaction (for
example, when a Connection is in auto-commit mode), these methods will throw
a SQLException.

One fi nal point on the setAutoCommit() method. If auto-commit is

turned back on during a transaction, i.e., setAutoCommit(true), any current transaction

is committed and auto-commit mode is then turned back on. Turning auto-commit on

and off is not something likely to happen a lot in actual code, but it is something that the

exam developers thought you ought to know in the context of transactions with JDBC.

One thing that is important to remember when using transactions is that

it is extremely rare for an application to have only one user. As a result,

there is a strong likelihood that two users will attempt to access the same

data at the same time. An important aspect of transactions is isolation

level—the visibility of one transaction to the changes being made by another

transaction. Most databases (and therefore their drivers) have some default

isolation level, and you can determine what isolation support is available

15-ch15.indd 925 9/3/2014 6:04:10 PM

926 Chapter 15: JDBC

using DatabaseMetaData and set the isolation level using the Connection

setTransactionIsolation() method.

However, choosing the appropriate isolation level is an important task

because with too little isolation, you run the risk of incorrect results, and with

too much isolation, application performance suffers. Typically, you would work

with your DBA to learn what the default isolation level is for your database

and whether customizing the level would be appropriate for your application.

Using Savepoints with JDBC

A savepoint is some point in a transaction where you want to place a virtual marker,
indicating that everything is good up until this point. As a practical example of a
transaction savepoint, imagine a situation in which a customer places an order for
several books. The order application checks the availability of the requested books
and finds that one of the books is out of stock. Rather than roll back the entire
transaction, the application may place a savepoint on the order (for some limited
amount of time) to allow the customer to decide if they want either the order all at
once or a partial shipment now of the available titles and the rest later. If the
customer agrees to receive a partial shipment, the transaction could then continue
from the savepoint and ship part of the order.

In the JDBC API, a Savepoint is an object returned by a Connection in a
transaction. A Savepoint object can be named or unnamed (created with a String
name or not). The benefit of a Savepoint is that it represents a point in a transaction
that you can roll back to. For example, let's look at our sample code where we add a
book to Bob's Books. Suppose that we decide that while we must have an entry in
the Book and Author table, we are okay if the entry in the join table fails, because
we can make the connection between a book and its authors later.

We decide to use a Savepoint to identify that point when the Book and Author
tables are set, and we can roll the transaction back to that point and commit it there
if necessary:

Connection conn = DriverManager.getConnection(url, username,
 password);
conn.setAutoCommit(false); // Start a transaction
Statement stmt = conn.createStatement();
int result1, result2, result3;
String query1 = "INSERT INTO Author " +
 "VALUES(1031, 'Rachel', 'McGinn')";

String query2 = "INSERT INTO Book " +
 "VALUES('0554466789', " +
 "'My American Dolls', '2012-08-31'," +
 "'Paperback', 7.95)";

15-ch15.indd 926 9/3/2014 6:04:10 PM

JDBC Transactions (OCP Objective 9.4) 927

try {
 result1 = stmt.executeUpdate(query1);
 result2 = stmt.executeUpdate(query2);
 Savepoint sp1 = null;

 sp1 = conn.setSavepoint(); // Create a Savepoint
 // for the two inserts so far
} catch (SQLException ex) {
 conn.rollback(); // If we did not successfully insert
 throw new SQLException("fail"); // one record in author and book,
 // rollback the transaction and
 // throw an exception
}
String query3 = "INSERT INTO Books_by_Author " +
 "VALUES(1031,'0554466789')";
try {
 result3 = stmt.executeUpdate(query3);

 conn.commit(); // If the whole thing worked, commit
} catch (SQLException ex) {
 conn.rollback(sp1); // If the join table insert failed, that's
 // ok, rollback to the Savepoint (rollback
 // the insert into Books_by_Author)
 conn.commit(); // and commit from there.
}

There are a few important things to note about Savepoints:

■ When you set Savepoint A and then later set Savepoint B, if you roll back to
Savepoint A, you automatically release and invalidate Savepoint B.

■ Support for Savepoints is not required, but you can check to see if your
JDBC driver and database support Savepoints using the DatabaseMetaData
.supportsSavePoints() method, which will return true if Savepoints are
supported.

■ Because a Savepoint is an actual point-in-time state of a transaction context,
the number of Savepoints supported by your JDBC driver and database may
be limited. For example, the Java DB database does support Savepoints, but
only one per transaction.

There is good news and bad news as well. The bad news is that there is no
method to determine the number of Savepoints supported by your JDBC driver and
database. The good news is that if you only get one, you can reuse it. Connection
provides a releaseSavepoint() method, which takes a Savepoint object. After
the Savepoint is released, you can set another Savepoint, sort of like moving your
pebble forward in hopscotch!

15-ch15.indd 927 9/3/2014 6:04:10 PM

928 Chapter 15: JDBC

CERTIFICATION SUMMARY

Core JDBC API

Remember that the JDBC API is a set of interfaces with one important concrete
class, the DriverManager class. You write code using the well-defined set of JDBC
interfaces, and the provider of your JDBC driver writes code implementations of
those interfaces. The key (and therefore required) interfaces a JDBC driver must
implement include Driver, Connection, Statement, and ResultSet.

The driver provider will also implement an instance of DatabaseMetaData,
which you use to invoke a method to query the driver for information about the
database and JDBC driver. One important piece of information is if the database
is SQL-92 compliant, and there are a number of methods that begin with
"supports" to determine the capabilities of the driver. One important method is
supportsResultSetType(), which is used to determine if the driver supports
scrolling result sets.

DriverManager

The DriverManager is one of the few concrete classes in the JDBC API, and you
will recall that the DriverManager is a factory class—using the DriverManager,
you construct instances of Connection objects. In reality, the DriverManager
simply holds references to registered JDBC drivers, and when you invoke the
getConnection() method with a JDBC URL, the DriverManager passes the URL
to each driver in turn. If the URL matches a valid driver, host, port number,
username, and password, then that driver returns an instance of a Connection
object. Remember that the JDBC URL is simply a string that encodes the
information required to make a connection to a database.

How a JDBC driver is registered with the DriverManager is also important. In
the current version of JDBC, 4.0, and later, the driver jar file simply needs to be on
the classpath, and the DriverManager will take care of finding the driver's Driver
class implementation and load that. JDBC, 3.0, and earlier, require that the driver's
Driver class implementation be manually loaded using the Class.forName()
method with the fully qualified class name of the class.

Statements and ResultSets

The most important use of a database is clearly using SQL statements and queries to
create, read, update, and delete database records. The Statement interface provides

15-ch15.indd 928 9/3/2014 6:04:10 PM

Certifi cation Summary 929

the methods needed to create SQL statements and execute them. Remember that
there are three different Statement methods to execute SQL queries: one that
returns a result set, executeQuery(); one that returns an affected row count,
executeUpdate(); and one general-purpose method, execute(), that returns a
boolean to indicate if the query produced a result set.

ResultSet is the interface used to read columns of data returned from a query,
one row at a time. ResultSet objects represent a snapshot (a copy) of the data
returned from a query, and there is a cursor that points to just above the first row
when the results are returned. Unless you created a Statement object using the
Connection.createStatement(int, int) method that takes resultSetType
and resultSetConcurrency parameters, ResultSets are not updatable and only
allow the cursor to move forward through the results. However, if your database
supports it, you can create a Statement object with a type of ResultSet.TYPE_
SCROLL_INSENSITIVE and/or a concurrency of ResultSet.CONCUR_UPDATABLE,
which allows any result set created with the Statement object to position the cursor
anywhere in the results (scrollable) and allows you to change the value of any column
in any row in the result set (updatable). Finally, when using a ResultSet that is
scrollable, you can determine the number of rows returned from a query—and this is
the only way to determine the row count because there is no "rowCount" method.

SQLException is the base class for exceptions thrown by JDBC, and because one
query can result in a number of exceptions, the exceptions are chained. To
determine all of the reasons a method call returned a SQLException, you must
iterate through the exception by calling the getNextException() method. JDBC
also keeps track of warnings for methods on Connection, Statement, and
ResultSet objects using a SQLWarning exception type. Like SQLException,
SQLWarning is silently chained to the object that caused the warning—for example,
suppose that you attempt to create a Statement object that supports scrollable
ResultSet, but the database does not support that type. A SQLWarning will be
added to the Connection object (the Connection.createConnection(int,
int) method creates a Statement object). The getWarnings() method is used to
return any SQLWarnings.

One of the important additions to Java SE 7 is the try-with-resources
statement, and all of the JDBC interfaces have been updated to support the new
AutoCloseable interface. However, bear in mind that there is an order of
precedence when closing Connections, Statements, and ResultSets. So when
a Connection is closed, any Statement created from that Connection is also
closed, and likewise, when a Statement is closed, any ResultSet created using
that ResultSet is also closed. And attempting to invoke a method on a closed
object will result in a SQLException!

15-ch15.indd 929 9/3/2014 6:04:10 PM

930 Chapter 15: JDBC

PreparedStatement and CallableStatement

SQL provides the ability to create a prepared statement query that is "precompiled."
This means that the syntax of the statement has been checked; any table names
and column names are checked against the schema and, finally, an execution plan
for the query is created. Note that JDBC's PreparedStatement performs this
precompilation during the first execution of the PreparedStatement. When you
pass parameters to a prepared statement, the database substitutes the values you
pass in for placeholders in the precompiled query. This makes the execution of the
prepared query much faster than a regular query.

JDBC's PreparedStatement object uses this mechanism to pass parameters into
the precompiled query from your Java code. This approach makes it difficult to
create a SQL injection attack because each PreparedStatement doesn't allow
strings passed in as parameters to contain non-string characters—these are "escaped"
by prepending backslashes to them to make them into string characters.

Parameters passed into PreparedStatements are called IN parameters—these
are set into the prepared statement and passed to the database for execution. Each
IN type parameter corresponds to a specific placeholder (indicated by a question
mark character).

CallableStatement is the JDBC object used to invoke database stored
procedures. Unlike prepared statements, stored procedures use a database-dependent
language that may or may not resemble SQL. Like prepared statements, stored
procedures are compiled into the database and can accept parameters passed to
them. However, stored procedures also allow values to be returned to the caller
through OUT type parameters, using the same "?" syntax. Finally, parameters can be
passed into a stored procedure and return a new value as a result through an INOUT
type parameter.

RowSet, RowSetProvider, and RowSetFactory

Remember that as a result of a minor change to JDBC for version 4.1, the way that
RowSet objects were created was changed, and thus, RowSetFactory and
RowSetProvider are covered on the exam. Further, this means that you should
understand the major differences between the various RowSet interfaces as well.

In previous versions of JDBC, an instance of a RowSet was created using the new
keyword on a specific implementation, and you had to include the implementation
in your classpath. In Java SE 7, using the RowSetProvider class and newFactory()
method, you get an instance of a RowSetFactory object. Finally, RowSet objects are
created using the factory. This approach hides the implementation details and
eliminates changes in your code for different RowSet implementations.

15-ch15.indd 930 9/3/2014 6:04:10 PM

Certifi cation Summary 931

The key to understanding RowSet objects is the difference between a connected
and unconnected RowSet. A connected RowSet object, like JdbcRowSet, is created
using an instance of RowSetFactory and then populated through a SQL query.
Once populated, changes to a JdbcRowSet (updates, deletes, and inserts) are
automatically reflected in the underlying database. To keep the JdbcRowSet in sync
with the underlying database contents, you can re-execute the initial JdbcRowSet
query or implement a RowSetListener to manage synchronization by tracking
changes to the RowSet.

There are several disconnected RowSets, all descendants of CachedRowSet, so if you
learn this one, you will be in good shape. Like connected RowSets, a disconnected
RowSet is initially populated with a ResultSet. However, immediately after the
RowSet is populated, it is disconnected from the database. Any changes made to the
underlying results are cached (thus the aptly named class!). You are responsible for
synching the changes you made with the underlying database by calling the
acceptChanges() method.

JDBC Transactions

The key takeaway for this certification objective is that JDBC transactions are in
auto-commit mode by default, and you must explicitly start a transaction by calling
Connection.setAutoCommit() with a boolean false parameter. This starts a
transaction context. Within a transaction context, any changes made to the current
ResultSet are not made to the underlying database until you explicitly call the
commit() method. If you wish to undo changes made during a transaction, the
transaction can be rolled back by calling the rollback() method. If a method
invoked during a transaction results in a SQLException, the transaction is rolled
back automatically. Finally, remember that the setAutoCommit() method is
tricky—if you are in the middle of a transaction and call setAutoCommit(true),
the equivalent of turning auto-commit back on, then the current transaction
context is immediately committed.

Transactions in JDBC are flat, meaning there can be only one transaction context
per Connection at any one time. However, some databases allow you to mark spots
in your transaction called savepoints. If, partway through a transaction with multiple
changes (inserts, deletes, updates), you create a Savepoint object by calling the
setSavepoint() method, and if there is a problem further on in the transaction,
you can roll the transaction back to your savepoint instead of all the way to the
beginning.

15-ch15.indd 931 9/3/2014 6:04:11 PM

932 Chapter 15: JDBC

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Core Interfaces of the JDBC API (OCP Objective 9.1)

❑ To be compliant with JDBC, driver vendors must provide implementations
for the key JDBC interfaces: Driver, Connection, Statement, and
ResultSet.

❑ DatabaseMetaData can be used to determine which SQL-92 level your
driver and database support.

❑ DatabaseMetaData provides methods to interrogate the driver for
capabilities and features.

Connect to a Database Using DriverManager
(OCP Objective 9.2)

❑ The JDBC API follows a factory pattern, where the DriverManager class is
used to construct instances of Connection objects.

❑ The JDBC URL is passed to each registered driver in turn in an attempt to
create a valid Connection.

❑ Identify the Java statements required to connect to a database using JDBC.

❑ JDBC 3.0 (and earlier) drivers must be loaded prior to their use.

❑ JDBC 4.0 drivers just need to be part of the classpath, and they are
automatically loaded by the DriverManager.

Submit Queries and Read Results from the Database
(OCP Objective 9.3)

❑ The next() method must be called on a ResultSet before reading the first
row of results.

❑ When a Statement execute() method is executed, any open ResultSets
tied to that Statement are automatically closed.

❑ When a Statement is closed, any related ResultSets are also closed.

15-ch15.indd 932 9/3/2014 6:04:11 PM

Two-Minute Drill 933

❑ ResultSet column indexes are numbered from 1, not 0.

❑ The default ResultSet is not updatable (read-only), and the cursor moves
forward only.

❑ A ResultSet that is scrollable and updatable can be modified, and the cursor
can be positioned anywhere within the ResultSet.

❑ ResultSetMetaData can be used to dynamically discover the number of
columns and their type returned in a ResultSet.

❑ ResultSetMetaData does not have a row count method. To determine the
number of rows returned, the ResultSet must be scrollable.

❑ ResultSet fetch size can be controlled for large data sets; however, it is a
hint to the driver and may be ignored.

❑ SQLExceptions are chained. You must iterate through the exception class
thrown to get all of the reasons why an exception was thrown.

❑ SQLException also contains database-specific error codes and status codes.

❑ The executeQuery method is used to return a ResultSet (SELECT).

❑ The executeUpdate method is used to update data, to modify the database,
and to return the number of rows affected (INSERT, UPDATE, DELETE,
and DDLs).

❑ The execute method is used to perform any SQL command. A boolean true
is returned when the query produced a ResultSet and false when there
were no results, or if the result is an update count.

❑ There is an order of precedence in the closing of Connections, Statements,
and ResultSets.

❑ Using the try-with-resources statement, you can close Connections,
Statements, and ResultSets automatically (they implement the new
AutoCloseable interface in Java SE 7).

❑ When a Connection is closed, all of the related Statements and
ResultSets are closed.

Use PreparedStatement and CallableStatement Objects
(OCP Objective 9.6)

❑ PreparedStatements are precompiled and can increase efficiency for
frequently used SQL queries.

15-ch15.indd 933 9/3/2014 6:04:11 PM

934 Chapter 15: JDBC

❑ PreparedStatement is a good way to avoid SQL injection attacks.

❑ PreparedStatement setXXXX methods are indexed from 1, not 0.

❑ CallableStatements are executed using a stored procedure on the database.

❑ The actual language used to create the stored procedure is database
dependent.

Construct and Use RowSet Objects (OCP Objective 9.5)

❑ JdbcRowSet provides a JavaBean view of a ResultSet (getters and setters).

❑ Understand CachedRowSet, FilteredRowSet, JdbcRowSet, Joinable,
JoinRowSet, Predicate, and WebRowSet.

❑ RowSetProvider is a factory class used to obtain a RowSetFactory to
generate RowSet object types.

❑ RowSetFactory provides a way to create instances of RowSet objects. Prior
to JDBC 4.1 (Java SE 7), the developer was required to provide the class
name of the implementation of the RowSet interface.

JDBC Transactions (OCP Objective 9.4)

❑ Transactions in JDBC are flat—that is, there is only one transaction active at
any one time per Connection instance.

❑ All transactions in JDBC are in auto-commit mode by default—
you must explicitly turn transactions on by calling Connection
.setAutoCommit(false).

❑ Invoking setAutoCommit(true) explicitly commits the current transaction
(and reverts to auto-commit mode).

❑ A rollback method throws an exception if Connection is set to auto-commit
mode.

❑ A savepoint is a point within a current transaction that can be referenced
from a Connection.rollback() method.

❑ A rollback to a savepoint only rolls the transaction back to the last savepoint
created.

15-ch15.indd 934 9/3/2014 6:04:11 PM

Self Test 935

SELF TEST

 1. Given:

String url = "jdbc:mysql://SolDBServer/soldb";
String user = "sysEntry";
String pwd = "fo0B3@r";
// INSERT CODE HERE
Connection conn = DriverManager.getConnection(url, user, pwd);

 Assuming "org.gjt.mm.mysql.Driver" is a legitimate class, which line, when inserted at
// INSERT CODE HERE, will correctly load this JDBC 3.0 driver?

 A DriverManager.registerDriver("org.gjt.mm.mysql.Driver");

 B. Class.forName("org.gjt.mm.mysql.Driver");

 C. DatabaseMetaData.loadDriver("org.gjt.mm.mysql.Driver");

 D. Driver.connect("org.gjt.mm.mysql.Driver");

 E. DriverManager.getDriver("org.gjt.mm.mysql.Driver");

 2. Given that you are working with a JDBC 4.0 driver, which three are required for this JDBC
driver to be compliant?

 A. Must include a META-INF/services/java.sql.Driver file
 B. Must provide implementations of Driver, Connection, Statement, and ResultSet

interfaces
 C. Must support scrollable ResultSets
 D. Must support updatable ResultSets
 E. Must support transactions
 F. Must support the SQL99 standard
 G. Must support PreparedStatement and CallableStatement

 3. Which three are available through an instance of DatabaseMetaData?
 A. The number of columns returned
 B. The number of rows returned
 C. The name of the JDBC driver
 D. The default transaction isolation level
 E. The last query used
 F. The names of stored procedures in the database
 G. The current Savepoint name

15-ch15.indd 935 9/3/2014 6:04:12 PM

936 Chapter 15: JDBC

 4. Given:

try {
 Statement stmt = conn.createStatement();
 String query =
 "SELECT * FROM Author WHERE LastName LIKE 'Rand%'";
 ResultSet rs = stmt.executeQuery(query); // Line X
 if (rs == null) { // Line Y
 System.out.println("No results");
 } else {
 System.out.println(rs.getString("FirstName"));
 }
} catch (SQLException se) {
 System.out.println("SQLException");
}

 Assuming a Connection object has already been created (conn) and that the query produces
a valid result, what is the result?

 A. Compiler error at line X
 B. Compiler error at line Y
 C. No result
 D. The first name from the first row that matches 'Rand%'
 E. SQLException

 F. A runtime exception

 5. Given the SQL query:

String query = "UPDATE Customer SET EMail='John.Smith@comcast.net'
 WHERE CustomerID = 5000";

 Assuming this is a valid SQL query and there is a valid Connection object (conn), which will
compile correctly and execute this query?

 A. Statement stmt = conn.createStatement();

 stmt.executeQuery(query);

 B. Statement stmt = conn.createStatement(query);

 stmt.executeUpdate();

 C. Statement stmt = conn.createStatement();
 stmt.setQuery(query);

 stmt.execute();

 D. Statement stmt = conn.createStatement();

 stmt.execute(query);

 E. Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeUpdate(query);

15-ch15.indd 936 9/3/2014 6:04:12 PM

Self Test 937

 6. Given:

try {
 ResultSet rs = null;
 try (Statement stmt = conn.createStatement()) { // line X
 String query = "SELECT * from Customer";
 rs = stmt.executeQuery(query); // line Y
 } catch (SQLException se) {
 System.out.println("Illegal query");
 }
 while (rs.next()) {
 // print customer names
 }
} catch (SQLException se) {
 System.out.println("SQLException");
}

 And assuming a valid Connection object (conn) and that the query will return results, what is
the result?

 A. The customer names will be printed out
 B. Compiler error at line X
 C. Illegal query
 D. Compiler error at line Y
 E. SQLException

 F. Runtime exception

 7. Given this code fragment:

Statement stmt = conn.createStatement();
ResultSet rs;
String query = "<QUERY HERE>";
stmt.execute(query);
if ((rs = stmt.getResultSet()) != null) {
 System.out.println("Results");
}
if (stmt.getUpdateCount() > -1) {
 System.out.println("Update");
}

15-ch15.indd 937 9/3/2014 6:04:12 PM

938 Chapter 15: JDBC

 Which query statements entered into <QUERY HERE> produce the output that follows the query
string (in the following answer), assuming each query is valid? (Choose all that apply.)

 A. "SELECT * FROM Customer"

 Results

 B. "INSERT INTO Book VALUES ('1023456789', 'One Night in Paris', '1984-10-20',
 'Hardcover', 13.95)"
 Update

 C. "UPDATE Customer SET Phone = '555-234-1021' WHERE CustomerID = 101"

 Update

 D. "SELECT Author.LastName FROM Author"

 Results

 E. "DELETE FROM Book WHERE ISBN = '1023456789'"

 Update

 8. Given:

String q = "UPDATE Customer SET Last_name=? WHERE Customer_id=?";
try {
 PreparedStatement pstmt = conn.prepareStatement(q);
 pstmt.setString(0, "Smith"); // Line X
 pstmt.setString(1, "5001"); // Line Y
 int result = pstmt.executeUpdate();
 if (result != 1) System.out.println ("Error - update failed");
} catch (SQLException se) {
 System.out.println("Exception");
}

 Assuming the table name and column names are valid, what is the result?
 A. The last name of the customer with id 5001is set to "Smith"
 B. Error – update failed
 C. Exception
 D. Compilation fails

 9. Given:

try {
 String[] searchPair = {"%lacey", "%Fire%", "R%", "%Lost Hero%"};
 String query = "SELECT Book.Title, Author.FirstName, " +
 "Author.LastName FROM Author, Book, " +
 "Books_by_Author WHERE Author.LastName LIKE ? " +
 "AND Book.Title LIKE ? " +
 "AND Books_by_Author.AuthorID=Author.AuthorID " +
 "AND Books_by_Author.ISBN = Book.ISBN";
 PreparedStatement pstmt = conn.prepareStatement(query);

15-ch15.indd 938 9/3/2014 6:04:12 PM

Self Test 939

 for (int i = 0; i < searchPair.length; i += 2) {
 pstmt.setString(i+1, searchPair[i]); // line X
 pstmt.setString(i+2, searchPair[i+1]); // line Y
 ResultSet rs = pstmt.executeQuery(); // line Z
 while (rs.next()) {
 System.out.print("Yes ");
 }
 }
} catch (SQLException se) {
 System.out.println("SQLException");
}

 And assuming that each pair of query elements in the array searchPair will return two rows
and assuming a valid Connection object (conn), what is the result?

 A. SQLException

 B. Yes Yes SQLException

 C. Yes Yes Yes Yes

 D. Compiler error at line X
 E. Compiler error at line Y
 F. Compiler error at line Z

 10. Given:

String call = "{CALL REMOVEBOOKS(?, ?)}";
String titleToRemove = null;
int maxBooks = 0;
CallableStatement cstmt = conn.prepareCall(call);
String titles = "%Hero%";
int numBooksRemoved;
// Code added here

 If REMOVEBOOKS is a stored procedure that takes an INOUT integer parameter as its first
argument and an IN String parameter as its second argument, which code blocks, when placed
at the line // Code added here, could correctly execute the stored procedure and return a
result?

 A. cstmt.setInt(0, maxBooks);

 cstmt.setString(1, titleToRemove);

 cstmt.registerOutParameter(0, java.sql.Types.INTEGER);

 cstmt.execute();

 numBooksRemoved = cstmt.getInt(0);

15-ch15.indd 939 9/3/2014 6:04:12 PM

940 Chapter 15: JDBC

 B. cstmt.setInt(1, maxBooks);

 cstmt.setString(2, titleToRemove);

 cstmt.registerOutParameter(1, java.sql.Types.INTEGER);

 cstmt.executeQuery(query);

 numBooksRemoved = cstmt.getInt(1);

 C. cstmt.setInt(1, maxBooks);

 cstmt.setString(2, titleToRemove);

 cstmt.execute();

 cstmt.registerOutParameter(1, java.sql.Types.INTEGER);

 numBooksRemoved = cstmt.getInt(1);

 D. cstmt.setInt(1, maxBooks);

 cstmt.setString(2, titleToRemove);

 cstmt.registerOutParameter(1, java.sql.Types.INTEGER);

 ResultSet rs = cstmt.executeQuery();

 rs.next();

 numbBooks = rs.getInt(1);

 E. cstmt.setInt(1, maxBooks);

 cstmt.setString(2, titleToRemove);

 cstmt.registerOutParameter(1, java.sql.Types.INTEGER);

 cstmt.execute();

 numBooksRemoved = cstmt.getInt(1);

 11. Which creates a connected RowSet object?
 A. WebRowSet wrs = RowSetProvider.newFactory().createWebRowSet();

 B. CachedRowSet crs = RowSetProvider.newFactory().createCachedRowSet();

 C. try(JdbcRowSet jrs = RowSetProvider.newFactory().createJdbcRowSet()) {

 // assume the rest of the try-catch is valid

 D. try(RowSetFactory rsf = RowSetProvider.newFactory()) {

 RowSet rws = rsf.createRowSet();

 // assume the rest of the try-catch is valid

 E. JoinRowSet jrs = RowSetProvider.newFactory().createJoinRowSet();

 F. ResultSet rs = Statement.execute("SELECT * FROM Customer");

 JdbcRowSet jrs = RowSetProvider.newFactory().setResultSet(rs);

15-ch15.indd 940 9/3/2014 6:04:12 PM

Self Test 941

 12. Given:

try (CachedRowSet crs =
 RowSetProvider.newFactory().createCachedRowSet()) {
 String query = "SELECT * FROM Employee"; // Line Q
 crs.setCommand(query);
 crs.setUrl(url);
 crs.setUsername(user);
 crs.setPassword(pwd);
 crs.execute();
 crs.last(); // Line V
 crs.updateString("LastName", "Sullivan-McGinn");
 // DATABASE GOES OFFLINE HERE
 crs.moveToInsertRow(); // Line W
 crs.updateInt("ID", 101);
 crs.updateString("FirstName", "Michael");
 crs.updateString("LastName", "Fuller");
 crs.updateFloat("Salary", 101234.56f);
 crs.insertRow(); // Line X
 crs.moveToCurrentRow();
 crs.absolute(10); // Line Y
 crs.deleteRow(); // Line Z
 // DATABASE BACK ONLINE
} catch (SQLException se) {
 System.out.println ("SQLException");
}

 Assuming that the query produced a result set in Line Q and that the database goes offline
on or before the line OFFLINE and comes back online on or before the line ONLINE, which
statements are true?

 A. SQLException will print out due to Line V
 B. SQLException will print out due to Line Z
 C. SQLException will print out due to Line X
 D. SQLException will print out due to Line Y
 E. SQLException will print out due to Line W
 F. One row is updated, one row is inserted, and one row is deleted
 G. The database will be unchanged

15-ch15.indd 941 9/3/2014 6:04:12 PM

942 Chapter 15: JDBC

 13. Given:

boolean businessRule = true;
try {
 Connection conn = DriverManager.getConnection(url, username, password);
 String query1 = "INSERT INTO Order VALUES(20, 200.50,
 'Panasonic Stereo Receiver')";
 String query2 = "UPDATE Order SET Price = 35.20 WHERE ID = 21";

 Statement stmt = conn.createStatement();
 stmt.executeUpdate(query1); // Line X
 stmt.executeUpdate(query2); // Line Y
 if (businessRule) {
 conn.rollback(); // Line Z
 }
} catch (SQLException se) {
 System.out.println("SQLException");
}

 And assuming the two queries are valid, what is the result of executing this fragment?
 A. Query 1 and Query 2 are rolled back (no change to the database)
 B. Query 1 is executed and Query 2 is rolled back
 C. Query 1 is executed, Query 2 is executed, and SQLException
 D. SQLException

 E. A runtime exception is thrown

 14. Given:

try (Connection conn = DriverManager.getConnection(url, username, password)) {
 conn.setAutoCommit(false);
 String query1 = "INSERT INTO Order VALUES (22, 99.99, 'Winter Boots')";
 String query2 = "INSERT INTO Order VALUES (24, 39.99, 'Fleece Jacket')";
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(query1);
 Savepoint sp1 = conn.setSavepoint();
 stmt.executeUpdate(query2);
 conn.rollback(sp1);
} catch (SQLException se) {
 System.out.println ("SQLException");
}

15-ch15.indd 942 9/3/2014 6:04:12 PM

Self Test 943

 And given that the queries are valid, what is the result of executing this fragment?
 A. Two new rows are added to the database
 B. The row from query 1 is added to the database
 C. The row from query 2 is added to the database
 D. No rows are added to the database
 E. A SQLException is thrown

 15. Given:

try (Connection conn = DriverManager.getConnection(url, username, password)) {
 conn.setAutoCommit(false);
 String q1, q2, q3;
 q1 = "INSERT INTO Order VALUES(23, 99.99, 'Winter Boots')";
 q2 = "INSERT INTO Order VALUES(24, 39.99, 'Fleece Jacket')";
 q3 = "INSERT INTO Order VALUES(25, 29.99, 'Wool Scarf')";
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(q1);
 Savepoint sp1 = conn.setSavepoint("item1");
 stmt.executeUpdate(q2);
 Savepoint sp2 = conn.setSavepoint("item2");
 conn.rollback(sp1);
 stmt.executeUpdate(q3);
 Savepoint sp3 = conn.setSavepoint("item3");
 conn.commit();
} catch (SQLException se) {
 System.out.println ("SQLException");
}

 Assuming that the Order table was empty before this code fragment was executed and that the
database supports multiple savepoints and that all of the queries are valid, what rows does Order
contain?

 A. 23, 99.99, 'Winter Boots'

 B. 23, 99.99, 'Winter Boots'

 25, 29.99, 'Wool Scarf'

 C. 23, 99.99, 'Winter Boots'

 24, 39.99, 'Fleece Jacket'

 D. 24, 39.99, 'Fleece Jacket'

 25, 29.99, 'Wool Scarf'

 E. No rows

15-ch15.indd 943 9/3/2014 6:04:12 PM

944 Chapter 15: JDBC

SELF TEST ANSWERS

 1. ☑ B is correct. Prior to JDBC 4.0, JDBC drivers were required to register themselves with
the DriverManager class by invoking DriverManager.register(this); after the driver
was instantiated through a call from the classloader. The Class.forName() method calls the
classloader, which in turn creates an instance of the class passed as a String to the method.
☐✗ A is incorrect because this method is meant to be invoked with an instance of a Driver
class. C is incorrect because DatabaseMetaData does not have a loadDriver method, and
the purpose of DatabaseMetaData is to return information about a database connection. D
is incorrect because, again, while the method sounds right, the arguments are not of the right
types, and this method is actually the one called by DriverManager.getConnection to get a
Connection object. E is incorrect because while this method returns a Driver instance, one
has to be loaded and registered with the DriverManager first. (OCP Objective 9.2)

 2. ☑ A, B, and E are correct. To be JDBC 4.0 compliant, a JDBC driver must support the
ability to autoload the driver by providing a file, META-INF/services/java.sql.Driver,
that indicates the fully qualified class name of the Driver class that DriverManager should
load upon start-up. The JDBC driver must implement the interfaces for Driver, Connection,
Statement, ResultSet, and others. The driver must also support transactions.
☐✗ C and D are incorrect. It is not a requirement to support scrollable or updatable ResultSets,
although many drivers do. If, however, the driver reports that through DatabaseMetaData
it supports scrollable and updatable ResultSets, then the driver must support all of the
methods associated with cursor movement and updates. F is incorrect. The JDBC requires
that the driver support SQL92 entry-level grammar and the SQL command DROP TABLE
(from SQL92 Transitional Level). G is not correct. While JDBC 4.0 drivers must support
PreparedStatement, CallableStatement is optional, and only required if the driver returns
true for the method DatabaseMetaData.supportsStoredProcedures. (OCP Objective 9.2)

 3. ☑ C, D, and F are correct. DatabaseMetaData provides data about the database and the
Connection object. The name, version, and other JDBC driver information are available,
plus information about the database, including the names of stored procedures, functions,
SQL keywords, and more. Finally, the default transaction isolation level and data about what
transaction levels are supported are also available through DatabaseMetaData.
☐✗ A and B are incorrect, as they are really about the result of a query with the database.
Column count is available through a ResultSetMetaData object, but a row count requires that
you, as the developer, move the cursor to the end of a result set and then evaluate the cursor
position. E is incorrect. There is no method defined to return the last query in JDBC. G is not
correct. The Savepoint information is accessed through a Savepoint instance and is part of a
transaction. (OCP Objective 9.1)

15-ch15.indd 944 9/3/2014 6:04:12 PM

Self Test Answers 945

 4. ☑ E is correct. When the ResultSet returns, the cursor is pointing before the first row of the
ResultSet. You must invoke the next() method to move to the next row of results before you
can read any data from the columns. Trying to read a result using a getXXXX method will result
in a SQLException when the cursor is before the first row or after the last row.
☐✗ A, B, D, and F are incorrect based on the above. Note about C: the ResultSet returned
from executeQuery will never be null. (OCP Objective 9.3)

 5. ☑ D is correct.
☐✗ Note that answer E is close, but will not compile because the executeUpdate(query)
method returns an integer result. A will compile correctly, but throw a SQLException at
runtime—the executeQuery method cannot be used on INSERT, UPDATE, DELETE, or
DDL SQL queries. B will not compile because the createStatement method does not take a
String argument for the query. C is incorrect because Statement does not have a setQuery
method and this fragment will not compile. (OCP Objective 9.3)

 6. ☑ E is correct. Recall that the try-with-resources statement on line X will automatically
close the resource specified at the close of the try block (when the closing curly brace is
reached), and closing the Statement object automatically closes any open ResultSets
associated with the Statement. The SQLException thrown is that the ResultSet is not open.
To fix this code, move the while statement into the try-with-resources block.
☐✗ A, B, C, D, and F are incorrect based on the above. (OCP Objective 9.3)

 7. ☑ All of the answers are correct (A, B, C, D, E). SELECT statements will produce a
ResultSet even if there are no rows. INSERT, UPDATE, and DELETE statements all produce
an update count, even when the number of rows affected is 0. (OCP Objective 9.3)

 8. ☑ C is the correct answer. Parameters are numbered from 1, not 0. When the program
executes, a SQLException will be thrown by Line X.
☐✗ D is incorrect because the compiler cannot detect that the value of the method should be a
1 and not a zero. The compiler can only determine that the type of the argument is correct, and
in this case, the type is correct as an integer. A and B are incorrect based on the above.
(OCP Objective 9.6)

 9. ☑ B is correct. In the first iteration of the for loop, i = 0 and the pstmt.setString
method index (the first parameter) is 1 and the second index is 2. But in the second iteration of
the loop, the index value is now 3 and 4, respectively. It would be better to hard-code these two
values as 1 and 2, respectively.
☐✗ A, C, D, E, and F are incorrect based on the above. (OCP Objective 9.6)

 10. ☑ E is correct. Recall that to specify an IN parameter, you use a setXXXX method, and for
an OUT parameter, you must register the parameter as an OUT before the call, and then use a
getXXXX method to return the result from the stored procedure after executing the method.

15-ch15.indd 945 9/3/2014 6:04:12 PM

946 Chapter 15: JDBC

☐✗ A is incorrect because parameter indexes are numbered from 1, not from 0. B is incorrect
because the executeQuery method includes the String query passed in as a parameter. This
method will throw a SQLException. C is incorrect because the OUT parameter was not
registered before the execute call, but after the execute method. D is incorrect because this
stored procedure does not return a ResultSet. So while a ResultSet will be returned as a
result of the executeQuery call, the call to rs.getInt will throw a SQLException. (OCP
Objective 9.6)

 11. ☑ C is the correct answer. This code fragment is creating an instance of a JdbcRowSet
object—the only RowSet that is a connected RowSet object. This is the proper way to use the
RowSetProvider static newFactory() method or obtain a RowSetFactory instance that is
then used to create a JdbcRowSet instance.
☐✗ A, B, and E are incorrect. These are disconnected RowSet objects, although the syntax
to acquire these objects is correct. D is incorrect and will not compile. The reason is that
RowSetFactory does not extend AutoCloseable; thus, the compiler will complain about the
use of RowSetFactory in a try-with-resources. F is incorrect because this is not the proper way
to initialize a RowSet object. The factory method is used to create an instance, and the instance
must be used to execute a query and populate the RowSet with results. (OCP Objective 9.5)

 12. ☑ G is correct. First, the database being offline at any point after the execute() method is
invoked is irrelevant, since this is a disconnected RowSet object (CachedRowSet). Thus, the
results are cached in the object and changes can be made to the results, regardless of the status
of the database. However, there is a critical error in this code: to write the changes made to the
data due to the update, insert, and delete, the acceptChanges() method must be called in
order to make a connection to the database and reconcile the results in the CachedRowSet with
the database. Since this line of code is missing, the changes were only made to the in-memory
object and not reflected in the database.
☐✗ A, B, C, D, E, and F are incorrect based on the above. (OCP Objective 9.5)

 13. ☑ C is correct. Because the Connection object conn was never set to
setAutoCommit(false), there is no transaction context to rollback. All transactions are in
auto-commit mode, so the first transaction is executed and completed, the second transaction
is executed and completed, and when the conn.rollback() method is executed on line Z, a
SQLException is thrown because there is no transaction to rollback.
☐✗ A, B, D, and E are incorrect based on the above. (OCP Objective 9.4)

 14. ☑ D is correct. Because there is no commit statement, the Connection closes when the try
block completes, and the transaction created by setting setAutoCommit to false is rolled back.
☐✗ A, B, C, and E are incorrect based on the above. (OCP Objective 9.4)

 15. ☑ B is correct. The statement conn.rollback(sp1); rolls back the insertion of the row that
contains the 'Fleece Jacket'. Then the transaction continues and processes the insertion of
the row that contains 'Wool Scarf'.
☐✗ A, C, D, and E are incorrect based on the above. (OCP Objective 9.4)

15-ch15.indd 946 9/3/2014 6:04:12 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization Using the java.io Package •
Two-Minute Drill ✓

Q&A Self Test

Appendix AAppendix A
SerializationSerialization

CERTIFICATION OBJECTIVES

Appendix A.indd 1Appendix A.indd 1 9/17/2014 12:10:20 PM9/17/2014 12:10:20 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-2 Appendix A: Serialization

As of summer 2014, the topic of serialization was included in the OCP 7 exam, but not
on the OCPJP 5 or OCPJP 6 exams. But this topic was previously on those two exams,
and it might get reintroduced at some later date.

CERTIFICATION OBJECTIVE

Serialization (OCP 7 Objective 7.2)

7.2 Use streams to read from and write to files by using classes in the java.io package,
including BufferedReader, BufferedWriter, File, FileReader, FileWriter, DataInputStream,
DataOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter.

Imagine you want to save the state of one or more objects. If Java didn’t have
serialization (as the earliest version did not), you’d have to use one of the I/O classes
to write out the state of the instance variables of all the objects you want to save.
The worst part would be trying to reconstruct new objects that were virtually
identical to the objects you were trying to save. You’d need your own protocol for
the way in which you wrote and restored the state of each object, or you could end
up setting variables with the wrong values. For example, imagine you stored an
object that has instance variables for height and weight. At the time you save the
state of the object, you could write out the height and weight as two ints in a file,
but the order in which you write them is crucial. It would be all too easy to re-create
the object but mix up the height and weight values—using the saved height as the
value for the new object’s weight and vice versa.

Serialization lets you simply say "save this object and all of its instance variables."
Actually it is a little more interesting than that, because you can add, "... unless I’ve
explicitly marked a variable as transient, which means, don’t include the transient
variable’s value as part of the object’s serialized state."

Working with ObjectOutputStream and ObjectInputStream

The magic of basic serialization happens with just two methods: one to serialize objects
and write them to a stream, and a second to read the stream and deserialize objects.

Appendix A.indd 2Appendix A.indd 2 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-3

ObjectOutputStream.writeObject() // serialize and write

ObjectInputStream.readObject() // read and deserialize

The java.io.ObjectOutputStream and java.io.ObjectInputStream classes
are considered to be higher-level classes in the java.io package, and as we learned
earlier, that means that you’ll wrap them around lower-level classes, such as java.io
.FileOutputStream and java.io.FileInputStream. Here’s a small program that
creates a (Cat) object, serializes it, and then deserializes it:

import java.io.*;

class Cat implements Serializable { } // 1

public class SerializeCat {
 public static void main(String[] args) {
 Cat c = new Cat(); // 2
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(c); // 3
 os.close();
 } catch (Exception e) { e.printStackTrace(); }

 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 c = (Cat) ois.readObject(); // 4
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Let’s take a look at the key points in this example:

 1. We declare that the Cat class implements the Serializable interface.
Serializable is a marker interface; it has no methods to implement. (In
the next several sections, we’ll cover various rules about when you need to
declare classes Serializable.)

 2. We make a new Cat object, which as we know is serializable.

 3. We serialize the Cat object c by invoking the writeObject() method. It
took a fair amount of preparation before we could actually serialize our Cat.
First, we had to put all of our I/O-related code in a try/catch block. Next
we had to create a FileOutputStream to write the object to. Then we
wrapped the FileOutputStream in an ObjectOutputStream, which is the

Appendix A.indd 3Appendix A.indd 3 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-4 Appendix A: Serialization

class that has the magic serialization method that we need. Remember that
the invocation of writeObject() performs two tasks: it serializes the object,
and then it writes the serialized object to a file.

 4. We deserialize the Cat object by invoking the readObject() method. The
readObject() method returns an Object, so we have to cast the deserialized
object back to a Cat. Again, we had to go through the typical I/O hoops to
set this up.

This is a bare-bones example of serialization in action. Over the next set of pages
we’ll look at some of the more complex issues that are associated with serialization.

Object Graphs

What does it really mean to save an object? If the instance variables are all primitive
types, it’s pretty straightforward. But what if the instance variables are themselves
references to objects? What gets saved? Clearly in Java it wouldn’t make any sense to
save the actual value of a reference variable, because the value of a Java reference
has meaning only within the context of a single instance of a JVM. In other words, if
you tried to restore the object in another instance of the JVM, even running on the
same computer on which the object was originally serialized, the reference would be
useless.

But what about the object that the reference refers to? Look at this class:

class Dog {
 private Collar theCollar;
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;
 }
 public Collar getCollar() { return theCollar; }
}
class Collar {
 private int collarSize;
 public Collar(int size) { collarSize = size; }
 public int getCollarSize() { return collarSize; }
}

Now make a dog… First, you make a Collar for the Dog:

Collar c = new Collar(3);

Appendix A.indd 4Appendix A.indd 4 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-5

Then make a new Dog, passing it the Collar:

Dog d = new Dog(c, 8);

Now what happens if you save the Dog? If the goal is to save and then restore a
Dog, and the restored Dog is an exact duplicate of the Dog that was saved, then the
Dog needs a Collar that is an exact duplicate of the Dog’s Collar at the time the
Dog was saved. That means both the Dog and the Collar should be saved.

And what if the Collar itself had references to other objects—like perhaps a
Color object? This gets quite complicated very quickly. If it were up to the
programmer to know the internal structure of each object the Dog referred to, so that
the programmer could be sure to save all the state of all those objects…whew. That
would be a nightmare with even the simplest of objects.

Fortunately, the Java serialization mechanism takes care of all of this. When you
serialize an object, Java serialization takes care of saving that object’s entire "object
graph." That means a deep copy of everything the saved object needs to be restored.
For example, if you serialize a Dog object, the Collar will be serialized automatically.
And if the Collar class contained a reference to another object, THAT object
would also be serialized, and so on. And the only object you have to worry about
saving and restoring is the Dog. The other objects required to fully reconstruct that
Dog are saved (and restored) automatically through serialization.

Remember, you do have to make a conscious choice to create objects that are
serializable, by implementing the Serializable interface. If we want to save Dog
objects, for example, we’ll have to modify the Dog class as follows:

class Dog implements Serializable {
 // the rest of the code as before
 // Serializable has no methods to implement
}

And now we can save the Dog with the following code:

import java.io.*;
public class SerializeDog {
 public static void main(String[] args) {
 Collar c = new Collar(3);
 Dog d = new Dog(c, 8);
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Appendix A.indd 5Appendix A.indd 5 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-6 Appendix A: Serialization

But when we run this code we get a runtime exception something like this

java.io.NotSerializableException: Collar

What did we forget? The Collar class must ALSO be Serializable. If we
modify the Collar class and make it serializable, then there’s no problem:

class Collar implements Serializable {
 // same
}

Here’s the complete listing:

import java.io.*;
public class SerializeDog {
 public static void main(String[] args) {
 Collar c = new Collar(3);
 Dog d = new Dog(c, 5);
 System.out.println("before: collar size is "
 + d.getCollar().getCollarSize());
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (Dog) ois.readObject();
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("after: collar size is "
 + d.getCollar().getCollarSize());
 }
}
class Dog implements Serializable {
 private Collar theCollar;
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;
 }
 public Collar getCollar() { return theCollar; }
}
class Collar implements Serializable {
 private int collarSize;
 public Collar(int size) { collarSize = size; }
 public int getCollarSize() { return collarSize; }
}

Appendix A.indd 6Appendix A.indd 6 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-7

This produces the output:

before: collar size is 3
 after: collar size is 3

But what would happen if we didn’t have access to the Collar class source code?
In other words, what if making the Collar class serializable was not an option? Are
we stuck with a non-serializable Dog?

Obviously we could subclass the Collar class, mark the subclass as
Serializable, and then use the Collar subclass instead of the Collar class. But
that’s not always an option either for several potential reasons:

 1. The Collar class might be final, preventing subclassing.

 OR

 2. The Collar class might itself refer to other non-serializable objects, and
without knowing the internal structure of Collar, you aren’t able to make all
these fixes (assuming you even wanted to TRY to go down that road).

 OR

 3. Subclassing is not an option for other reasons related to your design.

So…THEN what do you do if you want to save a Dog?
That’s where the transient modifier comes in. If you mark the Dog’s Collar

instance variable with transient, then serialization will simply skip the Collar
during serialization:

class Dog implements Serializable {
 private transient Collar theCollar; // add transient
 // the rest of the class as before
}

class Collar { // no longer Serializable
 // same code
}

Now we have a Serializable Dog, with a non-serializable Collar, but the Dog
has marked the Collar transient; the output is

before: collar size is 3
Exception in thread "main" java.lang.NullPointerException

So NOW what can we do?

Appendix A.indd 7Appendix A.indd 7 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-8 Appendix A: Serialization

Using writeObject and readObject

Consider the problem: we have a Dog object we want to save. The Dog has a Collar,
and the Collar has state that should also be saved as part of the Dog’s state. But…
the Collar is not Serializable, so we must mark it transient. That means when
the Dog is deserialized, it comes back with a null Collar. What can we do to
somehow make sure that when the Dog is deserialized, it gets a new Collar that
matches the one the Dog had when the Dog was saved?

Java serialization has a special mechanism just for this—a set of private methods
you can implement in your class that, if present, will be invoked automatically
during serialization and deserialization. It’s almost as if the methods were defined in
the Serializable interface, except they aren’t. They are part of a special callback
contract the serialization system offers you that basically says, "If you (the programmer)
have a pair of methods matching this exact signature (you’ll see them in a moment),
these methods will be called during the serialization/deserialization process."

These methods let you step into the middle of serialization and deserialization. So
they’re perfect for letting you solve the Dog/Collar problem: when a Dog is being
saved, you can step into the middle of serialization and say, "By the way, I’d like to
add the state of the Collar’s variable (an int) to the stream when the Dog is
serialized." You’ve manually added the state of the Collar to the Dog’s serialized
representation, even though the Collar itself is not saved.

Of course, you’ll need to restore the Collar during deserialization by stepping
into the middle and saying, "I’ll read that extra int I saved to the Dog stream, and
use it to create a new Collar, and then assign that new Collar to the Dog that’s
being deserialized." The two special methods you define must have signatures that
look EXACTLY like this:

private void writeObject(ObjectOutputStream os) {
 // your code for saving the Collar variables
}

private void readObject(ObjectInputStream is) {
 // your code to read the Collar state, create a new Collar,
 // and assign it to the Dog
}

Yes, we’re going to write methods that have the same name as the ones we’ve
been calling! Where do these methods go? Let’s change the Dog class:

class Dog implements Serializable {
 transient private Collar theCollar; // we can’t serialize this
 private int dogSize;
 public Dog(Collar collar, int size) {
 theCollar = collar;
 dogSize = size;
 }

Appendix A.indd 8Appendix A.indd 8 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-9

 public Collar getCollar() { return theCollar; }
 private void writeObject(ObjectOutputStream os) {
 // throws IOException { // 1
 try {
 os.defaultWriteObject(); // 2
 os.writeInt(theCollar.getCollarSize()); // 3
 } catch (Exception e) { e.printStackTrace(); }
 }
 private void readObject(ObjectInputStream is) {
 // throws IOException, ClassNotFoundException { // 4
 try {
 is.defaultReadObject(); // 5
 theCollar = new Collar(is.readInt()); // 6
 } catch (Exception e) { e.printStackTrace(); }
 }
}

Let’s take a look at the preceding code.
In our scenario we’ve agreed that, for whatever real-world reason, we can’t

serialize a Collar object, but we want to serialize a Dog. To do this we’re going to
implement writeObject() and readObject(). By implementing these two
methods you’re saying to the compiler: "If anyone invokes writeObject() or
readObject() concerning a Dog object, use this code as part of the read and write."

 1. Like most I/O-related methods writeObject() can throw exceptions. You
can declare them or handle them but we recommend handling them.

 2. When you invoke defaultWriteObject() from within writeObject()
you’re telling the JVM to do the normal serialization process for this object.
When implementing writeObject(), you will typically request the normal
serialization process, and do some custom writing and reading too.

 3. In this case we decided to write an extra int (the collar size) to the stream
that’s creating the serialized Dog. You can write extra stuff before and/or after
you invoke defaultWriteObject(). BUT…when you read it back in, you
have to read the extra stuff in the same order you wrote it.

 4. Again, we chose to handle rather than declare the exceptions.

 5. When it’s time to deserialize, defaultReadObject() handles the normal
deserialization you’d get if you didn’t implement a readObject() method.

 6. Finally we build a new Collar object for the Dog using the collar size that
we manually serialized. (We had to invoke readInt() after we invoked
defaultReadObject() or the streamed data would be out of sync!)

Appendix A.indd 9Appendix A.indd 9 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-10 Appendix A: Serialization

Remember, the most common reason to implement writeObject() and
readObject() is when you have to save some part of an object’s state manually. If
you choose, you can write and read ALL of the state yourself, but that’s very rare. So,
when you want to do only a part of the serialization/deserialization yourself, you
MUST invoke the defaultReadObject() and defaultWriteObject() methods
to do the rest.

Which brings up another question—why wouldn’t all Java classes be serializable?
Why isn’t class Object serializable? There are some things in Java that simply cannot
be serialized because they are runtime specific. Things like streams, threads, runtime,
etc. and even some GUI classes (which are connected to the underlying OS) cannot
be serialized. What is and is not serializable in the Java API is NOT part of the
exam, but you’ll need to keep them in mind if you’re serializing complex objects.

How Inheritance Affects Serialization

Serialization is very cool, but in order to apply it effectively you’re going to have to
understand how your class’s superclasses affect serialization.

If a superclass is Serializable, then according to normal Java interface

rules, all subclasses of that class automatically implement Serializable implicitly.

In other words, a subclass of a class marked Serializable passes the IS-A test for

Serializable, and thus can be saved without having to explicitly mark the subclass

as Serializable. You simply cannot tell whether a class is or is not Serializable

UNLESS you can see the class inheritance tree to see if any other superclasses

implement Serializable. If the class does not explicitly extend any other class, and

does not implement Serializable, then you know for CERTAIN that the class is not

Serializable, because class Object does NOT implement Serializable.

That brings up another key issue with serialization…what happens if a superclass
is not marked Serializable, but the subclass is? Can the subclass still be serialized
even if its superclass does not implement Serializable? Imagine this:

class Animal { }
class Dog extends Animal implements Serializable {
 // the rest of the Dog code
}

Appendix A.indd 10Appendix A.indd 10 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-11

Now you have a Serializable Dog class, with a non-Serializable superclass. This
works! But there are potentially serious implications. To fully understand those
implications, let’s step back and look at the difference between an object that comes
from deserialization vs. an object created using new. Remember, when an object is
constructed using new (as opposed to being deserialized), the following things
happen (in this order):

 1. All instance variables are assigned default values.

 2. The constructor is invoked, which immediately invokes the superclass
constructor (or another overloaded constructor, until one of the overloaded
constructors invokes the superclass constructor).

 3. All superclass constructors complete.

 4. Instance variables that are initialized as part of their declaration are assigned
their initial value (as opposed to the default values they’re given prior to the
superclass constructors completing).

 5. The constructor completes.

But these things do NOT happen when an object is deserialized. When an instance of
a serializable class is deserialized, the constructor does not run, and instance variables
are NOT given their initially assigned values! Think about it—if the constructor
were invoked, and/or instance variables were assigned the values given in their
declarations, the object you’re trying to restore would revert back to its original
state, rather than coming back reflecting the changes in its state that happened
sometime after it was created. For example, imagine you have a class that declares an
instance variable and assigns it the int value 3, and includes a method that changes
the instance variable value to 10:

class Foo implements Serializable {
 int num = 3;
 void changeNum() { num = 10; }
}

Obviously if you serialize a Foo instance after the changeNum() method runs, the
value of the num variable should be 10. When the Foo instance is deserialized, you
want the num variable to still be 10! You obviously don’t want the initialization (in
this case, the assignment of the value 3 to the variable num) to happen. Think of
constructors and instance variable assignments together as part of one complete
object initialization process (and in fact, they DO become one initialization method
in the bytecode). The point is, when an object is deserialized we do NOT want any

Appendix A.indd 11Appendix A.indd 11 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-12 Appendix A: Serialization

of the normal initialization to happen. We don’t want the constructor to run, and we
don’t want the explicitly declared values to be assigned. We want only the values
saved as part of the serialized state of the object to be reassigned.

Of course if you have variables marked transient, they will not be restored to
their original state (unless you implement readObject()), but will instead be given
the default value for that data type. In other words, even if you say

class Bar implements Serializable {
 transient int x = 42;
}

when the Bar instance is deserialized, the variable x will be set to a value of 0.
Object references marked transient will always be reset to null, regardless of
whether they were initialized at the time of declaration in the class.

So, that’s what happens when the object is deserialized, and the class of the
serialized object directly extends Object, or has ONLY serializable classes in its
inheritance tree. It gets a little trickier when the serializable class has one or more
non-serializable superclasses. Getting back to our non-serializable Animal class with
a serializable Dog subclass example:

class Animal {
 public String name;
}
class Dog extends Animal implements Serializable {
 // the rest of the Dog code
}

Because Animal is NOT serializable, any state maintained in the Animal class,
even though the state variable is inherited by the Dog, isn’t going to be restored with
the Dog when it’s deserialized! The reason is, the (unserialized) Animal part of the
Dog is going to be reinitialized just as it would be if you were making a new Dog (as
opposed to deserializing one). That means all the things that happen to an object
during construction, will happen—but only to the Animal parts of a Dog. In other
words, the instance variables from the Dog’s class will be serialized and deserialized
correctly, but the inherited variables from the non-serializable Animal superclass will
come back with their default/initially assigned values rather than the values they
had at the time of serialization.

If you are a serializable class, but your superclass is NOT serializable, then any
instance variables you INHERIT from that superclass will be reset to the values they
were given during the original construction of the object. This is because the
non-serializable class constructor WILL run!

Appendix A.indd 12Appendix A.indd 12 9/17/2014 12:10:23 PM9/17/2014 12:10:23 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-13

In fact, every constructor ABOVE the first non-serializable class constructor will
also run, no matter what, because once the first super constructor is invoked (during
deserialization), it of course invokes its super constructor and so on up the
inheritance tree.

For the exam, you’ll need to be able to recognize which variables will and will not
be restored with the appropriate values when an object is deserialized, so be sure to
study the following code example and the output:

import java.io.*;
class SuperNotSerial {
 public static void main(String [] args) {

 Dog d = new Dog(35, "Fido");
 System.out.println("before: " + d.name + " "
 + d.weight);
 try {
 FileOutputStream fs = new FileOutputStream("testSer.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(d);
 os.close();
 } catch (Exception e) { e.printStackTrace(); }
 try {
 FileInputStream fis = new FileInputStream("testSer.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (Dog) ois.readObject();
 ois.close();
 } catch (Exception e) { e.printStackTrace(); }

 System.out.println("after: " + d.name + " "
 + d.weight);
 }
}
class Dog extends Animal implements Serializable {
 String name;
 Dog(int w, String n) {
 weight = w; // inherited
 name = n; // not inherited
 }
}
class Animal { // not serializable !
 int weight = 42;
}

which produces the output:

before: Fido 35
after: Fido 42

Appendix A.indd 13Appendix A.indd 13 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

A-14 Appendix A: Serialization

The key here is that because Animal is not serializable, when the Dog was
deserialized, the Animal constructor ran and reset the Dog’s inherited weight
variable.

If you serialize a collection or an array, every element must be

serializable! A single non-serializable element will cause serialization to fail. Note also

that while the collection interfaces are not serializable, the concrete collection classes in

the Java API are.

Serialization Is Not for Statics

Finally, you might notice that we’ve talked ONLY about instance variables, not
static variables. Should static variables be saved as part of the object’s state? Isn’t the
state of a static variable at the time an object was serialized important? Yes and no. It
might be important, but it isn’t part of the instance’s state at all. Remember, you
should think of static variables purely as CLASS variables. They have nothing to do
with individual instances. But serialization applies only to OBJECTS. And what
happens if you deserialize three different Dog instances, all of which were serialized
at different times, and all of which were saved when the value of a static variable in
class Dog was different. Which instance would "win"? Which instance’s static value
would be used to replace the one currently in the one and only Dog class that’s
currently loaded? See the problem?

Static variables are NEVER saved as part of the object’s state…because they do
not belong to the object!

What about DataInputStream and DataOutputStream? They’re in the

objectives! It turns out that while the exam was being created, it was decided that those

two classes wouldn’t be on the exam after all, but someone forgot to remove them from

the objectives! So you get a break. That’s one less thing you’ll have to worry about.

Appendix A.indd 14Appendix A.indd 14 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Serialization (OCP 7 Objective 7.2) A-15

As simple as serialization code is to write, versioning problems can occur

in the real world. If you save a Dog object using one version of the class,

but attempt to deserialize it using a newer, different version of the class,

deserialization might fail. See the Java API for details about versioning issues

and solutions.

CERTIFICATION SUMMARY

Serialization lets you save, ship, and restore everything you need to know about a
live object. And when your object points to other objects, they get saved too. The
java.io.ObjectOutputStream and java.io.ObjectInputStream classes are
used to serialize and deserialize objects. Typically you wrap them around instances of
FileOutputStream and FileInputStream, respectively.

The key method you invoke to serialize an object is writeObject(), and to
deserialize an object invoke readObject(). In order to serialize an object, it must
implement the Serializable interface. Mark instance variables transient if you
don’t want their state to be part of the serialization process. You can augment the
serialization process for your class by implementing writeObject() and
readObject(). If you do that, an embedded call to defaultReadObject() and
defaultWriteObject() will handle the normal serialization tasks, and you can
augment those invocations with manual reading from and writing to the stream.

If a superclass implements Serializable then all of its subclasses do too. If a
superclass doesn’t implement Serializable, then when a subclass object is
deserialized the non-serializable superclass’s constructor runs—be careful! Finally,
remember that serialization is about instances, so static variables aren’t serialized.

Appendix A.indd 15Appendix A.indd 15 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

A-16 Appendix A: Serialization

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this appendix.

Serialization (OCP 7 Objective 7.2)

❑ The classes you need to understand are all in the java.io package; they
include: ObjectOutputStream and ObjectInputStream primarily, and
FileOutputStream and FileInputStream because you will use them to
create the low-level streams that the ObjectXxxStream classes will use.

❑ A class must implement Serializable before its objects can be serialized.

❑ The ObjectOutputStream.writeObject() method serializes objects, and
the ObjectInputStream.readObject() method deserializes objects.

❑ If you mark an instance variable transient, it will not be serialized even
though the rest of the object’s state will be.

❑ You can supplement a class’s automatic serialization process by implementing
the writeObject() and readObject() methods. If you do this, embedding
calls to defaultWriteObject() and defaultReadObject(), respectively,
will handle the part of serialization that happens normally.

❑ If a superclass implements Serializable, then its subclasses do
automatically.

❑ If a superclass doesn’t implement Serializable, then when a subclass object
is deserialized, the superclass constructor will be invoked, along with its
superconstructor(s).

❑ DataInputStream and DataOutputStream aren’t actually on the exam, in
spite of what the Oracle objectives say.

✓

Appendix A.indd 16Appendix A.indd 16 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test A-17

SELF TEST

 1. Given:

import java.io.*;
class Player {
 Player() { System.out.print("p"); }
}
class CardPlayer extends Player implements Serializable {
 CardPlayer() { System.out.print("c"); }
 public static void main(String[] args) {
 CardPlayer c1 = new CardPlayer();
 try {
 FileOutputStream fos = new FileOutputStream("play.txt");
 ObjectOutputStream os = new ObjectOutputStream(fos);
 os.writeObject(c1);
 os.close();
 FileInputStream fis = new FileInputStream("play.txt");
 ObjectInputStream is = new ObjectInputStream(fis);
 CardPlayer c2 = (CardPlayer) is.readObject();
 is.close();
 } catch (Exception x) { }
 }
}

 What is the result?
 A. pc

 B. pcc

 C. pcp

 D. pcpc

 E. Compilation fails
 F. An exception is thrown at runtime

Appendix A.indd 17Appendix A.indd 17 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

A-18 Appendix A: Serialization

 2. Given:

import java.io.*;

class Keyboard { }
public class Computer implements Serializable {
 private Keyboard k = new Keyboard();
 public static void main(String[] args) {
 Computer c = new Computer();
 c.storeIt(c);
 }
 void storeIt(Computer c) {
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(c);
 os.close();
 System.out.println("done");
 } catch (Exception x) {System.out.println("exc"); }
 }
}

 What is the result? (Choose all that apply.)
 A. exc

 B. done

 C. Compilation fails
 D. Exactly one object is serialized
 E. Exactly two objects are serialized

Appendix A.indd 18Appendix A.indd 18 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 /OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test A-19

 3. Given:

import java.io.*;

public class TestSer {
 public static void main(String[] args) {
 SpecialSerial s = new SpecialSerial();
 try {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("myFile"));
 os.writeObject(s); os.close();
 System.out.print(++s.z + " ");

 ObjectInputStream is = new ObjectInputStream(
 new FileInputStream("myFile"));
 SpecialSerial s2 = (SpecialSerial)is.readObject();
 is.close();
 System.out.println(s2.y + " " + s2.z);
 } catch (Exception x) {System.out.println("exc"); }
 }
}
class SpecialSerial implements Serializable {
 transient int y = 7;
 static int z = 9;
}

 Which are true? (Choose all that apply.)
 A. Compilation fails
 B. The output is 10 0 9
 C. The output is 10 0 10
 D. The output is 10 7 9
 E. The output is 10 7 10
 F. In order to alter the standard deserialization process you would implement the

 readObject() method in SpecialSerial
 G. In order to alter the standard deserialization process you would implement the

 defaultReadObject() method in SpecialSerial

Appendix A.indd 19Appendix A.indd 19 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

A-20 Appendix A: Serialization

 4. Given:

 3. import java.io.*;
 4. class Vehicle { }
 5. class Wheels { }
 6. class Car extends Vehicle implements Serializable { }
 7. class Ford extends Car { }
 8. class Dodge extends Car {
 9. Wheels w = new Wheels();
10. }

 Instances of which class(es) can be serialized? (Choose all that apply.)
 A. Car

 B. Ford

 C. Dodge

 D Wheels

 E. Vehicle

Appendix A.indd 20Appendix A.indd 20 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test Answers A-21

SELF TEST ANSWERS

 1. ☑ C is correct. It’s okay for a class to implement Serializable even if its superclass
doesn’t. However, when you deserialize such an object, the non-serializable superclass must
run its constructor. Remember, constructors don’t run on deserialized classes that implement
Serializable.
☐✗ A, B, D, E, and F are incorrect based on the above. (OCP 7 Objective 7.2)

 2. ☑ A is correct. An instance of type Computer Has-a Keyboard. Because Keyboard doesn’t
implement Serializable, any attempt to serialize an instance of Computer will cause an
exception to be thrown.
☐✗ B, C, D, and E are incorrect based on the above. If Keyboard did implement
Serializable then two objects would have been serialized. (OCP 7 Objective 7.2)

 3. ☑ C and F are correct. C is correct because static and transient variables are not
serialized when an object is serialized. F is a valid statement.
☐✗ A, B, D, and E are incorrect based on the above. G is incorrect because you don’t
implement the defaultReadObject() method, you call it from within the readObject()
method, along with any custom read operations your class needs. (OCP 7 Objective 7.2)

 4. ☑ A and B are correct. Dodge instances cannot be serialized because they "have" an instance
of Wheels, which is not serializable. Vehicle instances cannot be serialized even though the
subclass Car can be.
☐✗ C, D, and E are incorrect based on the above. (OCP 7 Objective 7.2)

Appendix A.indd 21Appendix A.indd 21 9/17/2014 12:10:24 PM9/17/2014 12:10:24 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Use Packages and Imports •
Determine Runtime Behavior for Classes •
and Command-Lines

Use Classes in JAR Files •

Use Classpaths to Compile Code •
Two-Minute Drill ✓

Q&A Self Test

Appendix BAppendix B
Classpaths and JARsClasspaths and JARs

CERTIFICATION OBJECTIVES

Appendix B.indd 1Appendix B.indd 1 9/17/2014 12:15:16 PM9/17/2014 12:15:16 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-2 Appendix B: Classpaths and JARs

Note: This appendix covers topics included in the OCPJP 5 and OCPJP 6

exams, but that are no longer included in the OCP 7 exam. A few sections in
this bonus appendix might be repeated in the book. These sections are (more or less)

repeated here so this appendix will be cohesive.

You want to keep your classes organized. You need to have powerful ways for your
classes to find each other. You want to make sure that when you’re looking for a
particular class you get the one you want, and not another class that happens to
have the same name. In this appendix, we’ll explore some of the advanced
capabilities of the java and javac commands. We’ll also revisit the use of packages
in Java and how to search for classes that live in packages.

CERTIFICATION OBJECTIVE

Using the javac and java Commands
(OCPJP Exam Objectives 7.1, 7.2, and 7.5)

7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

7.2 Given an example of a class and a command-line, determine the expected runtime
behavior.

7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and a
classpath, determine whether the classpath will allow the code to compile successfully.

So far, we’ve probably talked about invoking the javac and java commands
about 1000 times; now we’re going to take a closer look.

Appendix B.indd 2Appendix B.indd 2 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5) B-3

Compiling with javac

The javac command is used to invoke Java’s compiler. In Chapter 7, we talked
about the assertion mechanism and when you might use the -source option when
compiling a file. There are many other options you can specify when running javac,
options to generate debugging information or compiler warnings, for example. For
the exam, you’ll need to understand the -classpath and -d options, which we’ll
cover in the next few pages. Here’s the structural overview for javac:

javac [options] [source files]

There are additional command-line options called @argfiles, but you won’t
need to study them for the exam. Both the [options] and the [source files]
are optional parts of the command, and both allow multiple entries. The following
are both legal javac commands:

javac -help
javac -classpath com:. -g Foo.java Bar.java

The first invocation doesn’t compile any files, but prints a summary of valid
options. The second invocation passes the compiler two options (-classpath,
which itself has an argument of com:. and -g), and passes the compiler two .java
files to compile (Foo.java and Bar.java). Whenever you specify multiple options
and/or files they should be separated by spaces.

Compiling with -d

By default, the compiler puts a .class file in the same directory as the .java source
file. This is fine for very small projects, but once you’re working on a project of any
size at all, you’ll want to keep your .java files separated from your .class files.
(This helps with version control, testing, deployment…) The -d option lets you tell
the compiler in which directory to put the .class file(s) it generates (d is for
destination). Let’s say you have the following directory structure:

myProject
 |
 |--source
 | |
 | |-- MyClass.java
 |
 |-- classes
 |
 |--

Appendix B.indd 3Appendix B.indd 3 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-4 Appendix B: Classpaths and JARs

The following command, issued from the myProject directory, will compile
MyClass.java and put the resulting MyClass.class file into the classes
directory. (Note: This assumes that MyClass does not have a package statement;
we’ll talk about packages in a minute.)

cd myProject
javac -d classes source/MyClass.java

This command also demonstrates selecting a .java file from a subdirectory of the
directory from which the command was invoked. Now let’s take a quick look at how
packages work in relationship to the -d option.

Suppose we have the following .java file in the following directory structure:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |-- (MyClass.class goes here)

If you were in the source directory, you would compile MyClass.java and put
the resulting MyClass.class file into the classes/com/wickedlysmart directory
by invoking the following command:

javac -d ../classes com/wickedlysmart/MyClass.java

This command could be read: "To set the destination directory, cd back to the
myProject directory then cd into the classes directory, which will be your destination.
Then compile the file named MyClass.java. Finally, put the resulting MyClass.class
file into the directory structure that matches its package, in this case, classes/com/
wickedlysmart." Because MyClass.java is in a package, the compiler knew to put
the resulting .class file into the classes/com/wickedlysmart directory.

Appendix B.indd 4Appendix B.indd 4 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5) B-5

Somewhat amazingly, the javac command can sometimes help you out by
building directories it needs! Suppose we have the following:

package com.wickedlysmart;
public class MyClass { }
myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |

And the following command (the same as last time):

javac -d ../classes com/wickedlysmart/MyClass.java

In this case, the compiler will build two directories called com and com/wickedlysmart
in order to put the resulting MyClass.class file into the correct package directory
(com/wickedlysmart/) which it builds within the existing .../classes directory.

The last thing about -d that you’ll need to know for the exam is that if the
destination directory you specify doesn’t exist, you’ll get a compiler error. If, in the
previous example, the classes directory did NOT exist, the compiler would say
something like:

java:5: error while writing MyClass: classes/MyClass.class (No such file
or directory)

Launching Applications with java

The java command is used to invoke the Java Virtual Machine. In Chapter 7 we
talked about the assertion mechanism and when you might use flags such as -ea or
-da when launching an application. There are many other options you can specify
when running the java command, but for the exam, you’ll need to understand the
-classpath (and its twin -cp) and -D options, which we’ll cover in the next few
pages. In addition, it’s important to understand the structure of this command.
Here’s the overview:

java [options] class [args]

Appendix B.indd 5Appendix B.indd 5 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-6 Appendix B: Classpaths and JARs

The [options] and [args] parts of the java command are optional, and they
can both have multiple values. You must specify exactly one class file to execute,
and the java command assumes you’re talking about a .class file, so you don’t
specify the .class extension on the command line. Here’s an example:

java -DmyProp=myValue MyClass x 1

Sparing the details for later, this command can be read as "Create a system property
called myProp and set its value to myValue. Then launch the file named MyClass.
class and send it two String arguments whose values are x and 1."

Let’s look at system properties and command-line arguments more closely.

Using System Properties

Java has a class called java.util.Properties that can be used to access a system’s
persistent information such as the current versions of the operating system, the Java
compiler, and the Java virtual machine. In addition to providing such default
information, you can also add and retrieve your own properties. Take a look at the
following:

import java.util.*;
public class TestProps {
 public static void main(String[] args) {
 Properties p = System.getProperties();
 p.setProperty("myProp", "myValue");
 p.list(System.out);
 }
}

If this file is compiled and invoked as follows:

java -DcmdProp=cmdVal TestProps

you’ll get something like this:

...
os.name=Mac OS X
myProp=myValue
...
java.specification.vendor=Sun Microsystems Inc.
user.language=en
java.version=1.6.0_05
...
cmdProp=cmdVal
...

Appendix B.indd 6Appendix B.indd 6 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5) B-7

where the ... represent lots of other name=value pairs. (The name and value are
sometimes called the key and the property.) Two name=value properties were added
to the system’s properties: myProp=myValue was added via the setProperty method,
and cmdProp=cmdVal was added via the -D option at the command line. When
using the -D option, if your value contains white space the entire value should be
placed in quotes like this:

java -DcmdProp="cmdVal take 2" TestProps

Just in case you missed it, when you use -D, the name=value pair must follow
immediately, no spaces allowed.

The getProperty() method is used to retrieve a single property. It can be
invoked with a single argument (a String that represents the name (or key)), or it
can be invoked with two arguments, (a String that represents the name (or key),
and a default String value to be used as the property if the property does not already
exist). In both cases, getProperty() returns the property as a String.

Handling Command-Line Arguments

Let’s return to an example of launching an application and passing in arguments
from the command line. If we have the following code:

public class CmdArgs {
 public static void main(String[] args) {
 int x = 0;
 for(String s : args)
 System.out.println(x++ + " element = " + s);
 }
}

compiled and then invoked as follows

java CmdArgs x 1

the output will be

0 element = x
1 element = 1

Like all arrays, args index is zero based. Arguments on the command line directly
follow the class name. The first argument is assigned to args[0], the second
argument is assigned to args[1], and so on.

Finally, there is some flexibility in the declaration of the main() method that is
used to start a Java application. The order of main()’s modifiers can be altered a

Appendix B.indd 7Appendix B.indd 7 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-8 Appendix B: Classpaths and JARs

little, the String array doesn’t have to be named args, and as of Java 5 it can be
declared using var-args syntax. The following are all legal declarations for main():

static public void main(String[] args)
public static void main(String... x)
static public void main(String bang_a_gong[])

Searching for Other Classes

In most cases, when we use the java and javac commands, we want these commands
to search for other classes that will be necessary to complete the operation. The most
obvious case is when classes we create use classes provided with J2SE (now sometimes
called Java SE), for instance, when we use classes in java.lang or java.util. The
next common case is when we want to compile a file or run a class that uses other
classes that have been created outside of what is provided, for instance, our own
previously created classes. Remember that for any given class, the java virtual machine
will need to find exactly the same supporting classes that the javac compiler needed
to find at compilation time. In other words, if javac needed access to java.util.
HashMap, then the java command will need to find java.util.HashMap as well.

Both java and javac use the same basic search algorithm:

 1. They both have the same list of places (directories) they search, to look for
classes.

 2. They both search through this list of directories in the same order.

 3. As soon as they find the class they’re looking for, they stop searching for that
class. In the case that their search lists contain two or more files with the
same name, the first file found will be the file that is used.

 4. The first place they look is in the directories that contain the classes that
come standard with J2SE.

 5. The second place they look is in the directories defined by classpaths.

 6. Classpaths should be thought of as "class search paths." They are lists of
directories in which classes might be found.

 7. There are two places where classpaths can be declared: A classpath can be
declared as an operating system environment variable. The classpath declared
here is used, by default, whenever java or javac is invoked. A classpath can
be declared as a command-line option for either java or javac. Classpaths
declared as command-line options override the classpath declared as an environment
variable, but they persist only for the length of the invocation.

Appendix B.indd 8Appendix B.indd 8 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5) B-9

Declaring and Using Classpaths

Classpaths consist of a variable number of directory locations, separated by
delimiters. For Unix-based operating systems, forward slashes are used to construct
directory locations, and the separator is the colon (:). For example:

-classpath /com/foo/acct:/com/foo

specifies two directories in which classes can be found: /com/foo/acct and /com/
foo. In both cases, these directories are absolutely tied to the root of the file system,
which is specified by the leading forward slash. It’s important to remember that
when you specify a subdirectory, you’re NOT specifying the directories above it. For
instance, in the preceding example the directory /com will NOT be searched.

Most of the path-related questions on the exam will use Unix

conventions. If you are a Windows user, your directories will be declared using backslashes

(\) and the separator character you use will be a semicolon (;). But again, you will NOT

need any shell-specifi c knowledge for the exam.

A very common situation occurs in which java or javac complains that it can’t
find a class file, and yet you can see that the file is IN the current directory! When
searching for class files, the java and javac commands don’t search the current
directory by default. You must tell them to search there. The way to tell java or
javac to search in the current directory is to add a dot (.) to the classpath:

-classpath /com/foo/acct:/com/foo:.

This classpath is identical to the previous one EXCEPT that the dot (.) at the
end of the declaration instructs java or javac to also search for class files in the
current directory. (Remember, we’re talking about class files—when you’re telling
javac which .java file to compile, javac looks in the current directory by default.)

It’s also important to remember that classpaths are searched from left to right.
Therefore in a situation where classes with duplicate names are located in several
different directories in the following classpaths, different results will occur:

-classpath /com:/foo:.

Appendix B.indd 9Appendix B.indd 9 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-10 Appendix B: Classpaths and JARs

is not the same as

-classpath .:/foo:/com

Finally, the java command allows you to abbreviate -classpath with -cp. The
Java documentation is inconsistent about whether the javac command allows the
-cp abbreviation. On most machines it does, but there are no guarantees.

Packages and Searching

When you start to put classes into packages, and then start to use classpaths to find
these classes, things can get tricky. The exam creators knew this, and they tried to
create an especially devilish set of package/classpath questions with which to
confound you. Let’s start off by reviewing packages. In the following code:

package com.foo;
public class MyClass { public void hi() { } }

we’re saying that MyClass is a member of the com.foo package. This means that
the fully qualified name of the class is now com.foo.MyClass. Once a class is in a
package, the package part of its fully qualified name is atomic—it can never be
divided. You can’t split it up on the command line, and you can’t split it up in an
import statement.

Now let’s see how we can use com.foo.MyClass in another class:

package com.foo;
public class MyClass { public void hi() { } }

And in another file:

import com.foo.MyClass; // either import will work
import com.foo.*;
public class Another {
 void go() {
 MyClass m1 = new MyClass(); // alias name
 com.foo.MyClass m2 = new com.foo.MyClass(); // full name
 m1.hi();
 m2.hi();
 }
}

It’s easy to get confused when you use import statements. The preceding code is
perfectly legal. The import statement is like an alias for the class’s fully qualified
name. You define the fully qualified name for the class with an import statement (or
with a wildcard in an import statement of the package). Once you’ve defined the

Appendix B.indd 10Appendix B.indd 10 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5) B-11

fully qualified name, you can use the "alias" in your code—but the alias is referring
back to the fully qualified name.

Now that we’ve reviewed packages, let’s take a look at how they work in
conjunction with classpaths and command lines. First we’ll start off with the idea
that when you’re searching for a class using its fully qualified name, that fully
qualified name relates closely to a specific directory structure. For instance, relative
to your current directory, the class whose source code is

package com.foo;
public class MyClass { public void hi() { } }

would have to be located here:

com/foo/MyClass.class

In order to find a class in a package, you have to have a directory in your
classpath that has the package’s leftmost entry (the package’s "root") as a
subdirectory.

This is an important concept, so let’s look at another example:

import com.wickedlysmart.Utils;
class TestClass {
 void doStuff() {
 Utils u = new Utils(); // simple name
 u.doX("arg1", "arg2");
 com.wickedlysmart.Date d =
 new com.wickedlysmart.Date(); // full name
 d.getMonth("Oct");
 }
}

In this case we’re using two classes from the package com.wickedlysmart. For
the sake of discussion we imported the fully qualified name for the Utils class, and
we didn’t for the Date class. The only difference is that because we listed Utils in
an import statement, we didn’t have to type its fully qualified name inside the class.
In both cases the package is com.wickedlysmart. When it’s time to compile or run
TestClass, the classpath will have to include a directory with the following
attributes:

■ A subdirectory named com (we’ll call this the "package root" directory)

■ A subdirectory in com named wickedlysmart

■ Two files in wickedlysmart named Utils.class and Date.class

Appendix B.indd 11Appendix B.indd 11 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-12 Appendix B: Classpaths and JARs

Finally, the directory that has all of these attributes has to be accessible (via a
classpath) in one of two ways:

 1. The path to the directory must be absolute, in other words, from the root
(the file system root, not the package root).

 OR

 2. The path to the directory has to be correct relative to the current directory.

Relative and Absolute Paths

A classpath is a collection of one or more paths. Each path in a classpath is either an
absolute path or a relative path. An absolute path in Unix begins with a forward
slash (/) (on Windows it would be something like c:\). The leading slash indicates
that this path is starting from the root directory of the system. Because it’s starting
from the root, it doesn’t matter what the current directory is—a directory’s absolute
path is always the same. A relative path is one that does NOT start with a slash. Here’s
an example of a full directory structure, and a classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp dirB:dirB/dirC

In this example, dirB and dirB/dirC are relative paths (they don’t start with a
slash /). Both of these relative paths are meaningful only when the current directory
is dirA. Pop Quiz! If the current directory is dirA, and you’re searching for class
files, and you use the classpath described above, which directories will be searched?

dirA? dirB? dirC?

Too easy? How about the same question if the current directory is the root (/)?
When the current directory is dirA, then dirB and dirC will be searched, but
not dirA (remember, we didn’t specify the current directory by adding a dot (.)
to the classpath). When the current directory is root, since dirB is not a direct
subdirectory of root, no directories will be searched. Okay, how about if the current
directory is dirB? Again, no directories will be searched! This is because dirB
doesn’t have a subdirectory named dirB. In other words, Java will look in dirB

Appendix B.indd 12Appendix B.indd 12 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

JAR Files (Objective 7.5) B-13

for a directory named dirB (which it won’t find), without realizing that it’s already
in dirB.

Let’s use the same directory structure and a different classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp /dirB:/dirA/dirB/dirC

In this case, what directories will be searched if the current directory is dirA?
How about if the current directory is root? How about if the current directory is
dirB? In this case, both paths in the classpath are absolute. It doesn’t matter what
the current directory is; since absolute paths are specified the search results will
always be the same. Specifically, only dirC will be searched, regardless of the current
directory. The first path (/dirB) is invalid since dirB is not a direct subdirectory of
root, so dirB will never be searched. And, one more time, for emphasis, since dot
(.) is not in the classpath, the current directory will only be searched if it happens
to be described elsewhere in the classpath (in this case, dirC).

CERTIFICATION OBJECTIVE

JAR Files (Objective 7.5)

7.5 Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and a
classpath, determine whether the classpath will allow the code to compile successfully.

JAR Files and Searching

Once you’ve built and tested your application, you might want to bundle it up so
that it’s easy to distribute and easy for other people to install. One mechanism that
Java provides for these purposes is a JAR file. JAR stands for Java Archive. JAR files
are used to compress data (similar to ZIP files) and to archive data.

Appendix B.indd 13Appendix B.indd 13 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-14 Appendix B: Classpaths and JARs

Here’s an application with classes in different packages:
test
 |--UseStuff.java
 |--ws
 |--(create MyJar.jar here)
 |--myApp
 |--utils
 | |--Dates.class (package myApp.utils;)
 |--engine
 |--rete.class (package myApp.engine;)
 |--minmax.class " "

You can create a single JAR file that contains all of the files in myApp, and also
maintains myApp’s directory structure. Once this JAR file is created, it can be moved
from place to place, and from machine to machine, and all of the classes in the JAR
file can be accessed, via classpaths, by java and javac, without ever unJARing the
JAR file. Although you won’t need to know how to make JAR files for the exam,
let’s make the current directory ws, and then make a JAR file called MyJar.jar:

cd ws
jar -cf MyJar.jar myApp

The jar command will create a JAR file called MyJar.jar and it will contain
the myApp directory and myApp’s entire subdirectory tree and files. You can look at
the contents of the JAR file with the next command (this isn’t on the exam either):

jar -tf MyJar.jar

which produces something like:
META-INF/
META-INF/MANIFEST.MF
myApp/
myApp/.DS_Store
myApp/utils/
myApp/utils/Dates.class
myApp/engine/
myApp/engine/rete.class
myApp/engine/minmax.class

Here are some rules concerning the structure of JAR fi les:

■ The jar command creates the META-INF directory automatically.

■ The jar command creates the MANIFEST.MF fi le automatically.

■ The jar command won’t place any of your fi les in META-INF/.

■ As you can see above, the exact tree structure is represented.

■ java and javac will use the JAR like a normal directory tree.

Appendix B.indd 14Appendix B.indd 14 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

JAR Files (Objective 7.5) B-15

Back to exam stuff. Finding a JAR file using a classpath is similar to finding a
package file in a classpath. The difference is that when you specify a path for a JAR
file, you must include the name of the JAR file at the end of the path. Let’s say you want
to compile UseStuff.java in the test directory, and UseStuff.java needs access
to a class contained in myApp.jar. To compile UseStuff.java say

cd test
javac -classpath ws/myApp.jar UseStuff.java

Compare the use of the JAR file to using a class in a package. If UseStuff.java
needed to use classes in the myApp.utils package, and the class was not in a JAR,
you would say

cd test
javac -classpath ws UseStuff.java

Remember when using a classpath, the last directory in the path must be the
super-directory of the root directory for the package. (In the preceding example,
myApp is the root directory of the package myApp.utils.) Notice that myApp can be
the root directory for more than one package (myApp.utils and myApp.engine),
and the java and javac commands can find what they need across multiple peer
packages like this. So, if ws is on the classpath and ws is the super-directory of myApp,
then classes in both the myApp.utils and myApp.engine packages will be found.

When you use an import statement you are declaring only one package.

When you say import java.util.*; you are saying "Use the short name for all of the

classes in the java.util package." You’re NOT getting the java.util.jar classes or java.

util.regex packages! Those packages are totally independent of each other; the only

thing they share is the same "root" directory, but they are not the same packages. As a

corollary, you can’t say import java.*; in the hopes of importing multiple packages—

just remember, an import statement can import only a single package.

Using.../jre/lib/extwith JAR files

When you install Java, you end up with a huge directory tree of Java-related stuff,
including the JAR files that contain the classes that come standard with J2SE. As
we discussed earlier, java and javac have a list of places that they access when
searching for class files. Buried deep inside of your Java directory tree is a subdirectory

Appendix B.indd 15Appendix B.indd 15 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-16 Appendix B: Classpaths and JARs

tree named jre/lib/ext. If you put JAR files into the ext subdirectory, java and
javac can find them, and use the class files they contain. You don’t have to mention
these subdirectories in a classpath statement—searching this directory is a function
that’s built right into Java. Sun recommends, however, that you use this feature only
for your own internal testing and development, and not for software that you intend
to distribute.

It’s possible to create environment variables that provide an alias for

long classpaths. The classpath for some of the JAR fi les in J2SE can be quite long, and so

it’s common for such an alias to be used when defi ning a classpath. If you see something

like JAVA_HOME or $JAVA_HOME in an exam question it just means "That part of the

absolute classpath up to the directories we’re specifying explicitly." You can assume that

the JAVA_HOME literal means this, and is pre-pended to the partial classpath you see.

CERTIFICATION OBJECTIVE

Using Static Imports (Objective 7.1)

7.1 Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

Static Imports

We’ve been using import statements throughout the book. Ultimately, the only
value import statements have is that they save typing and they can make your code
easier to read. In Java 5, the import statement was enhanced to provide even greater
keystroke-reduction capabilities…although some would argue that this comes at the
expense of readability. This new feature is known as static imports. Static imports can
be used when you want to use a class’s static members. (You can use this feature on
classes in the API and on your own classes.) Here’s a "before and after" example:

Appendix B.indd 16Appendix B.indd 16 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Using Static Imports (Objective 7.1) B-17

Before static imports:
public class TestStatic {
 public static void main(String[] args) {
 System.out.println(Integer.MAX_VALUE);
 System.out.println(Integer.toHexString(42));
 }
}
After static imports:
import static java.lang.System.out; // 1
import static java.lang.Integer.*; // 2
public class TestStaticImport {
 public static void main(String[] args) {
 out.println(MAX_VALUE); // 3
 out.println(toHexString(42)); // 4
 }
}

Both classes produce the same output:

2147483647
2a

Let’s look at what’s happening in the code that’s using the static import feature:

 1. Even though the feature is commonly called "static import" the syntax
MUST be import static followed by the fully qualified name of the
static member you want to import, or a wildcard. In this case we’re doing
a static import on the System class out object.

 2. In this case we might want to use several of the static members of the
java.lang.Integer class. This static import statement uses the wildcard to
say, "I want to do static imports of ALL the static members in this class."

 3. Now we’re finally seeing the benefit of the static import feature! We didn’t
have to type the System in System.out.println! Wow! Second, we didn’t
have to type the Integer in Integer.MAX_VALUE. So in this line of code we
were able to use a shortcut for a static method AND a constant.

 4. Finally, we do one more shortcut, this time for a method in the Integer
class.

We’ve been a little sarcastic about this feature, but we’re not the only ones. We’re
not convinced that saving a few keystrokes is worth possibly making the code a little
harder to read, but enough developers requested it that it was added to the language.

Here are a couple of rules for using static imports:

■ You must say import static; you can’t say static import.

Appendix B.indd 17Appendix B.indd 17 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

B-18 Appendix B: Classpaths and JARs

■ Watch out for ambiguously named static members. For instance, if you
do a static import for both the Integer class and the Long class, referring
to MAX_VALUE will cause a compiler error, since both Integer and Long
have a MAX_VALUE constant, and Java won’t know which MAX_VALUE you’re
referring to.

■ You can do a static import on static object references, constants (remember
they’re static and final), and static methods.

CERTIFICATION SUMMARY

We started by exploring the javac command more deeply. The -d option allows you
to put class files generated by compilation into whatever directory you want to. The
-d option lets you specify the destination of newly created class files.

Next we talked about some of the options available through the java application
launcher. We discussed the ordering of the arguments java can take, including
[options] class [args]. We learned how to query and update system properties
in code and at the command line using the -D option.

The next topic was handling command-line arguments. The key concepts are that
these arguments are put into a String array, and that the first argument goes into
array element 0, the second argument into array element 1, and so on.

We turned to the important topic of how java and javac search for other class
files when they need them, and how they use the same algorithm to find these
classes. There are search locations predefined by Sun, and additional search
locations, called classpaths that are user defined. The syntax for Unix classpaths is
different than the syntax for Windows classpaths, and the exam will tend to use
Unix syntax.

The topic of packages came next. Remember that once you put a class into a
package, its name is atomic—in other words, it can’t be split up. There is a tight
relationship between a class’s fully qualified package name and the directory
structure in which the class resides.

JAR files were discussed next. JAR files are used to compress and archive data.
They can be used to archive entire directory tree structures into a single JAR file.
JAR files can be searched by java and javac.

We finished the appendix by discussing a new Java 5 feature, static imports. This
is a convenience-only feature that reduces keying long names for static members
in the classes you use in your programs.

Appendix B.indd 18Appendix B.indd 18 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Two-Minute Drill B-19

TWO-MINUTE DRILL

Here are the key points from this appendix.

Using javac and java (Objective 7.2)

❑ Use -d to change the destination of a class file when it’s first generated by the
javac command.

❑ The -d option can build package-dependent destination classes on-the-fly if
the root package directory already exists.

❑ Use the -D option in conjunction with the java command when you want to
set a system property.

❑ System properties consist of name=value pairs that must be appended directly
behind the -D, for example, java -Dmyproperty=myvalue.

❑ Command-line arguments are always treated as Strings.

❑ The java command-line argument 1 is put into array element 0, argument 2
is put into element 1, and so on.

Searching with java and javac (Objective 7.5)

❑ Both java and javac use the same algorithms to search for classes.

❑ Searching begins in the locations that contain the classes that come standard
with J2SE.

❑ Users can define secondary search locations using classpaths.

❑ Default classpaths can be defined by using OS environment variables.

❑ A classpath can be declared at the command line, and it overrides the default
classpath.

❑ A single classpath can define many different search locations.

❑ In Unix classpaths, forward slashes (/) are used to separate the directories
that make up a path. In Windows, backslashes (\) are used.

❑ In Unix, colons (:) are used to separate the paths within a classpath.
In Windows, semicolons (;) are used.

✓

Appendix B.indd 19Appendix B.indd 19 9/17/2014 12:15:19 PM9/17/2014 12:15:19 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

B-20 Appendix B: Classpaths and JARs

❑ In a classpath, to specify the current directory as a search location, use a
dot (.).

❑ In a classpath, once a class is found, searching stops, so the order of locations
to search is important.

Packages and Searching (Objective 7.5)

❑ When a class is put into a package, its fully qualified name must be used.

❑ An import statement provides an alias to a class’s fully qualified name.

❑ In order for a class to be located, its fully qualified name must have a tight
relationship with the directory structure in which it resides.

❑ A classpath can contain both relative and absolute paths.

❑ An absolute path starts with a / or a \.

❑ Only the final directory in a given path will be searched.

JAR Files (Objective 7.5)

❑ An entire directory tree structure can be archived in a single JAR file.

❑ JAR files can be searched by java and javac.

❑ When you include a JAR file in a classpath, you must include not only the
directory in which the JAR file is located, but the name of the JAR file too.

❑ For testing purposes, you can put JAR files into .../jre/lib/ext, which is
somewhere inside the Java directory tree on your machine.

Static Imports (Objective 7.1)

❑ You must start a static import statement like this: import static

❑ You can use static imports to create shortcuts for static members (static
variables, constants, and methods) of any class.

Appendix B.indd 20Appendix B.indd 20 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test B-21

SELF TEST

 1. Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

 Which, inserted independently at line 1, compiles? (Choose all that apply.)
 A. import static java.lang;

 B. import static java.lang.Integer;

 C. import static java.lang.Integer.*;

 D. import static java.lang.Integer.*_VALUE;

 E. import static java.lang.Integer.MAX_VALUE;

 F. None of the above statements are valid import syntax

 2. Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

 And the command line:

java _ - A .

 What is the result?
 A. -A

 B. A.

 C. -A.

 D. _A.

 E. _-A.

 F. Compilation fails
 G. An exception is thrown at runtime

Appendix B.indd 21Appendix B.indd 21 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

B-22 Appendix B: Classpaths and JARs

 3. Given the default classpath:

/foo

 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

 And these two files:

package xcom;
public class A { }
package xcom;
public class B extends A { }

 Which allows B.java to compile? (Choose all that apply.)
 A. Set the current directory to xcom then invoke javac B.java
 B. Set the current directory to xcom then invoke javac -classpath . B.java
 C. Set the current directory to test then invoke javac -classpath . xcom/B.java
 D. Set the current directory to test then invoke javac -classpath xcom B.java
 E. Set the current directory to test then invoke javac -classpath xcom:. B.java

 4. Given two files:

a=b.java
c_d.class

 In the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

 A. java -Da=b c_d

 B. java -D a=b c_d

 C. javac -Da=b c_d

 D. javac -D a=b c_d

Appendix B.indd 22Appendix B.indd 22 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 /OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test B-23

 5. If three versions of MyClass.class exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

 And the system’s classpath includes

/foo/bar/baz

 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass

 Which version will be used by java?
 A. /foo/MyClass.class

 B. /foo/bar/MyClass.class

 C. /foo/bar/baz/MyClass.class

 D. /foo/bar/baz/bing/MyClass.class

 E. The result is not predictable

 6. Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }
 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.prin
(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

 What is the result? (Choose all that apply.)
 A. 5 6 5 6

 B. 5 6 followed by an exception

Appendix B.indd 23Appendix B.indd 23 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

B-24 Appendix B: Classpaths and JARs

 C. Compilation fails with an error on line 6
 D. Compilation fails with an error on line 7
 E. Compilation fails with an error on line 8
 F. Compilation fails with an error on line 9

 7. Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();
 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

 A. javac Antique.java

 java Antique

 B. javac Antique.java

 java -ea Antique

 C. javac -source 6 Antique.java

 java Antique

 D. javac -source 1.4 Antique.java

 java Antique

 E. javac -source 1.6 Antique.java

 java -ea Antique

 8. Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

Appendix B.indd 24Appendix B.indd 24 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 /OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test B-25

 And given the command-line invocation:

java -DcmdProp=cmdValue Values

 What is the result?
 A. null myValue null null

 B. cmdValue null null cmdValue

 C. cmdValue null null newValue

 D. cmdValue myValue null cmdValue

 E. cmdValue myValue null newValue

 F. An exception is thrown at runtime

 9. Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

Appendix B.indd 25Appendix B.indd 25 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

B-26 Appendix B: Classpaths and JARs

 If the current directory is x, which invocations will produce the output "test/Baz"?
(Choose all that apply.)

 A. ava FindBaz

 B. java -classpath test FindBaz

 C. java -classpath .:test FindBaz

 D. java -classpath .:test/myApp FindBaz<F255D>

 E. java -classpath test:test/myApp FindBaz

 F. java -classpath test:test/myApp:. FindBaz

 G. java -classpath test/myApp:test:. FindBaz

 10. Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

 then which path names will find a file in the .jar file? (Choose all that apply.)
 A. Foo.java

 B. Test.java

 C. myApp/Foo.java

 D. myApp/Bar.java

 E. META-INF/Foo.java

 F. META-INF/myApp/Foo.java

 G. myApp/myAppSub/Bar.java

 11. Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

Appendix B.indd 26Appendix B.indd 26 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 /OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test B-27

 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }
 3. package myApp;
 4. public class Foo { public static int d = 8; }

 If the current directory is "test", and myApp/Foo.class is placed in a JAR file called MyJar.jar
located in test, which set(s) of commands will compile GetJar.java and produce the output 8?
(Choose all that apply.)

 A. javac -classpath MyJar.jar GetJar.java

 java GetJar

 B. javac MyJar.jar GetJar.java

 java GetJar

 C. javac -classpath MyJar.jar GetJar.java

 java -classpath MyJar.jar GetJar

 D. javac MyJar.jar GetJar.java

 java -classpath MyJar.jar GetJar

 12. Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

 And given the contents of GoDeep.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }
 3. package myApp;
 4. public class Foo { public static int d = 8; }

Appendix B.indd 27Appendix B.indd 27 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

B-28 Appendix B: Classpaths and JARs

 And MyJar.jar contains the following entry:

myApp/Foo.class

 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

 A. java GoDeep

 B. java -classpath . GoDeep

 C. java -classpath test/MyJar.jar GoDeep

 D. java GoDeep -classpath test/MyJar.jar

 E. java GoDeep -classpath test/MyJar.jar:.

 F. java -classpath .:test/MyJar.jar GoDeep

 G. java -classpath test/MyJar.jar:. GoDeep

Appendix B.indd 28Appendix B.indd 28 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6 /

Self Test Answers B-29

SELF TEST ANSWERS

 1. ☑ C and E are correct syntax for static imports. Line 4 isn’t making use of static imports, so
the code will also compile with none of the imports.
☐✗ A, B, D, and F are incorrect based on the above. (Objective 7.1)

 2. ☑ B is correct. This question is using valid (but inappropriate and weird) identifiers, static
imports, var-args in main(), and pre-incrementing logic.
☐✗ A, C, D, E, F, and G are incorrect based on the above. (Objective 7.2)

 3. ☑ C is correct. In order for B.java to compile, the compiler first needs to be able to find
B.java. Once it’s found B.java it needs to find A.class. Because A.class is in the xcom
package the compiler won’t find A.class if it’s invoked from the xcom directory. Remember
that the -classpath isn’t looking for B.java, it’s looking for whatever classes B.java needs
(in this case A.class).
☐✗ A, B, and D are incorrect based on the above. E is incorrect because the compiler can’t
find B.java. (Objective 7.2)

 4. ☑ A is correct. The -D flag is NOT a compiler flag, and the name=value pair that is
associated with the -D must follow the -D with no spaces.
☐✗ B, C, and D are incorrect based on the above. (Objective 7.2)

 5. ☑ D is correct. A -classpath included with a java invocation overrides a system classpath.
When java is using any classpath, it reads the classpath from left to right, and uses the first
match it finds.
☐✗ A, B, C, and E are incorrect based on the above. (Objective 7.5)

 6. ☑ C, D, and E are correct. Variable a (default access) cannot be accessed from outside the
package. Since variable b is protected, it can be accessed only through inheritance.
☐✗ A, B, and F are incorrect based on the above. (Objectives 1.1, 7.1)

 7. ☑ A and C are correct. If assertions (which were first available in Java 1.4) are enabled, an
AssertionError will be thrown at line 7.
☐✗ D is incorrect because the code uses generics, and generics weren’t introduced until Java 5.
B and E are incorrect based on the above. (Objective 7.2)

 8. ☑ E is correct. System properties can be set at the command line, as indicated correctly in the
example. System properties can also be set and overridden programmatically.
☐✗ A, B, C, D, and F are incorrect based on the above. (Objective 7.2)

Appendix B.indd 29Appendix B.indd 29 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8 / OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6/

B-30 Appendix B: Classpaths and JARs

 9. ☑ C and F are correct. The java command must find both FindBaz and the version of
Baz located in the test directory. The "." finds FindBaz, and "test" must come before "test/
myApp" or java will find the other version of Baz. Remember the real exam will default to using
the Unix path separator.
☐✗ A, B, D, E, and G are incorrect based on the above. (Objective 7.2)

 10. ☑ C and G are correct. The files in a .jar file will exist within the same exact directory tree
structure in which they existed when the .jar was created. Although a .jar file will contain
a META-INF directory, none of your files will be in it. Finally, if any files exist in the directory
from which the jar command was invoked, they won’t be included in the .jar file by default.
☐✗ A, B, D, E, and F are incorrect based on the above. (Objective 7.5)

 11. ☑ A is correct. Given the current directory and where the necessary files are located, these
are the correct command-line statements.
☐✗ B and D are wrong because javac MyJar.jar GetJar.java is incorrect syntax. C is
wrong because the -classpath MyJar.java in the java invocation does not include the test
directory. (Objective 7.5)

 12. ☑ F and G are correct. The java command must find both GoDeep and Foo, and the
-classpath option must come before the class name. Note, the current directory (.) in the
classpath can be searched first or last.
☐✗ A, B, C, D, and E are incorrect based on the above. (Objective 7.5)

Appendix B.indd 30Appendix B.indd 30 9/17/2014 12:15:20 PM9/17/2014 12:15:20 PM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Appendix CAppendix C
About the DownloadAbout the Download

Appendix C.indd 947Appendix C.indd 947 9/18/2014 4:25:43 AM9/18/2014 4:25:43 AM

948 Appendix C: About the Download

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

This e-book comes with free downloadable content, including the following:

■ Oracle Press Practice Exam Software

■ A glossary of key terms

■ Additional content in PDF format

These features can be downloaded using the links provided in this appendix.
The Oracle Press Practice Exam Software is easy to install on any Mac or Windows
computer and must be installed to access the Practice Exam feature.

System Requirements

The software requires Microsoft Windows XP, Windows Server 2003, Windows
Server 2008, Windows Vista Home Premium, Business, Ultimate, or Enterprise
(including 64-bit editions) with Service Pack 2, or Windows 7, or Mac OS X 10.6
and 10.7 with 512MB of RAM (1GB recommended).

Downloading from McGraw-Hill
Professional’s Media Center

To download the glossary, additional content, and Oracle Press Practice Exam
Software, visit McGraw-Hill Professional’s Media Center by clicking the link below
and entering this e-book’s ISBN and your e-mail address. You will then receive an
e-mail message with a download link for the additional content.

http://mhprofessional.com/mediacenter

This e-book’s ISBN is 0071771999.
Once you’ve received the e-mail message from McGraw-Hill Professional’s Media

Center, click the link included to download a zip file containing the additional
resources.Extract all ofthe files from the zip file and save them to your computer. If
you do not receive the e-mail, be sure to check your spam folder.

Appendix C.indd 948Appendix C.indd 948 9/18/2014 4:25:45 AM9/18/2014 4:25:45 AM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

 Installing the Practice Exam Software 949

Installing the Practice Exam Software

Follow the instructions below for Windows or Mac OS.

Windows

Step 1 Open the InstallerforPC.zip file. You will need to unzip the file and extract
or copy and paste the contentsto your hard drive.

Step 2 Locate the Installer.exe file and double click the file. After a few
moments, the installer will open.

Step 3 Follow the onscreen instructions to install the application.

Mac OS

Step 1 Open the InstallerforMac.zip file. You will need to unzip the file and
extract or copy and paste the contents to your hard drive.

Step 2 After a few moments, the contents of the .zip file will be displayed.

Step 3 Double click on Installer to begin installation.

Step 4 Follow the onscreen instructions to install the application.

NOTE If you get an error while installing the software please ensure your

anti-virus or internet security programs are disabled and try installing the

software again. You may enable the antivirus or internet security program

again after installation is complete.

Appendix C.indd 949Appendix C.indd 949 9/18/2014 4:25:45 AM9/18/2014 4:25:45 AM

950 Appendix C: About the Download

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Running the Practice Exam Software

Follow the instructions below after you have completed the software installation.

Windows

After installing, you can start the application using either of the two methods below:

 1. Double-click the Oracle Press Java Exams icon on your desktop,or

 2. Go to the Start menu and click Programs or All Programs.Click Oracle Press
Java Exams to start the application.

Mac OS

Open the Oracle Press Java Exams folder inside your Mac’s application folder and
double-click the Oracle Press Java Exams icon to run the application.

Practice Exam Software Features

The Practice Exam Software provides you with a simulation of the actual exam. The
software also features a custom mode that can be used to generate quizzes by exam
objective domain. Quiz mode is the default mode. To launch an exam simulation,
select one of the OCA or OCP exam buttons at the top of the screen, or check the
Exam Mode check box at the bottom of the screen and select the OCA or OCP
exam in the custom window.

The number of questions, types of questions, and the time allowed on the exam
simulation are intended to be a representation of the live exam. The custom exam
mode includes hints and references, and in-depth answer explanations are provided
through the Feedback feature.

When you launch the software, a digital clock display will appear in the upper-
right corner of the question window. The clock will continue to count unless you
choose to end the exam by selecting Grade The Exam.

Appendix C.indd 950Appendix C.indd 950 9/18/2014 4:25:45 AM9/18/2014 4:25:45 AM

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Technical Support 951

Removing Installation

The Practice Exam Software is installed on your hard drive. For best results for
removal of programs using a Windows PC use the Control Panel | Uninstall A
Program option and then choose Oracle Press Java Exams to uninstall.

For best results for removal of programs using a Mac go to the Oracle Press Java
Exams folder inside your applications folder and drag the “Oracle Press Java Exams”
icon to the trash.

Help

A help file is provided through the Help button on the main page in the top-right
corner. A readme file is also included in the Bonus Content folder, which provides
more information about the additional content available with the book.

Bonus Content

The Bonus Content folder includes the Glossary. You will also find chapters that
cover the old Sun Certified Developer Exam, Chapter 10 from the previous edition,
which also covers Java development, and bonus content on bit twiddling operators
from the Operators chapter, Java Beans, and a section from the new JDBC chapter.
These are provided in PDF format and can be viewed using Adobe Acrobat. The
Readme file in the root folder provides more information on how to navigate the
Bonus Content folders.

Glossary

A PDF glossary of key terms from the book has been included for your review.

Appendix C.indd 951Appendix C.indd 951 9/18/2014 4:25:45 AM9/18/2014 4:25:45 AM

952 Appendix C: About the Download

CertPrs8/OCA/OCP Java SE 7 Programmer I & II Study Guide (Exams 1Z0-803 & 1Z0-804)/Sierra/177200-6

Technical Support

Technical Support information is provided in the following sections by feature.

Windows 8 Troubleshooting

The following known errors on Windows 8 have been reported. Please see below for
information on troubleshooting these known issues.

If you get an error while installing the software, such as “The application could
not be installed because the installer file is damaged. Try obtaining the new installer
from the application author,” you may need to disable your anti-virus or Internet
security programs and try installing the software again. You may enable the antivirus
or Internet security program again after installation is complete.

For more information on how to disable anti-virus programs in Windows, please
visit the web site of the software provider of your anti-virus program. For example, if
you use Norton or MacAfee products, you may need to visit the Norton or the
MacAfee web site and search for “how to disable antivirus in Windows 8.” Anti-
virus programs are different from firewall technology, so be sure to disable the
anti-virus program, and be sure to re-enable to program after you have installed the
practice exam software.

While Windows doesn’t include default antivirus software, Windows can often
detect antivirus software installed by you or the manufacturer of your computer and
typically displays the status of any such software in the Action Center, which is
located in the Control Panel under System and Security (selectReview Your
Computer’s Status). Window’s help feature can also provide more information on
how to detect your anti-virus software. If the anti-virus software is on, check the
Help feature that came with that software for information on how to disable it.

Windows will not detect all anti-virus software. If your anti-virus software isn’t
displayed in the Action Center you can try typing the name of the software or the
publisher in the Start Menu’s search field.

McGraw-Hill Education Content Support

For questions regarding the Glossaryor the additional bonus content, e-mail
techsolutions@mhedu.com or visit http://mhp.softwareassist.com.

For questions regarding book content, e-mail customer.service@mheducation.com.
For customers outside the United States, e-mail international_cs@mheducation.com.

Appendix C.indd 952Appendix C.indd 952 9/18/2014 4:25:45 AM9/18/2014 4:25:45 AM

A

abandoned strings, 260–263
absolute() method, 883–884
abstract classes, 20

constructors, 126, 129
creating, 23–24
implementation, 118
inner, 689, 692
vs. interfaces, 25–26
overview, 22–23

abstract factory pattern, 562
abstract methods

overview, 43–47
subclass implementation, 100–101

acceptChanges() method, 920
access and access modifiers, 29–31

classes, 17–21
constructors, 128
encapsulation, 85
inner classes, 685, 689
key points, 69
levels, 53
local variables, 41–42
overloaded methods, 106
overridden methods, 102–103
private, 33–36
protected and default members, 35–39
public, 31–33
static methods and variables, 143–144

AclFileAttributeView interface, 509
add() method

ArrayList, 293
BlockingQueue, 802
Calendar, 424
collections, 590
lists, 593, 628
sets, 616, 628

addAll() method, 800

addition
compound assignment, 225–226
operator, 235

addRowSetListener() method, 918–919
afterLast() method, 884, 886
alive thread state, 720
American National Standards Institute (ANSI), 871
ampersands (&)

bitwise operators, 241–242
logical operators, 242–245
searches, 437

AND expressions, 242–245
angle brackets (<>) in generic code, 291, 631, 633
anonymous arrays, 282–283
anonymous inner classes

argument-defined, 697–699
key points, 703
overview, 692
plain-old, flavor one, 693–696
plain-old, flavor two, 696–697

ANSI (American National Standards Institute), 871
APIs, 544
append() method, 270–271
appending strings, 259–260, 270–271
appendReplacement() method, 445
appendTail() method, 445
applications, launching, 12
arg_index element in format strings, 452
@argfiles options, 11
argument-defined anonymous inner classes, 697–699
arguments

assertions, 385–388
final, 43
overloaded methods, 106, 108
overridden methods, 103
vs. parameters, 48
quotes for, 444
super constructors, 132–134
variable argument lists, 48

INDEX

17-Index.indd 953 9/2/2014 4:10:40 PM

954 OCA/OCP Java SE 7 Programmer I & II Study Guide

arithmetic operators, 235–240
basic, 235
increment and decrement, 238–240
key points, 247
remainder, 235–236
string concatenation, 236–238

ArrayBlockingQueue, 801, 803
ArrayIndexOutOfBoundsException class, 342

description, 358
out-of-range array indexes, 279
superclass, 344–345
threads, 751, 797

ArrayList class, 13–14, 614
basics, 290, 598–599
in collection hierarchy, 589–590
collections, 797
description, 593
duplicates, 291–292
element order, 592
key points, 297
methods, 292–294
sorting, 604–606
uses, 289–291

arrays, 273–274
constructing, 275–277, 280–282
converting with lists, 613–614
declaring, 56–57, 274–275, 280–283, 644–645
default element values, 188, 191, 210
element assignments, 284–288
enhanced for loops, 328–329
indexes, 12, 277
initializing, 277–284
instanceof comparisons, 234
key points, 73, 296–297, 664
length attribute, 267
methods, 626–627
polymorphism, 642–644
reference assignments, 286–288
returning, 124
searching, 611–613
type-safe, 629

Arrays.asList() method, 613, 627
Arrays class, 589, 610

ASCII set, 52
asList() method, 613, 627
assert keyword, 383
AssertionError class, 351, 357, 380

appropriate use, 386
description, 358
expression rules, 381

assertions
appropriate, 386–389
compiling assertion-aware code, 383-384
disabling, 384–386
enabling, 382–386
expression rules, 381–382
key points, 404
overview, 378–380
running with, 384

assignments
array elements, 284–288
compiler errors, 178–179
floating-point numbers, 178
key points, 210
object compatibility, 232
operators, 172–173, 224–226
primitives, 173–175, 180
reference variables, 180–181, 191–193, 286–288

asterisks (*)
compound assignment operators, 225–226
globs, 520–522
import statements, 14, 17
multiplication, 235
searches, 439–442
SQL queries, 845

atomic operations, 742
atomic package, 786–787
atomic variables, 786–789, 829
AtomicInteger class, 789
attributes

BasicFileAttributes, 509–511
common, 513
DosFileAttributes, 512–513
interface types, 508–509
key points, 529, 663
PosixFileAttributes, 512–513
reading and writing, 506–507

17-Index.indd 954 9/2/2014 4:10:41 PM

Index 955

auto-commit mode, 922–923, 925
autoboxing with collections, 600–603
AutoCloseable interface, 905
autocloseable resources

key points, 405
with try-with-resources statements, 396–401

automatic local variables, 54–56
Automatic Resource Management feature, 397
automatic variables. See local variables
available processors, 811
await() method, 794–795

B

b in format strings, 453
\B in searches, 435–436
\b in searches, 435–436
backed collections, 622–624
backslashes (\)

escaped characters, 172, 448, 930
globs, 520–522
property resource bundles, 456
searches, 442–443

base 2 (binary) integers, 168
base 8 (octal) integers, 168–169
base 10 (decimal) integers, 168
base 16 (hexadecimal) integers, 168

literals, 170
searches, 437–440

basic for loops, 323–324
conditional expressions, 325–326
declaration and initialization, 324–325
iteration expressions, 325–326
loop issues, 326–328

BasicFileAttributes interface, 508–511
BasicFileAttributeView interface, 508
beforeFirst() method, 884, 886–887
behaviors, description, 4
BIGINT data type, 875
binary (base 2) integers, 168
BINARY LARGE OBJECT (BLOB), 871
binary literals, 169
binarySearch() method

arrays, 627

collections, 627
overview, 611–613

bitwise operators, 241–242
BLOB (BINARY LARGE OBJECT), 871
blocked thread state

considerations, 748–749
deadlocks, 753–754
description, 729–730

blocking queues, 801–805
BlockingQueue collection, 801

behavior, 802
bounded queues, 803
LinkedTransferQueue, 803–805
special-purpose queues, 803

blocks
initialization, 138–140
synchronized, 745–746
synchronizing, 747–748
variables, 183

bookseller database overview, 847–850
boolean type and values

bit depth, 52
default values, 186
do loops, 323
in for loops, 324–325
format strings, 453
if statements, 312–313
invert operator, 245–246
literals, 171
relational operators, 226
SQL, 871, 875
while loops, 322
wrappers, 602

boundaries in searches, 435–436
bounded queues, 803
braces ({}). See curly braces ({})
branching

if-else, 308–313
switch statements. See switch statements

break statement
in for loops, 326
key points, 362
loop constructs, 330–331
switch statements, 314, 317–319

17-Index.indd 955 9/2/2014 4:10:41 PM

956 OCA/OCP Java SE 7 Programmer I & II Study Guide

buckets for hashcodes, 582–585
BufferedReader class

description, 479
using, 484

BufferedWriter class
description, 479–480
using, 484

buffering file I/O, 484
bugs. See exceptions
bytes

case constants, 314
default values, 186
and int, 174
ranges, 51
wrappers, 602

C

c in format strings, 453
cached thread pools, 811
CachedRowSet, 919–920
Calendar class

description, 419
instance creation, 431
working with, 422–424

call stacks
exceptions, 339–340
threads, 714–716, 720

Callable interface, 813–814
CallableStatement interface, 907

key points, 933–934
overview, 910–912

CamelCase, 9
cancelRowUpdates() method, 890–892
canExecute() method, 508
canRead() method, 508
canWrite() method, 508
capacity of strings, 270
carats (^)

bitwise operators, 241–242
exclusive-OR operators, 245
searches, 437, 439

CAS (Compare And Swap) feature, 789
case sensitivity

identifiers, 7
SQL, 846–847
string comparisons, 266–267

case statements, 313–316
casts, 174

assignment, 225
with equals(), 579
explicit, 175–176
implicit, 176
key points, 151, 209
overview, 113–116
precision, 178–179
primitives, 176–178

catch clause. See try and catch feature
ceiling() method, 621, 623
ceilingKey() method, 621, 623
chained methods, 272–273
chaining

constructors, 127–128
I/O classes, 484

changeable data, synchronizing, 749
CHARACTER LARGE OBJECT (CLOB), 871
characters and char type, 875

bit depth, 52
case constants, 314
comparisons, 227
default values, 186
format strings, 453
globs, 521
literals, 171–172
searches, 435
wrappers, 602

charAt() method, 266
checked exceptions

handling, 350
interface implementation, 117
overloaded methods, 106
overridden methods, 103, 105

Class class, 746
.class files, 12
Class.forName() method, 860–861

17-Index.indd 956 9/2/2014 4:10:41 PM

Index 957

ClassCastException class
description, 358
downcasts, 114
with equals(), 579

classes
access, 17–21
compiling, 11–12
constructors. See constructors
declaring, 17–18
defining, 9–10
description, 4
extending, 18, 97
final, 20–21, 58–59
import statements, 13–15
inner. See inner classes
interface implementation, 118
launching applications with java, 12
literals, 747
main() method, 13
member, 682
member declarations, 28–29
names, 8–9, 144, 385
source file declaration rules, 10–11
thread-safe, 751–753
wrapper, 356

cleaning up garbage collection, 207–208
clear() method, 293
clearWarnings() method, 903
CLOB (CHARACTER LARGE OBJECT), 871
close() method, 483–484, 903–906
Closeable interface, 398–399
closing SQL resources, 903–906
code overview

coding to interfaces, 599
conventions, 7–9
synchronizing, 738–744

cohesion
IS-A and HAS-A, 544–545
key points, 565
packages, 484

cohesive classes, 5
Collection interface, 589–590
collections and Collections Framework, 574, 588

ArrayList basics, 598–599
vs. arrays, 56

autoboxing, 600–603
backed, 622–624
blocking queues, 801–805
Comparable interface, 606–608
Comparator interface, 608–609
concurrent, 797–805
converting arrays and lists, 613–614
copy-on-write, 799
diamond syntax, 603–604
hashcodes for, 581
interfaces and classes, 589–594
key points, 662–663, 829–830
legacy, 630–632
List interface, 593–594
lists, 614–616
Map interface, 595–596
maps, 617–620
methods, 626–627
mixing generic and nongeneric, 633–638
operations, 588
ordered, 591–592
overview, 588
polling, 621–622
PriorityQueue class and Deque interface, 625–626
Queue interface, 596–597
searching, 611–613
searching TreeSets and TreeMaps, 620–621
Set interface, 594–595
sets, 616–617
sorted, 592–593
sorting, 604–611
thread-safe, 800
unboxing problems, 639
working with, 797–798

Collections class, 589–590, 604
Collections.synchronizedList() method, 751–753, 798
colons (:)

assertions, 380
conditional operators, 240–241
labels, 332
URLs, 496

column indexes, 872
combining I/O classes, 484–487

17-Index.indd 957 9/2/2014 4:10:41 PM

958 OCA/OCP Java SE 7 Programmer I & II Study Guide

command-line arguments
assertions, 385, 388
metacharacters, 443

commas (,)
as delimiters, 447
in for loops, 324–325
format strings, 453
variables, 175

comments
property resource bundles, 456–457
source code files, 10

commit() method, 924–925
Comparable interface, 593, 801

vs. Comparator, 610
working with, 606–608

Comparator interface, 593, 801
vs. Comparable, 610
working with, 608–609

Compare And Swap (CAS) feature, 789
compare() method, 609
compareAndSet() method, 789
compareTo() method, 606–609
comparisons

instanceof, 232–235
relational operators, 226–232
strings, 266–267

compile() method, 444
compiler and compiling

assertion-aware code, 383-384
casts, 114
interface implementation, 117
javac, 11–12
overloaded methods, 109
versions, 383
warnings and fails, 635–636

compiler errors
assignments, 178–179
instanceof, 234

compound assignments
with casts, 179
operators, 225–226
strings, 237–238

compute() method
ForkJoinTask, 818
RecursiveAction, 821

concat() method, 266
concatenating strings, 236–238, 248, 266
concrete classes

abstract methods implemented by, 100–101
creating, 23–24
subclasses, 44–46

CONCUR_READ_ONLY cursor type, 880–881, 894
CONCUR_UPDATABLE cursor type, 881–882, 889
concurrency, 715, 786

atomic variables, 786–789
collections, 797–805
Executors. See Executors
Fork/Join Framework. See Fork/Join Framework
key points, 767
locks, 789–796
ThreadPools. See ThreadPools

ConcurrentHashMap class, 801
ConcurrentMap interface, 801
ConcurrentSkipListMap class, 801
ConcurrentSkipListSet class, 801
Condition interface, 794
conditional operators

key points, 248
overview, 240–241

conditions
do loops, 323
in for loops, 324–326
if-else branching, 308–313
locks, 794–795
switch statements. See switch statements
while loops, 322

connect() method, 856
connected RowSets, 916–919
Connection interface, 851–852, 903
connections

databases, 844–845
DriverManager class, 853–858

consistency in equals() contract, 581
Console class

description, 444, 480
working with, 491–493

console() method, 491
constant specific class body, 63, 65

17-Index.indd 958 9/2/2014 4:10:41 PM

Index 959

constants
case, 314
enum, 61
interface, 27–28
names, 9
String class, 264

constructing
arrays, 275–277, 280–283
statements, 864–867

constructors, 126
basics, 126–127
chaining, 127–128
declarations, 49–50
default, 128, 130–131
enums, 63–64
inherited, 133–134
key points, 152–153
overloaded, 134–138
rules, 128–129
strings, 259
super() and this() calls, 137–138

consumed search characters, 434
contains() method

collections, 590
description, 293
lists, 628

containsKey() method, 628
containsValue() method, 628
continue statement

key points, 362
loop constructs, 330–331

contracts in JDBC, 851
controls, 17–18
conventions

code, 7–9
identifiers, 6
names, 4

conversions
arrays and lists, 613–614
format strings, 453
return type, 124
strings to URIs, 496
types. See casts

copy() method, 498–499
copy-on-write collections, 799

copying files, 498–499
CopyOnWriteArrayList collection, 799
CopyOnWriteArraySet collection, 799
cost reduction, object-oriented design for, 95
counting

instances, 141
references, 201

country codes, 427
countTokens() method, 451
coupling

IS-A and HAS-A, 543–544
key points, 565

covariant returns, 123–124
CPU-intensive vs. I/O-intensive tasks, 807–808
create() method, 558
createNewFile() method, 481–482, 487–488
creationTime() method, 513
credentials for database, 855
CRUD operations, 845–846
curly braces ({})

abstract methods, 44
anonymous inner classes, 694, 697
arrays, 280, 282, 284
class members, 186, 189
globs, 521
if expressions, 309, 311
inner classes, 685, 690, 694
instance variables, 186
methods, 44
optional, 309

currency
formatting, 429
key points, 463
working with, 419–420

currently running thread state, 727
currentThread() method, 722–723
cursor types for ResultSets, 881
cursorMoved() method, 918

D

d in format strings, 453
\D in searches, 435
\d in searches, 435
D suffix, 171

17-Index.indd 959 9/2/2014 4:10:41 PM

960 OCA/OCP Java SE 7 Programmer I & II Study Guide

daemon threads, 716
DAO (Data Access Object) design pattern, 555

benefits, 559
key points, 566
problem, 555–556
solution, 556–559

dashes (-)
compound assignment operators, 225–226
decrement operators, 238–239
format strings, 453
searches, 437
subtraction, 235

data types in ResultSets, 871
DatabaseMetaData class, 896–900
databases

connections, 844–845
credentials, 855
JDBC. See JDBC API
overview, 842–844

DataOutputStream class, 480
DataSource class, 859
Date class, 419

instance creation, 431
with SQL, 871
working with, 420–422

DATE data type, 871, 875
DateFormat class

description, 419–420
instance creation, 431
locale setting, 428
working with, 425–426

dates
Calendar class, 422–424
DateFormat class, 425–426
format attributes, 507
key points, 463
overview, 419–420
working with, 420–422

DAY_OF_WEEK field, 424
dead thread state, 720, 730–731
deadlocks

key points, 768
threads, 753–754
tryLock() for, 792

Deadly Diamond of Death, 97
decimal (base 10) integers, 168
decimal literals with underscores, 169
declarations

arrays, 56–57, 274–275, 280–282, 644–645
basic for loops, 324–325
class members, 28–29
classes, 17–18
constructors, 49–50
enhanced for loops, 329
enum elements, 63–65
enums, 61–63
exceptions, 347–352
generics, 652–653
interface constants, 27–28
interfaces, 24–27
polymorphic, 291
reference variables, 52
return types, 122–125
source file rules, 10–11
variables, 50–60

decoupling tasks from threads, 809–811
decrement operators

key points, 248
working with, 238–240

default access
description, 17–18
overview, 19
and protected, 29, 35–41

default case in switch statements, 319–320
Default protection, 29
defaults

constructors, 128, 130–131
delimiters, 449–451
locales, 458
primitive and object type instance variables,

185–188
thread priorities, 735

defining
classes, 9–10
exceptions, 342
inner classes, 690
threads, 714–718

17-Index.indd 960 9/2/2014 4:10:41 PM

Index 961

Delayed interface, 803
DelayQueue, 801, 803
delete() method

DAO, 558
files, 489–490, 499
strings, 271

DELETE operation for SQL, 846
deleteIfExists() method, 499
deleteRow() method, 892
deleting

files, 498–499
strings, 271

delimiters
default, 449–451
tokens, 446–447

demarcation in transactions, 924
depth-first searches, 517
Deque interface, 625–626
deques, 797
descending order in collections, 622
descendingMap() method, 622–623
descendingSet() method, 622–623
design patterns

DAO. See DAO (Data Access Object) design
pattern

factory. See factory design patterns
singleton. See singleton design pattern

Design Patterns: Elements of Reusable Object-Oriented
Software, 550

diamond syntax, 603–604
digits

globs, 521
in searches, 435

directories
creating, 497–498
DirectoryStream, 514–515
FileVisitor, 515–519
iterating through, 514–515
key points, 529
renaming, 525
working with, 487–491

DirectoryStream interface, 514–515
disabling assertions, 384–386
disconnected RowSets, 919–920

Disk Operating System (DOS), 508
distributed-across-the-buckets hashcodes, 583
divide and conquer technique, 816–817
division

compound assignment, 225–226
operator, 235

do loops, 323
DOS (Disk Operating System), 508
DosFileAttributes interface, 508, 510, 512–513
DosFileAttributeView interface, 509
dots (.)

access, 30–33
class names, 144
instance references, 144
searches, 440, 442
variable argument lists, 48

double quotes (") in format strings, 452
double type, 875

casts, 176
default values, 186
floating-point literals, 170
ranges, 51
underscores, 169

downcasts, 114
Driver interface, 856, 860
DriverManager class, 844

description, 853
key points, 932
overview, 854–856
registering JDBC drivers, 856–858

drivers, JDBC, 852, 856–858, 860–861
DRY programmers, 923–924
ducking exceptions, 339, 348
duplicates in ArrayLists, 291–292
duration of threads, 726

E

eager initialization, 553
element() method, 802
elements in arrays. See arrays
elevator property, 460
eligible thread state, 727
ellipses (...) in variable argument lists, 48

17-Index.indd 961 9/2/2014 4:10:41 PM

962 OCA/OCP Java SE 7 Programmer I & II Study Guide

else statements, 308–313
embarrassingly parallel problems, 824–826
enabling assertions, 382–386
encapsulation

benefits, 95
key points, 149
overview, 84–87
reference variables, 294–295

engines, regex, 432
ENTRY_CREATE type, 524–525
ENTRY_DELETE type, 524–525
ENTRY_MODIFY type, 524–525
entry points in switch statements, 317
Enum class, 618
Enumerator interface, 450
enums, 60

case constants, 314
constants, 61
declaring, 61–63
declaring elements, 63–65
equality tests, 231–232
key points, 73

EOFException class, 346, 349
equal signs (=)

assignment, 172, 224
compound assignment operators, 225–226
equality tests, 227–232
property resource bundles, 456–457
reference equality, 577
relational operators, 226–227
wrappers, 601–602

equality and equality operators
enums, 231–232
hashcodes, 585–586
primitives, 228
references, 228–230, 577
strings, 230–231, 316–317

equals() method, 574
arrays, 627
contract, 581
description, 575
implementing, 578–580
key points, 661–662
maps, 617–618

objects, 230–231
overriding, 576–578
Set, 594
wrappers, 601–602

equalsIgnoreCase() method, 266–267
erasure, type, 637
Error class, 343
escape characters and sequences

globs, 521
PreparedStatements, 909
println(), 448
searches, 435, 443

event handlers, 683–684
Exception class, 342–343
ExceptionInInitializerError class

description, 358
init blocks, 140

exceptions, 334
creating, 353–354
declarations, 347–352
defining, 342
hierarchy, 343–345
interface implementation, 117
JDBC, 901–906
JVM thrown, 355–356
key points, 363
list of, 357–358
matching, 345–347
overridden methods, 103, 105
programmatically thrown, 356–357
propagating, 339–342
rethrowing, 353, 392–396
sources, 355
suppressed, 401–402
try and catch. See try and catch feature
try-with-resources feature, 396–401, 405, 905–906

exclamation points (!)
boolean invert operator, 245–246
property resource bundles, 457
relational operators, 226–227
wrappers, 601–602

exclusive-OR (XOR) operator
hashcodes, 585
overview, 245

17-Index.indd 962 9/2/2014 4:10:42 PM

Index 963

execute() method
description, 867
overview, 865–866
RowSets, 917–918, 920

execute permission, 507, 512
executeQuery() method

description, 867
overview, 864
stored procedures, 911–912

executeUpdate() method
description, 867
overview, 864–865

execution entry points in switch statements, 317
ExecutionException class, 814
Executor class, 809
Executors, 805–806

Callable interface, 813–814
CPU-intensive vs. I/O-intensive tasks, 807–808
decoupling tasks from threads, 809–811
ExecutorService shutdown, 814–815
key points, 831
parallel tasks, 806–807
thread limits, 807
thread pools, 811–812
ThreadLocalRandom, 814
turns, 808–809

Executors.newCachedThreadPool() method, 812
Executors.newFixedThreadPool() method, 812
ExecutorService, 810, 812

Callable, 813
shutdown, 814–815

ExecutorService.shutdownNow() method, 815
exists() method, 481–482, 499
exit() method

loops, 326
threads, 815
try and catch, 360

explicit casts, 175–176
explicit values in constructors, 127
expressions

assertions, 381–382
enhanced for loops, 329
globs, 521–522

if statements, 312–313
regular. See regular expressions (regex)

extended ASCII set, 52
extending

classes, 18, 97
inheritance in, 89
interfaces, 119
Thread class, 717–718

extends keyword
illegal uses, 121
IS-A relationships, 92

F

f in format strings, 453
F suffix, 170–171
factory design patterns, 560

benefits, 563
example, 853–854
key points, 566
problem, 560
solution, 560–563

fails vs. warnings, 636
fall-through in switch statements, 317–319
false value, 171
FIFO (first-in, first-out) queues, 596
File class

creating files, 480–482
description, 479
files and directories, 487
key points, 528–529

File.list() method, 490
file:// protocol, 496
FileNotFoundException class, 346–347, 391
FileOwnerAttributeView interface, 509
FileReader class

description, 479
working with, 482–484

files, 487–491
attributes. See attributes
copying, moving, and deleting, 498–499
creating, 480–482, 497–498
key points, 528
navigating, 478–480

17-Index.indd 963 9/2/2014 4:10:42 PM

964 OCA/OCP Java SE 7 Programmer I & II Study Guide

permissions, 507–508
renaming, 525
searching for, 490–491

Files class, 494, 507
Files.delete() method, 499
Files.deleteIfExists() method, 499
Files.getLastModifiedTime() method, 507
Files.notExists() method, 497, 499
Files.walkFileTree() method, 515–516
FileSystems.getDefault() method, 519
FileUtils class, 499
FileVisitor interface, 515–519
FileWriter class

description, 479
working with, 482–484

FilteredRowSet, 919–920
final arguments, 43
final classes, 20–21, 58–59
final constants, 27
final methods

nonaccess member modifiers, 42–43
overriding, 103

final modifiers
increment and decrement operators, 240
inner classes, 689, 691–692
variables, 41, 58–59

finalize() method
description, 575
garbage collection, 207–208

finally clauses
key points, 405
with try and catch, 336–339, 389–392

find() method, 444–445
FindMaxPositionRecursiveTask task, 824
first-in, first-out (FIFO) queues, 596
first() method, 883, 887
fixed thread pools, 811
flags in format strings, 453
flat transactions, 924
flexibility from object orientation, 84
float type and floating-point numbers, 875

assigning, 178
casts, 177
classes, 20
comparisons, 227

default values, 186
format strings, 453
literals, 170–171
ranges, 51
underscores, 169

floor() method, 621, 623
floorKey() method, 621, 623
flow control, 308

break and continue statements, 330–331
do loops, 323
for loops, 323–329
if-else branching, 308–313
labeled statements, 331–333
switch statements. See switch statements
unlabeled statements, 331
while loops, 321–322

flush() method, 483–484
for loops

basic, 323–328
enhanced, 328–329

for-each loops, 799
forced exits from loops, 326
forcing garbage collection, 204–207
foreign keys, 850
Fork/Join Framework, 815–816

divide and conquer technique, 816–817
embarrassingly parallel problems, 824–826
ForkJoinPool, 817
ForkJoinTask, 817–818
join(), 820–821
key points, 831
RecursiveAction, 821–822
RecursiveTask, 822–824
work stealing, 819–820

fork() method, 818
ForkJoinPool class, 817
ForkJoinTask class, 817–818
format() method, 451–454, 879
format strings, 452–454
Formatter class, 452
formatting

key points, 464–465
with printf() and format(), 451–454
reports, 879–880

forName() method, 860–861

17-Index.indd 964 9/2/2014 4:10:42 PM

Index 965

fractions, 170
fromMillis() method, 513
fully qualified names, 13
Future class, 813–814

G

Gang of Four, 550
garbage collection

cleaning up before, 207–208
forcing, 204–207
key points, 211
objects eligible for, 202–204
overview, 199

garbage collector
operation, 201
overview, 200
running, 200

gc() method, 204–206
generics, 291, 574

classes, 653–657
declarations, 652–653
equals(), 576–581
hashCode(), 581–587
key points, 664–666
legacy code, 633
methods, 641–652, 657–659
mixing with nongeneric, 633–638
overview, 629–630
polymorphism, 639–640
toString(), 575–576

get() method
ArrayLists, 293
lists, 593, 616, 628
maps, 618, 628
paths, 495–496
unboxing problems, 639

getAndIncrement() method, 789
getBoolean() method, 873
getBundle() method, 455, 458–459
getColumnCount() method, 876–877
getColumnDisplaySize() method, 878
getColumnName() method, 877
getColumns() method, 897

getConnection() method, 854–856, 860
getCurrencyInstance() method, 429
getDate() method, 874
getDateInstance() method, 425
getDefault() method, 459, 519
getDelay() method, 803
getDisplayCountry() method, 428
getDisplayLanguage() method, 428
getDouble() method, 873
getDriverName() method, 897, 900
getDriverVersion() method, 897, 900
getErrorCode() method, 901
getFileAttributeView() method, 513
getFileName() method, 500
getFloat() method, 873
getId() method, 727
getInstance() method

Calendar, 423, 427
DateFormat, 425
NumberFormat, 429
singleton design pattern, 552–553

getInt() method, 873
getLastModifiedTime() method, 507
getLong() method, 873
getMaximumFractionDigits() method, 430
getMessage() method, 901
getMetaData() method, 896–897
getMoreResults() method, 912
getName() method, 500, 722
getNameCount() method, 500
getNextException() method, 901–902
getObject() method, 458, 874, 880, 893
getParent() method, 500
getPathMatcher() method, 519
getProcedures() method, 897, 899
getResultSet() method, 866–867
getRoot() method, 500
getRow() method, 884
getRuntime() method, 205
getSQLState() method, 901
getState() method, 720
getString() method, 874
getSuppressed() method, 906
getTableName() method, 878

17-Index.indd 965 9/2/2014 4:10:42 PM

966 OCA/OCP Java SE 7 Programmer I & II Study Guide

getters encapsulation, 85
getTime() method, 422, 874
getTimestamp() method, 874
getUpdateCount() method, 866–867
getUrl() method, 915
getWarnings() method, 903
globs, 515, 520–522
greater than signs (>) for relational operators, 226–227
greedy quantifiers, 440–442
GregorianCalendar class, 423
group() method, 444
groups

PosixFileAttributes, 512–513
in searches, 438

guarantees with threads, 725–726, 735
guarded regions, 335

H

handle and declare pattern, 392
hard-coding credentials, 855
HAS-A relationships, 542

cohesion, 544–545
coupling, 543–544
key points, 149
object composition, 546–547
overview, 91–95

hashCode() method
contract, 585–587
generics, 574–575
HashSet, 594
implementing, 584–585
key points, 661–662
maps, 617–618
overriding, 581–584

hashcodes overview, 581–584
HashMap collection, 589

description, 595
hashcodes, 581

HashSet collection, 589
description, 594
hashcodes, 581
ordering, 616

Hashtable collection, 589
description, 595
keys, 578
ordering, 592

hasMoreTokens() method, 450
hasNext() method, 450, 614
Head First Design Patterns, 550
headMap() method, 623–624
headSet() method, 623–624
heap

garbage collection, 200
key points, 209
overview, 166–167

hexadecimal (base 16) integers, 168
literals, 170
searches, 437–440

hiding implementation details, 85
hierarchy

exceptions, 343–345
tree structures, 501

higher() method, 621
higherKey() method, 621, 623
Hunt, Andy, 923

I

IDE (integrated development environment), 11
identifiers, 4

assert, 382–383
key points, 68
legal, 6–7
Map, 595
threads, 727

if-else branching
key points, 361
overview, 308–313

IllegalArgumentException class
description, 358
programmatically thrown exceptions, 357

IllegalMonitorStateException class, 758, 793
IllegalStateException class, 358
IllegalThreadStateException class, 726
immutable objects

strings, 258–264
thread safe, 799

17-Index.indd 966 9/2/2014 4:10:42 PM

Index 967

implementation details, hiding, 85
implementers of interfaces, 696
implementing interfaces

key points, 151
overview, 116–121

implements keyword
illegal uses, 121
IS-A relationships, 92

implicit casts
assignment, 225
primitives, 176

import statements, 5
key points, 68
overview, 13–15
source code files, 11
static, 15–17

IN parameters
CallableStatements, 911–912
PreparedStatements, 908

increment operators
key points, 248
working with, 238–240

indexes
ArrayLists, 290, 592
arrays, 12, 277
columns, 872
List, 593
out-of-range, 279
searches, 611
string, 266
zero-based, 12

indexOf() method
ArrayLists, 293
lists, 593, 616, 628

IndexOutOfBoundsException class
subclasses, 344
threads, 751

indirect interface implementation, 233
information about ResultSets, 876–878, 896–900
inheritance

access modifiers, 30–32, 37–38
constructors, 133–134
event handlers, 684

HAS-A relationships, 93–95
IS-A relationships, 91–93
key points, 149
multiple, 97
overview, 5, 88–91

inherited methods, overriding, 104
initialization

arrays, 191, 277–284
basic for loops, 324–325
eager and lazy, 553
loop elements, 279–280
object references, 190–191
primitives, 189–190
variables, 54, 175

initialization blocks, 138–140, 153
injection attacks, 866
inner classes, 17, 682–683

anonymous. See anonymous inner classes
defining, 690
instantiating, 686
key points, 702
method-local, 690–692
modifiers, 689
objects, 687–688
overview, 683–684
referencing instances, 688–689
regular, 685–686
static, 699–700

INOUT parameters for CallableStatement, 911–912
input/output (I/O), 477

combining classes, 484–487
Console class, 491–493
directories. See directories
files. See files
key points, 528
path creation, 495–496
Runnable and Callable, 814
WatchService, 523–526

input-output intensive vs. CPU-intensive tasks,
807–808

InputStream.read() method, 808
insert() method, 270, 272
INSERT operation, 845–846

17-Index.indd 967 9/2/2014 4:10:42 PM

968 OCA/OCP Java SE 7 Programmer I & II Study Guide

inserting
rows, 894–896
string elements, 272

insertion points in searches, 611
insertRow() method, 890, 895
instance methods

overriding, 103
polymorphic, 99

instance variables, 52–53
constructors, 127
default values, 185–188
description, 4, 183
on heap, 166–167

instanceof operator
key points, 247
object tests, 232–235

instances
counting, 141
initialization blocks, 139
references to, 144, 688–689

instantiation
inner classes, 686
key points, 152–153
static nested classes, 700
threads, 714–716, 718–720

Integer class, 15–16, 356
integers and int data type, 875

and byte, 174
case constants, 314
casts, 176–177
comparisons, 227
default values, 186
format strings, 453
literals, 168
ranges, 51
remainder operator, 236
wrappers, 602

integrated development environment (IDE), 11
interfaces, 4

vs. abstract classes, 25–26
attributes, 508–509
constants, 27–28
constructors, 129
declaring, 24–27

extending, 119
implementing, 116–121, 151
indirect implementation, 233
JDBC, 851–852
key points, 70–71
names, 8–9
overview, 5

interrupt() method, 815
InterruptedException class

Callable, 813
Conditions, 794
sleep(), 732
WatchService, 525

intersections in searches, 437
invert operator, 245–246
invokeAll() method, 822
invoking

overloaded methods, 107–110
polymorphic methods, 98

I/O. See input/output (I/O)
IOException class

checked exceptions, 349
directories, 489
files, 346–347, 391

IS-A relationships, 542
cohesion, 544–545
coupling, 543–544
key points, 149, 565
object composition, 546–547
overview, 91–93
polymorphism, 96
return types, 125

isAlive() method, 720
isDirectory() method, 509
isHidden() method, 513
isInterrupted() method, 815
ISO Language codes, 427
ISO Latin-1 characters, 52
isolation

references, 203–204
transactions, 922

isReadOnly() method, 513
Iterable class, 501

17-Index.indd 968 9/2/2014 4:10:42 PM

Index 969

iteration
basic for loops, 325–326
collections, 592, 799
directories, 514–515
paths, 501

iterator() method
collections, 590, 799
lists, 628
sets, 628

Iterators
collections, 799
lists, 614–615

J

java command, 12, 383
java.io.Console class

description, 444, 480
working with, 491–493

java.io.IOException class
checked exceptions, 349
directories, 489
files, 346–347, 391

java.io package
classes, 484–485
files and directories, 487–491

java.io.PrintStream class, 451
java.lang.Class class, 746
java.lang.ClassCastException class

description, 358
downcasts, 114
with equals(), 579

java.lang.Enum class, 618
java.lang.Exception class, 342–343
java.lang.Integer class, 15–16, 356
java.lang.Object class, 88, 574

collections, 630, 639
threads, 728, 764

java.lang.Object.equals() method, 230–231, 586
java.lang.Runnable interface

executing, 806
implementing, 718
I/O activities, 814
threads, 716, 764

java.lang.Runtime class
available processors, 811
garbage collection, 205

java.lang.RuntimeException class, 343, 348–351
java.lang.StringBuilder class, 258, 269

key points, 296
methods, 271–272
vs. StringBuffer, 269–270
thread safeness, 751

java.lang.Thread class, 714, 716–717
extending, 717–718
methods, 728
thread methods, 764

Java Naming and Directory Interface (JNDI) lookup,
860

java.nio.file package, 493–494, 514
java.nio.file.attribute package, 493, 506
java.nio.file.Path interface

key points, 528–529
methods, 500–501
working with, 493–494

Java resource bundles, 457–458
java.sql.Connection interface, 851–852, 903
java.sql.Date class, 419, 871

instance creation, 431
working with, 420–422

java.sql.Driver interface, 856, 860
java.sql.DriverManager class, 844

description, 853
key points, 932
overview, 854–856
registering JDBC drivers, 856–858

java.sql package, 851
java.sql.ResultSet interface, 851–852, 915
java.text.DateFormat class

description, 419–420
instance creation, 431
locale setting, 428
working with, 425–426

java.text.NumberFormat class
description, 420
instance creation, 431
locale setting, 428
working with, 428–430

17-Index.indd 969 9/2/2014 4:10:42 PM

970 OCA/OCP Java SE 7 Programmer I & II Study Guide

java.util.ArrayList class. See ArrayList class
java.util.Calendar class

description, 419
instance creation, 431
working with, 422–424

java.util.Collection interface, 589–590
java.util.Collections class, 589–590, 604
java.util.concurrent.atomic package, 786–787
java.util.concurrent.Callable interface, 813–814
java.util.concurrent.Delayed interface, 803
java.util.concurrent.Executor class, 809
java.util.concurrent.ForkJoinPool class, 817
java.util.concurrent.ForkJoinTask class, 817–818
java.util.concurrent.Future class, 813–814
java.util.concurrent.locks.Condition interface, 794
java.util.concurrent.locks.Lock interface, 791
java.util.concurrent.locks package, 786–787, 789–790
java.util.concurrent.locks.ReentrantLock class, 791–794
java.util.concurrent package, 786. See also concurrency
java.util.concurrent.ThreadLocalRandom class, 814
java.util.concurrent.ThreadPoolExecutor, 812
java.util.Date class, 419

instance creation, 431
with SQL, 871
working with, 420–422

java.util.Formatter class, 452
java.util.GregorianCalendar class, 423
java.util.List interface, 291, 589

implementations, 291, 593–594
methods, 626, 628
threads, 797

java.util.Locale class
description, 420
instance creation, 431
overview, 426–429
resource bundles, 455

java.util.NavigableMap interface, 589, 620
java.util.NavigableSet interface, 589, 620
java.util package, 622, 664
java.util.regex.Matcher class, 443–444
java.util.regex.Pattern class, 435, 437, 443
java.util.ResourceBundle class, 455–456
java.util.Scanner class

searching with, 445–446
tokenizing with, 449–450

java.util.StringTokenizer class, 450–451
Java Virtual Machine (JVM), invoking, 12
JavaBeans properties, 915
javac

compiling with, 11–12
versions, 383

javax.sql.DataSource class, 859
javax.sql package for RowSets, 914
javax.sql.rowset package, 913
JDBC API, 842

CallableStatements, 910–912
database connections, 844–845
database overview, 842–844
driver implementation versions, 860–861
DriverManager class, 853–858
drivers, 852, 856–858
exceptions and warnings, 901–906
interfaces, 851–852
key points, 932
PreparedStatements, 906–910
query submissions, 861–867
result sets. See ResultSets
RowSet objects, 913–920
SQL queries, 845–847
statements, 863–867
test database, 847–850
transactions, 921–927
URL, 858–859

JdbcRowSet interface, 914–920
JIT (Just In Time) compiler, 788
JNDI (Java Naming and Directory Interface) lookup,

860
join() method

class source, 764
Fork/Join Framework, 818, 820–821
key points, 767
locks, 749
threads, 728, 736–738

join tables, 850
JoinRowSet, 919–920
Just In Time (JIT) compiler, 788
JVM (Java Virtual Machine), invoking, 12

17-Index.indd 970 9/2/2014 4:10:42 PM

Index 971

K

key.pollEvents() method, 525
key.reset() method, 525
key/value pairs in property resource bundles, 456–457
keys

databases, 843, 848, 850
hashtables, 578
Map, 595

keySet() method, 628
keywords, 4

assert, 382–383
list of, 7

L

L suffix, 169
labeled statements, 331–333
Labels_en.properties file, 455
Labels_fr.properties file, 455
LARGE OBJECT types, 871
large tasks, divide and conquer technique for, 816–817
last() method, 884, 887
lastModified() method, 508
lastModifiedTime() method, 513
launcher versions, 383
launching applications, 12
lazy initialization, 553
left-justification in format strings, 453
legacy code in generics, 633
legal identifiers, 6–7
length() method, 267
length of arrays and strings, 267
less than signs (<) for relational operators, 226–227
letters in searches, 435
LIKE operator, 869
linefeeds, 443
LinkedBlockingDeque class, 801, 803
LinkedBlockingQueue class, 801, 803
LinkedHashMap class, 589, 595–596
LinkedHashSet class, 589, 592, 594
LinkedList class, 589, 594, 614
LinkedTransferQueue class, 801, 803–805
list.iterator() method, 799
list() method, 490

ListIterator, 799
ListResourceBundle class, 457–458
lists and List interface, 291, 589

ArrayLists. See ArrayList class
converting with arrays, 613–614
description, 591
implementations, 291, 593–594
key points, 664
methods, 626, 628
threads, 797
working with, 614–616

literals
binary, 169
boolean, 171
character, 171–172
class, 747
floating-point, 170–171
format strings, 452
globs, 521
hexadecimal, 170
integer, 168
key points, 209
octal, 169
primitive assignments, 173–174
strings, 172, 264

local arrays, 191
local object references, 190–191
local primitives, 189–190
local variables, 188

access modifiers, 41–42
description, 183
inner classes, 691
key points, 72
on stack, 54, 166–167
working with, 54–56

Locale class
description, 420
instance creation, 431
overview, 426–429
resource bundles, 455

locales
default, 458
grouping separators in format strings, 453
resource bundles. See resource bundles

17-Index.indd 971 9/2/2014 4:10:42 PM

972 OCA/OCP Java SE 7 Programmer I & II Study Guide

localhosts in URLs, 858
Lock interface, 791
locks, 789–790

conditions, 794–795
key points, 829
obtaining, 748–749
ReentrantReadWriteLock, 796
synchronization, 744–747

locks package, 786–787, 789–790
logical operators, 241

bitwise, 241–242
key points, 248
non short-circuit, 244–246
short-circuit, 242–244, 312

long type
default values, 186
ranges, 51

LONGVARCHAR data type, 875
loop constructs, 321

break and continue, 330–331
do, 323
element initialization, 279–280
for, 323–329
key points, 362
wait() in, 761–763
while, 321–322

loosely coupled classes, 543
lower() method, 621
lowercase characters

natural ordering, 628
strings, 268

lowerKey() method, 621, 623

M

main() method, 13
exceptions, 341–342
overloaded, 110
threads, 714–715

maintainability, object orientation for, 84
maps and Map interface, 589, 595–596

description, 591
methods, 626, 628
working with, 617–620

mark and sweep algorithm, 201
Matcher class, 443–444
matching

exceptions, 345–347
key points, 529
pattern, 443–446

MAX_VALUE constant, 16
meaningfully equivalent objects, 230
member modifiers, nonaccess, 42–49
members

access. See access and access modifiers
declaring, 28–29
key points, 72–73

memory
garbage collection. See garbage collection
strings, 264–265

memory leaks, 199
META-INF/services/java.sql.Driver file, 860
metacharacters in searches, 434–435, 442–443
metadata for ResultSets, 876–878, 896–900
method-local inner classes, 690

key points, 702–703
working with, 691–692

methods
abstract, 43–47
access modifiers. See access and access modifiers
anonymous inner classes, 694
ArrayLists, 292–294
assertions, 386–388
chained, 272–273
description, 4
enums, 63–64
final, 42–43, 58–59
generics, 641–652, 657–659
instance, 99, 103
interface implementation, 116–117
names, 9
native, 47
overloaded, 106–112
overridden, 100–106
parameters, 504
recursive, 356
stacks, 339–340
static, 59–60, 141–146

17-Index.indd 972 9/2/2014 4:10:42 PM

Index 973

strictfp, 47–48
String, 265–268
StringBuilder, 271–272
synchronized, 47
variable argument lists, 48–49

minus signs (-)
compound assignment operators, 225–226
decrement operators, 238–239
format strings, 453
searches, 437
subtraction, 235

MissingResourceException class, 459
mixing generic and nongeneric collections, 633–638
mkdir() method, 488
modifiers. See access and access modifiers
modulus operator, 235–236
monitors for locking, 744, 789
move() method, 498–499
moveToCurrentRow() method, 890, 896
moveToInsertRow() method, 890, 895
moving files, 498–499
moving in ResultSets, 869–870, 880–889
multi-catch clauses, 389–392, 405
multidimensional arrays

declaring, 57, 274
reference assignments, 287–288

multiple inheritance, 97
multiple threads, starting and running, 724–727
multiplication

compound assignment, 225–226
operator, 235

multithreading, 714
mutable data, synchronizing, 749
mutators in encapsulation, 85

N

\n escape sequence, 443
names

classes and interfaces, 8–9, 385
constants, 9
constructors, 49, 126, 128
conventions, 4

dot operator, 144
fully qualified, 13
labels, 332
methods, 9
shadow variables, 197–198
threads, 722
variables, 9

narrowing conversions, 176
native methods, 47
native threads, 715
natural ordering, 628
NavigableMap interface, 589, 620
NavigableSet interface, 589, 620
navigation

ResultSets, 869–870, 880–889
searches, 437
TreeSets and TreeMaps, 620–621

negative numbers
from casts, 179
format strings, 453
representing, 51

nested classes, 17
inner. See inner classes
static, 682, 699–700

nested if-else statements, 309
nested methods, 184
new keyword

arrays, 275
inner classes, 687

new thread state
description, 729
starting threads, 720

newCachedThreadPool() method, 812
newFixedThreadPool() method, 812
next() method

Iterator, 614–615
ResultSets, 869–870, 880, 883
Scanner, 449–450

nextInt() method, 814
nextToken() method, 450
nextXxx() methods, 450
NIO.2, 493

attributes, 506–513
DirectoryStream, 514–515

17-Index.indd 973 9/2/2014 4:10:42 PM

974 OCA/OCP Java SE 7 Programmer I & II Study Guide

NIO.2, (cont.)
files and directories, 497–506
files and paths, 493–496
FileVisitor, 515–519
key points, 528–529
PathMatcher, 519–522
permissions, 507–508
WatchService, 523–526

no-arg constructors, 127–129
NoClassDefFoundError class, 358
non-digits in searches, 435
non-static fields, synchronizing, 749–750
non-synchronized method, 745
nonaccess member modifiers, 20, 42

abstract methods, 43–47
final arguments, 43
final methods, 42–43
key points, 69–70
methods with variable argument lists, 48–49
native methods, 47
strictfp methods, 47–48
synchronized methods, 47

nongeneric code, updating to generic, 633
nongeneric collections, mixing with generic, 633–638
normalize() method, 502–503
normalizing paths, 501–503
NoSuchFileException class, 499
not equal operator (!=), 227
notExists() method, 497, 499
notify() method

class source, 764
description, 575
key points, 768
locks, 749
Object, 813
threads, 728, 755–757, 760, 762–764

notifyAll() method
class source, 764
description, 575
Object, 813
threads, 728, 755, 760–764

null values
reference variables, 173, 181
returning, 124
wrappers, 603

nulling references, 202
NullPointerException class, 350

arrays, 277
description, 358
reference variables, 355–356
wrapper variables, 603

number signs (#) in property resource bundles, 456–457
NumberFormat class

description, 420
instance creation, 431
locale setting, 428
working with, 428–430

NumberFormatException class
description, 358
string conversions, 357

numbers
key points, 463
overview, 419–420
primitives. See primitives
random, 814
with string concatenation, 236–237
with underscores, 168–169

O

Object class, 88, 574
collections, 630, 639
threads, 728, 764

Object.notify() method, 813
Object.notifyAll() method, 813
object orientation, 83–84

benefits, 95
casting, 113–116
constructors. See constructors
DAO design pattern, 554–559
encapsulation, 84–87
factory design pattern, 560–563
inheritance, 88–95
initialization blocks, 138–140
interface implementation, 116–121
IS-A and HAS-A, 542–545
key points, 565–566
overloaded methods, 106–112
overridden methods, 100–106

17-Index.indd 974 9/2/2014 4:10:42 PM

Index 975

polymorphism, 96–99, 548
return types, 122–125
singleton design pattern, 549–554
statics, 140–146

Object.wait() method, 813
objects and object references

arrays, 57, 274, 284–285
composition principles, 545–548
default values, 185–188
description, 4, 173
garbage collection, 202–208
on heap, 166–167
initializing, 190–191
inner classes, 687–688
instanceof comparisons, 232–235
overloaded methods, 108–109
passing, 194–196
strings as, 258–259
updating columns with, 893–894

octal (base 8) integers, 168–169
offer() method

BlockingQueue, 802
LinkedList, 594
PriorityQueue and Deque, 625–627

one-dimensional arrays
constructing, 275–277
reference assignments, 286–287

operands, 224
operating system thread limits, 807
operators, 223–224

arithmetic, 235–240
assignment, 224–226
conditional, 240–241
increment and decrement, 238–240
instanceof, 232–235
logical, 241–246
relational, 226–232

opposites matches in searches, 435
OR expressions, 243–245
order

ArrayList elements, 592
collections, 622
instance initialization blocks, 139
natural, 628
threads, 727

ordered collections, 591–592
out-of-range array indexes, 279
out-of-scope variables, 184
OUT parameters for CallableStatements, 911–912
OutOfMemoryException class, 207
OutputStream.write() method, 808
overloaded constructors, 134–138
overloaded methods, 106

invoking, 107–110
key points, 150
legal, 107, 111
main(), 13, 110
vs. overridden, 107, 112
polymorphism, 110
return types, 122–123

overridden methods, 100–104
illegal, 105–106
invoking superclass, 104–105
vs. overloaded, 107, 112
polymorphism, 110
return types, 123–124
static, 146

overriding
anonymous inner class methods, 694
equals(), 576–578
hashcode(), 581–584
key points, 150, 661–662
private methods, 35
run(), 717

P

package-centric languages, 18
package-level access, 19
package statement in source code files, 10–11
packages, 5

access, 17–18
assertions, 385
classes in, 14

padding format strings, 453
parallel Fork/Join Framework. See Fork/Join Framework
parallel tasks, identifying, 806–807
parameterized types, 631–632

17-Index.indd 975 9/2/2014 4:10:42 PM

976 OCA/OCP Java SE 7 Programmer I & II Study Guide

parameters
vs. arguments, 48
CallableStatements, 911–912
methods, 504
multi-catch and catch, 391–392
PreparedStatements, 908

parentheses ()
arguments, 43, 48
conditional operator, 240
in for loops, 324
format strings, 453
if expressions, 309, 312
operator precedence, 226, 236–237
searches, 439
string concatenation, 237
try-with-resources, 905–906

parse() method, 425–426, 430
ParseException class, 426
parseInt() method, 356–357
parsing

dates, 425–426
key points, 464–465
searches. See searches

passing
key points, 211
object reference variables, 194–196
pass-by-value, 195–196
primitive variables, 196–197

passwords, hard-coding, 855
PathMatcher, 519–522
paths and Path interface

creating, 495–496
iterating through, 501
key points, 528–529
methods, 500–501
normalizing, 501–503
relativizing, 505–506
resolving, 503–504
retrieving, 500–501
working with, 493–494

Paths class, 494, 528–529
Paths.get() method, 495–496
Pattern class, 435, 437, 443
pattern matching in searches, 443–446

patterns, design
DAO. See DAO (Data Access Object) design

pattern
factory. See factory design patterns
singleton. See singleton design pattern

Peabody, Marc, 175
peek() method

BlockingQueue, 802
LinkedList, 594
PriorityQueue and Deque, 625–627

percent signs (%)
format strings, 452
LIKE operator, 869
remainder operator, 235–236

performance
singleton design pattern, 554
stored procedures, 910

permissions
files, 507–508
PosixFileAttributes, 512–513

phone number searches, 440
pipe (|) characters

bitwise operators, 241–242
logical OR operator, 243–245
multi-catch clauses, 390

plus signs (+)
addition, 235
compound assignment operators, 225–226
format strings, 452–453
increment operators, 238–239
searches, 438–439
string concatenation, 236–238

poll() method
BlockingQueue, 802
LinkedList, 594
PriorityQueue and Deque, 625–627
WatchService, 525

pollEvents() method, 525
pollFirst() method, 621, 623
pollFirstEntry() method, 622–623
polling, 621–623
pollLast() method, 621, 623
pollLastEntry() method, 622–623

17-Index.indd 976 9/2/2014 4:10:42 PM

Index 977

polymorphism, 548
abstract classes, 23
anonymous inner classes, 695
arrays, 642–644
declarations, 291
generics, 639–640
inheritance, 90
key points, 149–150
overloaded and overridden methods, 110
overview, 96–99

pools
String constants, 264
threads. See ThreadPools

Portable Operating System Interface (POSIX), 508
PosixFileAttributes interface, 508
PosixFileAttributeView interface, 509–510, 512–513
possessive quantifiers, 440
postfix increment operators, 238–239
postVisitDirectory() method, 517
pound signs (#) in property resource bundles, 456–457
precedence of operators, 226, 236–237
precision

casts, 176, 178–179
floating-point literals, 171
floating-point numbers, 178
format strings, 453

precompiled PreparedStatements, 907–908
preemptive multitasking, 808
preemptive priority-based scheduling, 734–738
prefix increment operators, 238–239
prepareCall() method, 911
PreparedStatement interface

key points, 933–934
overview, 906–910
transactions, 923

prepareStatement() method, 908
preventing thread execution, 731
previous() method, 883, 885–886
preVisitDirectory() method, 517
primary database keys, 843, 848
primitives

arrays, 57, 274, 284
assignments, 173–175, 180
casting, 176–178, 209

comparisons, 228
declarations, 50–52
default values, 185–188
final, 58
initializing, 189–190
literals, 168–172
passing, 196–197
returning, 124
wrapper classes, 182, 600–603

printf() method, 451–454
printing

file permissions, 507
formatting, 451–454
reports, 878–880

println() method, 448, 485
printStackTrace() method, 344
PrintStream class, 451
PrintWriter class, 480, 484–485
priority of threads, 728, 734–738
PriorityBlockingQueue, 801
PriorityQueue class, 589, 596, 625–626
private modifiers, 29

inner classes, 689
overriding, 35
overview, 33–36

processors, available, 811
programmatically thrown exceptions, 356–357
propagating uncaught exceptions, 339–342
properties

JavaBeans, 915
resource bundles, 456–457
setter methods, 916–917

protected modifiers, 29
inner classes, 689
overview, 35–39

public access, 19–20
public interface for exceptions, 347–352
public modifiers, 29

constants, 27
encapsulation, 85
inner classes, 689
overview, 31–33

public static void main() method, 13

17-Index.indd 977 9/2/2014 4:10:42 PM

978 OCA/OCP Java SE 7 Programmer I & II Study Guide

put() method
BlockingQueue, 802
maps, 628

putIfAbsent() method, 801

Q

quantifiers
greedy, 440–442
searches, 437–440

queries
key points, 932–933
result sets. See ResultSets
SQL, 845–847
submitting, 861–867

query strings, 866
question marks (?)

conditional operators, 240–241
generics, 659
globs, 520
searches, 439–442

Queue interface, 589, 596–597
queues

blocking, 801–805
bounded, 803
description, 591
LinkedTransferQueue, 803–805
methods, 626
special-purpose, 803
threads, 727

quotes (', ")
arguments, 444
SQL, 847

R

race conditions, 742
random numbers, 814
RandomInitRecursiveAction task, 824
ranges

numbers, 51
searches, 437

RDBMSs (Relational Database Management Systems),
843

reachable objects, 200
read() method, 483, 808
read-only objects, 799
read permissions, 507, 512
readAttributes() method, 511, 513
reading

attributes, 506–507
ResultSets, 870–875

readLine() method, 486, 489–492
readPassword() method, 491–492
REAL data type, 875
reassigning reference variables, 202–203
recursive methods, 356
RecursiveAction class, 821–822
RecursiveTask task, 822–824
Red-Black tree structure, 595
redefined static methods, 146
ReentrantLock class, 791–794
ReentrantReadWriteLock object, 796
reference counting, 201
references, 96

arrays, 277
assigning, 180–181, 191–193
casting, 113–116, 151
declaring, 52
description, 173
encapsulation, 294–295
equality, 228–230, 577
inner classes, 688–689
instances, 144
isolating, 203–204
multidimensional arrays, 287–288
nulling, 202
one-dimensional arrays, 286–287
overloaded methods, 108–109
passing, 194–196
reassigning, 202–203
returning, 124
strings, 260–261

reflexivity with equals(), 581
regex language, 432
regions

guarded, 335
searches, 445

17-Index.indd 978 9/2/2014 4:10:42 PM

Index 979

registering JDBC drivers, 856–858
regular expressions (regex)

vs. globs, 522
metacharacters, 434–436
pattern matching, 443–446
quantifiers, 437–442
ranges, 437
simple searches, 432–434
strings, 442–443
tokenizing. See tokenizing

regular inner classes, 685–686
Relational Database Management Systems (RDBMSs),

843
relational operators, 226–227

equality, 227–232
key points, 247

relative() method, 883–885
relative paths, 495
relativizing paths, 505–506
releaseSavepoint() method, 927
releasing locks, 744
reluctant quantifiers, 440–441
remainder operator, 235–236
remove() method

ArrayList, 293–294
BlockingQueue, 802
collections, 590, 801
lists, 628
maps, 628
sets, 628

removeFirst() method, 751, 753
removing ArrayList elements, 293–294
renameTo() method, 489–490
renaming files and directories, 525
replace() method

collections, 801
strings, 267

replace operations, 445
replaceAll() method, 445
replacing string elements, 267
reports, printing, 878–880
reset() method, 525
resolve() method, 504
resolving paths, 503–504

resource bundles, 454–456
default locales, 458
Java, 457–458
key points, 465
property, 456–457
selecting, 459–461

ResourceBundle class, 455–456
resources

autocloseable, 396–401
closing, 903–906

results, database, 845–846. See also ResultSets
ResultSet interface, 851–852, 915
ResultSetMetaData class, 876
ResultSets

cursor types, 881
information about, 876–878, 896–900
key points, 932–933
moving in, 869–870, 880–889
overview, 868
reading from, 870–875
reports, 878–880
RowSet objects, 913–915
updating, 889–896

resume() method, 730
rethrowing exceptions, 353, 392–396
retrieving path information, 500–501
return statement in for loops, 326
return type

constructors, 49, 126, 128
declarations, 122–125
key points, 151
overloaded methods, 106, 122–123
overridden methods, 103, 123–124
returning values, 124–125

reuse
composition, 549
inheritance for, 89
names, 197–198

reuseless code, 682
reverse() method

arrays, 627
collections, 627
strings, 272

17-Index.indd 979 9/2/2014 4:10:42 PM

980 OCA/OCP Java SE 7 Programmer I & II Study Guide

reverseOrder() method
arrays, 627
collections, 627

reversing strings, 272
ride.in property, 460
roll() method, 424
rollback() method, 924–925
rolling back transactions, 924–926
rowChanged() method, 918
rowDeleted() method, 893
rows

database, 842–843
inserting, 894–896

RowSet interface, 913
rowSetChanged() method, 918
RowSetEvent class, 918
RowSetFactory interface, 913–914
RowSetListener interface, 915, 918
RowSetProvider class, 913–914
RowSetReader interface, 920
RowSets, 913

connected, 916–919
disconnected, 919–920
key points, 934
overview, 913–914
working with, 914–915

RowSetWriter interface, 920
rowUpdated() method, 891
rs.getObject() method, 880
rules

constructors, 128–129
expression, 381–382
source file, 10–11

run() method
class source, 764
overriding, 717
threads, 716, 721–722, 726

Runnable interface
executing, 806
implementing, 718
I/O activities, 814
threads, 716, 764

runnable thread state, 729

running thread state
description, 729
threads, 728

running with assertions, 384
runtime

disabling assertions at, 384–386
enabling, 384

Runtime class
available processors, 811
garbage collection, 205

runtime exceptions for overridden methods, 103
RuntimeException class, 343, 348–351

S

s in format strings, 453
\s in searches, 435
savepoints for transactions, 922, 926–927
Scanner class

searching with, 445–446
tokenizing with, 449–450

scheduled thread pools, 812
ScheduledThreadPoolExecutor, 812
scheduler, thread, 727–728
schema, database, 847–850
scope

in for loops, 327
key points, 209
variables, 182–185

searches, 432
arrays and collections, 611–613
boundary matching, 436
character matching, 435
files, 490–491
key points, 664
metacharacters, 434–435, 442–443
pattern matching, 443–446
quantifiers, 437–442
ranges, 437
Scanner class, 445–446
simple, 432–434
strings, 442–443
TreeSets and TreeMaps, 620–621

17-Index.indd 980 9/2/2014 4:10:42 PM

Index 981

SELECT operation
description, 845–846
SELECT * FROM, 861
SELECT with WHERE, 845

semicolons (;)
abstract methods, 22, 43–44
anonymous inner classes, 693–694
enums, 62
in for loops, 324
labels, 332
native methods, 47
while loops, 323

separation of concerns principle, 805
serialization of transient variables, 586–587
setAttribute() method, 512–513
setAutoCommit() method, 925
setConcurrency() method, 916
setEscapeProcessing() method, 916
setLastModified() method, 508
setMaxFieldSize() method, 916
setMaximumFractionDigits() method, 430
setMaxRows() method, 916
setName() method, 727
setParseIntegerOnly() method, 430
setPosixFilePermissions() method, 513
setPriority() method

key points, 735, 766
threads, 728

setQueryTimeout() method, 916
sets and Set interface, 589

description, 591
methods, 626, 628
overview, 594–595, 616–617
in searches, 437

sets of characters in globs, 521
setString() method, 909
setters encapsulation, 85
setTime() method, 422
setTimes() method, 510, 513
setTransactionIsolation() method, 916, 926
setType() method, 916
setUrl() method, 915
shadowed variables, 55, 183, 197–198
short-circuit logical operators, 242–244, 312

short type
case constants, 314
default values, 186
ranges, 51
wrappers, 602

shutdown of ExecutorService, 814–815
shutdownNow() method, 815
side effects from assertions, 389
signalAll() method, 795
signatures of methods, 112, 117
signed numbers, 51
simple searches, 432–434
SimpleFileVisitor class, 515–516
single quotes (') in PreparedStatements, 909
single thread pools, 812
singleton design pattern

benefits, 554
description, 549–550
key points, 566
problem, 550–551
solution, 551–554

size
ArrayLists, 293–294
arrays, 57, 274, 276, 280, 282, 284
assignment issues, 225
numbers, 51

size() method
ArrayLists, 293–294
collections, 590, 800
lists, 616, 628
maps, 628
sets, 628

SKIP_SIBLINGS result type, 518
SKIP_SUBTREE result type, 518
slashes (/)

compound assignment operators, 225–226
division, 235
globs, 520–521

sleep() method
class source, 764
key points, 766
locks, 749
overview, 731–733
threads, 716, 728, 736
working with, 733–734

17-Index.indd 981 9/2/2014 4:10:42 PM

982 OCA/OCP Java SE 7 Programmer I & II Study Guide

sleeping thread state, 734
description, 729–730
overview, 731–733

sort() method
arrays, 627
collections, 604–606, 627

sorted collections, 591–593
SortedMap interface, 589
SortedSet interface, 589
sorting

arrays, 610, 627
collections, 604–611, 627
Comparable interface, 606–608
Comparator interface, 608–609
key points, 664

source code file declaration rules, 10–11, 69
spaces

natural ordering, 628
searches, 435

special-purpose queues, 803
special relationships in inner classes, 684, 699
split() method, 447–448
spontaneous wakeup, 763
spreadsheets. See databases
SQL (Structured Query Language), 843–844

closing resources, 903–906
injection attacks, 866
queries, 845–847
types, 871

SQLException class
driver classes, 856
PreparedStatements, 909
ResultSets, 887, 894
RowSets, 917
stored procedures, 912

SQLWarning class, 902
square brackets ([])

array elements, 56–57
arrays, 274
searches, 437

stack
exceptions, 356
key points, 209
local variables, 54

methods, 339–340
overview, 166–167
threads, 807

StackOverflowError class
description, 358
recursive methods, 356

StandardWatchEventsKinds class, 524
start() method

alternative, 806
class source, 764
threads, 716, 720, 724–726

starting
threads, 714–716, 720–727
transaction contexts, 922–924

Statement interface, 851–852, 863, 907
statements

constructing and using, 864–867
databases, 844
description, 863

states
description, 4
key points, 765–766
threads, 728–731

static constants, 27
static fields, synchronizing, 750
static imports, 15–17
static initialization blocks, 139
static nested classes, 682

key points, 703
overview, 699–700

static variables and methods, 15, 59–60, 140
constructors, 129
description, 183
inner classes, 689, 692
key points, 73, 153
locks, 748
overriding, 103, 146
overview, 141–146
synchronizing, 746–747

stop() method, 730
stored procedures

CallableStatements, 910–912
information about, 899

17-Index.indd 982 9/2/2014 4:10:42 PM

Index 983

invoking, 865
transactions, 923

stream classes, 480
strictfp modifiers

classes, 20
inner classes, 689
methods, 47–48

String class, 258–264
constant pool, 264
key points, 296
methods, 265–268
object references, 192–193

String.split() method, 447–448
String URL property, 915
StringBuffer class, 258

vs. StringBuilder, 269–270
thread safeness, 751

StringBuilder class, 258
key points, 296
methods, 271–272
overview, 269
vs. StringBuffer, 269–270
thread safeness, 751

StringIndexOutOfBoundsException class, 344–345
strings, 258

appending, 259–260, 270–271
case constants, 314
comparing, 266–267
concatenating, 236–238, 248, 266
converting to URIs, 496
creating, 265
deleting, 271
equality, 230–231, 316–317
format, 452–454
immutability, 258–264
inserting elements into, 272
key points, 296
length, 267
literals, 172, 264
lower case, 268
memory, 264–265
methods, 265–268
replacing elements in, 267
reversing, 272

searches, 442–443
substrings, 267–268
trimming, 268
upper case, 268

StringTokenizer class, 450–451
Structured Query Language (SQL), 843–844

closing resources, 903–906
injection attacks, 866
queries, 845–847
types, 871

subclasses
anonymous inner classes, 696
concrete, 44–46
inheritance, 5

subdirectories, 515–519
subdividing tasks, 816–817
subMap() method, 622–624
submitting queries, 861–867
subpath() method, 500
subSet() method, 623–624
subsets in searches, 445
substring() method, 267–268
subtraction

compound assignment, 225–226
operator, 235

subtypes for reference variables, 96
SUNDAY field, 424
super() calls for constructors, 137–138
super constructor arguments, 132–134
superclasses, 5

constructors, 129
overridden methods, 104–105

supportsANSI92EntryLevelSQL() method, 897, 900
supportsSavePoints() method, 927
suppressed exceptions, 401–402
suspend() method, 730
switch statements, 313–314

break and fall-through, 317–319
default case, 319–320
exercise, 320–321
key points, 361
legal expressions, 314–316
string equality, 316–317

symmetry of equals(), 581

17-Index.indd 983 9/2/2014 4:10:42 PM

984 OCA/OCP Java SE 7 Programmer I & II Study Guide

synchronization
blocks, 745–748
code, 738–744
key points, 767
locks, 744–747
methods, 47, 744–745
need for, 749–751
static methods, 746–747

synchronizedList() method, 751–753, 798
SynchronousQueue class, 801, 803
SyncProvider class, 920
System.exit() method

loops, 326
threads, 815
try and catch, 360

System.gc() method, 204–206
System.out.println() method, 448
system resources for threads, 807

T

\t escape sequence, 443
tables. See databases
tabs, 443
tailMap() method, 623–624
tailSet() method, 623–624
take() method

BlockingQueue, 802
LinkedTransferQueue, 803
WatchService, 525

tasks
CPU-intensive vs. I/O-intensive, 807–808
decoupling from threads, 809–811
subdividing, 816–817

TERMINATE result type, 518
ternary operator

conditional, 240–241
key points, 248

test database overview, 847–850
this() calls for constructors, 129, 137–138
this keyword, 56, 688–689
Thomas, Dave, 923
Thread class, 714, 716–717

extending, 717–718
methods, 728, 764

Thread.currentThread().isInterrupted() method, 815
Thread.interrupt() method, 815
thread-safe classes, 751–753
thread-safe collections, 800
thread-safe patterns, 553
ThreadLocalRandom class, 814
ThreadPoolExecutor, 812
ThreadPools, 805–806

cached, 811
fixed, 811
key points, 831
scheduled, 812
single, 812

threads
blocked code, 748–749
concurrency. See concurrency
creating and putting to sleep, 733–734
deadlocks, 753–754
decoupling from tasks, 809–811
defining, 714–718
exercise, 747–748
garbage collector, 201
instantiating, 714–716, 718–720
interaction, 755–760
key points, 765–768
limits, 807
locks, 748–749
making, 716–717
multiple, 724–727
names, 722
notifyAll(), 760–764
preventing execution, 731
priorities, 734–738
scheduler, 727–728
sleeping state, 731–734
starting, 714–716, 720–727
states and transitions, 728–731
synchronization and locks, 744–747
synchronization need, 749–751
synchronization of code, 738–744
thread-safe classes, 751–753

threads of execution, 714, 718, 720
three-dimensional arrays, 57, 274
Throwable class, 343

17-Index.indd 984 9/2/2014 4:10:42 PM

Index 985

thrown exceptions
description, 335
JVM, 355–356
programmatically, 356–357

tightly coupled classes, 543
TIME data type, 875
time-slicing scheduler, 734
TIMESTAMP data type, 875
toArray() method

lists, 613–614, 628
sets, 616, 628

tokenizing, 446
delimiters, 446–447
key points, 464–465
Scanner, 449–450
split(), 447–448
StringTokenizer, 450–451

toLowerCase() method, 268
top-level nested classes, 682
toString() method

ArrayLists, 291
arrays, 627
null tests, 880
objects, 893
overview, 575–576
Path, 500
String, 268
StringBuilder, 272

toUpperCase() method, 268
transactions

concepts, 922
contexts, 922–924
demarcation, 924
key points, 934
overview, 921–922
rolling back, 924–926
savepoints, 926–927

transfer() method, 803
transient variables

overview, 58
serialization, 586–587

transitions with threads, 728–731
transitivity of equals(), 581
tree structures, 501, 595

TreeMap class, 589
navigating, 620–622
overview, 596

TreeSet class, 589
creating, 616
methods, 623
navigating, 620–622
overview, 595

trim() method, 268
true value, 171
truncating from casts, 179
try and catch feature

file I/O, 482
finally, 336–339, 389–392
key points, 405
multi-catch clauses, 389–392
overview, 335–336

try-with-resources feature
autocloseable resources with, 396–401, 405
working with, 905–906

tryLock() method, 791–793
two-dimensional arrays, 57, 274
two's complement notation and casts, 179
TYPE_FORWARD_ONLY cursor type, 880–881, 902
type-safe arrays, 629
TYPE_SCROLL_INSENSITIVE cursor type, 881–882,

891
TYPE_SCROLL_SENSITIVE cursor type, 881, 902
types

array declarations, 274
assignments, 225
casting. See casts
erasure, 637
parameters, 631–632
return. See return type
variables, 173

U

\u prefix, 171
UML (Unified Modeling Language), 95, 553
unassigned variables

key points, 210
working with, 185–188

17-Index.indd 985 9/2/2014 4:10:42 PM

986 OCA/OCP Java SE 7 Programmer I & II Study Guide

unboxing problems, 639
uncaught exceptions, 339–342
unchecked exceptions

description, 350
overridden methods, 103

underscores (_) in numeric literals, 168–169
Unicode characters

char type, 52
identifiers, 6
literals, 171
strings, 258

Unified Modeling Language (UML), 95, 553
uninitialized variables

key points, 210
working with, 185–188

unions in searches, 437
unique Map keys, 595
unlabeled statements, 331
unordered collections, 591
unpredictabilty of threads, 725–726, 735
unsorted collections, 591–592
UnsupportedOperationException class, 799
unwinding the stack, 344
upcasting, 115
update() method, 558
UPDATE operation, 846
updateFloat() method, 890
updateObject() method, 893–894
updateRow() method, 890–891
updating

nongeneric code to generic, 633
ResultSets, 889–896
SQL, 846

upper case
natural ordering, 628
SQL commands, 846
strings, 268

URIs, converting strings to, 496
URLs, JDBC, 858–859
usernames, hard-coding, 855

V

valueOf() method, 893
values() method, 64
values of variables, 172
var-args

key points, 73
methods, 48–49

VARCHAR data type, 875
variable argument lists, 48–49
variables

access. See access and access modifiers
assignments. See assignments
atomic, 786–789, 829
declarations, 50–52, 73
description, 4
enums, 63–64
final, 58–59
in for loops, 327
heap and stack, 166–167
initializing, 175
inner classes, 691
instance, 52–53
local. See local variables
names, 9
primitives, 50–52
scope, 182–185
shadow, 197–198
static, 59–60, 141–146
transient, 58
uninitialized and unassigned, 185–188, 210
values, 172
volatile, 58–59

Vector class, 589, 593–594
versions

compiler, 383
JDBC drivers, 860–861

vertical bars (|)
bitwise operators, 241–242
logical OR operator, 243–245
multi-catch clauses, 390

visibility, access, 18, 42
visitFile() method, 516–517
visitFileFailed() method, 517

17-Index.indd 986 9/2/2014 4:10:42 PM

Index 987

void return type, 125
volatile variables, 58–59

W

\w in searches, 435
wait() method

class source, 764
description, 575
key points, 768
loops, 761–763
Object, 813
threads, 728, 755–760

waiting thread state, 729–730
walkFileTree() method, 515–516
warnings

vs. fails, 636
JDBC, 901–906

WatchKeys, 525
WatchService, 523–526
weakly consistent iterators, 800
WebRowSet, 919–920
WET programmers, 924
while loops

labeled, 333
working with, 321–322

whitespace
as default delimiter, 449–451
property resource bundles, 457
in searches, 435
tokens, 448
trimming from strings, 268

widening conversions, 176
width in format strings, 453
wildcards

generics, 659
globs, 520–522

import statements, 14, 17
LIKE operator, 869

word boundaries in searches, 435–436
work stealing, 819–820
wrapper classes

primitives, 182, 600–603
strings, 356

wrapping I/O classes, 484
write() method, 483
write permissions, 507, 512
Writer class, 486
writing attributes, 506–507

X

XML, 871
XOR (exclusive-OR) operator

hashcodes, 585
overview, 245

Xss1024k option, 807

Y

yield() method
class source, 764
key points, 767
locks, 749
overview, 734–738
threads, 716, 728

Z

zero-based indexes, 12
zero-length matches, 445
0x prefix, 169
zeroes in format strings, 453

17-Index.indd 987 9/2/2014 4:10:43 PM

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Join the Largest
Tech Community

in the World
 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your professional network through
the Oracle ACE Program

Publish your technical articles – and
get paid to share your expertise

Join the Oracle Technology Network
Membership is free. Visit oracle.com/technetwork

@OracleOTN facebook.com/OracleTechnologyNetwork

17-Index.indd 988 9/2/2014 4:10:43 PM

http://www.oracle.com/technetwork
http://www.facebook.com/OracleTechnologyNetwork

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

17-Index.indd 989 9/2/2014 4:10:43 PM

http://www.oracle.com/technetwork/oracleace
http://www.blogs.oracle.com/oracleace
http://www.oracle.com/technetwork/oracleace

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

17-Index.indd 990 9/2/2014 4:10:45 PM

Beta Test
Oracle

Software

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

If your interests match upcoming activities, we’ll contact you. Profiles are kept on file for 12 months.

Please apply at: pdpm.oracle.com/BPO/userprofile

 Licensed Oracle customer or
Oracle PartnerNetwork member

 Oracle software expert

 Early adopter of Oracle products

Get a first look at our newest products—and help
perfect them. You must meet the following criteria:

17-Index.indd 991 9/2/2014 4:10:45 PM

http://www.pdpm.oracle.com/BPO/userprofile

LICENSE AGREEMENT

THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA AND INFORMATION (INCLUDING
DOCUMENTATION) OWNED BY McGRAW-HILL EDUCATION AND ITS LICENSORS. YOUR RIGHT TO USE THE PRODUCT IS
GOVERNED BY THE TERMS AND CONDITIONS OF THIS AGREEMENT.

LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the entity whose agent opens this package. You
are granted a non-exclusive and non-transferable license to use the Product subject to the following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a single computer (i.e., a single CPU). If you
licensed and paid the fee applicable to a local area network or wide area network version of the Product, you are subject to the terms of the
following subparagraph (ii).
(ii) If you have licensed a local area network version, you may use the Product on unlimited workstations located in one single building
selected by you that is served by such local area network. If you have licensed a wide area network version, you may use the Product on
unlimited workstations located in multiple buildings on the same site selected by you that is served by such wide area network; provided,
however, that any building will not be considered located in the same site if it is more than five (5) miles away from any building included
in such site. In addition, you may only use a local area or wide area network version of the Product on one single server. If you wish to use
the Product on more than one server, you must obtain written authorization from McGraw-Hill Education and pay additional fees.
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an accurate record as to the location of the
back-up at all times.

COPYRIGHT; RESTRICTIONS ON USE AND TRANSFER: All rights (including copyright) in and to the Product are owned by
McGraw-Hill Education and its licensors. You are the owner of the enclosed disc on which the Product is recorded. You may not use, copy,
decompile, disassemble, reverse engineer, modify, reproduce, create derivative works, transmit, distribute, sublicense, store in a database
or retrieval system of any kind, rent or transfer the Product, or any portion thereof, in any form or by any means (including electronically
or otherwise) except as expressly provided for in this License Agreement. You must reproduce the copyright notices, trademark notices,
legends and logos of McGraw-Hill Education and its licensors that appear on the Product on the back-up copy of the Product which you are
permitted to make hereunder. All rights in the Product not expressly granted herein are reserved by McGraw-Hill Education and its licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to comply with any term or condition of this
License Agreement. Upon termination, you are obligated to return to McGraw-Hill Education the Product together with all copies thereof
and to purge all copies of the Product included in any and all servers and computer facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY ARE LICENSED “AS IS.” McGRAW-HILL
EDUCATION, ITS LICENSORS AND THE AUTHORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE RESULTS
TO BE OBTAINED BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT, ANY INFORMATION OR DATA INCLUDED
THEREIN AND/OR ANY TECHNICAL SUPPORT SERVICES PROVIDED HEREUNDER, IF ANY (“TECHNICAL SUPPORT
SERVICES”). McGRAW-HILL EDUCATION, ITS LICENSORS AND THE AUTHORS MAKE NO EXPRESS OR IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE WITH RESPECT TO THE
PRODUCT. McGRAW-HILL EDUCATION, ITS LICENSORS, AND THE AUTHORS MAKE NO GUARANTEE THAT YOU WILL
PASS ANY CERTIFICATION EXAM WHATSOEVER BY USING THIS PRODUCT. NEITHER McGRAW-HILL EDUCATION, ANY
OF ITS LICENSORS NOR THE AUTHORS WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED OR ERROR FREE. YOU
ASSUME THE ENTIRE RISK WITH RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, McGraw-Hill Education warrants that the enclosed disc on which the
Product is recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from
the date of purchase. In the event of a defect in the disc covered by the foregoing warranty, McGraw-Hill Education will replace the disc.

LIMITATION OF LIABILITY: NEITHER McGRAW-HILL EDUCATION, ITS LICENSORS NOR THE AUTHORS SHALL BE
LIABLE FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, SUCH AS BUT NOT LIMITED TO, LOSS OF
ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE OR INABILITY TO USE THE PRODUCT EVEN IF ANY
OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL
APPLY TO ANY CLAIM OR CAUSE WHATSOEVER WHETHER SUCH CLAIM OR CAUSE ARISES IN CONTRACT, TORT, OR
OTHERWISE. Some states do not allow the exclusion or limitation of indirect, special or consequential damages, so the above limitation
may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS: Any software included in the Product is provided with restricted rights subject to
subparagraphs (c), (1) and (2) of the Commercial Computer Software-Restricted Rights clause at 48 C.F.R. 52.227-19. The terms of this
Agreement applicable to the use of the data in the Product are those under which the data are generally made available to the general
public by McGraw-Hill Education. Except as provided herein, no reproduction, use, or disclosure rights are granted with respect to the data
included in the Product and no right to modify or create derivative works from any such data is hereby granted.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating to the Product. The terms of any
Purchase Order shall have no effect on the terms of this License Agreement. Failure of McGraw-Hill Education to insist at any time on
strict compliance with this License Agreement shall not constitute a waiver of any rights under this License Agreement. This License
Agreement shall be construed and governed in accordance with the laws of the State of New York. If any provision of this License
Agreement is held to be contrary to law, that provision will be enforced to the maximum extent permissible and the remaining provisions
will remain in full force and effect.

17-Index.indd 992 9/2/2014 4:10:45 PM

http://www.certification.oracle.com

	Cover
	Title Page
	Copyright Page
	Contents
	Contributors
	Acknowledgments
	Preface
	Introduction
	Part I: OCA and OCP
	1 Declarations and Access Control
	Java Refresher
	Identifiers and Keywords (OCA Objectives 1.2 and 2.1)
	Define Classes (OCA Objectives 1.2, 1.3, 1.4, 6.6, and 7.6)
	Use Interfaces (OCA Objective 7.6)
	Declare Class Members (OCA Objectives 2.1, 2.2, 2.3, 2.4, 2.5, 4.1, 4.2, 6.2, and 6.6)
	Declare and Use enums (OCA Objective 1.2 and OCP Objective 2.5)

	2 Object Orientation
	Encapsulation (OCA Objectives 6.1 and 6.7)
	Inheritance and Polymorphism (OCA Objectives 7.1, 7.2, and 7.3)
	Polymorphism (OCA Objectives 7.2 and 7.3)
	Overriding / Overloading (OCA Objectives 6.1, 6.3, 7.2, and 7.3)
	Casting (OCA Objectives 7.3 and 7.4)
	Implementing an Interface (OCA Objective 7.6)
	Legal Return Types (OCA Objectives 2.2, 2.5, 6.1, and 6.3)
	Constructors and Instantiation (OCA Objectives 6.4, 6.5, and 7.5)
	Statics (OCA Objective 6.2)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	3 Assignments
	Stack and Heap—Quick Review
	Literals, Assignments, and Variables (OCA Objectives 2.1, 2.2, 2.3, and Upgrade Objective 1.2)
	Scope (OCA Objectives 1.1 and 2.5)
	Variable Initialization (OCA Objective 2.1)
	Passing Variables into Methods (OCA Objective 6.8)
	Garbage Collection (OCA Objective 2.4)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	4 Operators
	Java Operators (OCA Objectives 3.1, 3.2, and 3.3)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	5 Working with Strings, Arrays, and ArrayLists
	Using String and StringBuilder (OCA Objectives 2.7 and 2.6)
	Using Arrays (OCA Objectives 4.1 and 4.2)
	Using ArrayList (OCA Objective 4.3)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	6 Flow Control and Exceptions
	Using if and switch Statements (OCA Objectives 3.4 and 3.5—also Upgrade Objective 1.1)
	Exercise 6-1: Creating a switch-case Statement
	Creating Loops Constructs (OCA Objectives 5.1, 5.2, 5.3, 5.4, and 5.5)
	Exercise 6-2: Creating a Labeled while Loop
	Handling Exceptions (OCA Objectives 8.1, 8.2, 8.3, and 8.4)
	Exercise 6-3: Propagating and Catching an Exception
	Common Exceptions and Errors (OCA Objective 8.5)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	Part II: OCP
	7 Assertions and Java 7 Exceptions
	Working with the Assertion Mechanism (OCP Objective 6.5)
	Working with Java 7 Exception Handling (OCP Objectives 6.2 and 6.3)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	8 String Processing, Data Formatting, Resource Bundles
	String, StringBuilder, and StringBuffer (OCP Objective 5.1)
	Dates, Numbers, Currencies, and Locales (OCP Objectives 12.1, 12.4, 12.5, and 12.6)
	Parsing, Tokenizing, and Formatting (OCP Objectives 5.1, 5.2, and 5.3)
	Resource Bundles (OCP Objectives 12.2, 12.3, and 12.5)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	9 I/O and NIO
	File Navigation and I/O (OCP Objectives 7.1 and 7.2)
	Files, Path, and Paths (OCP Objectives 8.1 and 8.2)
	File and Directory Attributes (OCP Objective 8.3)
	DirectoryStream (OCP Objective 8.4)
	FileVisitor (OCP Objective 8.4)
	PathMatcher (OCP Objective 8.5)
	WatchService (OCP Objective 8.6)
	Serialization (Objective 7.2)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	10 Advanced OO and Design Patterns
	IS-A and HAS-A (OCP Objectives 3.3 and 3.4)
	Coupling and Cohesion
	Object Composition Principles (OCP Objective 3.4)
	Singleton Design Pattern (OCP Objective 3.5)
	DAO Design Pattern (OCP Objective 3.6)
	Factory Design Pattern (OCP Objective 3.7)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	11 Generics and Collections
	toString(), hashCode(), and equals() (OCP Objectives 4.7 and 4.8)
	Collections Overview (OCP Objectives 4.5 and 4.6)
	Using Collections (OCP Objectives 4.2, 4.4, 4.5, 4.6, 4.7, and 4.8)
	Generic Types (OCP Objectives 4.1 and 4.3)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	12 Inner Classes
	Nested Classes (OCP Objective 2.4)
	Inner Classes
	Method-Local Inner Classes
	Anonymous Inner Classes
	Static Nested Classes
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	13 Threads
	Defining, Instantiating, and Starting Threads (OCP Objective 10.1)
	Thread States and Transitions (OCP Objective 10.2)
	Synchronizing Code, Thread Problems (OCP Objectives 10.3 and 10.4)
	Thread Interaction (OCP Objectives 10.3 and 10.4)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers
	Exercise Answers

	14 Concurrency
	Concurrency with the java.util.concurrent Package
	Apply Atomic Variables and Locks (OCP Objective 11.2)
	Use java.util.concurrent Collections (OCP Objective 11.1) and Use a Deque (OCP Objective 4.5)
	Use Executors and ThreadPools (OCP Objective 11.3)
	Use the Parallel Fork/Join Framework (OCP Objective 11.4)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	15 JDBC
	Starting Out: Introduction to Databases and JDBC
	Core Interfaces of the JDBC API (OCP Objective 9.1)
	Connect to a Database Using DriverManager (OCP Objective 9.2)
	Submit Queries and Read Results from the Database (OCP Objective 9.3)
	Use PreparedStatement and CallableStatement Objects (OCP Objective 9.6)
	Construct and Use RowSet Objects (OCP Objective 9.5)
	JDBC Transactions (OCP Objective 9.4)
	Two-Minute Drill
	Q&A Self Test
	Self Test Answers

	Appendix A: Serialization
	Serialization (OCP 7 Objective 7.2)
	Working with ObjectOutputStream and ObjectInputStream
	Object Graphs
	How Inheritance Affects Serialization
	Serialization Is Not for Statics

	Certification Summary
	Two-Minute Drill
	Self Test
	Self Test Answers

	Appendix B: Classpaths and JARs
	Using the javac and java Commands (OCPJP Exam Objectives 7.1, 7.2, and 7.5)
	Compiling with javac
	Launching Applications with java
	Searching for Other Classes

	JAR Files (Objective 7.5)
	JAR Files and Searching

	Using Static Imports (Objective 7.1)
	Static Imports

	Certification Summary
	Two-Minute Drill
	Self Test
	Self Test Answers

	Appendix C: About the Download
	System Requirements
	Downloading from McGraw-Hill Professional’s Media Center
	Installing the Practice Exam Software
	Running the Practice Exam Software
	Practice Exam Software Features
	Removing Installation
	Help

	Bonus Content
	Glossary
	Technical Support
	Windows 8 Troubleshooting
	McGraw-Hill Education Content Support

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

